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Lagrangian isotopies and symplectic function theory

Michael Entovf Yaniv Ganor** and Cedric Membrez*

Abstract. We study two related invariants of Lagrangian submanifolds in symplectic manifolds.
For a Lagrangian torus these invariants arc functions on the first cohomology of the torus.

The first invariant is of topological nature and is related to the study of Lagrangian isotopies
with a given Lagrangian flux. More specifically, it measures the length of straight paths in the

first cohomology that can he realized as the Lagrangian flux of a Lagrangian isotopy.
The second invariant is of analytical nature and comes from symplectic function theory. It

is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical
interpretation.

We partially compute (hese invariants for certain Lagrangian tori.
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1. Introduction

In this paper we study two related invariants of Lagrangian submanifolds which are

invariant under symplectomorphisms of the ambient symplectic manifolds.

Let (M, to) be a symplectic manifold (possibly with boundary) and L C (M,co)
a closed Lagrangian submanifold. Let l: L -> M denote here and further on the

natural inclusion of L in M.
The first invariant of L comes from the consideration of Lagrangian isotopies

of L with a given Lagrangian flux path in Hl(L~,R). Namely, recall that if
xf := \ L —> A/}o<t<T, Vf) t, is a Lagrangian isotopy, one can associate to

it a Lagrangian flux path

{Flux(if)t}o<t<r C Hl{L\M), Flux(if)o 0,

as follows: given a closed curve C C L and t [0, T], consider the trace of C
under the Lagrangian isotopy {ifz\ L -> A/}o<r<« and integrate to over the resulting
surface. The resulting (real) number depends only on the homology class of C

in H\ (L) (see 136]). The numbers obtained for all C in this way are the periods of a

uniquely defined Lagrangian flux class Flux(xjr)t //1 (L; K).
The notion of Lagrangian flux immediately raises the following question.

Question 1.1. Which paths in //'(/.: IRi) based at 0 have the form {Flux(x/r)t} for
some Lagrangian isotopy if of L?

In general, this seems to be a very difficult question. In this paper we investigate
its weaker version:

Question 1.2. Which straight paths in //1 /. ; R based at 0 have theform j Flux(if )t}
for some Lagrangian isotopy if of L
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The deformation invariant of L is a function defL: //1 L : M ->• (0, +oo] defined

as follows. Given a e Hl{L\R), set

defL(a) := sup T,

where we take the supremum over all T e R>o for which there exists a Lagrangian
isotopy \jr {\j/t \ L -> M}0<t<r, fo t, of L such that

Flux(xj/)t —toi for all 0 <t<T, (1.1)

or, in other words, the path {—ta}o<t<r in //1 (L; R) is the path {Flux(xjr)t} for some

Lagrangian isotopy xfr of L. It is easy to show that defL(a) is always non-zero —
thus, defL(a) takes values in (0, +oo].

In case (M, co dA) is an exact symplectic manifold the invariant defL can be

related to the notion of a symplectic shape studied in [11,35]. The symplectic shape

of (M,dX) associated to L and a homomorphism h: Hl(M;M) —r Hl(L\R) is

the subset of //'(L;R) formed by the Liouville classes [e*X] e //'(L;R) for all

possible Lagrangian embeddings e: L (M, dX) such that

h e*: Hl(M ; R) -> Hl(L: R).

Assume M T" x U C T" x R" T*Tn, where U C K" is a connected

open set, and X is the standard Liouville form on T" x R". Let x e U and let

L := T" x {x} c T" x U be the corresponding Lagrangian submanifold. Let

h:Hl(T" x t/;R) -»• Hl(T" x {x};R)

be induced by the embedding T" x {x} ^ T" x U. Then the Benci-Sikorav
theorem [35] (cf. [111) says that the shape of (T" x U. dX) associated to L and h is

U C R" H1 (Tn x (x};R). Rephrasing this result in terms of the deformation
invariant gives us the following theorem.

Theorem 1.3. With U and (M — T" x U, dX), and L T" x {x} as above, for all
a e Hl(L\R)

defL(a) sup{ t > 0 | x — ta e U }.

To prove Theorem 1.3 note that in this setting Flux(x/r)t can be represented as the

difference of the Liouville classes of xj/tiL) and L:

Flux(\fr)t x/r*X — x/TqX.

Then the inequality defL{a) > sup{ t > 0 \ x — ta £ U } follows from the existence

of an obvious Lagrangian isotopy xf/t{T" x {x}) T" x {x — ta}, while the opposite
inequality follows directly from the Benci-Sikorav theorem.

The function 1 / defL is obviously non-negatively homogeneous. In the case

when U is star-shaped with respect to x, it is, by Theorem 1.3, the Minkowski
functional associated to U — which in turn completely determines U.
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The study of defL can also be viewed as a relative analogue of a deformation

problem for symplectic forms on closed symplectic manifolds considered in [32]: how
far can one deform a symplectic form co within a family of symplectic forms such that
the cohomology class of the deformed form changes along a straight ray originating
at M and such that its restriction to a given cu-symplectic submanifold remains

symplectic? To see how a relative version of this question is related to defL we denote

by Ml e H2(M,L\M) and Mf e H2(M, i/f(L);M) the relative symplectic area

cohomology classes of, respectively, L and i//r (L). The isotopy \jr defines a canonical

isomorphism
H2(M, L\R) s H2(M, M)

and thus [o)]f can be viewed as an element of H2(M, L;M). Let 8: H1(L;R) ->
H2(M, L; M) be the connecting homomorphism. Then

Mf Ml + dFlux(f)t
and condition (1.1) becomes

[a>]f Ml ~tda 7/2(M,L;M), 0 < t < T. (1.2)

Therefore, as long as da ^ 0, the number defL(a) measures how far one can deform

Ml in a Lagrangian isotopy i// satisfying (1.2).
This viewpoint enables us to study defL using methods of "hard" symplectic

topology. Namely, the existence of pseudo-holomorphic curves with boundaries

on Vl(/.) for 0 < t < T may yield constraints on the time-length T of the deform-
~f~

ation, since [a)][ evaluates positively on such curves. All the upper bounds on defL (a)
known to us and appearing further in this paper are obtained in this way.

On the other hand, as we explain below, lower bounds on defL can be obtained

by "soft" constructions. These bounds come from the study of the second invariant
of L, called the Poisson-bracket invariant of L. It is defined only for L admitting a

fibration over S1 : it is a function on the set of isotopy classes of smooth fibrations
of L over S1. In the case when L is a Lagrangian torus with a choice of an isotopy
class of its smooth parametrizations T" -> L, we reduce this invariant to a function

bpL: Hl{L) -> (0, -fool-

Postponing the precise definition of bpL: H1(L) -» (0, +oo] until Section 3 we give
a short and informal definition here.

Namely, assume L is a Lagrangian torus equipped with a parametrization T" —>• L
and a G Hl(L), a / 0 (for a 0 we set bpL(0) := +00). Consider a fibration

f\L —> S1 such that« is the pull-back under / of the standard generator of Hl(Sl)
(the parametrization of L is used in the construction of f ; see Section 3.3). Cut S1

into four consecutive arcs, denote their preimages under / by X0, Y], X\, T0 (so that

I0 n Ii To n y, 0, X0 U T, U A, U X0 L) and set

bpL(a) := \/pbt(X0,XuY0,Y{).
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Here pbf is the Poisson-bracket invariant of a quadruple of sets defined in [14] — it
is a refined version of the /fo4-invariant introduced in [4] and it admits a dynamical
interpretation in terms of the existence of connecting trajectories of sufficiently small

time-length between A0 and Xi for certain Hamiltonian flows; see Section 3 for
details. The relation between bpL and clef, is given by the following inequality
(which will be proved in a stronger form in Theorem 3.5).

Theorem 1.4. bpL < defL on H1 (L).

This relation, albeit in a different language, was already exploited in [14], where

upper bounds on defL were obtained by symplectic rigidity methods in a setting
where the Lagrangian isotopy class of a Lagrangian torus L does not contain

(weakly) exact Lagrangian tori. This was then used to prove the existence of
connecting trajectories of Hamiltonian flows. In this paper we get upper bounds

on defL in new cases by using several strong symplectic rigidity results, including
some recent ones. Namely, Theorem 2.6 (the original idea of whose proof belongs
to E. Opshtein) and Theorem 2.11 rely on Gromov's famous work [19], while
Theorem 2.16 and Theorem 2.19 rely on the recent powerful rigidity results of,

respectively, K. Cieliebak-K. Mohnke [7] and G. Dimitroglou Rizell-E. Goodman-
A. Ivrii [10]. At the same time we use new soft dynamical constructions to get lower
bounds on bpL, and hence on defL, in many new settings.

In Section 2 we partially compute the functions bpL and defL for several classes of
Lagrangian tori. Section 2.7 is then devoted to a discussion of the results and further
directions. In Section 3 we discuss in detail the definition of bpL. The sections

following Section 3 contain the proofs of the results from Section 2.

2. The main results

We now present results about def) and bpL for several examples of Lagrangian tori
in symplectic manifolds. (For general properties of defL and bpL see Section 3.4).

2.1. Symplectic manifolds without weakly exact Lagrangian submanifolds.
Recall that a Lagrangian submanifold L C (M, u>) is called weakly exact, if [<j)\l 0.

Theorem 2.1. Let L be a closed Lagrangian submanifold of a symplectic manifold
(M,co) (possibly with boundary). Assume that (M,a>) does not admit weakly
exact Lagrangian submanifolds in the Lagrangian isotopy class of L. Assume that

a e Hl(L\E) and

da ~[(o]l

for some C > 0. Then defL(a) < C.
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Proof. Let f {xf/t: L -» M}, 0 < t < T, be a Lagrangian isotopy of L such that

[œ]f [œ]L - tda. (2.1)

Since, by the hypothesis of the theorem, da ^[to}l, we get

[a>]f MlO -t/C).
Then t C cannot lie in the interval [0, T], because if it did, we would have

[co]^ 0, implying that the Lagrangian submanifold which is Lagrangian
isotopic to L, is weakly exact, in contradiction with the hypothesis of the theorem.
Hence T < C. Since this is true tor any Lagrangian isotopy of L satisfying (2.1),
we get defL(a) < C.

A similar result for a particular class of Lagrangian submanifolds and a

particular a was proved in the same way in [141.

Let us note that symplectic manifolds that do not admit weakly exact Lagrangian
submanifolds at all or in a particular Lagrangian isotopy class are plentiful and

include, in particular, symplectic vector spaces [19] and complex projective spaces.

2.2. Lagrangian tori in symplectic surfaces. Suppose (A/2, co) is a connected
symplectic surface (possibly with boundary) and L c (M, co) is a simple closed oriented

curve (that is, a 1-dimensional Lagrangian torus) lying in the interior of M. The
orientation of L defines an isomorphism HX(L) Z. This allows to define bpL
on HX(L) (see Section 3.3). Denote the positive generator of II1 (L) by e.

We distinguish between two possibilities: when M \ L is disconnected and when

M \ L is connected. We present precise statements in both cases.

In the first case L divides M into two connected components: M+ and M_ of
areas A + 4_, where 0 < A± < +oo. The signs + and — here are determined by
the usual orientation convention.

Theorem 2.2. For k e N we have

hpL{ke) defL(ke) —,
A-

hpti-ke) defL(-ke) —,

In the second case let L c (M, co) be a simple closed curve such that M\L is

connected.

Theorem 2.3. For k e Z we have

bpL(ke) defL(ke) +oo.

The case k 1 was proved in [33]. For the proofs of Theorems 2.2 and 2.3 see

Section 4.
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2.3. Toric orbits in symplectic toric manifolds. Let T" := R"/Z". Denote by

Lie T" M"

the Lie algebra of T" W/Zn and by

Lie* T" (R")*

its dual space. Denote by (Zn)* the integral lattice in (M")*.
Let (M2n,a>) be a connected (not necessarily closed) symplectic manifold

equipped with an effective Hamiltonian action of T". Denote the moment map
of the action by O: M -> (M")*. Assume that is proper, the fibers of <1> are exactly
the orbits of the action and the image of <t> is a convex set À c (Mn)* with non-empty
interior so that its interior points are exactly the regular values of <t> (by the Atiyah-
Guillemin-Sternberg theorem [1,20], these conditions are automatically satisfied

if M is closed).
Given x A, denote by Lx := 4>_1 (x) the corresponding fiber of 4>. If x G Int A,

then Lx is a Lagrangian torus and the Hamiltonian T"-action on Lx gives us a

preferred isotopy class ofdiffeomorphisms T"—>- Lx. Thus the pair H1 (Lx) c H1 (Lx; M)
is naturally identified with the pair (Zn)* C (Mn)*. We denote by

bPx:= bpu:(Zn)* -+R
and by

defx := defL-. (M")* M

the Poisson bracket and the deformation invariants of Lx.
For x e Int A and a HX(L\M) define lx(a) as the largest t > 0 for which

x — tae A and let J (x, a) be the open segment of the open ray x — ta, t e (0, +00),
connecting x and x — lx(cc)a\

J(x, a) := {x — ta, 0 < t < lx(a)}.

