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Local rigidity of uniform lattices

Tsachik Gelander and Arie Levit

Abstract. We establish topological local rigidity for uniform lattices in compactly generated
groups, extending the result of Weil from the realm of Lie groups. We generalize the classical
local rigidity theorem of Selberg, Calabi and Weil to irreducible uniform lattices in Isom(X')
where X is a proper CAT(0) space with no Euclidian factors, not isometric to the hyperbolic
plane. We deduce an analog of Wang’s finiteness theorem for certain non-positively curved
metric spaces.

Mathematics Subject Classification (2010). 22D05, 22E40, 20F67.

Keywords. Local rigidity, lattices, locally compact groups, CAT(()) groups, finiteness state-
ments, Chabauty space.

1. Introduction

Over the last fifty years, the study of rigidity phenomena played a central role in
group theory and its interplay with number theory, geometry and dynamics. Three
fundamental results of the theory are local rigidity, strong rigidity and super-rigidity.
In the last two decades there has been a comprehensive, and quite successful,
effort to extend this theory from the classical setting of Lie groups and symmetric
spaces to the much wider framework of locally compact groups and non-positively
curved metric spaces. Much of the attempt has been dedicated towards generalising
the latter two phenomena, namely Mostow strong rigidity and Margulis super-rigidity,
see e.g. [3-5,12,13,16,24,33,40,41]. The present paper focuses on local rigidity.

Overview. Let I" be a uniform lattice in the locally compact group G. The lattice I" is
topologically locally rigid if every homomorphism from I' to G which is sufficiently
close to the inclusion mapping in the point-wise convergence topology is injective
and its image is a uniform lattice in G. The lattice I" is locally rigid if every such
homomorphism is in fact conjugate in G to the inclusion mapping. See §2.1 for the
precise definitions.

One main goal of this paper is to establish topological local rigidity for uniform
lattices in general compactly generated groups — extending Weil’s theorem [46] from
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the realm of Lie groups to locally compact groups. Another main goal is to generalize
the classical local rigidity theorems of Selberg, Calabi and Weil [ 14,39,47] to the
general context of CAT(0) groups. Furthermore we study local rigidity from another
perspective, in terms of the Chabauty topology.

We apply these results to obtain new finiteness statements on non-positively
curved metric spaces in analogy with Wang’s classical finiteness theorem.

Topological local rigidity. A. Weil proved that uniform lattices in connected Lie
groups are topologically locally rigid [46]. We complete the picture by extending
this result to all compactly generated groups.

Theorem 1.1. Uniform lattices in compactly generated groups are topologically
locally rigid.

It is rather straightforward that a small deformation of a uniform subgroup remains
uniform. The main point is in showing that it stays discrete and injective.

Compact generation of G is equivalent to finite generation of a uniform lattice I’
in G when the later exists. Without this requirement lattices need not be topologically
locally rigid. For instance, let G = I be an infinite rank free group and note that the
identity map i: I" — ' is approximated in the representation space by non-injective
maps sending all but finitely many generators to the trivial element.!

Let us recall that a topological group admitting a uniform lattice is automatically
locally compact |34, 2.2].

Weil’s proof relied on the difterentiable structure of G as well as the connectedness
and the existence of a simply connected cover in the classical case of Lie groups.
These notions are not available in the general context under consideration. Instead,
our approach is to make use of the action of G on an appropriate Rips complex.

The Rips complex is simply connected whenever G is compactly presented and
for this reason we first prove Theorem 1.1 in §5 under this additional assumption
and then explain in §6 how it can be removed. §3 is dedicated to several geometric
preliminaries that are required for the proof. §4 contains an independent proof of
topological local rigidity for certain compactly presented totally disconnected groups,
having the advantage of being rather elementary while providing an insight into the
more complicated general case.

Local rigidity. Local rigidity was first proved by Selberg [39] for uniform lattices
in SL,, (R), n > 3 and by Calabi [14] for uniform lattices in PO(n, 1) = Isom(H"),
n > 3. Weil [47] generalized these results to uniform irreducible lattices in any
connected semisimple Lie group G, assuming that G is not locally isomorphic

'Note that there are examples of topologically locally rigid lattices in non-compactly generated groups.
For instance, the additive group Z [%] with the discrete topology is topologically locally rigid regarded
as a lattice in itself.
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to SL; (R), the isometry group of the hyperbolic plane H?. In the latter case lattices
have many non-trivial deformations.

Quite surprisingly, it turns out that H? is the only obstruction to local rigidity of
uniform lattices in the much greater generality of irreducible CAT(0) spaces.

Theorem 1.2. Let X be a proper geodesically complete CAT(0) space without
Euclidean factors and with Isom(X) acting cocompactly. Let I be a uniform lattice
in Isom(X). Assume that for every de Rham factor Y of X isometric to the hyperbolic
plane the projection of T to Isom(Y) is non-discrete. Then I is locally rigid.

As in the works of Selberg, Calabi and Weil topological local rigidity plays
an important role in the proof of local rigidity. Theorem 1.1 allows us to apply
the Caprace-Monod theory of CAT(0) isometry groups and their lattices [15, 16]
reducing the question to an irreducible lattice in a product of a semisimple Lie group
and a totally disconnected group. In the purely Lie group case we rely on the above
mentioned classical results, while the purely totally disconnected case is treated in
a somewhat more general context in §4. Finally, the case where both factors are
non-trivial relies on the superrigidity theorem of Monod [33].

The Chabauty space and local rigidity. Consider the space of closed subgroups
Sub (G) of a topological group G equipped with the Chabauty topology. This
suggests a different approach to local rigidity — we say that a uniform lattice is
Chabauty locally rigid if it admits a Chabauty neighborhood consisting of isomorphic
uniform lattices. For Lie groups this notion was first considered by Macbeath [31].
We prove Chabauty local rigidity for a rather broad family of groups.

Theorem 1.3. Let G be a compactly generated group without non-trivial compact
normal subgroups. Then the collection of uniform lattices is Chabauty open. If
moreover G is compactly presented then uniform lattices are Chabauty locally rigid.

See Theorem 7.1 for a sharper statement. In view of Proposition 7.2 the notion
of Chabauty local rigidity is stronger than topological local rigidity. The compact
generation assumption is necessary — see Proposition 3.6. Isometry groups of
certain CAT(0) spaces are a special case for which Theorem 1.3 applies.

Corollary 1.4. Let X be a proper geodesically complete CAT(0) space with Isom(X)
acting cocompactly. Then uniform lattices in Isom(X') are Chabauty locally rigid.

Whenever the CAT(0) space X has no Euclidean factors and the lattice I’
projects non-discretely to the isometry group of every hyperbolic plane factor of X,
Theorem 1.2 implies that the Chabauty neighborhood of T" given in Corollary 1.4
consists of conjugates of I'. This is discussed in Corollary 8.9 below. In that
situation I" is an OCC or open conjugacy class subgroup in the sense of [25].

Finiteness results for lattices of bounded covolume. A well-known classical result
that relies on local rigidity is the finiteness theorem of Wang. It says that a
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connected semisimple Lie group G not locally isomorphic to SL(2,R) or SL(2, C)
has only finitely many conjugacy classes of irreducible lattices of co-volume < v for
every v > (). We refer to Wang’s original proof [44] and to [21, Section 13] for a
treatment of the case where G has factors isomorphic to SL.(2, R) or SL(2, C).

The two main ingredients of Wang’s proof are:

(1) Local rigidity of all lattices in G.
(2) The Kazhdan—Margulis theorem [26]2.

Indeed, (2) combined with the Mahler—Chabauty compactness criterion implies
that the set of conjugacy classes of lattices of co-volume < v is compact with respect
to the Chabauty topology, while (1) implies that it is discrete. However, even if one
restricts attention to uniform lattices only, it is crucial that (1) holds for all lattices?
in G. This is illustrated in the case of SL(2, C) where uniform lattices are locally
rigid while the finiteness statement fails. The issue is that a sequence of uniform
lattices of bounded co-volume may converge to a non-uniform lattice which is not
locally rigid.

We obtain a similar finiteness result for CAT(0) groups. However, since local
rigidity in the general CAT(0) context is established for uniform lattices only, we
need to make an additional assumption.

Definition 1.5. Let G be a locally compact group. A family ¥ of lattices in G is
uniformly discrete if there is an identity neighborhood U C G suchthatI'$ NU = {e}
holds for every lattice I' € ¥ and every g € G.

Lattices belonging to a uniformly discrete family# are all uniform [38, 1.12], and
their co-volumes are clearly bounded from below.

Theorem 1.6. Let X be a proper geodesically complete CAT(0) space without
Euclidean factors and with Isom(X) acting cocompactly. Let ¥ be a uniformly
discrete family of lattices in Isom(X) so that every I' € F projects non-discretely
to the isometry group of every hyperbolic plane factor. Then ¥ admits only finitely
many lattices up to conjugacy with co-vol < v for every fixed v > (.

The proof follows rather immediately from the open conjugacy class property,
Corollary 8.9, and is perhaps more conceptual than Wang’s original argument.

Finiteness of lattices containing a given lattice. Prior to the finiteness theorem
mentioned above, Wang proved a weaker result that applies in a more general situation.
Namely, he showed that a lattice in a semisimple Lie group is contained in only finitely

2See Definition 1.7 and the paragraph following it for a discussion of this theorem.

3Recall that when G is a semisimple Lie group not locally isomorphic to SL(2, R) or SL(2, C) then
also the non-uniform irreducible lattices are locally rigid. For rank one groups this was proved by Garland
and Raghunathan [20]. (An alternative geometric proof for the rank one case is given in [9].) For higher
rank groups this is a consequence of Margulis’ super-rigidity theorem [32].

4Uniform discreteness is not to be confused with a weaker notion of a joint discreteness given in
Definition 9.1. See also Footnote 13 concerning this terminology.
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many lattices [43]. This result relies on the Kazhdan—Margulis theorem as well. To
obtain a suitable generalization to locally compact groups we introduce the following
notion.

Definition 1.7. Let G be a locally compact group. A family ¥ of lattices in G has
property (KM) if there is an identity neighborhood U C G such that for every lattice
" € ¥ there is an element ¢ € G satisfying gTg™! N U = {e}. We will say that G
has property (KM) if the family of all lattices in G has property (KM).

Kazhdan and Margulis showed [26] that a semisimple Lie group with no compact
factors has property (KM). We refer to [22] for a short proof of the Kazhdan—
Margulis theorem and for additional examples of groups with property (KM).

Theorem 1.8. Let G be a compactly generated locally compact group. Assume that
every lattice in G has a trivial centralizer. Let ¥ be a family of lattices in G with
property (KM) and admitting some I € F that is finitely generated and is a least
element in ¥ with respect to inclusion. Then ¥ is finite.

Examples of groups in which all lattices have trivial centralizers include second
countable locally compact groups with a trivial amenable radical [17, 5.3] as well as
the isometry groups of certain CAT(0) spaces. See §8.1 for more details.

In particular, it follows that a family of lattices # containing a given finitely
generated lattice I' and satisfying I N U = {e} for some identity neighborhood U
and all I € ¥ must be finite.

We would like to mention the work [7] that contains somewhat related finiteness
results for uniform tree lattices. Recently Burger and Mozes have established the
analogue of [43] for certain uniform lattices in products of trees by carefully studying
discrete groups containing a given irreducible uniform lattice.

Remark 1.9. §9 dealing with these generalizations of [43] does not depend on local
rigidity and is the only part of the current paper that extends without difficulty to
non-uniform lattices.

Invariant random subgroups. Finally, we investigate several questions concerning
Chabauty spaces in general. For instance, the invariant random subgroup
corresponding to a uniform lattice I" is shown to depend continuously on [" in
the Chabauty topology; see Proposition 11.2. This relies on the Chabauty-continuity
of the co-volume of uniform lattices established in Proposition 11.4.

Acknowledgements. Pierre-Emmanuel Caprace has kindly and generously provided
us with clever ideas and arguments extending the generality and improving our results.
His suggestions also helped to improve the presentation of this paper. We would like
to thank him for this immensely valuable service.

In particular Theorem 1.3, Proposition 3.6, Corollaries 4.3 and 4.4, Remarks 4.8
and 4.9, Theorem 7.1, Proposition 7.4, Remark 8.7 and Proposition 11.2 all contain
arguments suggested by Caprace.
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2. Deformations of lattices

2.1. The representation space. We describe a topological space classifying the
representations of a given discrete group into a target topological group. The notion
of local rigidity for a lattice is then defined in terms of that space.

Definition 2.1. Let I' be a discrete group and G a topological group. The
representation space R(I", G) is the space of all group homomorphisms from I’
to G with the point-wise convergence topology.

Note that for any point r € R(T, &) the group r(I') is a quotient of I".

