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The L 2-torsion function and the Thurston norm of 3-manifolds

Stefan Friedl and Wolfgang Liick

Abstract. Let M be an oriented irreducible 3-manifold with infinite fundamental group and

empty or toroidal boundary which is not S'xö2. Consider any element cp in the first cohomology
of M with integer coefficients. Then one can define the ^-twisted L2-torsion function of the

universal covering which is a function from the set of positive real numbers to the set of real

numbers. By earlier work of the second author and Schick the evaluation at t 1 determines
the volume.

In this paper we show that the degree of the L2-torsion function, which is a number extracted
from its asymptotic behavior at 0 and at oo, agrees with the Thurston norm of <p.

Mathematics Subject Classification (2010). 57M27, 57Q10, 58J52, 22D25.

Keywords. L2-Betti numbers, L2-torsion, twisting with finite-dimensional representations,
Thurston norm.

0. Introduction

Reidemeister torsion is one of the first invariants in algebraic topology which are able

to distinguish the homeomorphism type of closed manifolds which are homotopy
equivalent. A prominent example is the complete classification of lens spaces, see for
instance [6], The Alexander polynomial, which is one of the basic invariants for knots
and 3-manifolds, can be interpreted as Reidemeister torsion, see for instance [31 J. The
Reidemeister torsion of a 3-manifold can be generalized in two ways. Either one can

twist it with an element in the first cohomology which leads for example to the twisted
Alexander polynomial, see for instance 114], or one can consider the /.2-version

of appropriate coverings resulting in L2-torsion invariants, see for instance [27,

Chapter 3]. Recently there have been attempts to combine these two generalizations
and consider twisted L2-versions. Such generalizations have been considered under
the name of L2-Alexander torsion or L2-Alexander Conway invariants for knots or
3-manifolds, for instance in [7-11,19-21].

In all of these papers one has to make certain assumptions to ensure that the

twisted L2-versions are well-defined. They concern L2-acyclicity and determinant
class. Either these conditions were just assumed to hold, or verified in special cases
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by a direct computation. A systematic study of these twisted //-invariants under the

name L2-torsion function has been carried out in 1281. We summarize some of the

results of [28] for 3-manifolds. Let M be a 3-manifold. (Here and throughout the

paper we assume that all 3-manifolds are compact, connected and oriented with empty
or toroidal boundary, unless we say explicitly otherwise.) If M is irreducible and if
it has infinite fundamental group, then it was shown in [281 that all these necessary
conditions are satisfied for the universal covering M and an element (p £ H1 (M; Z).
The upshot is that we obtain an invariant that is an equivalence class of functions

p^2\M; (j>): (0, oo) -» M

where we call two functions fg:(0, oo) —> M equivalent if for some integer m

we have /(f) — g(t) m • ln(f). We recall the definition in Section 1.3. Note

though that this invariant is minus the logarithm of the function defined and studied

in the aforementioned papers. In those papers the corresponding function was usually
referred to as the //-Alexander torsion. The convention of this paper brings us in
line with [271. We refer to Section 1.4 and to (1.6) for a short discussion which
relates the //-torsion function p®(M;/) to the //-Alexander torsion /2)(A/, /)
of the aforementioned papers.

The evaluation of p® (M; <p) at t 1 is well-defined and by definition it equals
the "usual" //-torsion p^2\M) of M. It was shown by the second author and

Schick [ 29, Theorem 0.7] that for any irreducible 3-manifold we have

p^2\M ; <p)(t 1) p{2\M) -£vol(M),

where vol(M) equals the sum of the volumes of the hyperbolic pieces in the JSJ-

decomposition of M.
In the sequence of papers [9], [7], [8] and [28] the behavior of p^(M; cp) as t

"goes to the extremes," i.e. as t -> 0 and t —> oo, was studied. In particular in [281 it

was shown that for any representative p there exist constants C > 0 and D > 0 such

that we get for 0 < t < 1

C In/) — D < p(t) < —C • ln(f) + D,

and for t > 1

-C In/) — D < p{t) < C • ln(t) + D.

Hence lim sup(^0 and lim inf^oo exist and we can define the degree of

p(2\M; /) to be

deg(p^2\M: (p)) : lim sup
^ ^

— lim inf ^ \v ,Vln(0 ln(r)

It is obviously independent of the choice of the representative p.
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Thurston |37| assigned to f e Hl(M; Z) H2(M, 3M; Z) another invariant,
its Thurston norm xm ((/>), which measures the minimal complexity of a surface dual

to (f>. We we will review the precise definition of the Thurston norm in Subsection 1.7.

The main result of our paper says that the functions p^ (M ; <p) not only determine
the volume of a 3-manifold but that they also determine the Thurston norm. More
precisely, we have the following theorem.

Theorem 0.1. Let M he an irreducible 3-manifold with infinite fundamental group
and empty or toroidal boundary which is not homeomorphic to S1 x D2. Then we

getfor any element (p H1 (M ; Q) that

deg (p(2)(M;0)) -xM(4>)-

Actually we get a much more general result, where we can consider not only the

universal covering but appropriate G-coverings G -> M -> M and get estimates for
the L2-function for all times t e (0, oo) which imply the equality of the degree and

the Thurston norm, see Theorem 5.1.

The equality in Theorem 0.1 had been proved initially by Dubois-Wegner [ 10,11 ]

for the exteriors of torus knots. This result of Dubois-Wegner was later generalized
by Ben Aribi [3] and Herrmann [ 18] to Seifert fibered spaces and graph manifolds.
Furthermore the equality in the theorem was shown by Dubois and the authors to hold
for fibered 3-manifolds [9, Theorem 1.3]. It is a well-established feature of "Alexander

type" invariants, e.g. (twisted) Alexander polynomials or non-commutative Alexander
polynomials, that their degrees give lower bounds on the knot genus or the Thurston

norm. We refer to [5, 13,16,30,35,40], and [8] for details. Even though it is

technically non-trivial to show the "<"-inequality in the theorem, it is not entirely
surprising. What is much more striking, in our opinion, is that we can in fact prove
that the equality holds.

In the following we quickly summarize the key ideas behind the proofs of
Theorem 0.1. First note, that if the underlying group G is Z, the Fulgede-Kadison
determinant agrees with the Mahler measure and the behaviour of the Mahler measure
is well understood if one varies the coefficients of an element in the group ring,
which is in this case essentially a polynomial in one variable p(z). In particular the

asymptotic of the Mahler measure of p(tz) for t -x 0+ and t -* oo is completely
known. Using limit formulas for Mahler measures one can extend this to the case
G Z", or equivalently, to polynomials in several variables. Now approximation
techniques allow to estimate the Fuglede-Kadison determinant and its asymptotic
behaviour for t -x 0+ and t —» oo of an element in the group ring by looking at a

sequence of epimorphisms from G to finitely generated free abelian groups, whose
kernels become smaller and smaller. The Virtual Fibering Theorem of Agol [1,2],
Wise [43] and Przytycki-Wise [32] is used to reduce the general case by a delicate

continuity arguments to the case of a mapping torus, where the L2-torsion function
can be computed explicitly. The main technical difficulty is that the Fuglede-Kadison
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determinant is in general not continuous in the coefficients of an element in the group
ring and is a much more sophisticated invariant than the Murray-von Neumann
dimension.

Added in proof. Liu [23] has given, almost simultaneously, a completely independent
proof of Theorem 0.1. The techniques used in both papers are at times somewhat
similar. Liu [23] goes on to prove several other very interesting results that are not
covered in this paper. In particular he proves Theorem 0.1 also for real classes and
shows the continuity of the L2-torsion function.

Conventions and notations. Given a group G we view elements in (ZG)k always
as row vectors. Given a group G and an m x «-matrix over ZG we denote by the

homomorphism (ZG)'" -> (ZG)" given by right multiplication by A. Furthermore,
given a group homomorphism y.G^H we denote by y (A) the matrix over Z H
given by applying y to all entries. Throughout the paper we assume that all 3-

manifolds are compact, connected and oriented, unless we say explicitly otherwise.
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1. Review of the 0-twisted i2-torsion function and the Thurston norm

In this section we recall some basic definitions, notions and results from [7,9,28].

