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The L 2-torsion function and the Thurston norm of 3-manifolds

Stefan Friedl and Wolfgang Liick

Abstract. Let M be an oriented irreducible 3-manifold with infinite fundamental group and
empty or toroidal boundary which is not S ! x D2. Consider any element ¢ in the first cohomology
of M with integer coefficients. Then one can define the ¢-twisted L?-torsion function of the
universal covering which is a function from the set of positive real numbers to the set of real
numbers. By earlier work of the second author and Schick the evaluation at 1 = 1 determines
the volume.

In this paper we show that the degree of the L?-torsion function, which is a number extracted
from its asymptotic behavior at 0 and at oo, agrees with the Thurston norm of ¢.

Mathematics Subject Classification (2010). 57M27, 57Q10, 58]52, 22D25.

Keywords. L2-Betti numbers, L2-torsion, twisting with finite-dimensional representations,
Thurston norm.

0. Introduction

Reidemeister torsion is one of the first invariants in algebraic topology which are able
to distinguish the homeomorphism type of closed manifolds which are homotopy
equivalent. A prominent example is the complete classification of lens spaces, see for
instance [6]. The Alexander polynomial, which is one of the basic invariants for knots
and 3-manifolds, can be interpreted as Reidemeister torsion, see forinstance [31]. The
Reidemeister torsion of a 3-manifold can be generalized in two ways. Either one can
twist it with an element in the first cohomology which leads for example to the twisted
Alexander polynomial, see for instance [14], or one can consider the L?-version
of appropriate coverings resulting in L2-torsion invariants, see for instance [27,
Chapter 3]. Recently there have been attempts to combine these two generalizations
and consider twisted L2-versions. Such generalizations have been considered under
the name of L2-Alexander torsion or L?-Alexander Conway invariants for knots or
3-manifolds, for instance in [7-11, 19-21].

In all of these papers one has to make certain assumptions to ensure that the
twisted L2-versions are well-defined. They concern L2-acyclicity and determinant
class. Either these conditions were just assumed to hold, or verified in special cases
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by a direct computation. A systematic study of these twisted L?-invariants under the
name L2-torsion function has been carried out in [28]. We summarize some of the
results of [28] for 3-manifolds. Let M be a 3-manifold. (Here and throughout the
paper we assume that all 3-manifolds are compact, connected and oriented with empty
or toroidal boundary, unless we say explicitly otherwise.) If M is irreducible and if
it has infinite fundamental group, then it was shown in [28] that all these necessary
conditions are satisfied for the universal covering M and an element ¢ € H'(M; 7).
The upshot is that we obtain an invariant that is an equivalence class of functions

p@(M;$):(0,00) > R

where we call two functions f, g:(0,00) — R equivalent if for some integer m
we have f(t) — g(t) = m -In(t). We recall the definition in Section 1.3. Note
though that this invariant is minus the logarithm of the function defined and studied
in the aforementioned papers. In those papers the corresponding function was usually
referred to as the L2-Alexander torsion. The convention of this paper brings us in
line with [27]. We refer to Section 1.4 and to (1.6) for a short discussion which
relates the L2-torsion function p@ (M ; ¢) to the L2-Alexander torsion ©® (M, ¢)
of the aforementioned papers.

The evaluation of p® (M ; ¢) at t = 1 is well-defined and by definition it equals
the “usual” LZ%-torsion p® (M) of M. It was shown by the second author and
Schick [29, Theorem (.7] that for any irreducible 3-manifold we have

pAM; )t = 1) = pP (M) = —g vol(M),

where vol(M) equals the sum of the volumes of the hyperbolic pieces in the JSJ-
decomposition of M.

In the sequence of papers [9], [7], [8] and [28] the behavior of p @M; ¢) as t
“goes to the extremes,” i.e.ast — 0 and ¢ — oo, was studied. In particular in [28] it
was shown that for any representative p there exist constants C > 0 and D > 0 such
that we get for 0 < <1

C-In(t)— D <p(t) <—C-Int) + D,
and fort > 1

—C -In(t)— D < p(t) <C-In(t) + D.
Hence lim sup,_,, I”n((t)) and liminf; o § ((t)) exist and we can define the degree of

@ (M; ) to be

) pty . . plt)
deg( (M, qﬁ)) _htrr_1>solip In() ht—>10fln(t)'

It is obviously independent of the choice of the representative p.
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Thurston [37] assigned to ¢ € H'(M;Z) = H,(M, dM; Z) another invariant,
its Thurston norm x s (¢), which measures the minimal complexity of a surface dual
to ¢p. We we will review the precise definition of the Thurston norm in Subsection 1.7.

The main result of our paper says that the functions p @) (M ; ¢) not only determine
the volume of a 3-manifold but that they also determine the Thurston norm. More
precisely, we have the following theorem.

Theorem 0.1. Let M be an irreducible 3-manifold with infinite fundamental group
and empty or toroidal boundary which is not homeomorphic to S' x D?. Then we
get for any element ¢ € H' (M ; Q) that

deg (7@ (M $)) = —xu (@).

Actually we get a much more general result, where we can consider not only the
universal covering but appropriate G -coverings G — M — M and get estimates for
the L2-function for all times ¢ € (0, oo) which imply the equality of the degree and
the Thurston norm, see Theorem 5.1.

The equality in Theorem 0.1 had been proved initially by Dubois—Wegner [10,11]
for the exteriors of torus knots. This result of Dubois—Wegner was later generalized
by Ben Aribi [3] and Herrmann [18] to Seifert fibered spaces and graph manifolds.
Furthermore the equality in the theorem was shown by Dubois and the authors to hold
for fibered 3-manifolds [9, Theorem 1.3]. Itis a well-established feature of “Alexander
type” invariants, e.g. (twisted) Alexander polynomials or non-commutative Alexander
polynomials, that their degrees give lower bounds on the knot genus or the Thurston
norm. We refer to [5, 13, 16, 30, 35, 40], and [8] for details. Even though it is
technically non-trivial to show the “<”-inequality in the theorem, it is not entirely
surprising. What is much more striking, in our opinion, is that we can in fact prove
that the equality holds.

In the following we quickly summarize the key ideas behind the proofs of
Theorem 0.1. First note, that if the underlying group G is Z, the Fulgede—Kadison
determinant agrees with the Mahler measure and the behaviour of the Mahler measure
is well understood if one varies the coefficients of an element in the group ring,
which is in this case essentially a polynomial in one variable p(z). In particular the
asymptotic of the Mahler measure of p(tz) for t — 04 and t — oo is completely
known. Using limit formulas for Mahler measures one can extend this to the case
G = Z", or equivalently, to polynomials in several variables. Now approximation
techniques allow to estimate the Fuglede—Kadison determinant and its asymptotic
behaviour for 1 — 0+ and ¢t — oo of an element in the group ring by looking at a
sequence of epimorphisms from G to finitely generated free abelian groups, whose
kernels become smaller and smaller. The Virtual Fibering Theorem of Agol [1,2],
Wise [43] and Przytycki—Wise [32] is used to reduce the general case by a delicate
continuity arguments to the case of a mapping torus, where the L 2-torsion function
can be computed explicitly. The main technical difficulty is that the Fuglede—Kadison
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determinant is in general not continuous in the coefficients of an element in the group
ring and is a much more sophisticated invariant than the Murray-von Neumann
dimension.

Added in proof. Liu[23]has given, almost simultaneously, a completely independent
proof of Theorem 0.1. The techniques used in both papers are at times somewhat
similar. Liu [23] goes on to prove several other very interesting results that are not
covered in this paper. In particular he proves Theorem 0.1 also for real classes and
shows the continuity of the L2-torsion function.

Conventions and notations. Given a group G we view elements in (ZG)* always
as row vectors. Given a group G and an m x n-matrix over ZG we denote by r 4 the
homomorphism (ZG)™ — (ZG)™ given by right multiplication by A. Furthermore,
given a group homomorphism y: G — H we denote by y(A) the matrix over Z H
given by applying y to all entries. Throughout the paper we assume that all 3-
manifolds are compact, connected and oriented, unless we say explicitly otherwise.

