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An effective universality theorem for the Riemann zeta function

Youness Lamzouri] Stephen Lester and Maksym Radziwill*

Abstract. Let 0 < r < 1/4, and f be a non-vanishing continuous function in |z| < r, that
is analytic in the interior. Voronin’s universality theorem asserts that translates of the Riemann
zeta function £ (3/4 + z + it) can approximate f uniformly in |z| < r to any given precision &,
and moreover that the set of such ¢ € [0, T'] has measure at least ¢(¢)T for some c(g) > 0,
once T is large enough. This was refined by Bagchi who showed that the measure of such
t € [0, T]is (c(e) + o(1))T, for all but at most countably many & > 0. Using a completely
different approach, we obtain the first effective version of Voronin’s Theorem, by showing that
in the rate of convergence one can save a small power of the logarithm of 7". Our method is
flexible, and can be generalized to other L-functions in the 7-aspect, as well as to families of
L-functions in the conductor aspect.

Mathematics Subject Classification (2010). 11M06.

Keywords. Riemann zeta function, universality.

1. Introduction

In 1914 Fekete constructed a formal power series Y 7 | anx" with the following
universal property: For any continuous function f on [—1, 1] (with f(0) = 0) and
given any & > 0 there exists an integer N > 0 such that

sup ‘ Z anx” — f(x)| <e.
n<N

—l=x=I1

In the 1970s, Voronin [14] discovered the remarkable fact that the Riemann zeta-
function satisfies a similar universal property. He showed that for any r < %, any
non-vanishing continuous function f in|z| < r, which is analytic in the interior, and

for arbitrary & > 0, there exists a 7" > 0 such that

max
|z|<r

§(%—|—iT+z)*.f(z)‘<s. (1.1}

Voronin obtained a more quantitative description of this phenomena, stated below.

*The first and third authors are partially supported by Discovery Grants from the Natural Sciences and
Engineering Research Council of Canada.
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Voronin’s universality theorem. Let 0 < r < % be a real number. Let { be a
non-vanishing continuous function in |z| < r, that is analytic in the interior. Then,
Jor any ¢ > 0,

1
liminf—-meas{T <t <2T:max [((3 +it+2z)— f(2)| < 8} >0, (1.2)

T—00 |z|<r

where meas is Lebesgue’s measure on R.

There are several extensions of this theorem, for example to domains more general
than compact discs (such as any compact set K contained in the strip 1/2 < Re(s) < 1
and with connected complement), or to more general L-functions. For a complete
history of this subject, we refer the reader to [11].

The assumption that f(z) # 0 is necessary: if f were allowed to vanish then
an application of Rouche’s theorem would produce at least < 7" zeros p = B+ iy
of {(s) with B > % +eand T <y < 2T, contradicting the simplest zero-density
theorems.

Subsequent work of Bagchi [ 1] clarified Voronin’s universality theorem by setting
it in the context of probability theory (see [7] for a streamlined proof). Viewing
é‘(% + it + z) with ¢t € [T,2T] as a random variable X7 in the space of random
analytic functions (i.e Xr(z) = é‘(% + iUr + z) with Ur uniformly distributed
in [T,2T]), Bagchi showed that as T — oo this sequence of random variables
converges in law (in the space of random analytic functions) to a random Euler
product,

&5, X)i= H(l B X[Ef))—l
p

with {X(p)}, a sequence of independent random variables uniformly distributed on
the unit circle (and with p running over prime numbers). This product converges
almost surely for Re(s) > % and defines almost surely a holomorphic function
in the half-plane Re(s) > o¢ for any o9 > % (see Section 2 below). The
proof of Voronin’s universality is then reduced to showing that the support of
£(s + 3/4, X) in the space of random analytic functions contains all non-vanishing
analytic f:{z : |z|] < r} — C\ {0}. Moreover it follows from Bagchi’s work that the
limitin Voronin’s universality theorem exists for all but at most countably many ¢ > 0.

In this paper, we present an alternative approach to Bagchi’s result using methods
from hard analysis. As a result we obtain, for the first time, a rate of convergence in
Voronin’s universality theorem. We also give an explicit description for the limit in
terms of the random model (s, X).

Theorem 1.1. Let 0 < r < %. Let f be a non-vanishing continuous function on
|z| < (r + 1/4)/2 that is holomorphic in |z| < (r + 1/4)/2. Let o be a real-valued
continuously differentiable function with compact support. Then, we have:
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2T
_[ max|§‘ zt—l—z (Z)I) dt

|z|<r

= E(w(max £(3 + 2, X) (z)\)) + O((log T)~G/4=n)/11+o (1))

lz|<r

where the constant in the O depends on f, @ and r.

If the random variable Y, y = max; <, |§(% + z,X) — f(2)| is absolutely
continuous, then it follows from the proof of Theorem 1.1 that for any fixed ¢ > 0
we have

l-meas{T<t<2T max |{(2 + it +2) — f(z)|<s}
T lz|<r

= IP( max |§ +z,X) - (z)‘ < &) + O((log T)'“(3/4"“r)/11~+~o(1))‘

|z|<r

Unfortunately, we have not been able to even show that Y, 5 has no jump
discontinuities. We conjecture the latter to be true, and one might even hope that Y, »
is absolutely continuous.