If no such t exists, set lx(a) := +00 and let <H(x, a) be the whole open ray. In other
words, .((x, a) is the interior of the closed segment obtained by the intersection of
the ray with A and lx{a) is the ratio of the rational length of a and the rational length
of this segment1.

Theorem 2.4. Let a G (Zn)*. Then

h{a) < bpx(a).

For the proof see Section 5.

'Recall that the rational length of a vector cv, v e Z", is defined as |c|.
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Remark 2.5. Note that there exists a symplectomorphism O"1 (Int A) -» T" x Int A
that identifies ffi~'(x) with T" x{x} for each x e Int A. Then Theorem 1.3, applied to
the symplectic toric manifold O-1 (Int A), implies thatfar Lx viewed as a Lagrangian
submanifold o/O-1 (Int A) for each a the deformation invariant defx(a) equals /x(a)
and thus, by Theorem 2.4,

bpju) defja) /x(a)

for all a H ' (L).
For Lx viewed as a Lagrangian submanifold of the whole M the problem of

finding bpx(a) and defx(a) is more difficult and the results below that we have been

able to obtain are weaker.

2.4. Lagrangian tori in symplectic vector spaces. Let M Cn be equipped with
the standard symplectic structure co and let zj z„ be the complex coordinates

on C". Given x\,...,xn > 0, set x := (xi,... ,xn). Define a split Lagrangian
torus T"(x) c C" by

Tn(x) := {jt\zi\2 xt, i 1, «}.

The standard Hamiltonian T"-action gives us a preferred isotopy class of
diffeomorphisms T" Tn(x) and we naturally identify Hl(Lx) c H](LX;R)
with (Zn)* C (1R")*.

We first consider the case of Lagrangian tori in C2.

Lagrangian tori in C2. We first present computations of defL for general Lagrangian

tori in C2. We then restrict to the cases of split and Chekanov tori.

Let L c (C2, cn) be a Lagrangian torus.
We say that an almost complex structure J (on C2) compatible with a> is regular

(for L) with respect to a point p £ L, if for any C 6 //2(C2, /..) the moduli

space of (non-parameterized) somewhere injective J-holomorphic disks in C2 with
boundary in L and with one marked boundary point that represent the class C and

pass through p (that is, the marked point coincides with p) is a (transversally cut

out) smooth manifold of the expected dimension. For any p £ L a generic almost

complex structure J compatible with co has this property; see Section 6.

The original idea of the proof of the following theorem belongs to E. Opshtein.

Theorem 2.6. Assume that //2(C2, L)~Z(4, B), where co(A)>(). Let a £ H1 (L; R)
so that i)a(A) =: a > 0 and 'da(B) =: p. Assume that for some k > 0

p.(A) 2, p(B) 2k,

and

p/a <k + 1 < co(B)/co(A).
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Then:

(A) For any p e L and any almost complex structure J compatible with a> and

regular with respect to p the mod-2 number nA(p, J) of (non-parameterized)
somewhere injective J-holomorphic disks with boundary in L in the class A

passing through p is well-defined and independent of the choice of p and J.

(B) IfnA(p. J) f 0 for some p and J as in (A), then

co(A)
defL(a) <

a

For the proof see Section 6.

Remark 2.7. As it can be seen from the proof, Theorem 2.6 remains true if C2

is replaced by any 4-dimensional symplectic manifold (M,co) which satisfies

<v\7n(M) c\U2(M) 0, is geometrically bounded in the sense of [2], or convex at

infinity in the sense of [12], and

H2(M, L) Z(A, B) © lm(n2(M) —> n2(M, L)),

where A, B satisfy the same conditions as in Theorem 2.6.

Note that Theorem 2.6 applies to certain split Lagrangian tori T2(\) C C2.

Indeed, by [8], the standard complex structure J on C2 (which is, of course,
compatible with co) is regular (for T2(x)) with respect to any point p G 7'2(x).
It is also easy to see that for any point p G T2(x) there is exactly one regular (non-
parametrized) 7-holomorphic disk in the class A (with one marked point) that passes

through p, if A is any one of the two standard generators of l/2(C2. T2(x)) with
positive symplectic area.

Theorem 2.6, together with Theorem 1.4 and Theorem 2.14 (this general statement
for split Lagrangian tori in C will appear later), yields the following corollary for
computations of defL and bpL for split tori in C2. We state the result in the case

x\ < x2 — the corresponding result in the case x\ > x2 can be deduced from it using
the obvious symmetry of bpx and defx with respect to permutations of coordinates
in x (see (7.1) below).

Corollary 2.8. Assume m,n G Z, x (xi,x2), 0 < x\ < x2. Under these assumptions

the following claims are true:

(A) Ifm,n < 0, then

bpx(m,n) defx(m,n) +oo.

(B) Ifxi < x2/ / and 1 < n < /, then

bpx(0,n) defx((),n) +oo.
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(C) Ifnxi — mx2 <0,m > 0, then

X\ m < hpx(m, n) < defx(m, n).

(D) Ifnxi — mx2 > 0, n > 0, then

a'2/n < hpx(m,n) < defx(m. n).

(E) Assume for x {x\, xf) that 2x\ < x^. Ifm > 0, n — 2m < 0, then

X\ /m hpx(m, n) defx(m.n).

Parts (A)-(D) of Corollary 2.8 follow directly from Theorems 1.4 and 2.14.

Part (E) follows from the inequalities:

x\lm < hpx(m,n) < defx(m,n) < X\/m.

Here the first inequality follows from part (C) of Corollary 2.8, the second one from
Theorem 1.4, and the third one from Theorem 2.6 with A, B being the standard basis

CMH
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of H2(C2, T2(x)) (so that w(A) x\, co(B) x2), a mei + ne2, a m,
b n, and k 1.

In the case of the split monotone Lagrangian torus in C2 Corollary 2.8, together
with the obvious homogeneity property of defx, bpx with respect to x (see part (B)
of Proposition 7.1 below) and Theorem 2.1 (since C2 does not admit weakly exact

Lagrangian submanifolds by [19]), yields the following result.

Corollary 2.9. Assume m. n E Z, x (x, x), x > 0. Then:

ifm,n < 0,

ifm n > 0,

ifm > 0 or n > 0.

+oo bpx(m,n) — defx(m,n),
x
— bp (m,m) defx{m,m),
m

x
<bpx(m,n) <defx(m,n),

maxim, n}
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- bPx{rri,n) < defx(m,n) < b'Px{m, m) defx(m, m)

0*

0

0

bpx(m,n) — defx(m,n) +oo

Figure 3. Regions of validity in Corollary 2.9 for monotone Lagrangian tori.

Chekanov tori in C2. Chekanov tori (M)a, a > 0, in C2 were originally introduced
in [5] (cf. [ 13]). The torus (M)a C C2 C x C is defined as follows: consider the

first open quadrant Q of C and a point q e Q. Fix a foliation of Q \ q by simple
closed curves (each winding once around q) so that for each a > 0 there is exactly
one curve in the foliation that bounds a disk of area a in Q.

Pick a > 0 and let q(t) be the counterclockwise regular parameterization of the

corresponding curve in the foliation. Then

:= \^(e2nisq(t),e-2nisq(t)
V2V

Consider the basis F, y of H\ (CH)a where T, y are, respectively, the homology classes

of the curves

t H» -J=(j7(0,»?(0) and s ^ -^=(e27lisq(0),e 2ltis/](()))
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in 0a. Let T, y be the integral basis of H1 (0a) dual to T, y. Define the functions

defa: (Z2)* -> (0, +oo], hpa:(Z2)* -* (0, +oo]

by

defa{m,n) := def@a(mf + ny), bpa(m,n) \= bp&a(mf + ny).

Theorem 2.10. The following claims holdfor the Chekanov tori in C2:

(A) bpa(m,n) > a/m, ifm > 0.

(B) bpa(m,n) defa(m,n) +ooform < 0.

For the proof see Section 6.1.

Lagrangian tori in C" for general n e N. We first generalize the statement of
Theorem 2.6 to Lagrangian tori in C" for a general ne N.

Let L c (Cn,co) be a Lagrangian torus.
As above, we say that an almost complex structure J (on C") compatible with co

is regular (for L) with respect to a point p e L, if for any C e //2(Cn, L) the

moduli space of non-parameterized somewhere injective /-holomorphic disks in C
with boundary on L and with one marked point that represent the class C and pass

through p (that is, the marked point coincides with p) is a (transversally cut out)
smooth manifold of the expected dimension. A generic J (on C") compatible with u>

has this property; see Section 7.2.

Theorem 2.11. Assume H2(Cn, L) ~ Z(Ai An where

gt(Ai) =2, i 1,..., n,

and

a>{A\) =: a > 0, cl>(A2) co(An) =: h.

Let a e H1 (L; R) so that

((«(/Ii) =: a > 0, da(Ai) =: p, i 2,...

Assume

/ n + 2
p/cr < —-— < b/a, ijn is even,

n + 3
p/o < —-— < b/a, ifn is odd.

Then:

(A) For an almost complex structure J compatible with u> and regular (for L) with

respect to a point p e L the mod-2 number n a J of (non-parameterized
somewhere injective) J -holomorphic disks with boundary in L in the class A j
with one marked point passing through p is well-defined and independent of the

choice of p and J.
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(B) //>//!, (p, J 7^ 0 for some p and J as in (A), then

cô(A\) a
defL(a) <

a a

For the proof see Section 7.2.

Remark 2.12. For Lagrangian tori L C C2 satisfying H2(C2,L) ~ Z(A\,A2),
where pt(A\) pt(A2) 2, Theorem 2.11 gives the same result as Theorem 2.6.

Remark 2.13. As it can be seen from the proof, and similarly to Remark 2.7,
Theorem 2.11 remains true if C" is replaced by any 2«-dimensional symplectic
manifold (A4, to) which satisfies tu|^2(^) ci \K2(M) 0, is geometrically bounded
in the sense of |2|, or convex at infinity in the sense of [12], and the following holds:

H2(M,L) ~ Z(/l, Am) © Im(n2{M) -* 7T2(A4, L)), (2.2)

for some me N (not necessarily equal to nl), where

pt(Ai) 2, i 1 m,

w{A{) =: a > 0, to(A2) ••• co(Am) =: h,

and a e H1 (L; E) satisfies

da(Ai) =: a > 0, da(Ai) =: p, i=2,...,m,
/ n + 2

p/a < —-— < o/a, it « is even,

n + 3
p/n < —-— < h/a, if n is odd.

In such a case Theorem 2.11 can be applied not only to A4, L and a but also to
(A4 := A4 x T*Sl, to := co © d6 A dr) (where 6 6 §',r e E are the standard
coordinates on T*S'), L := L x S1 C A4 (where S1 {r 0} is the zero-
section of 7'*S1) and a, which is the image of a under the inclusion H1 (L; M) —>•

HX(L\R) H1 (L; E) © M. (Note that H2(M,L) ~ //2(A4,L)).
Moreover, if an almost complex structure J on A4 is compatible with to and regular

(for L) with respect to a point p e L, then J := J © j (where j is the standard

complex structure on 71*S1) is an almost complex structure on A4 compatible with to

and regular (for L) with respect to a point p := pxqeL Lx S1 (where q is a

point in S1), and (p, J) (p, J).
Then, if a e H1 (L), we can apply Theorem 2.11 to A4, L, a and, together with

Theorem 1.4, it yields

^ a
hp?(a) < defj (a) < -,(T
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or, equivalently,

^(loxS'joxSUt xS'.y, x S1) > -,a

where X0, X\. Y0, Y\ are the closed subsets of L A0 U X\ U Y0 U Y] used to
define bpL(a).

By 114] (cf. Theorem 3.1 below), this yields the existence of connecting trajectories

from Xq to X\ for Hamiltonian flows (defined for all times) generated by

time-periodic Hamiltonians H: M x S1 —M such that

Ah min H — max H > 0.
flxS1 IqxS1

Such a connecting trajectory will have time-length < a/aXfi.
Note that Theorem 2.11 applies to certain split Lagrangian tori in (Cn,co) and

the standard basis A\,..., An of H2(Cn, Tn(x)) - indeed, for the standard complex
structure J on C" (which is, of course, compatible with co) there is exactly one

(non-parametrized) 7-holomorphic disk in the class A\ passing through any point
of Tn{x). The regularity of J (for Tn(x)) with respect to any p G Tn{x) follows
again from [8].

The following results give partial information about the function bpx for split
Lagrangian tori. Set xmin := minjxi,... ,xn}. Denote by e\,.... en the standard

generators of H1 (T" (x)) ^ (Zn)*.

Theorem 2.14.

(A) Ifmi < 0 for all i 1, n, then

bpx(m\ mn) defx(mi,.. .,mn) +oo.

Otherwise

min Xi /m; < bpx(m i,mn).i,mj >0

(B) Ifxi • • • xn =: x and k G N, then

bpx(k,..., k) defx(k,..., k) x/k.

