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Rectifiability and upper Minkowski bounds
for singularities of harmonic Q-valued maps

Camillo De Lellis, Andrea Marchese, Emanuele Spadaro and Daniele Valtorta

Abstract. In this article we prove that the singular set of Dirichlet-minimizing O-valued
functions is countably (m — 2)-rectifiable and we give upper bounds for the (m — 2)-dimensional
Minkowski content of the set of singular points with multiplicity Q.
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1. Introduction

Q-valued functions were introduced by Almgren in [2] in order to model branching
singularities of area minimizing currents in higher codimension. Indeed, it was first
noticed by De Giorgi in his pioneering work [6] that an area minimizing hypersurface
can be very well-approximated by the graph of a harmonic function if it is sufficiently
close (in a weak sense) to a Euclidean plane. In higher codimension, this statement is
not true anymore at points of high multiplicity as it is well known that area minimizing
surfaces can have branching singularities, cf. [8, Section 5.2]. Almgren introduced a
suitable notion of Dirichlet energy for functions taking a fixed number Q of values
in order to approximate efficiently area-minimizing currents in a neighborhood of a
singular point of branching type with multiplicity Q. He then showed that “harmonic”
(namely Dirichlet minimizing) Q-valued maps might be singular but the codimension
of their singular set is at least 2. In turn his monograph [2] used such regularity
property as a starting point to show that the Hausdorff dimension of the singular set
of m-dimensional area-minimizing currents is at most m — 2: in a nutshell Almgren’s
program in [2] is a (fairly complicated) linearization procedure which reduces the
bound on the dimension of the singular set for an area minimizing current to the same
bound for the singular set of harmonic multivalued maps (cf. [7,8] for a more precise
description of Almgren’s program which follows the recent approach of [9-13]).

In this note we establish a more refined regularity property for the singular set
of Dirichlet minimizing Q-valued functions on an m-dimensional domain, showing
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that indeed it is (m — 2)-rectifiable (and hence J™~2 o-finite). The latter property
has already been shown by Krummel and Wickramasekera in [21] when Q = 2 and
the same authors have announced that their proof can be extended to any Q, cf. [20].
Our argument is however different, since it is based on the techniques introduced
recently by Aaron Naber and the fourth author in [24], whereas [21] draws on the
approach of Simon (cf. for instance [25]). Thus a byproduct of our proof is the
additional information that the subset of singular points with highest multiplicity has
locally finite Hausdorff (m — 2)-dimensional measure (indeed it is possible to give
an upper bound for its Minkowski (m — 2)-dimensional content). On the other hand
Krummel and Wickramasekera, adapting the techniques of Simon, obtain different
byproducts, most notably the uniqueness of the tangent functions at ™ 2-a.e. point
and, for 0 = 2 and in the neighborhood of some special singular points, higher
regularity of the singular set, cf. Remark 2.7, [21, Theorem C] and [19]. Of course,
in view of Almgren’s program, rectifiability results might be the starting point for a
refined study of the singular set of area-minimizing currents, possibly leading to a
solution to [1, Problem 5.3].

Aside from applications to minimal currents, this work and the techniques
developed here to study problems with variable homogeneity can be adapted to
different topics in mathematics, see for example the recent works on free boundary
problems [15], liquid crystals [3] and Z /2 harmonic spinors [26]. We also mention
the recent works on the non-continuous singularities for Q-valued harmonic maps
in [18].

Q-valued functions are simply functions taking values in the space of unordered
Q-tuples of points in R”, which is denoted by Ao (R"). Following Almgren’s
convention, we will denote a point 7 € Ag(R") as T" = Zl_l [P:], where [P;]
is the Dirac measure concentrated on P; € R”. This space can be endowed with a
natural distance given by

; (1.1)

d(Th, T7) = (Z{[P]] Z[[S]] = min \/ZP — Sotw)|”

UGJ
pe=] =1

where &g is the group of permutations of Q elements. With this distance, 4o (R")
is a complete metric space. For a domain Q C R™, the Dirichlet energy and the
space W 1-2(Q, Ao (R™)) are defined in [2] following a rather involved, albeit natural,
geometric procedure (cf. |8, Section 7.3]). It has been noticed in [13] that modern
analysis in metric spaces can be used to give an intrinsic simple definition of both
objects. We refer to [2, 13] for a more detailed description of the space of Q-valued
functions and Dirichlet minimizers, here we simply recall that Dirichlet minimizers
are Holder continuous functions with exponent &« = «(m,n, Q).
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A point x € Q is a regular point for a O-valued Dirichlet minimizer u if there
exists a neighborhood B of x and Q harmonic functions u;: B — R" such that for
all y € B:

Q

u(y) =Y [uiI, (1.2)

i=1
and either u;(y) # u;(y) forall y € B, or u; = u . The complement of regular
points are the singular points of u, denoted by %,,. Note that this set is automatically
a closed set. Moreover, the main result regarding (J-valued functions in [2] is that
the Hausdorff dimension of %,, is bounded from above by m — 2. In particular:
Theorem 1.1 ([2], and [13, Proposition 3.22]). If u is a Dirichlet-minimizing
Q-valued function u: Q2 C R" — Ag(R"), then X, is a relatively closed subset
of Q with Hausdorff dimension no larger than m — 2.

An important subset of ¥,, consists of those singular points where all the values
of u(x) coincide, in other words

Ap = {x € T, s.t. u(x) = Q[P] for some P € R"} . (1.3)

By Holder regularity of the functions u, also the set Ag is closed.

The main result of this note is then the following theorem. In the rest of the paper
we will use the notation B, (FE) for the open r-tubular neighborhood of the set £,
namely B,(E) = {p : dist(p, E) <r}.

Theorem 1.2. Letu: 2 € R™ — Ao (R") be a Dirichlet minimizing function. Then
for any compact set K of Q, H™?(Ag N K) < 0o, and indeed we have the stronger
Minkowski-type estimate

|B,(Ag) N K| < C(K,u)r*, Vr<l1, (1.4)
Moreover A g is (m —2)-countably rectifiable, namely it can be covered by countably
many C surfaces of dimension m — 2, except for a set of X™ % measure zero.
As an immediate corollary of the latter statement we obtain:

Theorem 1.3. The singular set ¥, of a Dirichlet minimizer Q-valued function u is
(m — 2)-countably rectifiable.

Acknowledgements. C. D.L. and A. M. were supported by ERC grant “Regularity
of area-minimizing currents” (306247). D. V. has been supported by SNSF grants
200021_159403/1 and PZ0O0P2_168006.

2. Main statements and plan of the paper

2.1. Preliminaries. Before going into details, we want to underline again that for
the reader who is inexperienced with Q-valued functions, a complete and readable
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introduction can be found in [13]. In what follows for the values of the function u we
will use the notation u(x) = Y, [u;(x)] and Du(x) = >_,[Du;(x)]. We refer the
reader to [13] for all the conventions and terminologies.

In this section, we gather some preliminary results that will allow us to reduce our
main theorems to a simpler version. First of all, we show how Theorem 1.3 follows
from Theorem 1.2.

Proof of Theorem 1.3. The proof follows easily from an inductive argument in Q.
Indeed, for Q@ = 1 we clearly have no singular set at all. For Q = 2, the whole
singular set coincides with Ao, and thus this is a corollary of Theorem 1.2. For a
given O > 3 we assume by induction that the statement of the theorem holds for
all 0 < Q*. We fix a Dirichlet minimizing Q*-valued map on some open set £ and
let ¥, = Agx U X, where X/, = %, \ Ag+. Thus X, is a relatively closed subset
of the open set " = Q \ Ag~. In particular, for all x € X/,, we have

o
u(x) =Y [Pi]. 2.1

i=1

where at least one pair { P;, P;} consists of different points. By Holder continuity
of u, there exists a neighborhood B of x and two multiple valued functions u#; and u,
such that u; has Q; values, u; has Q, values, Q; + Q> = 0*01 =1, 01 > 1,
0> > 1and

ulp =ui +us. (2.2)

Moreover, the images of u; and u, are disjoint. Thus 3, N B is contained in the
union of the singular sets of u; and u;, which are (m — 2)-rectifiable by inductive
assumption. By a straightforward covering, this implies that X/, is (m —2)-rectifiable
as well. The rectifiability of £,, follows now from the (m—2)-rectifiability of Ag. [

Thus, from now on we will focus just on the set of Q-points Agp. Before
going further we state a useful simplification of our problem. Consider the function
n: Ao (R") — R” defined by taking the average of the Q-tuple T, i.e.,

0

0
nW(T) = W(Z[[Pi]]) = éz P . (2.3)

i=1 i=1

Note that this is a well-defined function on 4 ¢ (R"), since its value is independent
of the ordering in the Q-tuple 7'. It is useful to notice (see [13, Lemma 3.23]) that
if u is a Dirichlet-minimizer, then so is y o u, thus in particular this is a classical
harmonic function. Moreover, see again [13, Lemma 3.23], if we introduce the map

w'(x) = D ui(x) —pou]
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then u’ is again a Dirichlet-minimizer, and it satisfies the additional “balancing
condition” y o u’ = 0. Note that the singular points of u coincide with the singular
points of u’, and thus for the purposes of this article we can assume for simplicity
and without loss of generality that y o u = (0. Note that under such assumption
Ao C {x :u(x) = Q[O0]}. However, [13, Proposition 3.23] delivers the following
stronger information:

Theorem 2.1. If Q € R™ is connected and u:Q2 — Ag(R"™) is a Dirichlet
minimizing map, then either u = Qpoull or Ag = {x : u(x) = Q[0]} and
has Hausdorff dimension at most m — 2.

Therefore we can from now on assume, without loss of generality, that the
following holds

Assumption 2.2. 2 is a convex open subset of R™, u: Q2 — Ao (R") is a minimizer
of the Dirichlet energy with n o u = 0 and positive Dirichlet energy. In particular

Agp = {x 1u(x) = Q[0]} (2.4)
and that A g is a strict subset of £2.

2.2. Frequency function and main steps. Theorem 1.2 will be split into two
separate steps, namely the upper Minkowski estimate (Theorem 2.5) and the
rectifiability (Theorem 2.6), proved in the last two sections. In order to state the
two steps, we need to introduce some notation and terminology.

Forevery z € R™, wesetv,: R™\{z}—S" ! givenby v, (y):=(y — 2)/|y — z|.
D(x, r) denotes the Dirichlet energy of u on the ball B, (x):

] | Dul?.
By (x)

The height function H(x, r) and Almgren’s frequency function /(x, r) are defined

as
rD(x,r)

H(x,r) ::f lul*> and I(x,r):= ———2=.