A slight modification of the proof of Theorem 1.1 allows for more general domains
than the disc |z| < r. Furthermore, if @ > 1( () (where 15 is the indicator function
of the set §), then it follows from Voronin’s universality theorem that the main term
in Theorem 1.1 is positive. Explicit lower bounds for the limit in (1.2) (in terms of ¢)
are contained in the papers of Good [3] and Garunkstis [2].

Our approach is flexible, and can be generalized to other L-functions in the #-
aspect, as well as to “natural” families of L-functions in the conductor aspect. The
only analytic ingredients that are needed are zero density estimates, and bounds on the
coeflicients of these L-functions (the so-called Ramanujan conjecture). In particular,
the techniques of this paper can be used to obtain an effective version of a recent
result of Kowalski [7], who proved an analogue of Voronin’s universality theorem
for families of L-functions attached to G L, automorphic forms. In fact, using the
zero-density estimates near 1 that are known for a very large class of L-functions
(including those in the Selberg class by Kaczorowski and Perelli [6], and for families
of L-functions attached to G L, automorphic forms by Kowalski and Michel [8]), one
can prove an analogue of Theorem 1.1 for these L-functions, where we replace 3/4
by someo < 1 (andr <1 —o0).

The main idea in the proof of Theorem 1.1 is to cover the boundary of the disc
|z| < r with a union of a growing (with 7") number of discs, while maintaining
a global control of the size of [{'(s + z)| on |z| < r. It is enough to focus on
the boundary of the disc thanks to the maximum modulus principle. The behavior
of (s + z) with z localized to a shrinking disc is essentially governed by the
behavior at a single point z = z; in the disc. This allows us to reduce the problem to
understanding the joint distribution of a growing number of shifts log {(s + z;) with
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the z; well-spaced, which can be understood by computing the moments of these
shifts and using standard Fourier techniques.

It seems very difficult to obtain a rate of convergence which is better than
logarithmic in Theorem 1.1. We have at present no understanding as to what the
correct rate of convergence should be.

2. Key ingredients and detailed results

We first begin with stating certain important properties of the random model ¢ (s, X).
Let {X(p)}p be a sequence of independent random variables uniformly distributed
on the unit circle. Then we have

X(p) X(p) ‘
—log (1— e ) = = + hx(p,s),
where the random series
> hx(p.s), (2.1)
P

converges absolutely and surely for Re(s) > 1/2. Hence, it (almost surely) defines
a holomorphic function in s in this half-plane. Moreover, since E(X(p)) = 0 and
E(|X(p)|?) = 1, then it follows from Kolmogorov’s three-series theorem that the

series
¥ X(f ) (2.2)
s P

is almost surely convergent for Re(s) > 1/2. By well-known results on Dirichlet
series, this shows that this series defines (almost surely) a holomorphic function on
the half-plane Re(s) > oy, for any oy > 1/2. Thus, by taking the exponential of the
sum of the random series in (2.1) and (2.2), it follows that £ (s, X') converges almost
surely to a holomorphic function on the half-plane Re(s) > ayg, for any oy > 1/2.

We extend the X (p) multiplicatively to all positive integers by setting X (1) = 1
and X(n) := X(p1)®' --- X(p)*, if n = p{' ... pi¥. Then we have

— 1, ifm =n,
E(X(m)X(m)) = 23
( DRl )) 0, otherwise. 2.3)

Furthermore, for any complex number s with Re(s) > 1/2 we have almost surely
that

(s, Xy =Y Xn)

ns
n=1
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To compare the distribution of £(s 4 i¢) to that of { (s, X'), we define a probability
measure on [T, 27T] in a standard way, by

1
Pr(S) := ?meas(S), forany S C [T, 2T].

The idea behind our proof of effective universality is to first reduce the problem
to the discrete problem of controlling the distribution of many shifts log {(s; + it)
with all of the s; contained in a compact set inside the strip % < Re(s) < 1. One
of the main ingredients in this reduction is the following result which allows us to
control the maximum of the derivative of the Riemann zeta-function. This is proven
in Section 4.

Proposition 2.1. Let 0 < r < 1/4 be fixed. Then there exist positive constants by,

by and b3 (that depend only on r) such that

]P’T(lmlax |§’(% + it + Z)l > eV) < exp ( — blVl/(l_U(’))(log V)“(’)/('_"(’)))
Z|<r

where o (r) = %—r, uniformly for V inthe range by <V < b3(log T)' 7 /(loglog T).

We also prove an analogous result for the random model ¢ (s, X'), which holds for
all sufficiently large V.

Proposition 2.2. Let 0 < r < 1/4 be fixed and o(r) = % — r. Then there exist

positive constants by and b, (that depend only on r) such that for all V- > b, we have

P( max [{'(3 + z, X)| > eV) & exp (— by Vo) (jog )/ A=a(r)y,

|z|<r

Once the reduction has been accomplished, it remains to understand the joint
distribution of the shifts

{l()gé‘(sl +it),log{(s2 +it),... . logl(sy +it)}

with J — oo as T" — oo at a certain rate, and sy, ..., sy are complex numbers with
1/2 < Re(s;) < 1 forall j < J. Heuristically, this should be well approximated by
the the joint distribution of the random variables

{log@‘(.\'l,X),log{(sz,X),...,logé’(SJ,X)}.

