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Essential dimension of the spin groups in characteristic 2

Burt Totaro™

Abstract. We determine the essential dimension of the spin group Spin(#) as an algebraic group
over a field of characteristic 2, for n at least 15. In this range, the essential dimension is the same
as in characteristic not 2. In particular, it is exponential in #. In contrast, the essential dimension
of the orthogonal groups is smaller in characteristic 2. We also find the essential dimension of
Spin\(n) in characteristic 2 for n at most 10.

Mathematics Subject Classification (2010). 11E04, 11E72, 20G15.

Keywords. Essential dimension, spin group, cohomological invariant, etale motivic cohom-
ology.

Introduction

The essential dimension of an algebraic group G is a measure of the number of
parameters needed to describe all G-torsors over all fields. A major achievement of
the subject was the calculation of the essential dimension of the spin groups over a
field of characteristic not 2, started by Brosnan, Reichstein, and Vistoli, and completed
by Chernousov, Merkurjev, Garibaldi, and Guralnick [3,4,7], [18, Theorem 9.1].

In this paper, we determine the essential dimension of the spin group Spin(n)
for n > 15 over an arbitrary field (Theorem 2.1). We find that the answer is the
same in all characteristics. In contrast, for the groups O(n) and SO(n), the essential
dimension is smaller in characteristic 2, by Babic and Chernousov [1].

In characteristic not 2, the computation of essential dimension can be phrased
to use a natural finite subgroup of Spin(2r + 1), namely an extraspecial 2-group,
a central extension of (Z/2)*" by Z/2. A distinctive feature of the argument in
characteristic 2 is that the analogous subgroup is a finite group scheme, a central
extension of (Z/2)" x (u2)" by w2, where ju, is the group scheme of square roots of
unity.

In characteristic not 2, Rost and Garibaldi computed the essential dimension
of Spin(n) for n < 14 [6, Table 23B], where case-by-case arguments seem to be
needed. We show in Theorem 4.1 that for n < 10, the essential dimension of Spin(#)

*This work was supported by NSF grant DMS-1303105.



2 B. Totaro CMH

is the same in characteristic 2 as in characteristic not 2. It would be interesting to
compute the essential dimension of Spin(#n) in the remaining cases, 11 <n < 14 in
characteristic 2.

1. Essential dimension

Let G be an affine group scheme of finite type over a field k. Write H!(k, G) for the
set of isomorphism classes of G-torsors over k in the fppf topology. For G smooth
over k, this is also the set of isomorphism classes of G-torsors over k in the etale
topology.

Following Reichstein, the essential dimension ed(G) is the smallest natural num-
ber r such that for every G-torsor £ over an extension field £ of k, there is a subfield
k C F C E such that & is isomorphic to some G -torsor over F extended to £, and F
has transcendence degree at most r over k. (It is essential that £ is allowed to be any
extension field of k, not just an algebraic extension field.) There are several survey
articles on essential dimension, including [17, 19].

For example, let go be a quadratic form of dimension n over a field k of
characteristic not 2. Then O(gg)-torsors can be identified with quadratic forms
of dimension », up to isomorphism. (For convenience, we sometimes write O(n)
for O(qg).) Thus the essential dimension of O (n) measures the number of parameters
needed to describe all quadratic forms of dimension n. Indeed, every quadratic form
of dimension n over a field of characteristic not 2 is isomorphic to a diagonal form
{ay,...,an). It follows that the orthogonal group O(#n) in characteristic not 2 has
essential dimension at most #; in fact, O(n) has essential dimension equal to #n, by
one of the first computations of essential dimension [19, Example 2.5]. Reichstein
also showed that the connected group SO(n) in characteristic not 2 has essential
dimension n — 1 forn > 3 [19, Corollary 3.6].

For another example, for an integer n > 2 and any field k, the group scheme .,
of nth roots of unity is smooth over k if and only if » is invertible in k. Independent
of that, H'(k, jt,) is always isomorphic to k*/(k*)". From that description, it is
immediate that j, has essential dimension at most 1 over k. It is not hard to check
that the essential dimension is in fact equal to 1.

One simple bound is that for any generically free representation V' of a group
scheme G over k (meaning that G acts freely on a nonempty open subset of V),
the essential dimension of G is at most dim(V') — dim(G) [18, Proposition 5.1]. It
follows, for example, that the essential dimension of any affine group scheme of finite
type over k is finite.

For a prime number p, the p-essential dimension ed, (G) is a simplified invariant,
defined by “ignoring field extensions of degree prime to p”. In more detail, for a
G -torsor & over an extension field £ of k, define the p-essential dimension ed,(§)
to be the smallest number r such that there is a finite extension E’/E of degree



Vol. 94 (2019) Essential dimension of the spin groups in characteristic 2 3

prime to p such that § over £’ comes from a G-torsor over a subfield k C F C E’
of transcendence degree at most r over k. Then the p-essential dimension ed,(G)
is defined to be the supremum of the p-essential dimensions of all G-torsors over all
extension fields of k.

The spin group Spin(n) is the simply connected double cover of SO(n). It was a
surprise when Brosnan, Reichstein, and Vistoli showed that the essential dimension
of Spin(n) over a field k of characteristic not 2 is exponentially large, asymptotic
to 2"/2 as n goes to infinity [3]. As an application, they showed that the number of
“parameters” needed to describe all quadratic forms of dimension 2r in /3 over all
fields is asymptotic to 2.

