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Group representations in the homology of 3-manifolds

Alex Battel and Aurel Page

Abstract. If M is a manifold with an action of a group G, then the homology group H\ (M. Q)
is naturally a Q[G]-module, where Q[G] denotes the rational group ring. We prove that for every
finite group G, and for every Q[G]-module W, there exists a closed hyperbolic 3-manifold M
with a free G-action such that the Q[G]-module H\ (M, Q) is isomorphic to W. We give an

application to spectral geometry: for every finite set fP of prime numbers, there exist hyperbolic
3-manifolds N and N' that are strongly isospectral such that for all p e IP, the p-power torsion
subgroups of H\ (N, Z) and of H\ (N', Z) have different orders. The main geometric techniques
are Dehn surgery and, lor the spectral application, the Cheeger-Miiller formula, but we also
make use of tools from different branches of algebra, most notably of regulator constants, a

representation theoretic tool that was originally developed in the context of elliptic curves.

Mathematics Subject Classification (2010). 57N10, 57N65, 57R19, 57R65, 16K20, 16W10.

Keywords. 3-manifolds. group actions, group representations, isospectral manifolds, regulator
constants, torsion homology.

1. Introduction

1.1. Group actions on rational homology of3-manifolds. If M is a manifold with
an action by a group G, then the homology of M carries a natural G-action. The

G-module structure of integral and rational homology can often be used to deduce

information about the manifold, see e.g. [10,23].
In this paper, we investigate the G-module structure of the rational homology

of 3-manifolds. In [7] Cooper and Long prove that for every finite group G, there
exists a hyperbolic rational homology 3-sphere with a free G-action. In fact, their
method proves a stronger statement. Let Q[G] denote the group algebra of G over
the field 0 of rational numbers. Cooper and Long define the notion of a canonical

Q[G]-module, and prove that every direct sum of canonical Q[G]-modules can be

realised as H\(M. 0) for a closed 3-manifold M with a free G-action.
In the present paper, we generalise the theorem of Cooper and Long to arbitrary

0[G]-modules. Our main result is the following.

Theorem 1.1. LetG be afinite group, and let W be afinitely generated Q[G]-module.
Then there exists a closed connected orientable 3-manifold M with a free orientation
preserving G-action, such that the Q[G]-module H\ (M, Q) is isomorphic to W.
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Like Cooper and Long, we can also strengthen Theorem 1.1 by ensuring that M
is hyperbolic; see Theorem 3.8.

Remark 1.2. The referees inform us that there is a way of proving Theorem 1.1

by using higher dimensional surgery. The proof we will present here will only use

surgery in dimension 3.

1.2. Application to isospectral manifolds. As an application of Theorem 1.1 we

prove a result on torsion homology of isospectral manifolds. This relies on our
previous work [2] on the interplay between Sunada's construction of isospectral
manifolds [24] and the Cheeger-Müller theorem.

Recall that two Riemannian manifolds M and M' are said to be strongly
isospectral if the spectra of every natural (see [20, Section II, paragraph before

Examples 3] for a precise dehnition) self-adjoint elliptic differential operator on M
and M' agree. There is a large body of literature devoted to investigating which

topological or geometric invariants of manifolds are strongly isospectral invariants,
see [11,12,22] for surveys. Strongly isospectral Riemannian manifolds necessarily
have the same dimension, the same volume, and the same Betti numbers, but for
example they may have non-isomorphic real cohomology rings, see [17]. Ikeda has

shown that (strongly) isospectral closed 3-manifolds with constant positive curvature

are necessarily isometric [13]. In contrast, we show in the present paper that strongly
isospectral hyperbolic 3-manifolds can have very different integral homology groups.
If p is a prime number, and A is an Abelian group, let A[p°°\ denote the subgroup
of A of elements of p-power order.

Theorem 1.3. Let IP be a finite set of prime numbers. Then there exist closed
connected orientable 3-manifolds M and M' that are strongly isospectral with respect
to hyperbolic metrics and such that:

(1) for all p 6 IP we have

#Hi(M, Z)[pœ] ± #HX (M', Z)[p°°];

(2) for all prime numbers q f. IP we have an isomorphism ofAbelian groups

H\ (M, Z)[<7°°] =* H\ (M', Jj)[q°°].

Remarks.

(1) We will obtain the manifolds M and M' in Theorem 1.3 using a construction
of Sunada [24], who was guided by a well-known analogy between spectral zeta

functions of manifolds and Dedekind zeta functions of number fields.

(2) A weak form of the number theoretic analogue of Theorem 1.3 is an old open
problem [4,8] : do there exist, for every prime number p. number fields with the same
Dedekind zeta function but with different p-class numbers?
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(3) Theorem 1.3 certainly does not hold for 2-manifolds, since they have torsion-free

homology, while for 4- and higher-dimensional manifolds, Theorem 1.3 has already
been known since the work of Sunada. The 3-dimensional case has been the only

open one.

Let p be an odd prime number. Let us briefly explain how to deduce Theorem 1.3

in the special case IP {p} from Theorem 1.1. Consider the following two subgroups
of the group G GL2(Fp) of invertible 2x2 matrices over the finite field with p
elements:

We can form the permutation modules Q[G///] and Q[G/B], which are spanned

over Q by the cosets of the respective subgroup, and where G acts by permuting
the respective basis. The module Q[G/H] decomposes as a direct sum Q|G/II\
Q[G//?]©/, where / is a simple Q[G]-module of dimension (p + 1) over Q. The
first part of Theorem 1.3 for IP {/; } immediately follows from Theorem 1.1 and

the following result.