In order to establish this fact (in a certain range of J), we first prove, in Section 5,
that the moments of the joint shifts log {(s; +-it) are very close to the corresponding
ones of log ¢ (s, X), for j < J.
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Theorem 2.3. Fix 1/2 < o9 < 1. Let s1,82,...,5,F1,. .., ¢ be complex numbers
in the rectangle o9 < Re(z) < 1 and |Im(z)| < T©@o~V2/4  Then, there exist
positive constants c3,cs, s and a set &(T) C [T,2T] of measure < T'7¢3, such
that if k, t < cqlog T/ loglog T then

1 . L
T (j:110g§(sj +it))(}1_[:110g§’(rj+it))dt

[T,2TI\&(T)
k
= 5(( [Troezess. ) (
j=1

Having obtained the moments we are in position to understand the characteristic
function,

£
[ logt(r. X))) + O(T ™).

i=1

1 2T J
Or(u,v) = ?f exp (’(Z (ujRelogC(.vj+it)+vjlmlog(j(,vj +it)))) dt,
T .
J=1
where u = (uq....,uy) € R andv = (vy,...,vy) € R/. We relate the above

characteristic function to the characteristic function of the probabilistic model,

J

Drpa(u,v) = E(exp (’(Z (ujRelogé‘(sj, X) 4+ vilmlog(s;, X)))))

J=1

This is obtained in the following theorem, which we prove in Section 6.

Theorem 2.4. Fix 1/2 < o < 1. Let T be large and J < (log T)? be a positive
integer. Let 8y1,53,...,57 be complex numbers such that min(Re(s;)) = o and
max(|Im(s;)|) < T2/ Then, there exist positive constants ¢1(0), ¢2(0), such
that for allu,v € RY such that max(|u;]), max(|v;|) < c1(o)(log T)? /J we have

‘ log T
dr(u,v) = Opue(u,v) + Ol exp| —c2(0)————— | |-
loglog T

Using this result, we can show that the joint distribution of the shifts log £ (s; + it)
is very close to the corresponding joint distribution of the random variables
log £(sj, X). The proof depends on Beurling—Selberg functions. To measure how
close are these distributions, we introduce the discrepancy D7 (s1,...,s5s) defined
as

Pr(logl(s; +it) e Rj, Vj < J)
—P(logl(s;, X) e R;, Vj < J)

sup
(R ,...,:R_[)CC"’

’
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where the supremum is taken over all (Ry,...,Ry) C C/ andforeachj =1,...,J
the set R ; is arectangle with sides parallel to the coordinate axes. Our next theorem,
proven in Section 7, states a bound for the above discrepancy. This generalizes
Theorem 1.1 of [10], which corresponds to the special case J = 1.

Theorem 2.5. Let T be large, 1/2 < o < 1 be fixed and J < (log T)*/? be a
positive integer. Let 81,582, ...,87 be complex numbers such that

% < 0 := min (Re(sj)) < max (Re(.s'j)) <1 and max (|Im(sj)]) < T4,
J J J

Then, we have

J2
(log )

With all of the above tools in place we are ready to prove Theorem 1.1. This is
accomplished in the next section.

Dr(s1,....80) <

3. Effective universality: Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 using the results described in Section 2.
First, by the maximum modulus principle, the maximum of |§(% +it+z)— f(2)|
in the disc {z : |z| < r} must occur on its boundary {z : |z| = r}. Our idea consists
of first covering the circle |z| = r with J discs of radius € and centres z;, where
zj€{z |zl =riforalll < j < J,and J < 1/e. We call each of the discs D;.
Then, we observe that

max‘é‘ +it +z;) — f(zj)’<max|§( +it+z)— f(2)
" <max max [{(2 +if +z)— f(z)] 1)
Jj<J zedD; ' ’
Using Proposition 2.1, we shall prove that for all j < J (where J is a small power
of log T') we have
max |{(3 +it +z2) — f(2)| = [8(3 + it + z;) — f(z)))
zeD;
for all ¢+ € [T,2T] except for a set of points ¢ of very small measure. We will then
deduce that the (weighted) distribution of max|; <, |é’(% +it 4+ z) — f(z2)] is very
close to the corresponding distribution of max; IQ(% + it 4+ z;) — f(z;)|, for
€ [T, 2T]. We will also establish an analogous result for the random model (s, X)
along the same lines, by using Proposition 2.2 instead of Proposition 2.1. Therefore,
to complete the proof of Theorem 1.1 we need to compare the distributions of

Tax[é‘ +it +z;)— f(z;)| and maxlg‘ +zj,X) — f(z))].
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Using Theorem 2.5 we prove the following:

Proposition 3.1. Let T be large, 0 < r < 1/4and J < (log T)®/*=/7 be a positive
integer. Let z1, ..., zy be complex numbers such that |z ;| < r. Then we have

I]P’T(rj_rlsa}tlé'(% + it +Zj) —f'(zj)‘ < u)

J loglog T)®/5
—P(mj}\ﬁﬁ +2j,X) = f(z))| Su)} &, oL ElenT)
1=

(log T)B/4=n)/5"

Proof. Fix a positive real number u. Let 4 7 (T') be the set of those ¢ for which
larg¢(3 + it + zj)| <loglogT

forevery j < J. Since

Re(2 +it+z;)>32—r and Im(2+ir+z;) =14 O(),

then it follows from Theorem 1.1 and Remark 1 of [9] that for each j < J we have

1
PT(‘ arg{(% +it+ Zj)l > loglog T) < exp (— (loglog Ty +r) l)

(3.2)
= (log T)*
Therefore, we obtain
J
Pr([T.2T]\ A (T)) = Y Pr(|argl(3 +it +z;)| > loglog T)
T J 1

< logT)* < Tlog T2
and this implies that
PT(I;DSH.)I{ ii;(% +if + Zj) = f(ZJ)\ < u)

_ ]P’T(rjng} 03 +it +2;) = f&)| <u t € AJ(T))

+ 0((10;T)2). (3.3)

For each j < J consider the region
Y = {z e — f(z;)] <u, [Im(z)| < loglogT}.

