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Lagrangian isotopies and symplectic function theory

Michael Entov* Yaniv Ganor** and Cedric Membrez*

Abstract. We study two related invariants of Lagrangian submanifolds in symplectic manifolds.
For a Lagrangian torus these invariants are functions on the first cohomology of the torus.

The first invariant is of topological nature and is related to the study of Lagrangian isotopies
with a given Lagrangian flux. More specifically, it measures the length of straight paths in the
first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy.

The second invariant is of analytical nature and comes from symplectic function theory. It
is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical
interpretation.

We partially compute these invariants for certain Lagrangian tori.
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1. Introduction

In this paper we study two related invariants of Lagrangian submanifolds which are
invariant under symplectomorphisms of the ambient symplectic manifolds.

Let (M, w) be a symplectic manifold (possibly with boundary) and L C (M, w)
a closed Lagrangian submanifold. Let «: L — M denote here and further on the
natural inclusion of L in M.

The first invariant of [. comes from the consideration of Lagrangian isotopies
of L with a given Lagrangian flux path in H'(L;R). Namely, recall that if
Vo= 4y, L — Mlo<t<T, Yo = ¢, is a Lagrangian isotopy, one can associate to
it a Lagrangian flux path

Flux() Yoz C H'(LR),  Flux(y)o = 0,

as follows: given a closed curve C C L and ¢ € [0, T], consider the trace of C
under the Lagrangian isotopy {¥;: L — M }p<r <, and integrate w over the resulting
surface. The resulting (real) number depends only on the homology class of C
in H{(L) (see [36]). The numbers obtained for all C in this way are the periods of a
uniquely defined Lagrangian flux class Flux(y); € H'(L;R).

The notion of Lagrangian flux immediately raises the following question.

Question 1.1. Which paths in H'(L:;R) based at 0 have the form {Flux(y),} for
some Lagrangian isotopy W of L.?
In general, this seems to be a very difficult question. In this paper we investigate

its weaker version:

Question 1.2. Which straight paths in H'(L;R) based at 0 have the form {Flux(yr), }
for some Lagrangian isotopy {r of L?
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The deformation invariant of L is a function def; : H'(L;R) — (0, 4+00] defined
as follows. Given @ € H'(L;R), set

def; (@) :=supT,

where we take the supremum over all 7 € R for which there exists a Lagrangian
isotopy ¥ = {¥y: L > M }o<t<T, Yo = ¢, of L such that

Flux(y); = —ta forall0 <t <T, (1.1)

or, in other words, the path {—fa}o<;<7 in H1(L:R) is the path { Flux(yr), } for some
Lagrangian isotopy ¢ of L. It is easy to show that def; («) is always non-zero —
thus, def; («) takes values in (0, +o00].

In case (M, w = dA) is an exact symplectic manifold the invariant def; can be
related to the notion of a symplectic shape studied in [11,35]. The symplectic shape
of (M,d2) associated to L and a homomorphism h: H'(M;R) — H'(L:;R) is
the subset of H'(L;R) formed by the Liouville classes [¢e*A] € H!(L;R) for all
possible Lagrangian embeddings e: I. — (M, d A) such that

h=e*: H'(M;R) - H'(L;R).

Assume M = T" x U C T" x R?* = T*T", where U C R” is a connected
open set, and A is the standard Liouville form on T” x R”. Let x € U and let
;= T" x {x} C T” x U be the corresponding Lagrangian submanifold. Let

h: HY(T" x U;R) - HY(T" x {x};R)

be induced by the embedding T" x {x} < T" x U. Then the Benci—Sikorav
theorem [35] (cf. [11]) says that the shape of (T” x U, dA) associated to L and # is
U C R"* = H'(T" x {x};R). Rephrasing this result in terms of the deformation

invariant gives us the following theorem.

Theorem 1.3. With U and (M = T" x U,dX), and L = T" x {x} as above, for all
o € HY(L;R)
defy (@) =sup{t >0 |x—tax e U }.

To prove Theorem 1.3 note that in this setting Flux(y); can be represented as the
difference of the Liouville classes of v, (L) and L:

Flux(f); = Y7 A — YA

Then the inequality def; () > sup{t > 0 | x —ta € U } follows from the existence
of an obvious Lagrangian isotopy ¥, (T" x {x}) = T” x {x—t«}, while the opposite
inequality follows directly from the Benci—Sikorav theorem.

The function 1/ def; is obviously non-negatively homogeneous. In the case
when U is star-shaped with respect to X, it is, by Theorem 1.3, the Minkowski
functional associated to U — which in turn completely determines U .
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The study of def; can also be viewed as a relative analogue of a deformation
problem for symplectic forms on closed symplectic manifolds considered in [32]: how
far can one deform a symplectic form w within a family of symplectic forms such that
the cohomology class of the deformed form changes along a straight ray originating
at [w] and such that its restriction to a given w-symplectic submanifold remains
symplectic? To see how a relative version of this question is related to def; we denote
by [w]z € H2(M.,L:R) and [0]Y € H2(M,¥,(L);R) the relative symplectic area
cohomology classes of, respectively, L and v, (L). The isotopy ¥ defines a canonical
isomorphism

H*(M,L;R) = H*(M, ¥ (L); R)

and thus [@]? can be viewed as an element of H2(M, L;R). Let 3: H'(L;R) —
H?(M, L;R) be the connecting homomorphism. Then

(]! = [w]r, + 8 Flux(y),
and condition (1.1) becomes
)] = []r —tda € H*(M,L;R), 0<t<T. (1.2)

Therefore, as long as da # 0, the number def; («) measures how far one can deform
[w]L in a Lagrangian isotopy v satisfying (1.2).

This viewpoint enables us to study def; using methods of “hard” symplectic
topology. Namely, the existence of pseudo-holomorphic curves with boundaries
on ¥ (L) for 0 <t < T may yield constraints on the time-length 7" of the deform-
ation, since [a)];!' evaluates positively on such curves. All the upper bounds on def; (@)
known to us and appearing further in this paper are obtained in this way.

On the other hand, as we explain below, lower bounds on def; can be obtained
by “soft” constructions. These bounds come from the study of the second invariant
of L, called the Poisson-bracket invariant of L. 1t is defined only for L admitting a
fibration over S!: it is a function on the set of isotopy classes of smooth fibrations
of L over S!. In the case when L is a Lagrangian torus with a choice of an isotopy
class of its smooth parametrizations T" — L, we reduce this invariant to a function

bpp: H'(L) — (0, +oc].

Postponing the precise definition of bp, : H'(L) — (0, +o0] until Section 3 we give
a short and informal definition here.

Namely, assume L is a Lagrangian torus equipped with a parametrization T” — L
anda € H'(L), a # 0 (for a = 0 we set bp, (0) := +o0). Consider a fibration
f: L — S! such that a is the pull-back under f of the standard generator of H'(S!)
(the parametrization of L is used in the construction of f; see Section 3.3). Cut S!
into four consecutive arcs, denote their preimages under f by X, Y1, X1, ¥y (so that
X()ﬂXl = Y()ﬂyl :Q),X()UY] UX1UX() :L)andset

bpy(a) := 1/ pb (Xy, X1, Yo, Y1).
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Here pb;" is the Poisson-bracket invariant of a quadruple of sets defined in [14] — it
is a refined version of the ph4-invariant introduced in [4] and it admits a dynamical
interpretation in terms of the existence of connecting trajectories of sufficiently small
time-length between X, and X; for certain Hamiltonian flows; see Section 3 for
details. The relation between bp; and def; is given by the following inequality
(which will be proved in a stronger form in Theorem 3.5).

Theorem 1.4. bp; < def; on H'(L).

This relation, albeit in a different language, was already exploited in [14], where
upper bounds on def; were obtained by symplectic rigidity methods in a setting
where the Lagrangian isotopy class of a Lagrangian torus L does not contain
(weakly) exact Lagrangian tori. This was then used to prove the existence of
connecting trajectories of Hamiltonian flows. In this paper we get upper bounds
on def; in new cases by using several strong symplectic rigidity results, including
some recent ones. Namely, Theorem 2.6 (the original idea of whose proof belongs
to E.Opshtein) and Theorem 2.11 rely on Gromov’s famous work [19], while
Theorem 2.16 and Theorem 2.19 rely on the recent powerful rigidity results of,
respectively, K. Cieliebak—K. Mohnke [7] and G. Dimitroglou Rizell-E. Goodman—
A. Ivrii [10]. At the same time we use new soft dynamical constructions to get lower
bounds on bp; , and hence on def; , in many new settings.

In Section 2 we partially compute the functions bp; and def; for several classes of
Lagrangian tori. Section 2.7 is then devoted to a discussion of the results and further
directions. In Section 3 we discuss in detail the definition of bp;. The sections
following Section 3 contain the proofs of the results from Section 2.

2. The main results

We now present results about def; and bp; for several examples of Lagrangian tori
in symplectic manifolds. (For general properties of def; and bp; see Section 3.4).

2.1. Symplectic manifolds without weakly exact Lagrangian submanifolds. Re-
call that a Lagrangian submanifold L. C (M, w) is called weakly exact, if [w];, = 0.

Theorem 2.1. Let L be a closed Lagrangian submanifold of a symplectic manifold
(M, w) (possibly with boundary). Assume that (M,w®) does not admit weakly
exact Lagrangian submanifolds in the Lagrangian isotopy class of L. Assume that
o € HY(L;R) and

1

Ja = E[w]L

Jor some C > 0. Then def; () < C.
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Proof. Lety = {y,: L — M}, 0 <t < T, bealLagrangian isotopy of L such that

[w]! = [0]1, — 1. 2.1)

Since, by the hypothesis of the theorem, da = é[a)] L, wWe get

[0]/ = [w].(1—1/C).

Then ¢t = C cannot lie in the interval [0, T'], because if it did, we would have
[w]g = (0, implying that the Lagrangian submanifold ¢ (L), which is Lagrangian
isotopic to L, is weakly exact, in contradiction with the hypothesis of the theorem.
Hence T" < C. Since this is true for any Lagrangian isotopy of L satisfying (2.1),
we get def; (o) < C. ]

A similar result for a particular class of Lagrangian submanifolds and a
particular @ was proved in the same way in [14].

Let us note that symplectic manifolds that do not admit weakly exact [.agrangian
submanifolds at all or in a particular Lagrangian isotopy class are plentiful and
include, in particular, symplectic vector spaces [19] and complex projective spaces.

2.2. Lagrangian toriin symplectic surfaces. Suppose (M2, w)is a connected sym-
plectic surface (possibly with boundary) and L C (M, w) is a simple closed oriented
curve (that is, a 1-dimensional Lagrangian torus) lying in the interior of M. The
orientation of L defines an isomorphism H1(L) = 7Z. This allows to define hp
on H'(L) (see Section 3.3). Denote the positive generator of H!(L) by e.

We distinguish between two possibilities: when M \ L is disconnected and when
M \ L is connected. We present precise statements in both cases.

In the first case L divides M into two connected components: M and M_ of
areas A4, A_, where 0 < A4 < +4o0c. The signs + and — here are determined by
the usual orientation convention.

Theorem 2.2. For k € N we have
] A
bpy (ke) = def, (ke) = —*.

A
bpy(—ke) = defy (—ke) = ——,

In the second case let L. C (M, w) be a simple closed curve such that M\ L is
connected.

Theorem 2.3. For k € 7 we have
bp(ke) = defy (ke) = +o0.

The case k = 1 was proved in [33]. For the proofs of Theorems 2.2 and 2.3 see
Section 4.
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2.3. Toric orbits in symplectic toric manifolds. Let T” := R"”/Z". Denote by
LieT" = R"
the Lie algebra of T” = R”/Z" and by
Lie* T" = (R™)*

its dual space. Denote by (Z")* the integral lattice in (R")*.

Let (M?" ®) be a connected (not necessarily closed) symplectic manifold
equipped with an effective Hamiltonian action of T". Denote the moment map
of the action by ®: M — (R"™)*. Assume that ® is proper, the fibers of ® are exactly
the orbits of the action and the image of ® is a convex set A C (R")* with non-empty
interior so that its interior points are exactly the regular values of ® (by the Atiyah—
Guillemin—Sternberg theorem [1, 20], these conditions are automatically satisfied
it M is closed).

Givenx € A, denote by Ly := ®~!(x) the corresponding fiber of ®. If x € Int A,
then Ly is a Lagrangian torus and the Hamiltonian T"-action on Ly gives us a pre-
ferred isotopy class of diffeomorphisms T"— L. Thus the pair H'(Ly) C H'(Ly; R)
is naturally identified with the pair (Z")* C (R")*. We denote by

bpy = bpy : (Z"* — R

and by
def, := defy : (R")* — R
the Poisson bracket and the deformation invariants of L.
For x € IntA and « € H'(L;R) define /;(r) as the largest t > 0 for which

x—ta € A and let 4 (x, @) be the open segment of the openray x —fe, t € (0, +00),
connecting X and x — Iy (a)a:

J(x,a) = {x—ta, 0 <t <o)}

If no such ¢ exists, set /y(a) := +o00 and let 4(x, ) be the whole open ray. In other
words, J (X, «) is the interior of the closed segment obtained by the intersection of
the ray with A and /() is the ratio of the rational length of « and the rational length
of this segment!.