We now turn to quadratic forms over a field which may have characteristic 2.
Define a quadratic form (g, V) over a field k to be nondegenerate if the radical V' of
the associated bilinear form is 0, and nonsingular if V -+ has dimension at most 1 and ¢
is nonzero on any nonzero element of V. (In characteristic not 2, nonsingular and
nondegenerate are the same.) The orthogonal group is defined as the automorphism
group scheme of a nonsingular quadratic form [13, Section VI.23]. For example,
over a field k of characteristic 2, the quadratic form

X1X2 + X3X4 + +*+ + Xor—1X2r
is nonsingular of even dimension 2r, while the form
2
X1X2 + X3X4 + -+ Xor—1X2r + X5, 44

is nonsingular of odd dimension 27 + 1, with ¥+ of dimension 1. The split orthogonal
group over k is the automorphism group of one of these particular quadratic forms.

Babic and Chernousov computed the essential dimension of O(n) and the smooth
connected subgroup O™ (n) over an infinite field k of characteristic 2 [1]. (We also
write SO(n) for O (n) by analogy with the case of characteristic not 2, even though
the whole group O(2r) is contained in SL(2r) in characteristic 2.) The answer is
smaller than in characteristic not 2. Namely, O(2r) has essential dimension r + 1
(not 2r) over k. Also, OT(2r) has essential dimension r + 1 for r even, and either r
or r + 1 for r odd, not 2r — 1. Finally, the group scheme O(2r + 1) has essential
dimension r 4+ 2 over k, and O™ (2r + 1) has essential dimension r + 1. The lower
bounds here are difficult, while the upper bounds are straightforward. For example,
to show that O(2r) has essential dimension at most r 4 1 in characteristic 2, write
any quadratic form of dimension 2r as a direct sum of 2-dimensional forms, thus
reducing the structure group to (Z/2)" x (u2)", and then use that the group (Z/2)"
has essential dimension only 1 over an infinite field of characteristic 2 [1, proof of
Proposition 13.1].

In this paper, we determine the essential dimension of Spin(n) in characteristic 2
forn < 10 or n > 15. Surprisingly, in view of what happens for O(n) and O™ (n),
the results for spin groups are the same in characteristic 2 as in characteristic not 2.
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For n < 10, the lower bound for the essential dimension is proved by constructing
suitable cohomological invariants. It is not known whether a similar approach is
possible for n > 15, either in characteristic 2 or in characteristic not 2.

2. Main result

Theorem 2.1. Letk be afield. For every integer n at least 15, the essential dimension
of the split group Spin(n) over k is given by:

221 _nn—1)/2 if n is odd;
ed(Spin(n)) = {20*=2/2 _y(n —1)/2 ifn =2 (mod 4);
20=2)/2 L om _n(n—1)/2 ifn=0 (mod 4),

where 2™ is the largest power of 2 dividing n. The 2-essential dimension is the same
number.

Proof. For k of characteristic 0, this was proved by Chernousov and Merkurjev,
sharpening the results of Brosnan, Reichstein, and Vistoli [4, Theorem 2.2]. Their
argument works in any characteristic not 2, using the results of Garibaldi and
Guralnick for the upper bounds [7]. Namely, Garibaldi and Guralnick showed that
for any field k and any n at least 15, Spin(n) acts generically freely on the spin
representation for n odd, on each of the two half-spin representations if n = 2
(mod 4), and on the direct sum of a half-spin representation and the standard
representation if n = 0 (mod 4). Moreover, for n at least 20 with n = 0 (mod 4),
HSpin(n) = Spin(n)/u» (the quotient different from O (n)) acts generically freely
on a half-spin representation [7, Theorem 1.1].

It remains to consider a field k£ of characteristic 2. Garibaldi and Guralnick’s
result gives the desired upper bound in most cases. Namely, for n odd and at least
15, the spin representation has dimension 2*~1/2 and so

ed(Spin(n)) < 2¢D/2 _ dim(Spin(n)) = 2 V2 —n(n —1)/2.
For n = 2 (mod 4), the half-spin representations have dimension 21=2)/2 and so
ed(Spin(n)) <222 _n(n —1)/2.

For n = 16, since the spin group acts generically freely on the direct sum of a
half-spin representation and the standard representation,

ed(Spin(n)) <222 4y —n(n —1)/2 (= 24).

For n at least 20 and divisible by 4, the optimal upper bound requires more effort.
The following argument is modeled on Chernousov and Merkurjev’s characteristic
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zero argument [4, Theorem 2.2]. Namely, consider the map of exact sequences of
k-group schemes:

1 — pp — Spin(n) — HSpin(n) — 1

1

1 — pp — 0T (n) — PGOT () — 1.

Since HSpin(n) acts generically freely on a half-spin representation, which has
dimension 2*=2/2 we have

ed(HSpin(n)) < 20272 _n(n —1)/2.

By Chernousov—Merkurjev or independently Lotscher, for any normal subgroup
scheme C of an affine group scheme G over a field k,

ed(G) <ed(G/C) + max ed [E/G],

where the maximum runs over all field extensions F of k and all G/C-torsors E
over F' [4, Proposition 2.1], [15, Example 3.4]. Thus [E/G]is a gerbe over F banded
by C.

Identifying H2(K, ) with the p-torsion in the Brauer group of K, we can talk
about the index of an element of /(K {1 ), meaning the degree of the corresponding
division algebra over K. For a prime number p and a nonzero element £ of
H?(K,u p)overafield K, the essential dimension (or also the p-essential dimension)
of the corresponding i ,-gerbe over K is equal to the index of E, by Karpenko and
Merkurjev [11, Theorems 2.1 and 3.1].