3B, (x) H(x,r)

In this paper we will however mainly work with a “smoothed” version of D, H,
and /, first introduced in [12].
Definition 2.3. Let ¢ be a Lipschitz nonincreasing function that is identically 1 on

[0, %] and identically 0 on [1,00[. The smoothed Dirichlet, height and frequency
functions Dy, Hy, and I are given, respectively, by

B, 7Y = [ IDu(y)Iqu(“’,;"') dy. (2.5)
Hor.r) i= = [ )1y = 719/ (252 . 2.6
To(xr) i= D) 27

Hy(x,r)
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We also introduce

Bot.r) == [ oot Ply —xig' (2721 ay. @8)

We omit x if it is the origin.

Observe that, under Assumption 2.2, from Theorem 1.1 we conclude that Ag
is a set of measure zero in the ball B,(x), whenever x € Q and r < dist(x, 0€2).
Thus Hy(x,r) is positive for every such x and r, which in turn implies that the
frequency function is well defined for all such values. In some cases we will have
to compute the above quantities for different functions v’s: we will then use the
notation Dy ,(x,r), Hg ,(x,r) and so on to denote such dependence. The main
tool of Almgren’s regularity theory and of this paper is the monotonicity of the
classical frequency function / in the variable r. Almgren’s computation can be
easily extended to /4 for any weight function ¢ as in the definition above (a fact
first remarked in [12]). In particular both the classical frequency function and the
smoothed ones can be defined at » = 0 by taking the limit as r | 0.

In the rest of the paper we will often work under the following additional
assumption.

Assumption 2.4. @ = Bga(0) and 15(64) < A. ¢'(t) = —2 forevery t € [%, 1]
and 0 otherwise.

A simple covering argument allows then to recover Theorem 1.2 from the follow-
ing theorem:

Theorem 2.5. Under the Assumptions 2.2 and 2.4 there is a constant C =
C(m,n, Q, A) such that

|Bp(Ag) N Big(0)] < Cp?, Vp>0. (2.9)

Theorem 2.6. Under the Assumptions 2.2 and 2.4 the set Ag N Biy5(0) is countably
(m — 2)-rectifiable.

Remark 2.7. The singular set Ap can be further subdivided according to the
value of the frequency function /(x,0), which must be positive at each singular x
(cf. Lemma 3.3). For Q = 2 the minimal value of /(x,0) at singular points is %
and the combination of the works [21] and [19] imply the real analiticity of A, in a
neighborhood of any such point. Moreover [19] shows the real analiticity of A, N U

in any open set U for which the frequency function is constanton A, N U.

2.3. Spines and pinching. Our proof is a nontrivial adaptation of the techniques
of [24]. In particular, the main estimates will be derived from a Reifenberg-type result
and estimates on the Jones’ numbers of the sets A and suitable discretizations of it.

The main ingredient is again the frequency function /4. As mentioned above, for
Dirichlet minimizers /4 is a monotone function of r. The other impotant property
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is that /4 controls the degree of homogeneity (or approximate homogeneity) of u.
Indeed, u is homogeneous of degree a at a point x if and only if /4(x,r;) =
I4(x,r2) = o for some ry < rp (in which case it turns out that r — I4(x,r) is in
fact constant). If u were a classical function, its homogeneity would be equivalent to

u(x +Ap) = A%u(x + p) or au(x+ p) = (Vulx + p),y) . (2.10)

From this formula, it is immediate to see that if u# is homogeneous of the same
degree o at two points x # y, then automatically u is invariant with respect to the
line joining x and y. Indeed, we easily have

(Vu(p),x — y) = au(p) —au(p) =0, forall p e R". (2.11)

The same conclusions hold for -valued functions provided we introduce the correct
terminology.

If u happens to be homogeneous with respect to some points {x;} spanning
a k-dimensional subspace, then u is invariant with respect to this subspace. By
Theorem 1.1, a u which satisfies Assumption 2.2 and is invariant with respect to
an m — | dimensional does not exist, thus must have empty A, thus making m — 2
the maximum number of invariant directions that allow for some singular behaviour
of u. Moreover, if u has an invariant subspace of dimension m — 2, then the singular
set Ao is either empty or it coincides with this subspace.

The monotonicity formula for /4 gives a quantitative measurement (in an integral
sense) of how close u is to being homogeneous of degree /4 at a point x. The precise
statement can be found in Proposition 4.3. In turn this leads to the most important
estimate of the note:

Definition 2.8. Let u and ¢ be as in Assumptions 2.2 and 2.4. For every x € By and
every0 <s <r <1 welet

WI(x) i= L%, ¥) — L5 (%, 5) (2.12)

be the “pinching” of the frequency function between the radii s and r.

Theorem 2.9 (cf. Theorem 4.2). There exist Csn = Cq2(A, m,n, Q) > 0such that,
if u and ¢ satisfy the Assumptions 2.2 and 2.4, x1, xo € Big(0) and |x1 — x2| < r/4,
then

|]¢(Z, i”) = I¢(y, r)| < C4n [(Wr"}g(xl))l/z T (W,L}E(Xz))l/z]lz B y|,
Vz,y € [x1,x]. (2.13)

With the latter estimate we will be able to bound in a quantitative way the distance
between A g N B, (x) and a carefully chosen m —2 dimensional plane L , forall x, r
(cf. Section 5). This, combined with an inductive covering of A g and the generalized
Reifenberg theorem proved in [24], will allow us to conclude the proof.



744 C. De Lellis, A. Marchese, E. Spadaro and D. Valtorta CMH

2.4. Plan of the paper. The rest of the note is organized as follows:

— Section 3 gives several important bounds and identities on the smoothed frequency
function. In particular, Proposition 3.1 states the crucial monotonicity identities and
the related computations used later; Lemma 3.3 shows a fundamental e-regularity
theorem, namely that /4 (x, r) cannot go below a certain threshold when x € Ag;
Lemma 3.4 gives useful bounds for the frequency and height function at different
points and scales.

— Section 4 gives the most important new ingredient of the paper, namely it proves
Theorem 2.9. Similar estimates are a fundamental starting point for the results of [24]
on the rectifiability of the singular set for harmonic maps and are a direct consequence
of the monotonicity formula. In our framework the proof is instead rather nontrivial.

— Proposition 4.2 is used in Section 5 to show that the average of the frequency drop
at scale r with respect to a general measure p controls the (m — 2)-mean flatness
of i, also called Jones’ number 8,, cf. Proposition 5.3.

— In turn, Proposition 5.3 is combined with the Reifenberg-type methods developed
in [24] to prove the Minkowski bound of Theorem 2.5.

— Finally, the Minkowski bounds and Proposition 5.3 allows a suitable estimate of
average of the Jones’ number of the measure ™ 2L Ag: the results of [24] and
of [4] characterize the rectifiability of p in terms of such average and imply therefore
directly Theorem 2.6.

3. Smoothed frequency function and relevant identities

3.1. Properties of the frequency function. We recall next the monotonicity identity
for the smoothed frequency function, which is the counterpart of the monotonicity of
Almgren’s “classical” frequency function /, cf. [13, Eq. (3.48)]. The monotonicity
of Iy is contained in the arguments of [12], but since this is not explicitly mentioned
there, we provide here the relevant statements and the short proof. Moreover we
will differentiate the functions also in the variable x. We summarize the relevant
identities in the following Proposition.

Proposition 3.1. Under Assumption 2.2 we have that the functions Dy, Hgp, and 1y
are C in both variables. Moreover the following identities hold:

0
Doxr) = [ o (25) 2 ) ) G

m— 2 2
drDg(x,r) = TD¢(x,r) + r—2E¢(x,r), (3:2)

o
2
0uDg(rx) = =2 [ ¢/(22) Y ) - B . (33)

i=1
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By Hy(x,r) = —— r_ : Hy(x,r) +2Dg(x,r), (3.4)
o

dug(xr) =<2 [ () ly =57 Y w0 d)dy. B
i=1

In particular both 14(x,r) and r*~™ Hy(x, r) are nondecreasing functions of r and
we have the following identities

2

Op Lg% F) = W(

Hy(x,r) Eg(x,r) —r’*Dy(x,r)*) > 0 (3.6)

sl_de,(x,s) = r]"mH¢(X,") exp(—Z[ 4 (x,1) #) : G.7)

Remark 3.2. Note that by letting ¢ 1 1p,;] we recover corresponding statements
for the classical Dirichlet, height and frequency functions, at the price of a loss of
smoothness: some of the identities are, in particular, true in a suitable a.c. sense.
A particularly useful inequality that is instead valid for every x,s and r is the
monotonicity

s H(x,s) < VM H(x, 1), YO < s < r < dist(x, 09) . (3.8)
Proof. First of all we can assume, without loss of generality that ¢ is smooth: indeed
in this case

* the smoothness of /4 in r is an obvious consequence of the smoothness of ¢;

* the smoothness of /4 in x follows from the usual fact that the convolution of a
smooth kernel with an integrable function is smooth.

After having established the above identities for ¢ smooth we can approximate any
Lipschitz test with a sequence of bounded ¢, that are smooth, have uniformly bounded
derivatives and converge strongly in W 2 for every p < oc. Itis then easy to see that
dy Dy, and 0, Hy, converge uniformly and to conclude in the limit the corresponding
formulae. As already noticed Hy is positive and thus 7, is also C'.

(3.1) follows from testing [ 13, Eq. (3.5)] with the map
v = o).
Differentiating in r we get
By _
0, Dy(x.r) = [ [Dur) P29 (222) ay.
Testing [13, Eq. (3.3)] with the vector field

o(y) = d)(@)(y — x)
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we obtain (3.2). Similarly, differentiating in x we achieve

0y Dy(x,7) = f [Du)|’¢' () 2 v dy
and from the latter we derive (3.3) testing [ 13, Eq. (3.3)] with the vector field
o() = o(5 ).

Changing variables in the integral we rewrite the formula for the height in two
different ways

Hy(x, ) = — f uGs + 2Pz () a2
(3.9)

o [ e+ e 0

Next, since u is a continuous W12 map and Ao(R") > P - |[P2=), Piisa
locally Lipschitz map, |u|? is indeed a wl

109 map. Moreover the chain rule formulae
[13, Proposition 1.12] imply

Oulul*(y) = 2 () dui(y) . (3.10)

We thus differentiate the first integral in (3.9) in v and the second integral in (3.9)
in r to get

dyHg(x,r) = —2[ |Z|_1¢,(|i—|) Z dyui(x +2)-u;(x + z)dz, (3.11)

OrHy(x,r) = %qu(x r)
e [ ) Y x4+ ) iy g

(3.12)

Changing the integration variable back to y in (3.11) we achieve (3.5). Changing
variable in (3.12) we get

e per) =" L Hy(x.r) 2 [¢ Zauxu (07 - ui(y) dy

and hence we conclude (3.4) from (3.1).
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The expression for d, /4 (x, r) in (3.6) is an obvious consequence of (3.2) and (3.4),
whereas such expression turns out to be nonnegative using (3.1) and the Cauchy—
Schwartz inequality:

2
20yt = ([ 0/(252) L) -
< [ o (52 -5 E P dy
[ () - A )P dy

= Hy(x,r)Ep(x,7).