Theorem 2.4. Leta € (Z")*. Then

Ii(a) < bpy(a).

For the proof see Section 5.

IRecall that the rational length of a vector cv, v € Z", is defined as |c|.
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Remark 2.5. Note that there exists a symplectomorphism @~ ! (Int A) — T" xInt A
that identifies ® ! (x) with T” x {x} foreachx € Int A. Then Theorem 1.3, applied to
the symplectic toric manifold ®~! (Int A), implies that for Ly viewed as a Lagrangian
submanifold of ®'(Int A) for each o the deformation invariant def, () equals Iy (c)
and thus, by Theorem 2.4,

bp, () = def, () = Ix(x)

foralla € H'(L).

For L, viewed as a Lagrangian submanifold of the whole M the problem of
finding bp, (o) and def, () is more difficult and the results below that we have been
able to obtain are weaker.

2.4. Lagrangian tori in symplectic vector spaces. Let M = C” be equipped with
the standard symplectic structure w and let zy, ..., z, be the complex coordinates
on C", Given x1,...,x, > 0, set X := (x1,...,xp,). Define a split Lagrangian
torus T"(x) C C" by

") i={mlg P =2 1 = 100 01

The standard Hamiltonian T"-action gives us a preferred isotopy class of
diffeomorphisms T" — T”(x) and we naturally identify H'(Ly) C H'(Ly;R)
with (Z")* C (R")*.

We first consider the case of Lagrangian tori in C2.

Lagrangian tori in C2. We first present computations of def; for general Lagrang-
ian tori in C2. We then restrict to the cases of split and Chekanov tori.

Let L. C (C?, w) be a Lagrangian torus.

We say that an almost complex structure J (on C?) compatible with  is regular
(for L) with respect to a point p € L, if for any C € H,(C?, L) the moduli
space of (non-parameterized) somewhere injective J -holomorphic disks in C? with
boundary in L and with one marked boundary point that represent the class C and
pass through p (that is, the marked point coincides with p) is a (transversally cut
out) smooth manifold of the expected dimension. For any p € L a generic almost
complex structure J compatible with @ has this property; see Section 6.

The original idea of the proot of the following theorem belongs to E. Opshtein.

Theorem 2.6. Assume that H,(C?, L) ~7.(A, B), where w(A)>0. Leta € H'(L;R)
so that 0a(A) =: 0 > 0 and da(B) =: p. Assume that for some k > 0
u(A) =2, w(B) = 2k,
and
p/o <k +1=<w(B)/w(A).
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Then:

(A) For any p € L and any almost complex structure J compatible with w and
regular with respect to p the mod-2 number n 4(p, J) of (non-parameterized)
somewhere injective J-holomorphic disks with boundary in L in the class A
passing through p is well-defined and independent of the choice of p and J.

(B) Ifns(p,J) # 0 for some p and J as in (A), then

dfy o) =2 )
g

For the proof see Section 6.

Remark 2.7. As it can be seen from the proof, Theorem 2.6 remains true if C?
is replaced by any 4-dimensional symplectic manifold (M, w) which satisfies
|z (M) = C1lmym) = 0, is geometrically bounded in the sense of [2], or convex at
infinity in the sense of [12], and

Hy(M,L) = Z(A, B) ® Im(my(M) — m2(M, L)),

where A, B satisfy the same conditions as in Theorem 2.6.

Note that Theorem 2.6 applies to certain split Lagrangian tori 7%(x) C C?2.
Indeed, by [8], the standard complex structure J on C? (which is, of course,
compatible with ) is regular (for 72(x)) with respect to any point p € T?(x).
It is also easy to see that for any point p € T2(x) there is exactly one regular (non-
parametrized) J-holomorphic disk in the class A (with one marked point) that passes
through p, if A is any one of the two standard generators of H,(C?, T?(x)) with
positive symplectic area.

Theorem 2.6, together with Theorem 1.4 and Theorem 2.14 (this general statement
for split Lagrangian tori in C” will appear later), yields the following corollary for
computations of def; and bp; for split tori in C2. We state the result in the case
x1 < xp — the corresponding result in the case x; > x, can be deduced from it using
the obvious symmetry of bp, and def, with respect to permutations of coordinates
in x (see (7.1) below).

Corollary 2.8. Assume m,n € Z, X = (X1, x3), 0 < x1 < xo. Under these assump-
tions the following claims are true:

(A) If m,n <0, then
bp,(m,n) = def,(m,n) = +oo.

B) If xy <xpf/land 1 <n <, then

bp(0,n) = def, (0,n) = +o0.



838 M. Entov, Y. Ganor and C. Membrez CMH
(C) Ifnx; —mx, <0,m > 0, then
xy/m < bp,(m,n) < def (m,n).
(D) Ifnxy —mx, > 0,n > 0, then
xa/n < bp,(m,n) < def,(m,n).
(E) Assume for x = (x1,x2) that2x; < xp. If m > 0, n —2m < 0, then

X1/m = bp,(m, n) = def(m, ). ]

nx) —meqe =10

2 < bpy(m,n) < defy(m,n) <?

n —

(0, 1)@ 4o

o < bpx(m,n) < defi(m,n) <?
m

|

bpx(m, n) = defy(m,n) = +oo

Figure 1. Regions of validity in Corollary 2.8 for x; < x3.

Parts (A)—(D) of Corollary 2.8 follow directly from Theorems 1.4 and 2.14.
Part (E) follows from the inequalities:

x1/m < bp(m.n) < defy(m,n) < x1/m.

Here the first inequality follows from part (C) of Corollary 2.8, the second one from
Theorem 1.4, and the third one from Theorem 2.6 with A, B being the standard basis
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of H,(C?,T?(x)) (so that w(A) = x1, @(B) = x3), « = mey + ney, a = m,
b=mn,andk =1,

oL < bpy(m,n) < defx(m,n) <7

m

71
nry —mco =10

n—2m=10

(0,0) (2
% £ bpx(m,n) < defx(m,n) < 1

L = bpx(m,n) = defx(m,n)

™
>

bpx(m,n) — de fx(m,n) = +o00

Figure 2. Regions of validity in Corollary 2.8 for x; < x2// for/ = 2.

In the case of the split monotone Lagrangian torus in C? Corollary 2.8, together
with the obvious homogeneity property of def,, bp, with respect to x (see part (B)
of Proposition 7.1 below) and Theorem 2.1 (since C 2 does not admit weakly exact
Lagrangian submanifolds by [19]), yields the following result.

Corollary 2.9. Assume m,n € 7, x = (x,x), x > 0. Then:

+o0 = bp,(m,n) =defy(m,n), ifm,n <0,
> bp,(m,m) = def,(m,m), ifm =n >0,
m

< (m,n) <def(m.n), ifm>0orn>o0. (]
maxi{m,n}
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7 < bpy(m,n) £defu(m,n) <7 L = bpy(m,m) = defx(m,m)

mazx{m,n} = mo

n s

A ©

’ . "

bpx(m, n) = de fx(m,n) = +oo

Figure 3. Regions of validity in Corollary 2.9 for monotone Lagrangian tori.

Chekanov tori in C2. Chekanov tori @4, ¢ > 0, in C? were originally introduced
in [5] (cf. [13]). The torus ®, C C? = C x C is defined as follows: consider the
first open quadrant Q of C and a point ¢ € Q. Fix a foliation of Q \ g by simple
closed curves (each winding once around ¢g) so that for each ¢ > 0 there is exactly
one curve in the foliation that bounds a disk of area a in Q.

Pick ¢ > 0 and let n(z) be the counterclockwise regular parameterization of the
corresponding curve in the foliation. Then

i . .
(H)a - _(62msn(r)’e—2msn([)) )

/2

Considerthe basis I', y of H1(®,), where I', y are, respectively, the homology classes
of the curves

1 N .
§ i3 —2(n(t), n(t)) and s> —(e*"n(0), e " n(0))

S
5_
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in ©,. Let I 7 be the integral basis of H'!(®,) dual to T, y. Define the functions

def,: (Z2)* — (0, 400], bpy:(Z*)* — (0, +00]
by
def, (m,n) := defg, (mT' +ny), bpy(m,n) = bpg (mI' + ny).

Theorem 2.10. The following claims hold for the Chekanov tori in C?:
(A) bpg(m,n) > a/m, ifm > 0.
(B) bp,(m,n) = def,(m,n) = 400 form < 0.

For the proof see Section 6.1.

Lagrangian tori in C” for general n € N. We first generalize the statement of
Theorem 2.6 to Lagrangian tori in C” for a general n € N.

Let L C (C", w) be a Lagrangian torus.

As above, we say that an almost complex structure J (on C") compatible with @
is regular (for L) with respect to a point p € L, if for any C € H,(C", L) the
moduli space of non-parameterized somewhere injective J-holomorphic disks in C”
with boundary on L and with one marked point that represent the class C and pass
through p (that is, the marked point coincides with p) is a (transversally cut out)
smooth manifold of the expected dimension. A generic J (on C”) compatible with @
has this property; see Section 7.2.

Theorem 2.11. Assume Hy(C", L) >~ Z(A1, ..., An), where
plAz) =2 I = Ll,:s:58;

and
w(Ay) =:a >0, w(Ay)=---=w(dA,) =:b.

Leta € H'(L;R) so that
da(Ay) =:0 >0, 0x(A;) =:p, i =2,...,n.

Assume
n+2

p/o < <b/a, ifniseven,

n+3

plo < <b/a, ifnisodd.

Then:

(A) For an almost complex structure J compatible with w and regular (for L) with
respect to a point p € L the mod-2 number n 4, (p, J) of (non-parameterized
somewhere injective) J -holomorphic disks with boundary in L in the class Ay
with one marked point passing through p is well-defined and independent of the
choice of p and J.
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(B) Ifna,(p,J) # 0 for some p and J as in (A), then

defy (@) < 24D _ 2
o o

For the proof see Section 7.2.

Remark 2.12. For Lagrangian tori L C C? satisfying Hy(C?, L) ~ Z(A;, A3),
where jt(A1) = u(Az) = 2, Theorem 2.11 gives the same result as Theorem 2.6.

Remark 2.13. As it can be seen from the proof, and similarly to Remark 2.7,
Theorem 2.11 remains true if C" is replaced by any 2n-dimensional symplectic
manifold (M, w) which satisfies @ |, (ar) = ¢1|zymr) = 0, is geometrically bounded
in the sense of [2], or convex at infinity in the sense of [12], and the following holds:

Hy(M, L) > Z(Ay, ..., Am) ® Im(m(M) — 12(M, L)), (2.2)
for some m € N (not necessarily equal to n!), where

,LL(A,‘):2, i:],...,m,
w(A) =1a>0, w(Ay)=---=w(dy) =:b,

and @ € H'(L;R) satisfies

da(Ay) =t =0, da(d;) =ip; 1 = 2susn; M,
n+2

p/o < > <b/a, ifniseven,
n+3

2

plo < <bh/a, ifnisodd.

In such a case Theorem 2.11 can be applied not only to M, L and « but also to
(M := M xT*S", ® := @ ®d6 A dr) (where & € S!,r € R are the standard
coordinates on T*S'), L := L x S! ¢ M (where S! = {r = 0} is the zero-
section of T*S'") and &, which is the image of « under the inclusion HI(L; R) —
HY(L;R) = H'(L:R) & R. (Note that Ho(M, L) ~ Ho(M, L)).

Moreover, if an almost complex structure J on M is compatible with @ and regular
(for L) with respect to a point p € L, then Ji=J i (where j is the standard
complex structure on T*S')is an almost Lomplex structure on M compatible with @
and re;,ular (for L) with respect to a point pi=pxqEc€ L = L x S' (where qisa
point in S1), dndnAl(p FY=mn4(P, J)

Then, if ¢ € H'! (L), we can apply Theorem 2.11 to A7I i @ and, together with
Theorem 1.4, it yields

bp; (&) < def; @) < =

Q
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or, equivalently,
o
phi(Xo xS, Yo xS, X; xS, ¥y xSt > —

where Xy, X1, Yy, Y are the closed subsets of L = Xo U X; U Yy U Y7 used to
define bp; (x).

By [14] (cf. Theorem 3.1 below), this yields the existence of connecting traject-
ories from Xy to X; for Hamiltonian flows (defined for all times) generated by
time-periodic Hamiltonians H: M x S' — R such that

Ag:= min H— max H > 0.
YIXSI Y()XSI

Such a connecting trajectory will have time-length < a/oAp.

Note that Theorem 2.11 applies to certain split Lagrangian tori in (C", w) and
the standard basis Ay, ..., A, of Ho(C", T"(x)) — indeed, for the standard complex
structure J on C” (which is, of course, compatible with w) there is exactly one
(non-parametrized) J-holomorphic disk in the class A; passing through any point
of T"(x). The regularity of J (for T"(x)) with respect to any p € T"(x) follows
again from [8].