(C) Let le N and assume xmm < x,//. Then for all k e N with k < I,

bpx(ket) defx(kei) +oo.

For the proof see Section 7.3.
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Combining Theorem 2.11 and Theorem 2.14 we obtain for certain split tori T" (x)
the following result.

Corollary 2.15. Assume x2 • xn =: y and let 0 < x\ < 2y/(n + 2)

if n is even and 0 < xx < 2y/(n + 1) if n is odd. For m i G N let the integer

in2 mn < y m\/x\. Then we have

bpx(ml,... ,mn) defx(mx,.. ,m„) xx/mx.

In particular, for any m i N

bpx(m\e\) defx(m\ex) x\/m\.

Furthermore, assume for I G N that x\ < y/I. Then for all 1 < k < I and all
2 < i < n we have

bpx(kej) defx(kei) +oo.

2.5. Lagrangian tori in complex projective spaces. Let M CP" and let to be

the standard Fubini-Study symplectic form on C P" normalized so that fCP \ co 1.

Theorem 2.16. Let L C (C Pn, to) be a Lagrangian torus and a G II1 (L Consider

[a>\t := [co\L-tda G H2(C Pn, L; M)

for t > 0. If there exists a C > 0 such that [co]c £ H2(C P", L\ ^Z), then

dejfia) < C.

For the proof see Section 8.1.

We provide a precise statement in the case of Lagrangian torus fibers. Consider
the standard Hamiltonian T"-action on CP" and denote its moment map by
<3>: C P" -> (R")*. Its image is the simplex

A := {(xi — xn) G (R")* I xi,.. .,x„ >0, 0 < x\ H F xn < l}.

As in Section 2.3, for x G Int A denote Lx := <t>_1 (x) the corresponding Lagrangian
torus fiber of O and set

defx (a) : defu (a bpx (a) : bpLx (a)

for each a G (Z")* Hl(Lx).
By Theorem 2.4, for all a G (Zn)*

lx(a) < bpx(a). (2.3)

For certain a G (Z")* and x G Int A we obtain an upper bound on defx(a) from
Theorem 2.16.
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Namely, define dja) as the smallest t > 0 tor which x — ta e ^ (Z")* and let

#(x, a) be the open segment of the same open ray x — ta, t e (0, +oo), as above

connecting x and x — dx(a)a:

$(x, a) := {x — ta, 0 < t < dja)).

If no such t exists, set dja) := +oo and let $(x, a) be the whole open ray. In other

words, $(x, a) is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice £ • (Zn)* on the ray.

Corollary 2.17. With the setup as above,

defja) < dja). (2.4)

In case lx{a) dx(a) the lower and the upper bounds (2.3), (2.4) yield defja)
dx(a) lJa) bpJa). For instance, this happens when the intervals S(x, a) and

#(x, a) coincide. Thus, we get the following corollary.

Corollary 2.18. Assume that x xa for some k > 0, a G //1 (Lx), and that the

open interval j/x, 0 < t < k}, does not contain points of the lattice £ • (Zn)*.
Then this interval coincides with â (x, a) and fix, a) and therefore

defja) bpx{a) lx(a) dx(a) — k.

2.6. Lagrangian tori in S2 x S2. Let (S2,<r) be the standard symplectic sphere
with normalized symplectic area /,,2 ct 1.

Theorem 2.19. Let L c (S2 x S2, a 0 a) be a Lagrangian torus and a e H1 (L).
Consider

[co]t := [(o]L - tda G H2(S2 x S2, L; M)

for t > 0. If there exists a C > 0 such that [co]c s H2(S2 x S2, L; Z), then

dtf/ ia) < C.

For the proof see Section 8.2.

We provide a precise statement in the case of Lagrangian torus fibers. Consider
the standard Hamiltonian T2-action on S2 x S2 and denote its moment map by
O: S2 x S2 —r (R2)*. Its image is given by A := [0, 1] x [0, 1], As in Section 2.3,

for x G Int A denote Lx := <t>_1 (x) the corresponding Lagrangian torus fiber of O

and set

defx(a) : defLx(a), bpja) : bp,Ja)
for each a G (Z2)* H1(LX).

By Theorem 2.4, for all a G (Z2)*

/x(a) < bpx(a).
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For certain a E (Z2)* and x E Int A we obtain an upper bound on defx(a) from
Theorem 2.19.

Namely, define px(a) as the smallest t > 0 for which x — ta e (Z2)* and let

X(x, a) be the open segment of the same open ray x — ta, t £ (0, +oo), as above

connecting x and x — px(a)a:

X(x,a) := {x — ta, 0 < t < px(a)}.

If no such t exists, set px(a) := +oo and let X(x, a) be the whole open ray. In other
words, X (x, a) is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice (Z2)* on the ray.

Corollary 2.20. With the setup as above,

'x(a) < bpJa) < defja) < px(a).

In particular, ifX (x, a) connects x to either of thefour vertices of A, then â (x, a)
X (x, a) then

lx(a) bpja) defx(a) px(a).

2.7. Discussion and open questions. The results above reflect first steps in the study
of the invariants bpL and defL. In this section we discuss the main difficulty in the

current approach and a possible direction of further investigation of these invariants.
As we have already mentioned in the introduction, the lower bounds on bpL

come from "soft" constructions, while the upper bounds on defL are based on

"rigid" symplectic methods - foremost, on strong results yielding the existence of
pseudo-holomorphic disks with boundary on Lagrangian submanifolds appearing
in appropriate Lagrangian isotopies of L. Unfortunately, it seems that these

strong rigidity results are not strong enough to get upper bounds on defL(a) for

many a even for the basic examples of Lagrangian tori considered above. The

(well-known) difficulty comes from the fact that the pseudo-holomorphic disks in a

given relative homology class of L in M may not persist in a Lagrangian isotopy
{xj/t: L —> M} of L (since bubbling-off of pseudo-holomorphic disks is a

codimension-1 phenomenon), which makes it very difficult to track, as t changes,
the relative homology classes of i/st(L) carrying the disks and, accordingly, the

symplectic areas of these disks. (As above, we use the Lagrangian isotopy to identify
the relative homology groups of all xfrt(L)). In our case the difficulty is compounded
by the need to track the pseudo-holomorphic disks and their areas for an arbitrary
Lagrangian isotopy xjr of L satisfying the cohomological condition (1.1), with no a

priori geometric information about it. .Such aLagrangian isotopy f typically involves

non-monotone Lagrangians which limits even more the control over the disks and

their areas.



Vol. 93 (2018) Lagrangian isolopics and symplcctic function theory 847

Thus, the progress on upper bounds for defL depends on getting more precise
information on pseudo-holomorphic/symplectic disks with boundary on (possibly
non-monotone) Lagrangian submanifblds Lagrangian isotopic to L.

Here is an example of possible additional helpful information on the disks. We

will present it in the case of Lagrangian tori in the standard symplectic C2.

Assume there is a way to associate to any non-monotone Lagrangian torus L cC2
an ordered integral basis Bl of H2(C2, L) with the following properties:

(a) For any Lagrangian isotopy Lt of L among non-monotone Lagrangian tori the

following conditions hold:

- the bases Bl, for different t are all identified with each other under the

isomorphisms between the groups //2(C2, Lt defined by the Lagrangian isotopy;

- the symplectic areas of the elements of Bl, are positive and change continuously
with t.

(b) For L T2(x\, x2), x\ < x2, the basis Bl is the standard basis of

H2(C2,T2(xuX2)).

If such bases exist, a rather straightforward argument would allow to strengthen

Corollary 2.8 and show that if 0 < x\ < x2 and nx\ — mx2 < 0, m > 0, then

x\/m hpx(m, n) defx(m,n).

This, in turn, would allow to strengthen Corollary 2.9 and show that for a monotone

split Lagrangian torus T2(x, x) one has

bpx{m,n) defjm. n)
max{(), m, n}

for all m,n e TL.

The question about the existence of a basis Bl is motivated by the folklore
conjecture that any non-monotone torus L in C2 is Hamiltonian isotopic to a split
torus T2(x\, x2).

Indeed, assume the conjecture is true. Then, by a theorem of Y.Chekanov [5], the

ordered pair (xi,x2) is uniquely determined by L, as long as we require x\ < x2.
A Hamiltonian isotopy between L and T2(x\,x2) identifies the standard basis of
H2(C2,T(xi,x2)) with an integral basis Bl of H2(C2,L). The basis Bl does

not depend on the choice of the Hamiltonian isotopy (since any Hamiltonian isotopy
of C2 preserving T2(xi,x2) as a set acts trivially on the homology of r2(xi,x2),
by a theorem of M.-L. Yau [38]). It is not hard to check that Bl satisfies (a) and (b).

The existence of bases Bl satisfying (a) and (b) is, of course, much weaker than

the conjecture and, accordingly, might be easier to prove and to generalize to higher
dimensions.
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3. The invariant bpL and its properties

The définition of bpL is based on the following construction related to the Poisson

bracket.

3.1. Poisson bracket invariants. Let (M2n,co) be a connected symplectic manifold,

possibly with boundary. Let C°°(M) and denote, respectively, the

spaces of all and of compactly supported smooth functions on M (in the latter case
the support is allowed to intersect the boundary of M).

Our sign convention for the Poisson bracket on (A/, co) will be as follows. For
G £ C 00 (M) define a vector field sgrad G by zsgr;a(iGw —dG. Given F,G 6 C°°(M),
define the Poisson bracket {F, G} by

{F, G} := co(sgrad G, sgrad F) — dF(sgrad G)

r/G (sgrad F) fsgrad G ^ A sgrad F G.

We say that sets Y0, X\, K0, K, c M form an admissible quadruple, if they are

compact and Ji0 O K0 n Y y =0.
Assume Xq, X\, K0, Y] c M is an admissible quadruple. Recall from [14]

(cf. [4]) the following definition:

pbf (X0, Xi, Y0, Y\) := inf max {F, G},4
(F,G)e3? M

where F !F(3fo, X\, Ko, Ki) is the set of all pairs (F, G), F, G Cc°°(M), such

that

F\x0< 0, F\xx > 1, GI y() < 0, G|y,>l. (3.1)

One can show (see [4, 141) that IF can be replaced in the definition of pb^ by a

smaller set F' F'(X0, X\, K0, Ki) of pairs (F, G), F, G £ Cc°°(M), for which
the inequalities in (3.1) are replaced by equalities on some open neighborhoods of
the sets A0, X\, K0, Y\.

If it is clear from the context what Xq, X\, K(), Y\ are meant, we will omit the

corresponding indices and sets in the notation for pb^, F, F'.
The number 1 /pb£(A'o, X\, K0, Y\) has the following dynamical interpretation

[14] (cf. [4]):

Consider the set S of complete Hamiltonians G\M—> M such that

Ag := min G — max G > 0.
f. Ko

For each such G dehne Tg £ (0, Too] as the supremum of all f > 0 such that there
is no trajectory of the Hamiltonian flow of G of time-length < I /Xq from X0 to X\
(such a trajectory is called a chord of G). We recall:
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Theorem 3.1 ([14, Theorem 1.111).

sup Tg l/pb+(X0,Xl,Y0,Yl).
Gee

Thus, if there exists a complete Hamiltonian G: M M with

min G — max G > 0
Y i Y0

that has no chords from X0 to X\ then

1 /phîiXo.XuYo.Yi) Too.

3.2. The invariant bpL for general Lagrangian submanifolds. The pb4 invariant
of admissible quadruples can be used to define a symplectic invariant of Lagrangian
submanifolds fibered over the circle in the following way.

Let L c (M, o>) be a closed, connected Lagrangian submanifold admitting a

fibration over §'. Let S'{L) denote the set of smooth fibradons L —> S1. The

right action of Diff0(L) defines an equivalence relation on d'(L) and we denote the

resulting quotient set by â (L). Now slice S1 into 4 consecutive closed arcs yt, Y2,

73, 74 in the counterclockwise order. For a chosen smooth fibration f:L -> S1

representing a class [/] G â (L) we define

X0:=r\yt), Xl :=.r1(73), Y0:=f~\y4), Yl := f-\y2).
Roughly speaking, we slice L into four parts along cuts parallel to a fiber of /; see

Figure 4.

Figure 4. The four sets A"«, X\, Ko, Y\ arising from a fibration /.

One easily sees that X0, X\, Ko, Y\ c M is an admissible quadruple and

X0 U X\ U Y0 U Yi L. We call such a quadruple an admissible quadruple
associated to f. We set

bpL{lf}) l/pbt(X0,X1,Y0,Y1).

If Pb4 (4f0, Xi, Yq, Yi) 0, we set

bpL{[f\) '= +°°-

Thus, bpL([f]) takes values in (0, Too],



850 M. Entov, Y. Ganor and C. Membrez CMH

Equivalently, bpL([f]) can be described as the infimum of all T > 0 such that for

any complete Hamiltonian G: M —> M satisfying G|y() < 0, G|y, >1, there exists

a chord of G from Y0 to X\ of time-length < T. If no such T exists, we set

bpL([/]) := +00-

In applications we will often prove a lower bound T < bpL([f]) by constructing for

any e > 0 a complete Hamiltonian G that satifies G \ Y() < 0, G I y, > 1 and has no
chords from Xq to X\ of time-length < T — e.