Lemma 1.4 ([2, Corollary 4.4]). Let p be an odd prime number, let G GL2(F/)),
and let I be as above. Suppose that there exists a closed 3-manifold X with a free
G-action, such that the multiplicity of I in the Q[G]-module Hi (X, Q) is odd. Then

there exist closed connected orientable Riemannian 3-manifolds M and M' that are

strongly isospectral and such that

If in addition, X is hyperbolic, then M and M' can be chosen to be hyperbolic.

By inspecting the construction in Lemma 1.4 a bit more closely, one can also

deduce the second part of Theorem 1.3 from [2, Theorem 3.5].
For concrete groups G and Q[G]-modules W, one can sometimes try to reach the

conclusion of Theorem 1.1 by a brute force search. In [2, Proposition 1.5], we were
able to prove Theorem 1.3(1) in this way when IP {p} for all p < 71.

Remark. The canonicity condition on W in the construction of Cooper and Long
can be formulated as follows. Let <q[g]Q[G] denote the left regular Q[G]-module.
Recall that every Q[G]-modulc can be uniquely written as a direct sum of simple
modules. The condition on W for the method of [7] to apply is that for every simple
Q[G]-module V], the multiplicity of k) in W be divisible by the multiplicity of fo in
the regular module q[g]Q[G]- Note that the multiplicity of I in the regular module

ofGL2(F^) is p+\, so if W is a canonical Q[GL2(F/,)]-module, then the multiplicity
of / in W is even. In particular, the result of Cooper-Long is not sufficient to apply
Lemma 1.4.

The proof of the general case of Theorem 1.3 will involve the same ideas as that

of the special case sketched above, but will require more algebraic preparation, and

will occupy Section 5.
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1.3. Ingredients of the proof. The proof of the main theorem will be given in
Section 3. We will show how, given a 3-manifold M with a free G-action, and a

finitely generated Q[G]-module V, one may perform a sequence of G-equivariant
Dehn surgeries to produce a 3-manifold M' with a free G-action such that there is an

isomorphism of Q[G]-modules H\{M'. Q) ^ H\ (M, Q) © V — see Corollary 3.7;
and also how, given a 3-manifold M with a free G-action such that Hi(M,Q)
has a Q[G]-submodule isomorphic to q[g]Q[G], one can "kill" that submodule;
see Proposition 3.5. Starting from a 3-manifold with a free G-action and arbitrary
homology, one can then iterate the above two steps to realise any given Q[G]-modulc;
see Theorem 3.8.

One of these surgeries is prescribed by the coefficients of an idempotent e 6 Q[G]
such that Q[G]e — V, and for this step to yield the desired result, we need e to satisfy
a technical algebraic condition. The following result, which we will prove in Section 2

as Corollary 2.10, says that all idempotents in Q[G] indeed do possess the required
property.

Proposition 1.5. Let G be a finite group. Given an element x YlgeG agS °f Q[G],
where ag Q, define x*— ^2ge(j agS~l eQ[G]. Then for every idempotent e eQ[G],
we have <q[g]Q[G] Q[G]e + Q[G](1 - e*).

Note that if the star is dropped, then the conclusion immediately follows from
the definition of an idempotent. On the other hand, since e is not assumed to be

central, one does not, in general, have e e*. Moreover, if the operator x x*
is replaced by a different involution (see Section 2.1) on Q[G], then there may not
exist an idempotent with the required properties at all. It is important to note that

Proposition 1.5 does not follow from the well-known fact that Q[G]e* is abstractly
isomorphic to Q[G]e; see in particular Example 2.8.

1.4. Generalisations. The main geometric step, in which we add a given Q[G]-
module to the homology of a given 3-manifold with a free G-action actually works
in greater generality. For example, instead of a free G-action we may allow an

orientation preserving action by isometries with no element acting trivially, which
implies that the fixed point set under every g e G is at most 1-dimensional. For the

precise statements, see Theorems 4.1 and 4.2.

This has the somewhat surprising consequence that given a closed connected

orientable Riemannian 3-manifold M with an orientation preserving effective

G-action, one can infer no information about the fixed points from the structure
of if a certain configuration of fixed point spaces can be realised at

all, then it can be realised with Hi(M,Q) being isomorphic to any given Q[G]-
module. This stands in stark contrast to the situation in dimension 2, as we point
out in Section 4. See in particular Corollary 4.6, which, vaguely speaking, says that
for closed connected orientable surfaces M with a G-action, Hi(M,Q) "knows"
everything about the fixed point structure.
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In this paper, when we say "manifold", we will always mean a closed connected

oriented smooth manifold, all automorphisms will be orientation preserving, and all

maps between manifolds will be smooth.
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2. Algebras with an involution

In this section, we will prove Proposition 1.5.

2.1. Semisimple algebras. The main reference for this subsection is [16]. All our
rings are associative, and have a unit element, denoted by 1. All our modules are left
modules, and are assumed to be finitely generated. If R is a ring, then Z( R) denotes

the centre of R: the regular module rR is defined as having the same underlying
additive group as R, and the R-action being given by left multiplication.

Let K be a field. A K-algebra is a ring A that is equipped with a ring
homomorphism K —> Z(A). All our K-algebras are finite-dimensional over K.
If A is a K-algebra, then the trace Tr^/j^(a) of an element a e A is defined to be the

trace of the endomorphism of the V-vector space A given by multiplication by a on
the left.

