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The zero norm subspace of bounded cohomology
of acylindrically hyperbolic groups

Federico Franceschini, Roberto Frigerio,
Maria Beatrice Pozzetti and Alessandro Sisto

Abstract. We construct combinatorial volume forms of hyperbolic three manifolds fibering over
the circle. These forms define non-trivial classes in bounded cohomology. After introducing a
new seminorm on exact bounded cohomology, we use these combinatorial classes to show
that, in degree 3, the zero norm subspace of the bounded cohomology of an acylindrically
hyperbolic group is infinite dimensional. In an appendix we use the same techniques to give a
cohomological proof of a lower bound, originally due to Brock, on the volume of the mapping
torus of a cobounded pseudo-Anosov homeomorphism of a closed surface in terms of its
Teichmiiller translation distance.
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Keywords. Hyperbolic manifolds, mapping torus, relatively hyperbolic group, pseudo-
Anosov automorphism, simplicial volume, Riemannian volume, quasi-cocycles, homological
bicombing.

Even for very well-studied groups such as non-abelian free groups, the task of
computing the bounded cohomology in higher degrees is still challenging. In
degree 2, the technology of quasimorphisms has been extensively exploited to
construct non-trivial bounded cohomology classes (see e.g. [3,9, 13, 18, 19] for the
case of trivial coeflicients, and [2, 11,25] for more general coefficient modules). On
the other hand, in higher degrees both constructing bounded cocycles and showing
that such cocycles define non-trivial bounded cohomology classes is definitely non-
trivial. For example, as far as the authors know, in the case of non-abelian free
groups, non-trivial bounded classes in degree 3 have been constructed only with the
help of hyperbolic geometry (see e.g. [46-48]), and it is still a major open question
whether the fourth bounded cohomology of non-abelian free groups vanishes or not.

The purpose of this paper is twofold. First, we construct a discrete 3-dimensional
volume form on a class of free-by-cyclic groups. Then, building on results from [17],
we exploit our construction to show that, for every acylindrically hyperbolic group,
the space of bounded classes with vanishing seminorm is infinite dimensional in
degree 3.
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Following a suggestion by Mladen Bestvina, in order construct our combinatorial
volume form we exploit a suitable relative version of Mineyev’s bicombing
on hyperbolic groups [35], which is due to Groves and Manning [22] and
Franceschini [16]. Dealing with a discrete volume form rather than with differential
forms allows us to provide a somewhat unified version of the arguments developed
in [48], where some essential estimates make use of a careful comparison between the
volume forms arising from the hyperbolic and the singular Sol structure supported
by hyperbolic 3-manifolds that fiber over the circle. We hope that our combinatorial
arguments, although clearly inspired by their differential counterpart, could be more
easily extended to wider classes of groups and, maybe, even to higher degrees.

Bounded cohomology of discrete groups. Let I be a group. We briefly recall the
definition of bounded cohomology of I" (with trivial real coefficients), referring the
reader to Section 1 for more details. We denote by C”(I") the set of real-valued
homogeneous n-cochains on I', and for every ¢ € C"(I") we set

lellco = sup {le(go, - -, &n)l | (g0, .-, 8a) € T*F1} €0, 00].

We denote by C;/(I") € C"(T") the subspace of bounded cochains, and by C”" (M,
cy(r ) the subspaces of invariant (bounded) cochains. The cohomology of the
complex Cl;"(I’)F is the bounded cohomology Hy (I") of I'. The norm ||-s on C; (")
induces a seminorm on H; (") that is usually called the Gromov seminorm.

The inclusion of (invariant) bounded cochains into ordinary cochains induces
the comparison map c": H(I') — H"(I'). The kernel of ¢" is the set of
bounded cohomology classes whose representatives are exact, and it is denoted
by EH;(I'). By definition, a class @ € E H;“(F ) is represented by a bounded
cocyclez = dp € C,;‘H(I‘)r,wherego e C*(IMT is a(possibly unbounded) cochain.
In other words, if we define the space QZ"(I') € C"(I") of n-quasi-cocycles as
the subset of cochains having bounded differential, then the differential induces a
surjection QZ"(IN)' — EH;“(F).

We denote by N"(I") the subspace of H;'(I") given by elements with vanishing
Gromov seminorm. It is easy to show that N"(I") € EH(T") for every n € N (see
Lemma 1.2). It was proved by Matsumoto and Morita [33] and independently by
Ivanov [27] that N2(T") = 0 for every group I". On the other hand, Soma proved
that N3(F,) # 0 [49], and that the dimension of N3(I'g) has the cardinality of
the continuum [48], where F» and I'y denote respectively the free group on two
generators and the fundamental group of a closed orientable surface of genus g > 2.

Main results. In this paper we extend Soma’s results as follows:

Theorem 1. Suppose that U is acylindrically hyperbolic. Then the dimension
of N3(I') has the cardinality of the continuum.
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Our result is new even for I' = F, (while it was proved in [46] that the dimension
of H}(F,) has the cardinality of the continuum).

A group I is acylindrically hyperbolic if it admits a non-elementary acylindrical
action on a Gromov hyperbolic space [41]. The class of acylindrically hyperbolic
groups includes many examples of interest: non-elementary hyperbolic and relatively
hyperbolic groups [12], the mapping class group of all but finitely many surfaces of
finite type [12, Theorem 2.19], Out(F},) for n > 2 [12, Theorem 2.20], groups
acting geometrically on a proper CAT(0) space with a rank one isometry ([45] and
[12, Theorem 2.22]), fundamental groups of several graphs of groups [34], small
cancellation groups [23], finitely presented residually finite groups with positive first
¢2-Betti number as well as groups of deficiency at least 2 [40], and many more. In
particular, Theorem 1 widely generalizes Soma’s previously mentioned results.

In order to prove Theorem 1 we proceed as follows. We introduce a new seminorm
|||l 00,0 On exact bounded cohomology, which satisfies the inequality ||| 0,0 = || [|oo:
for every finite subset S of I" and class @ € EH;'(I") we set

lells = inf {||8¢lleo | ¢ € C* (D), [8¢] =, ¢|sn = O},
and we define
o)l co,0 = Sup{IIO!IIS, ScrI,S ﬁnite} € [0, +o0] .

We denote by N (I") the subspace of elements o € EH [} (I') such that ||| 00,0 =0,
so that Nj(I') € N"(I") for every n € N. The key step in our proof of Theorem 1
is then provided by the following:

Theorem 2. The dimension of N§(F») has the cardinality of the continuum.

This already implies Theorem 1 for non-abelian free groups (and, therefore, for
all groups that admit an epimorphism on F,, e.g. for surface groups). We then
exploit results from [17] to reduce the general case to the case of free groups.
In fact, an acylindrically hyperbolic group I' contains a hyperbolically embedded
subgroup H which is virtually free-non-abelian [12,41] (it was recently shown that
random subgroups satisfy this property [31]). Moreover, [17, Corollary 1.2] implies
that the inclusion H < T induces a surjection of EH[;S (I") onto EH;(H), which
we know to be infinite-dimensional from Theorem 2. This does not quite suffice to
conclude, since we do not know whether the surjection £H g(F) — FEH g(H ) does
restrict to a surjection N3(I") — N3(H). This last fact would be true provided that
the map EH;’(I‘) — EHb3(H) is undistorted, according to the following:

Definition 3. A map f:V — W between seminormed vector spaces is undistorted
if there exists k > 0 such that for every o € f(V) there exists B € V with f(f) = «
and [|B] <k - |||

Unfortunately, we are not able to show that the surjection £ H g(l‘) — EH 5”( H)
is undistorted with respect to Gromov seminorms. In fact, Remark 2.8 says that
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this cannot be achieved at the level of quasi-cocycles, and therefore undistortion is a
rather delicate matter related to coboundaries, which makes it far from clear that this
should even be true. Nevertheless, in Section 2 we prove the following:

Theorem 4. Let H be hyperbolically embedded in T, let n > 2 and suppose that
H" Y(H) is finite-dimensional. If we endow both EH p (') and EH (H) with the
seminorm || - || 0,0, then the inclusion H — T induces an undistorted surjection

EH] (') — EH]'(H) .

This immediately implies that dim N3(I") > dim Ng(T") > dim N (H), thus
allowing us to deduce Theorem 1 from Theorem 2. Indeed, much more is true: due
to the definition of || - || c0,0, the fact that dim NO3(F) is infinite-dimensional implies
that there are many non-trivial classes in E HbF’ (I") with vanishing seminorm, each
of which can be represented by cocycles that vanish on arbitrarily big subsets of I'.
This quite counterintuitive phenomenon vividly illustrates the failing of excision for
bounded cohomology.

Quasi-cocycles. Bounded cohomology is often computed via suitable resolutions,
that allow to better exploit the geometry of the group under consideration. For
example, suppose that I acts on a set X. Then we denote by C*"(I' ~, X)
(resp. C;'(I' ~ X)) the space of maps (resp. bounded maps) from X 1o R,
endowed with the I"-action defined by

g-@(x0, ..., %) =g 1xg,....,8  xn) .

The obvious differential §:C*(I' ~ X) — C""(I' ~ X) preserves both
["-invariance and boundedness of cochains, so one can define the bounded
cohomology H;(I" ~ X) as the cohomology of the complex C;'(I' ~ X W of
invariant bounded cochains.

The £°°-norm || - || 0 on CJ(T" y X) induces an £°°-seminorm on Hy (I' , X),
which is still denoted by | - ||oo. Moreover, if the action of I on X is free, then
H}(I' ~ X) is canonically isometrically isomorphic to H(I') for every n € N
(see Lemma 1.1). In particular, N 3(T") is canonically isomorphic to the subspace of
elements of H b?’ (I' ~ X) with vanishing seminorms. Every element with vanishing
seminorm is exact (see Lemma 1.2), so it can be represented by a quasi-cocycle. We
are thus led to investigate the space

QZ'(T  X) = {p € C"(T' v X) | [18¢]l00 < o0}

of quasi-cocycles defined on X: namely, in order to prove that Hlf (I') contains
many elements with vanishing seminorm, we will construct an uncountable family of
invariant 2-quasi-cocycles whose differential defines linearly independent bounded
cohomology classes.
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A crucial notion that keeps track of the seminorm of classes induced by quasi-
cocycles is the defect: just as in the case of quasi-morphisms, the defect of a quasi-
cocycle ¢ € QZ™*(I' ~, X)) is given by

def(¢) = [16¢llco -

A combinatorial volume form on hyperbolic 3-manifolds fibering over the circle.
Let us now look more closely at the case we are interested in. Let I'g = £,
be the free group generated by the elements a, b, and let us identify I'y with the
fundamental group of the punctured torus X, in such a way that the conjugacy
class of the commutator [a,b] = a~'h~ab corresponds to the homotopy class of
a simple closed curve winding around the puncture. We fix a group automorphism
¥:I'y — I induced by a pseudo-Anosov homeomorphism f:% — X. The
automorphism ¥ preserves the conjugacy class of the commutator [a, b], S0, up to
conjugacy, we may suppose that ¥ ([a, b]) = [a, b]. The mapping torus

M=xx[0,1/_, (x0~(f(x),1)

has fundamental group isomorphic to the semidirect product I' = I'g 3y, Z, where the
generator ¢ of Z acts on I'y as follows: rgf~! = y(g) for every g € I'y. The (cusp)
subgroup H of I is the subgroup generated by ¢ and (the image of) [a, b] € 'y, and
it is isomorphic to Z & 7.

Recall that the pair (I", H) is relatively hyperbolic, either by Thurston’s hyperb-
olization for manifolds fibering over the circle [42] and a fundamental result
by Farb [14], or just by a combination theorem for relative hyperbolicity [36,
Theorem 4.9].

Starting from a Cayley graph of I', one can construct a cusped graph X by gluing
a copy of a combinatorial horoball based on H to each left coset of H in I'; we
outline the construction in Section 3. It was first described by Groves and Manning
in [22], and a similar construction is described in [4].

The group I' acts freely on X by isometries, therefore the bounded cohomology
of 'y can be isometrically computed by the complex C,;"(I'o ~ X yTo. Moreover,
being obtained by adding horoballs to (the Cayley graph of) a relatively hyperbolic
group, the graph X is Gromov hyperbolic, and supports a quasi-geodesic homological
bicombing with useful filling properties (see Section 3 and Appendix A). Indeed,
X is quasi-isometric to the hyperbolic 3-space, and the filling of the bicombing
may be exploited to construct a combinatorial version of the hyperbolic volume
form. In fact, since the cochains arising in our argument must all be I'p-invariant,
the combinatorial cocycles we construct should be thought of as volume forms on
the differential counterpart of X /Iy, that is the infinite cyclic covering M, of M
associated to 'y < I' = 71 (M).

As it is customary when dealing with “quasifications” of algebraic or differential
notions, the direct construction of a volume cocycle on X runs into difficulties, due
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to the fact that the coarse version of a cocycle need not be a cocycle. Therefore, in
Section 4 we rather construct a I'g-invariant primitive of a volume form. Such
primitive is a quasi-cocycle, and its differential (which is automatically closed)
provides a combinatorial version of the volume form on My =~ X x R. Following
Soma’s strategy, in order to construct an infinite-dimensional subspace of EH3(I'y)
out of this primitive, we just consider a suitably chosen collection of quasi-cocycles
obtained by taking the product of the original primitive with a collection of real
functions on My = ¥ xRR. These functions are themselves constructed by composing
the projection ¥ x R — R with Lipschitz maps of R into itself. The outcome of this
procedure is summarized by the following result, which provides the key ingredient
for the proof of Theorem 2:

Theorem 5. Let £(Z,R) be the space of Lipschitz real functions on Z. There exist
a constant C > 0 and a linear map

a: £(Z,R) — QZ2 (I'y ~ X)F°

alt
such that the following conditions hold:

() 8a(fNleo < C -Lip(f) for every [ € L(Z,R);
(2) [Sa(f)] =0in H}(Co ~ X) = H} (Do) if and only if f is bounded.