By the diagram above, for any field F over k, the image of the connecting map

H'(F,HSpin(n)) — H*(F, u3) C Br(F)
is contained in the image of the other connecting map
HY(F, PGO™(n)) = H?*(F, u2) C Br(F).

In the terminology of the Book of Involutions, the image of the latter map consists of
the classes [A] of all central simple F-algebras A of degree n with a quadratic pair
(0, f) of trivial discriminant [13, Section 29.F]. Any torsor for PGO™ (n) is split
by a field extension of degree a power of 2, by reducing to the corresponding fact
about quadratic forms. So ind(A) must be a power of 2, but it also divides n, and
soind(A4) < 2™, where 2™ is the largest power of 2 dividing n. We conclude that

ed(Spin(n)) < ed(HSpin(n)) + 2™
< 502 _ gy —1)/3 4 7™,

This completes the proof of the upper bound in Theorem 2.1.
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We now prove the corresponding lower bound for the 2-essential dimension of
the spin group over a field k of characteristic 2. Since ed,(Spin(n)) < ed(Spin(n)),
this will imply that the 2-essential dimension and the essential dimension are both
equal to the number given in Theorem 2.1.

Write O(2r) for the orthogonal group of the quadratic form

X1X2 + X3X4 + -+ Xor—1X2r

over k, and O(2r + 1) for the orthogonal group of
X1X2 + X3X4 + 0+ Xop_1 X2 + X3,
Then we have an inclusion O(2r) C O(2r + 1). Note that O(2r) is smooth over k,
with
0@2r)/0t(2r) = Z/2.

The group scheme O(2r + 1) is not smooth over k, but it contains a smooth connected
subgroup O (2r + 1) with

OQ@r +1)= 01Q2r + 1) x us.

It follows that O(2r) is contained in Ot (2r + 1). Using the subgroup Z/2 X 2
of O(2), we have a k-subgroup scheme

K :=(Z/2x up) C 0Q2r)yc 0t @2r +1).

Let G be the inverse image of K in the double cover Spin(2r + 1) of O+ (2r + 1).
Thus G is a central extension

| = pp > G — (Z/2) x (u2)" — 1.

(Essentially the same “finite Heisenberg group scheme” appeared in the work of
Mumford and Sekiguchi on abelian varieties [20, Appendix A].)

To describe the structure of G in more detail, think of K = (u2)" as the 2-torsion
subgroup scheme of a fixed maximal torus Tsp == (G,;)" in OT(2r + 1), where G,
is the multiplicative group. The chararacter group of Tso is the free abelian group
Z{x1,...,x,}, and the Weyl group W = N(Ts0)/Tso of OF(2r + 1) is the semi-
direct product S, x (Z/2)". Here S, permutes the characters x1, ..., x, of Tso, and
the subgroup E, = (Z/2)" of W, with generators €, ..., €,, acts by: ¢; changes
the sign of x; and fixes x; for j # i. The character group of K = Tgso[2]
is Z/2{x1,...,x,}. The group E, centralizes K, and the group

(Z/2)" % (u2)" C O (2r + 1)

above is E, x K.
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Let L be the inverse image of K in Spin(2r + 1), which is contained in a maximal
torus 7" of Spin(2r + 1), the inverse image of Tsp. The character group X *(7') is

Zixy,....,x,, A}/ RQA=x1 4+ -+ X;).
Therefore, the character group X * (L) is
Z{)C[,... ,xr,A}/(in =0,24A=x1+--- —f—x,).

(Thus X *(L) is isomorphic to (Z/4) x (Z/2)"™1, and so L is isomorphic to jt4 x
(u2) 1) The Weyl group W of Spin(2r + 1) is the same as that of O (2r + 1),
namely S, x E,. In particular, the element ¢; of £, acts on X *(7) by changing the
sign of x; and fixing x; for j # i, and hence it sends 4 to A — x;.

The subset S of X™*(L) corresponding to characters of L which are faithful on
the center u, of L is the complement of the subgroup X *(K) = Z/2{x1, ..., x,}.
Therefore, S has order 2”. The group E, = (Z/2)" acts freely and transitively on S,

since
(nei)(A) =A4-) x
iel iel
for any subset 1 of {1,...,r}.

The group G = E, - L is the central extension considered above. Now, let V
be a representation of G over k on which the center i, C L acts faithfully by
scalars. Then the restriction of V' to L is fixed (up to isomorphism) by the action
of E, on X*(L). By the previous paragraph, the 2" 1-dimensional representations
of L that are nontrivial on the center u, all occur with the same multiplicity in V.
Therefore, V' has dimension a multiple of 2”. This bound is optimal, since the spin
representation W of Spin(2r + 1) has dimension 2" over k, and the center p, acts
faithfully by scalars on W.

We use the following result of Merkurjev’s [16, Theorem 5.2], [11, Remark 4.5].
(The first reference covers the case of the group scheme fi, in characteristic p, as
needed here.)

Theorem 2.2. Let k be a field and p be a prime number. Let 1 — pup, — G —
Q — 1 be a central extension of affine group schemes over k. For a field extension K
of k, let dg: H'(K, Q) — H?*(K, jp) be the boundary homomorphism in fppf
cohomology. Then the maximal value of the index of 0g (E), as K ranges over all
field extensions of k and E ranges over all Q-torsors over K, is equal to the greatest
common divisor of the dimensions of all representations of G on which [, acts by
its standard representation.