Remark 3.2. The letters in the notation bp stand for the "Poisson bracket" and their
inverse order ("h" before "p") reflects the fact that in the definition of bp we take the

inverse of the maximum of the Poisson bracket.

Proposition 3.3. bpL([f]) is well-defined i.e. it does not depend on the choice of
representative of [/] e <1(L) and the choice ofdivision of S1 into 4 arcs.

Proof. Let f: L -> S1 be a smooth fibration. We first show that for </> G Difl0(L)
the bpL-invariants of / and / of are equal.

Note that any <p e Diff0(L) is a time-1 flow of a time-dependent vector field
on L. Denote this vector field on L by X, and the corresponding flow by cj>t.

Let W U c T*L be a Weinstein neighborhood of L in M. Identify L with the

0-section in U. We can extend X, in U to a Hamiltonian vector field as follows:
in canonical coordinates (q.p) we define the Hamiltonian Ht:U —v R by setting

Ht(q,p) p(Xt(q)). A short calculation reveals that the Hamiltonian vector
field Xh, Xt on the zero-section. By multiplying Ht with a suitable cut-off
function one obtains a time-dependent Hamiltonian with compact support in W
such that the induced flow on L coincides with the flow of <pt- Therefore, by
invariance of pbunder symplectomorphism, bpL does not depend on the choice of
representative of a class in HP).

We now show independence of the choice of four arcs y,. Choose four other arcs y[
in the same fashion. Note that there exists a tp G Diff0(§' such that <p(yl) y,-.

Using the notation of Section 3.2, this implies that the image of y o / and f under g'
lie in the same path-connected component of JV'(L). Using Proposition 3.4 we see

that (p o f and / represent the same equivalence class in S(L). Hence our definition
is independent of choice of arcs.

Clearly, the resulting function bpL: S (L) —> (0, +00] is a symplectic invariant of
Lagrangian submanitolds fibered over the circle. We call this function the Poisson-
bracket invariant of L.

We now relate A(L) to the integral cohomology of L.
Consider the set M'{L) of all non-singular (that is, non-vanishing) closed 1-forms

on L representing non-zero integral classes in H1 (L). It follows easily from Moser's
method [30] that the path-connected components of W(L) are exactly the orbits of



Vol. 93 (2018) Lagrangian isotopies and symplectic function theory 851

the natural Diff0(L)-action on dV'(L). Let (L) Diff0(L) be the set of
the path-connected components of JV'(L).

Define a map g': â'{L) -V(L) as follows. Given an element / e S'(L),
i.e. a ßbration f:L — S1, let £>'(/) be the non-singular 1-form f*dO, where dO

is the standard angle 1-form on S1. Clearly, g':S'(L) -M'(L) induces a map
g:J(L) -> .Va).
Proposition 3.4. The map q: <HL) —> -X(L) is invertible.

Proof. Define a map p'\ JT'(L) -» J'(L) as follows. Fix a point x0 G L. Given

a non-singular form a G JT'(L), let p'(a) be the map L -> S1 M/Z that sends

each x G L to a mod 1. Here the integral is taken along any smooth path from x0J X()
to x in L (recall that L is assumed to be connected); a different choice of path changes
the integral by an integral value, since the cohomology class of a is integral. One

easily checks that p'(a) is a fibration of L over S1 and thus p' is well-defined. Clearly,
p' induces a map p: ,M(L) -> â(L).

Note that g' o p' Id and for any fibration / G S'(L) the fibration p' o g'(f) lies

in the Diff0(L)-orbit of /. This shows that p g~{.

Thus bpL is also defined as a function bpL : M(L) (0, +oo].
Note that a path in Jf'(L) has to lie in the same cohomology class. This defines

a map T: J\f(L) —> H1 (L) \ 0. For general L the map T does not have to be either

surjective or injective — to check whether it is surjective for a particular L is, in

general, a very non-trivial task, see [15,21,23,37]. However, if dim L < 3, then T
is injective; see e.g. [25], Using T : JT (L) -> Hl(L) \ 0 we define a version bpL of
the invariant on the image of T in H1 (L) \ 0: for a G im(T) c H1 (L) \ 0 we set

&Pl(°0 := SUP bpL{A).
yteT-l(a)

and we extend hpL to 0 via bp/,(0) := +00.

Theorem 3.5. Let L c M. a>) be a closed Lagrangian submanifold admitting
fibrations over S1. Then for all a G im(T) U {0} C II1 L) we have

bpL(a) < defL(a).

Proof. For a 0 we have bpL(o!) defL(a) +00 verifying the claim.
Let us assume a 0. We will prove the inequality bpL(°0 < defL(a) by

a method developed in [4] (cf. [14]). Namely, given a g Hl{L), consider any
smooth fibration f\L —S1 such that T o p([/]) a (see Section 3.2 for the

notation). Let 3f0, X\, Y(h Y\ be an admissible quadruple used in the definition of
bpL([f]) l/pb+(Xo,Xl,Y0,Yl). Let (F, G) G F'(X0, Xlt Y0, 7i). Note that,
since L X0 U X\ U T0 U Y\ and since F is constant on some neighborhoods of X0
and Xi and G is constant on some neighborhoods of To and Y\,

dF A dG 0ona neighborhood of L, (3.2)
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and thus FcIG\l is a closed 1-form on L. An easy direct computation shows that

[FdG\L] =-a e H\L). (3.3)

Consider the deformation

cot := co + tdF A dG, t E R>o-

A direct calculation shows that

dF A dG A co"'1 —-{F, G}co",
n

and thus

< (1 -t{F,G})co".

Thus, cot is symplectic for any t e where

'(F,G) 0,
1

iF,G\)VC\sl\M{F, G}

Fix an arbitrary t e /(f,g) • Since F, G are compactly supported, the form co

can be mapped (using Moser's method [30J) to co, by a compactly supported isotopy
ût: (M, cot) -> (M, co). Since, by (3.2), L is Lagrangian with respect to cot, we get
that Lt := dt(L) is a Lagrangian submanifold of (M, co) Lagrangian isotopic to L.

Using (3.3) we readily see that, under the identification

H2(M,L\W) H2(M,Lt\R)

induced by the isotopy, the class [&>]/., is identified with co — tda. Since this is true
for all t e I(f,G) we obtain

1

5 defL(a).
maxMtL G}

Now the latter inequality holds for all (F, G) e 'F'(X(h Xi, T0, Y\), this gives us

bPL{[f]) '= \/pb4(X0,Xi,Y0,Yi) <defL(a).

This is true for any [/] such that T o p([/]) a, hence

bpL(a) <defL(a).

Question 3.6. Do there exist L and a E im(Y) C H1 (L) \ 0 for which

bpi(af) ^ defL(a)l
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3.3. The invariant bpL for Lagrangian tori. Let us now assume that L is diffeo-

morphic to a torus T". In this case the map T is clearly surjective. If n < 3, then,

as mentioned above, T is injective and hence bijective. Thus bpL bp^ coincide
and by abuse of notation we write the invariant

bpL: Hl(L) —> E

in these cases (we extend bpL to 0 via bpL(0) := +oo).
For a torus of dimension strictly greater than 3 the map T may not be injective. For

instance, T is known to be not injective if n > 5; see [24,34], In any case, each isotopy
class of diffeomorphisms x: T" —> L defines a right inverse 4fv: HX{L) \ 0 -M(L)
of T as follows: given a G Hl(L) \ 0, represent s*a G H1 (T") \ 0 by a linear form
and let fiS(a) be the path-connected component of -M'(L) containing the pull-back of
this linear form under x-1. Thus for any isotopy class of diffeomorphisms .v: T" ->• L
we can dehne

bpl := bpL o 4/,: //' (L) —» E,

where we again extend bpL to 0 via bpsL(0) := +cxd. Clearly,

bpSL < b\>L- (3-4)

In case the class of parametrizations s: T" L is clear we sometimes write bpL by
abuse of notation. For instance, if L is a regular fiber of a Hamiltonian T"-action
there is an obvious preferred isotopy class of diffeomorphisms T" -» L.

Theorem 3.5 and (3.4) yield

bpL < defL (3.5)

Remark 3.7. The discussion above shows that for a Lagrangian torus L, a

cohomology class a G H1(L)\0 and an isotopy class .v of diffeomorphisms T" L
we have

bpsL(a) \/pb+{X0,XuYü,Yx).

Here(A'o, X\, To. T;) is an admissible quadruple associated to a libration fa \ L -» S1

such that the Diff0(L)-orbit of the 1-form f*dB on L (whose cohomology class is a)
is 4L(a) g J\f (L). By the same token,

bp) (-a) \/pb+(X0,Xl,Yl,Y0) \/pb+(Xl,X0,Y0,Yl).

Indeed, /_„ can be constructed by composing fa with an orientation-reversing
diffeomorphism of S1.

Now assumed G Nanda G //^Ljisaprimitiveclass^hatis^classwhichisnot
a positive integral multiple of another class in H1 (L)). Then an admissible quadruple
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(X0,Xy, Ko, Yy associated to f^a can be described in terms of fa. Namely, divideS1
in consecutive closed arcs yi,..., y4£ in the counterclockwise order. Set

Xo-=fa1( (J w)' U Yi)>
i 1 mod 4 i 3 mod 4

ro :=/«_1( (J K')' ri:= /"_1( U K')'
I =0 mod 4 j 2 mod 4

Thus, if Ä: 1, then the sets X0, Xy, Y0, Yy are diffeomorphic to Tn_1 x [0,1], while
if k > 1 the sets are the unions of the same number of disjoint copies of T"_1 x [0, 1],

3.4. General properties ofbpL and defL. We list basic properties of bpL and defL
that will be used further in the paper.

Homogeneity of defL. defL is positively homogeneous of degree — 1,

defL(ca) defL(a)/c

for any c > 0 and a e Hl(L\W).

Question 3.8. Is there an inequality/equality between bpL(ka) and kbpL(a) in
case L is a Layranyian torus andieN?

Semi-continuity of defL. Let Lj c (M. &;). / e N, be a sequence of Lagrangian
submanifblds Lagrangian isotopic to L and converging to L C in the C1-

topology. Then

defL(a) < lim inf defL (a) for any a G H1(L; R). (3.6)
j^+oo J

(Here we use the canonical isomorphism H1 (Lj ; E) H1 (L; E)). The inequality
follows from a parametric version of the Weinstein neighborhood theorem.

Now let us consider the general properties of ph~\. We will use the following notation:

if U G M (possibly U M) is an open set containing an admissible quadruple
Y0, X\, Y(>, Y\ we will denote by pb^'+(X0, Xy, T0. Y\ the Poisson bracket invariant
defined using functions supported in U.

The following properties of pb~£ and bpL follow easily from the definitions.

Monotonicity of pb*. Assume U c W are opens sets in M and X'a, X[, K(J, Y[ c
U c W is an admissible quadruple. Let Àj), Xy, T0> Y\ be another admissible

quadruple such that X0 c X'(y Xy C X[, T0 C Y,J, Yy C Y[. Then

pb'+{Xo, Xy, To, TO < pbuA'+(X'0, x;, Y0\ Yy). (3.7)
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Semi-continuity of pb* and bpL. Suppose that a sequence X((/\ x\J). T0 y[j ',

j N, of ordered collections converges (in the sense of the Hausdorff distance

between sets) to a collection Xa, X\, T0, Y\. Then

Mm sup pb+(X{0j), X[J\ T0(y), y[j)) < pb+(X0, XltY0, Y,).
j-*+oo

Accordingly, if Lj C (M,ü)), j e N, is a sequence of Lagrangian submanifolds

Lagrangian isotopic to L and converging to L C (M, co) in the C1-topology. Then

bpL(a) < lim inf bpL (a) for any a e HX(L\R). (3.8)
y-»-i-oo J

(Here we use the canonical isomorphism H1 (Lj ; R) s H1 (L; M)).

Behavior of pb]J" and bpL under products. Suppose that M and N are connected

symplectic manifolds. Equip M x N with the product symplectic form. Let K C N
be a compact subset. Then for every collection X0, X\, T0, Y\ of compact subsets

of M

pbf-kJV'+(Xo x K, A, x K, T„ x K,Y\ x K) < pb?'+(X0, A,, Y0, T,). (3.9)

The following product property of bpL follows immediately from (3.9):

Proposition3.9. Assume Li C (Mi, (Oi), i 1,2, are Lagrangian tori andoce HX(L\)
Consider the Lagrangian submanifold L\ xf2 C M \ x M2, (0\ © tof) and the co-

homology class ax g £ H1 (Li x Lf), where g is a generator of H°(L2). Let
Si'. T"' —> Li be two isotopy classes ofdiffeomorphisms. Then

x & ~ (»)• d

Behavior of pb* under symplectic reduction. The following property of pb^ did
not appear in |4,14|, but is proved similarly to (3.9).