Acknowledgements. The first author gratefully acknowledges the support provided
by the SFB 1085 “Higher Invariants™ at the University of Regensburg, funded by the
Deutsche Forschungsgemeinschaft DFG. The paper is financially supported by the
Leibniz-Preis of the second author granted by the DFG and the ERC Advanced Grant
“KL2MGe-interactions” (no.662400) of the second author granted by the European
Research Council. We wish to thank Yi Liu for several helpful comments. We are
also grateful to the referee for making many suggestions that greatly improved the
exposition of the paper.

1. Review of the ¢-twisted L 2-torsion function and the Thurston norm

In this section we recall some basic definitions, notions and results from [7,9, 28].

1.1. LZ-Betti numbers, Fuglede—Kadison determinants and L 2-torsion. Unfort-
unately it would take up too much space to recall the definitions of all the L>-invariants
that we use in this paper. Therefore we refer to [27] for the precise definitions. In
this section we only quickly recall the notation and the basic setup for L2-invariants
from [27].

(1) Given agroup G we denote by N (G) the group von Neumann algebra as defined
in [27, Definition 1.1 on p. 15].

(2) We refer to [27, Definition 1.5 on p. 16] for the definition of a Hilbert N (G)-
module and for the definition of a morphism between Hilbert & (G )-modules. As an
example, if G is a group and if V is a based free left C G-module, then L2(G) ®cg V
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is naturally a Hilbert N (G )-module. Furthermore, if f: V — W is ahomomorphism
between based free left C G-module, thenid ® f: L?(G) ®cg V — L*(G) ®cg W
is a morphism of Hilbert N (G)-modules.

(3) We refer to [27, Definition 1.10 on p. 21] for the definition of the von Neumann
dimension dim y(g)(V) of a Hilbert & (G)-module V.

(4) Given a Hilbert N (G)-chain complex (Cx, ¢x) we refer to

b, (Cy) := dim gy (ker(c,) /im(cpr1))

as the p-th L?-Betti number of the chain complex. We refer to [27, Definition 1.15
on p. 24] for details.

(5) Given a finite CW-complex X together with a G-covering X we view Cy (X, C)
as chain complex of based free left CG-modules, where a basis is given by lifts of
the cells from X to X. We denote by

b (X N (G)) = bP(L2(G) ®ca C(X, )

the corresponding L.2-Betti number. This definition can also be generalized to any
topological space, see [27, Definition 6.50 on p. 263] for details.

(6) Let f:U — V be a morphism of finite dimensional Hilbert N (G )-modules.
The definition of f being of determinant class is given in [27, Definition 3.11
on p. 140]. If f is of determinant class, then op. cit. gives the definition of the
corresponding Fuglede—Kadison determinant detyg)(f) € (0, 00). The Fuglede-
Kadison determinant shares many properties of the usual determinant, but at times
it behaves strikingly different. For example the Fuglede—Kadison determinant for
every zero morphism, regardless of U and V, equals 1 (see [27, p. 127]).

(7) A Hilbert & (G)-chain complex C, is called L?-acyclic if its L?-Betti numbers
are zero. It is called det- L2-acyclic if C, is L?-acyclic and if all the boundary maps
cp:Cp — Cp_y are of determinant class. If Cy is det-L2-acyclic we define its
L2-torsion by

pP(Cy) = — Z(—l)p -In (dety gy (cp)).
PEZ

The following proposition gives a convenient criterion for a matrix to be of
determinantclass. Itisaconsequence of [34, Theorem 1.21], see also [27, Chapter 13]
or [12, Theorem 5].

Proposition 1.1. Let G be a group and let A be an m x n-matrix over Z.G. If G is
residually finite, then the morphism L*(G)Y™ — L2(G)" of N (G)-modules defined
by right multiplication by A is of determinant class.
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1.2. Euler structures and Spin®-structures. Let X be a finite CW complex and let
p: X — X be the universal covering of X. Following Turaev [38—40], we define a
Sfundamental family of cells to be a choice for each open cell in X of precisely one
open cell in X which projects to the given cell in X.

We write m = m1(X) and we denote by v:m — H(w;Z) = H{(X;Z) the
abelianization map. Now let {e;};e; and {€;};c; be two fundamental families of
cells. After reordering them we can arrange that for each i € I we have ¢; = g;e;
for some g; € w. We say that two fundamental families of cells are equivalent if

D (=)Emedy(g) = 0.

iel
The set of equivalence classes of fundamental families of cells on X is called the set
Eul(X) of Euler structures on X. Note that the set of Euler structures on X admits
a free and transitive action by Hq(X; Z).

We recall some basic facts regarding Spin©-structures on 3-manifolds, with empty
or toroidal boundary. We refer to [40, Chapter XI] for a detailed discussion. Given
a 3-manifold M we denote by Spin®(M) the set of Spin®-structures on M. The
set Spin® (M) comes with a canonical free and transitive action by H{ (M ;7). Given
s € Spin®(M) we denote by ¢ (s) € H*(M,dM;Z) = H(M;Z) its Chern class.
The Chern class has the property that for each s € Spin°(M) and h € H{(M ; Z) the
following equality holds

c1(hs) = 2h + c1(s). (1.1)

In [40,41] Turaev shows that given any CW-structure X for M there exists a
canonical H(M;7Z) = H,(X; Z)-equivariant bijection Spin°(M) — Eul(X).

1.3. (L2-acyclic) admissible pairs and the ¢-twisted L2-torsion function. In[7,9]
the authors and Dubois introduced the ¢-twisted L2-torsion function of a 3-manifold.
This definition was later generalized and analyzed in [28, Section 7] for G -coverings
of compact connected manifolds in all dimensions.

We start out with the following definitions.

Definition 1.2. (1) In the following, given any abelian group A we write

Ay = A/ tors(A).

(2) We say that a group homomorphism u:7w — G is (Hy) r-factorizing, if the
projection map w — Hy(m; Z) r factors through .

(3) An admissible pair (M, 1) consists of an irreducible 3-manifold M # S x D?
with infinite fundamental group and a (H) p-factorizing group homomorphism
u:mwy (M) — G to aresidually finite countable group G. Denote by M — M
the G-covering associated to w. We say that (M, ) is L?-acyclic if the n-th
L2-Betti number h,(,z)(ﬂ ; N (G)) vanishes for every n > 0.
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Many of the subsequent results will hold in more general situations, e.g., it is not
always necessary to assume that G is residually finite or that w is (1) r-factorizing.
Nonetheless, in an attempt to keep the paper readable we will not state all the results
in the maximal generality.

Convention 1.3. If u: w — G is a (H) y-factorizing epimorphism, then we can and
will identify Hom (7, R) with Hom(G, R). Furthermore, given any space X we make
the usual identifications H!(X;R) = Hom(H,(X;Z),R) = Hom(z;(X),R). In
particular, if (M, y: m;(M) — G) is an admissible pair, such that the cokernel of u
is finite, then any ¢ € H'(M ;R) induces a unique homomorphism G — R that, by
a slight abuse of notation, we also denote by ¢.

Lemma 1.4, If M # S x D2 is an irreducible 3-manifold with infinite fundamental
group, then (M,id,, () is an L*-acyclic admissible pair.

Proof. Let M # S x D? be an irreducible 3-manifold with infinite fundamental
group. It is a well-known consequence of the Geometrization Theorem proved by
Perelman, that & (M) is residually finite. We refer to [36, Theorem 3.3] and [17,
Theorem 1.1] for details. (Note that Hempel writes “Haken manifold”, but in the
proof Hempel only uses the fact that Haken manifolds were known to satisfy the
Geometrization Conjecture.) Furthermore, it is a consequence of the Geometrization
Theorem and [24, Theorem 0.1] that M is L2-acyclic. L]

Now consider an L.2-acyclic admissible pair (M ; p: w1 (M) — G) with Spin®-
structure 5 € Spin®(M). Let¢ € H'(M; Q). We pick a CW-structure for M, which
by abuse of notation we denote again by M. We denote by M the universal cover
of M and we write 7 = m1(M). We pick a fundamental family of cells in M that
corresponds to s.

This fundamental family of cells turns C*(ﬂ ) into a chain complex of based
free Zm-left modules. (The basis is now unique up to permutation and multiplying
each element with +1 which will not affect the Hilbert space structure and hence
the ¢-twisted L2-torsion function below.) We view ZG as a right Zx-module via
the homomorphism . We obtain the chain complex ZG ®z, Cx(M) of based free
Z,G -left modules.