As mentioned above, for a prime number p and anonzero element E of H2(K, i)
over a field K, the essential dimension (or also the p-essential dimension) of the
corresponding i ,-gerbe over K is equal to the index of E.
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Finally, consider a central extension 1 — u, — G — Q — 1 of finite group
schemes over a field k. Generalizing an argument of Brosnan—Reichstein—Vistoli,
Karpenko and Merkurjev showed that the p-essential dimension of G (and hence
the essential dimension of G) is at least the p-essential dimension of the u ,-gerbe
over K associated to any Q-torsor over any field K/k [11, Theorem 4.2]. By the
analysis above of representations of the finite subgroup scheme G of Spin(2r + 1)
over a field k of characteristic 2, we find that ed,(G) > 2". For a closed subgroup
scheme G of a group scheme L over a field k and any prime number p, we have

ed,(L) + dim(L) > ed,(G) 4 dim(G)

[17, Corollary 4.3] (which covers the case of fppf torsors for non-smooth group
schemes, as needed here). Applying this to the subgroup scheme G of Spin(2r), we
conclude that

ed,(Spin(2r + 1)) > 2" —dim(Spin(2r + 1)) =2" —r(2r + 1).
Combining this with the upper bound discussed above, we have
ed(Spin(2r 4+ 1)) = eda(Spin(2r + 1)) =2" —r(2r + 1)

forr = 7.
The proof of the lower bound for ed;(Spin(2r)) when r is odd is similar. The
intersection of the subgroup K = (jp x Z./2)" C O(2r) with O+ (2r) is
K1 = (u2)" x (Z2/2)",
where (Z/2)" ! denotes the kernel of the sum (Z/2)" — Z/2. As a result, the
double cover Spin(2r) contains a subgroup G which is a central extension

1> g = Gy = (Z/2) 7 x (u2)” — 1.

In this case, an argument analogous to the one for G shows that every representation
of G1 on which the center i, acts by its standard representation has dimension a
multiple of 2"~! (rather than 2"). The argument is otherwise identical to the argument
for Spin(2r + 1), and we find that

ed,(Spin(2r)) = 27"V —r@2r —1).

For r odd at least 9, this agrees with the lower bound found earlier, which proves the
theorem on Spin(n) forn = 0 (mod 4).

It remains to show that for n a multiple of 4, with 2™ the largest power of 2
dividing n, we have

ed,(Spin(n)) > 2022 L 2™ _ p(n — 1)/2.
p

The argument follows that of Merkurjev in characteristic not 2 [17, Theorem 4.9].
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Namely, for n a multiple of 4, the center C of G := Spin(n) is isomorphic to
Jlo X fa, and H := G/C is the group PGO™T(n). An H-torsor over a field L
over k is equivalent to a central simple algebra A of degree n over L with a
quadratic pair (o, /) and with trivialized discriminant, meaning an isomorphism
from the center of the Clifford algebra C(A4, 0, f)to L x L [13, Section 29.F]. The
image of the homomorphism from C* == (Z/2)? to the Brauer group of L is equal
to {0, [4], [CT],[C ]}, where C T and C ™ are the simple components of the Clifford
algebra; each is a central simple algebra of degree 2("~2/2 over L. By Merkurjev,
there is a field L over k and an H -torsor E over L such that

ind(C*) = ind(C™) =202/2 and  ind(A) = 2™

[16, Section 4.4 and Theorem 5.2]. We use the following result [17, Example 3.7]:

Lemma 2.3. Let L be a field, p a prime number, and r a natural number. Let C
be the group scheme (p)", and let Y be a C-gerbe over L. Then the p-essential
dimension of Y, and also the essential dimension of Y, is the minimum, over all

bases uy, ..., uy for C* of > [_; ind(u; (¥)).

It follows that the 2-essential dimension of the (112)?-gerbe E /G over L associated
to the H -torsor E above is

edy(E/G) = ind(A4) + ind(CT) = 20*=2/2 4 om,
It follows that

ed(Spin(n)) > ed,(Spin(n))
>edy(E/G) — dim(G/C)
=20=2/2 L om _ p(n —1)/2. n

3. Etale motivic cohomology

In this section, we summarize the properties of etale motivic cohomology of fields,
the natural home of mod p cohomological invariants for group schemes over a field
of characteristic p.

For a field k of characteristic p > 0, let H%/ (k) be the etale motivic cohomology
group H! (k,Z/p(j)), or equivalently

HE(k,Z/p(j)) = Hy ' (k, 21,),

where Q{;,g is the subgroup of the group Q/ of differential forms on the
separable closure kg over F, spanned by products (dai/ai) A --- A (daj/aj) with

ai,...,aj € k¥ [9]. The group H"/ (k) is zero except when i equals j or j + 1,
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because k has p-cohomological dimension at most 1 [21, Section 11.2.2]. The
symbol {ay,...,a,_1,b] denotes the element of H™"~1(k) which is the product of
the elements

ai € k*/(k*) = H" (k) and bek/{a’ —a:ack}= H"k).