We cover U; with K =< area(U;)/e? = (loglog T)/e* squares R4 with non-
empty intersection with U ;, and with sides of length ¢ = &(T'), where ¢ is a small
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positive parameter to be chosen later. Let K ; denote the set of k € {I,2,..., K}
such that the intersection of R with the boundary of U ; is empty and write K ]C
for the relative complement of K ; with respect to {1,2,...,K}. Note that
|.K7| = loglog T'/¢e. By construction,

( U :ﬂj,k) C u]' C ( U e(Rj,k).
keX k<K
Therefore the RHS of (3.3) can be expressed as
Pr(¥Yj <J, Yk < K :logl(3 +it+z;) € Rjx) + &1,

where by Theorem 2.5

E1< ) Y Pr(logd(3 +it+z;) € Rjx)
J‘SJkEJC"If

1
<<Z Z( logé‘ + zj, )Eﬂj,k)-i-W) (3.4)

ji<J keJ(‘

7. loglog T By 1 )
e (log T)3/4-r

and in the last step we used the fact that log {(s, X') is an absolutely continuous
random variable (see for example Jessen and Wintner [5]). We conclude that

IP’T(max|é' +tt—|—Z, f(Zj)IS”)
=Pr(¥Vj <J, Yk <K :logt(3 +it+z;)eR;i)

+0(Jl log T + —o8log T ) (3.5)
£ 0g 10 ——— ], .
808 e(log T)3/4-r

Additionally, it follows from Theorem 2.5 that the main term of this last estimate
equals

J2%(loglog T)?
P(Vj <J, Vk <K :logt¢(3 4z, )eﬂj,k)+0( (log log )). (3.6)

et(log T)3/4-r
We now repeat the exact same argument but for the random model ¢ (s, X') instead
of the zeta function. In particular, instead of (3.2) we shall use that
P(largd(2 +z;. X)| > loglog T) < exp ( — (log log T)(1/4+’)_|)

1
< (log T)*’
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which follows from Theorem 1.9 of [9]. Thus, similarly to (3.5), we obtain
P(Vj <J. Vk <K:log¢(3 +z;.X) € R,x)
= ]P’(rjn{a} ]C(% -+ zj.X) - f(zj)‘ < u)

Jloglog T
—|—O(8J10glogT+ s ¢ )

e(log T)3/4—r
Combining the above estimate with (3.5) and (3.6) we conclude that
3 .
]P’T(max |§'(Z + it + zj) — f(zj)‘ o u)
i=J
= P(rjng 2(3 + 2. X) = f(z))] < u)

( J2(loglog T')?
et(log T)3/4-r

+ &J log log T).

Finally, choosing

B ( Jloglog T )1/5
~ \(log T")3/4-r

completes the proof. [

Proof of Theorem 1.1. We wish to estimate

2T

l[ w(max|é‘(%+it—|—2)—f(z)l)dr (3.7)
T T lz|<r

with f an analytic non-vanishing function, and where @ is a continuously

differentiable function with compact support.

Recall that the maximum of |§‘(% + it 4+ z) — f(z)| on the disc {z : |z| < r}
must occur on its boundary {z : |z| = r}, by the maximum modulus principle. Let
e < (1/4—r)/4 be a small positive parameter to be chosen later, and cover the circle
|z| = r with J < 1/e discs O; of radius € and centres z;, where z; € {z : |z| = r}
forall j < J.

Let 8y (T) denote the set of those ¢ € [T, 2T] such that

(3 . Vv
<4 1/4)/2 Flrirts)|=e

where V' < loglog T is a large parameter to be chosen later, and let

L= max ().
|Z|E(F+l/4)/2|f ( )I
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Then for t € 8y (T), and for all z € D; we have
183 +it+2z2)— f2)— (3 + it +zj) — f(z)|
‘f (2 +it+s)— f(s)ds

<l|z—z]|- (|Z|E(rrnflx/4)/2 [@'(% + i F 4 z)| “+ L) (3.8)
<e(e” + L) < Cee”,
for some large absolute constant C, depending at most on L. Define
0(t) := max t(E+it+2)- f(2)| - max 12(3 + it +z;) — f(z))]
Then, it follows from (3.1) and (3.8) that for all ¢ € 8y (T) we have
0<0(t) < Cee”. (3.9)

Therefore, using this estimate together with Proposition 2.1 and the fact that w is
bounded, we deduce that (3.7) equals

I B
T Jics, 1) (rjn<a}<|§ (3 +it+z;) - (Zj)|+9([))dt+0(e )