The following results give partial information about the function bp, for split
Lagrangian tori. Set Xuj, := min{xy,...,x,}. Denote by ¢y,...,e, the standard
generators of H'(T"(x)) = (Z")*.

Theorem 2.14.
(A) Ifm; <Oforalli =1,...,n, then

bp (M ... my) = def (M1, ., my,) = +oc.

Otherwise
min x;/m; < bp,(my,...,my).
i,m;>0
B) If x1 =---=xp, =:xand k € N, then

bpo(k,... k) = def(k,....k)=x/k.

(C) Let! € N and assume Xy < x; /1. Then for all k € N withk <1,

bpy(ke;) = def,(ke;) = +oc.

For the proof see Section 7.3.
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Combining Theorem 2.11 and Theorem 2.14 we obtain for certain split tori 7" (x)
the following result.

Corollary 2.15. Assume x; = -+- = x, =: yand let 0 < x; < 2y/(n + 2)
ifnisevenand 0 < xy < 2y/(n+ 1) ifnis odd. For my € N let the integer
My = -+ = my < ymy/xy. Then we have

bp(my,...,my) =def,(my,...,mp) = x1/Mj.

In particular, for any m; € N

bpy(myer) = def(mier) = x1/my.

Furthermore, assume for | € N that x1 < v/l. Then for all 1 < k < [ and all
2 < i <n we have
bpy(ke;) = def,(ke;) = +o0.

2.5. Lagrangian tori in complex projective spaces. Let M = C P”" and let w be
the standard Fubini—Study symplectic form on C P" normalized so that f@ prw =1

Theorem 2.16. Let L C (C P", w) be a Lagrangian torus ando € H'(L). Consider
[w]; == [w]L —tda € H*(CP", L;R)
fort > 0. If there exists a C > 0 such that [w]c € H*(CP", L; %Z), then
defy (@) < C.

For the proof see Section 8.1.

We provide a precise statement in the case of Lagrangian torus fibers. Consider
the standard Hamiltonian T"-action on CP” and denote its moment map by
d: CP" — (R™)*. Its image is the simplex

A= {(rn ) € R [ X1 % 20, 0 < xp oo 4 x, < 1,

As in Section 2.3, for x € Int A denote L, := ®~!(x) the corresponding Lagrangian
torus fiber of ® and set

defy (@) := defy, (@),  bpy(a) := bpy, (@)

for each a € (Z™)* =~ H'(L,).
By Theorem 2.4, for all « € (Z")*

(@) < bpy(@). (2.3)

For certain a € (Z")* and x € Int A we obtain an upper bound on def, (o) from
Theorem 2.16.



Vol. 93 (2018) Lagrangian isotopies and symplectic function theory 845

Namely, define dy () as the smallest ¢t > 0 for which x —ta € % -(Z™)* and let
4(x, o) be the open segment of the same open ray x — t«, t € (0, +00), as above
connecting x and x — dy (o)

J(x,a) = {x—ta, 0 <t < dy(a)}.

If no such ¢ exists, set dy(a) := +o00 and let g (x, «) be the whole open ray. In other
words, 4 (x, ) is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice % -(Z™)* on the ray.

Corollary 2.17. With the setup as above,
def, () < dy(w). (2.4)

m
In case Iy (o) = dx(a) the lower and the upper bounds (2.3), (2.4) yield def, (@) =
dy(a) = ly(@) = bp, (). For instance, this happens when the intervals 4 (x, «) and
J(x, @) coincide. Thus, we get the following corollary.
Corollary 2.18. Assume that X = ka for some k > 0, o € H'(Ly), and that the
open interval {tx, 0 <t < k}, does not contain points of the lattice % (7)™
Then this interval coincides with J (X, &) and (X, o) and therefore

defx(a) = b])x(Ol) = lx(a) - dx(a) =K. .

2.6. Lagrangian tori in S? x S2. Let (S?, ) be the standard symplectic sphere
with normalized symplectic area fs2 o=1.

Theorem 2.19. Let L C (S? x S?,0 @ o) be a Lagrangian torus and « € H'(L).

Consider
[0]; := [@]r, — tda € H*(S?* x S?, L;R)

fort > 0. If there exists a C > O such that [o]c € H*(S? x S2, L;Z), then
def; (@) < C.

For the proof see Section 8.2.

We provide a precise statement in the case of Lagrangian torus fibers. Consider
the standard Hamiltonian T2-action on S? x S? and denote its moment map by
®:S? x S? — (R?)*. Its image is given by A := [0, 1] x [0, 1]. As in Section 2.3,
for x € Int A denote Ly := ®~!(x) the corresponding Lagrangian torus fiber of @
and set

defy(@) := defy, (),  bp,(a) := bpy, ()
for each o € (Z?)* =~ H'(Ly).

By Theorem 2.4, for all ¢ € (Z?)*

[x(a) < bpy(a).
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For certain « € (Z?)* and x € Int A we obtain an upper bound on def, («) from
Theorem 2.19.

Namely, define py () as the smallest ¢ > 0 for which x — ra € (Z?)* and let
K (x, @) be the open segment of the same open ray x — t«, t € (0, +00), as above
connecting x and X — py(a)a:

K(x, o) := {x — 1, 0 <1 < py(r)}.

If no such ¢ exists, set px(«) := +oc and let K (x, &) be the whole open ray. In other
words, K (x, ) is the open part of the segment of the ray connecting the origin x of
the ray to the closest point of the lattice (Z?)* on the ray.

Corollary 2.20. With the setup as above,

Ix(a) < bpy (o) < def, () < px(er).

In particular, if X (X, a) connects X to either of the four vertices of A, then J(x, o) =
K (X, ) then

(@) = bpy(@) = def(@) = py(c). 0

2.7. Discussion and open questions. The results above reflect first steps in the study
of the invariants bp; and def; . In this section we discuss the main difficulty in the
current approach and a possible direction of further investigation of these invariants.

As we have already mentioned in the introduction, the lower bounds on bp;
come from “soft” constructions, while the upper bounds on def; are based on
“rigid” symplectic methods — foremost, on strong results yielding the existence of
pseudo-holomorphic disks with boundary on Lagrangian submanifolds appearing
in appropriate Lagrangian isotopies of L. Unfortunately, it seems that these
strong rigidity results are not strong enough to get upper bounds on def; («) for
many « even for the basic examples of Lagrangian tori considered above. The
(well-known) difficulty comes from the fact that the pseudo-holomorphic disks in a
given relative homology class of L in M may not persist in a Lagrangian isotopy
Yy = {Yy: L — M} of L (since bubbling-off of pseudo-holomorphic disks is a
codimension-1 phenomenon), which makes it very difficult to track, as ¢ changes,
the relative homology classes of 1,(L) carrying the disks and, accordingly, the
symplectic areas of these disks. (As above, we use the Lagrangian isotopy to identify
the relative homology groups of all ¥, (L)). In our case the difficulty is compounded
by the need to track the pseudo-holomorphic disks and their areas for an arbitrary
Lagrangian isotopy y of L satisfying the cohomological condition (1.1), with no a
priori geometric information about it. Such a Lagrangian isotopy ¥ typically involves
non-monotone Lagrangians which limits even more the control over the disks and
their areas.



Vol. 93 (2018) Lagrangian isotopies and symplectic function theory 847

Thus, the progress on upper bounds for def; depends on getting more precise
information on pseudo-holomorphic/symplectic disks with boundary on (possibly
non-monotone) Lagrangian submanifolds Lagrangian isotopic to L.

Here is an example of possible additional helpful information on the disks. We
will present it in the case of Lagrangian tori in the standard symplectic C?.

Assume there is a way to associate to any non-monotone Lagrangian torus [, C C?
an ordered integral basis By of H(C?, L) with the following properties:

(a) For any Lagrangian isotopy L, of L among non-monotone Lagrangian tori the
following conditions hold:

— the bases By, for different ¢ are all identified with each other under the
isomorphisms between the groups H»(C?, L,) defined by the Lagrangian isotopy;

— the symplectic areas of the elements of By, are positive and change continuously
with 7.

(b) For L = T?(x1,x3), X1 < X2, the basis By, is the standard basis of
Ha(C2, T?(x1, x2)).

If such bases exist, a rather straightforward argument would allow to strengthen
Corollary 2.8 and show that if 0 < x; < x and nx; —mx, <0, m > 0, then

xi/m = bp,(m,n) = def,(m,n).

This, in turn, would allow to strengthen Corollary 2.9 and show that for a monotone
split Lagrangian torus 72 (x, x) one has
, i
bpy(m,n) = def (m,n) = Tl s
forall m,n € 7.

The question about the existence of a basis By is motivated by the folklore
conjecture that any non-monotone torus £, in C? is Hamiltonian isotopic to a split
torus T2 (xy, X2).

Indeed, assume the conjecture is true. Then, by a theorem of Y.Chekanov [5], the
ordered pair (xy, xp) is uniquely determined by L, as long as we require x; < xp.
A Hamiltonian isotopy between L and T2(xy, x) identifies the standard basis of
H,(C2, T(x1,x2)) with an integral basis By, of H,(C?2,L). The basis By, does
not depend on the choice of the Hamiltonian isotopy (since any Hamiltonian isotopy
of C? preserving T2(x1, x») as a set acts trivially on the homology of T2 (xy, x2),
by a theorem of M.-L. Yau [38]). It is not hard to check that By, satisfies (a) and (b).

The existence of bases By, satisfying (a) and (b) is, of course, much weaker than
the conjecture and, accordingly, might be easier to prove and to generalize to higher
dimensions.
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3. The invariant bp; and its properties

The definition of hp; is based on the following construction related to the Poisson
bracket.

3.1. Poisson bracket invariants. Let (M 2", ®) be a connected symplectic mani-
fold, possibly with boundary. Let C*°(M) and C°(M) denote, respectively, the
spaces of all and of compactly supported smooth functions on M (in the latter case
the support is allowed to intersect the boundary of M).

Our sign convention for the Poisson bracket on (M, @) will be as follows. For
G € C*(M ) define a vector field sgrad G by igraacw =—dG. Given F, G e C® (M),
define the Poisson bracket { ', G } by

{F,G} = w(sgrad G, sgrad F) = dF(sgrad G)
= —dG(Sgl’dd F) = LsgradGF = _LsgradFG-

We say that sets Xo, X1, Yo, Y1 € M form an admissible quadruple, if they are
compactand Xo N Xy =Yy N Y = 0.

Assume Xy, X1, Yy, Yy € M is an admissible quadruple. Recall from [14]
(ct. [4]) the following definition:

bl (Xo, X1,Yo, Y1) ;= inf max {F, G},
pby (Xo, X1, Y0, Y1) . { §
where ¥ = F (X, X1, Yo, Y1) is the set of all pairs (F,G), F,G € CZ°(M), such
that
Flx, <0, Flx, =1, Gly, <0, Gly, = 1. 3.1)

One can show (see [4, 14]) that ¥ can be replaced in the definition of pbzr by a
smaller set ' = F'(Xo, X1, Yo, Y1) of pairs (F,G), F,G € C2°(M), for which
the inequalities in (3.1) are replaced by equalities on some open neighborhoods of
the sets Xy, X1, Yo, V1.

If it is clear from the context what Xq, Xy, Yo, Y1 are meant, we will omit the
corresponding indices and sets in the notation for pbi, ¥, ¥

The number 1/pr(X0, X1, Yo, Y1) has the following dynamical interpretation
[14] (cf. [4)]):

Consider the set © of complete Hamiltonians G: M — R such that

Ag := min G —max G > 0.
Y Yo
For each such G define T € (0, +00] as the supremum of all # > 0 such that there
is no trajectory of the Hamiltonian flow of G of time-length < t/A¢g from X to X,
(such a trajectory is called a chord of G). We recall:
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Theorem 3.1 ([14, Theorem 1.11]).
sup TG = l/pb:(X(),Xi, Y(), Y])
GeS

Thus, if there exists a complete Hamiltonian G: M — R with

minG —max G > 0
Y, Yo

that has no chords from X to X then

1/ pb(Xo, X1, Yo, Y1) = +o0.

3.2. Theinvariantbp; for general Lagrangian submanifolds. The pbj-invariant
of admissible quadruples can be used to define a symplectic invariant of Lagrangian
submanifolds fibered over the circle in the following way.

Let L C (M,w) be a closed, connected Lagrangian submanifold admitting a
fibration over S'. Let 4'(L) denote the set of smooth fibrations L. — S!'. The
right action of Diff (L) defines an equivalence relation on d’(L) and we denote the
resulting quotient set by 4(L). Now slice S! into 4 consecutive closed arcs y, 2,
¥3, V4 in the counterclockwise order. For a chosen smooth fibration f:L — S!
representing a class [ f] € (L) we define

Xo:=f"'n), Xi:=/ "), Yo:=/"'(r), Y1i:=["'(y2).

Roughly speaking, we slice L into four parts along cuts parallel to a fiber of f'; see

Figure 4.

i

; = o
!
Ta
- 00000 @O0 |
I //72
X(J P
M

Figure 4. The four sets Xo, X1, Yo, Y1 arising from a fibration f.