Example 2.1. Let A Q[G] be the group algebra of G over Q, and let a

12geG agS be an arbitrary element of A. Then Tr^/Q a — (dimQ A) a\ #G • a\.

If A is a A-algebra, then an A-module V is called simple if it has exactly two
submodules, 0 and V ; a simple submodule of a A is the same thing as a minimal left
ideal of A. The Jacobson radical of a K-algebra A is the set of elements a e A that
annihilate every simple A-module; it is a two-sided ideal of A. A K-algebra A is

called semisimple if its Jacobson radical is 0. For every integer n > 1, let M„ (K) be

the R"-algebra of n x n matrices over K. We will use the following basic result.
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Lemma 2.2. Let K be afield and let A be a semisimple K-algebra. Then there exists

a finite field extension L/K such that L A is isomorphic to a product ofalgebras

of the form Mn(L) for integers n > 1.

An idempotent in an algebra A is an element e A such that e2 e. If e £ A is

an idempotent, then so is 1 — e, and in this case one has a decomposition into left ideals

A Ae © A(1 — e). If an algebra A is semisimple, then every simple A-module
is isomorphic to some minimal left ideal of A, every A-module is a direct sum of
simple submodules, and for every left ideal / in A, there exists an idempotent e in A
such that / Ae.

An anti-automorphism of an algebra A is a AMinear automorphism a:. A -» A

such that a.(\) 1 and ot{xy) a(y)a(x) for all x, y £ A. An involution on A is

an anti-automorphism i such that i o i id.
Let V be a finite-dimensional vector space over K, equipped with a symmetric

bilinear form f: V x V -> K. If X c V is a subset, then its orthogonal complement
is defined to be

The bilinear form f is called non-degenerate if 1/J~ 0, and it is called anisotropic
if for every nonzero v £ V we have f(v,v) f 0. Note that cj> is non-degenerate if
and only if the induced map V —Hom(T, K) given by t> m>- (w i-> fi(v, w)) is an

isomorphism. It follows that iff is non-degenerate, then for every subspace W c V,
we have, by the rank-nullity formula, dim V dim W + dim W±. Iff is anisotropic,
then it is non-degenerate, and for every subspace IT C V we have V W + W^~.

Lemma 2.3. Let A be a semisimple K-algebra, and let l be an involution on A.

Then for all x £ A we have Tr^/^fx) Tr^/j^(i(x)). In particular, the K-bilinear
form (x, y) TrA/K.(xi(y)) on A is symmetric.

Remark 2.4. In Lemma 2.3 the semisimplicity assumption is necessary: let A be the

A'-algebra of upper-triangular 2x2 matrices with coefficients in K, equipped with
the involution

Then Tra/k(q 2« + d, which is not preserved by t.

Let A be a semisimple A"-algebra and i be an involution on A. The associated

symmetric bilinearform on A is

fi- (x, y) ^ TrA/K(xL(y)).

X1- {u V I f{v, x) 0 for all x £ X}.

Proof. See [21, 13.1 (iv)].

We say that l is non-degenerate (resp. anisotropic) if fL is non-degenerate (resp.

anisotropic).
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2.2. Idempotents and anisotropic involutions. In this subsection we prove the

main algebraic result, Proposition 2.7. The proof we give here was communicated to
us by Hendrik Lenstra, and is much simpler than the proof we gave in an earlier draft
of the paper.

Lemma 2.5. Let A be a semisimple K-algebra. Then for all x A we have

dimk Ax dim# xA.

Proof. The result is true if A is a product of matrix algebras over K. Let A be an

arbitrary semisimple ÄTalgebra. If If K is a finite field extension, then we have

dim/TL A)x — dim# Ax, and similarly for xA. The general case of the lemma
therefore follows from the special case and Lemma 2.2.

Note that if A is a N-algebra with an involution i, and e e A is an idempotent,
then i(e) is also an idempotent.

Lemma 2.6. Let A be a semisimple K-algebra with a non-degenerate involution i.

Thenfor every idempotent e e A we have (Ae)1- A(\—i(e)), where the orthogonal
complement is taken with respect to <•/>,.

Proof. Since e is idempotent, we have A( 1 — i(e)) c (Ae)-1. On the other hand we
have

where the four equalities follow, respectively, from the assumption that t is non-
degenerate, from the assumption that e is an idempotent, from Lemma 2.5, and from
the assumption that i is an anti-automorphism. The claimed equality follows.

We now prove the main result of the section.

Proposition 2.7. Let A be a semisimple Q-algebra with an anisotropic involution l.

Then for every idempotent e A, we have aA Ae + A( 1 — i(e)).

Proof. By Lemma 2.6 we have (Ae)1- A( 1 — i(e)). Since i is anisotropic, we
have A Ae + (Aegiving the result.

Example 2.8. Proposition 2.7 is false without the anisotropy assumption, even if
the algebra is simple. For instance, the split quaternion algebra A M2(Q>), the

involution

dim(Ae)1- dim A — dim Ae

dim A( 1 — e)

dim(l — e)A

dim A(\ — i(e)).



74 A. Bartel and A. Page CMH

and the idempotent e (Jo) provide a counter-example. This example shows, in

particular, that Proposition 2.7 is not a formal consequence of the fact that Ae is

isomorphic to Ai(e) as /1-modules.

Definition 2.9. Let G be a finite group. Recall that the group algebra Q[G] is a

semisimple Q-algebra. Define an involution x h» x* on Q[G] by setting g* g_1
for all g e G, and extending Q-linearly.