Volumes of mapping tori. We believe that the techniques developed in this paper,
and especially the combinatorial description of a volume form, will have application
in other contexts as well. As a first example in this direction, in the appendix
we give a cohomological proof of a volume estimate for hyperbolic 3—manifolds
fibering over the circle, under a coboundedness assumption. Recall that a pseudo-
Anosov homeomorphism y: £, — X, is e-cobounded if, denoting by / its axis
in the Teichmiiller space endowed with the Teichmiiller metric, the projection of [
is contained in the e-thick part M7 of the moduli space. We denote by () the
translation length of ¥ on the Teichmiiller space endowed with the Teichmiiller
metric.

Theorem 6. There exists a constant C > 0 depending only on € and g such that, for
any e-cobounded pseudo-Anosov  : X, — Xg, we have

vol(My) = C(¥).

This result was originally proven by Brock with completely different tech-
niques [7]. In fact, we emphasize that our proof actually gives an estimate on
the simplicial volume of My, and we then deduce the volume estimate from the
well-known proportionality between volume and simplicial volume for hyperbolic
manifolds. However, in no other part of the proof we use the fact that My, is
hyperbolic.
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We decided to include such a result only in an appendix because the setting
is slightly different from the rest of the paper. Since we only deal with compact
manifolds, many of the technicalities involved in the main paper are not needed for
this application. For this reason, a reader interested only in the construction of a
combinatorial cocycle representing the volume form might want to read the appendix
first.

Open questions and directions for further research. Is quasification indeed
essential in order to prove Theorem 2? Surprisingly enough, it seems that studying
genuine differential forms on hyperbolic manifolds is much harder than working with
quasi-cocycles on discrete models for F,. For example, if My =~ X x R is the
hyperbolic manifold introduced above, where X is a punctured torus, integration over
straight simplices induces a map from the space of pointwise bounded differential
3-forms on M|, to bounded group cochains of degree 3. Understanding the kernel of
this map is unexpectedly difficult, and this implies that it is not trivial to detect when
distinct differential forms represent the same bounded class, i.e. how much freedom
one can enjoy in varying the differential representatives of a fixed bounded class. We
refer the reader to [10,51] for a discussion of this topic. In [29] Kim and Kim proved,
for example, that if M is a complete, connected, oriented, locally symmetric space
of infinite volume, then the Cheeger isoperimetric constant of M is positive if and
only if the Riemannian volume form on M admits a bounded primitive. They also
showed that if M is a complete, connected, oriented, R-rank one locally symmetric
space of infinite volume with dimension at least 3, then the volume form of M defines
a non-trivial bounded cohomology class if and only if the Cheeger constant of M
vanishes. We pose here the following:

Question 7. Let n > 3 and let M be a hyperbolic n-manifold of infinite volume with
vanishing Cheeger constant. Is it possible to characterize the space of n-forms on M
admitting a bounded primitive? For example, is it true that a compactly supported
n-form on M admits a bounded primitive?

This question is tacitly faced in [48] in the case when M is the cyclic covering
of a 3-manifold fibering over the circle with fiber a closed surface. Soma’s analysis
involves a careful study of the relationship between the hyperbolic and the singular
Sol volume forms supported by such a manifold. Adapting his arguments to the case
when the fiber is a punctured surface seems very delicate.

Monod and Shalom showed the importance of bounded cohomology with
coefTicients in £2(I") in the study of rigidity of I" [38,39], and proposed the condition
HZ(T,£*(T")) # 0 as a cohomological definition of negative curvature for groups.
More in general, bounded cohomology with coefficients in £7(I"), 1 < p < oo
has been widely studied as a powerful tool to prove (super)rigidity results (see
e.g. [11,24]). Itis still unknown whether H; (£, £>(F,)) vanishes or not. We hope
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that our combinatorial approach to the construction of non-trivial classes (with trivial
real coefficients) could be of use in the context of more general coefficient modules.

Plan of the paper. In Section | we recall some basic facts on bounded cohomology,
and introduce the various (co)homological complexes we will need in the paper. In
Section 2 we introduce the seminorm ||+ || .0 0 and prove Theorem 4 building on results
from [17]. We also show how Theorem | may be reduced to Theorem 2. Following
[22] and [16], in Section 3 we describe a combinatorial bicombing with good filling
properties on a suitably chosen Rips complex associated to a relatively hyperbolic
pair. The technical proof of the main result of the section, Theorem 3.9, is postponed
to Appendix A. In Section 4 we construct a family of 3-dimensional combinatorial
volume forms on the free group on two generators, and we prove Theorems 5 and 2.
Finally, in Appendix B, we discuss applications of our techniques to obtain bounds
on the volume of compact hyperbolic manifolds and prove Theorem 6.
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1. Preliminaries on bounded cohomology

Let I" be a group and let X be a set on which I' acts on the left. We set
C"T ~ X)={e: X1 5> R},
and we endow C"(I" ~, X)) with the left I"-action defined by

g 00, ... xn) = (g X0, ....8 ' xp) .
For every n € N we also define the differential §: C*(I' ~r, X) — C**{(I" /, X)
by setting

n+1
80(x0r .. Xng1) = ) _(=D@(x0..... i Xng1) .

=0
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and we put on C*(I" ~, X') the norm defined by

lolloo = sup {l@(eo, - xn)l, (Ras -, xn) € X" 1} € [0, +00] .

We denote by C;/(I' » X) € C*(I" v X) the subspace of bounded cochains, and
we observe that || - | restricts to a finite norm on C;'(I' ~ X).

If V is a vector space endowed with a linear I'-action, we denote by V' C V
the subspace of elements that are fixed by every element of I'. The differential
defined above commutes with the action of I" and sends bounded cochains to
bounded cochains. Therefore, we can consider the cohomology of the complexes
C"(I' ~ X)F and C(I' ~ X)T, which we denote respectively by H"(I' ~ X)
and H'(T' ~ X). If X = T", endowed with the left action by translations, one gets
back the usual (bounded) cohomology H(’Z)(F) of I'.

For every basepoint x € X, we consider the I'-equivariant chain map

wh CH Ay X) — G
wi(@)(gos---.8n) = ©(goX, ..., &nX) .

Withasslight abuse, we denote by w¥ also the induced map wy: H;' (I' » X) — Hy' (')
on bounded cohomology.

Lemma 1.1. Suppose that the action of I" on X is free. Then for every x € X the
map wi: H'(I'  X) — HJ(T') is a natural isometric isomorphism.

Proof. Free actions are very special instances of amenable actions, so the conclusion
follows e.g. from [37, Theorem 7.5.3]. Ol

1.1. The predual chain complex. In order to show that the cocycles we are going
to construct are non-trivial, we will need to evaluate them on appropriate chains. Let
us fix an action of a group I" on a set X as in the previous section. For every n > 0
we denote by C,(X) the real vector space with basis X”*!. Elements of X"*!
will be often called n-simplices, since they are the n-simplices of the full simplicial
complex with vertices in X. As usual, we say that an n-simplex is supported on a
subset S C X if all its vertices lie in S, and the subspace of C, (X ) generated by
simplices supported on S is denoted by C,(S). We also endow C,(X) with the

¢!-norm defined by
| ¥ etl= ¥ el
xexn+l xexnt!

H.X = ()C(), e ,JC,I) € Cn(X), we denote by Bj,?:(xo, ... ,5C\j, . ,xn)ECn_l(X)
the j-th face of ¥, and we set dx = Y _o(—1)/d;X. Observe that it readily
follows from the definitions that the diagonal I'-action on X1 induces an isometric
["-action on C,(X). We denote by C,(I" ~ X)) the normed space C,(X) equipped
with this action.
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The dual notion to cochain invariance is chain coinvariance. We define the space
of coinvariants of C,(I" ~ X') as the quotient space

Ca(T v X)r = Cu(T v X) /W,

where W is the subspace of C,(I" ~, X) spanned by the elements of the form
g-c—c,asc varies in C,(I" ~ X) and g varies in I". We endow C,(I' ~ X)r
with the quotient seminorm (which is a norm). Since the I"-action on C,(I" i X)
commutes with the boundary operator, C«(I" ~ X)r is naturally a chain complex,
whose homology will be denoted by

Ho( A~ X).

The £!'-norm on C,, (I ~, X)r induces a seminorm on H.(I" ~, X)), which will still
be denoted by || - ||1.

Since invariant cochains vanish on the subspace W previously defined, evaluation
of cochains on chains induces a pairing

() C" T A X)'%xC,Tn X)r =R,
which in turn induces pairings

() H'"(IN X)x Hy(T'y X) > R,
() H} (T~ X)x Hy(T ~ X) > R.

It readily follows from the definitions that

(@, ) < llerlloo - 1812

forevery « € H} (I' v X), B € Hy(I' ~ X). As a first application of the pairing
between homology and cohomology, we show that bounded coclasses with vanishing
seminorm are exact:

Lemma 1.2. We have N"(T") € EH,(T').

Proof. By the Universal Coefficient Theorem, the pairing (-,-): H*(I')xH,(I') - R
induces an isomorphism between H"(I") and the dual of H,(I"). Therefore, in order
to conclude it is sufficient to observe that, if ¢": H,'(I") — H"(I") is the comparison
map, then

(" (@), B)| = e, B} < llello I BllL = O
forevery « € N"(I"), B € H,(I"). ]
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1.2. Degenerate chains and alternating cochains. In later computations it will be
convenient to neglect degenerate simplices (i.e. simplices with non-pairwise distinct
vertices). To this aim, let us denote by &,,4+ the group of permutations of the set
{0,...,n}, and by sgn(o) = +1 the sign of o, for every 0 € G, 4.

Then we may define an alternating linear operator alt,:C, (I' v X) — C,(I' v X)

by setting, for every X = (xq,...,x,) € X"+,
_ 1
alt,(x) = —— E sgn(o)(Xg 0y - - - » Xa(n)) -
(n4+1)! <
0€Gy 41

We say that a chain ¢ € C,(I' ~ X) is degenerate if alt,(c) = 0, and we denote
by D,(I" ~ X) the subspace of degenerate chains. We observe that D, (I" ~, X)
contains (strictly, unless X is a point) the space spanned by degenerate simplices.

It is immediate to check that alt, commutes with the boundary operator and
with the action of I'. Therefore, it descends to a chain map alt,: C«(I"  X)r —
C«(I' ~ X)r, which will still be denoted by alt,. If D,(I" ~ X)r denotes the
image of D, (I" ~ X) in C,(I' ~ X)r, we then define reduced chains by setting

C*(F y X)rcd = C*(r ~ X)/D*(F ~ X),
Ca(T' v X)rea,r = Co (' v X)r/Do(I' v X)r .

It is well known that the homology of the complex C«(I" ~ X)rea,r» endowed
with the obvious quotient seminorm, is isometrically isomorphic to H,(I" ~ X):
indeed, this easily follows from the well-known fact that alternation is homotopic to
the identity (on any complex where it is defined), and norm non-increasing.

Dually, one may define alternating cochains by setting, for every ¢ € C*(I" ~, X),

alt” () (x) = g(alty (x))

for every X € X"*1. The map alt” commutes with the differential and with the
action of I', thus defining a norm non-increasing chain self-map of the complex
C*(I' ~n X). We denote by

ClL(I'~ X)=alt"(C*(I' ~ X))
the space of alternating cochains, and we set
CI:a“(F A X)=Ch('x X)N C;(F ~ X) .

Again, the inclusion of alternating cochains into generic cochains induces an
isometric isomorphism between the cohomology of the complex C ;,alt(r ~ X) and
H;(I' n X). Moreover, since alternating cochains vanish on degenerate chains,
there is a well-defined pairing

() Cpa (T v X)T X Co(T' v X)rear > R,

which, under the identifications previously mentioned, induces the pairing between
H(I' 7 X) and H,(I" v X) introduced above.
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We will denote by QZ7, (I' ~ X) the space of alternating quasi-cocycles on X,
i.e. the set of alternating cochains with bounded differential.

1.3. Simplicial (co)chains. In this paper we will study the cochain modules
C*(I' ~ X), C;(I' ~ X) in the case when X is the set of vertices of a suitably
augmented Cayley graph of I" (see Section 3). A key step in our arguments will
be based on the fact that I' is relatively hyperbolic, which implies that I" satisfies
(relative) isoperimetric inequalities in every degree. In order to deal with higher
dimensional fillings, it will be convenient, rather than considering cochains in
C"(I' ~ X) (or C;'(I" X)), to consider simplicial cochains on suitably defined
simplicial complexes related to X (like the augmented Cayley graph having X as set
of vertices, or some Rips complex over X).

For every simplicial complex Y, we denote by (C2(Y), 9) the chain complex of
real simplicial chains on Y, endowed with the £!-norm || - || such that

| Y aioi| =Y lal

iel iel

for every reduced sum ;. a;0; € C2A(Y). The module C2(Y) is the real vector
space with basis

{(¥or---,¥n) | {¥0, ..., yn} is asimplex of Y}

(in particular, every n-simplex of ¥ gives rise to (n + 1)! simplices in C2(Y), and
to many other degenerate ones in degree bigger than n). As it is customary in the
literature, we denote by [vo, ..., yu| (rather than by (yg,..., y,)) the elements of
the canonical basis of C2(Y). If [yg,...,ys] is any such element, then we set
Supp([¥os -+ > ¥ul) = Vo,---»yn} S YO, and if ¢ = 3,; a;0; is a chain in
reduced form, then we set Supp(c) = |, Supp(0;).

Just as above, we define a chain map alt,: C2(Y) — C2(Y) by setting

1

alt, ([yo, o we ’er]) - m

> sgn(©@) (Yoo - - - » Vo))

0€G 41

for every [yo,..., yn] € C,;A(Y).
A chain ¢ € C,(Y) is degenerate if alt, (c) = 0, and one may define the complex
C2(Y )req of reduced simplicial chains as the quotient of C,(Y') by the subspace of

degenerate chains. We will simply denote by [y, ..., yx] (and call it a “simplex”)
also the class of [yg, ..., y,] in CHA(Y)md, so that, for example, we will be allowed
to write that [yo, y1] = —[y1, yo] in C2(Y )rea. If one fixes a total ordering < on

the set of vertices of Y, then a basis of CnA(Y Jred i given by the classes of the
non-degenerate elements [yg,...,y,] € CHA(Y) such that yo < -+ < y,. We
say that a simplex {yy, ..., y»} appears in a reduced chain ¢ € C,2(Y)yeq if, when
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writing ¢ as a linear combination of the elements of the above basis, the coeflicient
of the unique element corresponding to {yy, ..., y,} is not null. We then define the
support Supp(c) of ¢ as the union of the sets of vertices of all the simplices appearing
in ¢. Equivalently, Supp(¢) is the smallest possible support of any chain ¢ € CnA(Y )
projecting to c.