One easily sees that Xy, X1,Ye, Y1 C M is an admissible quadruple and
XoUX,UYoUY, = L. We call such a quadruple an admissible quadruple
associated to f. We set

bp ([f]) := 1/pby (X0, X1, Yo, 11).
If PbI(Xo, X1,Y0,Y1) =0, we set

bPL([f]) = +o00.
Thus, bp; ([ f]) takes values in (0, +o0].
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Equivalently, bp; ([ f]) can be described as the infimum of all 7 > 0 such that for
any complete Hamiltonian G: M — R satisfying G|y, < 0, G|y, > 1, there exists
a chord of G from X to X of time-length < T'. If no such T exists, we set

bPL([f]) ‘= to0.

In applications we will often prove a lower bound 7' < bp; ([ f]) by constructing for
any & > 0 a complete Hamiltonian G that satifies G|y, < 0, G|y, > 1 and has no
chords from X to X of time-length < T" — &.

Remark 3.2. The letters in the notation bp stand for the “Poisson bracket” and their
inverse order (“b” before “p”) reflects the fact that in the definition of hp we take the
inverse of the maximum of the Poisson bracket.

Proposition 3.3. bp; ([ f]) is well-defined i.e. it does not depend on the choice of
representative of [ f] € J(L) and the choice of division of S' into 4 arcs.

Proof. Let f:L — S! be a smooth fibration. We first show that for ¢ € Diffy(L)
the bp, -invariants of f/ and f o ¢ are equal.

Note that any ¢ € Diffy(L) is a time-1 flow of a time-dependent vector field
on L. Denote this vector field on L by X; and the corresponding flow by ¢;.
Let W = U C T*L be a Weinstein neighborhood of L in M. Identify L with the
O-section in U. We can extend X; in U to a Hamiltonian vector field as follows:
in canonical coordinates (¢, p) we define the Hamiltonian H,: U — R by setting
H:(q,p) = p(Xi(q)). A short calculation reveals that the Hamiltonian vector
field Xy, = X; on the zero-section. By multiplying H; with a suitable cut-off
function one obtains a time-dependent Hamiltonian with compact support in W
such that the induced flow on L coincides with the flow of ¢;. Therefore, by
invariance of pb;‘F under symplectomorphism, bp; does not depend on the choice of
representative of a class in d(L).

We now show independence of the choice of four arcs y;. Choose four other arcs y/
in the same fashion. Note that there exists a ¢ € Diffo(S!) such that e(y)) = vi.
Using the notation of Section 3.2, this implies that the image of ¢ o f and f under o’
lie in the same path-connected component of A’(L). Using Proposition 3.4 we see
that @ o f and f represent the same equivalence class in 4(L.). Hence our definition
is independent of choice of arcs. [

Clearly, the resulting function bp; : d(L) — (0, +o0] is a symplectic invariant of
Lagrangian submanifolds fibered over the circle. We call this function the Poisson-
bracket invariant of L.

We now relate 4 (L) to the integral cohomology of L.

Consider the set N (L) of all non-singular (that is, non-vanishing) closed 1-forms
on L representing non-zero integral classes in H ' (L). It follows easily from Moser’s
method [30] that the path-connected components of N'(L) are exactly the orbits of
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the natural Diffo(L)-action on N'(L). Let N (L) = N'(L)/ Diffo(L) be the set of
the path-connected components of N'(L).

Define a map ¢':d'(L) — N'(L) as follows. Given an element f € J'(L),
i.e. a fibration f:L — S, let ¢’(f) be the non-singular 1-form f*d#, where d6
is the standard angle 1-form on S!. Clearly, ¢": 4’(L) — N’(L) induces a map
o0:d(L) - N(L).

Proposition 3.4. The map o0: d(L) — N (L) is invertible.

Proof. Define a map p': N'(L) — J’(L) as follows. Fix a point xo € L. Given
a non-singular form o € N'(L), let p'(ar) be the map L — S! = R/Z that sends
eachx € Lto [ ;0 o mod 1. Here the integral is taken along any smooth path from x¢
to x in L (recall that L is assumed to be connected); a different choice of path changes
the integral by an integral value, since the cohomology class of « is integral. One
easily checks that p’ («) is a fibration of L over S! and thus p’ is well-defined. Clearly,
p' induces a map p: N (L) — 4(L).

Note that ¢’ o p’ = Id and for any fibration f € J’(L) the fibration o’ 0 o’( f) lies
in the Diffy(L)-orbit of f. This shows that p = o~ 1. [

Thus bp; is also defined as a function bpy: N (L) — (0, +00].

Note that a path in N'(L) has to lie in the same cohomology class. This defines
amap Y: N (L) — H'(L)\ 0. For general L the map Y does not have to be either
surjective or injective — to check whether it is surjective for a particular L is, in
general, a very non-trivial task, see [15,21,23,37]. However, if dim L < 3, then T
is injective; see e.g. [25]. Using Y: N (L) — H(L) \ 0 we define a version bp; of
the invariant on the image of Y in H!(L)\ 0: for o € im(Y) C H'(L) \ 0 we set

bpy(a) ;= sup bpp(A),
AeT{a)

and we extend bp; to 0 via bp; (0) := +ooc.

Theorem 3.5. Let . C (M,w) be a closed Lagrangian submanifold admitting
fibrations over S'. Then for all « € im(Y) U {0} C H (L) we have

bpy () < defy ().

Proof. For « = 0 we have bp; (o) = def; (o) = +oo verifying the claim.

Let us assume « # 0. We will prove the inequality bp; (o) < def; («) by
a method developed in [4] (cf. [14]). Namely, given « € H1(L), consider any
smooth fibration f:L — S! such that Y o o([f]) = « (see Section 3.2 for the
notation). Let X, X1, Yo, Y1 be an admissible quadruple used in the definition of
bpr(Lf]) = 1/pbi (Xo, X1, Yo, Y1). Let (F,G) € F'(Xo, X1, Yo, Y1). Note that,
since . = XoU X1 U Yy U Yy and since F is constant on some neighborhoods of X
and X; and G is constant on some neighborhoods of ¥y and Yy,

dF A dG = 0on aneighborhood of L, (3.2)
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and thus Fd G|y is a closed 1-form on L. An easy direct computation shows that
[FdG|r]) = —a € HY(L). (3.3)
Consider the deformation
w; =@ +tdF AdG, t € Rsy.
A direct calculation shows that
dF AdG A" ! = —%{F, Glo",

and thus
w; = (1 —t{F,G})o".

Thus, w; is symplectic for any ¢ € I(r i), where

[(F,G) = [0, m)

Fix an arbitrary t € I(p ). Since F, G are compactly supported, the form w
can be mapped (using Moser’s method [30]) to @, by a compactly supported isotopy
v (M, w;) - (M,w). Since, by (3.2), L is Lagrangian with respect to @;, we get
that L., := (L) is a Lagrangian submanifold of (M, w) Lagrangian isotopic to L.

Using (3.3) we readily see that, under the identification

H?*(M,L:R) = H*(M, L;;R)

induced by the isotopy, the class [w], is identified with @ — rd«. Since this is true
forall 7 € I(r gy we obtain

maxpy {F,G} < defy,(@).

Now the latter inequality holds for all (F, G) € F'(Xy, X1, Yo, Y1), this gives us
bpr([f1) == 1/pbf (X0, X1, Y0, Y1) < defy(a).
This is true for any [ /] such that Y o o([ f]) = «, hence
bpp (@) < defy (o). [

Question 3.6. Do there exist L and a € im(Y) C H(L) \ 0 for which

bpr (@) 7 defy(@)?
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3.3. The invariant bp; for Lagrangian tori. Let us now assume that L is diffeo-
morphic to a torus T”. In this case the map Y is clearly surjective. If n < 3, then,
as mentioned above, Y is injective and hence bijective. Thus bp; = bp; coincide
and by abuse of notation we write the invariant

bp; HY(L) — R

in these cases (we extend bp; to 0 via bp; (0) := +o00).

For a torus of dimension strictly greater than 3 the map T may not be injective. For
instance, T is known to be notinjective if n > 5; see [24,34]. In any case, each isotopy
class of diffeomorphisms s: T” — L defines arightinverse Wy: H'(L) \ 0 — N (L)
of Y as follows: givena € H'(L)\ 0, represent s*a € H'(T")\ 0 by a linear form
and let W (a) be the path-connected component of N'(L) containing the pull-back of
this linear form under s . Thus for any isotopy class of diffeomorphisms s: T" — L
we can define

bpS = bpy oW H' (L) — R,

where we again extend bp; to 0 via bp) (0) := +o0. Clearly,
bpy < bpy. (34)

In case the class of parametrizations s: T” — L is clear we sometimes write bp; by
abuse of notation. For instance, if L is a regular fiber of a Hamiltonian T”-action
there is an obvious preferred isotopy class of diffeomorphisms T" — L.

Theorem 3.5 and (3.4) yield
bp, < def; . (3.5)

Remark 3.7. The discussion above shows that for a Lagrangian torus L, a
cohomology class € H'(L)\0 and an isotopy class s of diffeomorphisms T" — L
we have

bpi(a) - l/pbr(XO:' Xla YOa Yl)

Here (X, X1, Yo, Y1) is an admissible quadruple associated to a fibration f,: L — S!
such that the Diffo(L)-orbit of the 1-form . d6 on L (whose cohomology class is o)
is Ws() € N(L). By the same token,

bpl (—a) = 1/ pb (X0, X1, Y1, Yo) = 1/ pb] (X1, Xo, Yo, Y1).

Indeed, f_, can be constructed by composing f, with an orientation-reversing
diffeomorphism of S!.

Now assumek € Nanda € H'(L)isaprimitive class (thatis, aclass which is not
a positive integral multiple of another class in /1 (L)). Then an admissible quadruple
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(X0, X1. Yy, Y1) associated to fi, can be described in terms of f,. Namely, divide S!

in consecutive closed arcs y1, ..., Y4k in the counterclockwise order. Set
, -1 s —1
Xo = fq ( U )/i), X1 = Jy ( U )/i),
i=1 mod 4 =3 mod 4
& =1 . ~—1
= U n) n=4a" U n)
i=0 mod 4 =2 mod 4

Thus, if & = 1, then the sets Xy, X1, Yo, Y1 are diffeomorphic to T"~! x [0, 1], while
if k > 1 the sets are the unions of the same number of disjoint copies of T~ x [0, 1].

3.4. General properties of bp; anddef;. We list basic properties of bp; and def;
that will be used further in the paper.

Homogeneity of def; . def; is positively homogeneous of degree —1,

defy (ca) = def, (@)/c

forany ¢ > Oand @ € H'(L:R).

Question 3.8. Is there an inequality/equality between bp; (ko) and kbpy (o) in
case L is a Lagrangian torus and k € N ?

Semi-continuity of def; . Let L.; C (M,w), j € N, be a sequence of Lagrangian
submanifolds Lagrangian isotopic to L and converging to L. C (M, w) in the C!-
topology. Then

def; () < lim lnfdele_(oz) forany @ € H'(L;R). (3.6)
J = Too ’

(Here we use the canonical isomorphism H'(L ;;R) = H'(L;R)). The inequality
follows from a parametric version of the Weinstein neighborhood theorem.
Now let us consider the general properties of phf. We will use the following notation:
if U C M (possibly U = M) is an open set containing an admissible quadruple
Xo, X1, Yy, Y1 we will denote by pbg’JF (Xo, X1, Yo, Y1) the Poisson bracket invariant
defined using functions supported in U'.

The following properties of pbj and bp, follow easily from the definitions.

Monotonicity of pbj‘. Assume U C W are opens sets in M and X, X[, Y, Y| C
U C W is an admissible quadruple. Let Xy, X, Yy, Y1 be another admissible
quadruple such that Xo C X, X1 C X1, Yy C Y. Y1 C Y/. Then

pblt(Xo, X1, Yo, Y1) < pbP (X}, X!, YL, YD), (3.7)
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Semi-continuity of pbj‘ and bp; . Suppose that a sequence X éj ), X l(j ), Yo(j ), Yl(j ),
j € N, of ordered collections converges (in the sense of the Hausdorft distance
between sets) to a collection Xo, X1, Yo, Y1. Then

limsup phH (X, x vy vD) < phf(Xo, X1, Yo, 7).

J—+oo

Accordingly, if L; C (M,w), j € N, is a sequence of Lagrangian submanifolds
Lagrangian isotopic to L and converging to L. C (M, w) in the C'-topology. Then

bpy (@) < liminfbp; (a) forany« € H'(L;R). (3.8)
J—>+o00 ’

(Here we use the canonical isomorphism H'! (L;;R) = H1(L:;R)).