Namely, let (M, a>) be a connected, not necessarily closed, symplectic manifold.
Let S C (M, co) be a coisotropic submanifold. We do not assume that S is a closed
subset of M. Assume that the characteristic foliation of S defines a proper fibration
7r: S —(N, 1/) over a (not necessarily closed) symplectic manifold (N, rj).

Let Xo, Xi, To, Y\ C N be an admissible quadruple (in particular, the sets are

compact). Assume

X0Cn-\Xo), X\ C 7T_1 (A,), TQCTT-^TO), TJ C Jr"^)
are some compact sets in M. Then X0, X\, T0, Y\ C M is an admissible quadruple.
Moreover,

pb^+(X0,Xl,?o,Y1) < pb^'+(X0,X1,Y0,Y1). (3.10)
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Indeed, let F, G be functions on N such that (F, G) e ^(Xo, X\, YQ, Y\).
Consider the functions F o n, G o n on E. Since tt: E -> N is proper and F, G are

compactly supported, so are F o 7r, G o jr. Now cut off the functions foi,
G o TT in the isotropic direction normal to E. As a result we get functions

X(r2)(F o 7r), /(r2)(G o n) with compact support lying in a tubular neighborhood U

of E — here r is a radial function on the isotropic normal bundle to E with respect to
a Riemannian metric on that bundle and /: M —> [0, 1 ] is a smooth function supported
near 0 and satisfying /(()) 1. Extend the two functions from G to M by zero
and denote the resulting functions on M by F, G. One easily checks that (F, G)
•Fm(Xo, Ât, Y0, Pi) and maxm {F, G} maxjv{F, G}, which yields (3.10).

In the case when £ is a fiber of the moment map of a Hamiltonian action of a

Lie group H on M the reduced space N E/// may not be a smooth symplectic
manifold but a symplectic orbifold, which brings us to the following discussion.

The Poisson bracket invariant for symplectic orbifolds. Recall (see e.g. [28]) that
the notions of smooth functions, vector fields and differential forms can be extended to
orbifolds. In particular, there is a well-defined notion of an orbifold symplectic form;
an orbifold equipped with such a form is called a symplectic orbifold. Accordingly,
there is a notion of the Poisson bracket of two smooth functions on a symplectic
orbifold and the definition of ph^ can be carried over literally to symplectic orbifolds.

It is easy to check that the proof of (3.10) goes through in the case when the

reduced symplectic space N is an orbifold.

4. Lagrangian tori in symplectic surfaces: proofs

Proofof Theorem 2.2. Let us prove that

defL(ke) < A + /k.

(The inequality defL(—ke) < A-/k is proved in the same way). If A+ oo, the

inequality is trivial, so let us assume that A+ < oo.

Fix c > 0. Let \j/ — {Vf* F —M}o<t<r be a Lagrangian isotopy of F such that

Flux(\fr)t —tke for all 0 < t < T. By definition of defL(ke) and since e was
chosen arbitrarily, it suffices to show that T < A + /k + e.

There exists a compact surface K (possibly with boundary) which lies in M and

contains the union U0<t<T^t(F) of all the Lagrangian submanifolds appearing in
the isotopy. Cap off the boundary components of K lying in M+ (if they exist) by
disks and extend the symplectic form from K over the disks so that the total area of
the disks is smaller than e. Denote the resulting compact symplectic surface by K
and the symplectic form on it by co.

Note that L is a Lagrangian submanifold of (K,cb), f defines a Lagrangian

isotopy of L in (K, <3) and the Lagrangian flux of the latter Lagrangian isotopy in K
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is the same as that of the original Lagrangian isotopy in M. By our construction,
L bounds in K a domain without boundary of area A < A+ + e. Therefore,

d(ke) k[to]L/A and (K, <3) does not admit weakly exact Lagrangian submanitolds
in the Lagrangian isotopy class of L (because any curve in K isotopic to L bounds

a domain of positive area). Thus we can apply Theorem 2.1 and get that defL(ke),
for L viewed as a Lagrangian submanifbld of (K, <w), is not bigger than A/k. On the

other hand, by definition,
T < defL(ke).

Thus, T < A/k < A + /k + e. Since this holds for any Lagrangian isotopy x[r as

above and any e > 0, by the definition of defL(ke) for L viewed as a Lagrangian
submanifbld of (M, at), we get that

defL{ke) < A+/k.

Since, by Theorem 3.5, bpL(±ke) < defL{±ke), it remains to prove that

bpL(±ke) > A±/k.

We first consider a model situation. Let e, A > 0 and denote by (x, y) e R2 the

coordinates and by n: R2 -> M the projection onto the x-axis, n(x, y) x Define

Q(A) := [0, A] x [0, 1] C Qe(A) := (—e, A + e) x (—s, 1 + e) C R2.

Label three sides of Q(A) as follows:

f0 [OM]x{0}, ?o — {0} x [0,1], M}x [0,1].

For the remaining side [0, A] x {1} we choose a partition into Ak — 3 closed intervals

yi,..., V4k~3, ordered from right to left, such that for i 0,2, 3 mod 4 the

intervals y, have length e, the interval yi has length A/k and the remaining intervals
have length j — 3s. Set

X0 := X0 U [J yi, Xx := [J y,-,

i sO mod 4 i 1 mod 4

T0:=?0U (J Yi, Yl:=Y1 U (J yf.
i =2 mod 4 i =0 mod 4

Now choose a piecewise-linear function Gs: QS(A) —> [0, 1] that satisfies:

(i) Ge\y0 0, Ge\y{ 1,

(ii) Ge only depends on x in Q(A),

(iii) Ge has compact support.



858 M. Entov, Y. Ganor and C. Membrez CMH

One can choose Gs to satisfy

3xGe S l/(£ -3e)

on 7i(X\) x [0, 1] C Q(A); see for example Figure 5. Therefore there exists a smooth

approximation G that satisfies (i), (ii), and (iii) and has slope

3XG < l/(£-4e)
on n(Xi) x [0,1], This implies that all chords of G from X0 to X\ have time-
length T > j — 4s. Since s > 0 can be chosen arbitrarily small, by the dynamical
characterization of bpL in Section 3.2, we have

\/pb+(XQ,Xl,Yfi,Yl) > f

x„

A

Figure 5. Partition and function in the case k 3.

We now construct a specific neighborhood of L C M. We first treat the case

where L is a boundary component of M+. Note that the boundary orientation of L
corresponds to +e.

For a small S > 0 choose A A+ — 8. Let D\,..., Dn c Int Q(A) denote

a non-intersecting (possibly empty) finite union of closed disks of total symplectic
area less than 8. Then for a sufficiently small s > 0 and for an appropriate choice

of the disks D,- there exists an open neighborhood U+ C Int M of L that can
be symplectically identified with Qe(A)\Di U ••• U Dn and so that L (with the
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orientation corresponding to +e) gets mapped arbitrarily close to 3Q(A) with the

standard boundary orientation. If 8 > 0 is chosen small enough, one can choose

the disks D; to lie in the region n(Y0) x [0, 1] c Q(A). Thus we can extend the

function G from U+, identified with Qe(A)\Di U • • • U Dn, to the whole symplectic
manifold M by 0. Then all chords of G from XQ to Xt have time-length T > j- ~ 4s.

Since e, 8 > 0 can be chosen arbitrarily small, together with the semi-continuity and

symplectic invariance properties of pb^ (see Section 3.4) this implies that

bpL{ke) > A + /k.

When L with the orientation —e is a boundary component of M_ a similar
construction gives us the lower bound

bpL(—ke) > A~/k.

This completes the proof.

Proofof Theorem 2.3. The case k ±1 was shown in [33]. We generalize this
construction to arbitrary k e Z.

By Remark 3.7, we see that an admissible quadruple associated to ke is given
by dividing L ~ S1 into 4k consecutive closed arcs and labeling them with
9f(), Y\,X\, X\ following the orientation of L in the case k > 0 and else following
the opposite orientation in the case k < 0. Note that, by Proposition 3.3, bpL(ke)
does not depend on the choice of subdivision as long as the order of the 4k arcs is

preserved.
For e > 0 consider the symplectic annulus,

(Ze (—£, e) x [— 1, l]/~, dx A dy),

where we identify (x, —1) ~ (x, 1). Partition the subset (—e, s) x {0} into 4k + 1

consecutive intervals yi,..., y^k+i respecting the standard orientation on (—e. e).
Set

Xo •"= U Y<- Xi:= (J Yi,
i 1 mod 4 i=3 mod 4

Vo (J Yi. '= [J y'-
i =0 mod 4 i =2 mod 4

One can easily construct functions F,G:Ze [0,1] such that (F,G) G

!F'(Xo, X\, To, Fi) and {F, G} 0, namely choose F and G to only depend on
the x-coordinate.

The Lagrangian L C Mis not a separating curve. Thus there exists an embedded

loop y C M that intersects L exactly once. Furthermore, one can find a tubular

neighborhood N of y that is symplectomorphic to Ze for e > 0 small enough. The

symplectomorphism can be chosen to map y to {0}x[—1, 1] andLfl N to (—s, £)x{0}.
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We now make a specific choice of admissible quadruple X0, Xx, Y0, Y\ on L.
Namely choose X0 c L such that L\N c A0 and

X0nN X0, Xx n N X 1; Y0 n A Y0, and Y\ n N Y\

(or, if the order requires, use the reflection of A0, X\, Y0, Y\ C Zf along the y-axis).
Since F, G have compact support in ZE, we may pull back the functions to M and

obtain functions on M that satisfy (3.1), have compact support and Poisson-commute.
This proves the theorem.

A lower bound on bpL for orbifolds. The proof of the lower bound for k e N,

A±/k < bpL(±ke), (4.1)

from the proof of Theorem 2.2 can also be modified for the orbifold case.

Indeed, the singular points of a 2-dimensional symplectic orbifold M form a

discrete subset of M LI 8] and one can assume without loss of generality that they all
lie in M \ U+ where the function G vanishes identically (and thus can be extended

over the singularities).

Symplectic reduction and bpL. Let (AY2", <») be a connected, not necessarily
closed, symplectic manifold. Let £"+1 c (M.co) be a smooth coisotropic
submanifold. We do not assume that S is a closed subset of M. Assume that
the characteristic foliation of £ defines a proper fibration 7r: £ > (A, rj) over a (not
necessarily closed) 2-dimensional symplectic orbifold (A2, rj). Let L c (M.co) be

a Lagrangian torus lying in £ and s an isotopy class of diffeomorphisms T" -> L.
Assume that jt\l: L T is a fiber bundle over a simple closed curve T := n(L)
lying in the non-singular part of A and dividing A into two domains of areas A +
and A-.

Equip F with an orientation induced by the orientation of the domain of area A+.
The orientation of Y defines a positive generator e e //'(F) ^ Z.

Assume that k e N and a e /Y1 (L) is a primitive class. Assume that there exists

an orientation-preserving diffeomorphism S1 —T that identifies the fiber bundle

L —>• T with a fibration /„: L -» S1 associated to .v and a; see Remark 3.7.

Then an admissible quadruple associated to a fibration fka can be described in terms
of fa as follows (see Remark 3.7).

Divide S1 s F in 4/c consecutive closed arcs yi, y4^ numbered in the

counterclockwise order. Set

*o := U := U Y<>

i 1 mod 4 i =3 mod 4

>V= U Yi Y\ '= U
i=0 mod 4 i =2 mod 4
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and furthermore

X0 := n-\X0) n L f~\X0), V, := n L f~l(Xx),
?o := 7t~1(Y0) n L f~l(Y0), Pi := rr—1 (Kj) n L

By Remark 3.7, (V0, Ad, P0, Pi) is an admissible quadruple associated to fka-

Combining this observation with (3.7) and (3.10) (in the orbifold case), we

immediately get:

bpsL(ka) \/pb^+(X0,X1, P0, Pi) > l/pbf'+(X0,Xi, Y0, Yx) bPr(ke).

In view of
bpl(-ka) \/pbf'+{X(),Xl, Pi, Po)

(see Remark 3.7) and (4.1 (in the orbifold case) this yields the following claim.

Proposition 4.1. With the setup as above, for any k e 71 we have

bpsL{ka) > A+/k and bpsL(—ka)>A-/k.

5. Toric orbits in symplectic toric manifolds: proofs

Proofof Theorem 2.4. Set

ka := (mie (Zn)* Hx{T"),

where a is a primitive class and k e N.
Complete a to an integral basis oq,... ,an-X,a of Hl{T") (Zn)* and let

ßi,..., ßn be the dual integral basis of Z". Thus, we have a splitting

Lie* T" SpanR{oq a„_i} © SpanR{a}.

Let jtx:Lie*Tn -> SpanR{oq,..., an-\} and jt2: Lie* Tn —> SpanR{a} be the

projections defined by the splitting.
Consider the (n — l)-dimensional subtorus H c T" whose Lie algebra is

Lie H := Ker a SpanR{/fi,..., ßn-\) Cl" Lie T".