Also observe that the £;-norm on CnA(Y) induces an £'-norm on CnA(Y)red, that
will still be denoted by || - ||1.

If I" acts on Y via simplicial automorphisms, then we denote by C2(Y)r the
complex of coinvariants of C2(Y). Just as before, C2(Y)r is the quotient of
C2(Y) by the submodule generated by the chains of the form (¢ —g-¢), ¢ € CA(Y),
g € I'. The chain map alt, commutes with the action of I', thus descending to
a map alt,: CA2(Y)r — C2(Y)r, which will still be denoted by alt,. We will
denote by Cf(Y)red (resp. C*A(Y)red,p) the complex of reduced (resp. reduced and
coinvariant) cochains, i.e. the quotient of C2(Y) (resp. of C2 (Y )r) by the kernel of
the alternation map.

It is well known that, if Y is contractible and I" acts freely on Y, the homology
of the complexes C2(Y)r, C2(Y)wea,r is (not isometrically!) isomorphic to the
homology of I'. One may wonder whether also the computation of bounded
cohomology could take place in the context of simplicial cochains. However, this is
almost never the case: for example, if Y/ I" is compact, then every invariant simplicial
cochain on Y is bounded, while there may well exist cohomology classes in H"(I")
which do not admit any bounded representative.

2. Controlled extensions of quasi-cocycles

This section is devoted to the description of some elementary properties of the norm
| * | oc,0 defined in the introduction, and to the proof of Theorem 4. We fix a group I',
and we work with the standard resolution (C;'(I"), §) computing H}' (I).

2.1. The seminorm || - ||oc,0. Recall from the introduction that, for every class
a € EH}(T), we have set

ltlloo,0 = sup {llells, S € I, S finite} € [0, 4+00],

where
lals = inf {[[8¢lleo | ¢ € C"(T)', [8¢] = o, p|s = 0} .

In [21, Section 5.34], Gromov called functorial any seminorm (on singular
homology of topological spaces) with respect to which every continuous map induces
a norm non-increasing morphism. The following result ensures that || - ||,0 satisfies
the obvious analogous of functoriality for seminorms on bounded cohomology of
groups:
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Lemma 2.1. Let : " — IV be a homomorphism. Then the induced map

Y (EH (), |- lloo,0) = (EHE (L), ||+ lloo,0)
is norm non-increasing for every n € N.

Proof. Take o € EHJ(I"), and let ¢ > 0 be given. Let also § C I' be an
arbitrary finite set. Of course the set S = v(S) is finite, so we can find
an element ¢’ € C" 1 (I")I" such that [§¢'] = « in EHJ(I'), ¢'lss = 0, and
160 loo < ||¢]lco,0 + €. Let now ¢ = ¥ *¢'. By construction we have ¢|s = 0,

[6p] = [6y "¢l = [¥*6¢"] = ¥ ™ (@),
and

[18@llo0 < 18¢"lloo < lltlloo,0 + &

Hence ||[y*(@)|ls < |®|lcc.0 + & Due to arbitrariness of S we then have
V™ (@) ]lco,0 < |l¢¢]lcc,0 + & whence the conclusion since ¢ is arbitrary. L]

Corollary 2.2. Let r: ' — I be a surjective homomorphism with amenable kernel.
Then y*: H}(I'") — H}'(I) induces an injection

Ng (I') = Ng(I)
for everyn € N,

Proof. It is well known that an epimorphism with amenable kernel induces an
isomorphism in bounded cohomology (see e.g. [20,26]), so the conclusion follows
from Lemma 2.1. O]

Question 2.3. Lety: I" — I be a surjective homomorphism with amenable kernel.
Then the isomorphism ¥ * induced by v on bounded cohomology is isometric with
respect to Gromov’s seminorm (see e.g. [20,26]). Is it true that ¢ * also preserves the
seminorm | - || 0,0 On exact bounded cohomology? Or could the seminorm || - || o0,0 be
used to distinguish the (exact) bounded cohomology of I' from the (exact) bounded
cohomology of I'' (as seminormed spaces)?

In Section 4.7 we will exhibit classes with finite non-vanishing norm || - |0 in
degree 3. However it is worth pointing out that the norm || - ||, 0 is only interesting
in degrees strictly bigger than 2:

Lemma 2.4. For each non-zero o in HZ (), ||a]loo,0 = o0.

Proof. LetC ,f] (It be the metric completion of Cy, (I") with respect to the £!-norm.
Being bounded, the differential d,,: C,, (I')r — C,—1(I")r extends to £!-chains, thus
defining a complex whose homology is denoted by H,f' (I'). The pairing between
H}(I") and H,(T") extends to a pairing between H, (I") and H,f‘ (I"). By [33,
Theorem 2.3 and Corollary 2.7], this pairing induces an isomorphism between H bz ()
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and the dual of Hf 1(I"). Therefore, it is sufficient to show thatif @« € H f(r) is any
element with |o]e00 = M < oo, then o vanishes on every class in Hf‘ (I'). So

let B € Cf '(T") be an £!-cycle, and let ¢ be given. We can find a decomposition
B = B1 + B2 such that ||B2]|1 < ¢ and B; is supported on a finite set S  I'. Since
lolloo,0 > |l|ls, we can find a representative a of « vanishing on § with Gromov
norm smaller than M + 1. This implies

{o, [B]) = (a, B1 + B2) = {a.f2) =e(M +1).
By the arbitrariness of &, this implies that (o, [B]) = 0, as desired. ]

The rest of the section is devoted to the proof of Theorem 4. We first describe an
easy characterization of the seminorm || - ||0,0 defined in the introduction.

Definition 2.5. An exhaustion of I is a sequence (S;);en of finite subsets S; € I’
such that S; € ;41 foreveryi € N and [ ;o Si =T

The following criterion is easily verified and very useful in the applications:
Lemma 2.6. Let o € EH;JF1 (I), and let (S;)ien be a fixed exhaustion of I'. Then
for every sequence of elements ¢; € QZ"(IY, i € N, such that
(1) [8¢i] = « for everyi € N,

(2) ¢ils; = 0 foreveryi € N,

we have
o]l oo,0 < liminf |[6¢; ||oo -
1—>00

Moreover, one can choose elements p; € QZ"(I")Y, i € N, satisfying conditions (1)
and (2) in such a way that

lolloo,0 = 1im [|6g; floo -
=00

2.2. Extension of quasi-cocycles from hyperbolically embedded subgroups. Let
us now suppose that H is a hyperbolically embedded subgroup of T", and recall that

r*:Hy (I') — Hy(H)

is the restriction map induced by the inclusion of H in I'. We can now proceed
with the proof of Theorem 4, which states that r**! is an undistorted surjection for
every n > 1, provided that we endow both EH]™'(I') and EH*'(H) with the
| - llco,0-seminorm (and that #"(H) is finite-dimensional). The key ingredient for
our argument will be an extension result for quasi-cocycles proved in [17].

We first need to introduce the notion of small simplex in H . Such notion depends
on the geometry of the embedding of H in I'. However, for our purposes it is
sufficient to know that we can single out a particular finite subset Sy of H with the
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property that an element & € H"T! is small if and only if h € S¢H! < H*H!
(see [17, Definition 4.7]). In particular, the number of small simplices in H is finite,
so for every cochain ¢ € C"(H) the finite number

K(p) = max {|p(h)|, h € H"*! small}

is well defined.
Now we have the following extension operator for quasi-cocycles on H:

Theorem 2.7 ([17, Theorem 4.1]). There exists a linear map

e".cr(H¥ - ¢!

alt

"

such that the following conditions hold for every ¢ € CJl (H i
(1) supje a1 19" (9)(h) — ()| < K(p) ;

(2) ifn = 2then |0 (@)oo =n(n +1) - l¢loo :

(3) 180" (p) — 0" (Sp)lleo < 2(n + 1)(n +2)K(p) .

Theorem 4 would readily follow from Theorem 2.7 if we could get rid of the
additive error 2(n 4+ 1)(n + 2) K(¢) described in (3) when estimating the defect of
the extension in terms of the defect of the original quasi-cocycle. The following
remark shows that this is not possible in general.

Remark 2.8. Let M be an orientable complete finite-volume hyperbolic 3-manifold
with one cusp C. If I' = m;(M) and H < T is the subgroup corresponding
to C, then the pair (I', H) is relatively hyperbolic. In particular, H is hyperbolically
embedded in I". Moreover, H is isomorphic to Z & 7., whence amenable, and the
inclusion C < M induces a non-injective map H,(C) — H(M) in homology.
Therefore, [17, Proposition 7.3] shows that there is a genuine cocycle ¢ € Z2(H)H
such that [§©" (¢)] is not null in £H?(I"). In particular, the defect of ®*(p) cannot
be zero, whereas the defect of ¢ vanishes. This shows that there cannot be any linear
bound of the defect of ®2(¢p) in terms of the defect of ¢.

2.3. Proof of Theorem 4. We are now ready to prove Theorem 4. Since in degree 2
the norm || - ||, is infinite on every non-trivial element (see Lemma 2.4), the map
r?: EH}(G) — EH}(H) is obviously undistorted. Therefore, Theorem 4 follows
from the following:

Theorem 2.9. Let n > 2 and assume that H" (H) is finite dimensional. For every
a € EH;"H (H) there exists B € EHI';H(F) such that r* 1 (B) = a and

1Blloc,o0 = n(n + Do, -

The difficulty in the proof arises from the fact that Theorem 2.7 does not actually
giveamap EH;' (H) — EH; (I'), but just a map at the level of quasi-cocycles.
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Proof. Of course if & = 0 there is nothing to prove, so we may suppose & 7# 0.

Let (S])ien be any exhaustion of I'. It readily follows from the construction of
the map ®” in [17] that, for every i € N, there exists a finite subset S of H such
that ®" (¢) vanishes on S/ whenever ¢ vanishes on (S;)"*!. Indeed, if g € I+,
then

" (@)@ = ) ¢ty @),
Bes

where B varies over all the left cosets of H in I', trf (g) is a sort of weighted
projection of g into B (see [17, Definition 4.5]), and ¢’ is obtained from ¢ via the
left translation by an element of B (after setting ¢ = 0 on small simplices contained
in H). It is proved in [17, Theorem 5.1] that the sum in the above definition is finite
(ie. ¢y (trf (2)) = 0 for all but a finite number of cosets B), and it readily follows
from the definition of tr? that tr®(g) is supported on a finite number of simplices
in B for every g € '™, B € B. Therefore, we can choose as S; the finite set
given by the union of the translates in H of the simplices in the support of tr?(g),
as g varies in S and B varies among the cosets such that B (g) #0.

Moreover, we can suppose that S, € S/, | forevery i € N and that | _J; . 7= H.
We now define an exhaustion (S;);en of H by setting

S;=8"USy, ieN,

(recall that S, is the set of vertices of small simplices in ).

By Lemma 2.6, there exists a sequence ¢; of invariant quasi-cocycles on 4 such
that the following conditions hold: for every i € N, [6¢;] = « and ¢;(5) = 0 for
every s € S;’H; moreover,

lim def(¢;) = [la]loo,0 -
1—>00

Since alternation does not increase the defect of a quasi-cocycle and does not alter
the bounded class of its differential, we can also assume that each ¢; belongs
to QZ" (H)H.

Let us now set y; = O"(p;) € C,ﬁt(l‘)r. Since Sy C S;, for every i € N we

have K(p;) = 0, so Theorem 2.7 implies that

18%illoo = 180" (@) lloo = 10" (8¢i)lloo < n(n+1)-18¢i lloo = n(n-+1) def(pi) .

In particular, ¥; is an alternating quasi-cocycle with def(y;) < n(n + 1) def(¢;).
By construction we have v;|gr = 0, so the differential of /; defines a class

Bi € EHZ:“(F) such that

I1Bills; < n(r + 1) def(g;) .

Moreover, since K(¢;) = 0, from Theorem 2.7 (1) we deduce that the restriction
of ¥; to H™*1 coincides with ¢;, so that 7" t1(8;) = « forevery i € N,
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We are now going to prove the following:
Claim. The B; all belong to a finite-dimensional affine subspace of EH ).

To this aim observe that, since § o § = 0, for every element ¢ € C* ' (H Y we
have
§(®"(8c)) = 8(0"(8¢c) — 8@”_1(c)) :

Therefore, by Theorem 2.7(3), the cochain §(®"(dc)) is the coboundary of an
invariant bounded cochain, so that it defines the trivial element of EH;“(F).
In other words, the map

Zy(H)" — EHyTN(T), 20 [8(0"(2)]
induces a well-defined map
j:H"(H) — EH}Y(I) .

Since H"(H) is a finite-dimensional vector space, in order to prove the claim
it suffices to show that 8; — B; € j(H"(H)) for every i, j € N. Indeed, since
[0¢i] = [6¢;] in EHE’:H(H), we have ¢; —@; = b + z, where b € Cl’:,au(H)H is
bounded and z € Z} (H )# is a genuine cocycle. Since n > 2, by Theorem 2.7(2)

the cochain ®” (b) is bounded, hence
Bi —B; = [80"(pi) — 80" (p;)] = [0"(h) + 80" (2)] = [80"(2)] € j(H"(H)),

and this proves our claim.

Let now V be the subspace of EH 1;’+1(F) generated by the B;, i € N, and let
us set W = r"T1(V) = Span{a) C EHEZ’H(H). Assume first that there exists
B € VN NIUT) such that r"T1(B) # 0. In this case r"*1(B) is a non-zero
multiple of o, so up to rescaling we may suppose r*T1(8) = «. We have thus
found an element § in the preimage of « with vanishing || - ||co,0-seminorm, and this
certainly implies that || 8] co,0 < n(n + 1) ||| 00,0, Whence the conclusion.