Behavior of pb;" and bp; under products. Suppose that M and N are connected
symplectic manifolds. Equip M x N with the product symplectic form. Let K C N
be a compact subset. Then for every collection Xg, Xy, Yo, Y1 of compact subsets
of M

pbiWXN,-F(XO % K, X[ X K, Y() X K, yl % K) S pby,_‘_(XO’X]‘ Y(), Yl) (39)

The following product property of bp; follows immediately from (3.9):

Proposition 3.9. Assume L; C (M;,;), i =1,2, are Lagrangian tori anda € H'(L ).
Consider the Lagrangian submanifold L.y X L, C (M1 X M>, w1 @ w,) and the co-
homology class o x g € HY(Ly x Lj), where g is a generator of H°(L3). Let
s;: T" — L; be two isotopy classes of diffeomorphisms. Then

51 XS2

bpy i1, @ x g) > bpy! (). [

Behavior of pbj under symplectic reduction. The following property of ph;r did
not appear in [4, 14], but is proved similarly to (3.9).

Namely, let (M, w) be a connected, not necessarily closed, symplectic manifold.
Let 3 C (M, w) be a coisotropic submanifold. We do not assume that X is a closed
subset of M. Assume that the characteristic foliation of X defines a proper fibration
m: % — (N, n) over a (not necessarily closed) symplectic manifold (N, n).

Let Xg, X1, Yy, Yy C N be an admissible quadruple (in particular, the sets are
compact). Assume

Xo C 771 (Xo), X1 C n N (X)), Yo c 7Y(Yy), Y1 c (1))

are some compact sets in M. Then fo, )?1, }70, ?1 C M is an admissible quadruple.
Moreover,
th’+(xo, X1,Y0. Y1) < Pbiv’—i_(XO, X1,Yo, ). (3.10)
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Indeed, let F, G be functions on N such that (F,G) € Fn(Xo, X1, Yo, Y1).
Consider the functions ' o, G o on X. Since m: ¥ — N is proper and F, G are
compactly supported, so are ' omw, G o w. Now cut off the functions F o,
G o m in the isotropic direction normal to 3. As a result we get functions
x(r?)(F o ), x(r?)(G o ) with compact support lying in a tubular neighborhood U
of ¥ — here r is a radial function on the isotropic normal bundle to X with respect to
a Riemannian metric on that bundle and y: R — [0, 1] is a smooth function supported
near 0 and satisfying y(0) = 1. Extend the two functions from U to M by zero
and denote the resulting functions on M by F,G. One easily checks that (ﬁ, 6) €
Fn (Xo, X1, Yo, Y1) and maxps {F, G} = maxy{F, G}, which yields (3.10).

In the case when X is a fiber of the moment map of a Hamiltonian action of a
Lie group H on M the reduced space N = ¥/H may not be a smooth symplectic
manifold but a symplectic orbifold, which brings us to the following discussion.

The Poisson bracket invariant for symplectic orbifolds. Recall (see e.g. [28]) that
the notions of smooth functions, vector fields and differential forms can be extended to
orbifolds. In particular, there is a well-defined notion of an orbifold symplectic form;
an orbifold equipped with such a form is called a symplectic orbifold. Accordingly,
there is a notion of the Poisson bracket of two smooth functions on a symplectic
orbifold and the definition of pbi‘ can be carried over literally to symplectic orbifolds.

It is easy to check that the proof of (3.10) goes through in the case when the
reduced symplectic space N is an orbifold.

4. Lagrangian tori in symplectic surfaces: proofs

Proof of Theorem 2.2. Let us prove that
def, (ke) < A/ k.

(The inequality def; (—ke) < A_/k is proved in the same way). If A4 = oo, the
inequality is trivial, so let us assume that 44 < oo.

Fix € > 0. Let = {3;,: L — M }yp<,<7 be a Lagrangian isotopy of L such that
Flux(y); = —tke for all 0 < ¢ < T. By definition of def, (ke) and since ¢ was
chosen arbitrarily, it suffices to show that T < A4 /k + €.

There exists a compact surface K (possibly with boundary) which lies in M and
contains the union Ug<; <7, (L) of all the Lagrangian submanifolds appearing in
the isotopy. Cap off the boundary components of K lying in M (if they exist) by
disks and extend the symplectic form from K over the disks so that the total area of
the disks is smaller than €. Denote the resulting compact symplectic surface by K
and the symplectic form on it by @.

Note that L is a Lagrangian submanifold of (K @), ¥ defines a Lagrangian
isotopy of L in (K @) and the Lagrangian flux of the latter Lagrangian isotopy in K
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is the same as that of the original Lagrangian isotopy in M. By our construction,
L bounds in K a domain without boundary of area A < Ay + . Therefore,
d(ke) = k[@]L/A and (E , @) does not admit weakly exact Lagrangian submanifolds
in the Lagrangian isotopy class of L (because any curve in K isotopic to L bounds
a domain of positive area). Thus we can apply Theorem 2.1 and get that def; (ke),
for L viewed as a Lagrangian submanifold of (12 , @), is not bigger than A/ k. On the
other hand, by definition,

T < def; (ke).

Thus, T < A/k < Ay/k + €. Since this holds for any Lagrangian isotopy ¥ as
above and any € > 0, by the definition of def; (ke) for L viewed as a Lagrangian
submanifold of (M, w), we get that

def (ke) < Ay /k.
Since, by Theorem 3.5, bp; (£ke) < def; (£ke), it remains to prove that
bpp(tke) > Ay /k.

We first consider a model situation. Let &, A > 0 and denote by (x, y) € R? the
coordinates and by 7: R? — R the projection onto the x-axis, 7(x, y) = x . Define

O(A) :=[0, A] x [0, 1] C Qs(A) := (—&, A+ ¢) x (—&,1 + &) C R2.
Label three sides of Q(A) as follows:
Xo = [0, A] x {0}, Yo =1{0}x[0,1], Y, ={A}x][o0,1].

For the remaining side [0, A] x {1} we choose a partition into 4k — 3 closed intervals
Y1s--.»Yak—3, ordered from right to left, such that for i = 0,2,3 mod 4 the
intervals y; have length &, the interval y; has length A/ k and the remaining intervals
have length % — 3¢. Set

Xo = )?(}U U Vi, X = U Vi,

=0 mod 4 i=1 mod 4
Y() = Y()U U Vi, Y1 = Y]U U Vi -
i=2mod 4 1=0 mod 4

Now choose a piecewise-linear function G.: Q.(A) — [0, 1] that satisfies:
(1) GBIY() = 07 GElY] = la
(i) G, only depends on x in Q(A),

(iii) G, has compact support.
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One can choose G, to satisfy
35xGe < 1/(4 —3e)

on 7 (X1)x[0,1] C Q(A); see for example Figure 5. Therefore there exists a smooth
approximation G that satisfies (i), (ii), and (iii) and has slope

0,G < 1/(4 — 4e)

on (Xy) x [0,1]. This implies that all chords of G from X, to X; have time-
length 7" > % — 4¢. Since € > 0 can be chosen arbitrarily small, by the dynamical
characterization of hp; in Section 3.2, we have

1/pbf (Xo, X1, Yo, Y1) > 4.

Yo

Figure 5. Partition and function in the case k = 3.

We now construct a specific neighborhood of L. C M. We first treat the case
where L is a boundary component of M. Note that the boundary orientation of L
corresponds to +e.

For a small § > 0 choose A = A, — 3. Let Dy,..., D, C Int Q(A) denote
a non-intersecting (possibly empty) finite union of closed disks of total symplectic
area less than 8. Then for a sufficiently small & > 0 and for an appropriate choice
of the disks D; there exists an open neighborhood Uy C IntM of L that can
be symplectically identified with Q.(A)\D; U -+ U D, and so that L (with the
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orientation corresponding to +e¢) gets mapped arbitrarily close to dQ(A) with the
standard boundary orientation. If § > 0 is chosen small enough, one can choose
the disks D; to lie in the region 7 (Yp) x [0, 1] C Q(A). Thus we can extend the
function G from Uy, identified with Q.(A)\D; U---U D,, to the whole symplectic
manifold M by 0. Then all chords of G from X, to X have time-length 7" > % —4e.
Since &, 8 > 0 can be chosen arbitrarily small, together with the semi-continuity and
symplectic invariance properties of pb;F (see Section 3.4) this implies that

bpp(ke) = AL /k.

When L with the orientation —e is a boundary component of M_ a similar
construction gives us the lower bound

bpy (—ke) > A_/k.
This completes the proof. L]

Proof of Theorem 2.3. The case k = £1 was shown in [33]. We generalize this
construction to arbitrary k € Z.

By Remark 3.7, we see that an admissible quadruple associated to ke is given
by dividing L ~ S! into 4k consecutive closed arcs and labeling them with
Xo, Y1, X1, X following the orientation of L in the case k > 0 and else following
the opposite orientation in the case k < 0. Note that, by Proposition 3.3, bp; (ke)
does not depend on the choice of subdivision as long as the order of the 4k arcs is
preserved.

For & > 0 consider the symplectic annulus,

(Zs = (—e.&) x [-1,1]/~, dx A dy),

where we identify (x,—1) ~ (x, 1). Partition the subset (—¢, £) x {0} into 4k + 1

consecutive intervals i, ..., Yar+1 respecting the standard orientation on (—e¢, ¢).
Set
Xo i= U Vi, Xi:= U Vi
=1 mod 4 i=3 mod 4
Yo := U Yio Yi:i= U Vi
i=0 mod 4 i=2 mod 4

One can easily construct functions F,G:Z, — [0,1] such that (F,G) €
ﬁ’(fo, X\l, )70, ?1) and {F,G} = 0, namely choose F and G to only depend on
the x-coordinate.

The Lagrangian I. C M is not a separating curve. Thus there exists an embedded
loop y C M that intersects L exactly once. Furthermore, one can find a tubular
neighborhood N of y that is symplectomorphic to Z, for ¢ > 0 small enough. The
symplectomorphism can be chosen to map y to {0} x[—1, 1] and LNN to (—e, &) x{0}.
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We now make a specific choice of admissible quadruple Xy, Xy, Yy, Y on L.
Namely choose X¢ C L such that L\N C X, and

XoNN=2Xo, XyNN=2X,, YoNnN=Y,, and Y;NN =Y,

(or, if the order requires, use the reflection of Xo. X1, Y5, Y1 C 2, along the y-axis).
Since F, G have compact support in Z., we may pull back the functions to M and
obtain functions on M that satisfy (3.1), have compact support and Poisson-commute.
This proves the theorem. O

A lower bound on bp; for orbifolds. The proof of the lower bound for k € N,
As/k < bpy(Eke), @.1)

from the proof of Theorem 2.2 can also be modified for the orbifold case.

Indeed, the singular points of a 2-dimensional symplectic orbifold M form a
discrete subset of M [18] and one can assume without loss of generality that they all
lie in M \ U4 where the function G vanishes identically (and thus can be extended
over the singularities).

Symplectic reduction and bp,. Let (M>", w) be a connected, not necessarily
closed, symplectic manifold. Let £"*! C (M,w) be a smooth coisotropic
submanifold. We do not assume that ¥ is a closed subset of M. Assume that
the characteristic foliation of 3 defines a proper fibration 7: ¥ — (N, n) over a (not
necessarily closed) 2-dimensional symplectic orbifold (N2, n). Let L C (M, ) be
a Lagrangian torus lying in £ and s an isotopy class of diffeomorphisms T” — L.
Assume that 7|r: L — I is a fiber bundle over a simple closed curve I' := (L)
lying in the non-singular part of N and dividing N into two domains of areas A
and A_.

Equip I with an orientation induced by the orientation of the domain of area 4 ;.
The orientation of I' defines a positive generator ¢ € H(I") = Z.

Assume thatk € N and @ € H'(L) is a primitive class. Assume that there exists
an orientation-preserving diffeomorphism S' — T that identifies the fiber bundle
w|y: L — T with a fibration f,: L — S! associated to s and «; see Remark 3.7.
Then an admissible quadruple associated to a fibration fi, can be described in terms
of fy as follows (see Remark 3.7).

Divide S! = T in 4k consecutive closed arcs y1,....ys; numbered in the
counterclockwise order. Set

L= | w = |

i=1 mod 4 =3 mod 4

1 = U Yi, fi= U Vi

i=0mod 4 i=2 mod 4
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and furthermore

Xo:=a Y Xo)NL = £7'(Xe), X1 =2"'(X)NL=f(X1),
Yor=n'(Yo)NL=f'(Yo), Yi=r'(Y)nL=f"(").
By Remark 3.7, (fo, fl, )70, )71) is an admissible quadruple associated to fi,.

Combining this observation with (3.7) and (3.10) (in the orbifold case), we
immediately get:

bpy (ko) = 1/Pb£J’+()’(\o,i1, Yo, ?1) > 1/pbY " (Xo, X1, Y0, Y1) = bpp(ke).

In view of
bpy (—ka) = 1/ phy"* (Xo, X1, Y1, Yo)
(see Remark 3.7) and (4.1) (in the orbifold case) this yields the following claim.

Proposition 4.1. With the setup as above, for any k € N we have

bpy (k) > Ay /k and bpy(—ka) > A_/k. ]

5. Toric orbits in symplectic toric manifolds: proofs

Proof of Theorem 2.4. Set
ko := (my,...,my) € (Z")* = H'(T"),

where « is a primitive class and k € N.
Complete « to an integral basis «y,...,ap—1,a of HY(T") = (Z")* and let
B1, ..., Bn be the dual integral basis of Z". Thus, we have a splitting

Lie* T" = Spang{oi, ..., 0,1} @ Spang{a}.