Corollary 2.10. Let G be a finite group. Then for every idempotent e e Q[G], we
have Q[g]Q[G] Q[G]e + Q[G](1 - e*).

Proof. If a J2geG agS is an arbitrary element of Q [G], then the coefficient of the

identity 1 e G in aa* is YlgeG ag- therefore follows from Example 2.1 that the

involution x x* is anisotropic. The result follows from Proposition 2.7, applied
to A Q[G] and i (x i—> x*).

3. Proof of the main theorem

In this section, we prove Theorem 3.8, which is a strengthening of Theorem 1.1 from
the introduction. Let G be a finite group. Our proof will proceed by a sequence of
Dehn surgeries on a 3-manifold with a G-action.

Definitions 3.1. (1) Let M be a manifold with an action of G. We say that a subset

C c M is G-disjoint if for every g e G \ {1}, the intersection C fl gC is empty,
equivalently if the restriction to C of the covering map M —> M/ G is injective.

(2) Below, the manifolds Sl and 3D2 are understood to be oriented. If M is

a 3-manifold with a G-action, and (p: S1 x D2 -> M is an embedding with a

G-disjoint image, let M(tp) M G ^(interior ofW1 x D2). Let y, y' be

simple closed curves on tp(Sl x 3D2) whose classes in the fundamental group
7iI (qj(S1 x 3D2)) together generate that fundamental group. Then the result of
G-equivariant surgery on M along <p, y is the manifold M{(p, y) defined as

M(tp) U |_| gOS1 x D2),
geG

where each g(5x x D2) is a copy of S1 x D2, with the obvious G-action on the

disjoint union, modulo the equivalence relation that identifies the boundary of M(<p)
with that of

giS1 x D2)
geG

by identifying, for all g G G, the curve gy with the simple closed curve

#({1} x 3D2) c g(Sl x 3D2),
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and gy' with the simple closed curve

giS1 x{l})c g(Sl x 3D2).

The diffeomorphism class of M(<p, y) does not depend on the choice of y'.

If M is a 3-manifold, then we denote the intersection pairing

H2{M, Z) x H\(M, Z) Z

by (x, y) I—> x • y, and we use the same notation for Q-coefficients in place of Z.
We will make repeated use of the following variant of [15, Lemma 5.6].

Lemma 3.2. Let M be a 3-manifold, let (p: V x I)2 —» M be an embedding with a

G-disjoint image, and let y be a simple dosed curve on <p(S ' x 3D2). Then the row
and the column in the diagram

H2(M(tp, y), Z)

fu

z[g]Z[G]

6

H2(M, Z) —^ z[G]Z[G] ——> Hx (M(yp), Z) '*
> Hx (M, Z) > 0

j*

H\ (M((p, y), Z)

0

of Z[G]-modules are exact, where the maps are defined as follows :

- i* and j* are induced by the canonical injections of M(cp) into M, respectively
M(cp,y);

- 8 sends 1 to the class ofcp({ 1} x 3D2), and e sends 1 to the class ofy;

~ fx (x h-> 12geG(x ' S^)s)> where X is the curve (p(S] x {0}) C M, and

fu (x ffgeG (x ' STfs)' where p is the curve S1 x {()} c S1 x D2 C M(yp, y).

Proof The proof is identical to that of [15, Lemma 5.6].

Below we will also use the notation of Lemma 3.2 for homology with Q-coeff-
icients. The two basic Dehn surgeries that we will use in the proof of Theorem 3.8

are described in Lemma 3.3 and Proposition 3.5.
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Lemma 3.3. Let M be a 3-manifold with a free G-action. Then there exists a

3-manifold M' with afree G -action such that we have an isomorphism II \ (M', Q)
H\ (M, Q) © q[g]Q[G] of Q[G]-modules.

Proof. Let <p\ S1 x D2 —» M be a G-disjoint embedding that sends S1 x {1} to a

null-homotopic simple closed curve y in M \ G ^(interior of S1 x D2), and let

M' M(<p, y). Then, A is also null-homotopic in M, so the map fx of Lemma 3.2

is the zero map, so that the map S of the lemma is injective; and also, since y is

null-homotopic, the map e of Lemma 3.2 is the zero map, so that the map /* of the

lemma is injective. By Lemma 3.2, the manifold M' has the required property.

Recall from Definition 2.9 the involution on Q[G] given by g i->- g* g_1 for
all g £ G.

Lemma 3.4. Let G be a finite group, let e £ Q[G] be an idempotent, and let

y Q[G] be arbitrary. Let A Q[G]e, andfor s £ Q let

B(s) {b £ Q[G] : h( 1 + sy) £ Q[G](1 - e*)}.

Then for all butfinitely many s £ Q, we have A n B(s) {()}.

Proof. For all but finitely many s e Q, the element 1 + sy is invertible, since the

multiplication-by-y map on Q[G] has only finitely many eigenvalues. This implies
that for all but finitely many ,s £ Q, the Q-vector subspace B(s) of Q[G] has

dimension

dim Q[G](1 — e*) dim Q[G](1 — e) dim Q[G] — dim A.

We deduce that for all but finitely many s £ Q, the condition A fl B(s) {0} is

equivalent to

d\m(A + B(s)) — dimQ[G],

which is equivalent to the non-vanishing of a determinant that is a polynomial in .v.

Since B(0) Q[G](1 — e*), Corollary 2.10 implies that A + ß(0) Q[G], so the

above determinant is not identically 0, so has only finitely many roots, as claimed.