We may then suppose that V' N N[’)hLl (I') is contained in ker r ™1, In this case we
first observe that, since || -[|s; < |- Il 7, , and Illoo,0 = sup;en I+ Ils7» the subspaces
M; ={f €V |IBls; = 0} satisfy M; 2 M1y and (L,eny Mi =V D NyTHD).
Since V is finite-dimensional, this implies in turn that there is i € N such that
VN N(;’H(F) = M; for every i > iy. Moreover, if we denote by B; the subspace
of V spanned by {f;, j > i}, then B; # {0} and B, C B; foreveryi € N.
Using again that V' is finite-dimensional, we obtain that, up to increasing iy, we may
suppose that B; = B;4+1 = B for every i > iy. By definition, for every i > iy the
subspace B is spanned by elements with finite || - || g--seminorm, and this implies that
the seminorm || - || 51 is finite on B for every i > io.l
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~ Let us now define the quotient space V =V/(Vn N(;’H(F)) and let us set
B = B/(BnN Né‘“(l‘)) C V. Forevery i > iy, the seminorm || - ”Sf induces a

genuine finite and non-degenerate norm on B, which will still be denoted by || - || St
Let us denote by E,- the image of B; in V. Then E,- € B for every i > iy, and for
every j > iy we have
limsup |8 |15/, < limsup |85
1—>00 I —>00

<n(n+ 1)1_1_{1{.10(131"(%) =nn + D]afle,o - (2.1)

In particular, the B; are definitively contained in a bounded subset in the finite-
dimensional normed space (B, || - || s ), and up to passing to a subsequence we can
to

suppose that lim; 00 f; = B in (B, || - | s/ ) for some B € B. Observe now that,
0 _
being genuine norms on the same finite-dimensional space B, the norms | - ||S},

Jj = iy, are all equivalent, so lim; B; = B with respect to any norm || - ||S},
j > ig. Therefore, thanks to (2.1) we have

1Blls;, < n(n + Do,

for every j > iy, hence for every j € N. B
Let now B € V be any representative of . Using (2.1) we may deduce that

1Blls; = 1Blls; < n(n+ Dlelloo,o

for every j > iy, and this implies in turn that || B||cc,0 < n(n + 1)||¢||c0,0 thanks to
Lemma 2.6. Therefore, in order to conclude it suffices to show that r**1(8) = a.
By construction, the map r”*! induces a map 7#*+1: V — W such that 7**1(g) =
r"t1(B). If we endow W with its natural Euclidean topology (recall that W is linearly
isomorphic to R), then the map ity > W, begin linear with a finite-dimensional
domain, is continuous with respect to any norm on V. We thus get

LB =7 TNB) = 7" (lim B;) = lim ") = lima=a.
1—>00 I —>00 1—>00

This concludes the proof. L]

2.4. Zero-norm subspaces for acylindrically hyperbolic group. We will now
make use of the following fundamental result about acylindrically hyperbolic groups:

Theorem 2.10 ([12, Theorem 2.24]). Let I' be an acylindrically hyperbolic group.
Then there exists a hyperbolically embedded subgroup H of T" such that H is
isomorphic to I, x K, where K is finite.
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The following result shows that Theorem 1 can now be reduced to Theorem 4 and
Theorem 2:

Corollary 2.11. Let I' be an acylindrically hyperbolic group. Then dim NJ'(I") >
dim Ny (F») for every n € N.

Proof. Let H be the hyperbolically embedded subgroup of I' provided by
Theorem 2.10, and observe that H surjects onto F, via an epimorphism with finite
(whence, amenable) kernel. By Corollary 2.2 we have dim N[ (F) < dim Ng§(H),
while Theorem 4 ensures that dim Ng(H) < dimNJ(I'). The conclusion
follows. ]

3. Relatively hyperbolic groups, cusped spaces and bicombings

In this section we collect some results about relatively hyperbolic groups that will be
useful in the sequel. The main result stated in this section is Theorem 3.9, whose
proof is quite technical and based on previous results from [22] and [16]. For these
reasons we defer its proof to Appendix A. Here we introduce the ideas and the notation
needed to understand the constructions carried out in the next section.

As described in the introduction, we are going to exhibit non-trivial quasi-cocycles
on the free group F, by constructing a combinatorial version of (the primitive) of
the volume form on a suitably chosen hyperbolic 3-manifold. By Milnor-Svarc
Lemma, the fundamental group of any closed hyperbolic 3-manifold provides a
discrete approximation of hyperbolic 3-space. The situation is different for finite
volume manifolds: in order to get a quasi-isometric copy of hyperbolic 3-space out
of the fundamental group I'" of a cusped 3-manifold we need to glue to the Cayley
graph of I'" an equivariant collection of horoballs. We now briefly describe this
procedure, closely following [22].

We will only consider simplicial graphs, i.e. graphs without loops and without
multiple edges between the same endpoints. Every graph G will be endowed with
the path-metric dg induced by giving unitary length to every edge. The set of
vertices of G will be denoted by G ), Following [22, Definition 3.12], we define the
(combinatorial) horoball #g based on G as follows. The vertex set of Hg is given
by G© x N, and two vertices (g, n) and (g’, n’) are joined by an edge if and only if
one of the following conditions holds:

e either |n —n'| = land g = g/,
s orn=n',g # g anddg(g,g’) <2".

Let us now fix a finitely generated group I" with a distinguished' finitely generated
subgroup H. We choose a symmetric finite generating set S for I containing a

'The constructions and the results that we are going to recall below also hold for groups with a family of
distinguished subgroups, but the case of a single subgroup is slightly easier and sufficient to our purposes.
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generating set for H, and we denote by Cay(I", S) the associated Cayley graph,
i.e. the graph having I" as the set of vertices, and such that two elements g, g’ €
I' = Cay(T, $)@ are joined by a single edge if and only if g7lg’ € S. Observe
that the full subgraph of Cay(I", S) with vertices in H coincides with the Cayley
graph of H with respect to the generating set S N /. The left translation by g € I’
induces an isomorphism between Cay(H, S N H) and the full subgraph of Cay(T’, S)
with vertices in gH, which, in particular, is connected. We denote by H#,p the
combinatorial horoball based on such subgraph, and we identify the full subgraph of
Hqm with vertices in gH x {0} with the full subgraph of Cay(I', §) with vertices
ingH.

Definition 3.1 ([22]). The cusped graph X associated to the pair (I', H) (and to
a finite generating set S as above) is the graph obtained by gluing a combinatorial
horoball #H, i to Cay(I', S') for every left coset gH of H, via the identification of the
full subgraph of #, g with vertices in gH x {0} with the full subgraph of Cay(TI", S)
with vertices in gH .

Remark 3.2. For ease of notation, we often do not distinguish between X and its
vertex set.

The relative hyperbolicity of the pair (I', H) is encoded by the geometry of the
cusped graph X as follows:

Theorem 3.3 (|22, Theorem 3.25]). The pair (', H) is relatively hyperbolic if and
only if the cusped graph X is Gromov hyperbolic.

Remark 3.4. There is a slight difference between our definition of cusped graph and
Groves—Manning’s one, in that our cusped graphs are necessarily simplicial, whereas
Groves and Manning explicitly allow multiple edges in their definition. We avoid
double edges because it will be convenient to consider a cusped graph as contained
in every Rips complex over it. However, in our applications we will be dealing only
with torsion-free groups, for which our definitions precisely coincide with the ones
in [22].

We have that X (9 is in canonical one-to-one correspondence with T' x N: this
holds because we are dealing with the simple case of a pair (I', ) where H is
a single subgroup. Henceforth we will tacitly make use of this identification, and
denote vertices of X by pairs in I" x N. Following [22], we define the depth function

D:X® >N, D(g,n)=n.

For every horoball # C X and every n € N, we define the n-horoball #, C X asso-
ciated with J¢ as the full subgraph of X with vertices in J#, = D~ !([n, +00))NH.
If a cusped graph X is é-hyperbolic and C > 6, then C-horoballs are convex in X
[22, Lemma 3.26].
Let o be a 1-simplex in X. We define the maximal and the minimal depth of o
as follows:
max D(o) = max {D(v), v € Supp(0)},
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while
min D (o) = min {D(v), v E Supp((r)}

if there exists a horoball containing all the vertices of ¢, and min D(0) = —o0
otherwise. Then for any given chain ¢ € CIA (X)rea \ {0} we set

max D(¢) = max {D(c), o appears in ¢} = max {D(v), v € Supp(c)} € N,
min D(c) = min {D(0), o appears in ¢} € N U {—oo} .

We also agree that max D(0) = —oo and min D(0) = +o0.

3.1. Rips complexes on cusped graphs. We are interested in proving some results
about fillings of cycles in relatively hyperbolic groups. It is well known that
hyperbolic groups may be characterized as those groups which satisfy a linear
isoperimetric inequality, and an analogous characterization also holds for relatively
hyperbolic groups, provided that fillings are replaced by suitably defined relative
fillings. Classical isoperimetric inequalities usually deal with fillings of 1-cycles
via 2-chains, and in order to provide group-theoretic definitions of length and area
it is usually sufficient to take generators and relations as unitary segments and as
tiles of unitary area, respectively. However, in our argument we also need higher
dimensional isoperimetric inequalities, which are better stated in the context of higher
dimensional complexes. To this aim it is often useful to consider Rips complexes
(over augmented Cayley graphs, in our case of interest).

Definition 3.5. Given a graph G and a parameter 1 < k € N, the Rips complex
R(G) on G is the simplicial complex having G as set of vertices, and an
n-dimensional simplex for every (n + 1)-tuple of vertices whose diameter in G
is at most x.

Let now X be the cusped graph associated to the relative hyperbolic pair (I", H),
as in the previous subsections. We fix a constant x > 48 + 6, where § € N is a
hyperbolicity constant for X, and we set

X = Re(X).

It is well known that, for k > 48 + 6, the Rips complex R, (G) of a §-hyperbolic
graph is contractible (see, for example, [5, 3.I".3.23]). Therefore, we have the
following:

Proposition 3.6. The simplicial complex X is contractible.
The notion of horoball easily carries over to X as follows:

Definition 3.7. An (n-)horoball of X is a full subcomplex of X having the same
vertices as an (n-)horoball of X .
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The maximal and the minimal depth of a chain ¢ € CnA (X)req are defined exactly
as we did for X.

Observe that, since « > 1, the graph X is naturally a subcomplex of X'. We stress
the fact that, when we refer to the distance in X, we will always refer to the restriction
of the distance of X to the vertices of X: we will never be interested in defining a
metric on the internal part of i-simplices of X, i > 1, or in understanding the path
metric associated to the structure of X as a simplicial complex. In particular, if A4 is
any subcomplex of X, then we denote by Ng(A) the full subcomplex of X whose
vertices lie at distance (in X) at most §' from the set of vertices of A.

The isometric action of I" on X induces a simplicial action of I' on X. As a
consequence, each C2(X)wea, n € N, is endowed with the structure of a normed
I'-module (i.e. a normed space equipped with an isometric I'-action).

Definition 3.8. Take z < CkA(X)red. We say that a chain a € CkAH(X)md is a
relative filling of z if
z=o0dg+¢,
where ¢ is a chain in C,f (X)req With min D(c) > O (i.e. each simplex appearing in ¢
is contained in some (-horoball).
We can now state the main result of the section, which will play a fundamental

role in the construction of our quasi-cocycles in Section 4. The proof of Theorem 3.9

is given in Appendix A.

Theorem 3.9. There exist constants 15,73 € R and a I'-equivariant map

0: X3 — CzA(X),ed such that, for any triple (xo, X1, X2) of vertices in X :

(1) if [x;,x;] is an edge of X and D(x;) = O for every i,j € {0,1,2}, then
@(x0,x1, X2) = [x0, X1, X2],

(2) if xo,X1,x2 belong to a 0-horoball K of X and dg(xi,xj) < 2 for every
iv ] L= {0’ ]5 2}: then Supp((p(-x()’ X],xz)) g Jf:

(3) lle(xo, x1, x2)[l1 < T3,

4) @ is alternating, i.e. ¢(X7(0), Xz(1), X¥z(2)) = sgn(r)@(xo, X1, x2) for every
permutation t of {0, 1,2},

(5) the chain ¢(0(xq, x1, X2, X3)) admits a relative filling B € C,J,A(X)md such that
| Bll1 < Ts.

4. Combinatorial volume forms

Before going into the proof of Theorem 3, let us fix some notation. Let ['g = F(a, b)
be a free group of rank 2, and let ¢: 'y — 'y be a group automorphism induced by
a pseudo-Anosov orientation-preserving homeomorphism of a punctured torus. Up
to conjugating vy, we may suppose that ¥ ([a, b]) = [a,b]. Let I' = I’y xy Z, and
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denote by ¢ the generator of Z. < I', in such a way that tgt~! = ¥ (g) for every
g € I'yg. Let H < I'" be the subgroup generated by [a, ] and ¢, and recall that the
pair (I, H) is relatively hyperbolic. We denote by X the cusped graph associated to
the pair (I", /) and the generating set § = {a, b, [¢, b], ¢}, and by X the contractible
Rips complex over X defined in the previous section. In fact, we will completely
forget the structure of X as a graph, and we will denote again by X its set of vertices
(while we will make use of the structure of X as a simplicial complex).

Recall that I" (hence, I'y) acts freely on X, so the bounded cohomology of I'y
may be isometrically computed via the complex

Cl(To v X):={o: X" SR, |¢]les < 00}

introduced in Section 1. For every Lipschitz map f:Z — R we are going to
construct a 2-quasi-cocycle oy € QZZ‘M(FO ~ X)To. The quasi-cocycle o 7 should
be understood as a discrete approximation of a primitive of a volume form on the
infinite cyclic covering My = H?/ I’y of the cusped hyperbolic manifold M = H?3/T"
(here we are identifying I" with its realization as a non-uniform lattice in the isometry
group of H?3).