Also, for a field k of characteristic 2, let W(k) denote the Witt ring of symmetric
bilinear forms over k, and let /,(k) be the Witt group of nondegenerate quadratic
forms over k. (By the conventions in Section 1, I,(k) consists only of even-
dimensional forms.) Then I,(k) is a module over W(k) via tensor product [5,
Lemma 8.16]. Let I be the kernel of the homomorphism rank: W(k) — Z/2, and
let

17(k) = 17" 1 (k),

following [5, p.53]. To motivate the notation, observe that the class of an
m-fold quadratic Pfister form (@i, ...,am—1,b] lies in 17*(k). By definition, for
ai,...,am—1 ink*and b ink, {ay,...,am—1,b] is the quadratic form

{ar)s ® - ® (am—1)p ® {(b]

of dimension 2™, where {a )} is the bilinear form (1,a) and (b] is the quadratic
form
[1,b] = x% + xy + by>.

In analogy with the Milnor conjecture, Kato proved the isomorphism
IPF)/ I = H™ M (F)

for every field F of characteristic 2 [5, Fact 16.2]. The isomorphism takes the
quadratic Pfister form {a1,...,am—1,b] to the symbol {ay,...,dm—1,b]. (For this
paper, it would suffice to have Kato’s homomorphism, without knowing that it is an
isomorphism.)

A cohomological invariant gives a lower bound for the essential dimension,
as follows. This is standard for mod / invariants with [ # p = char(k) [17,
Theorem 5.3], and we now give the analogous statement for mod p invariants of a
k-group scheme G. Define a cohomological invariant f of G with values in /"""
to be nontrivial if there is a field F' containing an algebraic closure of k and a
G -torsor u over F' such that f(u) is not zero.

Lemma 3.1. Let G be an affine group scheme of finite type over a field k of
characteristic p > 0. If there is a nontrivial cohomological invariant for G with
values in H™"~ 1, then ed(G) > ed,(G) > n.

Proof. Let f be the given cohomological invariant for G. It suffices to prove a
lower bound on the essential dimension after enlarging k. So we can replace k
by its algebraic closure. Then every field F of transcendence degree less than n
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over k has H"" 1(F) = 0, by Kato and Kuzumaki [12, Section 3, Corollary 2].
By assumption, there is a G-torsor u over a field E over k such that f(u) is not
zero in H™"1(E). Thanks to the transfer maps on Galois cohomology (viewing
H™" 1(E)as H\(E, Q" (Es))), this element remains nonzero in H""~1(E") for
any finite extension £’/ E of degree prime to p. Therefore, the G-torsor u extended
up to E’ cannot be defined over a subfield F of E’ with transcendence degree less
than n over k. So ed(G) > ed,(G) > n. ]

Corollary 3.2. Let G be an affine group scheme of finite type over a field k of
characteristic p > 0. Let [ be a cohomological invariant for G with values
in H™"=1. Suppose that for any field F over k and any a1, . ..,a,—1 in F* and a,
in I, there is a G -torsor u over F with

Sw)=A{ai1,....an-1,an]

in H""~\(F). Then ed(G) > ed,(G) > n.

Proof. Let k be an algebraic closure of k, and let E be the rational function field
k(ay,...,ay). By assumption, there is a G-torsor u over E such that

f(u) = {611,---,an_1,an].

This symbol in H*"~1(E) is not zero, by Izhboldin’s calculation of H™"~! of a
rational function field [10, Theorem 4.5]. Thus f is nontrivial, in the sense above.
By Lemma 3.1, ed(G) > ed,(G) > n. Il

4. Low-dimensional spin groups

Rost and Garibaldi determined the essential dimension of the spin groups Spin(#n)
with n < 14 in characteristic not 2 [6, Table 23B]. It should be possible to compute
the essential dimension of low-dimensional spin groups in characteristic 2 as well.
The following section carries this out for Spin(n) with n < 10. We find that in
this range (as for n > 15), the essential dimension of the spin group is the same in
characteristic 2 as in characteristic not 2, unlike what happens for O(n) and SO(n).

For n < 10, we give group-theoretic proofs which work almost the same
way in any characteristic, despite the distinctive features of quadratic forms in
characteristic 2.
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Theorem 4.1. For n < 10, the essential dimension, as well as the 2-essential
dimension, of the split group Spin(n) over a field k of any characteristic is given by:

n ed(Spin(n))
< 0
7 4
8 5
9 5
10 4

Proof. As discussed above, it suffices to consider the case of a field k& of character-
istic 2. For 2 < n < 6, every Spin(n)-torsor over a field is trivial, for example by the
exceptional isomorphisms

Spin(2) = G,,, Spin(3) = SL(2), Spin(4) = SL(2) x SL(2),
Spin(5) = Sp(4), and Spin(6) = SL(4).

It follows that ed(Spin(r)) = Ofor2 < n < 6.
We will use the following standard approach to bounding the essential dimension
of a group.

Lemma 4.2. Let G be an affine group scheme of finite type over a field k. Suppose
that G acts on a k-scheme Y with a nonempty open orbit U. Suppose that for every
G-torsor E over an infinite field F over k, the twisted form (E x Y)/G of Y over F
has a Zariski-dense set of F-points. Finally, suppose that U has a k-point x, and
let N be the stabilizer k-group scheme of x in G. Then

HY(F,N)— HY\(F,G)

is surjective for every infinite field F over k (or for every field F over k, if G is
smooth and connected). As a result, edi (G) < edg(N).