Proposition 3.5. Let P be a submodule o/q[g]Q[G], let U be a Q[G]-module, and
let M be a 3-manifold with a free G-action such that there is an isomorphism

Hi(M, Q) <q[g]Q[G] © U

ofQ[G]-modules. Then there exists a 3-manifold M' with a free G-action such that
there is an isomorphism ll\ (M'. Q) P © U of'Q[G]-modules.
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Proof. Let I e Hi(M,Z) be such that Q[G]/ is the direct summand Q[G]/ ^
q[G]Q[G] of Hi (M, Q), let e e <Q>[G] be an idempotent such that we have an

isomorphism Q[G]e ^ P of <Q>[G]-modules, let d £ Z>o be such that de e Z[G], let A

be a simple closed curve in M representing the class [A] <7(1 — e)l £ H\(M, Z),
and let <p: S1 x D2 -> M be a G-disjoint embedding such that <p(S

1 x {0}) A.

First, we claim that, with the above choices, the kernel of the map S of Lemma 3.2

is Q[G](1 — e*), so that

=* H\(M, Q) © Q[G]e* ^ H\(M, Q) © P,

with the summand P being generated by the class of <p({l} x 3D2). To prove
the claim, let x £ H2(M,Q) have intersection number 1 with /, and intersection
number 0 with gl for all g e G \ {1} and with all classes in U. Such an element

exists by Poincaré duality. Then it is clear that the image of fx is generated, as a

Q[G]-module, by fx(x). Write

d{ 1 -e) J2ahh<
heG

where ah £ Z for all h £ G. For every g £ G, the intersection number x • gA is the

coefficient in gd( 1 — e) of the identity, which is ag-\, so that

h(x) ^(x'^Ak d(]
geG geG

as claimed.
Let M be the class in Hi(M(<p), Q) of the simple closed curve ^({1} x 3D2) c

<p(S1 x 3D2), and let X be the class of a simple closed curve on <p(S1 x 3D2) such

that /*(<£) [A].
Our second claim is that for all but finitely many values of q/p. where p and q

are coprime integers, if y is a simple closed curve on (p(Sl x 3D2) whose class [y]
in H\ (M(<p), Q) is pM+qX, then the mape ofLemma3.2isinjective. Indeed, let p
and q be coprime integers, let y be as just described, and suppose that a £ q[g]Q[G]
is such that e(a) a[y] 0. Let C be a (Q>[G]-submodule of Hi(M((p), Q) such

that there is a direct sum decomposition of Q[G]-modules

3(Q[G]Q[G]) © C Q[G]^< ® C. (3.6)

Then we may write X y M + c, where y £ Q[G] and c £ C, so that

a[y] (ap + aqy)M + aqc.

By the direct sum decomposition (3.6), the assumption that a[y] 0 is equivalent to

(i) (ap + aqy)M 0; and

(ii) aqc 0.
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Since Q[G]Af is precisely the kernel of/*, condition (ii) is equivalent to

0 i*(aqc) i*(aq£) aq[À] aqd( 1 — e)l e H\(M, Q),

which, for q 0, is equivalent to a being contained in the left annihilator A of 1 — e.

That annihilator is equal to Q[G]e. Condition (i), on the other hand, is equivalent to

0 (ap + aqy)M 8(ap + aqy),

in other words to a being contained in

5(f) {b e Q[G] : b{\ + ly) e kerS}.

Since ker<5 Q[G](1 — e*), Lemma 3.4 implies that for all but finitely many values

of q/p, we have A D B(^) {0}, which proves the second claim.
It immediately follows from the two claims and Lemma 3.2 that for all but finitely

many values of q/p, we have

y), Q) © q[g]Q[G] Hi(M((p),Q) ® P,

so that M' M{q>, y) satisfies the conclusion of the proposition.

Corollary 3.7. Let Mq be a 3-manifold with a free G-action, and let V be a Q[G]-
module. Then there exists a 3-manifold M with a free G-action such that

H\ {M, <Q>) s Q) © V.

Proof Let V ®[=1 Pi, where each Pi is a submodule of q[g]Q[G]. Define
the 3-manifolds Mi and M- inductively as follows: supposing that M,_i has been

defined, by Lemma 3.3 there exists a 3-manifold M[ with a free G-action such that

Q) s Hi(M;-!, <Q>) © q[G]Q[G],

and by Proposition 3.5 applied to the manifold M- and the Q[G]-module P,, there
exists a 3-manifold A-/, with a free G-action such that

Hi(MitQ) Hi(Mi-i,Q) © Pi.

The manifold M Mr then satisfies the conclusions of the corollary.

By a hyperbolic manifold we mean a connected oriented smooth manifold whose

interior is equipped with a Riemannian metric with constant curvature —1. We can

now deduce the main theorem, which is stronger than Theorem 1.1 and which reads

as follows.

Theorem 3.8. Let G be a finite group, and let W be a finitely generated Q[G]-
module. Then there exists a closed hyperbolic 3-manifold M' with a free G-action
such that the Q [G]-module II\(M'. Q) is isomorphic to W.
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Proof. Let M0 be a 3-manifold with a free G -action. There are many constructions of
such manifolds, see e.g. [7, §11. We can apply Corollary 3.7 to obtain a 3-manifold M\
with a free G-action such that for some integer n > 1, there exists an isomorphism

Qï Q[G]Q[G]®" © W

of Q[G]-modules. By repeated application of Proposition 3.5 with P {0}, we may
obtain a 3-manifold M2 with a free G-action such that there is an isomorphism of
Q[G]-modules Hi(M2,Q) W.