Now let t € (0,00). We denote by ¢*C; the based 1-dimensional complex
G -representation whose underlying complex vector space is C and on which g € G
acts by multiplication with %), Let f: CG — CG be a C G-left linear map that is
given by right multiplication with an element ), . Ag -g. We define the ¢* C,-twist
of f as the CG-left linear map CG — CG that is given by right multiplication with
the element deG Ag-t?®).g. Similarly we can twist left linear maps CG™ — CG"
and the maps in the chain complex CG Q75 C« (1171 ). Thus twisting CG ®z. C« (A71 )
with ¢*C; yields a finite free CG-chain complex ng+c, (CG @z Cs (M)) with a
C G-basis. (A more formal definition is to say, that given a C G-left module V we
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define ng+c, (V) := ¢*C; @¢ V where G acts diagonally on both terms. This point
of view extends to chain complexes in an obvious way.)

Given a C G-leftlinear map A:CG™ — C G", we obtain by applying L2(G) ®cg —,
amorphism A9 (A) of finitely generated Hilbert & (G )-modules L?(G)™ — L?(G)".
Thus we obtain from ng+c, (CG ®z5 Cs (M)) by applying L%(G) Qcg —, a finite
Hilbert N (G)-chain complex denoted by AG o ng«c, (CG ®z, Cs (M)). Note that
for t = 1 this chain complex is just the chain complex L?(G) ®z¢ C.(M) which
is 1.2-acyclic by our hypothesis. Furthermore all boundary matrices are given by
matrices defined over ZG. Since G is residually finite it follows from Proposition 1.1
that the chain complex is of determinant class. It follows from [28, Theorem 6.7] that
the chain complex A% o ngxc, (CG @z, Cx(M)) is in fact det-L>-acyclic for any
t € (0,00). In particular the N (G)-chain complex A o ng+c, (CG Qzx Cy(M))
has well-defined LZ2-torsion for any ¢ € (0,00). We pick a homomorphism
v:G — Hy(w;Z) such that the homomorphism v o w:w — H;(x;Z) is just
the usual projection map. Now define the ¢-twisted 1.%-torsion function

PP (M, s; i, ¢): (0, 00) — R

‘ = (1.2)
t > pP(AY 0 ngoryrc, (CG @z Cu(M))).

The right hand side is indeed independent of the choice of v. Namely, if G’ is the
image of w and u': w1 — G’ is the epimorphism induced by g, then there is precisely
one homomorphism v': G’ — H;(mx;7Z) such that v’ o u’ agrees with the projection
m — Hy(w;7Z) and we get from [28, Theorem 7.7 (7)] that

p@ (A% onggovyrc, (CGR2x Cu(M))) = p@ (A% ongoryec, (CG' @z Cu(M))).

More details of this construction and the proof that it is well-defined can be found
in [28, Section 7] and, with slightly different conventions, in [9].

If p is the identity homomorphism, then we drop it from the notation. Put
differently, we write 0@ (M, s; ¢) := pP (M, 5;idy, a1y, $)-

1.4. Comparing the ¢-twisted L2-torsion function and the L2-Alexander
torsion. The ¢-twisted L2-torsion function p®(M,s; u,¢):(0,00) — R, as
considered in this paper and in [28], is designed in an additive setup, as it is the main
convention when dealing with related invariants such as topological I2-torsion,
analytic L2-torsion, analytic Ray—Singer torsion and so on. When dealing with
torsion invariants in dimension 3, the multiplicative setting is standard, which is the
reason why we defined for instance in [7,9] the 1.2-Alexander torsion multiplicatively
as a function T?(M, s; ¢, ): (0, 00) — [0, 00).

Now suppose that (M, p1) is L2-acyclic. As we had already pointed out in the
previous section, it follows from [28, Theorem 6.7] that the function p® (M, s; 11, ¢)
is defined on all of (0, 00). It follows immediately from comparing the definition
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of p@(M,s; 1, $) in Section 1.1 and the previous section of the present paper with
the definition of r(z)(M ,6; ¢, ) in [9, Section 3.1] that these two invariants are
related by the formula

TP (M, 5:6, 1) = exp(—pP (M, 51 1, 9)). (1.3)

Notice that this discussion shows that T (M, s; ¢, i) never takes the value zero.
This is a consequence of [28, Theorem 6.7] which was not available when [9] was
finished. In the following we will cite results from [7,9] about T(z)(M,ﬁ; o, L),
which via (1.3) we reinterpret as results on ,0(2)(M 55, ).

1.5. Properties of the ¢-twisted L2-torsion function.  The following theorem
summarizes some of the key properties of the ¢-twisted L>-torsion function.

Theorem 1.5 (Properties of the twisted L2-torsion function). Let (M, ) be an
L?-acyclic admissible pair, let ¢ € H'(M;R) and let s € Spin®(M).

(1) Pinching estimate. There exist constants C and D such that we get for 0 <t <1

C-lIn(t)— D < pPM,s: 0, 9)(t) < —C -In(t) + D,
and fort > 1

—C -In(t) — D < p@ (M, 5511, )(t) < C -In(t) + D;
(2) Dependence on the Spin®-structure. For any h € H{(M; Z) we have
PP (M. hs; u,§) = p? (M, 5; 1, ) + In(2) - p(h).
(3) Covering formula. Let p: M — M be a finite regular covering such that

ker(n) C 7 1= m1(M). We write b 1= p*¢ and we denote by [i the restriction
of p to 7. Finally we write s := p*(s). Then for all t we have

PP (M. 5:$. ) (1) = [M : M- pP (M5, 1)(0).
(4) Scaling ¢. Let r € R. Then we get for all t € (0, c0)
PP (M, 5 1, r¢) (1) = p@ (M. 53, $)(1").
(5) Symmetry. Foranyt € (0, 00) we have

PP (M, 53 1, @) (1Y) = $ler1(s)) - In(t) + p@ (M, 5 1., §)(2).

Statement (1) is proved in [28, Theorem 7.4 (i)], it is one of the main results
of that paper. Statement (2) is proved in [9] and [7]. Statement (3) is proved
in [28, Theorem 5.7 (6)] and [9, Lemma 5.3] without explicitly mentioning Spin®-
structures. Nonetheless, it is straightforward to see that the proofs provided in the
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literature also imply the statement about Spin®-structures. Statement (4) is basically
a tautology, see [28, Theorem 7.4 (5)] and |9, Lemma 5.2]. Finally Statement (5) is
obtained in the proof of Theorem 1.1 of [7].

Define two functions fy, f1:(0,00) — R to be equivalent if there is an m € R
such that f1(t)— fo(t) = m-In(¢) holds. Because of Theorem 1.5 (2) the equivalence
class of the function p@® (M, s; i, ¢) defined in (1.2) is independent of the choice of
the Spin‘-structure, and will be denoted by

pA(M; . $). (1.4)
Theorem 1.5 (1) allows us to define the degree of p® (M ; 1, ¢) by

t A
deg(p® (M 1, $)) = limsup PO iming 248

t>o00 In(®) =0 In(z) (1.5)

for any representative p: (0, oc) — R of p@ (M ; u, ¢).
Remark 1.6. Notice the minus sign appearing in the formula (1.3). This has

the consequence that the degree deg(t™® (M, ¢, 1)) defined in [9] and the degree
deg(ﬁ(z)(M , b, @)) defined in the introduction and later again in (1.5) are related by

deg(t @ (M, ¢, ) = —deg(p'? (M. 1, 9)). (1.6)

1.6. Approximation. The following is a consequence of one of the main technical
results of [28].
Theorem 1.7 (Twisted Approximation inequality). Let ¢:G — R be a group
homomorphism whose image is finitely generated.

Consider a nested sequence of normal subgroups of G

G2Gy2G12G,2 -

such that G; is contained in ker(¢p) and the intersection (); G; is trivial. Suppose
that the index [ker(¢) : G;] is finite for all i > 0. Put Q; := G/G;. Let ¢;: Q; — R
be the homomorphism uniquely determined by ¢; o pr; = ¢, where pr;: G — Q; is
the canonical projection.

Fix an (r,s)-matrix A € M, s(ZG). Denote by Ali] the image of A under the
map M, s(Z.G) — M, (Z Q;) induced by the projection pr;.