If I" has a finite generating set % then R(I, G) is homeomorphic to a closed
subspace of G with the product topology. This subspace is determined by closed
conditions arising from the relations among the generators in X.

Given a discrete subgroup I of GG the inclusion morphism I' < G can naturally
be regarded as a point of R(I", G). We will denote this point by ry and frequently
refer to neighborhoods of ry in R(T", G) as deformations of T" in G.

Recall that a discrete subgroup I' < G is a uniform lattice in G if there is a
compact subset K C G such that G = I'K. Note that I' is finitely generated if and
only if G is compactly generated [18, 5.C.3].

Definition 2.2. The lattice I' is topologically locally rigid if the inclusion
morphism ry admits an open neighborhood U in R(I", G) such that for every r € U
the subgroup r(I') < G is a uniform lattice and r is injective.

Less formally, a uniform lattice is topologically locally rigid if sufficiently small
deformations are injective, discrete and co-compact.

Definition 2.3. The lattice I' is locally rigid if sufficiently small deformations of it
are given by conjugation in G.

Local rigidity inside a larger group. There is a more general notion of local rigidity
requiring small deformations of I' to arise from conjugation inside a larger group
containing G. The following is one particular example of this.

Definition 2.4. Assume that G is a closed subgroup of GT. The lattice I' in G
is locally rigid in GV if sufficiently small deformations inside R (I, G) arise from
conjugation by an element of G 7.

If " is locally rigid in some larger group G then it is in particular topologically
locally rigid. Moreover, if G is cocompact in G' and all uniform lattices in GT are
known to be locally rigid then uniform lattices in G are locally rigid in GT in the
sense of Definition 2.4.
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Proposition 2.5. Let G; be a closed and cocompact subgroup of the locally compact
group G :r Jori = 1,2. Let T be a uniform lattice in G| x G, projecting densely to both

factors. If U is locally rigid in G| x G then T is locally rigid inN 1 .+ (G x Ga).
| 2
Proof. To simplify notation let
G=G1xG, G'=aGIxal.

Consider a deformation r € R(I", G) which is sufficiently close to the inclusion so
that r(y) = y® for some g = (g1.82) € GT p ¢ G;r = GVandall y € I'. We have
that

proj; (r (1)) = proj; (¢~ 'Tg) = g; 'proj;(N)gi = g; ' Gigi
On the other hand r(I") C G and therefore proj,(r(I')) < G;. This means that
g € GT conjugates G to a subgroup of itself.
Consider the Chabauty space Sub (G T) with the natural containment partial order.

This partial order is semicontinuous on Sub (GT) in the sense that given H, < H»
there are Chabauty open neighborhoods H; € €21 and H, € €2 so that

H{ < H,, VHII €y, and H; < Hé, VHé € 5.

The G T-conjugacy class of G is a compact subset of the Chabauty space Sub (G ') and
therefore it admits minimal and maximal elements with respect to containment [45].
In particular, every group in the GT-conjugacy class of G is both minimal and
maximal so that ¢7'Gg = G and g € Ng+(G) as required. O]

Local rigidity and finite index subgroups. In certain situations, it is convenient to
replace the group I' by a finite index subgroup having additional properties. The
following lemma allows this procedure.

Lemma 2.6. Let G be a topological group, I" < G a finitely generated lattice and
A <4 T" a normal subgroup of finite index. Assume that Cg (A) is trivial. If A is
locally rigid then I is locally rigid as well.

Proof. Let r € R(I', G) be a sufficiently small deformation of I" so that r(§) =
g~ '8¢ for some g € G and all § € A. For every pair of elements y € I"and § € A

we have
|

r((g)r(v) = r(§) =68 = r((g)g* ve

The group A is finitely generated, being a finite index subgroup of I'. Applying the
above argument with § ranging over a finite generating set for A gives

g lygr(y) 7! € Cg (r(A)) = Cg (A = {e},

which means that y& = r(y) for all y € I' as required. O
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2.2. The Chabauty topology. There is another related viewpoint on local rigidity,
expressed in terms of the Chabauty space of closed subgroups.

Definition 2.7. Given a locally compact group G let Sub (G) denote the space of
closed subgroups of G equipped with the Chabauty topology generated by the sub-
basis consisting of

O(U) ={H < G closed : HNU # @} for every open subset U C G,
O,(K) ={H < G closed : H N K = @} for every compact subset K C G.

The space Sub (G) is Chabauty compact. A reference to the Chabauty topology
is [10, VIIL§S]. One major difference between the representation space and the
Chabauty topology is that the latter only takes into account the embedding of a given
subgroup as a closed subspace of G, a priori irrespective of the algebraic structure
of that subgroup.

Let ' < G be a uniform lattice. The following two notions are variants of
Definitions 2.2 and 2.3 respectively, given in terms of the Chabauty topology.

Definition 2.8. ' is Chabauty locally rigid if the point I' € Sub(G) admits a
Chabauty neighborhood consisting of uniform lattices isomorphic to I'.

Definition 2.9. I' has the open conjugacy class (OCC) property if the point
I" € Sub (G) admits a Chabauty neighborhood consisting of conjugates of I'.

The term OCC was recently coined in [25].

The image of a deformation. Given any homomorphism r: I' — G of some group I’
into a topological group G the closure of r(I") is a closed subgroup of G.
Definition 2.10. Let I" be a discrete group and G a locally compact group. The
closure of the image of a representation is a well-defined map

C:R(I,G) = Sub(G), C(r)=r().

The map C relates the representation space of I' in G to the Chabauty space of G.
In fact, we show in §7.1 that C is continuous at the point ry corresponding to the
inclusion I' < G whenever G is compactly generated and I' is uniform. In this
sense Chabauty local rigidity is a stronger notion than topological local rigidity.

On the other hand, observe that if the map C is known to be open then topological
local rigidity implies Chabauty local rigidity, and likewise local rigidity implies the
OCC property. This is the path taken in §7.3 towards Theorem 7.1.

3. Geometric preliminaries

Our research on topological local rigidity has benefited greatly from the ideas and
excellent exposition of the new book [ 18] by Cornulier and de la Harpe.
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In this section we collect from [11, 18] a toolkit of geometric notions needed
for the proof of Theorem 1.1. The central theme is the construction of a geometric
action of G on the Rips complex, which is a certain simplicial complex associated to
a choice of a metric on G. The notion of compact presentation and its implication to
the simple connectedness of the Rips complex is discussed. In addition we discuss
geometric actions and length spaces.

3.1. Geometric actions. Let G be a topological group acting on a pseudo-metric
space (X, d). We emphasize that the action need not be continuous.

Definition 3.1. The action of G on X is:
(1) cobounded if there exists a bounded FF C X with GF = X;

(2) locally bounded if Vg € G, x € X there exists a neighborhood g € V with Vx
bounded;

(3) metrically proper if Vx € X the subset {g € G : d(gx,x) < R} is relatively
compact for all R > 0;

(4) geometric if it is isometric, metrically proper, locally bounded and cobounded.

For example, if G is compactly generated and d is a left invariant, proper and
locally boundeds pseudo-metric then the action of G on (G, d) is geometric.

Proposition 3.2. Let G be a compactly generated locally compact group and H < G
a closed cocompact subgroup. If G acts on X geometrically then so does H .

Proof. The only property that needs to be checked is coboundedness. There is a
compact subset K C G with G = HK and abounded subset F C X withGF = X.
Therefore HKF = X and it remains to show that KF C X is bounded.

Pick a point xo € X. Then for any k € K there is a neighborhood k € Vi with
Vi xo bounded. As K is compact, this implies that Kx is bounded, and so K F is
bounded as well.

]

Lemma 3.3. Let G be a locally compact group admitting a geometric action on
(X,d). Let H < G be a subgroup considered abstractly with the discrete topology.
If the restricted action of H on (X, d) is geometric then H is a uniform lattice in G.

Proof. If H was not discrete in the topology induced from G, there would be a
sequence h, € H with h, # e,h, — e € G. Pick a point xg € X. As the
G-action is locally bounded, there is an open neighborhood V' C G containing e
such that Vg is bounded. In particular the set {h,xo}nenyy C X is bounded in
contrast with assumption that the action of H is metrically proper.

5A pseudo-metric d is locally bounded if every point has a neighborhood of bounded diameter. A left
invariant, proper and locally-bounded pseudo-metric on a group is called adapfed in |18].
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H is acting coboundedly on X, and so there exists a bounded subset // C X
with HF = X. Pick a point xo € X and let K = {g € G : gxo € F}. Because the
action of G is metrically proper K is compact. Note that KH = G. ]

Recall the following coarse variant of connectedness [18, 3.B].

Definition 3.4. A pseudo-metric space (X, d) is coarsely connected if 3¢ > 0 such
that Vx, y € X there is a sequence x = xg, X1,...,X, = y of points x; € X with
d(xi, x;41) <c.

The following two propositions are a first step towards the study of Chabauty
neighborhoods of uniform lattices.

Proposition 3.5. Let G be a locally compact group admitting a continuous geometric
action on a coarsely connected pseudo-metric space (X, d). Let I" be a uniform lattice
in G. Then I" admits a Chabauty neighborhood consisting of subgroups whose action
on X is cobounded.

Proof. The lattice I" is acting on X geometrically according to Proposition 3.2.
In particular, there is a point x € X and a radius R > 0 so that 'B; = X
for By = Byx(R). We may assume without loss of generality that X is c-coarsely
connected for some ¢ > 0 and that R > ¢. Denote B, = B,(2R) and B3 = B (3R).
Let X = {y € I' : yB1 N B3 # @} so that B; C ¥ B;. Since the action of I" on X is
metrically proper and the subgroup I' is discrete the set X is finite.

The continuity of the action of G on X implies that there is a symmetric identity
neighborhood U C Isom(X) so that UBy C B,. In particular

Bs C U Uy Br

for every choice of elements u, € U with 0 € X. We claim that the Chabauty
neighborhood
Q=) 010V)
g€EL

of I' is as required. Consider any closed subgroup I € 2. There are elements
he € HNaU forevery o € 2. We will show that in fact H{y B, = X so that already
the finitely generated subgroup Hy = (hs),cx of H is acting coboundedly on X.

Let y € X be any point. The c-coarse connectedness of X allows us to find
a sequence of points xq, X1,...,X, for some n € N, where x9g = x,x, = y and
d(x;,x;—1) < cforevery 1 <i < n. Clearly xo € HyB,. Arguing by induction
assume that x; 1 € hBy forsome 1 <i <n and h € Hy. Therefore

d(x;, hx) <d(xj, xij—1) + d(xj—1,hx) <c + 2R < 3R.

In other words x; € hB3. Note that B3 C |, ¢y ho B> so that x; € hhy B, for some
o € X. In particular x; € HyB,. We conclude by induction. 0
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Proposition 3.6. Let G be a locally compact group and U a uniform lattice in G.
Then T" admits a Chabauty neighborhood consisting of cocompact subgroups if and
only if G is compactly generated.

Recall that any topological group admitting a uniform lattice is locally compact.

Proof. 1f G is compactly generated then it admits a left-invariant, continuous, proper
and coarsely connected pseudo-metric [18, 4.B.8]. Consider the action of G on itself
equipped with such a pseudo-metric d by left multiplication. Proposition 3.5 implies
that I admits a Chabauty neighborhood consisting of cobounded subgroups. Since d
is proper a cobounded subgroup is cocompact.

Conversely, assume that I' admits a Chabauty neighborhood €2 consisting of
cocompact subgroups. For every finite subset /' C I' let I'F denote the subgroup
of I' generated by F'. Then (I'r)F is a net of discrete subgroups of G having I" as
an accumulation point. Therefore I'r belongs to €2 for some F. In other words G
admits a finitely generated uniform lattice, so that G is compactly generated. U

Remark 3.7. The proofs of Propositions 3.5 and 3.6 establish that a uniform lattice I"
in a compactly generated group G admits a Chabauty neighborhood €2 and a compact
subset K C G so that every closed subgroup H € €2 satisfies HK = G.

3.2. Compact presentation. We recall the notion of compact presentation.

Definition 3.8. A group G is compactly presented if it admits a compact generating
set S and a presentation with relations of bounded length in S.

A compactly presented locally compact group is boundedly presented by all of
its compact generating sets. See [ 18, Section 8] for additional details.

Remark 3.9. Connected Lie groups, as well as reductive algebraic groups over local
fields, are compactly presented. There are however algebraic groups over local fields
which are not compactly presented, such as the group SL, (k) x k2 where k is a
non-Archimedean local field [ 18, Section 8.A].