We now follow the argument of [7, Theorem 2.6] to obtain a hyperbolic such

manifold. Let p\ M2 ->• M2/G be the covering map. By [3, Proposition 4.2],
the manifold M2/G contains a null-homotopic simple closed curve k such that

(M2/G)^k is a complete hyperbolic manifold with a single cusp and such that p~1 (k)
is a union of #G simple closed curves that bound disjoint discs in M2 (see also the

first paragraph of [3, Proof of Lemma 4.3]). Let ip: S1 x D2 ^ M2 be an embedding
with a G-disjoint image such that ^(S1 x {0}) is one of these simple closed curves.

By [3, Lemma 4.3], for all but one slope y on <p(S1 x3D2), the G-equivariant surgery
along <p, y on M2 yields a closed manifold M2(<p, y) with a free G-action, satisfying

H\{M2(ip, y), Q) s W.

By Thurston's hyperbolic Dehn surgery theorem [25, Theorem 5.8.2], equivariant
surgery for all but finitely many of these slopes results in a hyperbolic manifold M'.

Remark 3.9. The last paragraph of the above proof can be replaced by an appeal to
Theorem A in the very recent preprint [1],

4. Homology and the structure of fixed point sets

In this section, we first briefly discuss the analogues of the results in Section 3 for
G-actions that are not necessarily free. We will omit most details, since the proofs
are essentially identical to those of Section 3. We then compare these results to the

very different situation of group actions on 2-dimensional manifolds.
The proof of Lemma 3.3 goes through in the following greater generality: we

may allow M to have a G-stable "bad region" Mb'id ç M that is allowed to be an

orbifold, and in which non-trivial elements of G are allowed to have fixed points.
This set will then be avoided during the sequence of surgeries. Moreover, the proof of
Proposition 3.5 also goes through in that generality, as long as the summand q[g]Q[G]
of Hy (M, Q) is contained in the image of the natural map

Hy (M ^ Mbad, Q) -» Hi (M, Q).
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One therefore deduces the following generalisations of Corollary 3.7 and of Theorem

3.8. In the next two results, let G be the category of connected topological
3-dimensional orbifolds, possibly with boundary, and let G' be the full subcategory
oft? whose objects are oriented manifolds without boundary. All group actions will
be assumed to be by homeomorphisms.

Theorem 4.1. Let Mq e G, with an action ofa finite group G, and let V he a finitely
generated Q\G]-module. Let M(bad ç Mo he a subset that satisfies the following
conditions:

(a) A/bad is G -stähle;

(b) the complement Mo ^ M0bai1 is in G';

(c) the group G acts freely on Mo ^ M^àd hy orientation preserving automorphisms.

Then there exists M G with a G-action, and a G-stable subset Mbad c M such

that

(1) the complement M \ Mbid is in '£', and G acts freely by orientation preserving
automorphisms on it,

(2) there is a G-equivariant homeomorphism from M^'id to A/bad,

(3) there is an isomorphism ofQ[G]-modules H\ (M, Q) ^ H\ (Mo, Q) © V.

Theorem 4.2. Let Mo G G be such that H\{Mo, Q) is finite dimensional over <Q>,

with an action of a finite group G, and let W be a finitely generated Q[G]-modu/e.
Let Mq31' ç Mo be a subset that satisfies the following conditions:

(a) /17,11 is G-stable;

(b) the complement Mo ^ MIf1 is in G';

(c) the group G acts on Mo ^ M(bai1 freely by orientation preserving automorphisms;

(d) the canonical map II \( Mo ^ M(ba<l, Q) —> H\ {Mo, Q) is surjective.

Then there exists M G G with a G-action, and a subset Mbad c M such that

(1) the complement M \ Mbad is in G', and G acts freely by orien tation preserving
automorphisms on it,

(2) there is a G -equivariant homeomorphism from MqAÜ to Mbad,

(3) there is an isomorphism ofQ[G]-modules H\{M, Q) W.

Remark 4.3. Condition (d) is automatically satisfied if A7(bad is a finite union of at

most 1-dimensional submanifolds, possibly with boundary. In particular, such an

Mbad C Mo exists if Mo is an oriented Riemannian orbifold, and G acts effectively
by orientation preserving isometries.



Vol. 94 (2019) Group representations in the homology of 3-manifolds 81

Theorem 4.2 essentially says that one cannot read off the geometry of the

fixed point set in an orientation preserving G -action on a 3-manifold M from the

Q[G]-module structure of // j (M, ©). We now briefly contrast this with the situation
in dimension 2. We do not claim any originality in what follows, but we have not
been able to find Corollary 4.6, in particular, stated in the literature.

The discussion will be most conveniently formulated in terms of characters, for
which a general reference is [14]. If G is a finite group, and G is a subgroup, we will
denote by n(U) the permutation character corresponding to the G-set G/ U.

Theorem 4.4 (Artin's Induction Theorem). Let G be a finite group. The Q-vector
space generated by the Q-valued characters ofG isfreely spanned by the permutation
characters jz(C), as C runs over G-conjugacy class representatives of cyclic
subgroups of G.

Proof See [14, Theorem 5.21].

The following result can be deduced from the Riemann-Hurwitz formula, and

either the Lefschetz trace formula or Artin's Induction Theorem.

Proposition 4.5. Let M be a closed connected orientable surface, let G be a group
oforientation preserving automorphisms of M, and let x denote the genus of M/ G.