1.1. L2-Betti numbers, Fuglede-Kadison determinants and L 2-torsion. Unfortunately

it would take up too much space to recall the definitions of all the L2-invariants
that we use in this paper. Therefore we refer to [27] for the precise definitions. In
this section we only quickly recall the notation and the basic setup for L2-invariants
from [27].

(1) Given a group G we denote by Af{G the group von Neumann algebra as defined
in [27, Definition 1.1 on p. 15].

(2) We refer to [27, Definition 1.5 on p. 16] for the definition of a Hilbert ,N(G)-
module and for the definition of a morphism between Hilbert ,M (G)-modules. As an

example, if G is a group and if F is a based free left C G-module, then L2(G) <8>CG V
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is naturally a Hilbert W(G)-module. Furthermore, if / : V -» W isahomomorphism
between based free left CG-module, then id <g>/: L2(G) ®cg F L2(G) <S>cg W
is a morphism of Hilbert W(G)-modules.

(3) We refer to [27, Debnition 1.10 on p. 21] for the debnition of the von Neumann

dimension dim^e^F) of a Hilbert W(G)-module F.

(4) Given a Hilbert W(G)-chain complex (C*, c*) we refer to

bp(C*) := dim^(G) (ker(cp)/im(c^+i))

as the p-th L2-Betti number of the chain complex. We refer to [27, Debnition 1.15

on p. 24] for details.

(5) Given a bnite CW-complex X together with a G-covering X we view C*(X, C)
as chain complex of based free left CG-modules, where a basis is given by lifts of
the cells from X to X. We denote by

b<f\X- W(G)) b^(L2(G) ®cg C*(X,C))

the corresponding L2-Betti number. This debnition can also be generalized to any
topological space, see [27, Debnition 6.50 on p. 263] for details.

(6) Let /: U -» F be a morphism of bnite dimensional Hilbert W(G)-modules.
The debnition of / being of determinant class is given in [27, Debnition 3.11

on p. 140]. If / is of determinant class, then op. cit. gives the debnition of the

corresponding Fuglede-Kadison determinant detj^(G)(/) (0, oo). The Fuglede-
Kadison determinant shares many properties of the usual determinant, but at times

it behaves strikingly different. For example the Fuglede-Kadison determinant for

every zero morphism, regardless of U and V, equals 1 (see [27, p. 127]).

(7) A Hilbert W(G)-chain complex C* is called L2-acyclic if its L2-Betti numbers

are zero. It is called det-L2-acyclic if C* is /.2-acyclic and if all the boundary maps

cp\ Cp —r Cp-\ are of determinant class. If C* is det-L2-acyclic we debne its
L2-torsion by

p(2)(C*) := - ^(-lK • In (dehvtoM)-

The following proposition gives a convenient criterion for a matrix to be of
determinant class. It is a consequence of [34, Theorem 1.21], see also [27, Chapter 13]

or [12, Theorem 5].

Proposition 1.1. Let G be a group and let A be an m x n-matrix over ZG. If G is

residually finite, then the morphism L2(G)m -» L2(G)n of W(G)-modules defined
by right multiplication by A is ofdeterminant class.
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1.2. Euler structures and Spin6-structures. Let X be a finite CW complex and let

p: X -> X be the universal covering of X. Following Turaev j 38 40], we define a

fundamental family of cells to be a choice for each open cell in X of precisely one

open cell in X which projects to the given cell in X.
We write n n\{X) and we denote by if: jt —> H\(jt\Z) H\(X\Z) the

abelianization map. Now let {e, },<=/ and be two fundamental families of
cells. After reordering them we can arrange that for each i e I we have c, g,-e,-

for some gi e Jt. We say that two fundamental families of cells are equivalent if

£(-l)dim(e<VG6) 0.

iel
The set of equivalence classes of fundamental families of cells on X is called the set

Hul(A of Euler structures on X. Note that the set of Euler structures on X admits
a free and transitive action by H\ (X;Z).

We recall some basic facts regarding Spinc-structures on 3-manifolds, with empty
or toroidal boundary. We refer to [40, Chapter XI] for a detailed discussion. Given
a 3-manifbld M we denote by Spin6 (AT) the set of Spin6-structures on M. The
set Spin6 (A/) comes with a canonical free and transitive action by H\ (M ; Z). Given

s e Spin6(A7) we denote by ci(s) G H2(M, 3M; Z) H\{M\Z) its Chern class.

The Chern class has the property that for each s e Spin6' (M) and h e H\ (M ; Z) the

following equality holds

ci(/is) 2h + ci(s). (1.1)

In [40,411 Turaev shows that given any CW-structure X for M there exists a

canonical H\(M\Z) H\{X\Z)-equivariant bijection Spin6(M) -> Eul(X).

1.3. (L 2-acyclic) admissible pairs and the </>-twisted L 2-torsion function. In [7,9]
the authors and Dubois introduced the ^-twisted L2-torsion function of a 3-manifbld.
This definition was later generalized and analyzed in [28, Section 7] for G-coverings
of compact connected manifolds in all dimensions.

We start out with the following definitions.

Definition 1.2. (1) In the following, given any abelian group A we write

Af := A/tors(A).

(2) We say that a group homomorphism /i :tt ^ G is H\ f-factorizing, if the

projection map n If(n\ Iff factors through p

(3) An admissible pair (M, ff) consists of an irreducible 3-manifold M f .S'1 x D2

with infinite fundamental group and a (Hi)/-factorizing group homomorphism

ft: jt\ (M) —> G to a residually finite countable group G. Denote by M M
the G-covering associated to p.. We say that (A/, p) is L2-acyclic if the n-th
L2-Betti number 6®(M; N(G)) vanishes for every n > 0.
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Many of the subsequent results will hold in more general situations, e.g., it is not

always necessary to assume that G is residually finite or that p is H\ )/-factorizing.
Nonetheless, in an attempt to keep the paper readable we will not state all the results

in the maximal generality.

Convention 1.3. If p: it -> G is a (Hi)/-factorizing epimorphism, then we can and

will identify Ilorrfijr. R) with Hom(G, R). Furthermore, given any space X we make

the usual identifications H1(X; R) Hom(//i(X;Z),R) Hom(jri(A), R). In
particular, if (M, p: it\ (M) -> G) is an admissible pair, such that the cokernel of p
is finite, then any (f> e H1 (M ; R) induces a unique homomorphism G -> R that, by
a slight abuse of notation, we also denote by <p.

Lemma 1.4. IfM ^ S1 x D2 is an irreducible 3-manifold with infinite fundamental

group, then (M, id^, (m)) is an Lz-acyclic admissible pair.

Proof. Let M f V x I)2 be an irreducible 3-manifold with infinite fundamental

group. It is a well-known consequence of the Geometrization Theorem proved by
Perelman, that n\(M) is residually finite. We refer to [36, Theorem 3.3] and [17,
Theorem 1.1] for details. (Note that Hempel writes "Haken manifold", but in the

proof Hempel only uses the fact that Haken manifolds were known to satisfy the

Geometrization Conjecture.) Furthermore, it is a consequence of the Geometrization
Theorem and [24, Theorem 0.1] that M is L2-acyclic.

Now consider an L2-acyclic admissible pair (M\ p'.iti(M) -> G) with Spinc-
structures G Spinc(M). Let f G H1 (M: Q). WepickaCW-structureforM, which

by abuse of notation we denote again by M. We denote by M the universal cover
of M and we write it it\ (M). We pick a fundamental family of cells in M that

corresponds to s.
This fundamental family of cells turns C*(M) into a chain complex of based

free Zn-\eft modules. (The basis is now unique up to permutation and multiplying
each element with ±1 which will not affect the Hilbert space structure and hence

the ^-twisted L2-torsion function below.) We view ZG as a right Zjr-module via
the homomorphism p.. We obtain the chain complex Z G Cbzn C* M of based free
Z G-left modules.

Now let t G (0, oo). We denote by f>*Ct the based 1-dimensional complex
G-representation whose underlying complex vector space is C and on which g G G

acts by multiplication with tf'^'f Let /: CG ^ CG be a CG-left linear map that is

given by right multiplication with an element J2geG '#• We define the e/LC, -twist
of f as the C G-left linear map C G —» C G that is given by right multiplication with
the element J2geG Similarly we can twist left linear maps CGm - > CG"
and the maps in the chain complex C G Czn C*(M). Thus twisting C G Oy/.j, G* (M)
with <p*Ct yields a finite free CG-chain complex ri^*ct(CG C*(M)) with a

CG-basis. (A more formal definition is to say, that given a CG-left module V we
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define (V) := (p*Ct <8>c V where G acts diagonally on both terms. This point
of view extends to chain complexes in an obvious way.)