The proof is short, the same as that of [6, Theorem 9.3]. (Note that even if k is
finite, we get the stated upper bound for the essential dimension of G: a G-torsor
over a finite field F that contains k& causes no problem, because F has transcendence
degree 0 over k.) If G is smooth and connected, then H!(F, G) is in fact trivial for
every finite field F that contains k, by Lang [14]; that implies the statement in the
theorem that H'(F, N) — H'(F, G) is surjective for every field F over k.

The assumption about a Zariski-dense set of rational points holds, for example,
if Y is a linear representation V' of G, or if Y is the associated projective space P (V')
to a representation, or (as we use later) a product P(V) x P(W).

We use Garibaldi and Guralnick’s calculation of the stabilizer group scheme of a
general k-point in the spin (for n odd) or a half-spin (for n even) representation W
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of the split group Spin(n), listed in Table 1 here [7, Table 1]. Here Spin(n) has an
open orbit on the projective space P(W) of lines in W if n < 12 orn = 14, and an
open orbiton W if 2 < n < 6 orn = 10. (To be precise, we will use that even if k
is finite, there is a k-point in the open orbit for which the stabilizer k-group scheme
is the split group listed in the table.)

n chark # 2 chark =2

6 SL(3)-(Gy)? same

7 G same

8 Spin(7) same

9 Spin(7) same

10 Spin(7) - (G4)® same

11 SL(5) Z/2x SL(5)
12 SL(6) Z/2x SL(6)

13 SLB)xSL3) Z/2x (SL3)xSL(3))
14 Gy x Gy Z/2x (G, x Gy)

Table 1. Generic stabilizer of spin (or half-spin) representation of Spin(n).

We now begin to compute the essential dimension of the split group G = Spin(7)
over a field k of characteristic 2. Let W be the 8-dimensional spin representation
of G. Then G has an open orbit on the projective space P (W) of lines in W. By
Table 1, there is a k-point x in W whose image in P (W) is in the open orbit such
that the stabilizer of x in G is the split exceptional group G,. Since G preserves
a quadratic form on W, the stabilizer H of the corresponding k-point in P(W) is
at most G X p,. In fact, H is equal to G, X p,, because the center u, of G acts
trivially on P(W).

By Lemma 4.2, the inclusion G, x us, < G induces a surjection

H'Y(F,G, x u2) > HY(F, G)

for every field F over k. Over any field F, G,-torsors up to isomorphism can
be identified with 3-fold quadratic Pfister forms {ay, a,, b] (with aj,a, € F* and
b € F), and so G, has essential dimension 3 [21, Théoréme 11]. Since u, has
essential dimension 1, the surjectivity above implies that G = Spin(7) has essential
dimension at most 4.

Next, a G-torsor determines two quadratic forms of dimension 8. Besides the
obvious homomorphism y;:G <> Spin(8) — SO(8) (which is trivial on the
center up of G), we have the spin representation y,: G — SO(8), on which pu,
acts faithfully by scalars. Thus a G-torsor u over a field F over k determines two
quadratic forms of dimension 8 over F', which we call g, and g5.
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To describe these quadratic forms in more detail, use that every G-torsor comes
from a torsor for G, X pp. The two homomorphisms G, <— G — SO(8) (via y,
and y») are both conjugate to the standard inclusion. Also, y; is trivial on the p,
factor, while y» acts faithfully by scalars on the p, factor. It follows that ¢g; is a
quadratic Pfister form, (a, b, c¢] (the form associated to a G,-torsor), while g, is
a scalar multiple of that form, d {a, b, c].

Therefore, a G-torsor u canonically determines a 4-fold quadratic Pfister form,

g1+ q2 ={d,a,b,c].

Define f4(u) to be the associated element of H*3(F),
Ja(u) ={d,a.b,c].

By construction, this is well-defined and an invariant of u. By considering the
subgroup G, x o C Spin(7), where there is a G x pa-torsor associated to any
elements a,b,d in F* and ¢ in F, we see thata, b, ¢, d can be chosen arbitrarily. By
Corollary 3.2, G = Spin(7) has 2-essential dimension at least 4, and hence essential
dimension at least 4.

The opposite inequality was proved above, and so Spin(7) has essential dimension
equal to 4. Since the lower bound is proved by constructing a mod 2 cohomological
invariant, this argument also shows that Spin(7) has 2-essential dimension equal to 4.
For the same reason, the computations of essential dimension below (for Spin(n)
with 8 < n < 10) also give the 2-essential dimension.

Next, we turn to Spin(8). At first, let G = Spin(2r) for a positive integer r over a
field k of characteristic 2. Let V' be the standard 2r-dimensional representation of G.
Then G has an open orbit in the projective space P (V) of lines in V. The stabilizer
k-group scheme H of a general k-point in P (V') is conjugate to Spin(2r — 1) - Z,
where Z is the center of Spin(2r), with Spin(2r — 1) N Z = 5. (In more detail, a
general line in V' is spanned by a vector x with ¢(x) # 0, where ¢ is the quadratic
form on V. Then the stabilizer of x in SO(V') is isomorphic to SO(S), where
S := x* is a hyperplane in V on which g restricts to a nonsingular quadratic form
of dimension 2r — 1, with S+ equal to the line k - x C S.) Here

7 ~ U2 X o if ris even,
[ if r is odd.

In particular, if r is even, then H = Spin(2r —1) x w,. Thus, for r even, the inclusion
Spin(2r — 1) x 3 < G induces a surjection

H'(F,Spin(2r — 1) x u2) — HY(F,G)

for every field F over k, by Lemma 4.2.