Let S be afull set ofG-orbit representatives of the ramification points of the covering
M —r M/ G, andfor each P G S, let Sp be the stabiliser of P in G. Let y be the

character corresponding to the G-module H\ (M, Q). Then we have

It follows that, in the situation of Proposition 4.5, the structure of the ramification
set of the covering M —M/G can be read off from the Q[G]-module structure
of Hi (M, Q) in the following precise sense.

Corollary 4.6. Let M and M' be closed connected orientable surfaces with an
action of a finite group G by orientation preserving automorphisms. If P is a

point on M or M', let Sp be its stabiliser in G. Suppose that the Q[G]-modules
Hi (M, Q) and II\ (MQ) are isomorphic. Then there exists a Injection ß between

the ramification points of the cover M — M/G, and those of the cover M ' -> M'/G
such that for all ramification points P 6 M, we have Sp — Sß^p) < G, so that,
in particular, ß preserves ramification indices.

Proof. Let S and $' be full sets of G-orbit representatives of the ramification points
ofM M/G, respectively of M' —> M'/G, and let r and r'be the genera of M/G,
respectively of M'/G. By Proposition 4.5, there is an equality of characters

(2r - 2 + #S)7t({ 1}) - J2 n(S^ (2r' ~ 2 + - J2 n(SP')-

X 2tt(G) + (2r — 2 + #S)n({l}) - n(SP).
PeS

Proof. See [5, Proposition 2],

PeS P'eS'
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Since none of the stabilisers Sp and S/>> are trivial, and since they are all cyclic,
it follows from Artin's Induction Theorem that there exists a bijection a from 8
to 8' such that for all P e 8, we have Ji(Sp) 7i(Sa(p}). This condition on the

permutation characters is equivalent to Sp being conjugate to in G. Since

for every P e 8, the set of stabilisers of the points in the G-orbit of P is a single
conjugacy class of subgroups, the result follows.

5. Application to isospectral manifolds

In this section we deduce Theorem 1.3 from Theorem 1.1. Our proof relies on
Sunada's group theoretic construction of isospectral manifolds [24j, and on
the formalism of regulator constants, as introduced by Dokchitser-Dokchitser,
see e.g. [9],

5.1. Sunada's construction and the Cheeger-Miiller theorem. If p is a prime
number, we will write Z(p) for the localisation of Z at p, i.e. the subring {|: p \ b}
of Q. In this subsection, R will be either Q or Zq,), where p is a prime number.

Definition 5.1. Let G be a finite group. An R[G]-relation is a formal linear
combination Ui ~ 12j Uj °' subgroups of G with the property that there is

an isomorphism of /?[G]-modules

0 R[G/Ui] ^ 0 R[G/U'j).
i j

The following lemmas are routine, and we leave the proofs to the reader.

Lemma 5.2. IfG is afinite group, N is anormal subgroup, and © Y2j Ui~12j Wj
is an R[G]-relation, then

DefG/JV @ J] NUi/N - J2 NU'j/N
i

is an R[G/N]-relation.

Lemma 5.3. Let G and G be finite groups, let U — U' be an R[G]-relation, and let
U — U' be an R[G]-relation. Then U x U — U' x U' is a R[G x G]-relation.

In [24] Sunada shows that Q[G]-relations give rise to strongly isospectral
manifolds, as follows.

Theorem 5.4 (Sunada, [24]). Let G be a finite group, let X —>• Y be a G-covering
ofRiemannian manifolds, and let U — U' be a Q[G]-relation. Then the intermediate

coverings X/U and X/U' are strongly isospectral.
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It follows from the Cheeger-Müller Theorem [6,18, 19] that if M and M' are

strongly isospectral Riemannian 3-manifblds, then

Z)tors Regl(M)2
Z)tors Regl(M')2'

where Reg (M is the covolume of the lattice H\ (M, Z)/H\ (M, Z)tors in the vector

space Hi (M, M) with respect to a certain canonical inner product, and similarly
for M'\ see [2] for details.

5.2. Regulator constants. When M and M' arise from a G-covering X Y via
Sunada's construction, we relate in [2] the regulator quotient of equation (5.5) to a

certain representation theoretic invariant of Hi (X, Q), called a regulator constant.

We briefly recall the dehnition and some of the properties of this invariant. On the

hrst reading, the definition may be skipped, since only the properties that we list
below will be needed for the rest of the section.

Definition 5.6. Let G be a finite group, let 0 J2i Ui ~~ Jl j U'j be a Q[G]-relation,
and let IT be a finitely generated Q[G]-module. Let be a non-degenerate
G-invariant Q-bilincar pairing on IT with values in Q. The regulator constant of IT
with respect to 0 is defined as

Ui det^H )\WU<)
£e(H0 — jjr-)\Wai)

X\2

Here, each determinant is evaluated with respect to an arbitrary basis of the respective
fixed space, and is therefore only well-defined modulo (Ox)2.

Remark 5.7. Let G be a finite group, and let IT be a finitely generated Q[G]-module.
Choosing a pairing as in Definition 5.6 is equivalent to choosing an isomorphism
of Q[G]-modules between IT and its Q-lincar dual. Since finitely generated Q[G]-
modules are self-dual, such a pairing always exists.

Theorem 5.8. The value of@(W) is independent of the pairing

Proof. See [9, Theorem 2.17],

Theorem 5.8 justifies the notation Go(lT), which makes no reference to the

pairing.