Given a CG -left linear map A:CGm^CG",we obtain by applying L2 (G (g)c g —
>

a morphism A G (.A) of finitely generated Hilbert M (G)-modules L2(G)m -» L2(G)n.
Thus we obtain from ^*c,(CG C*(M)) by applying L2(G) <8>cg — > a finite
Hilbert A'(G)-chain complex denoted by A6 o (CG <g>z3i C*(M)). Note that

for f 1 this chain complex is just the chain complex L2(G) <8>zg C*(M) which
is L2-acyclic by our hypothesis. Furthermore all boundary matrices are given by
matrices defined over ZG. Since G is residually finite it follows from Proposition 1.1

that the chain complex is of determinant class. It follows from [28, Theorem 6.7] that
the chain complex AG o rj^c, (CG <8>z;r C*(M)) is in fact det-L2-acyclic for any

t e (0, oo). In particular the W(G)-chain complex A° o rj^*ct (CG C*(M))
has well-defined L2-torsion for any t G (0, oo). We pick a homomorphism
v: G //1 (7T: Z) such that the homomorphism v o /x: n —> H\{n\'£) is just
the usual projection map. Now define the cj)-twisted L2-torsion function

P^2\M, s; fi, </>): (0, oo) —> R

^P(2)(AG o^ov),C((CG C,(M))).

The right hand side is indeed independent of the choice of v. Namely, if G' is the

image of /i and //': n G' is the epimorphism induced by /i, then there is precisely
one homomorphism v'\ G' -> H\(jt\ Z) such that v' o /x' agrees with the projection
jt —> //( (n: Z) and we get from [28, Theorem 7.7 (7)J that

p(2)(Agc,(CGG(M))) p^(A° or}(^ov')*ct(CG'iS>zitC*(M))).

More details of this construction and the proof that it is well-defined can be found
in [28, Section 7] and, with slightly different conventions, in [9].

If n is the identity homomorphism, then we drop it from the notation. Put

differently, we write p® (M, s; (f>) := p^2\M, s; id^j (M)- </')•

1.4. Comparing the ^-twisted L2-torsion function and the L2-Alexander
torsion. The ^»-twisted L2-torsion function p®(M,s; /x, (j>)\ (0, oo) —> R, as

considered in this paper and in [28], is designed in an additive setup, as it is the main
convention when dealing with related invariants such as topological L2-torsion,

analytic L2-torsion, analytic Ray-Singer torsion and so on. When dealing with
torsion invariants in dimension 3, the multiplicative setting is standard, which is the

reason why we defined for instance in [7,9] the L2-Alexander torsion multiplicatively
as a function r® (M,s; </>, /x): (0, oo) -> [0, oo).

Now suppose that (M, /x) is L2-acyclic. As we had already pointed out in the

previous section, it follows from [28, Theorem 6.7] that the function p® (M, s; /x, </>)

is defined on all of (0, oo). It follows immediately from comparing the definition
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of p^(M, s; /z, (f>) in Section 1.1 and the previous section of the present paper with
the definition of r® (M, s; (p, /x) in [9, Section 3.1] that these two invariants are
related by the formula

r (2)(M,s;0,/x) exp(—p(2)(M,s;//,,<£)). (1.3)

Notice that this discussion shows that r®(M, s;</>,/z) never takes the value zero.
This is a consequence of [28, Theorem 6.7] which was not available when [9] was

finished. In the following we will cite results from [7,9] about r®(M, s; <p, p),
which via (1.3) we reinterpret as results on p®(M,s; /x, (p).

1.5. Properties of the 0-twisted L2-torsion function. The following theorem

summarizes some of the key properties of the ^-twisted L2-torsion function.

Theorem 1.5 (Properties of the twisted L2-torsion function). Let (M, /z) be an
L2-acyclic admissible pair, let (p £ H1 A4 ; IR and let s £ Spinc(A/).

(1) Pinching estimate. There exist constants C and D such that we getfor 0 < t < 1

C • \n(t) - D < pi2){M,s-,p,,(p){t) < -C -ln(0 + D,

andfor t > 1

-C ln(0 - D < p(2\M, s; //, <p){t) < C ln(t) + D\

(2) Dependence on the Spinc-structure. For any h e we have

p(2\M,hs; p,(p) p(i)(M, s; pt, <p) + ln(f) • (p(h).

(3) Covering formula. Let p: M —> M be a finite regular covering such that

ker(/x) C ji := n\(M We write (p := p*<p and we denote by p the restriction

of p. to n. Finally we write s := p*(s). Then for all t we have

p^2\M,s; $, fi)(t) [M : M] p^(M,s, <p, p)(t).

(4) Scaling cp. Let r £ M. Then we getfor all t £ (0, oo)

p^2\M,s; p,r<p)(t) p^2\m,s\ pL,<p)(tr).

(5) Symmetry. For any t £ (0, oo) we have

p(2)(M, s; /x, <p){t~l) cp(ci (s)) • ln(f) + p(2)(M, s; /z, 4>)(t).

Statement (1) is proved in [28, Theorem 7.4 (i)], it is one of the main results

of that paper. Statement (2) is proved in [9] and [7]. Statement (3) is proved
in [28, Theorem 5.7 (6)] and |9, Lemma 5.3] without explicitly mentioning Spinc-
structures. Nonetheless, it is straightforward to see that the proofs provided in the



30 S. Fricdl and W. Liick CMH

literature also imply the statement about Spine-structures. Statement (4) is basically
a tautology, see [28, Theorem 7.4 (5)] and [9, Lemma 5.2], Finally Statement (5) is

obtained in the proof of Theorem 1.1 of [7].
Define two functions /o, f\: (0, oo) -> M to be equivalent if there is an m G M

such that /i (t) — ./o(0 m-\n{t) holds. Because of Theorem 1.5 (2) the equivalence
class of the function p^2\M, s; /x, ft) defined in (1.2) is independent of the choice of
the Spinc-structure, and will be denoted by

p(2)(M;/x,0). (1.4)

Theorem 1.5 (1) allows us to define the degree of p®(M; /x, </>) by

deg(p(2)(M;/x,0)) lim sup - liminf (1.5)
«-»oo ln(t) t^o ln(0

for any representative p: (0, oo) -> M of p^2\M; /x, (p).

Remark 1.6. Notice the minus sign appearing in the formula (1.3). This has

the consequence that the degree deg(r®(A/, (p, /x)) defined in [9] and the degree
deg(p® (A/, /x, ft)) defined in the introduction and later again in (1.5) are related by

deg(r(2)(A/, ft, /x)) -deg(^(M,/x, </>)). (1.6)

1.6. Approximation. The following is a consequence of one of the main technical
results of [281.

Theorem 1.7 (Twisted Approximation inequality). Let <p:G -g- R be a group
homomorphism whose image is finitely generated.

Consider a nested sequence ofnormal subgroups of G

G 2 Co 2 Gi 2 G2 2-"
such that Gi is contained in ker(ft) and the intersection H/>o 's trivial. Suppose
that the index [ker(</>) : G,] is finitefor all i > 0. Put Qi := G/Gi. Let (pi : Qi -> R
be the homomorphism uniquely determined by (pi o pr( cp, where pr, : G —>• Qt is
the canonical projection.