3.3. The Rips complex. Let (X, d) be a pseudo-metric space and ¢ > 0. Consider
the 2-dimensional simplicial complex R = R2(X, d) whose vertices are the points
of X. Two distinct points x, y € X span an edge if and only if d(x, y) < ¢. Three
distinct points x, y,z € X span a 2-simplex if and only if each pair spans an edge.
Note that the O-skeleton of R2(X,d) is naturally identified with X, and we
frequently make this identification implicit.
Definition 3.10. The Rips 2-complex R2(X, d) is the topological realization of the
above simplicial complex.
R?(X ,d) is given the weak topology, namely each simplex is regarded with
its natural Euclidean topology, and an arbitrary subset is open if and only if its
intersection with each simplex is open.
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Definition 3.11. (X,d) is A-length if for all pairs x,y € X the distance d(x, y)
equals inf Z;:é d(x;,xi+1), where the infimum is taken over all sequences x =
Xg,...,Xp, = y of points x; € X with d(x;, x;j4+1) < A.

Proposition 3.12. Let G be a compactly presented locally compact group. Then G
admits a left-invariant, continuous and proper pseudo-metric d so that R*(G, d) is
connected and simply connected for all ¢ sufficiently large. Moreover we may take
the pseudo-metric d to be A-length for some A > 0.

Proof. According to Proposition 7.B.1 and Milestone 8.A.7 of [18], and as G is
compactly presented, the Rips complex R?(G, d) is connected and simply connected
provided that the pseudo-metric d is left-invariant, proper, locally bounded and large-
scale geodesic®. The existence of such a pseudo-metric which is moreover continuous
follows from the implication (i) = (vi) in Proposition 4.B.8 of [18]. The fact that d
can be taken to be A-length follows from the details of the proof, combined with
statement (2) of Lemma 4.B.7 of [18]. ]

The Rips complex as a metric space. The Rips complex R = R%(G, d) can be
viewed as a quotient space obtained by gluing together a family of zero, one and
two-dimensional pieces. Assume that we declare edges to have unit length and 2-
simplices to be isometric to equilateral Euclidean triangles. This defines a quotient
pseudo-metric p = pg 4 on R that is compatible with the weak topology on R, see
[11, §1.5]. Metric simplicial complexes are considered in [11, §1.7], where a metric p
as above is called the intrinsic pseudo-metric.

Theorem 3.13. Let d be a pseudo-metric on G. If the Rips complex R = R2(G, d)
is connected for some ¢ > 0 then R endowed with the metric pg 4 is a complete
geodesic space.

Proof. The simplical complex R has finitely many isometry types of Euclidean
simplices (in fact, a unique one in every dimension). Assuming that R is connected
Theorem 1.7.19 of [11] applies. [l

It is shown in Proposition 6.C.2 of [18] that for a pseudo-metric d as in
Proposition 3.12, the inclusion of (G, d) into (R, p) is a quasi-isometry. This implies
that the action of G on (R, p) is geometric.

Proposition 3.14. Every two vertices g.h € Ry = G are connected in R by a
rectifiable path p of length [(p) < 2p(g, h) whose image lies in the 1-skeleton of R.

Proof. Let g, h € R(p) be any pair of vertices. Since R is a geodesic space there is a
path p’: [0, 1] — R with p’(0) = g, p’(1) = h and length I(p’) = p(g, h).

oA left-invariant, proper, locally bounded and large-scale geodesic pseudo-metric on a group is called
geodesically adapted in [18].
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We may assume without loss of generality that whenever p’([a,b]) C T for a
2-simplex T C Rwith0 < a < b < 1 and p'(a), p'(b) € dT then pI,[a,iﬂ is a
geodesic segment of 7. Let p be the path obtained from p’ by replacing, for any
instance of ¢« < b and T as above, the geodesic segment pll[a,b] with a shortest
path connecting p’(a) and p’(b) along the boundary 7. As T is isometric to an
equilateral Euclidean triangle, [(p) < 2[(p’). ]

3.4. Length spaces and covering maps.

Definition 3.15. A map f: X — Y of metric spaces is a local isometry if for every
x € X there is s = s(x) such that the restriction of f to By(s) is an isometry
onto B s(x)(s). The map f is an s-local isometry if s can be chosen independently
of x.7

Lemma 3.16. Let f: X — Y be an s-local isometry where Y is a connected metric
space and X # . Then f is a covering map.

Proof. Denoteby Y’ = f(X) the image of f. Since f is an s-local isometry, Y’ has
the property that if y € Y’ then B, (s) C Y’. This condition implies that Y’ is both
open and closed. Since Y is connected we deduce that Y = Y and f is surjective.

To establish the covering property, given a point y € Y consider the open
neighborhoods U, = B, (s/2) C X for all points x € f~!(y) in the preimage of y.
As f is an s-local isometry it restricts to a homeomorphism on each U,. Moreover
Uy, N Uy, # @ implies 0 < dx(x1,x2) < s but f(x1) = f(x2) = y which is
absurd. So the open neighborhoods Uy are pairwise disjoint as required. ]

Pullback length metric. Recall that a metric is a length metric if the distance bet-
ween any two points is equal to the infimum of the lengths of all rectifiable paths
connecting these two points. A space equipped with a length metric is called a length
space. Let f:X — Y be a local homeomorphism such that Y is a length space
and X is Hausdorft. It is possible to pullback the length metric from Y to obtain a
metric on X that is induced by f (see Definition 1.3.24 of [11]).

Proposition 3.17. Let [: X — Y be a local homeomorphism where Y is a length
space and X is Hausdorff. Then the metric d y on X induced by f is a length metric
and f becomes a local isometry. Moreover d g is the unique metric on X satisfying
these two properties.

In addition, assume that there is s > 0 such that every x € X has a neighborhood
x € U with f|y being a homeomorphism onto its image and B rxy(s) C f(U).
Then [ is an s'-local isometry for some s’ > 0.

7Our definition is different from the usage by several authors, see e.g. Definition 3.4.1 of [36]. We
require a somewhat stronger local condition, while [36] requires in addition that a local isometry is
surjective.
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Proof. The first part is Proposition 1.3.25 of [11]. The statement concerning s-local
isometries follows from the proof. ]

Compare Lemma 3.16 and Propositions 3.17 with the more general Proposi-
tion 3.28 of [11].

Proposition 3.18. Ler f: X — Y be a homeomorphism of length spaces that is a
local isometry. Then f is an isometry.

Proof. See Corollary 3.4.6 of [36]. (]

4. Totally disconnected groups

We establish local rigidity for the isometry groups of connected and simply-connected
proper length spaces assuming the action is smooth.

Definition 4.1. An action of a totally disconnected topological group G on a
connected topological space X is smooth if compact subsets of X have open point-
wise stabilizers in G.

Any continuous action of a locally compact group on a connected locally finite
graph is smooth. In addition, the actions of totally disconnected isometry groups on
certain CAT(0) spaces are smooth [15, Theorem 6.1].

Theorem 4.2. Let X be a connected and simply connected proper length space and
G < Isom(X) a closed subgroup acting cocompactly and smoothly. Then uniform
lattices of G are locally rigid in Isom(X).

The conclusion means that a small deformation of a uniform lattice I' < G
is a conjugation by an element of Isom(X). This theorem, or rather its variant
Theorem 4.5, is used in §8 as an ingredient in the proof of local rigidity for CAT(0)
groups.

The following is yet another interesting application.

Corollary 4.3. Let G be a compactly presented totally disconnected locally compact
group without non-trivial compact normal subgroups. Then there is a locally compact
group GT admitting G as a closed cocompact subgroup such that uniform lattices
in G are locally rigid.

In particular, all uniform lattices in G as above are topologically locally rigid.
Note that this conclusion follows immediately from our main Theorem 1.1. However
the independent proof given in §4.2 and §4.3 is considerably simpler and yet provides
an insight into the general case.

Corollary 4.3 can be improved in the special case where G as above is a direct
product of two groups and the uniform lattice I" has dense projections to the factors.
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Corollary 4.4. Let G = G x G, be a compactly presented totally disconnected
locally compact group without non-trivial compact normal subgroups. Let I be a
uniform lattice in G projecting densely to both factors. Then U is locally rigid in
Aut(G).

4.1. Isometry groups with smooth action.

Theorem 4.5. Let X be a connected and simply connected proper length space.
Assume that X splits as a direct product X = X1 X X5 of metric spaces and let
G; < Isom(X;) be closed subgroups acting cocompactly. Assume that Gy acts
smoothly.

Let ' < G| x G, be a uniform lattice. Then any sufficiently small deformation
of T that is trivial on G, is a conjugation by an element of Isom(X ).

This somewhat cumbersome statement involving a product decomposition is
needed in the proof of local rigidity for CAT(0) groups below.

Note that Theorem 4.2 is obtained as an immediate consequence of Theorem 4.5
in the special case where X = X, the factor X, is a reduced to a point, and a
subgroup of Isom(X) = Isom(X}) is acting smoothly and cocompactly.

Proof of Theorem 4.5. Let R(I", G) denote the subspace of the representation space
R(I', G) consisting of these r with Proj,(r(y)) = Proj,(y) for all y € I'. Let
ro € R1(I', G) correspond to the inclusion morphism ro: I < G and r € R (I", G)
denote a point that should be understood as being close to rg, the precise degree of
closeness will be specified below.

According to Proposition 5.B.10 of [18] and as X is proper, G is acting
geometrically. In particular we may apply Proposition 3.2 and find a compact subset
K C X such that X = I'K. Denote K; = Proj;(K) and let Og < G, be the
point-wise stabilizer of K. Since K is compact, smoothness implies that O is an
open subgroup of G.

Fix some arbitrary s > 0 and let Ng(K) denote the s-neighborhood of K, so that
N;(K) is relatively compact and open. Denote

As ={y e I' 1 yK N Ny(K) # 8},
with Ay being finite as I' is discrete and its action is metrically proper.

We now construct a I"-equivariant covering map f: X — X, where I" acts on the
domain of f via ry and on the range of f via r, namely

flyx)=r(»)f(x), Vyerl xeX.

We propose to define f: X — X piece-wise by

fyk =r(y)y”', V¥yer
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and care needs to be taken for this to be well-defined. Note that f depends on r
implicitly. In any case, the above formula is equivariant in the sense that given
x € yK and y’ € I" we have

Tk @) = (r'v)y 'y ) = r()ry " )x = r() fiyx (x).

An ambiguity in the definition of f arises whenever yK N y'K # @ for a pair
of elements y, Y’ € I". By the equivariance property we may assume Y’ = 1, that is
yK N K # @ and so y € Ag. To resolve the ambiguity we require that

f|KﬂyK = r()’)Vﬁ(]myK = idlKnyK-

This will certainly be the case given that r(y)y ™! fixes the set K point-wise. Note
that Proj,(r(y)y~') = e, € Isom(X5) and so it suffices to require

Projl(r(y)y_') € Ok < Proj,(r(y)) € OxProj,(y).
This means that if we let & C R (I", G') be the open condition given by
Q= {reRi(I'G) : Proj,(r(y)) € OxProj,(y), Yy € A},

the function f is well-defined as long as r € €.
Next to ensure that f is a local isometry. We define an open neighborhood €2 of
ro in R{(I', &) so that for every f € €2 the function f is an s-local isometry. Let

Qg = {r e Ri(I',G) : Proj,(r(y)) € Proj,(y)Ok, Vy € Ay}

and it is easy to see that for every r € Qg and y € Ay the map r(y)y~! fixes
point-wise the set yK. In particular fix (k) = id for all such r € Q.

Given a point x € X we may by equivariance assume that x € K and so
Bg(x) C Ng(K). In particular fip () = id and f is certainly a s-local isometry
at x.

We have shown that f: X — X isa ["-equivariant s-local isometry. Therefore f
is a covering map by Lemma 3.16. The connectedness and simple connectedness of X
implies that f is an homeomorphism. A local isometry which is a homeomorphism
between length spaces is in fact an isometry, see Proposition 3.18.

To conclude we may regard f/ € Isom(X) and the equivariance formula implies
that fTf~ ! = r(I') as long as r € Q N Q for some s > 0. Observe that
Proj, (/) = e2 € Isom(X>) and so in fact f/ € Isom(Xy). []

4.2. The Cayley—Abels graph. In order to apply Theorem 4.2 towards Corollary 4.3
we need to construct a suitable space X associated with a totally disconnected
compactly presented group G. With this aim in mind we recall the notion of a
Cayley—Abels graph; see e.g. [29,48] or [ 18, 2.E.10].
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Proposition 4.6. Let G be a compactly generated totally disconnected locally
compact group. There is a locally finite connected graph X on which G acts
transitively, continuously and with compact open stabilizers.