Let my: Lie* T" — Spang{ay,...,on—1} and my: Lie* T" — Spanp{a} be the
projections defined by the splitting.
Consider the (n — 1)-dimensional subtorus // C T" whose Lie algebra is

Lie H := Ker @ = Spang{f1,...,Pn—1} CR"” = LieT".

The map Lie* T" — Lie* H dual to the inclusion Lie H — Lie T" can be identified
with the projection ;.

Since H is a subtorus of T”, there is a Hamiltonian action of H on (M, ®)
whose moment map ® g can be described as the composition of ® and 7;. Thus,
Ly = ® '(x) lies in a fiber £/ of ®y which is the union of the fibers ®~!(y)
for all y € A such that 71(y) = m1(x). The set X, may be an orbifold, but its
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smooth part ¥y C X!, which is the union of the fibers ®~1(y) for y € Int A with
71(y) = m1(x), is a smooth coisotropic (n + 1)-dimensional submanifold of M.

The torus H acts on Xy and the reduced space Xy/H is a 2-dimensional
symplectic orbifold Ny. The natural projection wg: £y — 24/H is proper and its
fibers are exactly the leaves of the characteristic foliation of Xy. The 1-dimensional
torus T"/H acts in a Hamiltonian way on N,. In fact, the torus T”/H can
be identified with a subtorus of T" whose Lie algebra is Spang{f,} C LieT".
Accordingly, Lie*(T"/H) is identified with Spang{a} C Lie* T". Thus, the
moment map ®n» /g of the T” /H -action on Ny can be viewed as a map

Opn g Ny — Spang {ar}.

A well-known property of Hamiltonian group actions (the so-called “reduction in
stages”, see e.g. [3, Exercise I11.12]) implies that the orbits of the original T"-action
on (M, w) lying in Xy project under mpr: 35y — Ny to the orbits of the T" / H -action
on Ny and for any y € Lie™ T" N A such that 7 (x) = 71 (y) we have

np0® = ®rnygonmy on o~ 1(y).

Therefore the image of the moment map ®t»/p can be identified with the image
under 75 of the intersection of the line x — ta, ¢ € R, in the affine space (R”)* =
Lie* T" with A = Im ©.

Another conclusion is that the torus Ly C Xy, which is an orbit of the T "-action
on (M, w), projects under g: Xy — Xy/H to a simple closed curve I' C Ny that
lies in the non-singular part of the orbifold Ny. The curve I' is an orbit of T"/H
and as such can be identified with S — this identification is unique up to a rotation
of S'. Moreover, under this identification the map

ﬂHle:Lx —> T

becomes a fibration f4: Ly — S associated to «; see Remark 3.7. (Indeed, f, can
be viewed as the projection Ly — Ly/H = Sh).

The symplectic properties of I" inside Ny are completely determined by the relative
position of the point 5 (x) = ®n /g (I") in the image of ®n g or, equivalently, by
the position of x in the intersection of the line x — t, t+ € R, with A. Recall that
J (x, ) is defined as the open part of the intersection of the ray x —ta, 0 < t < +o00,
with A. By a basic version of the Delzant theorem [9], the oriented curve I' (it is
oriented as an orbit of T”" /H) is the oriented boundary of a domain D in Ny whose
area is the rational length of J (x, @), if 4(x, &) is an interval, or 400, if 4 (X, &) is an
infinite ray.

Thus, we can apply Proposition 4.1, which implies that

bpy(ka) = Ix(@)/ k
fork € N. O
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6. Lagrangian tori in C2: proofs

Proof of Theorem 2.6. The original idea of the proof below belongs to E. Opshtein.
Consider a Lagrangian isotopy

v =YL —>C?, 0<r<T, ¢p=1,

such that
]/ = 0], —tda,

with L. C C? and « as in the statement of the theorem.

For simplicity let us consider a dual picture. Namely, for 0 <t < T there exists
a family of compactly supported diffeomorphisms ¢,: C? — C2, ¢y = Id, such that
@t (L) = ¥ (L). By pulling back our symplectic form ¢ @ =: w; we may consider
a fixed Lagrangian L C (C?, w;). We have H,(C?2, L) ~ Z(A, B) and

w;(A) = w(A) —ot and w;(B) = w(B) — pt.

Let ¢; be the space of almost complex structures on C2? compatible with
the symplectic form @,. Given an almost complex structure J € g;, by a
(parameterized) J -holomorphic disk we always mean a smooth J -holomorphic map
u: (D, dD) — (C2,L) (here D C C is the standard closed unit disk). By the
homology class of a J-holomorphic disk # we always mean the relative homology
class u«([D]) € H,(C?, L). Such a u is called somewhere injective, if du(z) # 0
for some z € I such that u=!(u(z)) = {z}. B

Given a relative homology class C € H,(C?, L) define M(C, J) as the moduli
space of somewhere injective (parametrized) J-holomorphic disks in the class C.
Let J\Z(C ,J) x 0D be the moduli space of J-holomorphic disks with one marked
point on the boundary. PSL,(R) is the group of biholomorphisms of D and we
consider the quotient

Mi(C,J) := (M(C,J) x ID)/PSL,(R),

where the action of PSL,(R) is defined as g - (4, x) = (u o g, g~ (x)). This space
comes with an evaluation map

eviM(C,J)— L

given by ev([u, x]) := u(x) and for a chosen point p € L we define M{(C, J, p) :=
ev™'(p).

Given a family {J;},0 <t < T, of almost complex structures J; € J, and a class
C € H,(C?, L), define M,(C,{J;}) as the set of pairs (¢, D), where 0 <t < T
and D € M, (C, J;). The set M;(C,{J;}, p) C M (C,{J;}) is defined analogously
with D € M{(C, Jy, p).
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We will show that for A as in the assumption of the theorem and for a generic
family {J,} the set M;(A, {J;}, p) is a smooth compact manifold of dimension 1.

We recall first some general facts about the moduli spaces.

We say that J € ,,t € [0, T], is regular, if for all C € H,(C?, L) the space
M1 (C, J) is a (transversally cut out) smooth manifold of dimension

dim M (C,J) = dim L + u(C) + 1 —dim PSL>(R) = u(C).

An almost complex structure J € ¢, is called regular with respect to p € L, if it is
regular and, in addition, M{(C, J, p) is a (transversally cut out) smooth manifold of
dimension

dim M, (C, J, p) =dimM,(C,J)—dimL = u(C) — 2.

We will say that a family {J;},0 <t < T, J; € &, is regular with respect to p if
(1) foranyt € [0, T'] the spaces M (C, J,) are empty for all C with u(C) < 0,

(2) M(C,{Js}, p) is a (transversally cut out) smooth manifold of dimension
dim My (C,{J;}, p) =dimM(C, J,p)+ 1 = u(C)—1

with boundary M, (C, Jy, p) U M (C, JT, p).

Similarly, given a (regular) path y(s), 0 <s < 1,in L, and ¢t € [0, T'], we say that a
family {Js}o<s<1 C J¢ is regular with respect to y, if

(1") for any s € [0, 1] the spaces M, (C, J) are empty for all C with u(C) < 0,

(2) M1(C,{Js},y) = Upes<1 M1 (C, Jg, y(s)) is a smooth manifold of dimension
1(C) — 1 with boundary M (C, Jo, y(0)) U M (C. J1, y(1)).

[t follows from standard regularity and transversality arguments (see e.g. [29,31],
where the arguments are explained in detail for pseudo-holomorphic curves without
boundary) that forany p € L

— a generic J € ¢, is regular and moreover regular with respect to p,

— forany p € L and any Jy € Jo, JT € Jr that are regular with respect to p, a
generic family {J/;},0 <t < T, J; € J;, connecting Jy and Jr satisfies (2),

— for any y as above, any t € [0, T'] and any Jy, J; € &, regular, respectively, with
respect to y(0) and y(1), a generic family {J}o<s<1 C : connecting Jo, Ji
satisfies (27).

In order to show that condition (1) also holds for a generic family {J; } note that L
is orientable and, accordingly, the Maslov index of any disk with boundary on L is
even. Thus, if ©(C) is negative, then virtualdim M{(C, J) < —2 forany J € ¢;
and t € [0, T'], meaning that the existence of somewhere injective J;-holomorphic
disks of negative Maslov index is a codimension-2 phenomenon and can be avoided
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by choosing a generic 1-parametric family {J,}. This shows that (1) holds for a
generic family {J,}. Similarly, one can show that (1) holds for a generic family {J,}
as above.

In fact, we claim that there are no J;-holomorphic disks of negative Maslov
index, somewhere injective or not. Indeed, let {J;} satisfy (1). By a result
of Kwon—Oh [22] (cf. [26, 27]), any non-parameterized J;-holomorphic disk in
the class C with boundary in L, viewed as a subset of C2, is a finite union
of non-parameterized somewhere injective J;-holomorphic disks Oy,....dD; and
C = ki[D(] + -+ + k;[D;], where for each i [D;] is the relative homology class
of O(D,' and k,' e N. If k]/,l,(i)l) A &5 = k],u,(orl)]) = ,LL(C) < 0, then M(a@,) <0
forsomei = 1,..., j, in contradiction to the non-existence of somewhere injective
J¢-holomorphic disks of negative Maslov index, which proves the claim.

Lemma 6.1. For any (possibly not even regular) J € $;, 0 <t < T, there are
no non-constant J -holomorphic Maslov-0 disks of area less than w,(A), somewhere
injective or not (recall that A € H,(C?, L) is the class appearing in the hypothesis
of the theorem).

Proof of Lemma 6.1. Indeed, assume by contradiction that such a disk exists and
denote its relative homology class by C. By the hypothesis of the theorem,

w(B) = (1 + k)w(A) and (1 +k)o = p,
so that
wi (B —kA) —w,(A) = w(B) — (1 + k)w(A) + ((1 + k)o — p)t > 0.

Moreover, w;(C) > 0, since C is non-constant and J is compatible with w,. Thus

On the other hand, since u(C) = 0, by the hypothesis of the theorem, C is an
integral multiple of B — kA, and therefore @, (C) has to be an integral multiple of
w; (B — kA), which is impossible by (6.1). This proves the lemma. L]

Continuing with the proof of the theorem, we now show that for any almost
complex structures Jy € $o, J7 € Jr that are regular with respect to p € L and
any family {J,},0 <t < T, J; € 4,, that connects Jy and Jr and is regular with
respect to p, the moduli space M (A, {J,}, p) is compact and hence, in particular,
so are My (A, Jy, p) and M, (A, JT, p).

It suffices to show that any sequence {D;} in M;(A4,J;,p) with {f;} — &
has a subsequence converging to an element of M;(A4, Js, p). To prove this
claim note that, by Gromov compactness (see [16]), since m,(C?) = 0, the
sequence {D;} has a subsequence converging to a bubbling configuration of non-
constant non-parameterized Jg-holomorphic disks Dy, ..., O; with boundary in L
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whose homology classes [Dy], ..., [D;] add up to A:
(D] + -+ [D)] = 4.

Thus, 0 < ws([D;]) < ws(A) foralli = 1,..., [ and therefore, by Lemma 6.1,
none of the disks £; has Maslov index 0. Moreover, since the family {J;} is
regular with respect to p, none of the disks £; has a negative Maslov index. Since
W([D1])+---+u([D;]) = u(A) = 2 and the Maslov indices of the D;’s are all even,
this means that / = 1 — that is, there is only one disk in the bubbling configuration
and its relative homology class is A.

Let us denote this (non-parameterized) disk by D. By the result of Kwon—
Oh [22] (cf. [26,27]) mentioned above, the non-parameterized disk D, viewed as
a subset of C2, is a finite union of non-parameterized somewhere injective disks
D(l), e D and A is a linear combination with positive integral coeflicients of
the homology classes of DM ... D The wg-areas of DM ... D™ are all
positive numbers smaller than wg(A). Therefore, arguing as above, we get that all
D(l), ... D™ must have positive even Maslov indices, meaning that m = 1 and
D = DWW e M, (A, J;, p). Hence the sequence { D; } has a subsequence converging
to an element of M(A, Jg, p). This finishes the proof that the smooth manifold
My (A, {J;}, p) is compact.

Thus the moduli space M, (A, {J;}, p) is acompact smooth 1-dimensional cobor-
dism between the compact O-dimensional manifolds M (A4, Jo, p) and M (A, Jr, p).

In a similar way one can show that given a (regular) path y(s), 0 < s < 1,
in L,t € [0,T] and a family {J;} C g, regular with respect to y, the moduli space
M1 (A, {Jg}, y) is acompact smooth I-dimensional cobordism between the compact
O-dimensional manifolds M (A4, Jy, y(0)) and M, (A, J1,y(1)).