Fix an (r, s)-matrix A G Mr xCEG). Denote by A[i] the image of A under the

map Mr^{JjG) —» Mrs{r£Q,) induced by the projection pr;.
Then we get

dim^-(G)(ker (Ag o (r/1))) lim dim^g.^ker (Aß' o q,p*ct(rA[i])))
i —>oc 1

and

deLv(G)(AG o q^cfirA)) > lim sup detw(ß,)(Aö'' ° t]^*c,(rA[i]))-
i —»oo '

Proof. Since the image of cp is finitely generated, we can choose a monomorphism

j : Jjd -* R and an epimorphism ft': G —T,d with <p — j o (p. Now we apply [28,
Theorem 6.52] to ft' in the special case V j*Ct.
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1.7. The Thurston norm. Recall the definition in [37] of the Thurston norm xm(4>)
of a 3-manifold M and an element <p e H1 (M; Z) Hom(jri (M), Z):

x(<p) := min{x_(F) | F C M properly embedded surface dual to (/>},

where, given a surface F with connected components F\,F2, F^, we define

k

X-(F) := 5Zmax{ ~X(Fi),Q}-
i 1

Thurston [37] showed that this defines a seminorm on which can be

extended to a seminorm on 7/' (A/; M) which we also denote by xm- In particular
we get for re R and (p £ 171 (4/ ; R)

xmO- -0) kl (I-7)

If p: M M is a finite covering with n sheets, then Gabai [15, Corollary 6.13]
showed that

XM(P*<P) n -xM(</>) (1-8)

P iIf F -> M —> S is a fiber bundle for a 3-manifold M and compact surface F, and

(p e H1(M;Z) is given by H\(p): H\(M) Z, then by [37, Section 3]

we have

**(« H"0'
)o, ifrC)>o.

2. Calculating the 0-twisted L 2-torsion function

The following theorem says that given M and iff e H1 (M ; Q) the corresponding
L2-torsion functions can be computed using one fixed square matrix over Ztti (M)
together with a well-understood error term.

Theorem 2.1. Let M he a 3-manifold with h\{M) > 0 and let s e Spinc(M). We

write n iti (M).
(1) Suppose dM is non-empty and toroidal. Then there exists an s tc\(M) and

a square matrix A over Zjr such that the following conditions are satisfied

for any IIi f-factorizing homomorphism p:n — G and any homomorphism
<p: G -> M:

(a) bjp(M; N(G)) 0 holds for all n > 0 ifand only if
dimiAr(G)(ker(AG o q^cir^A))))

van ishesfor all t > 0.
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(b) If (a) is the case, then (M, p) is (p-twisted det-L2 -acyclic (in the sense

of [28, Definition 7.1 ]) and we get

p(2)(M, s; p, 4>)(t) -ln(det^(G)(AG o rj^ct(rß{A)j)) + rj(t)

where 77(f) is given by

rj(t) max {0, |^(.v)| -ln(f)}.

(2) Suppose M is closed. Then there exist s,s' 6 tï\(M) and a square matrix A

over 7Ltz such that thefollowing conditions are satisfiedfor any (Il\)/ -factorizing
homomorphism p'.n^G and any homomorphism fi'.G —> R:

(a) b^(M; Jf(G)) 0 holds for all n > 0 ifand only if

dim^(G)(ker(AG o q^cfar^A))))

vanishes far all t > 0.

(b) If (a) is the case, then (M, p) is <p-twisted det-L2-acyclic and we get

p(z)(M,s;p,(p)(t) - ~ln(detjV(G)(AG o rj^cGfi^))) + 77(f)

where rj(t) is given by

77(f) max {0, \(p(s)\ ln(f)} + max |0, |</>CV')I • ln(f)}.

Proof. We only treat the case, where 8M is empty, and leave it to the reader to

figure out the details for the case of a non-empty boundary using the proof of [26,
Theorem 2.4]. From [30, Proof of Theorem 5.1] we obtain the following:

(1) a compact 3-dimensional C IF-complex X together with a homeomorphism

f:X -» M (in the following we identify n Jt\(M) ji\(A) using n\ (/)),
(2) two sets of generators {.vj sa \ and {sj of n,
(3) an a x a-matrix F over Ztt,
such that the cellular Ztt-chain complex C*( A of the universal cover X, for an

appropriate fundamental family of cells, is isomorphic to

a a
n rsr_, a a © r.Vj._i

ZTT -— > Zjt —> ZJT -— > ZTT.

/=1 7=1

It follows that the based ZG-chain complex ZG (Azn C*(X) is isomorphic to

a a
n W)-1 a a

ZG X 0ZG 0ZG » ZG.
i — 1 i 1
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Then the Hilbert <V(G)-chain complex A° o rj^c, (C*(9f)) is isomorphic to

° G ^
,D,A A AG°n*'C,lr»in) A 9L2(G) > ® L (G) '

-> ® L (G)
i=1 i=l

: > L2{G).

Since b\(M) > 0 is non-trivial there exist i, j G {1 a} such that .v,- and s'j

represent non-zero elements in U\(M\Z/.)f. We write s Sj and s' s'j. For later

we record that, given any (H\)/--factorizing homomorphism p: tt -> G, the images

/i(s) and n(s') have infinite order. We denote by A the matrix that is obtained from F
by removing the i -th column and the / -th row.

For g e G and t e (0, oo) let D(g, t)* be the Hilbert ,V(G)-chain complex that

is given by

0
AG(v(g).g_,)

0 -> L2(G) > L2(G) -> 0

where the non-zero terms are in the degrees 1 and 0. Provided that |g| oo holds,

D(g,t)* is det-L2-acyclic and a direct computation using [27, Theorem 3.14 (6)
on p. 129 and (3.23) on p. 136] shows

p(2)(ö(g,0*) ln(dettAf(G)(AG(ri-0te).^_1))) max {|0(#)| • ln(f), 0}. (2.1)

Now let s G SpinC(M) be the Spinc-structure that corresponds to the above

fundamental family of cells. It follows from [9, Lemma 3.2] that the above group
elements .v, s' and the matrix A have all the desired properties regarding the L2-Betti
numbers and the L2-torsion. This concludes the proof of the theorem in the closed

case for the Spinc-structure s.

Iff G Spinc(Af is a different Spinc-structure, then we can write t hs for some
h G H\(M; Z). We pick a representative g G it of h and we multiply one column
of A by h to obtain the matrix with the desired properties.

3. Lower bounds

The elementary proof of the next lemma can be found in [28, Lemma 6.9[.

Lemma 3.1. Let f:L2(G)m —> L2(G)n be a bounded G-equivariant operator.
Then

detW(G)(/) < || / ||dimW<G)(ïïn(7))_

Here ||/|| denotes the operator norm of f, i.e.

11/11 sup{||/(v)||L2(G)„ |u G L2(G)m with HL2(G)m 1}.
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Before we state the next lemma we introduce the following definition. We say
that a bounded G-equivariant operator /: L2(G)m —> L2(G)m is det-L2-acyclic if
the chain complex

0 -> L2(G)m U L2(G)m -> 0

is det-L2-acyclic. Now we can formulate the next result which is an improvement
of 19, Proposition 9.5].

Lemma3.2. Consider bounded G-equivariant operators f0, f\\ L2{G)m -> L2(G)m.
For t > 0 we define

f[t] := fo + t fx.

Suppose that far every t > 0 the operator f[t]: L2(G)m —> L2(G)m is det-L2-

acyclic. Put

p: (0, oo) -* (0, oo), t i-> In (detjV(G)(/[f]))-

Then we pet

p(t) < m • max{0. In (||/o|| + ||/i||)} fart < 1;

pit) < dim^(G)(im(/i)) • ln(f) + m max {0, In (2- ||/0|| + ||/i ||)} fart > 1.

In particular we pet

Pit)
lim sup-— < dim^oOmC/i));

/ —>oo ln(r)

lim inf > 0;
*-»o ln(f)

Pit) r Pit)
lim sup —— - lim inf —— < dim^(G)(im(/i
t-roo ln(t) (->-0 ln(t)

Proof. It suffices to prove the two inequalities tor p(t), then the other claims follow.
We begin with the case t < 1. We get from Lemma 3.1

If \\.f[t]\\ < this implies detw((7) (/*[/]) ^ 1 and the claim follows. Hence it
remains to treat the case ||/[?]|| > 1. Because of dimjv-(G)Om(/)) < m we get that

deW(G)(/W) < ||/Mir
n/o+f-/iir

<(ii/oii + f-n/iiir
foi/oii + ii/tiir.
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Next we consider the case t > 1. We have the orthogonal decomposition

L\G)m im(/i) © im(/i)

With respect to this decomposition we get for any bounded G-equivariant operator
g:L2(G)m —» L2(G)m the decomposition

A,«,» j(.,2)X
S_U(2',) gaa>)'

We estimate for t > 1 using [27, Theorem 3.14 (1) and (2) on p. 128]

id)) -det^(G)(/W)

0ld °)°/[*])
(r1- id 0\

o id)o/w •

< 1 the claim is obviously true. Hence it remains to treat the

detw(G)(/[?]) (t 1
• id

de^«=>(( o

Lern. 3.1
<

case ' J- °d) o f[t] II > 1. Then we get

detjv(G)(/[r])
^dim^(G)(im(/i))

< (Hid S)w(/o + t • /i)
<t-1 /(U)1 ./()

/ol(2,1)
'-,/o(I,2)^

+ f/;
"(2,2) (,<r /£2>\

H CS0 "Dl Hl Gr» HHHKH" HID
,(1,1) /(l,2)s

"(II (H"
*~'<i

< /o
0 0

(i,D

(1,2)

+
0

/•(2,1) ft7o 7o
(2,2)

f(l,2)>
J0 +/o

/•Go; ft/o ./o

(2-ii/oii+n/iiir.
This finishes the proof of Lemma 3.2.