Proof. By the van-Dantzig theorem there is a compact open subgroup U C G. We
refer to Proposition 2.E.9 of [18] for the construction of the required graph X. In
particular, the vertices of X are taken to be the cosets G/U. ([l

Any graph satisfying the conditions of Proposition 4.6 is called a Cayley—Abels
graph® for GG. It is clear that the action of G on a corresponding Cayley—Abels
graph is geometric. In particular all such graphs for G are quasi-isometric to G and
therefore to each other, as follows from Theorem 4.C.5 of [ 18] (this fact is also proved
in [29]).

Proposition 4.7. Let G be a compactly presented totally disconnected locally
compact group and let X be a Cayley-Abels graph for G. Then the Rips complex
Rg (X (“)) constructed with respect to the graph metric on the vertices of X is simply-
connected for all ¢ sufficiently large.

Note that the Rips complex RZ(X (V) constructed on the vertices of X is a locally
finite 2-dimensional simplicial complex.

Proof of Proposition 4.7. In terms of the machinery developed in [18] the proof is
transparent. Namely, G is large-scale equivalent (i.e. quasi-isometric) to X. The fact
that G is compactly presented is equivalent to G being coarsely simply connected®
with respect to some geodesically adapted metric; [18, 8.A.3]. Hence X is coarsely
simply connected, which implies that RZ(X) is simply connected for all ¢ sufficiently
large by [18, 6.C.6].

Alternatively, a hands on proof can be obtained by recalling that the vertices of X
correspond to G/ U for some compact open subgroup U and verifying that the proof
of [18, 7.B.1] goes through in this case as well. O

4.3. Local rigidity of uniform lattices in totally disconnected groups.

Proof of Corollary 4.3. Let G be a compactly presented totally disconnected locally
compact group without non-trivial compact normal subgroups. Let X be a Cayley—
Abels graph for G and R = Rg(X ) the corresponding Rips complex for ¢ sufficiently
large so that R is connected and simply connected, as in Proposition 4.7. Denote
Gt = Isom(R) and let «: G — G' be the natural homomorphism [18, 5.B]. The
group GT is locally compact, totally disconnected and compactly presented, and
the homomorphism « is continuous, has compact kernel, and its image is closed

81f G is a countable discrete group then a Cayley-Abels graph is simply a Cayley graph with respect
to some generating set.
9The notion of coarse simple connectedness is discussed in [18, 6.A].
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and cocompact in GT. Our assumptions imply that « is injective so that G can be
identified with the subgroup a(G) of G¥.

It is clear from the definition of a Cayley—Abels graph that the action of GT on R
is smooth. Moreover, R is a length space, as in Theorem 3.13. Being a locally
finite simplicial complex with a single isometry type of simplices in each dimension,
R is proper. The group G' is acting transitively on the vertices of R and hence
cocompactly on R. Having verified all the required conditions, local rigidity of
uniform lattices in GT follows immediately from Theorem 4.2. O

Remark 4.8. Uniform tree lattices are locally rigid — let 7" be a locally finite
tree and G a cocompact group of automorphisms of 7. Every uniform lattice I
in G admits a free Schottky subgroup A of finite index [30]. A Schottky subgroup is
defined by an open condition and it is clear that A is topologically locally rigid. Since
the centralizer of I" in G is trivial, our Lemma 2.6 implies that I" is topologically
locally rigid as well.

Remark 4.9. The previous remark leads to a different and possibly simpler proof of
Corollary 4.3. Let G be a compactly generated totally disconnected locally compact
group. There is a locally compact group G admitting G as a quotient with discrete
kernel, such that G is acting by automorphisms on the universal covering tree of some
Cayley—Abels graph for G. Uniform lattices in G are topologically locally rigid by
Remark 4.8. Topological local rigidity for uniform lattices in G follows relying on
the methods of §6.

Proof of Corollary 4.4. Let G = G| x G, be a product of two compactly presented
totally disconnected locally compact groups without non-trivial compact normal
subgroups and I" a uniform lattice in G projecting densely to both factors. Let X be
the product of the two Rips complexes Ry and R, associated to the two factors by
Proposition 4.7 and as in the proof of Corollary 4.3. We consider X with the product
L? metric. The de Rham decomposition theorem of Foertsch-Lytchak [19] implies
that GT = Isom(R;) x Isom(R3) is an open finite index subgroup of Isom(X). In
particular the uniform lattice I is locally rigid in GT by Theorem 4.2. We conclude
relying on Proposition 2.5. L]

5. Compactly presented groups

In this section we prove Theorem 1.1 with the additional assumption of compact
presentation. Let G be a compactly presented group and I' < G a uniform lattice.
We show that a small deformation r(I") of I is a uniform lattice isomorphic to it.

Overview. The strategy of the proof is as follows. Consider the Rips complex R
associated to G. Then R is connected and simply connected and G is acting on R
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geometrically. The main ingredient of the proof is the construction of a connected
space Y and a covering map f:Y — R depending on the deformation r. Such a
map f must of course be a homeomorphism.

We consider certain open subsets of R called hubbles. The space Y is constructed
by gluing together bubbles indexed by elements y € I'. The map f is naturally
associated to this gluing and is a local homeomorphism. This allows us to define a
pull-back length metric on Y. We then promote f to an s-local isometry using a
certain “Lebesgue number” argument with respect to the cover of Y by bubbles.

There is an obvious action of I" on ¥ by homeomorphisms, coming from the
indexing of the bubbles. The map f becomes I'-equivariant with respect to this
action, with I" acting on R via r. Finally, we show that I" is acting on ¥ geometrically
with respect to the induced length metric and deduce from this Theorem 1.1.

Standing notations. Recall that I" is a uniform lattice in the compactly presented
group G. Letry € R(I', G) correspond to the inclusion and r € R(I", G) be a small
deformation of ry.

LetR = RZ(G, d) be the associated Rips complex where d is some left invariant,
continuous and proper pseudo-metric on G, see Proposition 3.12. We assume that d
is A-length and that ¢ > A is sufficiently large so that R is connected and simply-
connected. Moreover p is the intrinsic metric on R, and p will denote the induced
length metric on the space Y.

We will use the notation U = B(e, D), where B denotes a bubble as in
Definition 5.2. Here D > 0 is a fixed radius. An additional radius L (the “Lebesgue
number”) is introduced in Lemma 5.14 and it is assumed that L > ¢ > A and
D > D(L). See Lemma 5.14 for the meaning of the parameter D(L).

Finally, ¥ will denote a certain generating set for I" depending on the choice of
the bubble U'.

5.1. Bubbles. We consider certain open subsets of R that share many of the
properties of metric balls.

Definition 5.1. Let R be a simplicial complex and A C R(g) a subset of its 0-skeleton.
The span 8(A) C R of A is the union of those simplices in R all of whose vertices
belong to A.

Definition 5.2. Let (R, p) = R%(G, d) be the Rips complex of (G, d) with its asso-
ciated metric p. Let 0 < & < +/3/4 be fixed. The bubble at a vertex g € G = R(0)
of radius D > 0 is

B(g. D.g) = Ne(8(B)) = ix € R: p(x, 8(B)) < &,

where
B = B.a)(g, D).
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The constant 0 < & < \/5/4 will be kept fixed in what follows and its exact
value will not affect the arguments in any way. For this reason we will sometimes
suppress € from the notation for 8.

We collect basic properties of bubbles.

Proposition 5.3. Let B = B(x, D, ¢) be a bubble.

(1) B isopeninR.

(2) If d is A-length, R = R2(G,d) and D > ¢ > A then B is connected.
(3) Given g € G we have gB = B(gx, D, ¢).

4) xe€B8=28(x,D,e¢).

Let B = B(x', D', €) be an additional bubble.

(5) Ifd(x,x")y+ D' < D then B’ C 8.

Let B; = B(x;, Dy, €) be a collection of bubbles for i € I with |1] < oc.
(6) If Nier Bi # O then this intersection contains a vertex of R.

Proof. Item (1) is obvious.

To establish (2), consider a bubble at the vertex x = g € G. Theorem 3.13
implies that p-balls are path connected in R, and so it suffices to show that §(B) is
path connected. Any point of 8(B) can in turn be connected by a segment to one
of the vertices in B. It remains to show that any vertex 4~ € B can be connected
to g within §(B). As d(g,h) < D and d is A-length there is a sequence of points
X0 = £,X1,...,%Xn = h with d(xj,xi41) < A < c and d(g,x;) < D. The
corresponding path in R connects g to & and is contained in & (B) as required.

Statement (3) follows immediately from Definition 5.2 and the left G -invariance
of the pseudo-metric d and metric p, and statements (4) and (5) are clear.

To observe (6) we make an auxiliary construction. Let R’ be the simplicial
complex obtained by subdividing every 2-cell of R in the obvious way into four
2-cells isometric to an equilateral triangle of side length 1/2. Every edge of R is
subdivided into two new edges in R’ of length 1/2. Clearly the underlying metric
spaces of R and R’ are isometric. Given a subcomplex QO C R let N'(Q) C R’
denote the union of the interiors of those cells of R” whose closure has non-empty
intersection with Q. Since & < +/3/4 we see that

Bi = Ne(8(Bi)) C N'(8(By)),
where B; = B(g,q4)(xi, D;). However, note that because of the definition of R’

N'(Q1 N Q2) = N'(Q1)NN(Q2)

forevery pair of subcomplexes O, Q2 CR. Moreover, §(B;)N8(B;)=8(B;,NB;).
Statement (6) follows. ]
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Bubbles provide us with a system of nicely behaved open subsets of R. However,
the “center points” of bubbles belong by definition to the 0-skeleton G of R. This
will not pose any serious difficulty since any point of R is at most a unit distance
from G.

Proposition 54. Let (R, p) = R2(G,d) be a Rips complex associated to G. Any
p-bounded subset is contained in the bubble B (e, D) for all D sufficiently large.

Proof. Let F C Rbea p-bounded subset. Let V' be the union of all vertices belonging
to simplices of R which intersect F' non-trivially. Then V is bounded as well and
in particular V' C B,(e, N) C R for some N > 0 sufficiently large. Regarded as a
subset of G, this implies V C Bg(e,cN). We obtain FF C §(V) C B(e, D) for all
D >c¢N. U

Essentially, Proposition 5.4 follows immediately from the fact that (G, d) and
(R, p) are quasi-isometric.

5.2. The nerve of a deformation.

Definition 5.5. Let A C I" be any subset, U C R anopensetand r € R(I', G). The
nerve N(A, U, r) consists of all subsets A C A such that (), 4 7(0)U is non-empty.

Forexample, the condition {o1,0,} € N(A, U, r)impliesthatr(o1)u; = r(o2)u;
with u; and u, ranging over certain non-empty open subsets of U.

Proposition 5.6. Let A C I' be any finite subset and U = B(g, D) C R a bubble
at a vertex § € G = Rqg). Then, denoting U' = B(g, D — ) the equality

N(A,U,rg) = N(A,U ', rg) = N(A, U, r)
holds for every r € R sufficiently close to ro and o > 0 sufficiently small.

Proof. By definition A = {§1,...,8m} € N(A,U,r) if and only if the bubbles
r(61)U,...,r(8y)U intersect non-trivially. By Items (3) and (6) of Proposition 5.3
this happens if and only if there exists g4 € G that satisfies

d(r(8)g,ga) < D, V§eA.

Since the pseudo-metric d is continuous and A is finite, for r sufficiently close to ry
and « sufficiently small the conditions

N(A,U,r()) = N(A,U,,I’()) C N(A,U’,r)

are satisfied. Note that N(A,U,rg) D N(A,U’, ry) follows trivially from the
definitions.

To obtain the opposite inclusion, first choose o > 0 sufficiently small as required
above. Itis then clear from Item (5) of Proposition 5.3 that r (§)U" C §U forall§ € A
and r sufficiently close to ry. In particular N(A, U, rg) D N(A,U’, r) and equality
holds throughout. 0
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We remark that for our purposes it will only be relevant to consider elements of
the nerve of size at most three.

Remark 5.7. In general, let G be a group acting by homeomorphisms on a connected
path-connected space X and admitting an open path-connected subset U C G with
GU = X. Then one can derive a presentation for G from knowledge of the nerve
N(G,U). For details see [31] or [11, [.8.10].

5.3. The space Y. Consider the action of I' on the Rips complex R. By Prop-
osition 3.2 and the remark following Theorem 3.13 this action is geometric, and in
particular cobounded. By Proposition 5.4 there is some D > 0 such that 'U = R
where U is the bubble

UV =Ble D)

and e € G is regarded as a vertex of R. The bubble U is open and connected
according to Proposition 5.3. In addition, denote

S={yel:yUNU#M

so that X is a finite symmetric generating set for I, containing the identity element.

Remark 5.8. Using our notation for nerves, ¥ can be defined alternatively as
consisting of those o € I" such that {1,0} € N(I", U, ry).