The map Lie* T" -> Lie* H dual to the inclusion Lie H s- Lie I " can be identified
with the projection 7Ti.

Since H is a subtorus of T", there is a Hamiltonian action of H on (M,co)
whose moment map <A>h can be described as the composition of <î> and 7Ti. Thus,

Lx <f>~'(x) lies in a fiber of <&h which is the union of the fibers <J>_1(y)

for all y e A such that jti (y) 7ri(x). The set maY be an orbifold, but its
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smooth part Xx C £x, which is the union of the fibers <t>
1

(y) for y e Int A with
7i\(y) it] (x), is a smooth coisotropic (n + l)-dimensional submanifold of M.

The torus H acts on Ex and the reduced space T,x/H is a 2-dimensional

symplectic orbifold Nx. The natural projection tïh'- Sx T,x/H is proper and its
fibers are exactly the leaves of the characteristic foliation of Sx. The 1-dimensional

torus Tn/H acts in a Hamiltonian way on Nx. In fact, the torus Tn/H can
be identified with a subtorus of T" whose Lie algebra is SpanR{ß„} c LieT".
Accordingly, Lie* (Tn /H) is identified with SpanR{a} C Lie* T". Thus, the

moment map d>lr„/H of the '\\'n /II-action on Nx can be viewed as a map

$T >'/h-Nx -> SpanR{a}.

A well-known property of Hamiltonian group actions (the so-called "reduction in

stages", see e.g. [3, Exercise III. 12]) implies that the orbits of the original T"-action
on (M, a)) lying in Ex project under tïh'- £x - > Nx to the orbits of the T"///-action
on Nx and for any y e Lie* T" n A such that 7Ti (x) tz] (y) we have

ti2 o <t> O'f"/h ° Jin on O-1 (y).

Therefore the image of the moment map <&jn/H can be identified with the image
under tï2 of the intersection of the line x — ta, t e M, in the affine space (M")*
Lie* T" with A Im <î>.

Another conclusion is that the torus Lx C Sx, which is an orbit of the 'II'"-action

on (M, co), projects under jt# : Xx Sx/// to a simple closed curve TciV, that
lies in the non-singular part of the orbifold Nx. The curve T is an orbit of Tn/H
and as such can be identified with S1 — this identification is unique up to a rotation
of S1. Moreover, under this identification the map

nH\lx-Lx -> T

becomes a fibration fa: Lx S1 associated to a; see Remark 3.7. (Indeed, fa can
be viewed as the projection Lx Lx/H S1).

The symplectic properties of T inside Nx are completely determined by the relative

position of the point tt2(x) <J>T«/// (T) in the image of <I>t'!/h or, equivalently, by
the position of x in the intersection of the line x — ta, t El, with A. Recall that
â (x, a) is defined as the open part of the intersection of the ray x — ta, 0 < t < +oo,
with À. By a basic version of the Delzant theorem [9], the oriented curve F (it is

oriented as an orbit of Tn/H) is the oriented boundary of a domain D in Nx whose

area is the rational length of â (x, a), if â (x, a) is an interval, or +00, if â (x, a) is an

infinite ray.
Thus, we can apply Proposition 4.1, which implies that

bpx(ka) > lx(a)/k

fork e N.
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6. Lagrangian tori in C2: proofs

Proofof Theorem 2.6. The original idea of the proof below belongs to E. Opshtein.
Consider a Lagrangian isotopy

f {ft'- L —y C2}, 0 < t < T, fo l,

such that

[ot)]f [ù)]i - tda,

with L C C2 and a as in the statement of the theorem.

For simplicity let us consider a dual picture. Namely, for 0 < t < T there exists

a family of compactly supported diffeomorphisms cpt:C2 —> C2, (p0 Id, such that

<Pt(L) ft(L). By pulling back our symplectic form cp*co =: cot we may consider
a fixed Lagrangian L c (C2,cot). We have //2(C2, L) — Z(A, B) and

cot(A) — u>(A) — crt and cot(B) co(B) — pt.

Let ft be the space of almost complex structures on C2 compatible with
the symplectic form cot. Given an almost complex structure J e by a

(parameterized) J -holomorphic disk we always mean a smooth J -holomorphic map
m: (D, 3D) (C2,L) (here D C C is the standard closed unit disk). By the

homology class of a /-holomorphic disk u we always mean the relative homology
class n*([D]) e //2(C2, L). Such a m is called somewhere infective, if du(z) 0

for some z eD such that w"1 (u(z)) {z}.
Given a relative homology class C e H2(C2, L) define M(C, J) as the moduli

space of somewhere injective (parametrized) /-holomorphic disks in the class C.
Let M(C, J) x 3D be the moduli space of /-holomorphic disks with one marked

point on the boundary. PSL2(®0 is the group of biholomorphisms of D and we
consider the quotient

MAC, J) := (.M(C,J) x dD>)/PSL2(R),

where the action of PSL2(E) is defined as g (u, x) — (u o g, g~1(x)). This space
comes with an evaluation map

ev: Mi(C, J) -> L

given by ev([u, x]) := u(x) and for a chosen point/? e L we define M\(C, J, p) :=
(p).

Given a family {/,}, 0 < t < T, of almost complex structures Jt e ft and a class

C e //2(C2, L), define M\(C, {//}) as the set of pairs (t, D), where 0 < t < T
and D e M\(C,Jt). The set M\(C, {Jtj, p) C M\(C, {/<}) is defined analogously
with D e M\(C, Jt, p).
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We will show that for A as in the assumption of the theorem and for a generic
family {Jt} the set M \ (A, {Jt}, p) is a smooth compact manifold of dimension 1.

We recall hrst some general facts about the moduli spaces.
We say that J £ $t, t [0, T], is regular, if for all C 6 H2(C2, L) the space

M\(C, J) is a (transversal ly cut out) smooth manifold of dimension

dim M\(C, J) dim L + /x(C) + 1 - dim PSL2(R) /x(C).

An almost complex structure J G $,t is called regular with respect to p G L, if it is

regular and, in addition, M\(C, J, p) is a (transversally cut out) smooth manifold of
dimension

dim Mi (C, J, p) dim M\(C, J) — dim L /x(C) — 2.

We will say that a family {Jt}, 0 < t < T, 7/ G £t, is regular with respect to p if

(1) for any t e [0, T] the spaces M\{C, Jt) are empty for all C with /x(C) < 0,

(2) M\{C, {Jt}, p) is a (transversally cut out) smooth manifold of dimension

dim M\(C, {Jt}, P) dim M\(C, J, p) + 1 /x(C) — 1

with boundary M\(C, Jo, p) U M\(C, Jj, p)-

Similarly, given a (regular) path y(.v), 0 < .v < 1, in L, and t G [0, T], we say that a

family {Js }o<.v<i C frt's regular with respect to y, if
(1') for any ,v G [0, 1] the spaces M\(C, Js) are empty for all C with piC) < 0,

(2') Mi (C, {Jv}, y) := U0<4<i Mi (C, Js, yfv)) is a smooth manifold of dimension

pt{C) — 1 with boundary M\(C, J0, y(0)) U M\(C, Ji,y(l)).
It follows from standard regularity and transversality arguments (see e.g. [29,31 J,

where the arguments are explained in detail for pseudo-holomorphic curves without
boundary) that for any p G L

- a generic J G tf,t is regular and moreover regular with respect to p,

- for any p G L and any J0 G #0, Jt £ $'r that are regular with respect to p, a

generic family {J(,0<( < f, i, G |(, connecting Jo and Jj satisfies (2),

- for any y as above, any t G [0, 7"] and any J0, J\ G %,t regular, respectively, with

respect to y(0) and y(l), a generic family {Jv}o<.v<i C connecting J0, Ji
satisfies (2')-

In order to show that condition (1) also holds for a generic family {Jt} note that L
is orientable and, accordingly, the Maslov index of any disk with boundary on L is

even. Thus, if /x(C) is negative, then virtual dim M\(C, J) < —2 for any J G

and t G [0, T], meaning that the existence of somewhere injective J;4iolomorphic
disks of negative Maslov index is a codimension-2 phenomenon and can be avoided
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by choosing a generic 1-parametric family {Jt}. This shows that (1) holds tor a

generic family {Jt}. Similarly, one can show that (C) holds for a generic family {Js}
as above.

In fact, we claim that there are no ./(-holomorphic disks of negative Maslov
index, somewhere injective or not. Indeed, let {Jt} satisfy (1). By a result

of Kwon-Oh [22] (cf. [26,27]), any non-parameterized ./(-holomorphic disk in
the class C with boundary in L, viewed as a subset of C2, is a finite union
of non-parameterized somewhere injective ./(-holomorphic disks £>\ S)j and

C k\[S)\] + ••• + kj[£)j], where for each i [<£),] is the relative homology class

of A and kj N. If k\/x(S)\) + •• + kjpt(S)j) pt(C) < 0, then /z(A) < 0

for some i 1,...,/, in contradiction to the non-existence of somewhere injective
/(-holomorphic disks of negative Maslov index, which proves the claim.

Lemma 6.1. For any (possibly not even regular) J G jf,t, 0 < t < T, there are
no non-constant J -holomorphic Maslov-0 disks ofarea less than o>t(A), somewhere

injective or not (recall that A G H2CC2. L) is the class appearing in the hypothesis

of the theorem).

Proofof Lemma 6. /. Indeed, assume by contradiction that such a disk exists and

denote its relative homology class by C. By the hypothesis of the theorem,

o(B) > 1 + k)co(A) and (1 + k)cr > p,

so that

a>t(B — kA) - a)t(A) a>(B) — (1 + k)co(A) + ((1 + k)o — p)t > 0.

Moreover, u>t(C) > 0, since C is non-constant and J is compatible with mt. Thus

cot(B — kA) > u>t(A) > cot(C) > 0. (6.1)

On the other hand, since /z(C) 0, by the hypothesis of the theorem, C is an

integral multiple of B — kA, and therefore a>t(C) has to be an integral multiple of
cot(B — kA), which is impossible by (6.1). This proves the lemma.

Continuing with the proof of the theorem, we now show that for any almost

complex structures Jo G #0, Jt £ fr that are regular with respect to p G L and

any family {Jt}, 0 < t < T, Jt G that connects /0 and Jt and is regular with

respect to p, the moduli space M\(A, {Jt}, p) is compact and hence, in particular,
so are M\(A, Jo, p) and M\(A, Jt, p),

It suffices to show that any sequence {£>,-} in M\(A, Jtj, p) with {/,-} —> s

has a subsequence converging to an element of M\(A, Js, p). To prove this
claim note that, by Gromov compactness (see [16]), since ^(C2) 0, the

sequence {D, } has a subsequence converging to a bubbling configuration of non-
constant non-parameterized Js-holomorphic disks <£>i,..., with boundary in L
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whose homology classes [<£)]] [5)/] add up to A:

[<£>i] + • • • + [£)/] A.

Thus, 0 < (Os < (jùs(A) for all i 1and therefore, by Lemma 6.1,

none of the disks 5), has Maslov index 0. Moreover, since the family {Jt} is

regular with respect to p, none of the disks ,£),• has a negative Maslov index. Since

/r([Di])d hft([5)/]) p-(A) 2 and the Maslov indices of the <0,- 's are all even,
this means that / I - that is, there is only one disk in the bubbling configuration
and its relative homology class is A.

Let us denote this (non-parameterized) disk by D. By the result of Kwon-
Oh [22] (cf. [26,27]) mentioned above, the non-parameterized disk D, viewed as

a subset of C2, is a finite union of non-parameterized somewhere injective disks
and A is a linear combination with positive integral coefficients of

the homology classes of [)(mK The <w,-areas of D^ D^ are all

positive numbers smaller than a>s{A). Therefore, arguing as above, we get that all

D^\ £)(m) must have positive even Maslov indices, meaning that m 1 and

D DO e M](A, Js, p). Hence the sequence {D,} has a subsequence converging
to an element of M\(A, Js, p). This finishes the proof that the smooth manifold

Mi(A, {J,}, p) is compact.
Thus the moduli space M\ (A, {Jt}, p) is a compact smooth 1-dimensional cobor-

dism between the compact O-dimensional manifolds M\(A, J0, p) &nAM \ {A, Jt, p)-
In a similar way one can show that given a (regular) path y(.v), 0 < s < 1,

in L, t e [0, T] and a family {/,} c regular with respect to y, the moduli space

M\{A, {Js}, y) is a compact smooth 1 -dimensional cobordism between the compact
O-dimensional manifolds M\(A, Jo, y(())) and Mi (A, J\, y(l)).

Let us summarize: for any t [0, T] and any J e regular with respect
to p the moduli space M\(A, J, p) is a compact O-dimensional manifold. The
number n^{p, J) '= #M\(A, J, p) mod 2 — that is, the mod-2 number of non-
parameterized 7-holomorphic disks with one marked point that represent A and pass

through p — is independent of p and J. Indeed, for a different p' e L and an almost

complex structure J' G regular with respect to p' the manifolds M\{A, J, p)
and M\(A, J', p') are cobordant and therefore ha(p, J) n^ip', J')- This proves
part (A) of the theorem.