1

(max G +it +2;) — f(z,)|) dt + 0(1&| + ¢ )
te8y (T) i=J

2T
:_/ max|§ +tt+z]) f(zj)l)dt+0(|82|+e_vz),

(3.10)

where
l 10
eo= g [ [ (e i+ z) = ] ) drdn e
te8y(T) Jo F=d

using the fact that ' is bounded on R together with (3.9).
Furthermore, observe that

2T
_[ maxlé‘ +zt+zl f(zj)‘)dt

2T
- __f [ w'(u)du - dt
T Jr max ; < [E(3+it+z;)—f(z,)]

o (3.11)
:—[ wf(u).]PT(max|§(%+it+zj)—f(zj)’fu)du
0 i=<J
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Since w has a compact support, then w’ (1) = 0ifu > A for some positive constant A.
Furthermore, it follows from Proposition 3.1 that for all 0 < u < A we have

IP’T(max|§' + It + 2y —f(zj)ISu)

(J log log 7)6/5)

_I[”(max|é' + z;, )—f(Zj)|SM)+O((IOgT)(3/4—r)/5

J<J

Inserting this estimate in (3.11) gives that

ST
_/ max]é’ + it +zj) f(zj)|)a'l

= —f o' (u) - P(max}é’ + z;, )—f(zj)]Su)du
0

(J loglog T)®/%
(log T)B/4=n)/5 (3.12)

(J loglog T)%/%
:]E(w(maxlé’( +zj,X)——f(zj)‘))+0( goi)gi_r)/:;).

isJ (lo

To finish the proof, we shall appeal to the same argument used to establish (3.10),
in order to compare the (weighted) distributions of

l}1<a}(|§ +z;,X)— f(zj)| and max]é‘( + z, X)—f(z)|

Let 8y (X ) denote the event corresponding to

max |¢'(2 +z,X)| <€,

3
lz|<(r+1/4)/2 "7 4

and let &7, (X) be its complement. Then, it follows from Proposition 2.2 that
P(85(X)) < exp(—=V?). Moreover, similarly to (3.8) one can see that for all
outcomes in Sy (X)) we have, for all z € D,

E(G+2. X)=f ()= (342, X)=f(z))| =

zZ
[ (G4 X)—f'(3) ds| < ee”.
z

J
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Thus, since the maximum of |Zj(% + z, X)— f(2)| for |z| < r occurs (almost surely)

on the boundary |z| = r, then following the argument leading to (3.10), we conclude
that

(o max ¢(3 +2.%) - £)]))
_E(lgv(x)w({naxlé’( +z,X) f(Z)D) +0(3_V2)
_]E(lgv(x)w(maxﬁ' +z;, X (Z)l))+0 ge +"_V2)

]E( (max’é’ + zj, )—f(z)|))+0(gev—|—e_vz).

Finally, combining this estimate with (3.10) and (3.12), and noting that J =< 1/& we
deduce that

27
—f [rznli)ik +it + z) f(z)\)dt
:[E( (max‘cf +z,X)—f(z)|))

lz|<r

Vv (loglog T)%/%
& 0(8‘ e 0(86/5(]0g 7y6/4=n/5 ) )

Choosing & = (log T)~G/4=0/11 and vV = 2 /loglog T completes the proof. [

4. Controlling the derivatives of the zeta function and the random model:
Proofs of Propositions 2.1 and 2.2

By Cauchy’s theorem we have

1
G +inor )| < 5 man oG i+ )]

and hence we get

max |¢'(3 +zt+z)|<l max [$(3 +if +5)|. 4.1)

|z|<r 8 [s|<r+§
Therefore, it follows that
]P’T(mdx|é' zt+z)|>eV)

|z|<r

o JP’T( max ‘C(% + it + s)| i SeV) (4.2)

[s|<r+é

:]P’T( max ]()E|é' +it+s ‘>V+10gé)

|s|<r+é
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To bound the RHS we estimate large moments of logé‘(% + it + s). This is
accomplished by approximating log é’(% + it + s) by a short Dirichlet polynomial,
uniformly for all s in the disc {|s| < r 4+ §}. Using zero density estimates and large
sieve inequalities, we can show that such an approximation holds for all ¢ € [T, 2T,
except for an exceptional set of ¢’s with very small measure. We prove:

Lemma 4.1. Let O < r < 1/4 be fixed, and 6 = (1/4 —r)/4. Let y <logT be a
real number. There exists a set J(T) C [T, 2T withmeas(4(T)) < T 3 y(log T)?,
such that for all t € [T,2T|\ J(T) and all |s| < r + § we have

log¢(3 +zt+s):Z A(n) +0((10gy)210g7“).

n3/4Fit+s Jogn y(1/4-r)/2

n<y
To prove this result, we need the following lemma from Granville and
Soundararajan [4].
Lemma 4.2 ([4, Lemma 1]). Let y > 2 and |t| = y + 3 be real numbers. Let 1/2 <
oo < | and suppose that the rectangle {z : 09 < Re(z) < 1,|Im(z) —t| < y + 2} is
free of zeros of {(z). Then for any o withog + 2/1logy < o < 1 we have

logé‘(n—i—it):ZLn)+O( |t|( gy)z).

n(r+tt I()gl’l o —0()
n=<y

Proof of Lemma 4.1. Let oo = 1/2 + 6. For j = 1,2 let 7; be the set of those
t € [T,2T] for which the rectangle