Construction of Y as a quotient space. Consider the space I" x U with the product
topology, I" being discrete. We introduce a certain equivalence relation &, on I' x U

Definition 5.9. &, is the equivalence relation generated by

(y.u) ~g, (¥, u)

if Y = yo forsome o € X and r(y)u = r(y)u'.
We emphasize that the element o in the above definition must belong to .

Definition 5.10. Let Y be the quotient space (I' x U)/&,. Let [y, u] € Y denote the
&,-class of the point (y, u). For asubset V C U let [y, V] = {[y,v] :v € V}.
The map
fTxU —R, (yu)r(yu

factors through a well-defined map
f:Y - R.

Note that the space Y, as well as the map [, implicitly depend on the choice of r € R,
that has not yet been specified but should be thought of as close to ry.

The following propositions establish several useful properties of the space ¥ and
the map /:Y — R.
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Proposition 5.11. The space Y is connected, assuming that r € R is sufficiently
close to ry.

Proof. Since U is path-connected so is [y, U] forevery y € I'; see Proposition 5.3(2).
For r = ry the proposition follows from the definition of X and the fact that I' = (X).
The same argument shows that Y is connected as long as r is sufficiently close to rg
so that Proposition 5.6 applies with the data A = ¥ and U. ]

Proposition 5.12. The &,-quotient map is a local homeomorphism onto Y, and in
particular Y is Hausdorff. The map f is a local homeomorphism, namely [ restricts
to a homeomorphism on [y, U], Vy € I'.

Proof. Let m:I" x U — Y denote the quotient map with respect to &, and denote
f’ = f om. Note that

uy £ ux = [y,uy] # [vuz], VyeTl, Yuju,elU

which implies that the restriction of 7 to each {y} x U is a homeomorphism and
is a local homeomorphism. Similarly, Proposition 5.3(1) shows that [’ is a local
homeomorphism.

The facts that R is Hausdorff and 7 a local homeomorphism imply that Y is
Hausdorff. Since 7 and f’ are both local homeomorphisms and 7 is surjective, it
follows that f is a local homeomorphism as well. O]

Proposition 5.13. The &,.-closure of {¢} x U is contained in £ x U, as long as
r € R is sufficiently close to ry.

Proof. Assume that D > () is a priori chosen so that U’ = 8(xg, D — «) satisfies
R = I'U’, for @ > 0 sufficiently small. Using Proposition 5.6, up to replacing U
by U’ if necessary and without loss of generality, we may assume that N(X2, U, r) =
N(X2, U, ry) for all r sufficiently close to ry. Denote this nerve by N. In particular,
an element y € X2 satisfies {1, y} € N ifand only if y € X.

Consider an &,-equivalent pair of points (e, u), (y,u’) € I’ x U. We claim that
in fact y € 3. By Definition 5.9 we may write y = o1 --- 0, where 0; € X (possibly
with repetitions), and there are points uy,...,u, € U with u, = u’ and

u=r(oy) --r(omuy, forl <m <n.

We use induction to show that o7 ---0,, € X, for 1 < m < n. The base case
m = 1 is clear. Next assume that o = o ---0m—1 € 2. Since

uelUnr(ogom_1)r(om) =U Nr(o)r(o,)U

this intersection is non-empty. Namely {1, 00,,} € N and by the above oo, € X.
The last induction step m = n shows that y € ¥ as required. ]
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The action of I' on Y. I has a natural action on I' x U, which descends to a
["-action on Y by homeomorphisms. Note that f is ['-equivariant with respect to
this action on Y and the action via r on X, namely

Syl ul) =r(wryu =r(yyu, Yuel, y.y' el.

5.4. f isacoveringmap. We have constructed a local homeomorphism f:Y — R,
depending on r € R. The Rips complex R is a length space by Theorem 3.13 and Y
is Hausdorff by Proposition 5.12. Therefore we may use f to induce a length metric
on Y. Let p be the pullback length metric on Y induced by f:Y — (R, p).

This makes f alocal isometry according to Proposition 3.17. However, we would
like to apply the additional clause of that proposition to deduce that f is actually
an s-local isometry for some s > 0. Towards this aim we make the following key
observation, which is somewhat reminiscent of the existence of a Lebesgue number!?.

Lemma 5.14. Consider R = R%2(G, d) and r € R sufficiently close to ry. For every
L > 0 a radius D = D(L) > 0 may be chosen sufficiently large, so that for any
vertex x € [(Y)N G C Ry the inclusions

B(x.L)yc f([y.U]) c f(Y)CR

hold for some y € I'.
Here D is taken to be radius of the bubble U = B(e, D) used in Definition 5.10
to construct the space Y. In particular, the choice of the generating set ¥ depends

on D. Itis understood that in our discussion we first specify L and then U and X are
chosen accordingly.

Proof. Let L > 0 be arbitrary and choose D = D(L) sufficiently large so that
U = B8(e,D—-L—n)

satisfies R = ["'U’ for some n > 0. Say x € r(y)U = f([y.U]) € f(Y) with
y € I'. As f is ['-equivariant, we may assume by applying y ! that x € U and it
then suffices to show that B(x, L) C r(o)U for some o € X.

By the assumption on U’ we know that x € yU’ for some y € I'. So
xeUNyU" CcUnNyU which implies y = ¢ € X. Applying Proposition 5.3
we obtain

B(x,L) CoB(e,D —n) = !B(rg(o), D —n).

If r is sufficiently close to rg sothat d(o, r(0)) < nforallg € X the above conclusion
can be modified to read

B(x.L)C B(r(0), D) =r(o)U = f([o.U]) C f(Y¥)

as required. ]

10Unlike the classical Lebesgue number, no compactness argument is used in Lemma 5.14.
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Corollary 5.15. Assume that R = R2(G,d) and U = B(e, D) for ¢,D > 0
sufficiently large, and that r is sufficiently close to ro in R(I',G). Then [ is a
homeomorphism.

Proof. Fix a “Lebesgue constant” L > ¢ and choose D > 0 as provided by
Lemma 5.14. This in turn determines the bubble U = B(e, D) and the generating
set X C I'.

It has already been established that f:Y — R is a local isometry. Lemma 5.14
provides the additional assumption needed in Proposition 3.17 to deduce that f is an
s-local isometry for some s > (0. Lemma 3.16 shows that f is a covering map.

With Y being connected by Proposition 5.11 and R being connected and simply-
connected the fact that f is a homeomorphism follows!!. We assume throughout
that r is sufficiently close to rq as required. ]

5.5. A geometric action of I' on Y. We have established that /:Y — Ris a
["-equivariant homeomorphism. According to Proposition 3.18 the map f is in fact
an isometry. In other words, (Y, p) is simply an isometric copy of the Rips complex
with an action of I" via the representation r.

Proposition 5.16. I' is acting on (Y, p) geometrically.

Proof. The actionis clearly by isometries. Moreover, as ¥ = ["[e, U] it is cobounded.
As T is discrete the action is locally bounded.

It remains to verify that the action of I' is metrically proper. Let dx. be the word
metric on I'. It suffices to show that dx(y,, e) — oo implies p ([va, €], [e, ¢]) — o0,
with e being regarded both as an element of I" and as a vertex in the 0-skeleton of
U C R. Let y € I" be an arbitrary element and consider the two points

Ye =le.e], yy, =1[y.€]

of Y. According to Proposition 3.14 there is a path p: [0, 1] — Y with

p(0) = ye, p(1) = yy, of length [(p) <2 p(ye, yy)

so that the image of p lies in the 1-skeleton Y y).
We claim that

I(p) = ds(y.e) —2

recalling that the length /(p) equals the number of edges along p. To prove this
claim let vg, vy, ..., v(p) denote the vertices of Y(q) that appear along the path p.
For each 0 < m < [(p) choose &,, € I' as provided by Lemma 5.14 so that
B(Vm, L) C [6m,U]. Since d(vm—1,vm) < ¢ and L was chosen so that . > ¢, this
implies v, € B(vy—1, L) forall 1 <m < [(p). In particular, by Proposition 5.13

1t is for this argument that we crucially rely on G being compactly presented.
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and assuming r is sufficiently close to ro we see that §,, € §,—1 X for 1 <m < I(p).
But the same reasoning shows 8o € X and y € §,, ¥ and the required estimate on /(p)
follows.

Putting together this claim and the lower bound on p(ye, y,) in terms of /(p) we
conclude that the action of I" on (Y, p) is indeed metrically proper. ]

Proposition 5.17. I" is acting on (Y, p) faithfully.

Proof. Given an element y € I" and a point [y’, x] € Y forsome ¢’ € I'and x € B,
recall that y [y’, x] = [yy’, x]. Therefore an element y which is not in X certainly
acts non-trivially by Proposition 5.13. Consider the remaining case of an element
y =0 € X. Then

ole,e] =le,e] & r(o)=c¢

and so o is acting non-trivially on Y as long as r(0) # ¢ € G. ]

As is commonly the case throughout this section, we implicitly assume in both
propositions that r: I — G is sufficiently close to ry.

5.6. Proof assuming compact presentation. Putting together the results of this
section we complete the proof of Theorem 1.1 in the compactly presented case,
showing that a small deformation r of I" is injective, discrete and uniform.

Proof of Theorem 1.1 assuming G is compactly presented. Recall the notations in-
troduced in the beginning of this section. In particular, fix L > ¢ arbitrary and let
D = D(L) be as required for Lemma 5.14 to hold. Consider the bubble

U=®8(,D)CR

sothat R = I'U. Let £ C I" be the finite generating set corresponding to U.

We are now in a situation to construct the space Y and the map f:Y — R
depending on r, as in §5.3. Corollary 5.15 and Proposition 3.18 imply that f
is a ['-equivariant isometry with I' acting on R via r. It was established in
Propositions 5.16 and 5.17 that the ["-action on Y equipped with the induced length
metric is geometric and faithful.

We conclude that r:I" — r(I') is an isomorphism. Therefore the subgroup
r(I') < G considered abstractly with the discrete topology is acting geometrically
on R. In particular r(T") is in fact a uniform lattice in G according to Lemma 3.3. [l

We extract from the above proof two corollaries that will become useful in the
study of Chabauty local rigidity in §7. As before, let I" be a uniform lattice in the
compactly presented group G.

Corollary 5.18. There is a compact subset K C G so that r(I')K = G for every
deformation r sufficiently close to the inclusion mapping.
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Proof. The fact that the I'-equivariant map f:Y — X is an isometry implies in
particular that r(I")U = R. We may take K to be the closed ball E(G,d)(e, D), or
equivalently the closure in G of the vertex set of the bubble U = B(e, D). Note
that K is compact since the pseudo-metric d is proper. []

Corollary 5.19. Let Q C G be a compact subset so that T N Q = @. Then
r(I") N Q = @ provided that the deformation r is sufficiently small.

Proof. We proceed as in the above proof of topological local rigidity for the compactly
presented case. Choose the radius D > 0 to be sufficiently large for the purposes of
that proof and so that moreover Q C 8 = B(e, D) where B denotes a bubble at e
of radius D, see Proposition 5.4.

Note that r(y) € Q implies in particular B8 N r(y)B # @. This last condition
implies that y € X for some finite subset 3 of I" and for every sufficiently small
deformation r, see Proposition 5.13. The requirement that r (o) ¢ Q foreveryo € X
is an open neighborhood of the inclusion in R(I", G). O]

6. From compactly presented to compactly generated groups

We now discuss Theorem 1.1 in the general case where I" < G is a uniform lattice
and G is compactly generated. The main idea is to reduce the question back to the
compactly presented situation, using the following result.

Proposition 6.1. Let G be a compactly generated locally compact group. Then
there is a compactl 'y presenteaf locally compact group G admitting a discrete normal
subgroup N < G so that G/N =~ G as topological groups.

Proof. See Proposition 8.A.13 and Corollary 8.A.15 of [18] L]

Consider the compactly presented group G given by Proposition 6.1 and let
p:é—>G, kerp:N<15
be the associated homomorphism and its kernel. For a subgroup H < G denote
H=p Y (H)<G. ~
In this situation we have two representation spaces R = R(I',G) and R =
<G

R(F G) with the points ro € R and 7y € R corresponding to the inclusions I
andT" < G respectively.
Lemma 6.2. If I' < G is a uniform lattice then so is r<gG. Conversely lfl: <G

is a uniform lattice containing N, then I" = p(I") < G is a uniform lattice.

Proof. LetI" < G be a uniform lattice with G = I'K for some compact set K C G.
There is an open set U C G suchthat U N T = {e} and so p “LW)ynT = N. Let
V C G beanopensetsuchthat V NN = {¢} € G. Then TN (p~ 1 (U)N V) = {&}
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and hence I' < G is discrete. Using the fact that G is locally compact and by
Lemma 2.C.9 of |18| there exists a compact subset K ¢ G with p(K =K. It
follows that 'K = G and T is a uniform lattice.