Note that the assumption —¢’ > 0 is used crucially only in the inequality above.
Finally, we can rewrite (3.4) as

_ d,Hy(x,r) m—1 Dg(x,r) 2
1—m _ ¢ _ _ ¢ _ =
drlog (r' ™™ Hy(x,r)) = o 15 — =2 v i r1¢(x,r).

Integrating the latter identity we achieve (3.7) and the monotonicity of 1= Hg(x,r)
follows from the positivity of /4. L]

3.2. e-regularity. The following lemma is, loosely speaking, an e-regularity theo-
rem that shows that, if the frequency is sufficiently small at a certain scale, there are
no Q-points at a slightly smaller scale.

Lemma 3.3. There is a constant 0 < €3.13(m,n, Q) < 1 with the following property.
Under Assumption 2.2,

I¢(x,r) <e€313 =—> Agn Br/4x = . (3.13)

Proof. Without loss of generality, we can assume x = 0 and r = 1. Suppose that
I4(1) < 1 and that there exists y € Ag N Bi/4(0). By [13, Theorem 3.9], we have
the existence of constants a(m, Q) > 0 and C(m,n, Q) such that

1/2
[u]Co.m(BI b = C(f |Du|2) & CD¢(])1/2 . (3.14)
/ B,
In particular, since u(y) = Q[0] for some y € Bi/,(0), we have
f lul> < CDg(1). (3.15)
3B,

Note next that by passing in polar coordinates we use (3.8) to derive

()= [ P = oy,
1/4
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By the growth estimates (3.7), since we assumed that 7,4(1) < 1, we obtain

Hy(1) < CHy(5) = CDy(1) (3.16)
which immediately implies

[¢(1) 2 C_l = E3.13(’719’1: Q) * D

3.3. Elementary upper bounds. We now prove that the value of Hg (resp: /4) at
a point x, at a certain scale, gives a uniform upper bounds in a ball around x on the
same quantity at smaller scales.

Lemma 3.4. There exists a constant C(m, @) with the following property. If u
satisfies Assumption 2.2, then

Hy(y,p) < CHg(x,4p), Yy € By(x) C Bap(x) C 2, (3.17)
Ip(y.r) < C(Ip(x,16r) + 1), Vy € Byju(x) C Bigr(x) C Q. (3.18)

Proof. The proof is a standard computation, see for example [17, Theorem 2.2.8] in
the case of harmonic functions and for the classical frequency and height.

We first argue for (3.17) and assume, without loss of generality x = Qand p = 1.
Using (3.8) we easily see that

/ |u|? gcf lul>, Vre)2,4[.
B> JB,

Averaging the right hand side against the measure —r~1¢’(r/4) dr and passing to
polar coordinates we achieve

[ [u|?> < CHy(4).
B>

On the other hand, since By (y) C B,, itis obvious that Hgz(y,1) < C fBz |u|%. This
shows Hyg(y,1) < CHg(0,4) and completes the proof of (3.17).

We next argue for (3.18) and assume, again, x = O and r = 1. (3.17), (3.6) and
(3.7) give

Hy(y,4) < CH4(0,16) < CeC1o19 [, (0,1) < CeC1o010 1 (y, 1)
4 dit
= CHy(y,4) exp (Cl¢(0, 16) ~2/ I4(y.1) 7) .
1

Since Hy(y, 4) is positive, taking the logarithm we conclude

4
214(y, 1)[1 % < C(1+ I4(16)). [
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4. Main estimate on the frequency pinching

The main goal is to prove Theorem 4.2 below: this is the essential ingredient that
allows us to use the techniques of [24] in our framework and eventually conclude the
(m — 2)-rectifiability and J™2-local finiteness of the set Ag.

Definition 4.1. Let u# and ¢ be as in Assumptions 2.2 and 2.4. For every x € By and
every 0 <s <r <1 welet

W (%) i= Lph. 7)) — Lgl¥; §) 4.1)

be the “pinching” of the frequency function between the radii s and r.

The next theorem shows how the variations of the frequency in nearby points are
controlled by the pinching of the two points.

Theorem 4.2. There exist C4.0 = Ca2(A,m,n, Q) > 0 such that, if u and ¢ satisfy
the Assumptions 2.2 and 2.4, x1, X € Bi/3(0) and |x, — x2| < r/4, then

[15(zr) = 150.7)] = Caa | (W) + (W) |1z = 1.
Vz,y € [x1,x2]. (4.2)

A main ingredient in the proof of the theorem will also play a fundamental role
in the next estimate and for this reason we show it here.

Proposition 4.3. There exist C43 = Caz(A,m,n, Q) > 0 such that, if u and ¢
satisfy the Assumptions 2.2 and 2.4, then, for every x € By,

/ (z—x)- Dui(z) — Ig(x, |z—x|)ui(z)|2dz < CW]‘}S(x). (4.3)
BZ(X)\BIM.(X) i

4.1. Intuition for the proof. In order to get an intuition for the theorem, we explain
briefly the underlying idea with an example. Let s be a O -valued function such that
1(0,4) — 1(0,1/8) = Oand I(x,4) — I(x,1/8) = 0, where x € B/3(0) \ {0}. For
the sake of simplicity, one could assume here that % is actually an harmonic function,
thus smooth.

By unique continuation, we immediately get that the frequency / is constant for
all radia both at the origin and at x. Set /(0,0) = d and /(x,0) = d’. Note that the
two values may a priori be different, but we want to show that this is not the case.
The monotonicity formula for / implies that 4 is a d-homogeneous function wrt 0
and d’-homogeneous wrt x. In other words for all y € R™

(Du(y),y) =du(y), (Du(y),y —x)=du(y). 4.4)

By subtracting these two equations, we prove that

(Du(y).x) = (d —d")u(y). (4.5)
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Consider the function f(t) = log(/(zx, 1)), then naively we can make use of the
external variation formulas and write

2
70 = Liog (—IB‘(‘” D )
' dt Jom, (0 14

B fB,(o) (Du, Dy Du) - faB,(o)“Dxu
a JB,0) | Du|? Jom, (o) 1
~ Jasi @ PnuDxu - Jomy 0 ¥PxU

a faBl(o) uDpu fBBl(O) u?

(4.6)

bl

where we used without proper justification the integration by parts for Q-valued
functions. By (4.5), we have

f()=d-d)—(d-d)=0, 4.7)

which in turn implies that f(0) = f(1),andsod = d’.
Theorem 4.2 is the quantitative version of this statement. For its proof, we will
use the quantitative version of (4.4), which is given in Proposition 3.1.

4.2. Proof of Proposition 4.3. Assume H3(1) = 1. Using Proposition 3.1 we can
compute

4
W,‘}4(x) = f/ I lp(x,T)dT
4

= /4 2(rH¢(x, ‘L’))_l (E¢(x, 7) —tly(x, ) Dy(x, t)) dt

4

4 -1
= [/4 2(1’H¢()C, r))

(Eg(x,7) —211s(x,T) Dg(x,T) + Ip(x,7)* Hy(x, 7)) dT

= [4 Z(TH¢(X=T))_1[—¢'(@)|y—x|_l

4

(|3,7qu2 —2I¢(x,r)za,,xu,- ‘u; + l¢(x,r)2|u|2)dy dt

= [4 2(rH¢(x,I))_1 f—qb’('l;*x—l)b’ — x| (4.8)

/4
Z |(y —x) - Du;(y) — Ip(x, r)u,-(y)|2 dydrt.

i

S ———— —

=:£(y,1)
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Observe that ¢’ = —21y1/2,1;. Hence the integrand in (4.8) vanishes outside
{%r < |y — x| <t} and considering that the integral in 7 takes place on the
interval [i, 4], we can assume % < |y — x| < 4. Next we introduce the function

()= Y | —x) - Dus(p) — Ig(x. |y — x i (»)]

and, using the observation above, the monotonicity of /4(x,-) and the triangle
inequality, we conclude

L(y) <26(y, 1) +2|Is(x,7) — Ip(x, |y — x|)|[u(»)|?
< 28(y, ) + 2W () [u(»)]*.

Inserting the latter inequality in (4.8) we infer

Wila(x) = [: (tHy(x, 7)) f —¢/ (22 D)ly — 27Oy dy dr

4

2@ [ (etipteo) ! [ (M) - P dyds
4

21/4 (TH(p(x,f))_lf_qu( )]y_x| lc(y)dydr—SW,/S(x(:.g)

Next, using (3.18) we conclude /4(x,7) < C for every T < 4 and we can therefore
use (3.17) and (3.7) (together with Hy(1) = 1) to find a uniform bound from below
for Hy(x, ) when t € [1/4, 4]. Hence, from (4.9)

CWjs(x) > /C(;V) f (|y2x|)|y—xl_ldr dy .

~— —

=:M(y)

Since ¢" = —21y1/2,1] we can explicitly compute

M(y) = [ min {4, 2]y — x|} —max {Z. |y — x[}] = 21p, o080 (V) -

2
ly — x|

which clearly completes the proof.

4.3. Proof of Theorem 4.2. Without loss of generality, we assume r = 1 and
Hg (1) = 1. For simplicity, we fix the notation

Wix) i= Wl/g(x) = Iy, 4) — Is(x, 1/8) (4.10)
and we introduce the measure

iy =~y —x|7'¢'(ly — x|) dy
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and the vectors

() i=y—x=|y—xu(y), vi=xz—x.
Combining (3.3) and (3.5), we deduce

dylp(x,1) = 2Hy(x,1)7!

|:f Zavui <Oy i djuy — lg(x, 1)/2”:’ 'avuidﬂx:| . (4.11)
i i

Let
6,i(2) 1= Oy, uilz) — 1¢(x,g, |z —Xgl) ui(z), foré =1,2andi €{l,...0}.
By linearity of the (multivalued) differential, we have
dyu;i (2) = Dui(z)-v
= Dui(z) - (z — x1) — Du;(z) - (z — x2)
= Oy, Ui (2) — Iy, ui(2)

= (Ig(x1.1z = x1l) — Ip(x2, |z = x2[)) wi(z) + E1,i(2) — 62,i(2).

S ~—

i

=:863(2)

Substituting the above expression in (4.11) we conclude that

Oplg(x, 1) = 2Hu(x,1)7! /Z(Sl,i—gz,i).amu,-dm

—A)
?:(ET
+  2Hg(x,1)7! [[Z&uiawuiduxu1¢(x,1)f83|u|2dux] . (4.12)
T —— : "
={C)

In order to exploit some cancellation property, we re-write §3(z) as

E3(z) = Ip(x1,1) — Ip(x2,1) + I¢,(x1,|z—x1|)—wl¢,(x1,l)

T, — ——— e

=€ =E4(2)
— [Hs(x2. 12 = x2]) = Ip(x2, )] . (4.13)

=65(2)
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Note first that p, is supported in By(x) \ Bij(x), thus % < |z — x| < 1. Note
moreover that, if x belongs to the segment [x;, x2], then |x — x| < % and thus we
conclude that i < |z — x| <2.