(1,1) f (1,2)fyJ 0
f(2,l) f(h) Jo

(2,2)

+

+

y(l,l) y (1,2)

y(i,i) yGG)

)!)"

)!)'

For an element x YlgeG xg • g in CG define |je11 := J^geG
matrix A e Mns(CG) define

IM II l r • s • max {|«7^|i | 1 < j < r, 1 < k < ,S'}.

\xg\. Given a

(3.1)
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The next theorem can be viewed as saying that, in the acyclic case, the degree of
the ^»-twisted L2-torsions gives lower bounds on the Thurston norm. This result is

thus an analogue of the classical fact, mentioned already in the introduction, that the

degree of the Alexander polynomial gives a lower bound on the knot genus [35],

Theorem 3.3 (Lower bound). Let M be an irreducible 3-manifold with infinite
fundamental group n. Lets G Spin' (M). Thenfor any (p G H1 (M ; Q) there exists a

constant D > 0 such thatforany (If)/ -factorizing homomorphism /i: jt\ M —> G,

for which (M, p.) is L2-acyclic, we have

\((p(c\(s)) + xM(<t>j) ln(f) — D < p(2)(M, s; /x, <p){t) fort < 1;

\{<p{cx(s)) -xM(<p)) • ln(0 - D < p(2)(A/,s; p. (p)(t) fort > 1.

In [9, Theorem 1.5 ] we proved the analogous statement under the extra assumption
that p,: Tti (M) -> G is a homomorphism to a virtually abelian group.

In the proof of Theorem 3.3 we will make use of the following elementary
lemma. Before we state the lemma, recall that a cohomology class in Hl(X\ Z)
Hom(rri (A), Z) is primitive if the corresponding homomorphism n\(X) Z is

surjective.

Lemma 3.4. Let M be an irreducible 3-manifold with infinite fundamental group
and let s G Spinc(M). If the conclusion of Theorem 3.3 holds for all primitive
fi e Hi (M ; Z), then it holdsfor all fi G // ' (M ; Q).

Proof If <j> is trivial, then clearly there is nothing to prove. So let cj> G H1 (M ; Q) be

non-zero. We pick an r G Q>o such that r<p G 7/1 (M; Z) is primitive. We denote

by D the constant of Theorem 3.3 corresponding to the primitive class r<j).

From Theorem 1.5 (4) and from (1.7) we get for any (//^/-factorizing
homomorphism pc. jt\ (M) -> G, for which (M, pt) is L2-acyclic, that

s; pv,cp)(t) p^2\m, s; pt, rfi)(tr)\
— r-xM((p).

Combining these equalities with the elementary equalities

In (t r) - ln(i);
r

(r<p)(ci(s)) r -0(ci(s)),

it is straightforward to see that the desired inequalities also hold for p. and (p.

Proofof Theorem 3.3. By Lemma 3.4 it suffices to prove the statement for every
primitive (p G HX(M\T3). We start out with the following claim.
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Claim. Given a primitive (j) e there exists an s e Spinc(M) such that

for any (//^/-factorizing homomorphism /x:7Ti(M) -> G, for which (M,/x) is

L2-acyclic, the following inequalities hold

—D < p^2\M,5\ /x,4>){t) fort < 1;

• ln(t) — D < p{2\M, s; /x, 4>)(t) for t > 1.

In the following we abbreviate

p(/^0) P(2)(M,S-, /X,0).

We conclude by inspecting the proof of [9, Proposition 9.1 in Section 9.11 that there

exists:

(1 a Spinc-structure s,

(2) integers k, /, m with kj> 0 and xm(<P) k — I,

(3) an element ye jt with (p(y) 1, and

(4) a matrix A e where K ker(^),

such that for any (//^/-factorizing homomorphism —> G, for which

(M, /x) is L2-acyclic, the following equality holds

p(/x,0)(t) -ln(max{l,f}"/-detjV(G)(AG(rj(X(yl))+t-/x(y)-idL2(G^ © 0i2(G)m)).

This implies

-In (detJv(G)(AG+ t /x(y) • idL2(G)x ® 0L2(G)>»))

iff < 1;

/ • ln(t) - In (detJv(G)(AG(r/x(/1)) + t /x(y) • idL2(G)x © 0L2(G)m))

if t > 1.

Define
D {k + m) ln(2 • (IMIU + l)).

Note that D depends on (j> but not on /x. We conclude from [28, Lemma 6.3] and

the monotonicity of In that

D > (k + m) ln(2 • || AG (r/x(^))|| + || idG2(G)A- © 0L2(G)m ||)

> (k + m) ln(|| AG(r|| + || idL2(G)& © 0L2(G)m ||).

Therefore we conclude from Lemma 3.2, applied to the case /0 AG{r^)) and

./l MY) ' ^L2{G)k ® 0G2(G)m, that

In (detw(G)(AG(r/i(^)) + t /x(y) • idL2(G)A. © 0L2(G)m)) < L '

+ ß

P(/G0)(O
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This implies

— D < p(fi, (f>)(t) for t < \ ;

—(k — l) ln(t) — D < p(/z, fi)(t) for t > 1.

Since xm{4>) — k — I, this implies the claim.
We now turn to the proof of the desired inequalities in the theorem. Using

Theorem 1.5 (2) and equality (1.1) one can easily see that if the desired inequalities
hold for one Spin6-structure of M, then they also hold for all other Spinc-structures
of M. Now let 5 6 Spin6 (M) be the Euler structure from the claim. Then:

—D < p(2)(M, s; p,.cp)(t) for t < 1;

—xm(4>) ln(f) — D < p(2\M,s; fi,(p)(t) fort > 1.

By Theorem 1.5 (5) we also know that

p(M,s\fJ,,<j>)(t) —0(ci(s))ln(t) + p(M,s;/i,<^)(t_1)

tor all t £ (0, oo). Combining this equality with the above inequalities we obtain that

(</>(ci(s)) + xM(<p)) • ln(t) - D < p(2)(A/,5;/x,0)(t) fort < 1;

<p(c\(s)) • ln(t) — D < p^2\M,s; /x,^)(t) for t > 1.

Adding the two inequalities for t < 1 and dividing by two, and doing the same for
the inequalities for t > 1 gives us the desired inequalities

\{<j>(cx(s)) + xM{<pj) ln(f) - D < p{2\M,s\ p,,4>)(t) fort < 1;

j(<p(ci(s)) — xm(<P)) • ln(t) — D < p^2\M,s; p,, 0)(t) fort>l.

4. Upper bounds

Before we can provide upper bounds on the Thurston norm we will need to prove
one preliminary result. This lemma will ensure that some information which is only
available at 0 and oo leads to uniform estimates for all t > 0. This will be a key

ingredient when we want to apply approximation techniques.

Lemma 4.1. Let (p: G TL be a non-trivial group homomorphism withfinite kernel.

Let A e Mmtm(ZG) he a matrix such that AG (r^): L2{G)m -> L2(G)'n is a weak

isomorphism. Then AG o r/0*c, ('"a)'- L2{G)m —> L2(G)m is det-L2-acyclic for
any t > 0. Put

p: (0, oo) -» E, f ln(detjV(G)(AG o jj0.c,(rA))).
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Suppose that there are real numbers C and D and integers k and I such that

lim p(t) — k ln(f) C ;

(->-0

lim p{t) — I ln(f) D.
t—>-oc

Then we get for all t > 0

k • ln(t) 4 C < p(t);
I ln(f) + D < p{t).