Conversely let N < I' < G be a uniform lattice with G = T'K for K ¢ G
compact. The discreteness of N = ker p implies that p is a local homeomorphism
(see e.g. [37, p.81]). Take U C G open and sufficiently small so that rnu = {e}
and p(U) = U. Since N < I" we also have p(U) N T" = {e}, hence I is discrete.
Since G = I'p(K), I' is a uniform lattice. ]

Definition 6.3. The space R admits a closed subspace RN given by

~

Ry = I'—G:7n) =Tro(n) =n, Yn e N}.
Associated to the quotient map p there is a well-defined map

PiRN = R, par(y)=por(#), Vyerl

where 7 € T in any element satisfying p(7) = y.
Note that clearly 7y € ﬁ,v. The map p. is not injective in general.

Proposition 6.4. The map p.: R N — R is a local homeomorphism.

Proof. Recall that R(I', G) and R may be identified with closed subsets of the two
spaces G' and Gr, respectively, equipped with the product topology. Let y € T" be
any element and 7 € T be such that p(¥) = y. The equation (p«r)(y) = p(r(7))
implies that p is both continuous and open.

Let £ be a finite generating set for Fand U C G a symmetric open identity
neighborhood so thdt U2NN = {e}. For every point ¥ € Ry consider the open
neighborhood 7 € Q@ C ﬂN determined by the condition that 5(0) € r(U)U for
every g € $ and every § € 2. This clearly implies that p, is injective on Q. We
conclude that py is a local homeomorphism. [

Proof of Theorem 1.1 for compactly generated groups. Let G be a compactly gener-
ated group and I' < G a uniform lattice. Let G,p, N be as in Proposition 6.1.
Lemma 6.2 implies that I = p~ (") is a uniform lattice in G.

Let R and R be the associated representation spaces, as in the above discussion.
Applying Theorem 1.1 for compactly presented groups (see §5.6) we deduce the
existence of an open neighborhood 7 € Q C R that satisfies the conclusion of the
theorem for the uniform lattice T’ < G . Next consider the subset

Q=pAQNRy)C R

and it follows from Proposition 6.4 that 2 is an open neighborhood of rg in R.
We claim that Theorem 1.1 holds for I' < G with respect to the neighborhood
Q C R. To see this, consider a representation r € Q2 and let ¥ € Q N Ry be such
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that p.r = r. Then 7 is injective and 7(I') is a uniform lattice in G containing N
and satisfying ' =~ 7(T"). From Lemma 6.2 it follows that r(I") = p(F(T)) is a
uniform lattice in G. The injectivity of 7 and the fact that 7(n) = n for all elements
neN<T implies that r is injective as well. L]

7. Chabauty local rigidity

We study uniform lattices regarded as points in the Chabauty space, establishing
Chabauty local rigidity and the open conjugacy class property. Recall the image
closure map associated to a uniform lattice I" in a topological group G, namely

C:R(I',G) = Sub(G), R, G)>r r(') e Sub(G)

Our current goal is the following result.

Theorem 7.1. Let G be a topological group without non-trivial compact normal
subgroups. Let I be a uniform lattice in G and rg € R(I", G) the inclusion mapping.

(1) If G is compactly generated then I has a Chabauty neighborhood consisting of
uniform lattices.

(2) If G is compactly presented then C is a local homeomorphism at ro and I has a
Chabauty neighborhood consisting of isomorphic uniform lattices.

Theorem 1.3 of the introduction is essentially a restatement of Theorem 7.1.

7.1. The map C is continuous for compactly generated groups.

Proposition 7.2. Let I be a uniform lattice in the compactly generated group G
and rg the inclusion mapping. Then C is continuous at ry.

In proving the above proposition we may assume without loss of generality that G
is compactly presented. To see this, let G bea compactly presented group admitting
a quotient map p: G — G with discrete kernel N = ker p, as in Proposition 6.1.
Consider the commutative square

Ry —E— suby ()

”*l I

R(T,G) —S— Sub(G).

The representation space Ry and the map ps along the left vertical arrow are
described in Definition 6.3. Here Suby (é) is the space of closed subgroups of G
containing N and the map p. from that space to Sub (G) is the projection modulo N.
The map px«: R N — R is alocal homeomorphism by Proposition 6.4. Now observe
that the continuity of C follows from that of the map C.
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Proof of Proposition 7.2. Recall the sub-basis sets generating the Chabauty topology
given in Definition 2.7. It suffices to verify that the preimage under C of every such
sub-basis set containing I" contains a neighbourhood of r¢. This is straightforward
for sets of the form C™! (91(U)) with U being open in G. For sets of the form
C~! (0,(K)) with K being a compact subset of G we rely on Corollary 5.19. L1

7.2. A Chabauty neighborhood consisting of discrete subgroups. As a prelim-
inary step towards proving Theorem 7.1 we study Chabauty neighborhoods of uniform
lattices in topological groups without non-trivial compact normal subgroups. The
main result is Proposition 7.4 below.

Lemma7.3. Let G be alocally compact group and T < G adiscrete subgroup. Let U
be a symmetric relatively compact identity neighborhood in G with ' N U = {e}.
Then every Chabauty neighborhood Q2 of I has a Chabauty sub-neighborhood Q2y
with I' € Qu C 2 such that every closed subgroup H € Sy satisfies

(1) H NU isasubgroup of G, and

(2) There is a closed subgroup 1. < H so that L. € Q and L. normalizes H N U.

Proof. We may assume, up to passing to a smaller neighborhood €2 if needed, that
there are open relatively compact subsets V;,...,V, C G and a compact subset
K C G sothat

Q= () 01() N O2(K)
i=1

in terms of the notations of Definition 2.7. Let
n
V = ﬂ ﬂ Uv
i=1vey;

so that V is an identity neighbourhood in G by [34, Theorem 2.4]. In addition let W
be an open symmetric identity neighbourhood satisfying W2 c U N V.
Consider the Chabauty neighborhood €27, given by

Qu = QN OU \ W).

Let H € Qg be any closed subgroup of G. Observe that the facts H NW = HNU,
W2 c U and W = W taken together imply that the intersection H N U is a
subgroup, establishing (1). Choose elements h; € H NV, foreveryi =1,...,n. It
remains to show that the closed subgroup L = {hy,...,h,) < H satisfies (2), that
is L normalizes H{ N U. Note that

(HNUWi = HNVYi =HnVH cHNU

and so H NU isindeed normalized by {h, ..., h,) and hence by L, as required. [J
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Proposition 7.4. Let G be a compactly generated group without non-trivial compact
normal subgroup. Let I be a uniform lattice in G satisfying I' N U = {e} for some
relatively compact symmetric open identity neighborhood U in G. Then I" admits a
Chabauty neighborhood consisting of uniform lattices A with A N U = {e}.

Proof. The uniform lattice I" admits a Chabauty neighborhood €2 consisting of
cocompact subgroups according to Proposition 3.6. Let U be a relatively compact
symmetric open identity neighborhood in G so that ' N U = {e}. Relying on
Lemma 7.3 we find a smaller Chabauty neighborhood Q¢ of I with Q¢ C €2 and
satistying Conditions (1) and (2) of Lemma 7.3.

Let H be any closed subgroup in Q. Since 2 C Sy it follows that f is
cocompact in G. It remains to show that the intersection V' = H N U is the trivial
subgroup. Note that V' is a compact subgroup of G. Moreover there is a closed
subgroup L. < H so that L normalizes V' and so that L is cocompact in G.

Let v € V be an arbitrary element. Since V is normalized by L the set vt =
{v! : 1 € LYisrelatively compact. Additionally since L is cocompact in G it follows
that the entire conjugacy class ve = {v€ : g € G} of v is relatively compact. Let J
be the closed subgroup of G generated by vC. In particular J in normal in G and
it admits a dense subset consisting of elements with a relatively compact conjugacy
class in G. Observe that J is compactly generated since the compact set vC generates
a dense subgroup of J.

It follows from |28, Lemma 7] and [42] that J admits a unique largest compact
subgroup K <1 J and that J/K is abelian without non-trivial compact subgroups.
This implies that K is characteristic in J and therefore K <1 G. By the assumption K
is trivial and J is abelian without non-trivial compact subgroups. Recall that
v €V NJ and therefore v generates a compact subgroup of J. However by the
above the element v must be trivial. We conclude that V= H NU = {e} as
required. []

7.3. Proof of Theorem 7.1. Let G be a compactly generated group without non-
trivial compact normal subgroups and I' < G a uniform lattice. It follows from
Proposition 7.4 that I" admits a Chabauty neighborhood €2 consisting of uniform
lattices A satisfying A N U = {e} for some relatively compact symmetric open
identity neighborhood U in G. This completes the first part of Theorem 7.1.

Assume that G is moreover compactly presented. Recall that the continuity of C
at ro was given in Proposition 7.2 above. It remains to verify that C is open at rg. In
other words, we would like to show that every H € €2 is actually equal to the image
of some small deformation of I". It would then follows from Theorem 1.1 that I"
admits a Chabauty neighborhood consisting of isomorphic uniform lattices.

The map Cisopen at the point rg. Werely onthe factthat I is finitely presented [ 18,
1.D.4]. Let X be a finite generating set for I" and let V' be an identity neighborhood



812 T. Gelander and A. Levit CMH

in G. Up do passing to a smaller Chabauty neighborhood €2, we may choose elements
hs € H N Vo for every o € 2. We propose to construct a map rg: " — H by
defining it on generators'2, declaring rg (0) = h, for all 0 € Z. In order that ry
extends to a well-defined homomorphism, it must send all the relations of I" to the
identity. Since I' is finitely presented, and in view of the fact that H N U = {e},
the map rg is indeed well-defined provided that the neighborhood V' is sufficiently
small. Therefore ry(I") < H and it remains to show that rgy (I") is equal to H,
possibly up to passing once more to a smaller Chabauty neighborhood.

There is a symmetric compact subset K C G so that rg(I')K = G for every
closed subgroup H in £ provided that the neighborhood V is sufficiently small, see
Corollary 5.18. In particular every element h € H can be written as & = rg (y)kp
for some elements y € " and k;, € K N H. The equality rg (I') = H will follow
as soon as we show that H N K C ry(I") whenever rg is a sufficiently small
deformation.

Let W be a symmetric open identity neighborhood satisfying W? C U. Let A
be the finite collection of all elements § € I" such that K N W§ # @. Consider the
compact subset 0 = K \ WA. Every closed subgroup H of G belonging to the
Chabauty neighborhood €2

Q =Qn () O1(W8)NO2(Q) C Sub(G)
SeA

intersects each translate W § exactly once. Such a subgroup /1 therefore satisfies

HNKCHNWACry(l)

and in particular ry (I") = H by the above discussion. This completes the proof of
the fact that C is open at r( as well as of Theorem 7.1. ]

8. Local rigidity of CAT(0) groups

We turn to the question of local rigidity for uniform lattices in the isometry groups
of CAT(0) spaces. Our goal is to prove Theorem 1.2 of the introduction.

In this section we rely to a large extent on the work of Caprace and Monod
concerning the structure theory and discrete subgroups of isometry groups of CAT(0)
spaces [15, 16]. For additional general information concerning these spaces we refer
the reader to the books |11] and [36].

8.1. CAT(0) groups. We now collect several relevant facts about CAT(0) spaces
and their lattices to be used below. These are recalled for the reader’s convenience.

12The notation r g is a slight abuse of notation, since the map r g depends not only on the group H
but also on the choices of the elements A .
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Let X be a proper CAT(0) space with a cocompact isometry group Isom(X).
Then Isom(X) is locally compact, second countable and is acting on X geometrically.
Moreover as X is geodesic and simply-connected Isom(X) is compactly presented;
see 5.B.5, 5.B.10, 6.A.10 and 8.A.8 of [18].

Definition 8.1. A CAT(0) lartice is a lattice in Isom(X). A uniform CAT(0) lattice
is called a CAT(0) group.

The mere fact that the space X admits a CAT(0) group already has some
significant implications. Assume that X is proper and geodesically complete, that
is every geodesic segment can be extended to a bi-infinite geodesic line, and that
G < Isom(X) is a closed subgroup acting cocompactly and admitting a uniform
lattice I" < G. Assume moreover that X has no Euclidean factors. Then:

— The boundary dX has finite geometric dimension ([27, Theorem C]).

— T is acting minimally and without a fixed point in dX (geometric Borel density
[16, Theorem 3.14]). In particular, G acts minimally and admits no fixed point at
infinity as well.

— The centralizer of a lattice in Isom(X) is trivial [16, 2.7].