Moreover, for any ./() G #o and Jt g %,t regular with respect to p we have

>ia(p,Jo) ha(P-Jt), since M\(A, J0, p) and M\(A, Jt, p) are cobordant

compact O-dimensional manifolds.

In view of the above, if ha(p, Jo) is non-zero, then so is ha(p, Jt) for Jo & $o
and Jt e $t regular with respect to p. In particular, there exists a y^-holomorphic
disk in C2 with boundary in L in the relative homology class A and therefore

cot(A) w(A) — oT > 0,
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and hence

T < U>(A)/(7.

Since this holds for any Lagrangian isotopy {ijrt }0<t<T as above, we get that defL (a),
which is the supremum of such T, is less or equal to co(A)/a:

defL(u) < a>(A)/o.

This proves part (B) of the theorem.

6.1. Proof of Theorem 2.10. We calculate lower bounds for the /^-invariants of
Chekanov tori (Aa. The proofs of both parts rely on an increasing sequence of
neighborhoods of <r)a in C2. We first explain this construction.

For r R>0 let D(r) cC denote the standard open symplectic disk of area r
and T*S1 c T*S1 be the subset of covectors of norm < r (here we choose the flat
metric on S1 R/Z). Let X be the standard Liouville form on T*S1.

Proposition 6.2. For every r > a there exists a neighborhood U(r) C C2 of (Aa

such that U{r) is symplectomorphic to

D(r) x T*SX, dx A dy + dX)

and (Aa is identified with dD(a) x {0-section}.

Proof. Let r] be the simple closed oriented curve in the open first quadrant Q C C
used in the construction of the Chekanov torus (Aa. The curve bounds a disk of area a

which is contained in a larger open disk <3) C Q of area a + 8 for some small S > 0.

The map S: S1 x £) —> C2 given by

E (e2nit,z) -J=(e2nitz,e-2nitz)

is an embedding and its image contains (Aa as well as the Chekanov tori (Aa> for

every 0 < a' < a. Denote the image of E by N. We see that E preserves
the symplectic structure on 3d and that N is a coisotropic submanitold with
characteristic foliation generated by the S1 -action. By the neighborhood theorem
for coisotropic submanifblds [17], there exists a neighborhood U of N in C2 that is

symplectomorphic to a neighborhood of the zero-section in E*, where F C FN is

the characteristic bundle of N. One sees that the characteristic bundle of N is trivial,
hence

£*~A'xl~Dx§1xI.
Since the disk 3) is symplectic, the neighborhood U is symplectomorphic to a

neighborhood V of D(a + 8) x {0-section} in I)(a + 8) x 7'*S' with its standard

split symplectic form dx A dy + dX. By choosing a smaller neighborhood U if
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necessary, we can assume that U is symplectomorphic to V D(a + 5) x T*S1 for
an s > 0 so that 0a C U is identified with dD(a) x {0-section} c V.

For c > 0 the map cpc:C2 -> C2 given by

(zi,z2) \fc(z\, z2)

is a conformai symplectomorphism. Recall that the neighborhood U contains all
Chekanov tori &a' forO < a' < a. Now let 0 < a' < a and c a/a', then the image
<Pc(®a') is a Lagrangian torus that is Hamiltonian isotopic to 0a. The image of the

neighborhood, <pc(U), is then a neighborhood of (pc(®a')- The neighborhood <pc(U)
is symplectomorphic to V D(c(a + 8)) x T*eSl (recall that S1 M/Z and
A p (19 is the standard Liouville form).

Let us now construct the wanted neighborhoods U(r) for r > a. For a given
r > a we choose a' > 0 so that for c a/a' we have c dx A dy(D) > r and c s > r.
Then D(r) x T*S1 C V and this gives us a neighborhood U(r). Since a' > 0 can
be chosen arbitrarily small, this provides us with a neighborhood U(r) for all r > a.
The statement follows from this.

(A) We return to the proof of part (A). For the lower bound bpa{m,n) > a/m,
following the dynamical characterization of bpL in Section 3.2, we use a

neighborhood that we obtain from Proposition 6.2 to construct for any s > 0 a

complete Hamiltonian H that has no chords from X0 to X\ of time-length < ^ — s.

For m > 1 and n 6 Z fixed we choose k G N suchthatA > «and k > C := 4«|»|.
Now let U(k) be a neighborhood of as in Proposition 6.2 and we identify

U(k) ~ D(k) x 7^8'.

Recall that 0a is mapped to 3D(a) x {0-section} under this identification. Furthermore,

we identify C ~ M2 and write the coordinates of D(k) x 7^8' as (x, y, 9, p).
First we define a partition of 3D (a). Namely, partition S1 into 4m closed arcs by

setting

Yj L6 f e
./ ~ I J_

4m
'

4m j 1,..., 4m.
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(6.2)

Using the identification 3D(a) ~ S1 we consider the yy to be arcs of dD(a). For
9 e R/Z denote by R(9): R2 -» R2 the rotation by angle 2n9. In D(k) x 7^* S1 we

define the four sets,

*0= U {(R(n9)(x,y),0,0) \ (x,y) e yj, 0 e

j 1 moil 4

*1= U {(R(n9)(x,y),6,0) \ (x,y) eyj, 0 e

7=3 mod 4

r«=U !<«<" 9)(x,y),9,0) I (x,y) eyj, 9

j=0 mod 4

ft U {(R(n9)(x,y),e,0)\(x,y) eyj, 9 eR/Z}.
7=2 mod 4

A brief calculation reveals that under the identification U(k) ~ D(k) x Tfc*S1 the

quadruple is mapped to an admissible quadruple associated to the fibration fa : (M)a^ S \
where a mf — ny e Hl(0a).

Consider now the sector S C D(k) given by

^ := D(k) n J re2"1* r > 0, Ç e
-1 7

8/77 ' 8/77

The intersection S Cl D(a) has area a/m and d-8 intersects t)D(a) in the arcs y4

and y4,„. We consider a Hamiltonian G : S -» R that satisfies the following:

(i) G has compact support in Int(5),

(ii) G 0 in a neighborhood of (y4m U y4) fl S,

(iii) G 1 in a neighborhood of y2,

(iv) all chords of G from y\ to yj have time-length T > ^ — s,

(v) on S Cl D(a) the Euclidean norm of the gradient of G is bounded,

4/77

\(3xG,3yG)\ < —.

The existence of such a Hamiltonian follows easily. See Figure 6 for an illustration.

Namely, one can choose a piecewise-linear function that satisfies all conditions

except (iv) and then find a smooth approximation that satisfies all conditions.
Extend G to the whole disk D(k) such that G is periodic under the rotation

R(\/m). Since G has support in Int(^), this extension is smooth and has compact

support. By abuse of notation we denote the extension by G. Now choose a non-

negative function ß:T£Sl -» R that is constant equal to 1 for \p\ < C and has

compact support in 77*S'.
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/V4

/ /\73

/ /X y-
S

/ 7i

"W
T4m

'

1 D(k)

Figure 6. Hamiltonian chord of G from y\ to y-$ in S.

Define the Hamiltonian H : D(k) x 7'^S1 —> M. via

H(x,y,9,p) G(R(n6)(x,y))ß(p).

By construction 77 is complete and satisfies H 0 on Y0 and 77 1 on f].
Since ß(p) is constant in {|/?| < C}, we see that dpH 0 in this region. This

implies that the Hamiltonian vector field of 7/ in {\p\ < C} is tangent to the fibers

{9 constant}. Thus all Hamiltonian chords of 77 starting on dD(a) x {0-section}
and contained in {|/?| < C} will project to the fibers.

Now Tor {I/?I < C} and (x, y) e D(a) we estimate the Euclidean norm of the

differential,

\d0H\ < |(<)XG, dyG)\ \n \ |(x, y)| <
"y/Tt

This implies that all Hamiltonian chords of H starting in dD(a) x {0 — section}
remain in the region {| p \ < C} for times t 6 [0, a/m\ by our choice of C. Therefore

any chord of time-length t < a/m is contained in the fiber {9 constant} and under

the projection D(k) x 7^S' D(k) these chords project to rotated chords of G.
This proves that any chord from X() to Xi must have time-length T > a/m — e. This

completes the proof of part (A).

(B) We prove part (B). We construct a sequence of Hamiltonians that have chords

from Xo to X\ with time-length increasing to +oc.
We consider the admissible quadruple associated to the tibration fa'.G)a -> S1,

where a mV — ny with m < 0 and n e TL. Following Remark 3.7 we see
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J D(k)

Figure 7. Hamiltonian chord of G from y3 to y 1 in S.

that if (X0, X\, Y(), K|) is an admissible quadruple fora, then (Aj, A0, Fo> ^1) 's an

admissible quadruple for —a. Thus we may take the admissible quadruple associated

to —mV + ny as constructed in (6.2) and interchange X0 and X\ to obtain an

admissible quadruple associated tomT- ny.
Following the construction in part (A), we find a Hamiltonian G:S -> E that

satisfies G 0 on y4m U y4 and G 1 on y2 and consider its chords from

y3 to y 1 ; see Figure 7. In our sequence of symplectic neighborhoods we have

dx A dy{D{k)/D(a)) -> +00. Hence we can choose for all k > a a sequence of
Hamiltonians Gk for which the time-length T of chords from y3 to y\ goes to +00.
Repeating the construction as in part (A) then gives us a sequence of Hamiltonians H^
in C2 with the desired properties.

7. Lagrangian tori in C": proofs

7.1. Basic properties of bpx, defx for split Lagrangian tori in C".

Proposition 7.1.

(A) Permutation invariance: Let x„ 6 P.", aa G (M")* be the vectors obtained,

respectively, from x e R'!, a e (P." )* by a permutation n of the coordinates.
Then for any a

defx<J(ota) defja), bpXa(aa) bpJa). (7.1)
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(B) Homogeneity in x: For any c > 0

deJcx
c

(C) Semi-continuity with respect to x:

{X/} —> x => V a e (Z")* : bpJa) < lim inf bpx. (a),
X,' 'i

{x,} —x =J> Va e (R")* : defx(a) < lim inf defx. (a).
X! 1

[i

(D) The product property: For any a

def(x,Xn+l,...,XN)(oi, 0,...,0)> defx(a),

^(x,x„+1,...,xyv)(a'° °) > bpx(a).

Proof. (A) Claim (A) holds, since any split torus obtained from

T"(x) Tl(xi) x x T\xn)

by a permutation of the Tl -factors is Hamiltonian isotopic to Tn(x).

(B) Claim (B) follows easily from the fact that (p,q) x/c(p,q), c > 0, is a

conformai symplectomorphism.

(C) Claim (C) follows from the semi-continuity property of bpL (see (3.8)) and defL
(see (3.6)).

(D) Claim (D) follows from the product property of pb^ (see (3.9)).

7.2. ProofofTheorem 2.11. We now prove that for certain Lagrangian tori L c C"
and specific cohomology classes a e Hl(L~,R) there are upper bounds for the

associated Lagrangian isotopies. This proof follows the same route as in the proof
of Theorem 2.6. We indicate the changes here and refer the reader to the proof of
Theorem 2.6 for more details.

Consider a Lagrangian isotopy

with L C C" and a as in the statement of the theorem.

For simplicity we consider the dual picture. Namely, for 0 < t < T there exists

a family of compactly supported diffeomorphisms <pt:Cn C", (p0 Id, such that

ijr {\j/t : L ->• C"}, 0 < t < T, xjr0 t,

such that
[co]f [co\L - t'da,
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<pt(L) i//t(L). By pulling back our symplectic form <p*oj =: tot we may consider
a fixed Lagrangian L C (Cn ,(»t We have

H2{£n,L)~1(Au...,An)
and

u>t{A\) « — at and a>t(Ai) b — pt

for i =2 n.
Let t G [0. T], be the space of almost complex structures on C" compatible

with the symplectic form cot and let C e H2(Cn, L) be a relative homology class.

Choose a point p G L. We define the moduli spaces M\{C,J), Mi(C,J,p)
and M\{C, {Jt}, p) as in the proof of Theorem 2.6. An almost complex structure
J G $t is called regular, if M \ (C, J) is a (transversally cut out) smooth manifold of
dimension

dim M\(C, J) dim L + /z(C) — 2,

and regular with respect to p, if the space M\{C, J, p) is a (transversally cut out)
smooth manifold of dimension

dim M\(C, J, p) /r(C) — 2.

Further on we will assume n dim L is even - the arguments for n odd are
similar.

Let S G (0, T]. We will say that a family {Jt}, 0 < t < S, Jt e is regular
with respect to p if
(1) for any t G [0, S] the spaces M\(C, Jt) are empty for all C with gt(C) <2 — n,

(2) M\{C, {/(},/?) is a (transversally cut out) smooth manifold of dimension

dim M\(C, {7j}, p) dim M\(C, J, p) + 1 /x(C) — 1

with boundary M\(C, J0, p) U Mi (C, Js, p).