Thus we conclude

E4(2)| + [E5(2)| < W(x1) + W(xa), Vzespt(ux), VX € [x1,x2]. (4.14)

Moreover, notice that

f&“Zuianxui Cu; d,u,x—lqg(x,l)f8|u|2d,ux

= 8[[ Zuianxui -uj dg — Dg(x, 1):|

= 8[—]¢’(|y —X|)Zavxui(y).ui(y)dy ~D¢(X,1)j| (2)0'

This equation is the equivalent of (4.7), where & plays the role of (d — d’). Thus we
obtain

(©) < [W(x1) + Wixa)|2Hy (x. 1)) f [lul® + ]| Dul]dpes

< (W) + WO 211 x, 1 (2 )+ [ 1D

< [W(x1) + W(x2)]4(1 + CHg(x, 1) Dg(x,2)),

where the constant C depends on ¢. By (3.18) we have /4(x,4) < C(m, ¢, A) and
thus, using (3.7),

Hy(x, 1)"'Dy(x,2) < CHy(x,2)/Hg(x,1) < C.

We have thus concluded (C) < C(W(x1) + W(x2)).
Coming to (A) observe that, using Cauchy—Schwartz

(A7 < 4y () [ 31600 = 8aulP di [ 310y,
k i (4.15)
<4ty (.12 [ 3161~ Eaal? di [ 1DUP s

Next, using (3.18) we conclude /4(x, ) < C for every T < 4 and we can therefore

use (3.17) and (3.7) (together with H (0, 1) = 1) to find a uniform bound from below
for Hy(x, v) when t € [1/4,4]. Thus, arguing as above we conclude

1/2
) = ¢ [ 3 (8wt +1a.) dux) | (4.16)

The same bound is obviously valid for |(B)| as well, following the same arguments.
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Thus in particular we obtain

1/2
Dplp(x,1) < C(W(x1)+W(x2))+C(/Z(lgl’i|2+|32,i 2) d,ux) . (4.17)

Let x; := tx1 + 1 — tx,. We next wish to establish the estimate
f > 160l dpx, < CWi(xe), (4.18)
i
which clearly would complete the proof. If we introduce the function
L(y) =) 1€ (y)
i

we can write

[ S teeitdies, = [ {1y sy =1 t)ay.

T

=:m(y)
Observe next that 0 < —|y — x,|7'¢’(|y — x;|) < 4 and thus m(y) < 4. Recall that
¢’ (s) vanishes when s < % and s > 1. Hence we can assume % <|y—x| < 1.
On the other hand |x; — x¢| < % for every ¢t € [0, 1], hence % < |y —x¢ < % and
som(y) < 4132(”)\31/4(”)()»). Therefore (4.18) follows from Proposition 4.3. We
thus conclude the pointwise estimate

8v1¢(x,])5C(W(x1)+W(x2)), Vx € [)C],)Cz].
Indeed reversing the role of x; and x, we then conclude
10p15(x, 1)] < C(W(x1) + W(x2)), Vx € [x1,x2].

Integrating the last inequality between any two given points in the segment [x1, x2]
we derive the desired estimate.

5. L2-best approximation

Here we prove some distortion bounds in the spirit of [24]. We use the standard
notation dist(y, A) := infyea |y — x|.
Definition 5.1. Given a Radon measure 1 inR™ andk € {0, 1,...,m—1}, for every
x € R™ and for every r > 0, we define the kth mean flatness of p in the ball B, (x)
as

DECE. 7} 5= infr_k_zf dist(y, L) dp(y), (5.1)

L B (x)

where the infimum is taken among all affine k-dimensional planes L C R™.
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Remark 5.2. In the literature D ;li is often called the Jones’ 8, number of dimension k
(see for example [4,5]). For the aim of this article, we will not need to use any 8,
for p # 2, this is why we use this different notation.

The following is an elementary characterization of the mean flatness. Let xo € R™
and ro > 0 be such that p(By,(xo)) > 0, and let us denote by Xy, r, the barycenter
of p in By (xg), i.e.

1

— = x dp(x)
M(Bru(xﬂ)) Br()(X())

Xxo,ro +—

and let h: R™ xR” — R be the symmetric positive semi-definite bilinear form given
by

h(v,w) := f ((x — Xxg,ro) * v) ((x — Xxq,rp) * w) du(x), Yov,weR™
Br()(XO)

By standard linear algebra results there exists an orthonormal basis of vectors in R™
that diagonalizes the form b: namely, there is {vy,..., v} C R™ (in general not
unique) such that

(i) {vi,..., vy} is an orthonormal basis: i.e. v; - v; = d;;;

(ii) b(vi,vi) = A, for some 0 < A,y < Apyp g < -+ < Ap and b(vi,v;) = 0
fori # j.

Note that, in particular, by simple manipulations, the following identities hold:
f ((x — Xxgro) - Vi) xdp(x) = A;v;, Vi=1,....,m. (5.2)
Br()(x())

The kth mean flatness of a measure p, as well as the optimal planes L in
Definition 5.1, can be then characterized in the following way: let xo € R and
ro > 0 be such that u(B,,(x0)) > 0, then

D (xo.ro) =rg* 2 Y A (5.3)
I=k+1

and the infimum in the definition of D ;li is reached by all the affine planes L = xy, ,,+
Span{vy, ..., vg} for every choice of an eigenbasis vy, ..., v, with nonincreasing
eigenvalues A; > Ay > -+ > A,

The main point of this section is that, if u is as in Assumptions 2.2 and 2.4 and p
is a measure concentrated on the set A, its (m — 2)th mean flatness is controlled by
the pinching W.
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Proposition 5.3. Under the Assumptions 2.2 and 2.4, there exists Cs 3(A,m,n, Q) >
0 such that the following holds. If i is a finite nonnegative Radon measure with
spt(u) C Ag, then

_ Css
DI Gar/8) < 2% [ W) duc) (5.4
F By /g(xo

for every xo € Bijg and for all r € (0, 1].
The proposition will need the following corollary of Almgren’s regularity theory.

Lemma 5.4. Let Q@ C R™ be a connected open set and u: Q2 — Ag(R") a Dir-
minimizer. Assume there is a ball B7(p) C Q2 and a system of coordinates x1, . .., xn
for which the restriction of u to B(p) is a function of the variable x, only. Then u
is a function of the variable x1 only on 2.

Proof. The lemma is a simple consequence of the unique continuation for harmonic
functions when Q = 1: moreover, it follows easily from the condition Ao = 0 that
any harmonic function on a ball B7(p) that depends only on the variable x; takes the
form a(x) = axy + b for some constants ¢ and h. Recalling [13, Theorem 0.1], there
is a (relatively closed) singular set ¥ C €2 of Hausdorff dimension at most m — 2
such that, locally on © \ Z, the map u is the superposition of Q classical harmonic
sheets. Since 3 does not disconnect £2 we can use the classical theory of harmonic
functions to conclude that each such sheet can be written locally as ax; + b for
constants a and b. We then easily conclude that u is the superposition of harmonic
sheets globally on © \ %, each taking the form apx; + bo for achoice ay,...,aq,
by, ..., bo of constant vectors in R". This completes the proof. []

Proof of Proposition 5.3. By scale-invariance, we canassumer =1and Hy (0, 1) =1.
Without loss of generality we assume that 1(B1/5) > 0 (otherwise the inequality is
obvious) which implies

A N By #0. (5.5)

From now on any constant that depends on A, m,n and Q will be simply denoted
by C. Let X = Xy, be the barycenter of 1 in Bijs(xo), and let {vy,...,vn} be
any diagonalizing basis for the bilinear form b introduced above with eigenvalues
0 < Am < Am—1 < -+ < Ay1. From (5.2) and the definition of barycenter we
also deduce that, for every j = 1,...,m, forevery i = 1,..., Q and for every
z € Bspa(xg) \ Bija(xp), we have

—A;vj-Du;(z) = f ((x—%)-v;) ((z—x)-Du;(z) —o u;(z)) dpu(x), (5.6)
B g(x0)
for any constant «. In particular the latter identity holds for
1

= l4(x,1)d | 5.7
O T Bralal) s gty O il
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By squaring the two sides of (5.6) and summing in i we get

2
Bl ([ Sle-n-le-0-oue ~au(:)| ()
B 5(x0)

s[B ( )Z((x—)_c)-vj)zd,u,(x)
1,84xX0)
[ 0 Due) - au@ e
By /5(x0)
=i = - D i = i 2d 5
J fB I/S(xo)Xinz x) - Duy(z) — aw;(2)|" du(x)

from which we conclude

A0y u(z)| < —x) - Dui(z) — aui(z)| dpu(x) . 5.8)
J‘ _;“(Z)I /Bl/s(xo)zi:|(z x)-Du;(z) —au (Z)| w(x) (

Integrating with respect z € Bs/,(xo) \ B3/4(xo) and summingin j =1,...,m —1,
we finally get

m—1
— 2
D *(x0,1/8) Z |9y, u(z)|" dz
Bs;y (xo)\B3/4(x0) j—4

m—1
A1 +Am) Y |d,u(2)|” dz

F=1

m—1
Ai—it Z |a,,ju(z)|2 dz
j=1

]135/4(x0)\B3/4(X())

[A

),
Bs, 4 (x0)\B3,4(x0)

2[3 X:Aj|8v_iz,4(z)|2 dz (2.9

574 (x0)\B3,4(x0) il

) 2
Cf [ E |(z—x)-Du,-(z)—au,-(z)| dp(x)dz
Bs,4 (x0)\B3,4(x0) 4 By /5(x0)

i

[A

(

A%

SC[ f Z|(Z—X)'Dui(Z)—ozu,-(z)|2dzdu(x)_
Bi1,g(x0) / B35 (x)\Bj5(x)

We next claim that

m—1
f Z \av,-“(z)|2d2 >c¢(A) > 0. (5.10)
B

5,4 (X0)\ B3,4(x0) Fez
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Indeed, since 14(0,1) < A, by (3.7),

]B |Du|? < Dy(0,4) < AH4(0,4) < CAH4(0,1) = CA.
1

If the claim were not correct, there would be a sequence of maps u* with 5 ou* = 0,
b (y§) = Q[0] (recall (5.5)), [, |Dugl* < CA,2 [ \By , uel® = 1., but

m—1 1
' !
f ) : Zldvjuk(z)‘ dZSE,
35/4(x(’;)\33/4(x6) j=1
for some choice of points x(’)‘ , y,? in B1/3(0) and of orthonormal vectors v"l‘, e, v,’;_l "
By a simple compactness argument, up to extraction of subsequences, u* would
converge to a Dir-minimizer u such that o u = 0,
/ lul> =1 and / |Du|* < cA.
B\\B,, B
Moreover there would be a point p € B /s and orthonormal vectors vy, ..., Upu—

such that

m—1

/B S Jos,a? = 0.