{z:00 <Re(z) <1, [Im(z) —t| <y + 1+ j}

is free of zeros of {(z). Then, note that 7 < 77, and for all + € 73, we have
t +Im(s) € 77 forall |s| < r + §. Hence, by Lemma 4.2 we have

log £(3 +zt+\):Z A(n) +0((]0gy)2]OgT),

3/4tit+s 1/4—1r)/2
nsyn/ it+s Jogn y(1/4=r)/

forall t € 75 and all |s| < r + §. Let N(o, T') be the number of zeros of (s) in the
rectangle o < Re(s) < 1 and |Im(s)| < 7. By the classical zero density estimate
N(o,T) < T3/279(log T)? (see, for example, Theorem 9.19 A of Titchmarsh [12])
we deduce that the measure of the complement of 73 in [T, 2T is < T' 3 y(log T)>.

L]

We also require a minor variant of Lemma 3.3 of [10], whose proof we will omit.

Lemma 4.3. Fix 1/2 <o < 1, and let s be a complex number such that Re(s) = o,
and |Im(s)| < 1. Then, for any positive integer k < log T' /(3 log y) we have

2T 2k 1—o \ 2k
f A( ) dt < Iy
(logk)°

n‘*” logn
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2%k cgk'™° i
E(]logl(s. X)|7) <« ((1ogk)")

Jor some positive constant cg that depends at most on o.

and

Proof of Proposition 2.1. Let n = e V/2, Taking y = (log T)5(1/4—r)_' in Lem-
ma 4.1 gives for all 1 € [T,2T] except for a set with measure <« T1-(1/4=r)/5
that

A(n) 1
log¢(3 +it +5) = Z n3/4+it+s Jog p - O(logT)’ o

n=y

for all |s| < r + n. Furthermore, it follows from Cauchy’s integral formula that

Z A(n) o 1 Z A(n) 2 dz
n3/4+it+s [og p  2mi lz|=r+21 n3/4tit+z |ogp z—8

n<y n=y

Applying Lemma 4.3 we get that

2T 2k
A
——f max (n) dt
Isl=r+n | 1= n3/4+”+5 logn
<L - — : dt |dz
n »[z|=r+2ﬂ T fT - n3/atittz logn iz
"= (4.4)
v/2 k1m0
%= @ cg(r)————
(4 g
where o/(r) = 5 —r —2n,and k < c9log T/ loglog T, for some sufficiently small

constant cg > () We now choose
k= |_C6(,.)V1/(1—G(f))(10g V)U(r)/(lﬂﬁ(r))J

(so that k7' () =< k7)) where ¢6(r) is a sufficiently small absolute constant. Using
(4.2) and (4.3) along with Chebyshev’s inequality and the above estimate we conclude
that there exists c7(r) > 0 such that

]P’T(max‘é' —i—it+z)‘>ev)

lz|<r

A(n) V
<P max : > — | 4 7 (W/4=n)/5
! ( |sl<r+n ’; n3/4+it+s ogn 4 )
4 f1—o'(r) 2k
< v P— |y panss
( ) Goghy? <r>)

& exp ( — gV V=00 (1og V)G(r)/(l—(r(r)))

for V < c7(log T)' =) /loglog T. O
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We now prove Proposition 2.2 along the same lines. The proof is in fact easier
than in the zeta function case, since we can compute the moments of log {(s, X'), for
any s with Re(s) > 1/2.

Proof of Proposition 2.2. Letn = e~ Y12, Since ¢ (% + s, X)) is almost surely analytic

in |s| < r + 2n, then by Cauchy’s estimate we have almost surely that

e |7 (3 1 3
mak {3 +2:X)| £ o ooy [E(z s, X)),

Therefore, we obtain

]P’(max 1£'(3 +z,X)| > ev) < IP’( max [{(2 +s, X)| > neV)

|z|<r Is|<r+n .5)
<IP’( max |log¢(3 -}-S,X)|>K). .
a Is|<r+n % 2

Let k be a positive integer. By (2.2) log é‘(% + s, X') converges almost surely to a
holomorphic function in |s| < r + 27n. Using Cauchy’s integral formula as in (4.4),
we obtain almost surely that

% ]
( max |log§(%+s,X)|) < —f ‘l()g((%+qu)|2k,|dz|.
Isl<r+n nJz|l=r+29

Hence, applying LLemma 4.3 we get

V
[P’( max |logé‘(% -I—S,X)‘ %s 5)

|s|<r+n
2\ 2k , 5. 2k
< (7) 'E((Islrgfz(kn [log &(2 + . X)|) )
2

2k V/2 3 2k
NG (I R

< V/i2 ZCS(r)kl_a’(r) -
e
V(log k)o'(r)

where 6'(r) = % —r—=2n. Leto(r) = % — r and take
k = 6V V=00 (jog 1))/ G=a ) |

where ¢ is sufficiently small (note that k% ") = k°()), then apply (4.6) to complete
the proof. [



Vol. 93 (2018) An effective universality theorem for the Riemann zeta function 725

5. Moments of joint shifts of log {(s): Proof of Theorem 2.3

The proof of Theorem 2.3 splits into two parts. In the first part we derive an
approximation to

k
[ | loggts; + i)
F=i

by a short Dirichlet polynomial. In the second part we compute the resulting mean-
values and obtain Theorem 2.3.