Recall that M, is diffeomorphic to £ x R, where X is a once-punctured torus. A
primitive of a volume form on M, may thus be constructed by exploiting the obvious
deformation retraction of ¥ x R onto ¥ x {0}. The usual proof of the homotopy
invariance of De Rham cohomology then shows that, if o is any 2-simplex in M, then
the evaluation on o of the primitive of a volume form on My is equal to the volume
of the prism spanned by o during the deformation into its projection on X x {0}.
Our construction is inspired by this remark, yet it is completely independent from
the differential geometric situation just recalled. We define a projection p: X — Iy
as follows: every element X admits a unique expression as a pair (got*, n) with
go € I'p, and we then set

p:X — Ty, p(gotk,n)zgg.

4.1. Heuristic. In this subsection we just discuss the geometric meaning of p, the
reader may safely skip ahead if the point is clear already.

The projection p: X — I'y plays the role of the retraction of M; onto 2. When
considering I" as a non-uniform hyperbolic lattice, the action of ¢ on M= xR
corresponds to the composition of the lift of the pseudo-Anosov homeomorphism
corresponding to ¥ (on f}) with the translation by 1 (on R). Via the quasi-isometric
identification between X and M , this action translates into the left action of I on X.
Observe now that the the group I" acts on X also on the right as follows:

(g.n)-¢g = (gg' n).

This action is not by isometries, and it does not extend to a simplicial action over X
neither over X.. However, from the equality tgt~! = ¥ (g), g € 'y, we deduce that
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the right action of r on X should correspond to the unitary translation on T x R.
Whence, the definition of p.

4.2. The combinatorial area form. In order to compute (signed) volumes, we need
to introduce an orientation on triples in X 3. Let us fix a finite-area hyperbolization
of Iy, i.e. a discrete faithful representation p: I'y — Isom™ (H?) such that H?/p(T)
is isometric to a finite-volume once-punctured torus, and denote by - the action of I"
on 0H2 induced by p. We identify 1H? with the topological boundary of the Poincaré
disk, and we say that a triple of pairwise distinct points (ag, a1, az) in dH? is positive
(resp. negative) if (ay, a1, a») are anti-clockwise (resp. clockwise) oriented on 0H?.
Finally, if the points in the triple (@g, a1, a2) € (0H?)? are not pairwise distinct, we
say that the triple is degenerate. The element p([a, b]) is parabolic, so it has a unique
fixed point g € dH?. We then define a map &:I§ — {—1,0, 1} as follows:

1, if (g0-q,81-9.82+q) is positive,
£(80,81,82) = {0,  if(go*q.&1°4, 82 q) is degenerate,
—1, if(go-q,81-4q, &2+ q) is negative.

We extend & to a map defined on X 3 by setting:

&(x0, x1,x2) = &(p(x0), p(x1), p(x2)) .

The following result states that ¢ is a I'-invariant bounded cocycle:

Proposition 4.1. We have
g€ Zp (O X)F.
Moreover, if xg, x1, x2 all lie in a horoball # of X, then g(xg, x1, x2) = 0.

Proof. The fact that ¢ is a cocycle is easily checked. In order to prove that ¢ is
I"-invariant it suffices to check that g - ¢ = g forevery g € I'g, and 1 - ¢ = .

Letus fix g € I'y. It readily follows from the definition of p that p(gx) = gp(x)
for every x € X. Therefore, for every triple (x¢, x1,x2) € X 3 we have

(p(gx0) - q. p(gx1)-q. p(gx2) - q) = (gp(x0) - G, gp(x1) - 4. gp(x2) - q) ,

and the conclusion easily follows from the fact that p(g) acts on dIH? as an orientation-
preserving homeomorphism.

In order to prove invariance with respect to ¢, first observe that the pseudo-Anosov
homeomorphism 4: ¥ — X lifts to a quasi-isometry 7. H2 — H2 such that

hop(g) = p(¥(g)oh (4.1)
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~

for every g € I'g. The quasi-isometry £ continuously extends to OH?, and
equation (4.1) also holds when considering the actions of 4 and of Iy on JH?.
In particular, if we set g = [a, b] and we evaluate at g we obtain

h@) =hg-7) = v(@)- (h@) =g (@)

SO il(q) is fixed by g, and _
h(g) =q .
Now, for every x = (gotk, n) € X with gg € 'y, we have

ptx) = P(f(gofk,n)) = p(tgot,n) = P(’/’(go)kaa”) =¥ (go) = ¥ (p(x)),

hence

p(tx) -G =¥(p(x) -7 = ¥(p(x))-h(@ = h(p(x)-q) . 4.2)

Let us now consider a triple (xg, x1, x2) € X>. Observe that the trace of % on 9H?2
is an orientation-preserving homeomorphism. Therefore, the triple

(p(x0) -4, p(x1) - G, p(x2) - §)

is positive (resp. negative, degenerate) if and only if

(h(p(x0) - ). h(p(x1) - ), h(p(x2) - D))

is so. Thanks to (4.2), this concludes the proof that & is Z-invariant, whence
I'-invariant.

Suppose now that xg,x1,xp all lie in the same horoball # of X. Then
p(x0), p(x1), p(x2) all lie in the same left coset of {[a,h]) in ['y. Using again
that g is fixed by p([a, b]), this implies that p(xp) - g = p(x1) - ¢ = p(x2) - q,
so &(xp, x1,x2) = 0. O

4.3. The quasi-cocycle associated to a Lipschitz function. Let us now fix a
Lipschitz function
f:Z —>R.

We are going to define the quasi-cocycle oy = a(f) € QZ2(I' A X )10 required
in Theorem 5. The decomposition I' = T'g My Z of I' as a semidirect product
defines an epimorphism 0: " — 7 given by 6(g) = k, where g = got* is the
unique expression of g such that gg € I'y. We extend 6 to the whole of X by setting
0(g.n) = 0(g).

We first define the simplicial cochain F s € Cf_i, 40(X) such that, if o is a 2-simplex

in X with vertices (xg, x1, x2) € X3, then

Ff(()’) — E(X(),)Cl,xz) Zi:(} ];(9(361)) .
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Lemma 4.2. We have Fy € Ci alt(.‘)C)FO. Moreover:
(1) Fy(t) = 0 for every 2-simplex T contained in a horoball,

(2) There exists a constant R depending on k and 6 only such that |Fr(do)| <
R - Lip(f) for every 3-simplex o of X..

Proof. The fact that F ¢ is alternating (resp. ['g-invariant) follows from the fact that &
is (resp. that ¢ and 6 are). Moreover, if the 2-simplex © = (x¢, X1, X2) is contained
in a horoball, then Proposition 4.1 implies e(xg, X1, x2) = 0,80 Fr(z) = 0.

Let now (xy, ..., x3) be the vertices of a 3-simplex o. Recall that XX = R, (X),
where k > 48 + 6 and § is a hyperbolicity constant for X. Since x; and x; are the
vertices of a simplex in X we have d(x;,x;) < k. If max D(c) > « + 1, then o
is contained in a horoball #, and hence F¢(do) = 0. In particular we can assume
max D(o) < k. By definition, if m = Z?:o f(x;), then
B2 ¢ x5 iy s o0 5 XB)

Fr(di0) = ;

(m — f(0(x:))) ,

s0, using that Z?zo(—l)is(xo, ey Xiy .. .x3) = 0, we get:

3 .
F /(o) = Z(_l)i(s(xw ey XiyonssX3) (m B f(@(x,'))))

_ 3
=0

3 ~
= =Yy B %) gy,
i=0 )

Using again that ¢ is a cocycle with values in {—1, 0, 1} we obtain that, up to a suitable
permutation of (xg, x1, X2, x3), either F¢(do) =0,0r Fr(do) =f(0(x2))—f(0(x3)),
or Fr(do) = f(6(x0)) — f(8(x1)) + f(0(x2)) — f(6(x3)). In any case, in order
to conclude it is sufficient to show that | £(6(x;)) — f(0(x;))| < R/2 for a universal
constant R for every fixed pair of indices i, j € {0,...,3}.

First observe that, being a homomorphism, the restriction of 8 to I' is A-Lipschitz
for some & > 0. Recall that d denotes the distance on X, and denote by dr the
distance on the Cayley graph of I' with respect to the fixed generating set S. If
xi = (gi ni), x; = (gj.n;), with n;,n; < k, we claim that dr(g;, g;) < x2<:
indeed, since d(x1, x2) < Kk, any vertex in a geodesic in X between x; and x5 has
depth at most 2«, hence a geodesic in X between x; and x, projects to a path in I" of
length at most x2%¢. The conclusion follows if we set R/2 = hi2%. 1

We are now ready to define the quasi-cocycle o ¢. Forevery triple (xq, X1, x2) € X 3
we set

o (x0, X1, X2) = Fr(p(x0, X1, x2)),

where ¢ is the relative filling from Theorem 3.9.
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Proposition 4.3. We have
(1) oy € QZ5(Ty ~ X)To,
(2) def(ay) < K - Lip(f) for a universal constant K.

Proof. The I'g-invariance of ay follows from the I'g-equivariance of ¢ (which,
indeed, is even I'-equivariant) and the I'y-invariance of Fy. Moreover, «r is
alternating, since both F ¢ and ¢ are.

In order to bound the defect of & ¢, let us fix a quadruple (x0,...,X3) € X4, and
estimate the value

3
501f(x0,x1,x2,x3) = Z(—l)iflf(xo, e O 1 @ 5 b))
i=0

3
= > D' Fp(pCeo.... B, x3)

i=0

3
= Ff(Z(—l)i@(x{),...,fi,...,JC3)).

i=0

Theorem 3.9 ensures the existence of a small relative filling of the chain
S o(=1)p(x0,...,%i,...,x3): we can choose a 3-chain B € C2(X)req With
| Bll1 < 75 and such that the difference

3

0B — Y (=1e(xo,.... 5. ... x3)

i=0

is a sum of simplices of X contained in a union of 0O-horoballs. We write
B =) ;Aj0j, with ) [A;] < T;. Since Fy(o) = 0if o is a simplex contained
in a 0-horoball #¢, we have:

3
|8af((x0,x1,x2,X3))| = ‘Ff(BB) — Ff(E)B — Z(—l)iqo(xg, vnmg X o ,x3))|

=0

= |Fr@B)] = | 34 Fr@o))| < D IA1- |Fr (o))
J J

< R-Lip(f)- Y |A;| < R-T3-Lip(f),
J
where R is the constant provided by Lemma 4.2. The conclusion follows. L

4.4. The 2-cycle A,,. The purpose of this section is to construct, for each m € N,
acycle Ay, € C3(I'g v X)req,r, On Which we will evaluate our quasi-cocycles « ¢.
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In what follows we will omit, for ease of notation, to distinguish a chain in
Cn(I'o ~ X,R)r, from its reduced image in C,,(I'y ~ X, R)req,r,. For example,
we will simply write (x,y) = —(y,x) for every (x,y) € X2. We will construct
the cycle A,, as a union of different combinatorial analogues of geometric pieces, as
illustrated in Figure 1.

Figure 1. The 2-cycle Ap,.

Let e € I' denote the identity element. Figure 2 describes the combinatorial
analogue of a relative fundamental class for I'y € X, which is given by the chain

¢ := ((e.0), (b,0), (ba,0)) + ((e. 0), (ba,0), (ab,0)) + ((e, 0), (ab, 0), (a,0)).

An easy computation in C2(I'p v X)rea,r, gives

dc = ((e.0). (2, b], 0)) = ((ba,0), (ab,0)).

ha ab
Figure 2. The relative fundamental class c.

The second building block of our cycle A4,, is the combinatorial counterpart of
a small annulus going deep enough into the horoball. We will need this to be able
to join the boundaries of two combinatorial fundamental classes with two simplices.
We will prove that, for each K € N, the 1-cycle dc is homologous to the 1-cycle

ax = 3% ((e, K). ([a.b]*", K)).
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We choose K, := |log, m| + 1 big enough, so that d((e, K,), (t™, K\n)) = 1,
and consider the chain

Km—1

d = ) 2,-]+1 (((e,i),(e,i + 1), (la, b1 . 1))

i=0

+ ((fa, b1 1), (esi + 1), (fa, B i 4+ 1)
+ (a1 1), (a1 i 4 1), (s P 0)) ).

A portion of the annulus is drawn in Figure 3. In C5(X, R)eq,1,, We have
Ody = —0e +8xg,,.

which, in particular, proves that dc¢ and a,, are homologous.

e, £+ 1) (fla, b0 +1)

€D (la. b i) ([, 6" i)

Figure 3. A portion of the annulus d,y,.

Our third and last building block is an annulus supported deep in the horoball
with boundary ag,, —t"ak,,. We will call it e,, (compare Figure 4):

en = s (& K. @™l P K, @7, Ko)

+ (e K), ([, b Kn), ("1, B2 K)) ).

In order to verify that de,, = ak,, —t™ak,,, we use that the pseudo-Anosov ¥ fixes
the commutator [a, b] and hence in particular t™[a, b|2*™ = [a, b]2" " t™.
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(la, 2" Km) — (t™[a, B2, K)

(¢, Km) (™, Km)
Figure 4. The annulus e, .

We can now define
Ay :=t" - (c +dm) — (¢ +dn) + em.

Lemma 4.4. Letm > 0. Then
M N Amll =9
(2) the chain Ay, is a boundary in C3(I'o v X )red, T -

Proof. (1) We have

I Amlln < 2llclli + 2 dmll1 + lemlls
Km—1 (e8]
<6+3 Z 2~i-1 1 9.9 Km 56+322—’—1 —9.
i=0 i=0

(2) We already verified that 04,, = 0. Observe that each simplex involved in the
definition of A,, exists in the Rips complex X and hence A,, also defines a cycle
as a simplicial chain in CZA(.‘)C)md,p(, = C2A (X /To)req. Since the Rips complex X
is contractible, the simplicial homology of X /'y is canonically isomorphic to the
homology of I'g == F,, which of course vanishes in degree 2. Therefore, there exist a
simplicial 3-chain B,, € Cf(X)rcd,po with dB,, — A,. The chain B,, also defines
an element of C3(I'y ~ X )rea,r, With 0B, = Ap,. ]

4.5. Proof of Theorem 5. We now turn to the proof of Theorem 5 that we recall for
the reader’s convenience:

Theorem 5. Let £(7,R) be the space of Lipschitz real functions on Z.. There exist
a constant C > 0 and a linear map

a: £(Z,R) = QZ2(Ty ~ X)T0

such that the following conditions hold:

(1) def(a(f)) = [8a(S Moo < C - Lip(f) for every [ € L(Z,R);
2) [8a(f)] = 0in H}(Ty ~ X) = H(To) if and only if [ is bounded.
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Of course the map

a: £(Z,R) — QZ2(Ty~ X))o

alt
/ > oy

defined in Section 4.3 is linear, and we proved (1) in Proposition 4.3. The last missing
step in the proof of Theorem 5 is:
Proposition 4.5. Sa s represents 0 in H}(T'y ~ X) if and only if the Lipschitz
function | is bounded.