5/4(P)\B3/4(P) j=1

Thus, there is ball B,(q) C B»(0) over which u is a function of one variable
only. By Lemma 5.4 we conclude that u is a function of one variable on the whole
domain B>(0). However, since u(g) = Q[0]for some g € Bijwe conclude that
necessarily Ag has dimension at least m — 1. However u is nontrivial and thus we
would contradict Theorem 1.1.

Next, using (5.10) and the triangular inequality in (5.9) we conclude that

Dy (x0: 5)

<l ol 3Gz =00+ Dus(a) — Fytx, Do) dz da(x)
Byg(x0) /B3y (O\By5(x) 7

e S T T | e e e
=:(I)

+C / f (Ip(x, 1) — a)2 lu(z)|? dz du(x)
Bl/g(x()) B3/2(x)\BI/2(x)

—

S

=:(II)

Recalling our choice of « in (5.7) we can estimate the second integral easily as

1 2
C I(x,1)— —— / ,1)d d
h = [Bl/g(x())( . 1) p(Bijg(x0)) J B, gx0) +(-1) M(y)) #ix)
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I 2
=3 i _ To(x, 1) —1Tp(y,1))d d
Ll/ﬁ(x()) (M(B;/g(X())) Bl/g(x()) ( ¢(x ) ¢(y )) M(y)) M(X)

Bl Io(x. 1) = Iy(y, 1)) dp(y) d
S'U'(B'/S(XO)) Ll/x(xo%[Bl/x(xn)(‘p(x )= lp(y )) p(y) du(x)

Thus, using Theorem 4.2 we conclude

C
(mswwp—f f 1.00) + W () de(y) du(x)
/"L(BI/R(-X())) Bl/g(x”) Bl/g(X()) l/s /s )
(5.11)
—20 [ W@,
By g(x0)
As for the first integral, we split it as
(= C f [ (Tp(x, 1) — Ip(x, |z — x|))2|u|2 dz dp(x)
Bl/g(x()) B?/z(x)\Bl/z(x)
=:(I)
—I—Cf [ Z‘(z—x)-Dui(z)—1¢(x,|z—x|)u,-(z)‘2dz dp(x).
Bl/x(x(J) 33/2()5)\3]/2(4‘) i
(1)
(5:.12)

Observe now that, for z in the domain of integration, and x € spt(u) N By/5(0),
1/4 < |z — x| < 4 and thus, by the monotonicity of the frequency function,

1o (x, |z — x|) = Ig(x, D)| < Tg(x,4) — I5(x,1/4),
which leads to

(1) < CHy(0. 1) W@ du <€ [ W@ du. G13)
By 5(x0) By 5(x0)

As for (I,) by Proposition 4.3

[ |(z = x) - Dui(z) — Ip(x, |z — x[) u; (z)l dz<CW,/8(x)
33/2()5)\31/2()7) i
(5.14)

Integrating the latter inequality in x and adding the estimate (5.13) we conclude
m=c[ Wi duw. 5.15)
By g(x0

The inequalities (5.11) and (5.15) clearly complete the proof of (5.4). []
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6. Approximate spines

It is well known that for Q-valued functions of dimension 2, Ap is discrete,
see for example [16, Corollary 3.4]. This is a consequence of the fact that if
14(0,2) — 14(0, 1/4) is sufficiently small, then Ap N (B((0) \ B;/2(0)) = @. For
functions of m variables, a similar statement is true if we assume pinching of the
frequency over m — 1 points that are sufficiently spread. In this section, if A4 is a
subset of RY, we denote by span A the linear subspace generated by the elements
of A (with the usual convention span @ = {0}).

Definition 6.1. Given a set of points {x; }f:() C B,(x), we say that this set of points
are pr-linearly independent if foralli = 1,... k:

d (xi, xo + span {x;—y — Xxg,..., X1 — Xo}) = pr. (6.1)

Definition 6.2. Given a set F' C B,(x), we say that F rp-spans a k-dimensional
affine subspace V if there exists {x; }f-‘:O C F that are rp-linearly independent and
V = x¢ + span {x; — xo}.

The following simple geometric remark will play an important role in the next
section:

Remark 6.3. If a set F' N B,(x) does not rp-span a k-dimensional affine subspace,
then it is contained in B, (L) for some (m — 3)-dimensional subspace L. The proof
is very easy, but we include it for the reader’s convenience. First of all, by scaling
we can assume that r = 1. Now pick the maximal « € N for which there is a set
{X0,...,X¢} C F that p-spans a k-dimensional affine space L. Clearly we must have
Kk < k butalso F C B,(L): the latter is given by the maximality of x because if
there were y € I\ B,(L), then {xq, ..., xx,y} would p-span a («x + 1)-dimensional
space.

Lemma 6.4. Let u be as in Assumptions 2.2 and 2.4. Let p, p, p €]0, 1] be given.
There exists an € = e(m,n, Q, A, p, p, p) > 0 such that the following holds.

If{x; }-;":7)2 C B1(0) is a set of p-linearly independent points such that

W2 (xi) = Ip(xi.2) — I3(xi, ) <€, Vi, (6.2)

then
Ao N(B1(0)\ Bs(V)) =0, (6.3)

where V = xg +span {x; —xo:1 <i <m—2}.

Under the same assumptions of the previous lemma, we also obtain that 7 (x, r) is
almost constant on V' if r is not much smaller than p. In fact, a suitable modification of
the proof of Theorem 4.2 leads to the following much more precise estimate when we
estimate the oscillation of the frequency function at the same scale. Since, however,
such a precise control is not needed later, we omit its proof.
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Proposition 6.5. Fix any p > 0, and consider the set
F(8) = {y € Bijs(0) s.t. Wijs(y) < 8} (6.4)
If F p/8-spans some subspace V, then forall y,y" € V N By;3,(0)
[1p(y,1) — 13(y'. | < C V5, (6.5)

where C = C(A,m,n, Q, p).

Indeed we need a less precise version of such oscillation bound at all scales
between p and 1. We record the precise statement in the following lemma for which
we provide a proof later.

Lemma 6.6. Let u be as in Assumptions 2.2 and 2.4 and p, p, p €0, 1| be given. For
all § > 0, there exists an ¢ = e(m,n, Q, A, p, p, p,d8) > 0 such that the following
holds.

Let {x; }?;—02 C B1(0) be a set of p-linearly independent points, and assume that
Joralli:

W;,z(xi) = lp(xi,2) — Ig(xi, p) < €. (6.6)
Then for all y,y" € B1(0) NV and forall r,r" € [p, 1] we have
[1g(v.r) = I4(y'. 7| <3§. 6.7)

where V = xg +span {x; —xo : 1 <i <m —2}.

6.1. Compactness and homogeneity. The rest of the section is devoted to proving
the above lemmas. In both cases we will argue by compactness. The crucial
ingredients are the following proposition, where we show that a uniform control
upon the frequency function /g ensures strong L? compactness, and the subsequent
elementary lemma.
Proposition 6.7. Letuy: By (x) — Ao (R") be a sequence of W L2 maps minimizing
the Dirichlet energy with the property that

sup (Igu, (X, 1) + Hgu, (x,r)) < 00.

q

Then, up to subsequences, u, converges strongly in L* to a map u € Wl(:éz.
Moreover u is a local minimizer, namely its restriction to any open set 2 CC B, (x)
is a minimizer, and the convergence is locally uniform and strong in Wkl)éz.
Lemma 6.8. Let u:R™ — Ag(R") be a continuous map that is radially
homogeneous with respect to two points x1 and x,, namely there exists positive
constants ®y and o such that

u(x) = Z |[|x —xlla'ui(ﬁ +x1)]], Vx # xi,

1

ux) =Y l[|x —x2|azu,-(|;:;;| + xz)]], ViE 2 %5

H
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Thenay = oy, u is invariant along the x,—x1 direction, namely u(y +A(xp—x1)) =
u(y) for every y and every A € R, and finally u(Ax; + (1 — L)xp) = Q[0] for
every A € R.

A last technical observation which will prove useful here and in other contexts
is the following “unique continuation” type result for -valued minimizers of the
Dirichlet energy.

Lemma 6.9. Let Q@ C R™ be a connected open set and u,v: Q2 — Ao(R") two

maps with the following property:

* hoth u and v are local minimizers of the Dirichlet energy, namely for every p €
there exists a neighborhood U such that u|y and v|y are both minimizers;

* u and v coincide on a nonempty open subset of S2.

Then u and v are the same map.

Proof of Proposition 6.7. After suitable scaling, translation and renormalization we
can assume that B,(x) = B1(0) and that Hy ,,(0,1) = 1. We therefore conclude
that Dg 4, (0, 1) is uniformly bounded and that Du is uniformly bounded in L%(B,)
for every p < 1, because

|
|Dug|> < —— Dy, (0,1), Vpell 1.
[B;,(O) TS a—gp 2

Observe also that

qulz < H:p,uq(oa 1),
B (O\B,,(0)
which combined with the uniform control Ofrlle/:g(U) | Dug |? gives a uniform estimate
on [z (o I4gl*. Hence the sequence (ug) is uniformly bounded in W'2(B,(0))
for every p < 1: the compact embedding of W1-2(B,(0)) in L?(B,(0)) (cf. [13,
Proposition 2.11]) and a standard diagonal argument gives the existence of a
subsequence, not relabeled, converging strongly in L2 to a w2 map u.

loc loc
We claim next the existence of a constant C such that

Hyy (0. p) = f

1
lug|* < C, VgandVp €], 1[. (6.8)
9B, 2

The latter clearly implies that

f lugl* < C(1—p)
Bl (0)\3[)(0)

and thus upgrades the strong L2  convergence to strong convergence in L2(B;(0)).
pPg g loc g g g

Arguing as in [13, Proof of Theorem 3.15] we derive that the map p > h4(p) =
Hg u, (0, p) belongs to W, L1 and we compute

loc

m—1
h;(p):—[ |uq|2+2[ D, |?
r 0B, B, (0)
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(cf. [13, (3.46)]. Integrating in p we then conclude

1 1
2
f |h'q(P)\dP_<_Cf lugl? + 2[ f | Dug(x)|* dx dp .
I/2 B1(0)\B),(0) 1/2 J B,(0)

—

m

On the other hand notice that reversing the order of integration in (I) we easily
conclude

() = f |Duq(x)\2¢(|x|)dx = Dy, (0,1).