Then we get

dim gy (ker (A 0 ngec, (1)) = lim dimy(g,) (ker (A2" o ngec, (ra1)))
and

dety () (A © ng+c, (ra)) = limsup dety(o,) (A" o ngrc, (ram)-
1—>00
Proof. Since the image of ¢ is finitely generated, we can choose a monomorphism
j:Z? — R and an epimorphism ¢': G — Z< with ¢ = j o ¢. Now we apply [28,
Theorem 6.52] to ¢’ in the special case V = j*C,. []



Vol. 94 (2019) The L2-torsion function and the Thurston norm of 3-manifolds 31

1.7. The Thurston norm. Recall the definition in [37] of the Thurston norm x pz (¢)
of a 3-manifold M and an element ¢ € H'(M;7Z) = Hom(mr(M), Z):

x(¢) := min { x—(F) | F C M properly embedded surface dual to ¢},

where, given a surface F with connected components Fy, Fy, ..., Fy, we define

k
¥AE) = Zmax { — X(F,-),O}.

i=1

Thurston [37] showed that this defines a seminorm on H (M ; Z) which can be
extended to a seminorm on H ! (M ;RR) which we also denote by xs. In particular
we getforr € Rand ¢ € H!(M;R)

xm(r-@) = Ir|-xm(d). (1.7)

If p: M — M is a finite covering with n sheets, then Gabai [15, Corollary 6.13]
showed that

Xz (p*¢) =n - xp($). (1.8)

If F — M 5 §1is a fiber bundle for a 3-manifold M and compact surface F, and
¢ € HY(M;7Z)isgivenby H,(p): H{(M) — Hy(S') = Z, then by [37, Section 3]
we have

—x(F), it x(F) =< 0;

0, if (F) > 0. (1.9

xp(p) =

2. Calculating the ¢-twisted L2-torsion function

The following theorem says that given M and v € H'(M; Q) the corresponding
L?-torsion functions can be computed using one fixed square matrix over Z (M)
together with a well-understood error term.

Theorem 2.1. Let M be a 3-manifold with by (M) > 0 and let s € Spin°(M). We
write 1 = wy(M).

(1) Suppose M is non-empty and toroidal. Then there exists an s € w1(M) and
a square matrix A over Zm such that the following conditions are satisfied
for any (Hy) g-factorizing homomorphism p:mw — G and any homomorphism
¢:G — R:

(a) b,(,z)(ﬂ; N(G)) = 0 holds for all n > 0 if and only if
dim gy (ker (A © ng=c, (ruca))))

vanishes for all t > 0.
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(b) If (a) is the case, then (M, 1) is ¢-twisted det-L2-acyclic (in the sense
of [28, Definition 7.1]) and we get

0 P(M, s: 1, )(t) = ——ln(det,N(G)(AG o ng=c, (ru))) + n(t)

where 1(t) is given by

n(t) = max {0, |¢(s)| - In(¢)}.

(2) Suppose M is closed. Then there exist s,s8" € (M) and a square matrix A
over 77 such that the following conditions are satisfied for any (Hy) s -factorizing
homomorphism . w — G and any homomorphism ¢: G — R:

(a) b,(,z) (M; N (G)) = 0 holds for all n > 0 if and only if

dimN(G) (ker (AG o Ne*C, (”,u,(A))))
vanishes for all t > 0.

(b) If (a) is the case, then (M, 1) is ¢-twisted det-L?-acyclic and we get

PP (M, 5; 11, ) (1) = —In(dety ) (A% 0 ngrc, (ruca))) + n(t)

where 1(t) is given by
n(t) = max {0, |¢(s)| - In()} + max {0, |¢(s")| - In(¢)}.

Proof. We only treat the case, where dM is empty, and leave it to the reader to
figure out the details for the case of a non-empty boundary using the proof of [26,
Theorem 2.4]. From [30, Proof of Theorem 5.1] we obtain the following;:

(1) a compact 3-dimensional C W-complex X together with a homeomorphism
f:X — M (in the following we identify @w = (M) = m;(X) using 7, (f)),

(2) two sets of generators {51, ..., 8.} and {s,...,s,} of 7,
(3) an a x a-matrix F over Z,

such that the cellular Zm-chain complex Ci (f ) of the universal cover X, for an
appropriate fundamental family of cells, is isomorphic to

lI —=

Fer 1 a érslfi
Zn—>@Zn—>@Zn—_——>Zﬂ
i=1

It follows that the based Z G-chain complex ZG ®z, Cx ()? ) is isomorphic to

:|s:

e (ﬁ) 1 a (F) @ Tu(s;)—1
ZG——»@ZG EBZG;%G

i=1
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Then the Hilbert & (G)-chain complex A% o ng«c, (C«(X)) is isomorphic to

)

1 AG
[ AS( 40

i=1 uih-17 2 AConyxc, (rucry)
L2(G) P L2(6) —— P LAG)
i=1 i=1
l_ezal AG (rt.;b(.v D)= 1 )
L?(G).
Since by (M) > 0 is non-trivial there exist i, j € {l,...,a} such that s; and s;

represent non-zero elements in Hy(M;Z) . We write s = s; and s" = s; For later
we record that, given any (H) ¢-factorizing homomorphism p:m — G, the images
w1 (s) and p(s”) have infinite order. We denote by A the matrix that is obtained from F
by removing the i-th column and the j-th row.

For g € G and t € (0,00) let D(g, 1)« be the Hilbert N (G)-chain complex that
is given by

G
0 L2(G) — Crows) L%(G) — 0

where the non-zero terms are in the degrees 1 and 0. Provided that |¢g| = oo holds,
D(g.t)« is det-L2-acyclic and a direct computation using [27, Theorem 3.14 (6)
on p. 129 and (3.23) on p. 136] shows

p@(D(g,1)+) = In(dety(c) (A% (r-ow.g—1))) = max {|p(g)] - In(z),0}. (2.1)

Now let 5 € Spin“(M) be the Spin®-structure that corresponds to the above
fundamental family of cells. It follows from [9, Lemma 3.2] that the above group
elements s, s” and the matrix A have all the desired properties regarding the L>-Betti
numbers and the L2-torsion. This concludes the proof of the theorem in the closed
case for the Spin®-structure s.

If t € Spin‘ (M) is a different Spin®-structure, then we can write t = As for some
h € Hi(M;7). We pick a representative g € x of & and we multiply one column
of A by & to obtain the matrix with the desired properties. ]

3. Lower bounds

The elementary proof of the next lemma can be found in [28, Lemma 6.9].

Lemma 3.1. Let f:L*(G)™ — L2(G)" be a bounded G-equivariant operator.
Then e
det gy (f) < || f[|4mn G (m()

Here || || denotes the operator norm of f, i.e.

11l = sup {ll f (W)l 2Gyn | v € L2(G)" with [|v]l s2gym = 1}
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Before we state the next lemma we introduce the following definition. We say
that a bounded G -equivariant operator f: L?>(G)™ — L?*(G)™ is det-L2-acyclic if
the chain complex

0 L2(G)" L 12(Gy™ = 0
is det-L2-acyclic. Now we can formulate the next result which is an improvement

of [9, Proposition 9.5].

Lemma 3.2. Consider bounded G -equivariant operators fy, f1: L?(G)™ — L?(G)™.
Fort > 0 we define

fltl:=fo+1- N1,

Suppose that for every t > 0 the operator f[t]: L>(G)™ — L?*(G)™ is det-L>-
acyclic. Put
p:(0,00) = (0,00), ¢+ In(dety()(f[]))-

Then we get

p(t) < m-max{0,In (|| foll + Il f1ll)} fort < 1;
p(t) < dimy(G)(im(f1)) - In(t) + m - max{0,In 2- || foll + | Aill)} fort >1.

In particular we get

l S
lim sup o < dimy () (im(f1));

t—>00 lﬂ(f)

lim inf plt) >0
t—0 ln(t)
. p) . . p(t) . —
h:]ligp In(?) llgrlgglf m = dlm,N(G)(lm(fl))-

Proof. It suffices to prove the two inequalities for p(¢), then the other claims follow.
We begin with the case t < 1. We get from Lemma 3.1

det(o)(f1F]) < I FEI ¥ T,

If || f[t]ll < 1, this implies detyG)(f[t]) < 1 and the claim follows. Hence it
remains to treat the case || f[¢]|| > 1. Because of dim yg)(im(f)) < m we get that

dety ) (/1) < £ Le2I™
=|fo+t-Al"
< (Ifoll +2-1.A1)"

Sl +1AD™
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Next we consider the case # > 1. We have the orthogonal decomposition

L2(GY" =im(f1) @ im(f1) .