In order to prove Proposition 4.5 we need to compute the value of o y on A,,. We
begin with a preliminary lemma:
Lemma 4.6. Leta, b be the generators of T'y. We have e(e,ab,a)=¢(e, b, ba)==+1
and e(e,ba,ab) = 0.

Proof. Recall that, in order to define &, we chose a finite area hyperbolization p of I'y,
and we denoted by g € dH? the unique fixed point of p([a,b]) = p(a~ b~ 'ab).
By definition, me(go, g1, g2) is the area of the ideal triangle in H? with vertices
(80°9.81°9.829).

Since ha -q = ba - ([a, b]-q) = ab - g, the ideal triangle with vertices (¢, ha - q,
ab - q) is degenerate, and hence (e, ba,ab) = 0. Moreover the union of the two
triangles (q,ab - q,a - q) and (g,b - q,ba - q) is a fundamental domain for the I'y
action on HZ?, and hence &(e, ab,a) = &(e, b, ba) are non-zero. The common sign
depends on the choice of the generators a, b. . []

The next lemma shows that the cycle A,, encloses a volume proportional to m:
Lemma 4.7. |« r(A,)| = 2| f(m) — f(0)].

Proof. We evaluate « s (A,,) term by term. Observe that every simplex in the support
of A,, has vertices at distance at most 2, and there exists a horoball ¢ such that

Supp(dm + em + t™dw) C JH.

It then follows from Theorem 3.9(2) that, for each simplex o in the support of
t"dy, + em — dm, we have ¢(0) C K and hence

o f (" dm + em — dm) = Fr(o(t"dm + em — dm)) = 0

by Lemma 4.2 (1). Therefore & s (Am) = a (1™ c —c).

We know fromLemma4.6thate(e, ab,a) =¢(e, b, ba) =+1ande(e, ba,ab) =0.
Since ¢ is "-invariant (Proposition 4.1), and hence in particular -invariant, we also
deduce £(t™,t"™ab,t™a) = e(e,ab,a). Moreover, since all simplices involved in
the definition of ¢ and t™c¢ have vertices at distance at most 1, Theorem 3.9(1)
implies that ¢ is the identity on each of them. We now have 0(v) = m for
every vertex v in Supp(t”c), and 8(v) = 0 for every vertex v in Supp(c), so
ar(t™c) —ay(c) = 2¢e(e,ab,a)(f(m) — f(0)), and this concludes the proof. [
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Proof of Proposition 4.5. Suppose that f is bounded. For every (xg, x1,x2) € X3,
we write

@(xo, X1,X2) = ZAUG
o
with ) |A5| < T (see Theorem 3.9 (3)). Then

|af(x0, X1, x2)| = |Ff(¢’(xo,x1, X:z))l

2
L3 2l S £ 0D
3

< 2|l f lloo-

AN

This shows that §« f is the coboundary of a bounded 2-cochain and hence represents O
in H7(To ~ X).

Vice versa, suppose that f is a Lipschitz function such that §« y = 6 for some
bounded ["y-invariant cochain g € Cbz(Fg ~ X)'o. By Lemma 4.4, there exists
a 3-chain B, € C3(X,R)ea,r, with 0By, = Ap. Recall from Lemma 4.4 that
lAmll1 <9, so

ot g (Am)| = | £ (9Bm)| = |(8at s )(Bm)| = |(68)(Bm)|
= |B(0Bm)| = [B(Am)] = |Blloo - | Am |l = OlBlloo -

Therefore, |os(Ap)| is uniformly bounded. By Lemma 4.7, this implies that
| f(m)| < |%af(Am)| + | £(0)| is also uniformly bounded, i.e. that f is bounded, as
desired. ]

4.6. Proof of Theorem 2. In order to conclude the proof of Theorem 2 we are now
left to construct an uncountable set of linearly independent elements in Ng (F,) <
H}(F,). Forevery f € £(Z,R) we set

f@) = f(=n), ift <—n,

Ju(t) = 10, if —n <t <mn,
f(t)— f(n), ift=>n

and
£%(Z,R) = {f € £(Z,R) | lim Lip(fp) = 0} .

We choose the basepoint x = (e,0) € X and we set

n: £(Z,R) — HZ(To), n(f) = wi([8ays]),

where w3: H?(I'g ~ X) — H} () is the map described in Lemma 1.1.
Recall from Lemma 1.1 that the complex C, (To ~ X y'o isometri-
cally computes the bounded cohomology of I'y, so by Proposition 4.5 the
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map 7 induces an isomorphism between £°(Z,R)/(£°(Z,R) N £°°(7Z)) and
n(£°(Z,R))C H:(FO). It is immediate to realize that the dimension of the real
vector space £%(Z,R)/(£°(Z,R) N £>2(Z)) is equal to the cardinality of the
continuum: for example, the classes of the maps n — n%, « € (0, 1), define linear
independent elements in £°(Z,R)/(£%(Z,R) N £>*(Z)). Therefore, Theorem 2 is
now reduced to the following:

Proposition 4.8. For every function [ € £°(Z,R) we have n(f) € Ny (To).

Proof. Forevery n € N we have ||/ — fulloo = max {| f|—n.njl} < o0, hence by
Proposition 4.5 we have n( f,) = n(f) forevery n € N. Therefore, forevery n € N
the cochain w2(a s,) € C?(T) is a primitive of 7( f).

Let us fix the exhaustion (S;);en of Iy given by

Si = {)/ = r0 | dl“o(%é’) ' l}

For every i, we can choose n; big enough so that w%(afni)|5i3 = 0: indeed
the set S; is finite, and for each triple (so,51,82) € Si3, the simplicial
2-chain ¢((s9,0), (s1,0), (s2,0)) involves only a finite number of simplices. In
particular we can find n; such that |6(Supp ¢((so,0), (51,0), (s2,0)))| < n; for
every (so,s1,52) €S, and for such n; we have w;%(afnl-ﬂsﬁ = 0. Clearly we
can also suppose that the sequence {n; }ien is monotonically d%verging to oo.

Recall now that Proposition 4.3 ensures that [« 7, [lo <= K Lip(fn;), so since
[ € £%Z,R) we have limj oo [[6at, [loo = 0. Therefore, since wY is norm
non-increasing, by Lemma 2.6 we finally get

190 looo < liminf [$w2(es, Mo < liminf |8y, oo =0. O
1—>00 1 —>00

4.7. Non-vanishing of || - ||c0,0. We conclude the section providing an example of
aclassa € H;(Fz) with 0 < ||a||c0,0 < oo. For this purpose consider the function
f € £(7,R) defined by f(t) =t and, as in Section 4.6, set

t+n, ift <-—n,
fn(2) := 10, if —n <t <n,
t—n, ift>n.

The same argument as in the proof of Proposition 4.8 implies that, since Lip( /) =
Lip(fa) = 1, we have [[n(f)llco,0 < K. We also have [[n(/)loc,0 = [7(f)lloo:
0 in order to prove the non-vanishing of ||n(f)|lco,0 it is sufficient to show that
7/ oo > 0.

Assume by contradiction that ||7( f)||cc = 0. Then for every € > 0 we can find
a bounded I'p-invariant cochain 8 € Cbz(l“g ~ X)T0 such that [|da s — 88|00 < €.
Fix any such 8, for some € small enough to be determined shortly.
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It can be shown that there exists L > 1 so that, for every m, the 2-cycle 4,
admits a filling B, with || B, ||1 < Lm. To see this, recall that A; is the boundary of
some By (Lemma 4.4). By adding ) g.; <m—1 t* By and a suitable chain supported
in a horoball, one obtains the required By,.

Using || A, [l1 < 9(Lemma4.4) and the estimate on & f (A,,) givenby Lemma 4.7,
we get

2m + 9||Blloo < (e — BY(Am)| = [(8ay — p, Bm)| = €l|Bm|l1 = eLm.

Since we can assume € < 2/, and m is arbitrary, we reach the desired contradiction.

A. Proof of Theorem 3.9

We keep notation from Section 3, so that X is the cusped graph associated to a
relatively hyperbolic pair (I, H). We also fix a constant « > 4§ + 6, where § is a
hyperbolicity constant for X, and denote by X’ = R, (X) the Rips complex over X
with parameter «. Recall from Section 2 that Cl.A (X )rea (resp. CiA (X)red) denotes
the space of reduced simplicial i-chains over X (resp. over X). We refer the reader
to Section 3 for the definition of maximal and minimal depth of reduced chains.

A.1. A quasi-geodesic bicombing. A (homological)bicombing Q:X x X — C2(X)eq
is a map such that
00 (x0,Xx1) = X1 — Xp .

A bicombing is antisymmetric if Q(xo,x1) = —Q(x1, xo) for every (xg, x1) € X2,
and S-quasi-geodesic if there exists S > 0 such that Supp(Q(xo, x1)) is contained in
the S-neighborhood Ng(y) of any geodesic y joining xo with xq (in [22] there
is the additional requirement that the norm of Q(xo,x;) be bounded above by
S - d(xg, x1); we will never need this in our argument). Moreover, Q is equivariant
if 0(g(x0), g(x1)) = g - Q(x¢, x1) for every (xo,x1) € X2, g €T.

The existence of a quasi-geodesic bicombing with good filling properties, as
stated in Theorem A.1, is essentially due to Groves and Manning ([22, Section 5] and
[22, Theorem 6.10]). We fix the same notation as in [22], i.e. we suppose § > 1 and
we set

K=108, Lg=100K, L=731;.

As a quick guide, in the theorem below Properties (1), (2), (4), (5) are just
convenient hypotheses to work with small simplices. Property (3), combined with
properties (7) and (8), says that a bicombing triangle split into a “shallow” part, z,
and a part that lies deep into the horoballs, w. Both w and z are supported near a
corresponding geodesic triangle by (6), and the shallow part has bounded norm by (9)
(implying that the bicombing chains cancel out nicely in the shallow part). Also, z is
alternating by (10).
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Theorem A.1 ([22]). If (I, H) is a relatively hyperbolic pair, then there are positive
constants T, S1, an Sy-quasi-geodesic antisymmetric 1"-equivariant bicombing Q
on X, and U-equivariant maps z, w: X°> — Z IA(X Yred With the following properties:

(1) Q(x0,x1) = [x0, X1], if [x0, X1] is an edge of X;

(2) if x0, x1 belong to the same 0-horoball ¢ and d ge (xo, x1) = 2, where d g is the
intrinsic distance on ¥, then Q(xg, x1) = [xo0, ¥] + [V, X1], where y is a vertex
in #; in particular, Supp(Q(xg, x1)) C J;

(3) Q(xo,x1) + Q(x1,x2) + Q(x2,x0) = z(xp, X1, X2) + w(xo, X1, X2);
(4) if [xi,x;] is an edge of X and D(x;) = 0 for every i,j € {0,1,2}, then
z(x0, X1, X2) = [Xo, X1] + [x1, X2] + [x2, x0] and w(xp, x1, x2) = 0;

(5) if xo,x1, X2 belong to a 0-horoball K of X and dg(x;,x;) < 2 for every
i,j €1{0,1,2}, then Supp(z(xo, X1, X2)) is contained in H N B(xy, 3), where
B(xg, 3) is the ball in X of radius 3 centered at xy;

(6) Supp(z(xo,x1,x2)) U Supp(w(xo,x1,x2)) S Ng, (y(xo,x1) U y(x1,x2) U
Y(x2, x0)), where y(x;, x;) is any geodesic joining x; with x j;

(7) min D(w(xg, x1,Xx2)) = Ly;
(8) max D(z(xq,x1,x2)) <2Lj;
@) |z(x0,x1,x2) |1 < T7;

(10) z(x¢(0), Xz (1)» Xz(2)) = sgn(r)z(xg, X1, X2) and
W(Xz(0)> Xz (1), Xz(2)) = sgn(T)w(xg, X1, X2) for every permutation t of {0, 1, 2}.

Proof. We just define Q(x,y) as the projection of g , in ClA (X )red» where
dx,y € ClA(X ) is constructed in [22] as follows. In [22, Lemma 3.27] the authors
choose an antisymmetric, I'-equivariant geodesic bicombing y with the property that
if x and y lie in the same L-horoball, where I, > 2§, then y(x, y) consists of at
most two vertical paths (of arbitrary length) and a horizontal path of length at most 3.
Clearly if d(x,y) = 1 then y(x, y) is the edge between x and y. Moreover, if x
and y belong to the same 0-horoball # and dg(x,y) = 2, then it is readily seen
that also d(xgp, x1) = 2, so that the geodesic y(x, y) may be chosen to be equal to a
concatenation [xg, y] * [y, x1] for some vertex y € J.

For each pair of points x, y Groves and Manning select an ordered subset #y ,
of the set ‘Cf’y of Ly-horoballs intersecting the K-neighborhood of y(x, y) [22,
Remark 4.2, Theorem 4.12], and they define a preferred path py ) joining x to y,
in such a way that py , decomposes into the concatenation of minimizing geodesics
between the horoballs in J , and one suitably chosen path in each J, , [22,
Definition 5.7].

The homological bicombing g, is then obtained as follows [22, Definition 6.4]:
one decomposes py, as a concatenation of segments in D7'[0, L,] and in
D~1[L,,00) where each segment in D~![L,,00) is contained in one element
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of . y; then, each segment with endpoints x;,x, in D710, L] is replaced by
the antisymmetric bicombing Q' L.x, constructed by Mineyev in [35], and each
segment contained in an L,-horoball #;,,, where ¢ € J, ,, is replaced by a path in
the same L,-horoball consisting of at most two vertical paths and a horizontal path
of length 1 [22, Definition 6.4]. Finally, gx,, is antisymmetrized. Conditions (1)
and (2) now follow from the explicit description of Q inside L,-horoballs, together
with the fact that Mineyev’s bicombing Q' |.x, 18 obtained by antisymmetrizing
Pxi.xn = Y(x1,x2) if d(x1,x2) < 105. Moreover, [22, Proposition 6.5] implies
that Q is S;-geodesic.