Hence the sequence A, is uniformly bounded in Wl’l(]%, 1), which in turn gives
a uniform bound on its L° norm. This completes the proof of the first part of the
proposition. The local uniform convergence follows instead from [13, Theorem 3.19],
whereas the local minimality of u and its strong convergence in WII’2 follows from

0cC

[ 13, Proposition 3.20]. ]

Proof of Lemma 6.8. We start by observing that u(x;) = u(x2) = Q[0] simply by
homogeneity and continuity. Moreover, if we show the invariance of the function
along the x; — x; direction, then the equality oy = «» is a triviality. After translating
and rescaling we can assume, without loss of generality, that x; = 0 and that
x2 = e = (1,0,0,...,0). We let (z1,...,zm) be the corresponding standard
Cartesian coordinates on R”. Our goal is to show that u is a function of the variables
T =T s B ) ONIYE
We first claim that

ule +w) =u(w). (6.9)
The identity is obvious if w = 0. Fix thus w # 0.
Aw — e
Aw=e+ [Aw—e|—— =te+ |Aw —e|wy .
[Aw — €]

Note that for A — o0, e + wy — e + |$—| Using the homogeneity of the function
we then conclude

Z A% u; (w)] = Z [[Aw — e|*2u; (e + wy)] . (6.10)

Clearly, if u(w) = Q[0], then u(e + wy) = Q[0] and sending A to infinity we
conclude u(e + rz7) = Q[0]: thus by homogeneity u(e + w) = Q0] = u(w).
With a symmetric argument we conclude that if u(e + w) = Q[0], then u(w) =
Q[0] = u(e + w). If both u(w) and u(e + w) are different from Q [0], then sending
A — oo we conclude that the

e — Aw|*2
lim ——

A—00 Al
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exists, it is finite and nonzero. Hence oy = a3, which implies that the limit is
indeed |w|. Plugging this information in (6.10), sending A to infinity and using the
homogeneity of u we achieve (6.9).

Next consider z; > 0 and z' € R™™!. We then have

u(zy,z') = Z [z8 i (1,271 2)] = Z [28'u; (0,271 2)] = u(0,2").
i i
If instead z; < 0, we can then argue

u(z1,z') = Z [(=z0)* i (-1, (—21)_12’)]]
— Z [(=z1)* u; (0, (—2z1)~'2")] = u(0,2). ]

Proof of Lemma 6.9. We prove it by induction over Q0. For Q = 1 the statement
is the unique continuation for classical harmonic functions. Assume therefore that
Qo > 1 and that the claim has been proved for every Q < Q. Let Ap(u) be
the set of points where u = Q|5 o u]. We know from [13, Proposition 3.22] that,
either Ao (u) coincides with €2, or it has dimension at most m — 2. If it coincides
with €, then A o (v) has nonempty interior and again invoking [ 13, Proposition 3.22]
we conclude that Ag(v) = Q. In this case v = Q[ o v] and u = Q[n o u]: since
n o u and 5 o v are harmonic functions that coincide on a nonempty open set, they
coincide over all €2 and we conclude u = v.

We can thus assume that both A g (#) and A g (v) have dimension at most m — 2.
Therefore the open set Q' := Q\ (Ap(#) U Ap(v)) is a connected open set. Clearly,
by continuity of u and v it suffices to show that ¥ and v coincide on ©’. Consider
therefore in Q' the set I which is the closure of the interior of {u = v}. Such set
is nonempty and closed. If we can show that it is open the connectedness of 2’
implies I' = Q'.

Let thus p be a point in I'. Clearly there are 7" € Ag, (R") and S € Ag,(R")
with Q1 + Q> = Q, spt(T) Nspt(S) = @, and u(p) = v(p) = T + S.
In particular, there is a § > O such that max{&(T',T),5(S,S")} < & implies
spt(T") N spt(S’) = @. It follows that any Q-point P with §(P, T + S) < 6 can be
decomposed in a unique way as S’ + T’ with (S, S),§(T', T) < 4.

Using the continuity of # and v, in a sufficiently small ball B,(p) we have

1. T+ S|+ Q. T+ S)| <9.

In particular this defines in a unique way continuous maps uy, 4z, V1, v2 such that
upr(p) = U1 + Uz, lep(p) = v1 + Vo, and

15 @1, THllo. 16 (2. SHllos 16 (w1, Tllo, 16 (w2, T)llo < 8.
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Note moreover that, by possibly choosing p smaller, we can assume that both u| g ()
and v| g ,(p) are minimizers. It follows then that the maps u; and v; mustbe minimizers
of the Dirichlet energy. By definition of I, there is a nonempty open set A C B,(p)
where u and v coincide. Given the uniqueness of the decomposition P = S’ + T’
discussed above when §(P, T + S) < §, we conclude that u; = vy and u, = v,
on A. By inductive assumption, this implies that ¥ = v and u, = v, on the whole
ball B,(p). In other words B,(p) C I' and thus p is an interior point of I'. By the
arbitrariness of p we conclude that I" is open, thus completing the proof. [

6.2. Proof of Lemma 6.4. Assume by contradiction that the lemma does not hold.
Then there is a sequence of u, satisfying the Assumptions 2.2 and 2.4 and a sequence
of collections of points P; = {x4,0, X¢,1,- - ., Xg,m—2} With the following properties:

 each P, is p-linearly independent for some fixed p > 0;
o Lpu,(xg,i.2) — Ipu,(xq,i, ) — 0as g — oo for some fixed p > 0;

* Ag(ug) N (B1(0)\ Bs(Vy)) contains at least one point y,, where p > 0 is some
fixed constant and V; = x40 + span{x, 1 — Xg,0,- -, Xg,m—2 — Xg,0})-

Without loss of generality we can assume that Hy , (0,64) = 1. Recalling that
Ipu,(0,64) < A, we can apply the Proposition 6.7 and, up to a subsequence not
relabeled, assume that

* uy; — uin L?(Bea(0)) and locally uniformly;

* u is a minimizer of the Dirichlet energy and u, — u strongly in Whl)b’,z;

* P, converges to some p-linearly independent set P = {xo, ..., Xg};
« the points y, converge to some y € By (0) with u(y) = Q[0].

Observe first that Hy ,,(0,64) = 1 and that » o u = 0. By [13, Proposition 3.22],
either A o (1) has Hausdorff dimension at most m—2, oru = Q []] for some classical
harmonic function ¢. The latter alternative would however imply { = pou = 0
and hence Hy,(0,64) = 0. We conclude therefore that A (u) has dimension at
most m — 2.

In particular Hy ,,(x, p) # O for any positive p. In turn we conclude from the
convergence properties of u, that /g, (4. p) = 1u(y, p) Whenever p < 64 — |y|
and y, — y. Hence we infer that

Tpu(xi,2) = Ipu(Xi, P).

In turn this implies that the function u is homogeneous in |x — x;| in the annulus
B>(x;) \ Bz(x;) with homogeneity exponent o; > 0. We can thus extend u to a
function v; with the same homogeneity over the whole R™. A simple rescaling
argument implies that for every p # 0 there is a neighborhood U of p where v;
is a minimizer of the Dirichlet energy. Using Lemma 6.9, v; and u coincide on
Be4(0) \ {x;}. But then by continuity we conclude that u = v; on Bg4(0).
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Hence we have that

ux) =3y [[Ix—xi|afuj(xi+%)]]. 6.11)

J

Note that, if o; were 0, then the map u would take a constant value different from Q [0],
which is not possible because u(y) = Q[0]. Thus each «; is positive.

Now, although u is defined on Be4(0), using its homogeneity with respect to
any of the points x;, it could be extended to a map v; on the whole R™, as done
above. Each such extension would be a local minimizer of the Dirichlet energy and,
by unique continuation (cf. Lemma 6.9), all such extensions must coincide. We can
therefore consider u as defined on the whole space R™, with (6.11) valid everywhere
and for every x;. Using Lemma 6.8 we conclude that, if

V=x¢+span{x; —xo:1 <i<m-—-2}=:x9+V,

then u is a function of the variables orthogonal to V and u(xo + v) = Q0] for
every v € V. On the other hand, since the notion of p-linear independence is stable
under convergence, V is an (m — 2)-dimensional space. Lemma 6.8 implies also that
the o; s are equal to a number «. Summarizing, if we denote by S the unit circle of the
two dimensional space V-, we have that there is a continuous map £: S — ¢ (R")
such that

u(xo + v+ Aw) = Y [A%;(w)], YveV, YweS, VA =0, (6.12)

J

On the other hand the point y (which is the limit of the points y,) cannot belong to V.
Since u(y) = Q[0], we would conclude that v = Q0] on the (m — 1)-dimensional
space xo + span L. U {y — xo}. This however is a contradiction with the dimension
estimate on A g (u).

6.3. Proof of Lemma 6.6. The proof is entirely analogous to the previous one.
Again by contradiction assume that the statement is false. Then there is a sequence
of u, satisfying the Assumptions 2.2 and 2.4 and a sequence of collections of points
P; = {x4,0,X4.1,.-.,Xqm-2} With the following properties:

 each P, is p-linearly independent for some fixed p > 0,
* Tpu,(x4,0,2) — Ipu,(xq,i,0) —> 0as g — oo for some fixed p > 0;

o if V; = xg,0 +span{xy1 — Xg,0,- .., Xgm—2 — Xq,04, then there are two points
Ya.1: Vg2 € (Xg,0 + Vg) N B1(0) and two radii ry 1, r4 2 € [p, 1] with the property
that

|1¢,uq(yq,1, ra1) — lou, (yqz,rq,2)| >8>0, (6.13)
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Without loss of generality we can assume that Hy ,,,(0,64) = 1. Recalling that
I,u,(0,64) < A, we can apply the Proposition 6.7 and, up to a subsequence not
relabeled, assume that

* ug — u in L?(Bg4(0)) and locally uniformly;

L2,

* u is a minimizer of the Dirichlet energy and u, — u strongly in W, )~;

* P, converges to some p-linearly independent set P = {xg,...,x4};
* the points y, ; converge to some y; and the radii r,; to some r; € [p, 1].

Again arguing as above the plane
L=xp+span{x; —x9:1<i<m—-2}=x0+V
is (m — 2)-dimensional and u has the form (6.12) for some o > 0. We conclude that
Ipu(x,r) =, foranyr > Oandanyx € L. (6.14)

On the other hand yy,y2 € L and 1y, (vq,is7q,i) —> lpu(yi,ri). Thus (6.13)
and (6.14) are in contradiction.

7. Minkowski-type estimate

In this section we combine the previous theorems with the Reifenberg-type methods
developed in [24] to give a proof of the Minkowski upper bound in Theorem 2.5. We
follow in particular the simplified construction of [23].

The following result, which we simply quote from |24, Theorem 3.4], allows us to
turn a small bound on the mean flatness into volume bounds for a general measure p.
Note that generalizations of this result appeared recently in [14,22].