Proof. Choose an integer n > 1 and an epimorphism r//: G -> 7L such that f
n • idz or//. Then we get for the two functions p and p associated to r/> and r/r' from
Theorem 1.5 (4)

p'it) pit").
Hence we can assume without loss of generality that p is surjective, otherwise

replace <p by </>'.

Choose a group homomorphism .v: Z G with (j> o s id. Choose a map of
sets a:im(.y)\G -o- G whose composition with the projection pr: G im(.v)\G is

the identity and whose composition with <p\ G -» Z is the constant map with value
0 6 Z. Let B e Mm.|ker(^)|;m.|ker(^,)|(Z[Z]) be the matrix describing the restriction
of rA'- ZGm -» ZGm with s, see [28, (6.40)]. Then a direct computation shows for
all e (0, oo)

,v*(Ag o wcMa)) AZ ° 1(0o^)*C( (rß): L2(Z)m"'ker^' - L2(Z)m'lkerWI,

where .v* denotes restriction with s. We get from [27, Theorem 3.14 (5) on p. 128]

,aG r ln(det^(z)(.v*(AGo^C((^))))
ln(detw(G)(A o r?0*Q(^))) \k^j\ "

Hence we can assume without loss of generality that G Z and f idz, otherwise

replace <p: G —Z by </> o s id: Z —Z and A by B.
One easily checks that

Oletc[z](»?Q (rA)) — t]Ct (rdetC[Z](T))- A (Z) —> L (Z).

Because of [28, Lemma 6.25] we can without loss of generality assume that m 1,

otherwise replace A by the (1, l)-matrix given by det<ç[z](A).
Let pfo) 6 C[Z] C[z, z1] be the only entry in the (1, l)-matrix A. Since

Az(/-/| is a weak isomorphism by assumption, p is non-trivial. We can write

n\

P(-) J2 Cn' z"
n=no
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for integers n0 and n \ with n0 < n 1; complex numbers c„0, cnQ+\,..., cni with

c„0 7^ 0 and ^ 0. We can also write

S

p(z) • zr • I~[(z-ai)
i=1

for an integer s >0, non-zero complex numbers a\,... ,ar and an integer r. We get
from [27, (3.23) on p. 136]

detw(z>(Az(r/,)) |c„, | • ]~[ |r*;|.

i l,...,j
k:l>l

For t e (0, oo) we get

S S

pit -z) cnj • (fz)r • ]~[(tz - a, c„1-zr-[](2- ^f),
i 1 i 1

and hence

detiAf(Z)(Az(r/,(fz))) tr+i' • |cni | • Y\ 17" I ^ " Ie»11 ' ü ^
i l,...,j i j

This implies for t e (0. oo)

pit) (r + s) ln(f) + In (\cni |) + ^ (ln(|ö< |) - ln(t)). (4.1)

Wi\>t

Define positive real numbers

Tq min {\cii\ \ i 1,2 ,.v};

Too max {|ûj I I i 1,2, ,v}.

Then we get

_ ir lnW +ln dc«i I) + S=iln (M for r -7«;
P

((/• + .v) • ln(t) 4- ln (Icni I) for t > Too.

Since by assumption there are real numbers C and D and integers k and I such that

lim pit) — k ln(t) C ;

f->o

lim p(t) — I ln(t) D,
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we must have r k,r + s l,C ln(|c„, |) + Yli=t ln(lfo' I)' ar,d D ln(|c„, |).

Equation (4.1) becomes

p(t) / -ln(0 + D + (ln (|ûj |) |n(0)-
1 1,...,5
Wi\>t

Since (ln(|a,-1) — ln(f)) > 0 for \at \ > t, we get I ln(r) + ln(Z>) < p(t) for all t > 0.

We estimate for t > 0

k ln(f) + C
S

k ln(t) + D + Y2 I" (\a» I)

i 1

k ln(f) + D + ^ In (|fo I) + ^ ln(la'l)
i l, ...,s i l,...,s
\aA>t \aA<t

r -ln(0 + D +5 -ln(0 + Y2 In (|«f |) - ln(f)) + Y2 (ln(|a,-|)-ln(0)
i l,...,i i \,...,s
\ai\>t \ai\<t

I ln(t) + D + Y2 (ln(l«/l)-ln(0) + Y2 (ln (M) - ln(0)
i l,...,s

|a,;|>t I di\<t

<l-\n(t) + D+ (ln (la'l) _ ln(0) P(0-
i=l,...,s

This finishes the proof of Lemma 4.1.

Definition 4.2 (Fibered classes). Let M be a 3-manifold and consider an element
<p H1(M\Q) Hom(jri(M), Q). We say that (p is fibered if there exists a locally
trivial fiber bundle p: M -x S1 and a k Q, k > 0 such that the induced map

p*: 7ii(M) —> jtiiS1) Z coincides with k • (p.

Theorem 4.3. Let M -f Sl x D2 be an irreducible 3-manifold. Then the following
two statements hold:

(1) If M is fibered, then far any (Hi)f -factorizing homomorphism p.: jt\(M) —» G

to a residually finite group the pair (M, fi) is L2-acyclic.

(2) If (p e Hl(M;Z) Hornel (A/), Z) is a primitive fibered class, then there

exists a T > 1 such that far any s G Spinc(M) and for any (Hi) /-factorizing
homomorphism p.: ni (M) —> G to a residually finite group the following
equalities hold

p(2)(M,5\p,(p)(t) \{(p(ci(s)) + XM(<P))-ln(0 fort <

p(2)(M,s;p,<p)(t) ±(<p(ci(s))-xM(<p))-ln(0 fart > T.

In fact one can choose T to be the entropy of the monodromy.
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Proof. The first statement follows from [25, Theorem 2.1 ]. Now we denote by T the

entropy of the monodromy of the primitive fibered class 0. By Theorem 8.5 of [9]
there exists an s Spin6 (A4) such that

0 p^(A4, s; p, (jf){t) fort <

—xm(<P) • ln(t) p®(M,s; p., <p)(t) fort >T.

The statement of the theorem follows from these inequalities in precisely the same

way as we concluded the proof of Theorem 3.3.

The next lemma improves on Theorem 4.3 in so far as it gives us some control
over p® (A4, s; p. 0) for all t. In particular the set of Vs for which we have control
does not depend on the choice of fibered 0.

Lemma 4.4. Let {M, p\jti(M) —> G) be an admissible pair and let 5 6 Spin6'(A4).
Then for any fibered cj) /41 (A4; Q) we have

p(2)(A4,s; p.. 0)(f) 5 |(0(ci(s)) + XM (0)) • ln(t) fart < 1;

p(2)(M,s;/x,0)(O < i(0(ci(s)) -xM(0)) -ln(f) fort > 1.

Proof Let (A4, p: n\{M) G) be an admissible pair. By Theorem 4.3 the pair
(A4, p) is L2-acyclic. Let s Spin6 (A4). The argument of the proof of Lemma 3.4

shows that it suffices to prove the lemma for primitive fibered classes. So let

0 4/1(A4; Z) Hom(jri(A4), Z) be a primitive fibered class.

Consider a nested sequence of normal subgroups of G :

G 5 G0 5 Ci D G2 2 •••

such that G, is contained in ker(G —> Hi (G ; Z)y), the index [ker(G —> Hi (G ; Z)y) :

Gj] is finite for i > 0 and the intersection Dj>o Gt is trivial. Put Qi := G/G,
Denote by pr( : G Qt the obvious projection. Let pp. jt\ (A4) —> Qi be the

composition pr; op. The homomorphisms pi are again {H\)y-factorizing.
In the following we consider only the case where A4 is closed, the case with

boundary is analogous. We apply Theorem 2.1 (2) to A4. We denote the resulting

square matrix over Zn by A and the resulting elements in the group n by s, s'. We

write Ai pr, (/l). Define

r](t) — max {0, \ fi(s)\ ln(f)} + max {(), |0(.v')| • ln(t)}.

As above, the pair (A4, pt) is L2-acyclic. Our choice of A and s, s' ensures that

p(2)(A4,s; p.. 0) T)(t)-ln(detw(G)(AG o^0»C((r^)));

p(2)(A4,s;p,;-,0) p(t) - ln(det^(ß,)(Aö'' oirc,(o;)))-
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We conclude from Theorem 1.7

ln(dettAr(G)(AG o rç0*c, (r^))) > limsupln(dettAr(e<.)(Aô' o (A4, )))• (4.2)
i->oo

By Theorem 4.3 there exists a T > 1 such that for any natural number i we have

p(2\M,s;ni,(/))(t) |(0(ci(s)) + xm(4>))-ln(t) fort <

P(2Hm,s; jii,(j))(t) \(<j>(c\(s)) -xM(<p)) ln(t) fort > T.