Example 5.9. Let p be an odd prime number, and let Gp GL2(F/)) be the group of
invertible 2x2 matrices over the finite field with p elements. Consider the following
subgroups of Gp :

R (¥p M u ((¥P)2 M u' (¥P F" '
p F;j' V 0 Fp) p V 0 (Fx)2y
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The permutation module Q\GP/Up\ decomposes as a direct sum

Q[Gp/Up] s Q[Gp/Bp] © Ip,

where Ip is a simple Q[Gp]-module of dimension (p + 1) over Q. Moreover, the

formal linear combination 0 Up — U'p is a Q[GA,]-re]ation, and for every prime
number q f P, it is a Z^G^,]-relation. In [2, Proposition 4.2] we showed that

G&(Ip) p (mod (Qx)2).

Example 5.10. Let G2 be the affine linear group over Z/8Z, i.e. the group of linear
transformations Tay.x r-> ax + b of Z/8Z, where a e (Z/8Z)X and b e Z/8Z.
Consider the following subgroups of G2:

U2 (Ta,0:a G (Z/8Z)X),
G2 (73,4,711,0),

B2 (73,4, Tafi\a G (Z/8Z)X).

The group G2 is isomorphic to the semidirect product Z/8Z xt (Z/8Z)X; the

subgroups U2 and Lf are both isomorphic to C2 x C2; 0 U2 — is a

Q[G2]-relation, and for every odd prime number q, it is a Z(9)[G2]-relation.
Moreover, Q[G2/ 6'2] decomposes as a direct sum

Q[G2/U2\ Q[G2/Z?2] © 12,

where I2 is a simple Q[G2]-module of dimension 4 over Q, and one can show by a

direct computation thatG©(/2) 2 (mod (Qx)2).

Regulator constants satisfy the following properties:

(Reg 1) if G is a finite group, N is a normal subgroup, 0 is a Q[G]-relation, IT is a

Q[G/Af]-module, and InfG/jv IT is the lift of IT to a Q[G]-module, then

G©(InfG/JV IT) GDeiG/N ©(IT);

(Reg 2) if G is a finite group, 0 is a Q[G]-relation, and ITi, IT2 are Q[G]-modules,
then

e&(Wr 0 W2) CeOTO • G@(W2).

Lemma 5.11. Let -T be a finite set of prime numbers. Then there exist a finite
group G, a <Q[G]-relation 0 U — U', and a <Q>[G]~module IT, such that

1 we have

•e@(W) =Y\p (mod (Qx)2);
petP

(2) for all prime numbers q $ f, the relation 0 is a Z[G]-relation.
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Proof. Let G J~[p<e$> Gp> where Gp is as in Example 5.9 when p is odd, and as

in Example 5.10 when p 2. For each p e IP, let Np denote the kernel of the

projection map G Gp, so that the quotient G/Np is isomorphic to Gp.
We may lift the module Ip of Example 5.9, respectively 5.10 from G/Np to a

Q[G]-module Infg/np Ip- Let W be the direct sum of Q[G]-modules

IE © MG/Np Ip.
petP

Let U Hpej' Up < G, where the subgroups Up < Gp are as in Example 5.9,

respectively 5.10, and define U' analogously. So for every p e -P. the image of U
under the quotient map G -» G/Np is Up, and the image of U' is U'p.

By Lemma 5.3, the formal linear combination 0 U — U' is a Q[G]-relation,
and for every prime number q ÏP, it is also a Z(?)[G]-relation. This proves the

second part of the lemma.

By property (Reg 2), property (Reg 1), and Examples 5.9 and 5.10, in that order,

we have

Gq(W) EE Y\ G0(InfG/Np Ip) n ^DefG/Np&(Ir)
peiP p<eP

]~[ p (mod (Qx)2),
pe^

which proves the first part of the lemma.

5.3. Isospectral manifolds. The following two results are the crucial ingredients
that will allow us to deduce Theorem 1.3 from Theorem 1.1.

Proposition 5.12. Let G be afinite group, let X Y beaG-coveringofRiemannian
manifolds, and let 0 U — U' be a Q[G]-relation. Then

Reël (X/ U)2

Regl(X/U')2 V '

and we have

Ze(lU(X- Q)) (mod (Qx)2).
Regj (X/U')2

Proof This is a special case of [2, Corollary 3.12],

Proposition 5.13. Let G be afinite group, let X Y beaG-coveringofRiemannian
manifolds, let q be a prime number, and let & U — U' be a [G]-relation. Then

we have

H^X/U.Z^q00] H1(X/U,,Z)[q°0].
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Proof. This is a special case of [2, Theorem 3.5].

We can now prove Theorem 1.3. We recall the statement.

Theorem 5.14. Let P be a finite set of prime numbers. Then there exist closed
connected orientable 3-manifolds M and M' that are strongly isospectral with respect
to hyperbolic metrics and such that

(1) for all p P we have

#//, (A/, Z)[p°°] ï #Hr (MZ)[p°°]\

(2) for all prime numbers q f P we have an isomorphism ofAbelian groups

H\(M,Jj)[q°°] s Hi(M',Z)[q°°].

Proof. Let G, U, U', 0, and W be as in Lemma 5.11 applied to the set P.
By Theorem 1.1, there exists a closed hyperbolic 3-manifold X with a free G-
action such that there is an isomorphism of <Q[G]-modules Hi(X,Q) W. Let
M X/U and M' X/U'. The second part of the theorem immediately follows
from Lemma 5.11 (2) and Proposition 5.13.

To prove the first part, we invoke equation (5.5), Proposition 5.12, and Lemma

5.11 (1 in that order, to conclude that

Z)tors Regl(M)2
Z)tors Regl(M')2

Ve(W)

Y\Pi (mod (Qx)2),
i

which completes the proof.
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