Theorem 7.1 ([24, Theorem 3.4]). Fixk <m € N, let{Bs;(x;)};es < B2(0) C R™
be a sequence of pairwise disjoint balls centered in B1(0), and let | be the measure

=y sk5... (7.1)

JEJ

There exist constants 6o = 69(m) and Cr = Cgr(m) depending only on m such that
if for all B,(x) € B,(0) with x € B{(0) we have the integral bound

d ds
f ([ DE(y,s) —‘) du(y) < 82r% (7.2)
By (x) 0 3

then the measure | is bounded by

p(B1(0) = ) 5§ < Ck. (7.3)

JjEJ
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7.1. Efficient covering. In fact the latter theorem and the results of the previous
sections will be used to prove the following intermediate step

Proposition 7.2. Let u be as in the Assumptions 2.2 and 2.4. Fix any x € Bi5(0)
and 0 < s <r < 1/8. Let D € Ag N B,(x) by any subset of Ag, and set
I/ = sup{1¢(y,r) |y e D}. There exist a positive 6 = 87, = §(m,n, Q,A), a
constant Cy = Cy(m) > 1, a finite covering with balls By, (x;) and a corresponding
decomposition of D in sets A; C D with the following properties:

(@) A; C By, (x;) and s; = s;
(b) Z,‘ ,yl’_"_z = CV’"m_z;

(¢) for eachi, either s; = s, or

sup{ly (v, 8i):y € A;} < U —§6. (7.4)

With this proposition at hand the theorem follows easily:

Proof of Theorem 2.5. We consider the set Dy := Ao N B(0) and recall that, by
Lemma 3.4,

Uop = sup{ly(»,1/8) : y € Do} < C(A +1). (7.5)

Apply Proposition 7.2 with r = 1,5 = pand D = Dy and let {A4;} and { By, (x;)},
i € I, be the corresponding decomposition and covering of Dy. In particular

Z S;n_z < Cy .
iel;
Let I{ :={i : 5; = p}. For each s; > p we instead have the frequency drop
sup{ly (v, i) 1y € Ai} <Up—6.

For every i € I, \ I{ apply the Proposition 7.2 again with D = A;, r = s; and
s = p. We then find a decomposition {A; ;} of each A; and corresponding balls
{Bs; ; (xi,j)}, j € I{, with

§ : m—2 m—2
.Sl-’j E CV"I .
jelt

We now define I as the union of /{ and all 7} with i ¢ If. By renaming the sets
and the radii, we have a new decomposition {A;} of Ag N Bi3(0),i € I, and a new
covering { By, (x;)}, i € I, with

Y strCv ) $F<Ch.

i€l el
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This time, however, if s; > p, then the frequency drop is given by
Sup{1¢ (y,.\',') 1y € A,’} < Up—26.

Proceeding inductively for each k we find a decomposition {A4; }; ey, and correspond-
ing covering { By, (x;)} with the properties that

m—2 k
2 TGy

iely
and either s; = p, or
sup{/y (v,s:) 1y € Ai} < Ug —ké.

Clearly, since the frequency function is always positive, after atmostk = [§~' Uy | +1
steps all s; for i € I, equal p. We have thus found a family of N balls B,(x;)
with Np™™2 < Cy = C(m,n, Q, A) which cover Ag N By(0). Obviously,

Bp(AQ N Bl/g(())) g sz(x,-)
and we thus conclude
|Bp(Ag N Big(0))| < 2" Np™ < Cp?. O

7.2. Intermediate covering. Proposition 7.2 will in fact be reached through an
intermediate covering.

Lemma 7.3. Let u be as in Assumptions 2.2 and 2.4, p < 100 Yando <1 < % be
three given positive numbers and x € Bijg(0). Let D be any subset of Ag N B (0)
and set U = sup,ep 1g(y, 7). Then there are a 675 = 8(m.n,Q,A,p) > 0,
a constant C = Cg(m) and a covering of D by balls By, (x;) with the following
properties

(a) ri = 10pao;
(b) Zie] rim~2 < CR‘Cqu,'

(¢) Foreachi, either ri < o, or the set of points
Fy = DN By (x;))N{y: Iy(y,pri) > U =6} (7.6)

is contained in Byr,(L;i) N By, (x;), for some (m — 3)-dimensional affine
subspace L;.

Proof. By a simple scaling and translation argument, from now on we can simply
assume that t = % and x = 0. Observe that after this operation /4 (0, 64) might have
increased: anyway, according to Lemma 3.4, we will still be able to bound it in terms
of A. For the rest of the argument we treat § > 0 as fixed and detail the conditions
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that it will have to satisfy along the steps of the proof: we will see at the end that all
such conditions are met if § is chosen sufficiently small.

The first part of the proof consists in constructing a first covering via an inductive
procedure consisting of k = —[log;,,(80) ] steps (note that « is the smallest integer
exponent such that 87 1(10p)* < o). At each step k we will thus have a covering
of D by balls €(k) = {B,, (x;) : i € I}. The starting cover is given by { Bi/3(0)}
and the cover €(k + 1) is obtained by modifying € (k) suitably: in particular we
keep some “bad” balls B of €(k) in €(k + 1) and we refine the covering on some
other “good” balls B. Along this procedure we have the following conditions:

(i) the radii of the balls in € (k) are all equal to some 8~!(10p)/ with integer
exponents j ranging from O to k;

(ii) if B, (x), By (x') € €(k), then B,s(x) N Bus(x') = 0;

(iii) if a ball in €(k) has radius larger than 8 1(10p)¥, then it is certainly kept
in€(k +1).

Step 1. Inductive procedure. Consider a ball B, (x) € €(k). If r = 87 1(10p)/ for
some j < k, then we assign it to € (k + 1). If r = 871(10p)*, consider the set

F=F(B,(x))=DNB(x)N{y: Is(y,pr) > U —é}.
We then:

(bad): assign B,(x) to €(k + 1) if F' does not pr-span an (m — 2)-dimensional
space;

(good): discard B,(x) if F pr-spans an (m — 2)-dimensional space, which we call
L = L(B,(x)).

We note first that, if (bad) holds, then there is an (m — 3)-dimensional affine space L
such that F C B,(L), cf. Remark 6.3. If (good) holds, we must replace B, (x)
in €(k + 1) with a new collection { By, (x;)}.

More precisely, in the latter case consider an (m — 2)-dimensional affine space V
that is pr-spanned by F. By Lemma 6.4, if § is chosen smaller than a constant
S(m, n, Q, A, p), we can assume that D N By (0) is contained in B, (V). Consider
now all the good balls { B’} = (k) C €(k), the corresponding affine spaces V; and
the set

G(k) := D N _J Byopr (Vi)

We can cover G (k) with a collection F (k + 1) of balls with radius (10p)k*! such
that the corresponding concentric balls of radii 2p(10p)* are pairwise disjoint. It
will also be important for the next step that such balls are chosen so that their centers
are contained in D N (U; B N V;).
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Consider now the collection B(k) C € (k) of balls that have been kept in the
covering € (k + 1) and let B1/5(k) be the corresponding collection of concentric balls
shrunk by a factor é We include B € ¥ (k + 1) in the covering €(k + 1) if and
only if B does not intersect any element of $81/5(k). We need however to check that
C(k + 1) is still a covering of D. Consider that, by construction 8(k) U F (k + 1) is
certainly a covering of D. Pick apointx € D: ifitis contained in an element of 8 (k)
we are fine. Otherwise it must be contained in an element B of ¥ (k + 1). If B is
not contained in € (k + 1), then there is a ball B,/ (x") € B(k) such that B,;(x")
intersects B. Since however the radius of B is at most than 10r" < r’/10, it is obvious
that B is contained in B, (x’).

Step 2. Frequency pinching. We next claim the following pinching estimate: for any
given nn > 0, if we choose § sufficiently small, then

either € (k) = {Bi3(0)} or Is(x,ps/5) >U —n, VBs(x)e€(k). (1.7)

Indeed, unless the refining procedure stops immediately, for any Bg(x) € €(k) we
must have s = 871 (10p)/ *! for some ; € N. Following our construction, we then
find a good ball B" = Bg—1(y,); € C(j) such that F(B’) 871 p(10p)/ -spans an
(m — 2)-dimensional affine space V' with x € V' N B’. Moreover V N B’ contains
at least one point z € F(B’). It then follows from Lemma 6.6 that, if we choose &
sufficiently small (depending on p and ), then we can ensure

g (x, ps/5) — Ip(z,5)| <

N3

Since however /¢ (z,s) > U — §, the claim follows by imposing additionally § < 7.

Step 3. Discrete measures. The covering of the statement of the lemma is now given
by €(x) and it is clear that to complete the proof it just suffices to prove the packing
bound

Y $" < Cr(m).

By (x)€€ (x)

For this reason, from now we enumerate the balls in €(x) as Bsg; (x;), i € /. Since
our goal is to use Theorem 7.1, we introduce the measures

i = Zs{”_zc?xi and  py = Z STy
el iel,ri<s
Observe that:
* W = puoift =7
¢ K= H1/405
* if we definer = 4]—0(1(),0)", then ug = Ofors < r.
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We will show that pus(Bs(x)) < Cr(m)s™ 2 for every s and every x. Indeed, if we
set % = log,(r~1/8) — 4, it suffices to show that

ps(Bg(x)) < Cr(m)s™ 2, forall x and for all s = 727/ with j =0,1,2,...,x.

(7.8)
Note indeed that, unless { By, (x;)} is the trivial cover {Bis(0)}, all the radii s;
are smaller than % < ﬁ and thus (7.8) shows that p(Bj/128(x)) < Cg(m) for
every x € Bijg(0). Covering Bi/g(0) with finitely many balls of radius llﬁ implies
then the desired packing estimate.

The estimate (7.8) will be proved by induction over j. Note that the starting step
is fairly easy. Indeed, 7 (B5(x)) = N(x,r)r™ 2, where N(x,r) is the number of
balls By, (x;) withs; = r and x; € B7(x). Since such balls are pairwise disjoint and
contained in B,7(x), the number, N(x, s) is bounded by 2™.

The remaining portion of the proof is devoted to show that if (7.8) holds for
some j < x then it holds for j + 1. Hence from now on we set r = 2/7
and, assuming pu,(B,(x) < Cgr(m)r™ 2 for every x, we want to show that
ar(Bar(x)) < Cr(m)(2r)™2 for every x.

Step 4. Inductive packing estimate: coarse bound. We first show the coarser bound
f2r(Bar(x)) < C(m)Cr(m)(2r)™ 2, (7.9)

where Cg(m) is a dimensional constant larger than 1. This is rather easy to achieve
since we can split

iel, r<s;<2r
Since B, (x) can be covered by C(m) balls B, (x;), the inductive assumption clearly
implies
fr(Bar(x)) < C(m)Cr(m)r™ 2.
On the other hand
Jir(By(x)) < N(x,2r)(2r)"2,

where N(x, 2r) is the number of balls By, withi € I,r <s; < 2r and x; € By, (x).
The corresponding smaller balls B, (x;) are then all pairwise disjoint and contained
in B3, (x), from which the bound N(x, r) < C(m) follows readily.