Vol. 94 (2019) Essential dimension of the spin groups in characteristic 2 15

It follows that, for r even, the essential dimension of Spin(2r) is at most 1 plus
the essential dimension of Spin(2r — 1). Since Spin(7) has essential dimension 4,
G = Spin(8) has essential dimension at most 5.

Before proving that equality holds, let us analyze G-torsors in more detail. We
know that H 1 (F, Spin(7) x py) — H'(F,G) is onto, for all fields F over k. Also,
we showed earlier that H(F, G x u2) — H'(F, Spin(7)) is surjective. Therefore,

HY(F, Gy x ua x ) - HY(F, G)

is surjective for all fields F over k, where Z = pu, x u, is the center of G.
As discussed earlier, G,-torsors up to isomorphism can be identified with 3-fold
quadratic Pfister forms. It follows that every G-torsor is associated to some 3-fold
quadratic Pfister form ((a, b, c] and some elements d, e in F*, which yield elements
of H'\(F, jt2) = F*/(F*)>.

Next, observe that a G -torsor determines several quadratic forms. Besides the
obvious double covering y;:G — SO(8), the two half-spin representations of G
give two other homomorphisms y2, y3: G — SO(8). (These three homomorphisms
can be viewed as the quotients of G by the three k-subgroup schemes of order 2
in Z. They are permuted by the group S5 of “triality” automorphisms of G.) Thus
a G -torsor u over a field F over k determines three quadratic forms of dimension 8,
which we call ¢1, q2, g3.

To describe how these three quadratic forms are related, use that every G-torsor
comes from a torsor for G, x 5 X ;1. The three homomorphisms G, — G — SO(8)
(via yi1, x2, and y3) are all conjugate to the standard inclusion, whereas the
three homomorphisms send u, X py to the center up, C SO(8) by the three
possible surjections. It follows that the three quadratic forms can be written as
g1 =d{a,b,c],q2 = e{a,b,c], and g3 = defa, b, c].

Note that a scalar multiple ¢ = d{ay,...,am—1,b] of a quadratic Pfister form
(as a quadratic form up to isomorphism) uniquely determines the associated quadratic
Pfister form qo = (a1, ..., am—1,b] up to isomorphism. (Proof: it suffices to show
that if ¢ and r are m-fold quadratic Pfister forms over F with ag = r for some a
in F*, then g = r. Since r takes value 1, so does aq, and so g takes value a~—'. But
then a—!g = g by the multiplicativity of quadratic Pfister forms [5, Corollary 9.9].
Therefore, r =~ aq >~ q.)

We now define an invariant for G = Spin(8) over k with values in H>*. Given
a G-torsor u over a field F over k, consider the three associated quadratic forms
41,42.43 as above. By the previous paragraph, g; = d{a,b,c] determines the
quadratic Pfister form qo = {a, b, c]. So u determines the 5-fold quadratic Pfister
form

go+q1+q2+q3={d.eab,c].
The associated class

fs(u) ={d,e,a,b,c] € H5’4(F)

is therefore an invariant of u.
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By considering the subgroup G, x Z C G = Spin(8), where Z = uy X Wa,
there is a G, x Z-torsor associated to any elements a,b,d,e in F* and ¢ in F,
and f5 of the associated G-torsor is {d, e,a, b,c] in H>*(F). By Corollary 3.2, G
has essential dimension at least 5. Since the opposite inequality was proved above,
G = Spin(8) has essential dimension over k equal to 5.

Next, let G = Spin(9) over a field k of characteristic 2. Let W be the spin repre-
sentation of G, of dimension 16, corresponding to a homomorphism G — SO(16).
(A reference for the fact that this self-dual representation is orthogonal in
characteristic 2, as in other characteristics, is [8, Theorem 9.2.2].) By Table 1,
G has an open orbit on the space P(W) of lines in W, and the stabilizer in G of
a general k-point in W is conjugate to Spin(7). (This is not the standard inclusion
of Spin(7) in Spin(9), but rather a lift of the spin representation y,: Spin(7) — SO(8)
to Spin(8) followed by the standard inclusion Spin(8) < Spin(9). In particular, the
image of Spin(7) does not contain the center ., of G = Spin(9).) Since G preserves
a quadratic form on W, it follows that the stabilizer in G of a general k-point
in P(W) is conjugate to Spin(7) x u», where u, is the center of Spin(9) (which acts
faithfully by scalars on W). Therefore, by Lemma 4.2, the inclusion of Spin(7) x p2
in G = Spin(9) induces a surjection

H'(F,Spin(7) x u) — HY(F,G)

for every field F over k.

Since Spin(7) has essential dimension 4 over k as shown above, G = Spin(9)
has essential dimension at most4 + 1 = 5.

Next, a G-torsor determines several quadratic forms. Besides the obvious
homomorphism R: G < Spin(10) — SO(10), we have the spin representation
S:G — SO(16). Thus a G-torsor over a field F' over k determines a quadratic
form r of dimension 10 and a quadratic form s of dimension 16.

To describe how these forms are related, use that every G-torsor comes from
a torsor for the subgroup Spin(7) x p, described above. The restriction of R
to the given subgroup Spin(7) is the composition of the spin representation
x2:Spin(7) — SO(8) with the obvious inclusion SO(8) < SO(10). The restriction
of S to the given subgroup Spin(7) is the direct sum of the standard representation
x1:Spin(7) — SO(8) and the spin representation y,: Spin(7) — SO(8). Finally, R
is trivial on the second factor p, (the center of G), whereas S acts faithfully by
scalars on .