This implies

ln(detw(ßl)(AG o 40*C/ (r^.))) rç(t) - |(0(ci(s)) + xM(</>)) • ln(0 for t < f ;

ln(dettv(ß()(AG o rç0*c,O'a,-))) 4(0 ~ (s)) - ijf(O) * ln(0 for t > T.

Then Lemma 4.1 applied to <p:Qi ->Z yields

ln(detjV(ô/)(AG o t?0*cr ('A,))) A 4(0 - |(0(ci(s)) + xM(<P)) • ln(0 for t < 1;

ln(detw(ö,)(AG 0 40*q(L4,))) > 4(0 - è(0(ciOO) ~ *m(</>)) • ln(0 for t > 1.

Since this holds for all / > 0 and all t >0. we conclude from (4.2)

ln(detw(G)(AG ° 4<p*c, (Ai))) > 4(0 - |(</>Oi (s)) + *m(0)) • ln(0 for t < 1;

ln(detw(G)(AG ° 40*c, (At))) > 4(0 - |(0(ci(s)) - *m(0)) -ln(t) fort > 1.

This implies

P(2)(M.s;il,(p) < f (0(ci(s)) + xM((f>)) ln(t) fort < 1;

p(2\M, s;//,(/>) < f (</>(f| (s)) — xm{4>)) - ln(t) fort >1.

Lemma 4.5. Let F he a group that is virtually finitely generated free abelian.
Consider a finite subset S A r. Then for any natural number n the function

{A e M„,„(CF) I suppr(A) [0, oo],

A idct,^-(r)(A
r(''/i)) if A r is a weak isomorphism;

0 otherwise,

is continuous with respect to the standard topology on the source coming from the

structure of a finite-dimensional complex vector space.

Proof. Let i : 7Ld -r T be an inclusion whose image has finite index in T. Fix a

map of sets a: im(Z)\r -» T whose composition with the projection T -> im(i)\r
is the identity. Put m [T : im(t')]. With this choice the finitely generated free
C[Z^]-module i*CF obtained from CT by restriction with i inherits a preferred
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C[Z^]-basis. Hence there is a finite subset T ç Zd and a C-linear (and hence

continuous) map

i*: {A £ M„;„(Cr) | suppr(4) ç S}

-> {B e Mm„,OT„(C[Zrf]) I suppZd (5) ç r}

such that f*Ar(r,4) Azrf (r,*^). Since

detjvxzrf)('*Ar(A4)) m • det.jv(]-)(/'/,)

holds for any A £ Mn>n(C T) by [27, Theorem 3.14 (5) on p. 128], it suffices to prove
the claim in the special case T Zd.

As detC|Zdy Mn,n(C[Zd]) —» Mip(£[Zd]) is continuous and since for every
A e A/„,„(CZrf) with suppZi/(4) c S we have

suppzj (detc[z</]) ç S"

for 5" {gi • g2 g« I g; £ S}, we conclude from [28, Lemma 6.25] that it
suffices to treat the case n — 1. Since the Mahler measure of a non-trivial element

p e £[Zd] is equal to

detC[Zrf](Azd(rp):L2(Zd)^L2(Zd)]

and defined to be zero for p 0, Lemma 4.5 follows from a continuity theorem for
Mahler measures proved by Boyd [4, p. 127].

Definition 4.6 (Quasi-fibered classes). Let /V be a 3-manifold. We call an element
(p £ H1(N\ R) quasi-fibered, if there exists a sequence of fibered elements (pn £

converging to in H1 (N ; R).

Notice that obviously any fibered (p is non-trivial. The next theorem generalizes
the inequalities of Lemma 4.4 for fibered classes to quasi-fibered classes. This
theorem can be viewed as the key technical result of this paper.

Theorem 4.7 (Upper bound in the quasi-fibered case). Let (M, pf be an admissible

pair, s £ Spinc (M) and let (p £ H1 (M ; R) be a quasi-fibered class. Then

pi2)(M,s\fi,<p)(t) < \((p{cx{s)) + xM(<p)) -ln(0 fort < 1;

p(2) (A/, 5; /x, (p)(t) < \ (<p(ci (s)) — xM (<p)) ln(f) fort > 1.

Proof. We only treat the case, where 3M is empty, the other case is completely
analogous: in the proof below one needs to replace Theorem 2.1 (2) by Theorem 2.1

(1). We write jt and we pick s £ Spinc(M).



Vol. 94 (2019) The L2-torsion function and the Thurston norm of 3-manifolds 45

First recall that our assumption that fi:n -> G is (//i)/-factorizing implies
that the projection n -> H\{M)/ factors through /x and a map v:G H \ (AT) /.
Since G is residually finite we can choose a sequence of normal subgroups of G

G 5 Go 5 Gj ^ G2 2

such that Gi is contained in ker(v: G -> H\(M)/), the index [ker(v) : G(] is finite
for / > 0 and the intersection fj;>o Gj is trivial. Put <2, := G/G,. Denote by

/x, : TT —» g, the composition of the projection pr( : G -> g, with /x. Note that /x, is

again a (#1)/-factorizing homomorphism. Recall that this implies in particular that

we can make the identifications

Hom(//i(;r)/,K) Hom(jr,K) Hom(G,M) Hom(G,-,R).

We apply Theorem 2.1 (2) to M and s. We denote the resulting square matrix
over TLtx by A and the resulting elements in n by s, s'. For each i G N we write
Ai pr, (A). Define for any homomorphism if/: Hi (AT)/ --> R

£(VO(0 max {0, [\i/r ovo fjb(s)I + \xfr o v o /x(w')|) • ln(f)}.

We start out with the following claim.

Claim. For each / e N we have the inequalities

p(z\M,s;ni,<pi)(t) < l((f>(ci(s)) + xM{<t>)) -ln(0 for t < 1;

p(2)(M,s;nt,(j)i)(t) < \(<p(ci(5))-XM(</>)) -ln(0 fort > 1.

Let i N. Since (f> e // ' (AT; R) is quasi-fibered there exists a sequence of
fibered elements </>„ e H[ (M\ Q) converging to (p. By Lemma 4.4 we know that for
each i and n we have

p(2)(M,s;/x;-,^„)(f) < ±(<pn(a(s)) + xM(<pn)) • ln(0 forf < 1; (4.3)

p(2\M,s\m,(t>n)(t) < l(<pn(ci(s))-xM(4>n)) • 'n(0 forf > 1. (4.4)

By Theorem 2.1 (2) we have

P(2)(M,s;/x;,</>„)(!) £(</>«) (0 - \n{àtpH{Qi){AQi o r?0*c, (foi,))); (4.5)

p(2\M,s;p,i,(p)(t) §"(0)0) — ln(deUr(e.)(Aß< o^q^))). (4.6)

Since </>„ converges to r/x and the kernel of the projection map g, —> 7/j (M)/ is

finite, we get from Lemma 4.5 that

Jfo^ln(detW(ö,)(AÖ' o ln(detjV(ß;)(Aö'' o ?^*c, On,)))-
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This equality, together with Equations (4.5) and (4.6) and the observation that for any
t (0, oo) the equality lim^^oo £(</>«)(?) £WO(0 holds, implies that

p®(A/,s; fii, <p)(t) — lim p®(M,s; iii,fin)(t) for all t G (0, oo).
«->•00

The desired inequalities for p®(M,s; Hi, 4>)(t) now follow from (4.3) and (4.4).
This concludes the proof of the claim.

Now the theorem follows from the claim we just proved and the following claim.

Claim. For each t G (0, oo) we have

p(2)(M,s, fi,(p)(t) < liminfp(2)(M,s,/x,',</>;)(0-
i->oo

This claim is proved as follows. By Theorem 4.3 we know that the pairs (M, fi)
and (A/, p,;) are L2-acyclic. By Theorem 2.1 (2) we have

p(2)(M, s, [A, <p)(t) Ç(<t>)(t) -ln(detjV(G)(AG o ,{rA))). (4.7)

Recall that the kernel of Qi -> Hi(M)f is finite und that <2, —» Hx(M)f is

surjective. Now we apply Theorem 1.7 to G —>• M. For all t G (0, oo) we obtain

ln(detw(G)(AG ° >?0*c,Om))) > lim supln(detw(s,)(Aô( 0 V</,*ct(rAi)))-
I —>oo

Now apply (4.6) and (4.7). This finishes the proof of Theorem 4.7.