Step 5. Inductive packing estimate: mean flatness and conclusion. We now wish to
improve the coarse bound (7.9) to

far(Bar(x)) < Cr(m)(2r)™ 2. (7.10)
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We set for convenience jt := o, L Ba,(x). The idea is to apply a (scaled version)
of Theorem 7.1. If we can show that

t dis
[ (f Dg_z(z,s) __s) dp(z) < §5t™ 2 Yy € By (x), VO <t <2r
B/(y) \Jo §

(7.11)
(where §y is the constant of Theorem 7.1), we will then conclude

Ji(Bzr(x)) < Cr(2r)™ 72,

which is the desired bound.
The key for deriving (7.10) is that, by (7.7), we can, without loss of generality,
assume

Ip(xi,psi) > U — 1. (7.12)

In fact if this estimate did not hold the covering { By, (x;)} would be given by { Bi/5(0)}
and the claim (7.8) would be trivially true.
In order to obtain the bound (7.11), we first set

Ws32s(xf) — [¢()Ci, 325‘) - [¢(~xi’ S), it s > Sis

) (7.13)
0, otherwise,

and then observe that for all §

D2 (x5.5) < Clomn. 0.05™ 2 [ W) i), forall0<s < 1.

By (x;)
(7.14)
Indeed, if s < s;, the above inequality reduces to 0 =0 because spt(i) N By (x;) = {x; }.
Otherwise, it follows from Proposition 5.3.
Fix any ¢t < 2r. Using (7.14) we bound

A ds\ ,_
I §= D7 (z,5) — )dp(2)
B (y) 0 8

t
C gl—m Wo(O)dr()dsdix
< fB N [Q ; ]B TR ds dac)

t (7.15)
c [ gl [ W,(8) dji(e) dji(z) ds
0 B (y) / Bs(2)

I

In (7.15) we can certainly intersect the domains of integrations with B, (x), since
vanishes outside. We also claim that we can substitute p with jug. First we look at the
innermost integral: if { € spt(jt) \ spt(is), then { = z; forsome i € I withs; >
and, by definition W;(¢) = 0. As for the integral in z, if z = z; for some i € I with
s; > s, then Bg(z) N spt(x) contains only z and the innermost integrand vanishes
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because W(z) = 0. Substituting ;& with w, and applying again Fubini’s theorem,
we can write

t
I<cC f glom f ,(0) dpus(2) dps (O ds.  (7.16)
0 B s(y)NB2,(x) Bg()NB2,(x)

Next, for s < r we can use the inductive estimate (7.8), whereas for r < s < 2r we
can use the coarser bound (7.9) to estimate the inner integrand with C(m)s™ 2. We
therefore achieve

t o dS
[ = Cim, 1, Q,A)[ f Wy(0) dps (§) 2
0 BtJrs(J’)nBZr(x) )

g - ds
=c[ [ W, (©) diae = 7.17)
0 JBrys(y)NB2y(x) §

L ds
< CfBz,(y)fo W) < dpu(©).

Next fix ¢ € spt(u,). Then obviously ¢ = z; for some i. Recall that W;(z;) = 0 if
s < s; and that Wy(z;) = 14(z;,325)— I4(z;, ) otherwise. Consider now the largest
integer k such that 2s; > ¢ and note that 32 - 2¢T1s; < é. Then we can derive the
following estimate

F ds i ds : ds
Ws@@)— = | Welz)— = | (Ip(z1,328) — I4(2;,25)) —
0 S i R s 3

i
2j+lS[

K
ds
<Y [ e 320) — dpGai)
f 2./3,— A)
Jj=0
K . . 2J'+lsi s
s Z([¢(Z,‘,32-2j+1si)—1¢(Z,‘,2JS,‘))[ —
j— 2js,‘ N
Jj=0
K
=1log2 Y (Is(zi, 25 5;) — Iy (2,2 1))
Jj=0
5 «k
= log 2 Z Z (l¢(zi,2f+e+1s,-) — Iy (24, 2f+ﬁs,-))
£=0j=0
5
e lOgZZ (I¢(Zi, 2K+e+1.\‘i) = 1¢(Zi, ZeSi))
£=0

.7
< 6log2(lg(zi. §) — Ip(zi,5:)) < 6nlog?2. (7.18)
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Next, with an obvious covering argument we can use the inductive estimate (7.8)
(for t < r) and the coarser estimate (7.9) (in the case r < ¢t < 2r), to estimate
i (Bas () < C(m)t™ 2. Combined with (7.18), the latter bound in (7.17) yields

t A
[ (/ D:—fﬁz(z,s) —S) dit(z) < C(m,n, Q,AN)ynt™ 2. (7.19)
Bi(») \Jo .

At this point, choosing n smaller than some appropriate constant c¢(m,n, Q, A)
(which requires & to be chosen smaller than a suitable positive constant ¢(m, n, Q,
A, p)) allows us to fulfill (7.11) and thus complete the proof of (7.8). ]

7.3. Proof of Proposition 7.2. As in the proof of the previous lemma, we start by
observing that without loss of generality we can assume x = Oand r = —}; The proof
of the Proposition is again an inductive procedure to generate the correct covering,
where we use Lemma 7.3. The parameter p appearing in the Lemma is, for the
moment, fixed: it will be chosen, sufficiently small, only at the end.

We start by applying Lemma 7.3 a first time with T = % and o0 = 5. Let
€(0) = {By, (x;)} be the corresponding covering. We then divide €(0) as

G0) ={By,(xi):r; <s} and B(0) = {B,, (x;) : r; > s}.

Next, for each B,, (x;) € B(0) consider the set F; and the affine plane L; given by
Lemma 7.3. Each B>, (L;) N By, (x;) can be covered by anumber N < C(m)p>™™
of balls of radius 4pr;. If 4pr; < s we then include these balls in a new (additional)
collection € (1). Otherwise we apply to each of these balls and for each i Lemma 7.3
again and include all these balls in the new collection € (1). Observe that we have
the bound

D T CmpT Y ()" = Clmp ) r

By; (x;)€€(1) By ; (x;)€€(0) By, (x;)€€(0)
In particular if p is chosen sufficiently small, we can ensure that
1 =
Cmp == = p=QCm)" = po(m). (7.20)

We repeat the procedure finitely many times until we find a € (k) that contains no
balls of radius larger than s. We then define the collection € = U; <, €(j). Clearly

k
Sttt Y et <aCk(m).

By, (x;)€€ (=0 By, (x,)€€(0)

From now on p is fixed, depending only on the dimension m.
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We then define inductively the sets A; for each B,,(x;) € €. We start with the
elements € (0):

 if B, (x;) € B(0), namely r; < s, we thenset A, = D N B, (x;):
* otherwise we set A; = (D N By, (x;)) \ F;, where F; are the sets of Lemma 7.3.

Observe that by construction the F;’s are covered by € (1) and thus

pc |J 4 | Bix).

By, (x;)€€(0) By, (x1)€E(1)

We then proceed inductively and notice that at the final step all balls of € (k) have
radii no larger than s. Thus the final collection of sets A; is a covering of D.
Moreover, by definition, either r; < s, or

sup{ly (y,pri):y € Aj} <U —§.

This condition differs from (7.4) just by a factor of p = p(m) inside the frequency /.
Since A; C By, (x;), we can clearly cover this set by a family of C(m)p™™" = C(m)
balls By, (x;;) (recall that p has already been fixed as a positive geometric constant
depending only on m in (7.20)). By setting A;; = Bpg; (xi;) N A}, we get (7.4) on
this set, and preserve up to a constant C(m) the packing estimate.

Finally, some of the balls in € have radii strictly smaller than s. However by
construction they are all larger than 10ps. Hence we can substitute such balls with
balls of radius s at the price of paying another multiplicative constant C(m) in the
packing estimate.

8. Rectifiability

In this section we complete our plan by giving a proof of Theorem 2.6. The crucial
ingredient is the content of [4, Corollary 1.3], which we cite here without proof.

Theorem 8.1 ([4, Corollary 1.3]). Let S C R” be # k measurable with J* (S) < @
and consider p = J K\_S. Then S is countably k-rectifiable if and only if

1
ds
k N il . ,
/(; Du(x,‘s)—S <00, forp-ae. x. (8.1)

Using a different proof, a similar result was obtained in [24, Theorem 3.3], which
in some sense is the “continuous version” of Theorem 7.1. Indeed, the rectifiability
result is a corollary of the proof of Theorem 7.1, since in order to obtain the uniform
bounds for the measure p one needs to build smooth manifolds that approximate
the measure p at smaller and smaller scales. If instead of a discrete measure p
one considers the k-dimensional Hausdorff measure #¥ restricted to a set S, the
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construction basically works in the same way and produces a Lipschitz approximation
for S that coincides with S up to a set of small measure. By repeating this construction
inductively, one proves rectifiability.

Notice also that in order to obtain the estimate (8.1), we will need to use the
uniform upper Ahlfors bounds on the measure J g, A, which is the main product
of our construction, and the main point of Theorem 7.1. With this uniform estimate
in hand, it is easier to apply directly Theorem 8.1 instead of going through the details
of [24, Theorem 3.3].

Proof of Theorem 2.6. We know from Theorem 2.5 that & = H™ 2L (Ao N Biyg)

is a finite Radon measure. But in fact, by a simple scaling argument, we achieve the
uniform estimate

w(B,(x)) < C(m,n, Q, A\)yr™ 2. (8.2)

As in the last step of the proof of Lemma 7.3 we use Proposition 5.3 to estimate

t d .
f / D 2(z,5) = du(z)
Bi(y)Jo )

t
scf [ W@ auds due)
By (J’) 0 B;(z)

t
A1—m 32s d d ds
c [0 5 [B . [B W du () @) ds

I3
<c f g1om [ W32 (¢) f du@) du(z)ds  (83)
0 Bz-i—s()’) By (§)

@2 g 325
e f s W2 () dp(©) ds
0 Bt+.s‘(y)
L aos o 45
14 W™ (0 — dp(©) .
B (y) /0O 8
Next arguing as in the proof of (7.18), we reach
T 1
W25 (0) — < 6log2(1y(¢, ) = 14§, 0)) < C(m,n, Q. 7).
0 X

as long as 32¢ <
conclude

%. Inserting the latter estimate in (8.3) and using (8.2) we then

B ds
D) (z,8) —dp(z) < o0,
Bi(y) /0 &

whenever ¢ < % . % We can thus apply Theorem 8.1 to conclude the rectifiability
of Ag N By (0). ]
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