Henceforth we denote by Q also the obvious linear extension of Q to linear
combinations of pairs, so that

Q(a(X(),)q,XQ)) = Q(X(),)Cl) -+ Q(.X],Xg) -+ Q(.X2,)C()) .

We first define the cycles z(xo, X1, x2) and w(xg, x1, x2) in the particular cases
described in items (4) and (5). We first suppose that [x;, x;] is an edge of X and
D(x;) = Oforevery i, j € {0,1,2}. Then we set

z(x0, X1, x2) = Q(d(xo, x1,%2)) = [x0, x1] + [x1, ¥2] + [x2, x3]

and w(xo, X1, X2) = 0,

and it is immediate to check that this choice fulfils all the requirements of the
statement.

Suppose now xy, x1, x2 belong to a 0-horoball # of X and dg(x;,x;) < 2
for every i, j € {0,1,2}. By claims (1) and (2), the cycle Q(d(xo, x1, X2)) is the
sum of at most 6 consecutive edges of J¢, and x, is an endpoint of one of these
edges. Therefore, the support of Q(d(xg, x1,x2)) is contained in JH N B(xg,3).
Let us now distinguish two cases: if D(x;) > L, + 3 for every i =0, 1,2, then
min D (Supp(Q(9(xp, x1, x2)))) > Lo, and we set

Z()C(), X1,x2) — Oa

and w(xg, x1,x2) = Q((x0, X1, X2)).

Otherwise, max D(Supp(Q (d(xg, x1,%2)))) < 2L,, and we set

z(x0, X1, X2) = Q(a(xos Xl,xz))

and w(xg, X1, Xx2) = O.

Let us now suppose that the triple (xp, x1, X») does not fall into the cases described
in items (4) and (5). We denote by z(xg, X1, x2) the reduced cycle associated to the
cycle cxx, x, defined in [22, Definition 6.8], and we set

IE()C(),Xl,Xz) = Q(8(X0,X1,X2)) = E(]C(),Xl,XQ) 3
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1 _
z(x0, %1, %2) = 2 Y Z(Xe) Xe(1), ¥u(2)

T€S3

1 _
w(xp, X1, X2) = 6 Z “)(Xr(()),xr(l),xr(z))-

TESH

Since z is a cycle, then so are w, z and w. Conditions (3) and (10) follow from the
definitions and from the fact that Q is antisymmetric.

Since z, w are obtained from z, w via alternation, in the proof of items (6), (7),
(8), (9) we can replace z, w with z, w, respectively.

The fact that z, w satisfy properties (7) and (9) is proved in [22, Theorem 6.10].

In order to show (6) and (8) we need to describe the construction of z(xg, x1, x2)
in more detail. For any triple (xg, x1, x2) of vertices of X, a preferred triangle
with vertices xg, X1, X2 is a map ¥:dA? — X which takes the vertices and the
sides of A2 respectively to xg, x1,x2 and to the preferred path.:s Pxo,x1» Pxi.xa
Dxs,xo 122, Definition 5.28]. A skeletal filling of ¢ is a map ¥:Skel(y/) — X
of i, where Skel(y) is a 1-complex containing suitable subdivisions of the sides
of A2, and ¥ is a continuous map extending ¥ [22, Definition 5.26]. A rhick
subpicture of Skel(yr) is (the quotient of) a subgraph of Skel(y) which is taken by
(the map induced by) ¥ into the thick part D~'([0, L,]) of X (and which enjoys
several additional properties that we do not describe here, see [22, Definition 5.42]).
Finally, ¢x,x,,x, is a finite sum of terms of the form QW (v), ¥ (w)), where v, w are
consecutive vertices of a thick subpicture of Skel(1) (see [22, Definition 6.8]).

Let us now prove (8). The explicit description of Z(xg, x1, x») implies that, in
order to bound

max D ( Supp(Z(xo, X1, x2))) = max D (Supp(cxy,x;,x,))

it is sufficient to bound

max D (Supp(Q (¥ (v), ¥ (w)))),

where v, w are consecutive vertices of a thick subpicture. = However, [22,
Proposition 5.43] implies that, if y is any geodesic joining ¥ (v), ¥ (w), then y
does not intersect any (L + L;)-horoball. Moreover, [22, Proposition 6.5] implies
that Supp(Q (¥ (v), ¥ (w))) is contained in the (K + 258 + 9)-neighborhood of y,
so that

max D(Supp(Q(d}(v), 1,[/(11))))) <Li+L,+K+25+9<2L,.

This implies (8).



Vol. 94 (2019) The zero norm subspace for acylindrically hyperbolic groups 127

We are finally left to prove (6). We first show that

Supp(z(xo. X1, x2)) € N, (y(x0, x1) U y(x1, x2) U y(x2, x0))

for a suitably chosen universal constant S;. Indeed, as observed in the first paragraph
of the proof of [22, Proposition 5.43], if v, w are two consecutive vertices of a thick
subpicture of Skel(y), then either d(w (v), w(w)) = 1 or v, w both lie on the same
side of dAZ. In the former case Q(y(v), ¥ (w)) = [v,w], which is supported in
the 1-neighborhood of px,.x, U Px;,xs U Pxs,xe, Which in turn is supported in the
(K + 128 + 9)-neighborhood of y(xg, x1) U y(x1, x2) U y(x2, x¢) for any geodesic
y(x,,x j) between x; and x; (see [22, Corollary 5.12]). In the latter case, suppose
that v (), ¥ (v) lie on the preferred path Px;.x;- Let p (i (v), ¥ (w)) be the subpath
of px;.x; with endpoints ¥ (v), ¥(w), and let y(¥ (v), ¥ (w)) be any geodesic with
the same endpoints. Finally, let y(x;, x;) be any geodesic joining x; with x;.

By [22, Proposition 6.5], the chain Q (¥ (v), ¥ (w)) is supported in the (K +
258 + 9)-neighborhood of y (¥ (v), ¥ (w)). By [22, Corollary 5.13], p(y (v), ¥/ (w))
is a quasi-geodesic with uniformly bounded quasi-geodesicity constants, so by
hyperbolicity of X there exists a universal constant S’ such that the Hausdorff distance
between y (v (v), ¥ (w)) and p(y (v), ¥ (w)) is bounded by S’.

Finally, [22, Corollary 5.12] ensures that py; x;, whence p(¥(v), ¥ (w)), is
contained in the (K + 128 + 9)-neighborhood of y(x;,x;). Summing up, we
have that the support of Q¥ (v), ¥ (w)) is contained in the S;-neighborhood of
y(x0,x1) Uy (x1, x2) Uy(xz, xg9), where S; = S’ 4+ 2K + 375 + 18. This concludes
the proof that

Supp(Z(xo, X1, X2)) € Ns, (¥(xo.x1) U y(x1, x2) U y(x2, x0)) .

Recall now from [22, Proposition 6.5] that

Supp(Q (d(xg. X1, x2))) € Nk 125549 (¥ (X0, x1) U y(x1. x2) U y(x2, X0))
C Ns, (¥(x0, x1) U p(x1, x2) U y(x2, X0)) ,

so from
w(x07 X1, x2) == Q(a(x07 X1, x2)) - E(}CO, X1, x2)
we now readily deduce that also
Supp((xo, X1, x2)) € N, (¥(x0, x1) U y(x1, x2) U y(x2, X0)) .

This concludes the proof of item (6). []

A.2. Proof of Theorem 3.9. Let us now focus on chains over the Rips complex X.
The first author constructed in [16] fillings of cycles in Z; (X) with good properties:
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Theorem A.2 ([16, Theorem 5.6]). Let n, k, S € N, k > 1. Then there exists
S’ = 8’(n,k, S) € N such that, for every cycle a € ZkA(X)md and every family of
geodesic segments ay, . . ., on such that Supp(a) € Ns(ay U -+ Uay), there exists

b € CE(X)rea with db = a such that:

(1) Supp(h) € Ns/(Supp(a)) (in particular, Supp(h) € Nsis/(a; U...Uay)),
@) (bl < M(n,k, S, max D(2))la]1,

(3) if Supp(a) is contained in a (28)-horoball, then Supp(b) is contained in the same
(28)-horoball.

We now use Franceschini’s result to construct a relative filling of the bicombing Q.
This will conclude the proof of Theorem 3.9, which we recall here for the reader’s
convenience:

Theorem 3.9. There exist constants T, T3 € R and a 1"-equivariant map ¢: X 3 5

C2A (X )eq such that, for any triple (xq, x1, x2) of vertices in X :

(1) if [xi,x;] is an edge of X and D(x;) = 0 for every i,j € {0,1,2}, then
@(x0, X1, X2) = [X0, X1, X2],

(2) if x0,x1,X2 belong to a 0-horoball H of X and dg(x;,x;) < 2 for every
i,j €1{0,1,2}, then Supp(¢(xg,x1,x2)) C H,

(3) ||§0(X(),X1,)C2)||1 = TZ»

4) @ is alternating, i.e. @(Xg0),Xz(1),Xz(2)) = sgn(t)@(xp.X1,x2) for every
permutation T of {0, 1, 2},

(5) the chain p(d(xp, X1, X2, X3)) admits a relative filling B € C3A (X )rea Such that
[ Bll1 < Ts.

Proof. In order to get an equivariant map, we first define ¢ on a set of representatives
for the action of I" on X3, and then we extend ¢ equivariantly. Since I' acts by
isometries on X and leaves the depth of points invariant, it is clear that this choice is
coherent with requirements (1) and (2) of the statement.

Let us fix an element (xg, x1, x2) in the fixed set of representatives. We set

z = z(xp, X1,X2), w = w(xp,X1,X2),

where z(xg, x1, x2) and w(xg, X1, X») are the cycles provided by Theorem A.1. We
will define ¢(x¢, X1, x2) as a suitably chosen filling of z.

We first take care of the cases described in items (1) and (2). Suppose that [x;, x ;]
is an edge of X and D(x;) = O for every i, j € {0,1,2}. By Theorem A.1(1), we
have z = [xq, x1] + [x1, x2] + [x2, Xo], and we just set ¢(x¢, X1, X2) = [X0, X1, X2]
(observe that this choice automatically satisfies (4)).

Suppose now xg, X1, x2 belong to a O-horoball J¢ of X and dge(x;,x;) < 2
for every i, j € {0,1,2}. By claim (5) of Theorem A.1, if z = >, A;[x], x/],
then x!,x € B(xy,3) N J for every i. Since X = R,(X) and « > 4, this
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implies that {xo, x], x'} is the set of vertices of a simplex of X.. Therefore, the sum
@' (X0, X1,%2) = Y _; Ai[xo, x], x]'] defines an element in C2A (X)req supported on H
such that

3¢ (X0, x1,x2) =z and |l¢'(x0, X1, x2)|l1 = |Iz|lx < T1.

We then define ¢ as the alternation of ¢’, i.e. we set

1
p(xo.x1,x2) = ¢ > sgn(n)@(Xe(o), Xe(1): Xe(2)-
T€ESS
Since z is alternating, we still have d¢(xg, x1, X2) = z. Moreover, alternation does
not increase the norm, hence

lo(xo, x1, X2) || < ll¢"(x0, x1, x2)|l1 = ||zllx < Th.

Suppose now that the triple (xg, x1, x2) does not satisfy the conditions described in
items (1) and (2). By Theorem A.1(6), Supp(z) is contained in the S;-neighborhood
of the union y (xg, x1)Uy(x1, x2)Uy(x2, Xp), where y (x;, x ;) is any geodesic joining
x; with x; (and Sy does not depend on (xg, X1, X2)). Moreover, max D(z) < 2L,
and ||z||1 < Ti because of (8) and (9) of Theorem A.l1. Hence by Theorem A.2
there exists a chain ¢'(xg, x1,x2) € CZA(DC)md such that d¢'(xg, x1,x2) = z
and ||¢’(x0, x1,x2)||1 < T2, where T, = M(3,1,S51,2L,) - Ty. Just as before,
we then define ¢(xg, x1, x2) as the chain obtained by alternating ¢’(xo, x1, x2).
This concludes the proof of (1), (2), (3), and (4). Also observe that, if
S{=25"(3,1, S1)+ 51, then by Theorem A.2(1)

Supp(p(xo, X1, ¥2)) € Ng/ (v(x0, X1) U p(x1,x2) U y(x2, Xo))

where y(x;, x ;) is any geodesic joining x; with x ;.

We now construct the relative filling B of ¢(d(xo, X1, X2, X3)) required to prove
claim (5). Since ¢(d(xg, x1, X2, x3)) is not a cycle, we need to find first a chain ¢
supported in the horoballs and satisfying dc = d@(d(xg, X1, X2, x3)). For the sake
of conciseness, we will denote by z and w also the linear extensions of z and w over
linear combinations of triples in X 3 so that, for example,

3

2(0(x0.....x3)) = Y _(=1)'z(x0,.... %i,.. ., x3).

i=0
Let us fix (xg,...,x3) € X*. Since Q08 =z +wand Q 090 d = 0, we have
z(0(xg, ..., x3)) = —w(d(xg,...,X3)) .
Therefore, claims (7) and (8) of Theorem A.1 imply that

max D(Z(B(xo, - ,x3))) <2L,,
min D(z(a(xo, 55 ,x3))) = min D(w(a(xo, A x;;))) > L,
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Moreover, by Theorem A.1(9) we have

3
lz(d(x0,...,x3)|l1 = H ZO(—I)iZ(Xo,---,fi,---,Xs)Hl < 47;.
1=

Also observe that, by Theorem A.1(6), we have

3
Supp(z @ 32)) € Ny (U 7o)

i,j=0
where y(x;, x;) is any fixed geodesic joining x; with x;. Since L, > 26, Theo-
rem A.2 implies that there exists a chain ¢ such that, if 7] = 4M (6,1, S1,2L2)T)
and 7 = §7(6,1, S1) + S, then

dc = z(d(xg,...,Xx3)),
3

supp(c) € N (U v(aix))

i,j=0
lelli < M(6,1,81,2L2) - |2(3(x0, ..., x3))|l1 < T},
min D(c) > 26
(in particular, each simplex appearing in ¢ is contained in some horoball). Moreover,
since Supp(c) C .NS;/ (Supp(z(9(xq, - ..,X3)))), we also have
max D(c) < max D(z(d(xq,...,x3))) + Sy <2L, + S .
Let us now consider the chain
a = @(3(xg, X1, X2,%3)) —C .
By construction, da = 0, i.e. a is a cycle. If S{" = max{S{, S{'}, then
3

Supp(a) € NS{”( U V(-’Ci»xj)) -

i,j=0
Moreover,
max D(a) < max {D(c), D(Z(E)(xg, - ,x3)))} <2L,+ 87.
Let B be the filling of a provided by Theorem A.2. By construction,
dB = a = ¢(3d(xo, X1, X2, X3)) — ¢,
so B is a relative filling of ¢(9(xo, X1, X2, X3)). Moreover,
IBllr < M(6,2,8{",2L> + S{)llallx
< M(6,2,8",2L2 + S{)(ll¢(d(x0, x1, x2, x3)I1 + llell1)
<M(6,2,8,2L, + S))4T, + T7) .