With respect to this decomposition we get for any bounded G-equivariant operator
g: L2(G)™ — L%(G)™ the decomposition

.= (g(lfl) g(l,?-))

We estimate for ¢+ > 1 using [27, Theorem 3.14 (1) and (2) on p. 128]

détN(G)@ _ dEtJV(G)(( Old 1(()1)) dety () (f[t])

pdim v Gy (im( /1))

- detMG)(( i 0) f[t])
("™ e

If ||( —(') id 0) ft]ll < 1 the claim is obviously true. Hence it remains to treat the
case [|(*71¢ 0) o f[r]]| > 1. Then we get

Lem. 3.1

dety ) (f[t])
(dimy(G) (im(f1))

-id 0 "
( 0 ) (ﬁ) +1- f])
_ 1,1 — 1,2
B l]r( ) 1](( ) " fl(l,l) | 1(1,2)
]((2 ,1) (2 2) 0 0
(1 l) (l 2) (1,1) f(l,2)
( )H H(w w) (% A7)
(1,1) (l 2) (1;1) (1,2) m
/0 ~f1 J1
(2 1) (2 2) 0 0
(1 1) f(l ,2) f(l 1) fo(laz) . . 1(1,1) 1(1,2) m
(2 1) (2 2) (2 1) 0(2,2) 0 0

;

= || Soll + 1l f1 ™.
This finishes the proof of Lemma 3.2. ]
For an element x = }_, . X¢ - g in CG define |x|; := ), [xg|. Givena

matrix A € M, ;(CG) define
lAly =r-s-max{lajkli |1 <j<r1<k<s} (3.1)
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The next theorem can be viewed as saying that, in the acyclic case, the degree of
the ¢-twisted L2-torsions gives lower bounds on the Thurston norm. This result is
thus an analogue of the classical fact, mentioned already in the introduction, that the
degree of the Alexander polynomial gives a lower bound on the knot genus [35].

Theorem 3.3 (Lower bound). Let M be an irreducible 3-manifold with infinite
fundamental group 7. Lets € Spin®(M). Thenforany ¢ € H'(M; Q) there exists a
constant D > 0 such that for any (Hy) r-factorizing homomorphism p: mi(M) — G,
for which (M, ) is L?-acyclic, we have

(P(c1(s)) + xar (@) - In(t) — D < pP (M, 5,0, 9)(t) fort <1
((c1(5)) — xpr (@) -In(t) — D < p® (M, 5510, 9)(t) fort = 1.

1
2

1

2

In [9, Theorem 1.5] we proved the analogous statement under the extra assumption
that p: (M) — G is a homomorphism to a virtually abelian group.

In the proof of Theorem 3.3 we will make use of the following elementary
lemma. Before we state the lemma, recall that a cohomology class in H'(X;Z) =
Hom(mry(X), Z) is primitive if the corresponding homomorphism 71 (X) — Z is
surjective.

Lemma 3.4. Let M be an irreducible 3-manifold with infinite fundamental group
and let 5 € Spin®(M). If the conclusion of Theorem 3.3 holds for all primitive
¢ € HY(M;Z), then it holds for all € H'(M; Q).

Proof. If ¢ is trivial, then clearly there is nothing to prove. Solet¢ € H'(M;Q) be
non-zero. We pick an r € Q¢ such that r¢ € H'(M; Z) is primitive. We denote
by D the constant of Theorem 3.3 corresponding to the primitive class r¢.

From Theorem 1.5 (4) and from (1.7) we get for any (H;)s-factorizing
homomorphism p: (M) — G, for which (M, ) is L?-acyclic, that

);

N

PP (M, 55 0,0) (1) = p@ (M, 511, r$)(t
xm(rg) =r-xu(p).

Combining these equalities with the elementary equalities

In (tfl) = %ln(t):
(rg)(c1(s)) =r-P(ci(s)),

it is straightforward to see that the desired inequalities also hold for & and ¢. [l

Proof of Theorem 3.3. By Lemma 3.4 it suffices to prove the statement for every
primitive ¢ € H'(M ;7). We start out with the following claim.
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Claim. Given a primitive ¢ € H'(M;Z) there exists an 5 € Spin®(M) such that
for any (H;) s-factorizing homomorphism p: 7 (M) — G, for which (M, p) is
L?-acyclic, the following inequalities hold

—D < p®(M,s5; 1, 9)(t) fort <1;
—xp (@) -In(@0) — D < p® (M, s; pu, ) (t) fort > 1.

In the following we abbreviate

plu.9) = pP (M, 5: 10, ¢).
We conclude by inspecting the proof of [9, Proposition 9.1 in Section 9.1] that there
exists:
(1) a Spin®-structure s,
(2) integers k,l,m with k,! > O and xp () =k — 1,
(3) anelement y € m with ¢(y) = 1, and
(4) amatrix A € Mgym k+m(ZK), where K = ker(¢),
such that for any () y-factorizing homomorphism w: 7 (M) — G, for which
(M, 1) is L?-acyclic, the following equality holds

o, p)(t) = —In (max{l,t}_l-detN(G)(AG(rM(A))—}-t-u(y)-isz(G)k 2] OLZ(G)m)).

This implies

—In (dety () (A% (ruy) + 1 - w(y) - id 2y ® 0p2Gym))

plp, Y1) = S
’ [-In(t) — In (dety Gy (A% (rucay) + 1 - () - idp2(gye @ O72¢Gym))
ifr > 1.
Define

D= (k+m)-In(2-(|All, + 1)).
Note that D depends on ¢ but not on p. We conclude from [28, Lemma 6.3] and
the monotonicity of In that
D = (k + m) . lll(2 s ”AG(I'M(A))” =+ || idLZ(G)k ©® OLZ(G)’”“)
> (k +m) - In(| A% (rpa)ll + llidp2(gy @ 0r2(Gyml)-
Therefore we conclude from Lemma 3.2, applied to the case fy = AG(r,u( 4)) and
fl = [,L()/) . isz(G)k &) OLZ(G)’”-’ that

D, t<1;

In (det AC(r t+1- id ®0 m)) =
(detw ) (A" (ruca) u(y)-idp2igy ® Op2(gym)) < k-In(t)+ D, t > t.
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This implies

—D < p(p,p)(t) fort <
—(k—=0)-In(t) — D < p(u,¢p)(t) fort > 1.

Since xpr(¢) = k — [, this implies the claim.

We now turn to the proof of the desired inequalities in the theorem. Using
Theorem 1.5 (2) and equality (1.1) one can easily see that if the desired inequalities
hold for one Spin®-structure of M, then they also hold for all other Spin©-structures
of M. Now let s € Spin®(M) be the Euler structure from the claim. Then:

—D < pD(M, s, 9)(t) fort <1;

—xp (@) -In(t) — D < pP (M, s; 1, 9)(t) fort > 1.

By Theorem 1.5 (5) we also know that

p(M, 5; 1, §)(t) = —¢(c1(5)) In(®) + p(M, 55 1, p)(171)

forall t € (0, o0). Combining this equality with the above inequalities we obtain that

($(c1(5)) + xar (@) - In(t) — D < pP (M, 5, ¢)(t) fort < 1
P(c1(s)) - In(t) — D < p@ (M, s; u, ¢)(t) fors > 1.

Adding the two inequalities for ¢ < 1 and dividing by two, and doing the same for
the inequalities for r > 1 gives us the desired inequalities

L(@(1(9) + xm (@) - In(t) — D < pP (M, 5: 1, ¢)(r) fort < 1;
Heer1(s) —xm(@) -In(t) — D < p®(M, 53, ¢)(t) fort>1. O

4. Upper bounds

Before we can provide upper bounds on the Thurston norm we will need to prove
one preliminary result. This lemma will ensure that some information which is only
available at 0 and oo leads to uniform estimates for all # > 0. This will be a key
ingredient when we want to apply approximation techniques.