Now, let (11, ¢) be a Spin(7) x wa-torsor over k, where uy is a Spin(7)-torsor
and e is in H'(F, up) = F*/(F*)?, which we lift to an element ¢ of F*. By the
earlier analysis of the quadratic forms associated to a Spin(7)-torsor, the quadratic
form associated to u; via the standard representation yi:Spin(7) — SO(8) is a
3-fold quadratic Pfister form {a, b, c¢], while the quadratic form associated to u;
via the spin representation y,:Spin(7) — SO(8) is a multiple of the same form,
d{a,b,c].
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By the analysis of representations two paragraphs back, it follows that the quadratic
form associated to (1, ¢) via the representation R:G — SO(10)isr = H +d {a, b, c],
where H is the hyperbolic plane. Also, the quadratic form associated to (u1, e) via
the representation S: G — SO(16) is s = e{a,b,c] + de{a, b, ].

Next, r determines the quadratic form ro = d{a, b, c] by Witt cancellation
[5, Theorem 8.4], and that in turn determines the quadratic Pfister form go = (a, b, |
as shown above. Therefore, a G-torsor u determines the 5-fold quadratic Pfister form

go+ro+s={d,eab,c]

up to isomorphism.
Therefore, defining
fs(u) =1{d,e,a,b,c]

in H>*(F) yields an invariant of u. By our earlier description of Spin(7)-torsors, we
cantakea, b, d, e to be any elements of F* and ¢ any element of . By Corollary 3.2,
G has essential dimension at least 5. Since the opposite inequality was proved earlier,
G = Spin(9) over k has essential dimension equal to 5.

Finally, let G = Spin(10) over a field k of characteristic 2. Let V be the
10-dimensional standard representation of G, corresponding to the double covering
G — S0O(10), and let W be one of the 16-dimensional half-spin representations
of G, corresponding to a homomorphism G — SL(16). (The other half-spin rep-
resentation of G is the dual W*.)

As discussed above for any group Spin(2r), G = Spin(10) has an open orbit
on P(V), with generic stabilizer Spin(9) - u4. (Here u4 is the center of G, which
contains the center w, of Spin(9).) Consider the action of G on P(V) x P(W) =
P° x P>, As discussed above, Spin(9) (and hence Spin(9) - 114) has an open
orbit on P(W). As a result, G has an open orbit on P(V) x P(W). Moreover,
the generic stabilizer of Spin(9) on P(W) is Spin(7) x w2, where the inclusion
Spin(7) < Spin(9) is the composition of the spin representation Spin(7) < Spin(8)
with the standard inclusion into Spin(9); in particular, the image does not contain the
center u, of Spin(9). Therefore, the generic stabilizer of Spin(9) - w4 C Spin(10)
on P (W) is Spin(7) x 4. We conclude that G has an open orbit on P(V) x P(W),
with generic stabilizer Spin(7) x p4. It follows that

H(F,Spin(7) x u4) — H'(F,G)

is surjective for every field F over k, by Lemma 4.2.

The image H, of the subgroup H = Spin(7) x4 C G in SO(10) is Spin(7) x w2,
where Spin(7) is contained in SO(8) (and contains the center p, of SO(8)) and 1o
is the center of SO(10). In terms of the subgroup SO(8) x SO(2) of SO(10), we
can also describe Hy as Spin(7) x po, where Spin(7) is contained in SO(8) and 2
is contained in SO(2). Thus H, is contained in Spin(7) x SO(2). Therefore, H is
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contained in Spin(7) x G,, C G = Spin(10), where G, is the inverse image in G of
SO(2) C SO(10). It follows that

H(F,Spin(7) x Gp) — H'(F, G)
is surjective for every field F over k. Since every G,,-torsor over a field is trivial,
HY(F,Spin(7)) - H'(F,G)

is surjective for every field F over k.
Here Spin(7) maps into Spin(8) by the spin representation, and then

Spin(8) < G = Spin(10)

by the standard inclusion. By the description above of the 8-dimensional quadratic
form associated to a Spin(7)-torsor by the spin representation, it follows that the
quadratic form associated to a G-torsor is of the form H + d {a, b, c].

Every 10-dimensional quadratic form in / ;’ over a field is associated to some
G-torsor. So we have given another proof that every 10-dimensional quadratic
form in / ;’ is isotropic. This was proved in characteristic not 2 by Pfister, and it
was extended to characteristic 2 by Baeza and Tits, independently [2, pp. 129-130],
[22, Theorem 4.4.1(ii)].

Since Spin(7) has essential dimension 4, the surjectivity above implies that
G = Spin(10) has essential dimension at most 4. To prove equality, we define
an invariant for G with values in H*3 by the same argument used for Spin(7).
Namely, a G -torsor u over a field F over k determines a 4-fold quadratic Pfister form

(d,a,b,c]
up to isomorphism, and hence the element

Ja(u) = {d,a,b,c]

in H*3(F). By Corollary 3.2, this completes the proof that G = Spin(10) over k
has essential dimension equal to 4. As in the previous cases, since the lower bound
is proved using a mod 2 cohomological invariant, G also has 2-essential dimension
equal to 4. L

Acknowledgements. Thanks to Skip Garibaldi and Alexander Merkurjev for their
suggestions. Garibaldi spotted a mistake in my previous description of the finite
group scheme in the proof of Theorem 2.1.
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