8.2. Irreducibility and splitting. We recall two notions of irreducibility developed
in Section 4 of [ 16]. In particular, we show thata CAT(0)-group virtually decomposes
into a product of abstractly irreducible groups.
Definition 8.2. A discrete group is abstractly irreducible if no finite index subgroup
splits nontrivially as a direct product.
Definition 8.3. A lattice I’ < G| x --- x G, in a product of locally compact groups
is irreducible if its projection to every proper subproduct of the G;’s is dense and
each G; is non-discrete.
In this terminology, an abstractly irreducible CAT(0) lattice becomes an
irreducible lattice in the product of the closures of its projections ([16, Remark 4.1]).
In the case of a uniform lattice I' < G such that G is a cocompact subgroup of
Isom(X) and X a proper CAT(0) space, these two notions of irreducibility turn out
to be related. Namely, I' is abstractly irreducible if and only if for every finite index
subgroup I'" < I" and a decomposition X = X; X X», the projections of I'” to both
Isom(X;) are non-discrete (see Theorem 4.2 of [16]).
Remark 8.4. As abstract irreducibility is an algebraic condition, it follows from
Theorem 1.1 that in the setting of the previous paragraph the property of having
non-discrete projections is stable under small deformations.

Lemma 8.5. Let X be a proper CAT(0) space without Euclidean factors with
Isom(X) acting cocompactly and I' < G a uniform lattice. Then there is a finite
index normal subgroup I'" <1 I and product decompositions

=Ty xeeone T, X=X %% Xg,

such that the T'; < Isom(X;) are abstractly irreducible uniform lattices.
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We provide a proof for this lemma as we could not find one in the literature.

Proof of Lemma 8.5. Note thatevery finite index subgroup I'g of I is auniform lattice
and so acts minimally and without a fixed point at infinity ([16, Theorem 3.14]). By
the splitting theorem (see Theorem 9, and in particular Corollary 10, in [33]) every
direct product decomposition of such a I'y into finitely many factors gives rise to an
associated product decomposition of X with the same number of factors.

However, there is an a priori canonical maximal isometric splitting of the space X
into a product of finitely many irreducible spaces (see Theorem 1.9 of [15]). Therefore
the process of passing to a further finite index subgroup of I" and writing an abstractly
reducible group as a direct product must terminate after finitely many iterations. This
gives a finite index subgroup I'" < I' that decomposes as the direct product of k
abstractly irreducible factors I';. The associated decomposition of X is obtained as
above, and it is clear that every I'; is a uniform lattice in Isom(Xj;).

It remains to show that I’ can be taken to be normal in I". Indeed I" preserves the
decomposition of X upon possibly permuting isometric factors, as do all elements
of Isom(X). Therefore every conjugate (I'')” with y € ' decomposes as a direct
product in a manner similar to I'’. The intersection of such conjugates with y running
over finitely many coset representatives for I'/ I is as required. []

8.3. Totally disconnected isometry groups. We first deal with the special case of
Theorem 1.2 where G is totally disconnected. This relies on the results of §4 and in
particular Theorem 4.2.

Theorem 8.6. Let X be a proper geodesically complete CAT(0) space with G <
Isom(X) totally disconnected and acting cocompactly. Then uniform lattices in G
are locally rigid in Isom(X).

Namely, a small deformation within G of a uniform lattice I' < G is a conjugation
by an element of Isom(X).

Proof. According to Theorem 6.1 of [15] and as G is totally disconnected, G is
acting on X smoothly in the sense of Definition 4.1. As X is proper and G is acting
cocompactly by the assumptions, Theorem 4.2 applies in the present situation and
uniform lattices are indeed locally rigid in Isom(X). ]

8.4. Proof of Theorem 1.2. We proceed to establish the local rigidity of lattices
in proper geodesically complete CAT(0) spaces without Euclidean factors. The
proof will rely on the following important result, established by Caprace and Monod.
Namely, the CAT(0) space X admits a splitting

X =M xY,
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where M is a symmetric space of non-compact type. Correspondingly, Isom(X') has
a finite index open characteristic subgroup Isom(X)* that decomposes as

Isom(X)* = G, x Gy, G =Isom(M), Gy = Isom(Y)

where G is a product of almost-connected non-compact center-free simple Lie groups
and Gy is totally disconnected. See Theorems 1.1, 1.6, 1.8 of [15].

Proof of Theorem 1.2. In light of Lemma 2.6 it suffices therefore to prove that I
admits a locally rigid normal subgroup of finite index.

Let I' < Isom(X) be a uniform lattice. Up to passing to a finite index normal
subgroup and relying on Lemma 8.5 we obtain a splitting of I" as a direct product of
abstractly irreducible subgroups and an associated splitting of X . Treating each factor
of X separately and without loss of generality we may assume that I' is abstractly
irreducible to begin with.

Recall the decomposition Isom(X)* = G. x G mentioned above. Up to passing
to a further finite index normal subgroup of I' we may assume, to begin with,
that I' < G? x Gy where G denotes the connected component of the identity of G..

We treat separately three possible cases. If G is trivial the conclusion follows
from Theorem 8.6. On the other hand, if Gy is trivial we may apply the classical result
of Weil. Namely, it is shown in [47] that uniform lattices in connected semisimple
Lie groups without compact factors are locally rigid, provided that the projection to
every factor locally isomorphic to SL;(R) is non-discrete. This additional condition
is ensured by our assumptions.

It remains to deal with the third case where both factors G., G are non-trivial
and I' is abstractly irreducible. We will rely on the superrigidity theorem of
Monod [33] for irreducible uniform lattices in products of locally compact groups.
See Theorem 8.4 of [15] for a variant of that theorem adapted to our situation (we also
refer to [24] for more general results).

Consider any simple factor S of GJ. As I' is abstractly irreducible the projection
of I' to § is non-discrete. It follows from the Borel density theorem (see e.g. Chapter 5
of [38]) that this projection is in fact dense. Similarly, I projects non-discretely to
every factor of G corresponding to an irreducible factor of Y. Let D < Gy denote
the product of the closures of these projections. It follows that I' is an irreducible
uniform lattice in G x D. Moreover as I' < Isom(X) is uniform the subgroup D is
acting cocompactly on Y.

Let r € R(I",Isom(X)) be a sufficiently small deformation of I" so that r(I") is
a uniform lattice in Isom(X), as guaranteed by Theorem 1.1. The action of r(I")
on X is minimal and without fixed points at infinity, as follows from the results of
Caprace and Monod discussed in §8.1. In particular, for every simple factor S of G
the action of I' on the corresponding irreducible symmetric space Mg given by the
projection of r(I') into S is clearly minimal and fixes no point of dMg.
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Regarding I' as an irreducible lattice in G x D we are now precisely in a situation
to apply Theorem 8.4 of [15], for every simple subgroup S of G and with respect
to the given action of I' on Mg. Therefore this I'-action extends to a continuous
G? x D-action by isometries. In other words there is a continuous homomorphism
a:S — Isom(Mg)° = S such that

ngor =aomg € R(I',S5),

where wg: GJ x D — § is the projection. Since § is simple and « is a Lie group
homomorphism with a dense image, it must be an automorphism of S relying on [35]
or [6, Corollary 1.4]. According to Lemma 8.8 below, if r is a sufficiently small
deformation @ must be inner.

We have showed that up to conjugation by an element of G? a sufficiently small
deformation of I' may be assumed to be trivial on the G? factor. The result now
follows from Theorem 4.5 applied to the isometry group Isom(X)* = G, x Gy. [

Remark 8.7. Assume that the space X is reducible and that the lattice I" is abstractly
irreducible. Let G < Isom(X) denote the product of the closures of the projections
of I" to the different factors of Isom(X). Therefore I" can be regarded as an irreducible
lattice in G. In this situation Theorem 1.2 holds in a slightly stronger sense. Indeed,
relying on Proposition 2.5 we deduce that I" regarded as a lattice in G is locally rigid
in NIS()m(X)(G)'

The following result concerning automorphisms of simple Lie groups was used
in the proof of Theorem 1.2 to show that a certain automorphism of a Lie group is
inner.

Lemma 8.8. Let S be a connected center-free simple Lie group and X < S be a
finite set generating a dense subgroup. There is an identity neighborhood U C S
such that if T is an automorphism of S satisfying T(c)o™' € U forall o0 € %,
then T is inner.

Proof. Recall that Aut(S)° = Inn(S) = Ad(S) = S and that Aut(S) is canonically
isomorphic to Aut(Lie(S)). Moreover, the analog statement for the Lie algebra,
obtained by replacing ¥ with a spanning set of Lie(S') and U with a neighborhood ot 0
in the vector space Lie(S), is obvious by the definition of the topology of Aut(Lie(S)),
since Aut(Lie(S)) is a Lie group and Aut(Lie(.S))° is open subgroup. Now since (%)
is dense in S, we can find d = dim(S) words Wi,..., W; in the generators X
which fall sufficiently close to the identity element so that log(W;), i = 1,....,d
are well defined, and such that log(W;), i = 1,...,d span Lie(S). This implies the
lemma. L]

8.5. Chabauty local rigidity for CAT(0) groups. Let X be a proper geodesically
complete CAT(0) space with a cocompact group of isometries Isom(X ). The group
Isom(X) is compactly presented, as was mentioned in §8.1 above. Moreover any
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compact normal subgroup N <1 Isom(X) is trivial. Indeed, the subspace XV of
N -fixed points is Isom( X )-invariant, convex and non-empty. This discussion shows
that Corollary 1.4 immediately follows from Theorem 1.3.

The following statement is a direct consequence of local rigidity for CAT(0)
groups as in Theorem 1.2 and of Chabauty local rigidity as in Theorem 7.1.
Corollary 8.9. Let X be a proper geodesically complete CAT(0) space without
Euclidean factors and with Isom(X') acting cocompactly. Let I' < Isom(X) be a
uniform lattice and assume that for every de Rham factor Y of X isometric to the
hyperbolic plane the projection of T' to Isom(Y) is non-discrete. Then I' has the
open conjugacy class property.

Proof. The image closure map C: R(I",Isom(X)) — Sub (Isom(X)) is a local
homeomorphism at the point ry € R(I",Isom(X)) corresponding to the inclusion
mapping ro: [' < Isom(X). Theorem 1.2 provides us with an open neighborhood €2
of rg in R(I", Isom( X)) so that for every r € €2 the subgroup r(I') is conjugate to I"
in G. Therefore the Chabauty neighborhood C(£2) of T" consists of conjugates. [

9. First Wang’s finiteness — lattices containing a given lattice

In this section we prove Theorem 1.8 which is a finiteness result for the number
of lattices that contain a given lattice. This is a generalization of a theorem of
H.C. Wang [43], and the proof that we give is inspired by Wang’s original proof; see
also Chapter 9 of [38].

Definition 9.1. Let G be a locally compact group. A family of lattices in G is jointly
discrete'? if there is an identity neighborhood U C G such that ' N U = {e} for
every lattice I' in that family.

Recall the notion of property (KM) defined in the introduction. The following
lemma relates this property to joint discreteness.

Lemma 9.2. Let G be group and ¥ a family of lattices in G with property (KM). If
F has a least element then it is jointly discrete.

Proof. Let U C G be an open neighborhood as in Definition 1.7 and I' < G be a
least element of . Since I is of co-finite volume, the set

(gl eG/T:gTlg ' NU = {e}}

is relatively compact and nonempty. Thus, we can construct a Borel fundamental
domain P for I' in G such that

Dy:={gecD:glg™ ' NU = {e}}

is relatively compact.

13In the older literature such a family is called uniformly discrete. However, in the more recent literature,
the notion of uniform discreteness is often used for the stronger property given in Definition 1.5.
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Let I < G be any lattice in the family ¥, so that " < TV, Then I'" admits a
fundamental domain £’ which is contained in £. Because of property (KM), there
isanelement g € D’ suchthat gTg 'NU = {e}. AsT" < I we have that g € Dy .
Finally since G is locally compact and Dy is relatively compact

Ur = ﬂ g_lUg
gEeDY

is a neighborhood of the identity in G; see e.g. |34, Theorem 2.4]. By construction
the neighborhood UF intersects trivially every lattice from the family . ]

Theorem 1.8 is a consequence of Lemma 9.2 and the following result, which is
of independent interest.

Theorem 9.3. Let G be a compactly generated locally compact group. Assume that
every lattice in G has a trivial centralizer and let I' < G be a finitely generated
lattice. Then every jointly discrete family of lattices in G all containing 1" is finite.

In the proof we rely on the notion of Chabauty topology as well as the Mahler—
Chabauty compactness criterion, see §7. The discussion of these notions in [38,
Chapter 1] required separability, but that assumption is in fact redundant.