Again, by the same standard regularity and transversality arguments, used in the

proof of Theorem 2.6, that for any 7o £ #o and Js e $.s, that arc regular with respect
to p, a generic family {Jt}, 0 < t < S, Jt G #f, connecting J0 and Js satisfies (2). In

order to show that condition (1) also holds for a generic family {Jt} note that since L
is orientable, the Maslov index of any disk is even and therefore, since dim L is even,
Aim M\(C, J) is even. Thus, if fi(C) < 2 — n, then virtual dim < —2

for any ./ G $t and t G [0, S1], meaning that the existence of somewhere injective
/f-holomorphic disks of such Maslov indices is a codimension-2 phenomenon and

can be avoided by a generic choice of {Jt}-
We remark the following difference to the proof of Theorem 2.6. For a general

C G H2(Cn, L) with /x(C) <2 — n, we cannot a priori exclude the existence of not
somewhere injective ./,-holomorphic disks in the class C. However, we will show
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now thatfort G [0, a/a) ail /;-holomorphic disks of Maslov index lying in [2—n, 0],
somewhere injective or not, can be excluded using our assumptions on A\ A„
and a.

Set a(t) := a — at and h(t) := b — pt.
Lemma 7.2, For t G [0, a/a) there is no Jt-holomorphic disk with boundary in L
with Maslov index equal to —21 for l G {0,1,2)/2} that has positive
symplectic area smaller than <ot (A i a(t

ProofofLemma 7.2. Let t G [0, a/a). For / G {0, 1,..., (n—2)/2} let D G //2(C", L)
be a class such that p(D) —21 and D has positive symplectic area.

A brief calculation shows that b(t) — a(t) > 0 and a(t) > 0, since t G [0, a/a)
and

cr(n + 2) bo
p < — < —.H ~ 2 ~ a

Hence, we also have that h(t) > 0.

A calculation of the symplectic area of D reveals that, since

b(t) > 0, b(t) — a(t)> 0 and cot(D) > 0,

for each t e [0, a/o) we have

a>t(D) k(b(t) —a(t)) — lb(t)

for some k G Z such that
lb(t)

h(t) — aft)
where the last inequality actually means that

k > I + 1,

because k, l G Z.
Hence,

û>t(D) Z (I + 1 )(b(t) — a(t)) — lb(t) b(t) — (/ + 1 )a(t) > a(t). (7.2)

Here the last inequality in (7.2) can be deduced from the assumptions

/ G {0,1,...,(« — 2)/2}, p/o < (n + 2)/2 < b/a.

Inequality (7.2) implies the lemma.

Continuing with the proof of the theorem, assume 0 < S < a/o. We will now
show that for any almost complex structures ./0 g and Js £ regular with
respect to p and any family {Jt},0 < t < S, Jt G ft, that connects Jo and Js and is
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regular with respect to p, the moduli space {Jt}, p) is compact and hence,

in particular, the moduli spaces M\(A\, J0, p) and M\{A\, Js, p) are compact.
As in the proof of Theorem 2.6 it suffices to consider a sequence {£), } in

M. 1 Jti, p) with {0 } —> s G [0, S] and show that it has a subsequence

converging to an element of Js, p). By Gromov compactness (see (19|),
since jt2(Cn) 0, the sequence {£>, } has a subsequence converging to a bubbling
configuration of non-constant non-parameterized /^-holomorphic disks ,£>1,..., <0/

with boundary in L whose homology classes [0i],..., [£)/] add up to A\\

[®i] + • • + [<©/] A\.

By the result of Kwon-Oh |22], each disk <£);, viewed as a subset of C", is

a finite union of non-parameterized somewhere injective 7iV-holomorphic disks

0;(l) £>{Jn> so that

H(&i) km(£>ll)) + ••• + kinp,(£>\in))

where the coefficients ki are positive integers. Now 0 < û>s([£),]) < cos{A\) for all
i 1,...,/ and this implies that

0 < mç([£»i0)]) < cos(A))

for all somewhere injective disks. By Lemma 7.2, this means that

lM£>lJ)) t {2 — n -2,0}.

Since the family {Jt} is regular with respect to p, somewhere injective /5-holo-
morphic disks of Maslov index < 2 — n do not exist. Putting everything together

we conclude that for all i, j p,(S)jJ">) > 0, which, in fact, means that < 2

(recall that L is orientable and therefore the Maslov indices of disks with boundary
in L are all even). Therefore A\ [5)i], the disk <£>i lies in M\(A\, Js, p) and the

sequence {D,} has a subsequence converging to an element of M\{A\, Js, p). This
finishes the proof that the smooth manifold {Jt}, p) is compact.

Thus for any ./0 ^0, Js £ $s that are regular with respect to p and a family
{/,}o<<<5 that connects Jo and Js and is regular with respect to p the moduli

space M\(A\, {Jt}, p) is a compact smooth 1-dimensional cobordism between the

compact 0-dimensional manifolds J0. p) and M\(A\, Js, p), as long as

0 < S < a/a. (Note the difference with the proof of Theorem 2.6 where a similar
claim was proved for any S such that cot is symplectic for all t G [0, 5"]). This implies
that nAl (Jo, p) nAl (Js~ P)

In a similar way one can show that given a (regular) path y(.v), 0 < s < 1,

in L, t G [0, S] and a family {7S} C frt regular with respect to y, the moduli

space M\(A,{Js},y) is a compact smooth 1-dimensional cobordism between

the compact 0-dimensional manifolds M\(A, Jo, y(0)) and M\{A, J\, y(l)), and
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therefore (Jo, y(0)) /m, (J1, y(l)). The latter claim proves part (A) of the

theorem for n even. The case for n odd is similar.
In order to prove part (B) we need to show that T < a/a. Let us assume by

contradiction that a/n < T. As we have shown above, (Jo, p) (Js< P)
for any S (0,a/a). Thus if (J0, p) is non-zero, then so is n(Js< P)- This
implies that for every S < a/cr there exists a Ts-holomorphic disk in C" with
boundary on L in the relative homology class A\. Passing to the limit S -> a/rr and

applying again the Gromov compactness, we see that there must exist a configuration
of ya/a-holomorphic disks whose total homology class is A i (and hence not all disks
in the configuration are constant) and whose total ma/CT-area is coa/a(A i 0, which
is impossible since the area of each non-constant ya/a-holomorphic disk has to be

positive. Hence, we obtain a contradiction and this proves (B).

Remark 7.3. We remark that the proof of Theorem 2.11 does not generalize to the

settings where co(Ai) ^ co(Aj) for some 2 < i,j < n, i ^ j. The reason for
this comes from the fact that if in the Lagrangian isotopy there exist two Maslov-0
disks with positive symplectic areas that are rationally independent (e.g. A2 — A\ and

A3 — A2), then one can always find a Maslov-0 disk with positive symplectic area

arbitrarily close to 0. Hence one can not exclude Maslov-0 disks from any bubbling
configuration.

7.3. Proof of Theorem 2.14.

(A) The tori T"(x) are exactly the regular orbits of the standard Hamiltonian
T"-action on C" and the regular level sets of its moment map <P:C —> (R")*
whose image is the non-negative quadrant À C (R")*.

For a (mi mn) one readily sees that J(x,a), which is the open part of
the intersection of the ray x — ta, 0 < t < +oo, and A, is an infinite ray if and only
if all m, are non-positive. Otherwise, J(x,a) is an interval and its rational length is

given by mini;m( >o By Theorem 2.4, this proves part (A) of the theorem.

(B) The upper bound defx(k,..., k) < x/k for k G N follows from Theorem 2.1,
since C" does not admit weakly exact closed Lagrangian submanifolds by a famous
result of Gromov 1191.

The lower bound bpx(k k) > x/k follows immediately from part (A) of the
theorem.

(C) Let p\ pn,cji,..., qn be the standard Darboux coordinates on R2" C"
so that Zj pj + iqj, j 1 n.

According to the assumption, x, /k > xmin, that is, x, /k > xj for some j ^ i.
By (7.1), we may assume without loss of generality, that i n, j 1, that is,

x,,/k > X|. Let us show that bpx(ken) +00.
Observe that a circle bounding a round disk of a certain area in R2 can be mapped

by an area-preserving map arbitrarily close to the boundary of a square of the same



Vol. 93 (2018) Lagrangian isolopies and symplectic function theory 877

area. Together with the semi-continuity, product and symplectic invariance properties
of pb^ (see Section 3.4) this easily implies that it is enough to prove

pb+(X0,XuYo,Yl) 0, (7.3)

where the admissible quadruple A'o, X\, T0, Y\ is defined as follows: for i
1,..., n — 1 denote by 14, the boundary of the square

[0, v^T] X [0, V*ï] c (R2(Pi,qi), dpi A dqi).

For i n consider the rectangle

[0,xn] x [0, 1] C (R2(pn,qn),dpn A dqn).

Now choose s > 0 such that

X^-4e>xx. (7.4)
k

As in the proof of Theorem 2.2 we choose a partition of [0, xn\ x {1} into 4k - 3

intervals yi,..., y4k-?,, ordered from right to left, such that for i 0,2, 3 mod 4 the

intervals yi have length e, the interval y\ has length and the remaining intervals
have length A1 — 3e. Note that if k 1 then y\ [0, xn\ x {1}. We define

V0 [0,x„] x {0} U [J y,. V, (J yh
i =3 mod 4 i 1 mod 4

To [0,1] x {0} U [J yt, ?i [0, 1] x {xn} U (J yt.
i =2 mod 4 i =0 mod 4

We then set

A'o

*1
Ko

Ki

Iii x • • • x n„_i x Âo,

ni x ••• x n„_! x X\,
111 X ••• X n„_! X To,

n i x • • • x n„_t x Ti,

which gives us our admissible quadruple.
Now choose a constant C that satisfies

(y-4^^:>C> V3ET. (7.5)

Such a constant exists by inequality (7.4). On R2(pn, qn we dehne a piecewise-linear
function Ge: M2 -a- M that satisfies:

(i) Ge 0 on T0 and Ge C on T \,
(ii) G g only depends on pn.
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One can choose Ge to satisfy

dxG£ <C/(^-3e)

on Jt(Xi) x R, where n(pn,qn) pn is the projection. Therefore there exists a

smooth approximation G:R2 -> R that is complete, satisfies (i) and (ii) and has

slope

dxG <C/(y-4e)
on 7r(Ai) x R. This implies that all chords of G from X0 to X\ have time-length

T > (t ~4e)/c'

Now consider the Hamiltonian H \ R2" -> M defined by

H{p,q) := pi + G(pn,qn).

H is complete and satisfies

min H C, max H sfx\,
G Y()

and thus, by inequality (7.5),

min H — max H > 0.
G to

Again by inequality (7.5) we have

Under the projection R2" -> R2(/'„, qn) the chords of H map to the chords of G.

All chords of G from Â0 to X\ have time-length

Now under the projection M2" M2(/?i q\) the chords of H map to vertical lines.

We see that for any T > the image of n i c R2(/?i, q\) under the Hamiltonian
flow at time T does not intersect n i. Thus there are no chords of H from X0 to X\,
which, by the dynamical characterization of pb^, proves (7.3) and part (C).

8. Lagrangian tori in CP" and S2 x §2: proofs

We now prove that for Lagrangian tori L in C Pn or S2 x S2 and certain cohomology
classes a G Hl(L\ R) there are upper bounds for defL(a).
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8.1. Proof of Theorem 2.16. Consider a Lagrangian isotopy

xfr I\j/t; L -» CP"}, 0 < t < T, xfr0 t,

such that

[co]f [w]L - tda.

By contradiction assume T > C and consider Lc '= ^c(L). By the assumption of
the theorem, we have [co]ç £ H2(C Pn, L\ ^Z) and therefore

co(H2(CPn,Lc)) C -Z.
n

Since L is a torus the group co(H2(C Pn, Lc)) has n + 1 generators y\,... ,yn, 1.

Denote by c £ [0, +cc) n its positive generator. However, by a theorem of
Cieliebak and Mohnke |7],

1

c <
n + 1

We obtain a contradiction and therefore T < C.

8.2. Proof of Theorem 2.19. Consider a Lagrangian isotopy

i/r {tj/t: L -> §2 x S2}, 0 < t < T, xffQ — i,

such that

Mf Mi - tda.

By contradiction, assume T > C and consider Lc '= tyc(L). By the assumption
of the theorem we have [co]ç £ H2(S2 x S2, L\ Z) and therefore

co(H2(S2 x S2, Le)) C Z.

Therefore the group co(H2(S2 x S2, Lc)) is generated by 1. However, by a theorem

of Dimitroglou Rizell, Goodmann, and Ivrii [10, Proposition 5.3], for any torus
L c S2 x S2 the positive generator c of co(H2(S2 x S2, L)) satisfies

1

c < —.
2

We obtain a contradiction and therefore T < C.
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