Lemma4.1. Let ¢: G — 7Z be a non-trivial group homomorphism with finite kernel.
Let A € My, 1 (Z.G) be a matrix such that AC (r4): L2(G)Y™ — L*(G)™ is a weak
isomorphism. Then AC o ng+c,(ra): L2(G)Y™ — L*(G)™ is det-L>-acyclic for
anyt > 0. Put

p:(0,00) > R, > ln(detN(G)(AG o Ng+c, (ra))).
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Suppose that there are real numbers C and D and integers k and | such that
lir% p(t) —k -In(t) = C;
t—
lim p(¢) —1 -In(t) = D.
t—00

Then we get for all t > ()

k-1n(t) + C < p(t);
[-n(t) + D < p(t).

Proof. Choose an integer n > 1 and an epimorphism ¢’: G — Z such that ¢ =
n -idg o¢’. Then we get for the two functions p and p’ associated to ¢ and ¢’ from
Theorem 1.5 (4)

p'(t) = p(t").
Hence we can assume without loss of generality that p is surjective, otherwise
replace ¢ by ¢’.

Choose a group homomorphism s: Z — G with ¢ o s = id. Choose a map of
sets o:im(s)\G — G whose composition with the projection pr: G — im(s)\G is
the identity and whose composition with ¢: G — Z is the constant map with value
0 € Z. Let B € My, |ker(p)],m-| ker(¢)| (Z[Z]) be the matrix describing the restriction
of rqg: ZG™ — ZG™ with s, see [28, (6.40)]. Then a direct computation shows for
all t € (0, 00)

S*(AG 0 Ne*C; (}"A)) = AZ O N(pos)*C; (rB); LZ(Z)m-Iker(¢)| - LZ(Z)m'|ker(¢)|,
where s* denotes restriction with s. We get from [27, Theorem 3.14 (5) on p. 128]

In (detN(Z) (S* (AG O Ng*C, (rA))))
| ker(¢)]
Hence we can assume without loss of generality that G = Z and ¢ = idz, otherwise

replace ¢:G — Zby¢pos =id:Z — Z and A by B.
One easily checks that

ln(det,jv((;) (AG © Ne*C, (rA))) -

rdet(c[Z](T](Ct (rA)) = 77C; (rdet(c[z](A)): Lz(Z) - LZ(Z)

Because of [28, Lemma 6.25] we can without loss of generality assume that m = 1,
otherwise replace A by the (1, 1)-matrix given by detc(z)(A).

Let p(z) € C[Z] = CJz,z~"] be the only entry in the (1, 1)-matrix A. Since
A%(r,) is a weak isomorphism by assumption, p is non-trivial. We can write

p@) =) cn2"

R=nQ
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for integers ny and n; with ny < nj, complex numbers ¢, , Cho+1;---,Cny With
Cny 7 0and ¢, # 0. We can also write

p(z) =cp, - 2" 1_[(2 —aj)
i=1

for an integer s > 0, non-zero complex numbers ay, . .. ,a, and an integer r. We get
from [27, (3.23) on p. 136]

detw(zy(AZ(rp)) = len, |- ] lail.
i=1,...,8
la;|>1

For t € (0, 00) we get

=Y

Y
pt-z)=cn - () [Jz—ai) =" co 2" ] (z — %),

#=a i=1
and hence
Z :
detw@y(A*Cpa2) = - lem |- [T 8] =0 denl- [T
i=1,..., K} i=1,....8
la;/t|=1 la;|=t

This implies for ¢ € (0, 00)

p(t) = +9)-In@) +In(lea, )+ Y (In(lail) —In()). @1
i=1,...,s
la;|=¢

Define positive real numbers

To=minf{lay] | § = 1,250, 88

Toss :max{|ai| i = 1,2,...,s}.
Then we get

@) = reIn(t) +In(|ca, ) + iy In(lail) forz < To;
d (r +s)-In(t) +In (|Cn| |) fort > Too.

Since by assumption there are real numbers C and D and integers k and / such that
lim p(t) — k - In(z) = C;

t—0

lim p(¢) —/-In(z) = D,
t—00
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wemusthaver = k,r +s =1,C = In(|cp, |) + Yi_; In(Ja;|), and D = In(|cp, |).
Equation (4.1) becomes

p(t) =1-In(t) + D + Z (1n (ja;]) — In(®)).

Since (In(|a;|) —In(z)) > O for |a;| > t,we get! -In(t) + In(D) < p(¢) forall ¢ > 0.
We estimate forz > 0

k-In(t) + C

=k-In(t)+ D+ Y In(la])

i=1
=k-In@®)+D+ Y In(lal)+ Y In(lal)
=1 i=1,..,s
Iailzt lai | <t
=r-In@)+D+s-n@)+ Y (In(la;])—=n@®)+ > (In(lai]) —In())
Tails Tl <
=0-In@)+D+ Y (In(la])—In@)+ > (In(ja:]) —In@))
=158 i=lgsuss8
la;|>t la; |<t
</l-In(t) + D + Z ln (lail) — In(r)) = p(2).
il
This finishes the proof of Lemma 4.1. ]

Definition 4.2 (Fibered classes). Let M be a 3-manifold and consider an element

¢ € H'(M; Q) = Hom(mr, (M), Q). We say that ¢ is fibered if there exists a locally

trivial fiber bundle p: M — S! and a k € @, k > 0 such that the induced map
pe:mi(M) — m(S') = Z coincides with k - ¢.

Theorem 4.3. Let M # S x D? be an irreducible 3-manifold. Then the following

two statements hold:

(1) If M is fibered, then for any (H,) ¢-factorizing homomorphism pu: ty (M) — G
to a residually finite group the pair (M, i) is L*-acyclic.

2) If ¢ € H' (M ;7Z) = Hom(rwr (M), Z) is a primitive fibered class, then there
exists a T > 1 such that for any s € Spin®(M) and for any (H\) s-factorizing
homomorphism pu:my(M) — G to a residually finite group the following
equalities hold

PP (M, 5; 1, $)(1) = 3(¢(c1(8)) + xpr($)) - In(t) fort <
PP (M, 55 1. 9)(1) = ($(c1(5)) — xm($)) - In(t)  fort > T.

In fact one can choose T to be the entropy of the monodromy.
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Proof. The first statement follows from [25, Theorem 2.1]. Now we denote by T the
entropy of the monodromy of the primitive fibered class ¢». By Theorem 8.5 of [9]
there exists an s € Spin®(M) such that

0=p@(M,s;u,9)(t) fort < ;
—xp (@) -In(t) = p@P (M, s; 0, )(2) fort > T.

The statement of the theorem follows from these inequalities in precisely the same
way as we concluded the proof of Theorem 3.3. L]

The next lemma improves on Theorem 4.3 in so far as it gives us some control
over p (M, s; 11, ¢) for all ¢. In particular the set of #’s for which we have control
does not depend on the choice of fibered ¢.

Lemmad4.4. Let (M, u: (M) — G) be an admissible pair and let s € Spin®(M).
Then for any fibered ¢ € H'(M ; Q) we have

PP (M, 510, )(1) < 5((c1() + xm(@)) - In(r) fort < 1;
PP (M, 5310, 9)(1) < 5(p(c1(8) —xm(9) - In(t)  fort = 1.

Proof. Let (M, pu:m(M) — G) be an admissible pair. By Theorem 4.3 the pair
(M, 1) is L2-acyclic. Let s € Spin®(M). The argument of the proof of Lemma 3.4
shows that it suffices to prove the lemma for primitive fibered classes. So let
¢ € HY(M:;Z) = Hom(mr(M), Z) be a primitive fibered class.

Consider a nested sequence of normal subgroups of G:

G2G 2612622+

such that G; is contained inker(G — H,(G; Z) r), the index [ker(G — H{(G;Z) 5) :
G;] is finite for i > 0 and the intersection [ );., G; is trivial. Put Q; = G/G;.
Denote by pr;: G — Q; the obvious projection. Let u;:m(M) — Q; be the
composition pr; op. The homomorphisms p; are again (Hy) r-factorizing.