Proof of Theorem 9.3. Observe that the co-volume of the lattices I with " < TV < G
and I'" N U = {e} is bounded from below, and since

co-vol(I") = [I" : T'] - co-vol(I"'),

the index [I"" : I'] is bounded from above. We may therefore restrict our attention to
lattices I as above with [I" : '] = d, where d € N is fixed. Assume that there
exists a sequence 1", of pairwise distinct lattices such that

r<r,<G, [[,:T=d, and T,NU = el

We will arrive at a contradiction by showing that I',, has an infinite repetition.
Consider the actions of T, on the finite sets I',/I" given by the natural
homomorphisms ¢,: I, — Sym([",,/I') = Sy for every n € N. Denote

[, =kerg, <t Ty

so that T~
"< and [[:0]=-"12<(d-1)!
= M) = 1 =@ =
Note that since I' is finitely generated it has finitely many subgroups of every
given finite index. We now consider the group A < [" given by

A=(\T,
n
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and deduce from the above discussion that A is a finite index subgroup of I'. In
particular A is finitely generated as well. In addition, for every pair of elements
o € A and 8, € I',, we have that

§p08 €6, A8 < 8,08V =T/ <T.
n n n-n n

We now apply the Mahler—Chabauty compactness criterion. Namely, from the
assumption I', N U = {e} it follows that some subnet I',, converges in the Chabauty
topology to a discrete subgroup A < G containing I" and such that

co-vol(A) < lim co-vol(I',, ) = d~" . co-vol(I").
o

In particular, it follows that [A : I'] > d. Onthe other hand A is a lattice containing I"
and hence A is finitely generated.

By the definition of Chabauty convergence, for every A € A thereisad,, € [y,
with 8,, — A. We obtain the following expression for every 0 € A

lim 8,068, = AoA™".
o

Since the elements (S'narrb'n"‘} all belong to the discrete group I" this converging net
must eventually stabilize. It other words

6’"&05;; = dor~!

holds for all @ > «,. Applying this argument with o ranging over a finite generating
set for A and in light of the fact that Cg (A) is trivial we see that §,, = A for all «
sufficiently large.

By the above argument, every generator of A belongs to I',, and in particular
A < Ty, for all ¢ sufficiently large. However the fact that [A : '] > [I',, : T']
shows that the net I',, must eventually stabilize, producing the required infinite
repetition. ]

10. Second Wang’s finiteness — lattices of bounded covolume

The classical finiteness theorem of Wang [44] states that a connected semisimple Lie
group without factors locally isomorphic to SL; (R) or SL; (C) admits only finitely
many conjugacy classes of irreducible lattices of volume bounded by v for any v > 0.
Recall Theorem 1.6 of the introduction which is a suitable generalization of
Wang’s finiteness to the CAT(0) context, restated here for the reader’s convenience.

Theorem. Let X be a proper geodesically complete CAT(0) space without Euclidean
factors and with Isom(X) acting cocompactly. Let ¥ be a uniformly discrete family
of lattices in Isom(X) so that every I' € F projects non-discretely to the isometry
group of every hyperbolic plane factor. Then ¥ admits only finitely many conjugacy
classes of lattices with co-vol < v for every fixed v > 0.
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The proof follows rather immediately from a combination of Mahler—Chabauty
compactness criterion and the open conjugacy class property for CAT(0) groups
established in §7.

Proof of Theorem 1.6. Assume without loss of generality that the family ¥ is closed
under conjugation by elements of Isom(X). In particular ¥ is jointly discrete in
the sense of Definition 9.1, so that there is an identity neighborhood U C G with
FNU ={e}foralll" € F.

Congider some fixed v > 0. The Mahler-Chabauty compactness criterion [38,
1.20] says that the set of lattices in Sub (G') of co-volume at most v and intersecting U
only at the identity element is compact. In particular ¥ is relatively compact.

On the other hand, every lattice in the Chabauty closure of ¥ is uniform by
[38, 1.12] and therefore has the open conjugacy class property by Corollary 8.9. The
required finiteness result follows. 0

The following consequence of Theorem 1.6 covers many classical examples:

Corollary 10.1. Let X and Isom(X) be as in Theorem 1.6. Let G < Isom(X) be
a cocompact subgroup and ¥ a uniformly discrete family of lattices in G. Then ¥
admits only finitely many Isom(X)-conjugacy classes of lattices with co-vol < v for
every fixed v > Q.

Since G is cocompact in Isom(X), for a lattice I' < G the covolumes of T’
in G and in Isom(X) are proportional. Therefore to deduce Corollary 10.1 from
Theorem 1.6 it suffices to show that ¥ is uniformly discrete in Isom(X). This
follows from:

Lemma 10.2. Let H be a locally compact group, G < H a cocompact subgroup
and ¥ a family of subgroups which is uniformly discrete in G. Then ¥ is uniformly
discrete regarded as a family of lattices in H.

Proof. Suppose that ¥ is uniformly discrete in G with respect to the open subset
UcCG.SayU =GNV withV C H open. Moreover let K C H be a compact
symmetric subset so that H = GK and choose an open subset W C V' so that
k='Wk C V forevery k € K, using e.g. [34, Theorem 2.4]. Then ¥ is uniformly
discrete in H with respect to W. Indeed, for I' € ¥ and an element h = gk
withh € H, g € G and k € K we have the equation I'* = (I'#)k. ]

10.1. Linear groups over local fields. Corollary 10.1 immediately implies a Wang-
type finiteness result for uniform lattices in simple Chevalley groups over non-
Archimedean local fields. Such groups act on the associated Bruhat—Tits building X
which is a CAT(0) space; see e.g. [11, I1.10.A].

Corollary 10.3. Let G be a k-simple algebraic k-group with rankg (G) > 0 where k
is a non-Archimedean local field. Let X be the Bruhat-Tits building associated
to G. Fix an identity neighborhood U C G and some v > 0. Then there are only
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Jinitely many Isom(X )-conjugacy classes of lattices " in G with co-vol(I") < v and
' NU = {e} forevery g € G.

Remark 10.4. If rank; (G) > 2 then Isom(X) = Aut(G) and the statement of
Corollary 10.3 can be somewhat simplified. See [2, Proposition C.1].

11. Invariant random subgroups

Let G be a locally compact group. It is acting on its space of closed subgroups
Sub (G) by conjugation and this action is continuous.

Definition 11.1. An invariant random subgroup of G is a G-invariant Borel
probability measure on Sub(G). Let IRS(G) denote the space of all invariant
random subgroups of G equipped with the weak-* topology.

The space IRS (G) is compact. For a further discussion of invariant random
subgroups the reader is referred to [1,23].

Let ULat(G) denote the space of all the uniform lattices in G with the induced
topology from Sub (G). There is a natural map

[: ULat(G) — IRS(G), IT') = ur,

where the invariant random subgroup pur € IRS (G) is obtained by pushing forward

the G -invariant probability measure from G/ " to Sub (G) viathemap gT" > glg™!.

Proposition 11.2. If G is compactly generated then the map 1: ULat(G) — IRS(G)
is continuous.

The proof of this proposition depends on showing that the covolume function on
the space ULat(G) is continuous, see Proposition 11.4 below.

Recall that a uniform lattice I" in G is topologically locally rigid. Therefore,
Proposition 7.2 implies that there exists a neighborhood €2 of the inclusion homo-
morphism rq in R(I", G) on which is image closure map C is continuous and takes
values in ULat(G).

Corollary 11.3. Let I" be a uniform lattice in G. If G is compactly generated then
there is a neighborhood 2 C R(T, G) of the inclusion homomorphism ry so that the
composition

) I
Q S ULat(G) = IRS(G)
IS CORtinuous.

Note that local rigidity of I" is equivalent to I o C being locally constant at ry.
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11.1. Co-volumes of lattices. Let G be any locally compact group with a choice u
of a Haar measure. The co-volume function is well-defined on the space ULat(G) of
uniform lattices in G.

Proposition 11.4. If G is compactly generated then the co-volume function is
continuous on ULat(G).

The proof of Proposition 11.4 will rely on the following lemma, which is related
to Serre’s geometric volume formula [8, Chapter 1.5].

Lemma 11.5. Let K C G be a fixed compact set. Given a uniform lattice I" €
ULat(G) let nir: G — G/ T denote the projection and let ur denote the induced
measure on G/ 1". Then the following function

vg:ULat(G) — Rso, vk (') = ur(nr(K)).
iy COntinuous.
Proof. Given a compact subset Q of G, consider the function
np:G x ULat(G) — Nsg, no(x,I')=|{y el :xy € 0}].

Note that ng (-, I') is I'-invariant from the right, and so descends to a well defined
function on G/ T".
In terms of the function n o we obtain the formula:

vo () = ur(er(Q)) = [ L0y () dur ()
G/T

- — (Zﬂg(fy))dur(x)
yel

g/ ho(x,T)
I
_ /G vty 120 )

|
= —d ,
anQ(x,r) )

where X is an arbitrary lift of x.
Let I'y € ULat(G) be some fixed uniform lattice. The following two facts'# are
consequences of the definition of the Chabauty topology:

() limpor,ng(x, ") <ng(x,Ip), forall x € G.

(2) If Q is a compact set containing K in its interior, then

lim no(x,I") > ng(x,T)
'—Ty

forall x € G.

14The convergence I — Ty is understood in the sense of nets. I G is metrizable then it is enough to
consider sequences.
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Since ng(x,I") > 1 for all x € K, it follows from Item (1), the above volume
formula and the dominated convergence theorem that vg (I'g) < limr—r, vk (I').

To obtain the reverse inequality, let ¢ > 0 and pick a compact set Q containing K
in its interior and satisfying (Q \ K) < e. Note that this implies

1
[Q\K —_nQ(x, M dup(x) <€

for all I' € ULat(G). It follows from Item (2) and the volume formula that

| 1
v () = ——du(x) > lim ——du(x).
(o) [KHK(L ) = tim [

Combining these two last inequalities, we get
UK(F()) + € > lim

1
Fﬁr()j; nQ(.X, F)

The continuity of the map vk at the point [y follows by letting ¢ — 0. l

d = i M > li ).
(x) Fgrllovg( )—rl,"%{,“"( )

Proof of Proposition 11.4. Let I' be a uniform lattice in G. Since G is compactly
generated it follows from Proposition 3.6 and Remark 3.7 that there is a Chabauty
neighborhood I' € 2 C ULat(G) and a compact subset K C G so that ') K = G
forevery Iy € Q2. Taking into account Lemma 11.5 and as soon as [’ € Q2 we obtain

co-vol(G/T) = vg(T) = I‘l'imI‘ v () = r‘l'iml‘ co-vol(G/ )

as required. ]

Remark 11.6. If (I'y)y is a net of lattices in G converging in the Chabauty topology
to the lattice I" then

co-vol(G/T") < liminf co-vol(G/Ty).
o

This does not require compact generation or co-compactness [38, 1.1.20]. Proposi-
tion 11.4 can be regarded as a refinement of this fact.

Proof of Proposition 11.2. Let G be acompactly generated groupand I’y € ULat(G)
be a net's of uniform lattices in G indexed by & € A and converging to I € ULat(G).

Let & be a Borel fundamental domain for I' in G. There is an increasing
sequence of compact subsets K,, C D so that the Haar measure of D \ K,, goes
to zero as m — oo. Moreover the argument on p. 28 of [38] shows that every K,
injects into G/ 'y for all « > B = B (m) sufficiently large in A.

15Once more, if G is metrizable we may speak of sequences instead of nets.
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Let ¢ > 0 be arbitrary and take [ = I(g) so that w(D \ K;) < e. Let Dy be
a Borel fundamental domain for I'y in G for every a € A. The subsets 9, can be
chosen in such a way that K; C Dy for all @ > f1(1).

Let p be the Haar measure on G and p, g its restriction to &. Then u,p projects
to the G-invariant probability measure on G/I". Similarly let p|p, denote the
restrictions of pu to O, for @ € A. Write

D = K, T HD\K;» KDy = MK, T DL \K; -

Recall that (D \ K;) < & by the choice of [. In addition, the covolume function is
continuous at the point I' € ULat(G) according to Proposition 11.4 and so

w(Dy) = co-vol(G/ Ty) by co-vol(G/T") = pu(D).

This implies that u(Dy \ K;) < 2¢e forall @ > B, = Ba(e) in A.
Consider the maps ¢, defined for every o € A

0u: Ki = Sub(G), @u(k) = kTok ™.

Since K; is compact, the functions ¢, converge uniformly to the function
¢: K; — Sub (G) where ¢(k) = kT'k™!. In particular

acA
(P )bk, — (@)x K, -

Taking & — 0 in the above argument gives the continuity of I at the point I". (]
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