This concludes the proof. ]
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B. Volumes of mapping tori

We use the techniques introduced in the paper to give a cohomological proof of (some
particular cases) of an inequality due to Brock [7, Theorem 1.1].

Let X be the closed oriented surface of genus g, g > 2. If y: X, — Yy isa
pseudo-Anosov homeomorphism, we denote by My, the mapping torus

My = 3 x [0,1]/(x.0) = (¥(x). 1).

Recall that a pseudo-Anosov homeomorphism v: X, — 3, is e-cobounded if the
image of its Teichmiiller axis in the moduli space M stays in the e-thick part M
[15, Section 2.1]. We denote by () the translation length of v on the Teichmiiller
space endowed with the Teichmiiller metric, which is well known to be equal to its
maximal dilatation A [1]. For ¥ e-cobounded, it is well known that the Teichmiiller
translation length is also uniformly bi-Lipschitz equivalent to the Weil-Petersson
translation length. This can be seen as follows. Distances in both the Teichmiiller
and the Weil-Petersson metric can be computed, up to bounded multiplicative and
additive error, in terms of the so-called subsurface projections to curve complexes
of subsurfaces; this is known as the distance formula, see [32, Theorem 6.12], [6,
Theorem 4.4] for the Weil-Petersson case, and [44, Theorem 1.1] for the Teichmiiller
case. The difference between the distance formulas is that annular subsurfaces do
not contribute in the Weil-Petersson case, while they do in the Teichmiiller case. As
observed in, e.g., [28, Theorem 3.1], it follows from [43] that in the e-cobounded case
all subsurface projections to curve complexes of proper subsurfaces are bounded, so
that both in the Teichmiiller and in the Weil-Petersson case the distance formula only
has one non-zero term, the one corresponding to the whole surface, easily implying
the desired relation between translation distances.

The purpose of the appendix is to give a different proof of the lower bound
of the volume of My in terms of the dilation of ¥, when v is an e-cobounded
pseudo-Anosov.

Theorem B.1. There exists a constant C > 0 depending only on € and g such that,
for any e-cobounded pseudo-Anosov : Xg — Xg4, we have

vol(My) = Ce(¥).

Remark B.2. Brock proves [7, Theorem 1.1] that there is a constant K depending
only on the genus of the surface such that

1
E”W”WP <vol(My) < K||¥|lwp

for every pseudo-Anosov homeomorphism : £, — X, where || - | wp denotes the
translation length of ¥ with respect to the Weil—Petersson metric. The lower bound is
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deduced from the fact that in My, there are at least ||y ||wp short curves with disjoint
Margulis tubes, each of which gives a definite contribution to the volume.

Upper bounds on the volume in terms of different translation lengths and with an
explicit dependence on the genus are known: for any pseudo-Anosov yr: ¥ — 3,
Kojima and McShane [30, Theorem 2 and Proposition 12] prove the inequality

3rx(E)t(¥) = vol(My) ,

while Brock and Bromberg [8] prove that

V37/2Q2g — 2+ n)|[¢llwp = vol(My) .

Proof summary. Denote by I" the fundamental group of My, and set I'y = 71(2,)
so that I' = I"g*y, , where ¥, denotes the automorphism of I'y induced by . The
strategy of our proof of Theorem B.1 is based on the ideas developed in the main
paper: we construct an explicit combinatorial cocycle representing some multiple of
the volume form of the three manifold My, and we compute its value on a suitable
fundamental class.

In order to define our cocycle, we will first construct, as in Section 4, a graph X
which is a discrete approximation of ﬁw. As in the case of the graph considered
in Section 4, X admits a ['-action, a I'g-equivariant projection p: X — I, a
["-equivariant, 1-Lipschitz projection 8: X — R. Furthermore X is uniformly §
hyperbolic and has uniformly bounded degree. Therefore, as a consequence of
Mineyev’s Theorem, a suitable Rips complex X over it admits a homological filling
p: X3 — CZA(X) with uniformly bounded norm, and uniformly bounded filling
(Lemma B.5).

Using the same ideas as in Section 3 we use ¢ to construct a combinatorial
primitive of the volume form: a [-invariant quasi-cocycle @ € QZ*(T" ~ X). In
Section B.3 we will use « to give a lower bound on the simplicial volume of My, and
therefore on its hyperbolic volume.

B.1. The graph X, a combinatorial approximation of My. We assume (up to
raising ¥ to a suitable power) that t(y) is at least one. Let A be the sub-multiple
of T(vy) in the interval (0.5, 1], setk = ©(y)/A.

We denote by [ the Teichmiiller axis of i and choose a basepoint 0 on [ =~ R.
The group I' acts on the canonical H2-bundle over / [15, p. 107] and in particular,
for each s, the subgroup I'y acts by isometries on the fiber at time s, that we denote
by HZ. We also choose a basepoint by on H3. The unique isometric lift of /
through hg allows us to choose coherent basepoints by for each fiber.

Lemma B.3. There is a constant C, depending on g and € only, such that for any
s € R we have
diam(H?/Ty) < C.
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Proof. The homeomorphism 1 is e-cobounded, so every geodesic loop in 3= HZ2/ T
has length at least €. This readily implies that the €/4-neighborhood of any length-
minimizing geodesic of Xy is isometric to the €/4-neighborhood of a geodesic of
length L in 2.

Since the area of the e-neighborhood of a geodesic of length L grows linearly
with L, and the area of X; is equal to 27 y(X), this provides the desired upper bound
on the lengths of minimizing geodesics in X, i.e. on the diameter of H2/ Iy. [

For each n € Z denote by X, the graph whose vertex set is ['g x {n} and
with the property that two vertices (g, n), (h,n) are joined by an edge if and only
if d(gbyy,,hby,) < 6C. By Milnor-Svarc Lemma X, is (6C, 1)-quasi-isometric
to Hﬁ , (see, for example, the proof in [5, Proposition 1.8.19]). Moreover X, has
valency bounded above by D(e,C). The graph X is the union of the X, with
horizontal edges of type ((g,n), (g,n + 1)).

Observe that there are a natural I'-action on X, a natural projection p: X © =
I’y x Z — Ty and a natural 1-Lipschitz map 6: X © — R defined by 6(g,n) = nA.

The graph X is uniformly quasi-isometric to the canonical HZ2-bundle over /.
Farb—Mosher [15, p. 145] use Bestvina—Feighn’s combination theorem to show:

Proposition B.4. There exists 6 = (g, €) such that X is §-hyperbolic.

Denote by X the Rips complex over X with constant k > 4§ + 6. Since the
graph X is hyperbolic and has bounded valency, it admits a homological bicombing
with a good filling ¢:

Lemma B.5. There exist a constant T3z € R depending on € and g only, and a

I -equivariant map ¢: X3 — C2A(X)red such that

(1) @(xo, x1, x2) = [x0, X1, X2] if d (i, xi) < &;

(2) for any 4-tuple (xg, x1, X2, X3) of vertices of X there exists B € C3A(X) with
@(0(x0, x1,X2,x3)) = B and | B|1 < T5.

Proof. Since X is 8-hyperbolic and has uniformly bounded degree, Mineyev’s con-
struction gives a I'-equivariant, anti-symmetric homological bicombing ¢;: X2 —
C{ () with the property that for each triple (xg, x1, x2),

llo1(9(x0, x1, x2))|l1 < T1(g,¢€)

[35, Theorem 10] (cf. also [22, Theorem 6.2], where it is observed that the constant 77
in Mineyev’s construction only depends on the valency of the 1-skeleton of X
and its hyperbolicity constant). By [35, Proposition 12] there exists a filling
@ = @2: X? — CL(X)req s0 that

de(x0, X1, X2) = @1(x0, X1) + @1(x1, x2) + @1(X2, X0).
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Again by [35], property (2) holds with a constant 73 depending only on the
hyperbolicity constant é and the valency. We are free to modify ¢ on small simplices
to ensure (1), because the norm of @1 (xg, x1) is bounded by a function of the distance
of x¢, x1 (this is part of Mineyev’s definition of quasi-geodesic bicombing). L]

B.2. The primitive of the volume form «. Just as we did in Section 4, in order to
define a primitive o of a combinatorial volume form, we need to define a suitable
sign € for every triple of vertices of X.

Fix a hyperbolization p: Ty — Isom(H2), and a lift #: H2 — HZ of the pseudo-
Anosov homeomorphism v with a fixed point 7 in 82, (Such a lift exists: consider
a singular point x € H? for the lift of the singular foliation preserved by y. If we
choose the lift & with the property that h(x) = x, we get that the endpoints at infinity
of the singular leaves through x are fixed by h. )

For a triple (xg, x1, x2) of vertices of X, the sign €(xg, x1,x2) is 1, —1 or O
depending on the orientation of the ideal triangle of H? with vertices p(p(x;))g (just
as in Subsection 4.2). Proposition 4.1 ensures that € € sz(f‘ ~ XL

Lets € T be the stable letter of the HNN extension I' = I'g*y,, . Asin Section 4.3
we can define a simplicial cochain F by setting

2
F ([x0, x1, x2]) = %e(xo,xl,xz) > 0(x).

i=0

In this context we have the following:

Lemma B.6. The simplicial cochain F satisfies:

(1) |F(0[xg,x1,Xx2,x3])| < 2« for any 3-simplex [xg, X1, X2, X3] € X;

(2) OF is I'-invariant.

Proof. The same computation as in Lemma 4.2 gives that, up to reordering the
vertices x;, either

F(B[XO, X1, X2, x3]) — 03
or F(B[JCO, X1, X2,)C3]) = H(Xz) — 9()(,'3),
or F (8[xo, x1, X2, x3]) = (B(x0) — O(x1)) + (8(x2) — 6(x3)).
Since 6 is 1-Lipschitz and d(x;, x;) < «, (1) follows.

(2) follows from the description of F(d[xg, x1, X2, X3]) we have just given, and
from the fact that € is I'-invariant and (¢ - x) = 0(x) + (V). ]
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The I'y-invariant primitive of the volume form is the evaluation of F on fillings
of simplices:
a(xg, x1,X2) = F(p(x0,x1,X2)).
An immediate consequence of Lemma B.5(2) and Lemma B.6(1) is:

Lemma B.7. The defect of « is uniformly bounded:

I6ct]|oc < 2kT5 .

B.3. The volume estimate. In order to estimate the simplicial volume, recall that
the Rips complex X is contractible, in particular we can choose a simplicial chain
S € CA(X)rear, representing the fundamental class of a fiber.

Lemma B.8. If [S] = [)_ c(0)0o] then

Zc(n)e(n) = -2x(%).

o

Proof. The oriented area of a hyperbolic triangle is 7 times the orientation cocycle €.
Using Gauss—Bonnet this implies that the pairing of ¢ with a fundamental class S
of the surface X is equal to —2|y(2)], that is the volume of the surface divided
by . L]

Lemma B.9. There exists a simplicial chain M € C3(I'y ~ X)rea,r, With OM =
t-S —S8. The image of M in C3(I' v X)req,r represents the fundamental class
[Mw] € H3(M¢,,]R).

Proof. Denote by My, the infinite cyclic cover of My,. Since X is contractible, the
orbit maps define maps C«(I'o)req,ry, — Cx(I'o v X)red,ro and Cu(Io)red,ry —
C*(Ml,h)red inducing isomorphisms in homology. Each complex is endowed with a
Z-action (with the positive generators of Z acting as ¥« on Cx(I'p)req,r,» and as the
positive generator of the deck transformation group of 1\7,/, on Cy (M,;,)red) and the
isomorphisms are equivariant with respect to these actions.

Using these isomorphisms the lemma follows from the corresponding statement
for the topological counterpart, namely that if [£] € Hp(My, R) is represented by
a fiber and ¢ is a generator of the deck group, then ¢ [X] — [X] is the boundary of a
3-cycle projecting to the fundamental class of My,. ]

Recall that the simplicial volume ||N || of a closed oriented manifold N is the
¢!-seminorm of its real fundamental class. A fundamental result by Gromov and
Thurston (see e.g. [50]) states that there exists a positive constant v, only depending
on n such that vol(N') = v, || N || for every closed orientable hyperbolic n-manifold N .



136 F. Franceschini, R. Frigerio, M. B. Pozzetti and A. Sisto CMH

Therefore, Theorem B.1 is an immediate consequence of the following:

Proposition B.10.

—2t () x(Xg)
KT3 )

My | =

Proof. Since M represents [M.,], we have
[6a(M)| < [[[My]ll1 - l[8e]llcc = Myl - [[[6a]llco < 2kT5[[My| . (B.1)

By construction, for any x € X we have 6(¢ - x) = ©(¥) + 6(x). In particular,
for any 3-simplex o = [xg, x1,x2] € X we get w(t - 0) — (o) = e(o)r(¥). This
implies

Sa(M) = a(@M) = t(¥) ) c(0)e(@) = 2x(SHr(¥). (B2

The conclusion now follows from (B.1) and (B.2). L]
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