For convenience we also state the result which follows from combining
Theorem 3.3 with Theorem 4.7.

Theorem 4.8 (Fower and upper bounds combined in the quasi-fibered case). Let

M ^ .S'1 x I)2 be an irreducible 3-manifold with infinite fundamental group it.
Let cp G //1 (M; Q) be a quasi-fibered class.

Then there exists a D G M such that for any s G Spine(A/) and any (If )/-
factorizing homomorphism pt\it\(M) -> G, where G is residually finite and
countable, the pair M, ji) is L2-acyclic and such thatfor t < 1

\{4>(cfis)) + xM(<p)) In t-D < p(2)(M,5;/x,0)(O < |(0(ci(s)) + xm(4>)) In t

and such thatfor t > 1

|(<^(ci(s)) — xm(4>)) In t-D < p(2)(M,s;/x,0)(r) < ±(<p(ci(s)) - xM(<t>))\nt.

In particular we get

deg(p(M, s; p,, </>)) -xM(<p)-
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5. Proof of the main theorem

The following is the main theorem of this paper.

Theorem 5.1 (Main theorem). Let M he an irreducible 3-manifold with infinite
fundamental group n which is not a closed graph manifold and not homeomorphic
to Sl x D2. Let s e Spinc(M) and write n ti\(M).

Then there exists a (Hi)y -factorizing epimorphism a\7t —> F to a virtually
finitely generated free ahelian group such that the following holds: For any
fi // 1 (M; Q) and any factorization of a: n —> T into group homomorphisms

II V

jc —> G —> r for a residually finite countable group G, there exists a real number D
depending only on fi but not on p, such thatfor t < 1

\(fi(ci(s)) + xm(fi)) In t — D < p(2)(M,s; p,fi)(t) < \{fi(ci(s)) + xM(<p)) Inf

and such that for t > 1

\(fi(ci(s))-xM(<p))lnt — D < p(2)(M,s-p,fi)(t) < \{4>(ci(s)) - xm(</>)) Inf.

In particular we get
deg (p(M,s\p,(f>)) -xm ((/>)

Proof. As explained in [9, Section 10], we conclude from combining [1,2,22,32,
33,42,43] that there exists a finite regular covering p\ N —» M such that for any
4> H1 (M ; R) its pullback p*f> //1 (V; R) is quasi-fibered. Let k be the number
of sheets of p. Let prN\jz\(N) -> H\ (N)y and prM: jzi(M) H\ (M)y be the

canonical projections. The kernel of prw is a characteristic subgroup of 7Ti (N). The

regular finite covering p induces an injection

7t1(p):ni(N) ni(M)
such that the image of Jti(p) is a normal subgroup of n\(M) of finite index.
Let T be the quotient of Jt\(M) by the normal subgroup jt\(p)(ker(prA,)). Let

a:jii(M) -> T be the projection. Since H\(p\TL)f o pr^ prMo7ri(y>) we
know that 7ri(p)(ker(prjy)) is contained in the kernel of the canonical projection

prM: 7t\ (M) H\(M)y. This implies that a: Jt\ (M) —>• T is (Hi)y-factorizing,
which means in particular that there exists precisely one epimorphism

ß:T^Hi(M)f
satisfying prM ß o a. Moreover, a o n\(p) factorizes over pr.v into an injective
homomorphism j: H\(N)y —> T with finite cokernel. Hence F is virtually finitely
generated free abelian.

Consider any factorization of the homomorphism a:n\ (M) —>• T into group
homomorphisms

U V

m (M) g -+ r
with residually finite countable G.



48 S. Friedl and W. Lück CMH

Let G' be the quotient of by the normal subgroup n\{p)~l(ker(/r)) and

—> G' be the projection. Since the kernels of p! and of [i o n\(p)
agree, there is precisely one injective group homomorphism i : G' —> G satisfying
pi o n\(p) i o pi'. The kernel of pi! is contained in the kernel of pr^: jt\ (N) ->
//1 (N)f since j is injective and we have j o prw v o i o pi'. Hence there is

precisely one group homomorphism

satisfying v' o pi' prN. In particular //' is a H\ )/-factorizing homomorphism.
One easily checks that the following diagram commutes, and all vertical arrows are

injective, the indices [ttj(^V) : im(jri(/?)] and [T : H\(N)/] are finite, and p!, v'
and ß are surjective:

Since G is residually finite and countable, the group G' is residually hnite and

countable.
Now lets 6 Spinc(M) and let (f> e Hl(M; Q) Hon^T/^M)/; Q). We write

s' p*(s) and 4>' p*{4>). Furthermore we put c ci(s) and c' ci(s')-
Since (p' e H1(N',Q) Hom(Hi(N) f, Q) is quasi-fibered we can appeal to
Theorem 4.8. In our context it says that (N, pi') is L2-acyclic and that there exists a

real number D' depending only on cp' but not on pi' such that for t < 1

\{(p\c') + xN(<p')) Int-D' < p(2)(N,s'\p\cp')(t) < \{<p'(c') + xN(<p')) lnt

\(<p'(c') -xn(<P')) Inf — D' < p(2\N,s'\pi,<p')(t) < \(<p'(c') -xN(<p')) Inf.

We now set D := \D'. The theorem now follows from these inequalities and the

following equalities

Here the first equality is (1.8) and the second one Theorem 1.5 (3). The third one

v':G' —> Hi(N)f

and such that for f > 1

xm(<P) \xN{(p')

p(2)(M,s;/x,0)(f) ^p(2)(N,s'; p',(p')(t) for all f

(p(ci(s)) %<p'(ci(s')).

follows easily from the definitions.
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Remark 5.2 (Graph manifolds). The proof of Theorem 4.8 does not cover closed

graph manifolds. However, for a graph manifold M together with a (ll\ )/-factorizing
homomorphism p: -> G, for which (M, p) is L2-acyclic, together with a

class (p e //' (AT; R) the L2-torsion function p® (M; p, <-/>)(/) has been computed

explicitly in [9, Theorem 8.2] and in [ 18] to be equivalent to min{0, —xm (</>) • ln(f)},
provided that the image of the regular fiber under p. is an element of infinite order
and M is neither S1 x D2 nor S1 x S2. This implies

deg(p(2)(M ; p, <^)) -xM(4>)-

Remark 5.3 (The role of T). In Theorem 5.1 the group T is in some sense optimal.
Namely, one cannot expect F and ß idp in Theorem 5.1. For

instance, let K ç S3 be a non-trivial knot. Take M to be the 3-manifold given by the

complement of an open tubular neighborhood of the knot. Then deg(p(M; p, (p))

for p;jri(M) H\(M)f the canonical projection and (f>: H\(M)f V Z an

isomorphism is just the degree of the Alexander polynomial of the knot K which is

not the Thurston norm xm(4>) in general, see [9, Section 7.3].

Example 5.4 (S1 x D2 and S1 x S2). Consider a homomorphism

(ß: Hi(Sl x D2) ^ Z.

Let k be the index [Z : im(</>)] if <p is non-trivial, and let k =0 if cp is trivial. Then

we conclude from Theorem 1.5 (4), (1.9), and [28, Theorem 7.10]

xs'xd2(<P) 0;

deg (^(«S"1 x D2\(p)) k.

Hence we have to exclude S1 x D2 in Theorem 5.1. Analogously we get

*s'xs2(0) 0;

deg (/^(S1 x S2; cp)) =2 • k,

so that we cannot replace "irreducible" by "prime" in Theorem 5.1.

We conclude the paper with the proof of Theorem 0.1.

Proofof Theorem 0.1. Let M be an irreducible 3-manifold with infinite fundamental

group. If M is a graph manifold, then the statement is proved in Remark 5.2. Now

suppose that M is not a graph manifold. In this case the theorem follows from
Theorem 5.1, applied in the special case G p id^pj^), and v a.
Here we use the fact, mentioned in the proof of Lemma 1.4, that fundamental groups
of 3-manifolds are residually finite.
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