5.1. Approximating ]_[’;-=1 log {(sj + it) by short Dirichlet polynomials. Fix
1/2 <09 < 1,and let § := o9 — 1/2. Let k < logT be a positive integer and
$1,52,...,8 be complex numbers (not necessarily distinct) in the rectangle

{z : 09 < Re(z) < 1 and |[Im(z)| < T‘W'}.
We lets = (sq,...,5), and define

O |

SE
Ri,02,.. ’nk>2 {=1 log(ne)
RiR2 N} =N

Then for all complex numbers z with Re(z) > 1 — o we have

k o)
1_[ log &(sg +2) = Z F;(f).
=1

n=1

The main result of this subsection is the following proposition.

Proposition 5.1. Let T be large, si,...,sx be as above, and &(T) be as in
Lemma 5.4 below. Then, there exist positive constants a(ogy), b(og) such that if
k <a(og)(logT)/loglog T andt € [T,2T]\ &(T) then

k
: Fy(n) —b(00)
Hlog((.sj +it) = Z 7+O(T ),
J=1 n<T?5/8
This depends on a sequence of fairly standard lemmas which we now describe.
Lemma 5.2. With the same notation as above, we have

2 log n)k

ao

[Fs(n)] =
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Proof. We have

1
ey b | RCD)

ni 5”29--',nk229 '821
n lnz."nk =n

ok k (2 log n)*
n—(ZA(m)) g, [

a0 neo

[A

mn

Lemma5.3. Let y > 2 and |t| > y + 3 be real numbers. Suppose that the rectangle
{z:00—08/2 <Re(z) < 1,|Im(z) —t| <y + 2} is free of zeros of {(z). Then, for
all complex numbers s such that Re(s) = oo — §/4 and |Im(s)| < y we have

log £(s +it) K4, loglt].
Proof. This follows from Theorem 9.6 B of Titchmarsh. [

Lemma 5.4. Let s1,...,5; be as above. Then, there exists a set &(T) C [T,2T]
with measure meas(8(T)) < T8, and such that for all t € [T,2T]\ &(T) we
have {(sj + it + z) # 0 for every 1 < j < k and every z in the rectangle

{z:-8/2 <Re(z) <1, |Im(z)| < 3T%4}.

Proof. For every 1 < j < k, let &;(T) be the set of ¢+ € [T,2T] such that the
rectangle .
{z:-8/2 <Re(z) < 1, [Im(z)| < 37°%*}

has a zero of £ (s; +it + z). Then, by the classical zero density estimate N(o, T') <
T3/279(log T')?, we deduce that

meas(&(T)) < T%4T3/2700+8/2(10g T)> = T178/*(log T')>.

We take &(T) = UK_.&;(T). Then &(T) satisfies the assumptions of the lemma,
j=1>J

since meas(& (7)) « T178/*(log T « T178/8, [
We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let x = |T%/®] +1/2. Letc = 1 — 09 + 1/log T and
Y = T%/*. Then by Perron’s formula, we have for t € [T,2T]\ &(T)

1 c+iY k

z
— (Hlogé’(sj+it-l—z))x—dz
27t Jomiy 4

j=1
CRM) (xS |RM)
=2 “LO(?chuog(x/nn)'

n=1
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To bound the error term of this last estimate, we split the sum into three parts:
n<x/2,x/2<n < 2xandn > 2x. The terms in the first and third parts satisty
|log(x/n)| > log 2, and hence their contribution is

1700 ZU|FRm)| _ x'0 (S Am)
<= > < (24)

ne — Y n_ln"0+clogn

n=1

1— k
3 - a()(Z)/logT) <« T—b(o‘()),

or some positive constant b(oy), if a(og) is sufficiently small. To handle the
contribution of the terms x/2 < n < 2x, we put r = x — n, and use that
[log(x/n)| > |r|/x. Then by Lemma 5.2 we deduce that the contribution of
these terms is

1—0y k 1—0p k+1
X (3log x) 1 X (3log x) ~B
_ 7—b(00)
< v E < Y <
r<x
We now move the contour to the line Re(s) = —§/4. By Lemma 5.4, we do not

encounter any zeros of {(s; + it +z) sincet € [T,2T]\ &(T). We pick up a simple
pole at z = 0 which leaves a residue ]—[lj.=l log {(sj +it). Also Lemma 5.3 implies
that for any z on our contour we have

| logl(s; +it+ z)| < c(og) logT,
for all j where c(0g) is a positive constant. Therefore, we deduce that
1 c+iy , K ' %2 k .
o e (jl:[l log &(sj +it + Z))7dz = jl:[llogé’(sj +it)+ Eq,
where

1 —8/4—iY —8/4+iY c+iY k .
Elz—.([ +f +f )(Hl()g((.\'j-+it+z))—dz
2w \ Je-iv —§/4-iy  J=s/ativ S\ z

x17% (¢ (0p) log T)k
Y

& + x79%(¢(09) log T)k log Y « T?@0)

as desired. []

5.2. An Asymptotic formula for the moment of products of shifts of log {(s).

Proof of Theorem 2.3.Let &1(T) and &, (T) be the corresponding exceptional sets for
sand r respectively as in Lemma 5.4, x = T (©0=1/2/8 andlet &(T) =& (T)UE,(T).
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First, note that if ¢ € [T, 2T]\ &(T') then by Proposition 5.1 and Lemma 5.3 we have