In the following we consider only the case where M is closed, the case with
boundary is analogous. We apply Theorem 2.1 (2) to M. We denote the resulting
square matrix over Zm by A and the resulting elements in the group 7 by s,s’. We
write A; = pr;(A). Define

n(t) = max {0, |¢ (s)| - In(t)} + max {0, |¢(s")| - In(r)}.
As above, the pair (M, p;) is L?-acyclic. Our choice of 4 and s, s” ensures that

pP (M. 511, ¢) = n(t) — In(dety () (A 0 ngrc, (r4))):
PP (M, 5; i, ) = 1(t) — In(detwg;) (A% 0 ngec, (r4,)))-
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We conclude from Theorem 1.7

In(det Gy (A o ng+c, (ra))) = limsupIn(dety(g;) (A% 0 ng=c,(ra;))). (42)

i—>00
By Theorem 4.3 there exists a 7" > 1 such that for any natural number i we have

PP (M. 53 11, 9)(1) = 5(d(c1(5) + xae (@) - In(r) fort < 7

PP M. 5 i, $)(1) = 3(¢(c1(8) — xpr()) - In(r) fors >T.
This implies
In(dety(g;) (A% 0 ngrc,(r4,))) = n(t) — 5(#(c1(s)) + xar(¢)) - In(t) forz <
In(detw(g,) (A% 0 ngc,(ra;))) = n(t) — 3(¢(c1(s)) — xpr(@)) - In(t) fore > T.
Then Lemma 4.1 applied to ¢: Q; — Z yields
In(detw(g;) (A 0 ngre, (r4,))) = n(1) — 3(¢(c1(8)) + xp (@) - In(r) forz < 1;
In(detw(g,) (A% o ngc, (ra;))) = n(®) — 3(#(c1(5)) — xpm(¢)) - In(r)  forz = 1.
Since this holds for all i > 0 and all t > 0, we conclude from (4.2)

In(dety Gy (A 0 ng=c, (ra))) = n(t) — 3(p(c1(8)) + xpm($)) - In(r) fort < 1;
In(detw ) (A% o ngxc, (ra))) = n(t) — 5(#(c1(s)) — xp(¢)) - In(r) forz = 1.

This implies
PP (M, 5; 11, ¢) < 2(#(c1(5)) + xm ($)) - In(r) fors < I;
PP (M, 5;10,9) < 3(¢(c1(8) —xm($) - In(r) forr = 1. O

Lemma 4.5. Let I" be a group that is virtually finitely generated free abelian.
Consider a finite subset S C I'. Then for any natural number n the function

{4 € My ,(CT) | suppp(A) € S} — [0, 0],

det v () (AF (r A)) if AU (r4) is a weak isomorphism;

otherwise,

is continuous with respect to the standard topology on the source coming from the
structure of a finite-dimensional complex vector space.

Proof. Let i:7Z% — T be an inclusion whose image has finite index in T'. Fix a
map of sets o:im(i)\I' — ' whose composition with the projection I' — im(i)\I"
is the identity. Put m = [I" : im(i)]. With this choice the finitely generated free
C[Z%]-module i *CT obtained from CT by restriction with i inherits a preferred
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C[Z%]-basis. Hence there is a finite subset 7 € Z¢ and a C-linear (and hence
continuous) map

i*:{A € My ,(CT) | suppp(4) € S}
— {B € Munmn(C[Z?]) | suppza (B) € T}

such that i* AT (r4) = AZY (ri*4). Since

detN(Zd)(i*AF(rA)) = m - detyqy(ra)

holds for any A € M,, ,(CI") by [27, Theorem 3.14 (5) on p. 128], it suffices to prove
the claim in the special case I' = Z¢.

As detegay: Mpn(C [Z4]) — My 1(C[Z4]) is continuous and since for every
AeM,, (CZ%) with suppa (A) C S we have

Suppzd (detC[Zd]) c s"

for S* ={g1-g2- - -gn | g € S}, we conclude from [28, Lemma 6.25] that it
suffices to treat the case n = 1. Since the Mahler measure of a non-trivial element
p € C[Z9] is equal to

detC[Zd](AZd (rp): Lz(Zd) — Lz(Zd))

and defined to be zero for p = 0, Lemma 4.5 follows from a continuity theorem for
Mabhler measures proved by Boyd [4, p. 127]. []

Definition 4.6 (Quasi-fibered classes). Let N be a 3-manifold. We call an element
¢ € HY(N;R) quasi-fibered, if there exists a sequence of fibered elements ¢, €
H'(N;Q) converging to ¢ in H1(N;R).

Notice that obviously any fibered ¢ is non-trivial. The next theorem generalizes
the inequalities of Lemma 4.4 for fibered classes to quasi-fibered classes. This
theorem can be viewed as the key technical result of this paper.

Theorem 4.7 (Upper bound in the quasi-fibered case). Let (M, i) be an admissible
pair, s € Spin®(M) and let ¢ € H' (M ;R) be a quasi-fibered class. Then

PP (M, 51, 8)(1) < 3(#(c1(5) + xm(@)) - In(t) fort < 1;

PP (M, 5: 10, 9) (1) < 5(d(c1(5) —xp(9)) -In(t)  fore = 1.
Proof. We only treat the case, where dM is empty, the other case is completely

analogous: in the proof below one needs to replace Theorem 2.1 (2) by Theorem 2.1
(1). We write 7 = 1 (M) and we pick s € Spin®(M).
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First recall that our assumption that u:7 — G is (H;) s-factorizing implies
that the projection = — H,(M) s factors through u and amap v:G — H(M) .
Since G is residually finite we can choose a sequence of normal subgroups of G

G2G2612622--

such that G; is contained in ker(v: G — H{(M)s), the index [ker(v) : G;] is finite
for i > 0 and the intersection {);., G; is trivial. Put Q; := G/G;. Denote by
wi: — Q; the composition of the projection pr;: G — Q; with u. Note that y; is
again a (H) r-factorizing homomorphism. Recall that this implies in particular that
we can make the identifications

HY(M;R) = Hom(H,(r) s,R) = Hom(rr,R) = Hom(G,R) = Hom(G;, R).

We apply Theorem 2.1 (2) to M and s. We denote the resulting square matrix
over Zm by A and the resulting elements in 7 by s,s’. For each i € N we write
A; = pr;(A). Define for any homomorphism yr: Hy(M) s — R

E(Y)(1) = max {0, (|y ov o pu(s)]| + [ o v opu(s)]) - In()}.
We start out with the following claim.
Claim. For eachi € N we have the inequalities
PP (M. 51 i, ) (1) < 5(¢(c1(8)) + xpr(¢)) - In(r) fors < 1;
o@D (M, 5 i, 1) (1) < 2(p(e1(5) — xpr(9)) - In(r) for = 1.

Leti € N. Since ¢ € H'(M;R) is quasi-fibered there exists a sequence of
fibered elements ¢, € H'(M; Q) converging to ¢. By Lemma 4.4 we know that for
each i and n we have

pP(M, s i, bn)(t) < L(pn(c1(s)) + xaa(pn)) - In() fore <1;  (4.3)
pP(M, s 1ti, bn) (1) < 2(Pn(c1(s)) — xar(fn)) - In(e) fore >1. (4.4

By Theorem 2.1 (2) we have

PP (M, 55 i, n) (1) = E(pn)(t) — In(detw (o) (A 0 ngrc, (ra,)));  (4.5)
PP (M, 55 i, $) (1) = E(@) (1) — In(dety(o,) (AD 0 nprc, (ra,))).  (4.6)

Since ¢, converges to ¢ and the kernel of the projection map Q; — H{(M) s is
finite, we get from Lemma 4.5 that

lim_In(detw(g,)(A®" 0 ngzc, (r4;))) = In(dety (g, (A 0 ngec, (r4;)))-
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This equality, together with Equations (4.5) and (4.6) and the observation that for any
t € (0, 00) the equality lim, 0 £(¢,) (1) = E(¢p)(?) holds, implies that

P (M, s; i, d)(t) = lim p@ (M, 53 i, ) (1) forallt € (0,00).
n o0

The desired inequalities for p® (M, s; i, ¢)(¢) now follow from (4.3) and (4.4).
This concludes the proof of the claim.
Now the theorem follows from the claim we just proved and the following claim.

Claim. For each ¢t € (0, oo) we have
P (M, 5, 1, ¢)(1) < liminf p2 (M. 5, i, ¢i)(0).