Let us summarize: for any t € [0,7T] and any J € g, regular with respect
to p the moduli space M;(A, J, p) is a compact O-dimensional manifold. The
number n4(p,J) = #M (A, J, p) mod 2 — that is, the mod-2 number of non-
parameterized J-holomorphic disks with one marked point that represent 4 and pass
through p — is independent of p and J. Indeed, for a different p’ € L and an almost
complex structure J' € ¢, regular with respect to p’ the manifolds M (A4, J, p)
and My (A, J’, p') are cobordant and therefore n 4(p, J) = n4(p’, J'). This proves
part (A) of the theorem.

Moreover, for any Jy € $o and Jr € g7 regular with respect to p we have
na(p,Jo) = na(p,Jr), since Mi(A,Jy, p) and M;(A, J7, p) are cobordant
compact O-dimensional manifolds.

In view of the above, if n4(p, Jo) is non-zero, then so is n4(p, Jr) for Jy € o
and Jr € $r regular with respect to p. In particular, there exists a Jr-holomorphic
disk in C? with boundary in L in the relative homology class A and therefore

wr(A) = w(A)—oT > 0,
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and hence
T <w(A)/o.

Since this holds for any Lagrangian isotopy {¥ }o<; <7 as above, we get that def; (@),
which is the supremum of such 7', is less or equal to w(A4)/o:

defy (o) < 0(4)/o.

This proves part (B) of the theorem. (Il

6.1. Proof of Theorem 2.10. We calculate lower bounds for the bp-invariants of
Chekanov tori ®,. The proofs of both parts rely on an increasing sequence of
neighborhoods of &, in C2. We first explain this construction.

For r € R let D(r) C C denote the standard open symplectic disk of area r
and T*S' C T*S! be the subset of covectors of norm < r (here we choose the flat
metricon S' = R/Z). Let A be the standard Liouville form on T*S!,

Proposition 6.2. For every r > a there exists a neighborhood U(r) C C? of O,
such that U(r) is symplectomorphic to

(D(r) x T}S',dx ndy + dA)
and O is identified with 9D (a) x {0-section}.

Proof. Let n be the simple closed oriented curve in the open first quadrant Q C C
used in the construction of the Chekanov torus ®,. The curve bounds a disk of area a
which is contained in a larger open disk D C Q of area a + § for some small § > 0.
The map E:S! x D — C? given by

Ll
V2

is an embedding and its image contains ®, as well as the Chekanov tori ®, for
every 0 < a’ < a. Denote the image of £ by N. We see that E preserves
the symplectic structure on £ and that N is a coisotropic submanifold with
characteristic foliation generated by the S!-action. By the neighborhood theorem
for coisotropic submanifolds [17], there exists a neighborhood U of N in C? that is
symplectomorphic to a neighborhood of the zero-section in E*, where E C TN is
the characteristic bundle of N. One sees that the characteristic bundle of N is trivial,

hence

8(627{“,2) — (eZnitZ’e—ZnitZ)

E*~NxR~DxS!xR.

Since the disk £ is symplectic, the neighborhood U is symplectomorphic to a
neighborhood V of D(a + §) x {0-section} in D(a + §) x T*S! with its standard
split symplectic form dx A dy + dA. By choosing a smaller neighborhood U if
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necessary, we can assume that U is symplectomorphic to V = D(a + §) x T*S! for
an ¢ > 0 so that ®, C U is identified with dD(a) x {0-section} C V.

For ¢ > 0 the map ¢.: C? — C? given by

(z1,22) P> Vc(z1, 22)

is a conformal symplectomorphism. Recall that the neighborhood U contains all
Chekanov tori @4 for0 < a’ < a. NowletO) < a’ < aand ¢ = a/d’, then the image
. (®,) is a Lagrangian torus that is Hamiltonian isotopic to ®,. The image of the
neighborhood, ¢, (U), is then a neighborhood of ¢.(®,/). The neighborhood ¢, (U)
is symplectomorphic to V' = D(c(a + 8)) x TES! (recall that S' = R/Z and
A = pd0 is the standard Liouville form).

Let us now construct the wanted neighborhoods U(r) for r > a. For a given
r > a we choose a’ > O sothat forc = a/a’ we have c dx Ady(D) > randce > r.
Then D(r) x T¥S! C V' and this gives us a neighborhood U(r). Since ¢’ > 0 can
be chosen arbitrarily small, this provides us with a neighborhood U(r) for all r > a.
The statement follows from this. L]

(A) We return to the proof of part (A). For the lower bound bp,(m,n) > a/m,
following the dynamical characterization of bp; in Section 3.2, we use a
neighborhood that we obtain from Proposition 6.2 to construct for any ¢ > 0 a
complete Hamiltonian H that has no chords from Xy to X of time-length < % —&.

Form > landn € Z fixedwechoose k € N suchthatk > aandk > C := 4a|n|.
Now let U(k) be a neighborhood of ®, as in Proposition 6.2 and we identify

U(k) ~ D(k) x T;S'.

Recall that &, is mapped to dD(a) x {0-section} under this identification. Further-
more, we identify C ~ R? and write the coordinates of D (k) x T,;"S1 as (x, y,0, p).

First we define a partition of D (a). Namely, partition S! into 4m closed arcs by
setting

| N
yj = {62’”5681 ‘Ee [’—~ LN J=1,... 4m.

4m " 4m
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Using the identification 9D (a) >~ S! we consider the y; to be arcs of dD(a). For
6 € R/Z denote by R(6): R? — IR? the rotation by angle 27 6. In D(k) x Tk*S1 we
define the four sets,

Xo= |J {(RmO)(x,7).6.0)| (x.) €y, 0 € R/Z},

J=1mod 4

Xi= {J {(R@O)(x.y).0.0)|(x.y) €y;. 0 €R/Z},

J=3mod 4

Yo= |J {(R0O)(x.).0.0)| (x,y) €y), 0 € R/Z},

J=0mod 4

= J {(R0O)(x.»).0.0)](x.y) €y;. 0 €R/Z}.

J=2mod 4

(6.2)

A brief calculation reveals that under the identification U(k) >~ D(k) x T,;"S1 the
quadruple is mapped to an admissible quadruple associated to the fibration f5:0,— S,
where @ = mI' —ny € H(O,).

Consider now the sector § C D(k) given by

. -1 7
8 :=Dk)N rez’”g‘rzo, Ee|l—,—|;-
8m 8m
The intersection § N D(a) has area ¢/m and 94§ intersects dD(a) in the arcs y4
and y4,,. We consider a Hamiltonian G: & — R that satisfies the following:

(i) G has compact support in Int(¥),
(ii) G = 0in a neighborhood of (yam U y4) N 8,
(iii) G =1 in a neighborhood of y;,
(iv) all chords of G from y; to y3 have time-length 7" > % — &,

(v) on & N D(a) the Euclidean norm of the gradient of G is bounded,

4m

0,G,0,G)| < —.
I( y )I_ﬁ

The existence of such a Hamiltonian follows easily. See Figure 6 for an illustration.
Namely, one can choose a piecewise-linear function that satisfies all conditions
except (iv) and then find a smooth approximation that satisfies all conditions.

Extend G to the whole disk D(k) such that G is periodic under the rotation
R(1/m). Since G has support in Int(§), this extension is smooth and has compact
support. By abuse of notation we denote the extension by G. Now choose a non-
negative function B: T,:‘S’ — R that is constant equal to 1 for |p| < C and has
compact support in 7T k*S'.
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D(a)
D(k)

Figure 6. Hamiltonian chord of G from y{ to y3 in &.
Define the Hamiltonian H: D(k) x T*S' — R via

H(x.y.0,p) = G(R(n8)(x,y))B(p).

By construction 1 is complete and satisfies // = Oon Yy and H = 1 on Y.
Since B(p) is constant in {|p| < C}, we see that d,H = 0 in this region. This
implies that the Hamiltonian vector field of H in {|p| < C} is tangent to the fibers
{6 = constant}. Thus all Hamiltonian chords of H{ starting on dD(a) x {0-section}
and contained in {| p| < C} will project to the fibers.

Now for {|p| < C} and (x, y) € D(a) we estimate the Euclidean norm of the
differential,
4m|n|

i

This implies that all Hamiltonian chords of H starting in dD(a) x {0 — section}
remain in the region {| p| < C} for times t € [0, a/m] by our choice of C. Therefore
any chord of time-length 1 < a/m is contained in the fiber {# = constant} and under
the projection D(k) x Tk*Sl — D(k) these chords project to rotated chords of G.

This proves that any chord from X, to X; must have time-length 7" > a/m — &. This
completes the proof of part (A).

[0g H| < [(3xG, 9, G)| - |n]-|(x. y)| =

(B) We prove part (B). We construct a sequence of Hamiltonians that have chords
from X, to X with time-length increasing to +o0.

We consider the admissible quadruple associated to the fibration fy: ®, — S!,
where « = ml" — ny with m < 0 and n € Z. Following Remark 3.7 we see
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\J

Figure 7. Hamiltonian chord of G from y3 to y; in .

that if (Xg, X1, Yy, Y1) is an admissible quadruple for «, then (X, X, Yo, Y1) is an
admissible quadruple for —a«. Thus we may take the admissible quadruple associated
to —ml + ny as constructed in (6.2) and interchange Xy and X, to obtain an
admissible quadruple associated to m [ ny.

Following the construction in part (A), we find a Hamiltonian G: 8§ — R that
satisfies G = 0 on Y4, U y4 and G = 1 on y, and consider its chords from
y3 to yp; see Figure 7. In our sequence of symplectic neighborhoods we have
dx Andy(D(k)/D(a)) — +o0. Hence we can choose for all k > a a sequence of
Hamiltonians G for which the time-length 7" of chords from y3 to y; goes to +oo.
Repeating the construction as in part (A) then gives us a sequence of Hamiltonians Hy
in C? with the desired properties. O

7. Lagrangian tori in C”: proofs

7.1. Basic properties of bp,, def, for split Lagrangian tori in C”".
Proposition 7.1.

(A) Permutation invariance: Let X; € R", agx € (R™)* be the vectors obtained,
respectively, from x € R", a € (R")* by a permutation o of the coordinates.
Then for any o

defy, (o) = defy (@), bpy, (ag) = bp, (). (7.1)
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(B) Homogeneity in x: For any ¢ > 0
: S 1
defcx = E defx’ bpcx = Ebpyr

(C) Semi-continuity with respect to x:
{Xi} > x = Ya e (Z")*: bpy(a) <liminf bp, (),

IXi} > x = VaeR"): def (o) < lirr;infdef;‘i_ (@).

(D) The product property: For any «

de_f'(x!x”Jrh'__,xN)(a,O, ..., 0) > def, (a),
hp(x’x”H’___,XN)(a,(), ... 0) = bp (o).

Proof. (A) Claim (A) holds, since any split torus obtained from
T"(x) = T (x1) x -+ x T (xp)

by a permutation of the 7'!-factors is Hamiltonian isotopic to 7" (x).

(B) Claim (B) follows easily from the fact that (p,q) — +/c(p,q), ¢ > 0, is a
conformal symplectomorphism.

(C) Claim (C) follows from the semi-continuity property of bp; (see (3.8)) and def;
(see (3.6)).

(D) Claim (D) follows from the product property of pb;r (see (3.9)). L]

7.2. Proof of Theorem 2.11. We now prove that for certain Lagrangian tori L C C”"
and specific cohomology classes & € H!(L;R) there are upper bounds for the
associated Lagrangian isotopies. This proof follows the same route as in the proof
of Theorem 2.6. We indicate the changes here and refer the reader to the proof of
Theorem 2.6 for more details.

Consider a Lagrangian isotopy

v ={yL>C"}, 0<t=<T, yo=1
such that
]/ = 0], — tde,

with .. C C” and « as in the statement of the theorem.
For simplicity we consider the dual picture. Namely, for 0 < ¢ < T there exists
a family of compactly supported diffeomorphisms ¢;: C" — C", ¢y = 1d, such that
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@: (L) = ¥(L). By pulling back our symplectic form ¢,w =: w; we may consider
a fixed Lagrangian L. C (C", w;). We have

H>(C", L) ~ Z{Aqy,..., Ap)
and
w (A1) =a—ot and w,(A;) =bh — pt

0ri =2, .., 8.

Let g4, t € [0, T], be the space of almost complex structures on C” compatible
with the symplectic form w, and let C € H,(C", L) be a relative homology class.
Choose a point p € L. We define the moduli spaces M,(C,J), M{(C,J, p)
and My (C, {J;}, p) as in the proof of Theorem 2.6. An almost complex structure
J € 4, is called regular, it M,(C, J) is a (transversally cut out) smooth manifold of
dimension

dim M{(C,J) = dim L 4 u(C) — 2,

and regular with respect to p, if the space M (C, J, p) is a (transversally cut out)
smooth manifold of dimension

dim M, (C, J, p) = u(C) — 2.

Further on we will assume n = dim L is even — the arguments for n odd are
similar.

Let S € (0, T]. We will say that a family {J;}, 0 <t < S, J; € &, is regular
with respect to p if

(1) forany ¢ € [0, S] the spaces M (C, J;) are empty for all C with u(C) <2 —n,

(2) M1(C,{J;}, p)is a (transversally cut out) smooth manifold of dimension
dim M1 (C, {J;}, p) =dim M (C, J,p) +1 = p(C) — 1
with boundary M, (C, Jo, p) U M (C, Js, p).