This claim is proved as follows. By Theorem 4.3 we know that the pairs (M, ®)
and (M, ;) are L?-acyclic. By Theorem 2.1 (2) we have

PP (M, 5,10, 9)(t) = E(@)(t) — In(dety () (AT o ngrc, (ra))).  (&7)

Recall that the kernel of Q; — H{(M) is finite und that Q; — H;(M)y is
surjective. Now we apply Theorem 1.7 to ¢: G — R. For all t € (0, co) we obtain

In(detdv((;)(AG o Ng*C, (rA))) > lim supln(detN(Qi)(/\Q" o Ngxc, (rAt.))).

i—00

Now apply (4.6) and (4.7). This finishes the proof of Theorem 4.7. L]

For convenience we also state the result which follows from combining
Theorem 3.3 with Theorem 4.7.

Theorem 4.8 (Lower and upper bounds combined in the quasi-fibered case). Let
M # S' x D? be an irreducible 3-manifold with infinite fundamental group .
Letp € HY(M;Q) be a quasi-fibered class.

Then there exists a D € R such that for any s € Spin®(M) and any (Hy) r-
factorizing homomorphism p:mw1(M) — G, where G is residually finite and
countable, the pair (M, i) is L?-acyclic and such that fort < 1

He(c1(s)) + xp (@) Int — D < pD (M, 53, ) (1) < 2(p(c1(5)) + xpr () Int
and such that for t > 1

L(@(c1(s)) — xm(@)) Int — D < p@ (M, 55, §)(t) < 2(p(c1(s)) — xpr (@) Int.

In particular we get

deg(p(M,s; ., 9)) = —xm ().
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5. Proof of the main theorem

The following is the main theorem of this paper.

Theorem 5.1 (Main theorem). Let M be an irreducible 3-manifold with infinite
fundamental group w which is not a closed graph manifold and not homeomorphic
to S' x D?. Let s € Spin®(M) and write &1 = 71 (M).

Then there exists a (H) g-factorizing epimorphism a:m — T to a virtually
finitely generated free abelian group such that the following holds: For any
¢ € H'(M;Q) and any factorization of a:mw — U into group homomorphisms
PR for a residually finite countable group G, there exists a real number D
depending only on ¢ but not on . such that fort <1

L(@(c1(s) + xp (@) Int — D < p@P (M, 510, 9)(1) < 2(#(c1(5)) + xp(¢)) Int

and such that for t > 1

3 (¢e1(s) —xm (@) Int — D < p@ (M, 5511, ) () < 5(p(c1(5)) — xp () Int.
In particular we get
deg(p(M. s; 1, §)) = —xpm ().

Proof. As explained in [9, Section 10], we conclude from combining [1, 2, 22,32,
33,42,43] that there exists a finite regular covering p: N — M such that for any
¢ € H'(M;R) its pullback p*¢ € H'(N;R) is quasi-fibered. Let k be the number
of sheets of p. Let pry:mw1(N) — H{(N) s and prp;: m((M) — H(M) s be the
canonical projections. The kernel of pry; is a characteristic subgroup of 7 (N). The
regular finite covering p induces an injection

m1(p): w1 (N) — (M)

such that the image of m1(p) is a normal subgroup of 7;(M) of finite index.
Let I' be the quotient of my (M) by the normal subgroup m;(p)(ker(pry)). Let
a:mwy (M) — T be the projection. Since H(p;Z) s o pry = pryomi(p) we
know that 7y (p)(ker(pry)) is contained in the kernel of the canonical projection
pra:mi(M) — Hy(M) y. This implies that o: 7wy (M) — T is (H) s-factorizing,
which means in particular that there exists precisely one epimorphism

,BJF —> Hl(M)f

satisfying pry, = B o a. Moreover, o o 71 (p) factorizes over pry into an injective
homomorphism j: H{(N) ¢y — I" with finite cokernel. Hence I" is virtually finitely
generated free abelian.

Consider any factorization of the homomorphism «:m7;(M) — I into group
homomorphisms

nMm LS cSr

with residually finite countable G.
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Let G’ be the quotient of 771 (N) by the normal subgroup 71 (p)~ ! (ker(w)) and
w':mi(N) — G’ be the projection. Since the kernels of u’ and of w o w1(p)
agree, there is precisely one injective group homomorphism i: G’ — G satisfying
pom(p) =1iou'. The kernel of ' is contained in the kernel of pry: 7 (N) —
H{(N) s since j is injective and we have j o pry = voi o u’. Hence there is
precisely one group homomorphism

VG — H{(N)y

satisfying v' o u’ = pry. In particular ' is a (H;) -factorizing homomorphism.
One easily checks that the following diagram commutes, and all vertical arrows are
injective, the indices [71(N) : im(y(p)] and [I" : H{(N) ] are finite, and p/, v/’
and B are surjective:

Pry

[

R
1 (N) =2 6" L Hi(N);

[m(p) ‘i \j wf
m(M)l)F p y Hi(M) s
\_//

Since G is residually finite and countable, the group G’ is residually finite and
countable.

Now let s € Spin®(M) and let ¢ € H'(M; Q) = Hom(H1(M) s; Q). We write
s' = p*(s) and ¢’ = p*(¢p). Furthermore we put ¢ = cy(s) and ¢’ = ¢ (s).
Since ¢’ € HY(N;Q) = Hom(H;(N)s;Q) is quasi-fibered we can appeal to
Theorem 4.8. In our context it says that (N, i') is L?-acyclic and that there exists a
real number D’ depending only on ¢’ but not on w’ such that for ¢ < 1

H@'() +xn (@) Int — D' < pP(N, s 1/, ¢') (1) < 2(¢'(c) + xn(¢)) Int
and such that forz > 1
Hp' ) —xn (@) Int — D' < PP (N, s i, d") () < 2(¢'(c) — xn (¢")) Inc.

We now set D = %D’ . The theorem now follows from these inequalities and the
following equalities

xm (@) = gxn(9")
PP M. 53, ¢)(1) = £pP (N, 1/, ¢")(2) forall z
p(c1(s)) = 1¢'(c1(5)).

Here the first equality is (1.8) and the second one Theorem 1.5 (3). The third one
follows easily from the definitions. L]
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Remark 5.2 (Graph manifolds). The proof of Theorem 4.8 does not cover closed
graph manifolds. However, for a graph manifold M together witha (H) ¢-factorizing
homomorphism p: (M) — G, for which (M, u) is L?-acyclic, together with a
class ¢ € H'(M;R) the L2-torsion function p@® (M 11, ¢)(t) has been computed
explicitly in [9, Theorem 8.2] and in [18] to be equivalent to min{0, —x s (¢) - In(#)},
provided that the image of the regular fiber under w is an element of infinite order
and M is neither S' x D? nor S x S2. This implies

deg(pP(M; p, §)) = —xar(9).

Remark 5.3 (The role of I'). In Theorem 5.1 the group I' is in some sense optimal.
Namely, one cannot expect I' = H{(M)ys and B = idr in Theorem 5.1. For
instance, let K C S be a non-trivial knot. Take M to be the 3-manifold given by the
complement of an open tubular neighborhood of the knot. Then deg(p(M; w, ¢))

for w:m(M) — Hy;(M) s the canonical projection and ¢: H;(M) s 5 Z an
isomorphism is just the degree of the Alexander polynomial of the knot K which is
not the Thurston norm xs(¢) in general, see [9, Section 7.3].

Example 5.4 (S! x D? and S' x $2). Consider a homomorphism
¢ H (S'x D) S 7.

Let k be the index [Z : im(¢)] if ¢ is non-trivial, and let k = 0 if ¢ is trivial. Then
we conclude from Theorem 1.5 (4), (1.9), and [28, Theorem 7.10]

Xsixp2(P) = 0;
deg (p(S' x D*;¢)) = k.
Hence we have to exclude S' x D? in Theorem 5.1. Analogously we get

Xsixs2(¢) = 0;
deg (p(S' x S%:¢)) =2 -k,

so that we cannot replace “irreducible” by “prime” in Theorem 5.1.

We conclude the paper with the proof of Theorem 0.1.

Proof of Theorem 0.1. Let M be an irreducible 3-manifold with infinite fundamental
group. If M is a graph manifold, then the statement is proved in Remark 5.2. Now
suppose that M is not a graph manifold. In this case the theorem follows from
Theorem 5.1, applied in the special case G = m1(M), p = idy,(m), and v = «.
Here we use the fact, mentioned in the proof of Lemma 1.4, that fundamental groups
of 3-manifolds are residually finite. L]
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