Again, by the same standard regularity and transversality arguments, used in the
proof of Theorem 2.6, that for any Jy € o and Js € Jg, that are regular with respect
to p, a generic family {J;},0 <t < S, J; € g, connecting Jy and Jg satisfies (2). In
order to show that condition (1) also holds for a generic family {J;} note that since L
is orientable, the Maslov index of any disk is even and therefore, since dim L is even,
dim M{(C, J) is even. Thus, if £(C) < 2 — n, then virtual dim M (C,J) < —2
forany J € ¢, and t € [0, S], meaning that the existence of somewhere injective
J-holomorphic disks of such Maslov indices is a codimension-2 phenomenon and
can be avoided by a generic choice of {J,}.

We remark the following difference to the proof of Theorem 2.6. For a general
C € Hy(C", L) with u(C) < 2 — n, we cannot a priori exclude the existence of not
somewhere injective Jy-holomorphic disks in the class C. However, we will show
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now thatfort € [0, a /o) all J;-holomorphic disks of Maslov index lying in [2—n, 0],
somewhere injective or not, can be excluded using our assumptions on A, ..., A,
and «.

Seta(t) :=a—oat and b(t) := b — pt.

Lemma 7.2. Fort € [0,a/0) there is no J;-holomorphic disk with boundary in L
with Maslov index equal to =2l for | € {0,1,...,(n — 2)/2} that has positive
symplectic area smaller than w,(A1) = a(t).

Proof of Lemma 7.2. Lett €[0,a/0). Forl €{0,1,...,(n—2)/2}let D € H,(C", L)
be a class such that u(D) = —2/ and D has positive symplectic area.
A brief calculation shows that h(1) — a(¢) > O and a(z) > 0, since t € [0,a/0)
and
on+2) bo
P
2 a
Hence, we also have that h(¢) > 0.
A calculation of the symplectic area of D reveals that, since

b(t) >0, b@)—a(t)>0 and wi(D) >0,
for each t € [0,a/0) we have
o (D) = k(b(t) —a(t)) —1b(z)
for some k € Z such that
[h(t)
o~ = ]
b(t) —al(t)

where the last inequality actually means that
k=>1+1,

because k,! € 7.
Hence,

w (D) >+ 1)(b@)—a(@) —1b(t) =b(t)— (U + Da(t) > a(r). (7.2)
Here the last inequality in (7.2) can be deduced from the assumptions
1€{0,1,....,(n—2)/2}, plo<(n+2)/2<b/a.

Inequality (7.2) implies the lemma. O

Continuing with the proof of the theorem, assume 0 < S < a/o. We will now
show that for any almost complex structures Jy € o and Jg € Z regular with
respect to p and any family {J;},0 <t < S, J; € J;, that connects Jy and Jg and is
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regular with respect to p, the moduli space M;(A;,{J:}, p) is compact and hence,
in particular, the moduli spaces M (A, Jo, p) and M, (A, Js, p) are compact.

As in the proof of Theorem 2.6 it suffices to consider a sequence {D;} in
Mi(Ar, Jy;, p) with {t;} — s € [0,S] and show that it has a subsequence
converging to an element of M;(A;, Js, p). By Gromov compactness (see [19]),
since m(C") = 0, the sequence {D;} has a subsequence converging to a bubbling
configuration of non-constant non-parameterized Jz-holomorphic disks Dy, ..., D;
with boundary in L whose homology classes [D1], ..., [D;] add up to A;:

[D1] 4 -+ + [D1] = Ay

By the result of Kwon-Oh [22], each disk D;, viewed as a subset of C”", is
a finite union of non-parameterized somewhere injective Jg-holomorphic disks
Q‘Di(l), - i)i("’) so that

w(Dr) = k(D) + -+ + ki (D)

where the coefficients k; are positive integers. Now 0 < wg([D;]) < ws(A;) for all
i = lsaias [ and this implies that

0 < ws([D{"]) < w5(41)
for all somewhere injective disks. By Lemma 7.2, this means that
w(OP) ¢ {2—n,...,—2,0}

Since the family {J;} is regular with respect to p, somewhere injective Jg-holo-
morphic disks of Maslov index < 2 — n do not exist. Putting everything together
we conclude that for all i, j ;L(OT)(J)) > 0, which, in fact, means that p(D, Uy <2
(recall that L is orientable and therefore the Maslov indices of disks with boundary
in L are all even). Therefore A; = [Dy], the disk Dy lies in M(Ay, Jg, p) and the
sequence {D; } has a subsequence converging to an element of M;(Ay, Jg, p). This
finishes the proof that the smooth manifold M (A1, {J;}, p) is compact.

Thus for any Jo € Jo, Js € Js that are regular with respect to p and a family
{J:}o<t<s that connects Jy and Js and is regular with respect to p the moduli
space M1(Aq,{J;}, p) is a compact smooth 1-dimensional cobordism between the
compact 0-dimensional manifolds M (A, Jo, p) and M(A, s, p), as long as
0 < S < a/o. (Note the difference with the proof of Theorem 2.6 where a similar
claim was proved for any S such that @, is symplectic for all ¢ € [0, S]). This implies
thatn4, (Jo, p) = na,(Js, p).

In a similar way one can show that given a (regular) path y(s), 0 < s < I,
in L, t € [0,S] and a family {J;} C ¢, regular with respect to y, the moduli
space M;(A,{Js},y) is a compact smooth 1-dimensional cobordism between
the compact 0-dimensional manifolds M, (A4, Jo, y(0)) and M;(A, J1, y(1)), and
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therefore n 4, (Jo.y(0)) = n4,(J1,y(1)). The latter claim proves part (A) of the
theorem for n even. The case for n odd is similar.

In order to prove part (B) we need to show that 7 < a/o. Let us assume by
contradiction that /o < T. As we have shown above, n 4, (Jo, p) = n4,(Js. p)
forany S € (0,a/0). Thus if n4,(Jy, p) is non-zero, then so is n4,(Js, p). This
implies that for every S < a/o there exists a Jg-holomorphic disk in C" with
boundary on L in the relative homology class A;. Passing to the limit S — « /o and
applying again the Gromov compactness, we see that there must exist a configuration
of J,/o-holomorphic disks whose total homology class is A1 (and hence not all disks
in the configuration are constant) and whose total w, /s -area is w, /(A1) = 0, which
is impossible since the area of each non-constant J,,,-holomorphic disk has to be
positive. Hence, we obtain a contradiction and this proves (B). [l

Remark 7.3. We remark that the proof of Theorem 2.11 does not generalize to the
settings where w(A4;) # w(A;) forsome 2 < i,j < n,i # j. The reason for
this comes from the fact that if in the LLagrangian isotopy there exist two Maslov-0
disks with positive symplectic areas that are rationally independent (e.g. A, — A} and
Az — Aj), then one can always find a Maslov-0 disk with positive symplectic area
arbitrarily close to 0. Hence one can not exclude Maslov-0 disks from any bubbling
configuration.

7.3. Proof of Theorem 2.14.

(A) The tori T"(x) are exactly the regular orbits of the standard Hamiltonian
T"-action on C" and the regular level sets of its moment map ¢:C" — (R")*
whose image is the non-negative quadrant A C (R")*.

Fora = (my, ..., mpy) one readily sees that (X, o), which is the open part of
the intersection of the ray x —ta, 0 <t < +o00, and A, is an infinite ray if and only
if all m; are non-positive. Otherwise, J(x, «) is an interval and its rational length is
given by min; p,, >0 x; /m;. By Theorem 2.4, this proves part (A) of the theorem. [

(B) The upper bound def, (k, ..., k) < x/k for k € N follows from Theorem 2.1,
since C" does not admit weakly exact closed Lagrangian submanifolds by a famous
result of Gromov [ 19].

The lower bound bp, (k, ..., k) > x/k follows immediately from part (A) of the
theorem. ]

(C) Let pi,...., Pnq1.-...qn be the standard Darboux coordinates on R?" = C”
sothatz; = p; +iq;,j=1,...,n.

According to the assumption, x;/k > Xnin, that is, x; /k > x; for some j # i.
By (7.1), we may assume without loss of generality, that i = n, j = 1, that is,
Xn/k > xy. Let us show that bp (ke,) = +o0.

Observe that a circle bounding a round disk of a certain area in R? can be mapped
by an area-preserving map arbitrarily close to the boundary of a square of the same
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area. Together with the semi-continuity, product and symplectic invariance properties
of prr (see Section 3.4) this easily implies that it is enough to prove

pb}(Xo, X1, Yo, Y1) = 0, (7.3)

where the admissible quadruple Xy, X1, Yo, Y1 is defined as follows: for i =
I,...,n — 1denote by Il; the boundary of the square

[0, /X1 x [0, /xi] C (R*(pi.qi). dpi A dg;).
For i = n consider the rectangle
[0, x4] % [0, 1] € (R*(Pn,Gn), dpn A dqn).

Now choose ¢ > (0 such that N
—kﬁ —4g > x;. (7.4)

As in the proof of Theorem 2.2 we choose a partition of [0, x,] x {1} into 4k — 3
intervals y1, . .., Y4k—3, ordered from right to left, such that fori = 0,2, 3 mod 4 the
intervals y; have length ¢, the interval y; has length 32 and the remaining intervals
have length 72 — 3¢. Note that if k = 1 then y; = [0, x,] x {1}. We define

Xo=[.x]x0bu | »n %= U w

=3 mod 4 i=1 mod 4
o=01xu |J »n H=0lxixiu |J
=2 mod 4 i=0 mod 4

We then set
X() = l'[1 XK wmaE X l'l,,_1 X)?(),
X] = ”1 X X ﬂn_1 X)?l,
Y() = 1'11 X e X l'[n_l X }//\0,
yl = n] X K I'ln_l X )71,

which gives us our admissible quadruple.
Now choose a constant C that satisfies

Ty 1
(? _ 48) 7= > C> (7.5)

Such a constant exists by inequality (7.4). OnR?(py,, g») we define a piecewise-linear
function G.: R? — R that satisfies:

(i) Ge=0on ,)70 and G, = C on ?1,

(ii) G, only depends on p,,.
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One can choose G to satisfy
'

on ]I()?l) x R, where w(pn,qn) = pn is the projection. Therefore there exists a
smooth approximation G:R? — R that is complete, satisfies (i) and (ii) and has
slope

9,G < C/();(—" . 48)
on n()?l) x IR. This implies that all chords of G from X to X1 have time-length
T 5 (’;—” — 48) /C.
Now consider the Hamiltonian H:R?" — R defined by
H(p.q) :== p1 + G(pn.qn).
H is complete and satisfies

min H =C, maxH = ./x1,
Y, Yo

and thus, by inequality (7.5),

min H —max H > (.
Yy Yo

Again by inequality (7.5) we have
X 1
_— 48)— = alXd
( k C 1

Under the projection R?" — R?(py,, g,) the chords of H map to the chords of G.
All chords of G from X to X have time-length

T > (x—" . 4.9)/ C.
k

Now under the projection R?” — R2(py,¢1) the chords of H map to vertical lines.

We see that for any T > ,/x7 the image of [1; C R?(py, ¢;) under the Hamiltonian

flow at time 7" does not intersect I1;. Thus there are no chords of H from X, to X,

which, by the dynamical characterization of pb,‘f, proves (7.3) and part (C). O

8. Lagrangian tori in C P" and S? x S2: proofs

We now prove that for Lagrangian tori L in C P" or S? x S? and certain cohomology
classes o € H'(L;R) there are upper bounds for def; (a).
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8.1. Proof of Theorem 2.16. Consider a Lagrangian isotopy

y={Y:L—>CP"}, 0<t=<T, yo=1,
such that
(]} = (0] — tda.

By contradiction assume 7' > C and consider L¢ := {¥¢(L). By the assumption of
the theorem, we have [a)]g € H?(CP", L;17Z) and therefore

w(H*(CP",L¢)) C %Z.

Since L is a torus the group w(H?(C P", L¢)) has n + 1 generators y1, ..., yn, I
Denote by ¢ € [0, +00) N %Z its positive generator. However, by a theorem of
Cieliebak and Mohnke [7],
¢ < : ;
T n+1
We obtain a contradiction and therefore 7" < C. []

8.2. Proof of Theorem 2.19. Consider a Lagrangian isotopy
v ={y:L—>S*xS?*, 0=<i<T, ypo=¢

such that
[w]? = [w]L — toe.

By contradiction, assume 7" > C and consider L¢ := /¢ (L). By the assumption
of the theorem we have [w]}> € H?(S? x S?, L; Z) and therefore

w(H*(S* x S%, L¢)) C Z.

Therefore the group w(H?(S? x S2, L¢)) is generated by 1. However, by a theorem
of Dimitroglou Rizell, Goodmann, and Ivrii [10, Proposition 5.3], for any torus
L C S? x S? the positive generator ¢ of w(H?(S? x S?, L)) satisfies

c

A
A N | —

We obtain a contradiction and therefore 7 < C. [
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