- > Fmn

n<x m<x

< (c (0g) log T)e,

« (c(ag) log T) and

for some positive constant ¢(og). Then, it follows from Proposition 5.1 that

1 ¢ .
T Jirarnem ( l—[ log &(s; + ”))( l:lllogé(rj - tt)) dt
1 Film) "

T dt | d

T Jirarne(r) (Z ni )( > Femym' dt ) di

n<x m<x

+ O(T 7210 (¢ (0) log T)max(k’g))

) _[zr( F(n))( Z Fotmym )dt T O(T P02y,

Furthermore, we have

() (g

= Y RmEm) fT i (™Y ar. 62

m,n<Xx

(5.1)

The contribution of the diagonal terms n = m equals ), . Fs(n)Fr(n). On the
other hand, by Lemma 5.2 the contribution of the off-diagonal terms n # m is

I (2log n)* (2 1og m)* 1 x37200(2 Jog x )kt _1/2
s — < LT )
T m;x (mmn)©o | log(m/n)] T
m#n
(5.3)
since | log(m/n)| > 1/x.
Furthermore, it follows from (2.3) that
k L 00
]E( n log ¢(s;, X))( 1—[ logZ(rj,X)) = Z Fy(n) Fr(n)
b=l j=1 n=1 (5.4)
= Z Fy(n) Fr(n) + Ea,
n<x
where e
2logn

n20()
n>x
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Since the function (log t)# /¢* is decreasing for t > exp(f/c), then with the choice
a = (209 — 1)/2 we obtain

2 log x)k+¢ 1 21og x)k+¢
(2log x) <<( g x)

X n 1+« XZa
n>Xx

E2 < < x ¥,

Combining this with (5.2), (5.3), and (5.4) completes the proof. ]

6. The characteristic function of joint shifts of log {(s)

Proof of Theorem 2.4. Let &(T) be the exceptional set corresponding to the points
S1,...,87 inLemma 5.4, Let N = [c4log T/(2(loglog T'))] where ¢4 is defined in
the statement of Theorem 2.3. Then, ®7 (u, v) equals

J
% exp (l(z (ujRelogC(sj +it) +v;Imlog {(s; + it)))) dt

[T2TN\E(T) =
+ O(T—e1/2)/8)

2N— !I
Z::n ?[TZT\S(T)(

u;Relogl(s; + it) (6.1)

M\

i=1 "
+ v;Imlog ¢ (s; + if))) dt + Es,
where
Ey « T—0-1/2)/8
1 (2ci(log T \?N 1 ! o
(2N)! J T Jirarinem \ i

by our assumption on the u;’s and v;’s where ¢; = ¢1(0)). Now, by Theorem 2.3
along with Lemma 4.3, we obtain that forall 1 < j < J

L [Tog ¢(s; + it)|*N dt < E([log¢(s;, X))

T Jit2r\e(T)
= cs(0)N1™° N
(log N)° ’

for some positive constant cg = cg(o). Furthermore, by Minkowski’s inequality we

have
Nl—(r 2N
dt J—— .
« (68 (log N)ff)

(6.3)

2N

1
= (Z |[log £(s; + ir)|)

[T.2TI\&E(T)
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Therefore, by Stirling’s formula we deduce that

(log T')7

E; KT OVDE 4 (3¢5
3 K C1Cg (N log N)°

2N
) < e_N,

if ¢y is sufficiently small compared to ¢4 and cg.
Next, we handle the main term of (6.1). Let

?jj = (Hj +lUJ)/2 and Ej = (uj —ivj)/2.

Then, it follows from Theorem 2.3 that forall 0 <n < 2N — 1 we have

1 n
T (Z u;Relog{(s; +it) + vjImlog{(s; —|—it))) dt
[T2TNET) \
I ! S
== ( u]logé‘(s +it) + v, logi(s; —|—lt))) dt
[r2The) \ i
( n ) k L k
- Z 1_[ skt 1_[5 Jte
J £
ki,...k2 >0, kl’kz,.”,kz'l j=1 £=1
ki+-+koy=n
J J
><l n log&(s; +it)) k’ 1—[ log {(se +it)) krve gy
T Jirarnem ;5 i
! ik ! K
_ J+€
-2 ( - )H o o
Ki,....kns>0, j=1 =1
ki+-+koy=n
J
X]E(l_[ 1ogg(s,,X) ]_[ log £ (s¢, X)) JH)—I—O(T_CS(ch(logT)“)”),
_]:1 :

J n
- ((Z ujREIOgZ(Sj,X)‘|‘Uj1m10g§(sjax))) )

=i
+ O(T7% (2¢1(log T)?)").

Inserting this estimate in (6.1), we derive

2N-1 ., J n
Or(u,v) = Z ;—'IE ((Z (ujR.elogZ(‘s'j,X) + vamlogg‘(sj,X))) )
n=0 j=1

== O(e_N)
(I)rand(u’ V) + E4,
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where

. o\ 2N J 2N
Es < e Ny (2/1\])'(2“(13’%71) ) E((Zpogé(sj-,X)l) ) < e N
. o

by (6.3) and Minkowski’s inequality. This completes the proof. []

7. Discrepancy estimates for the distribution of shifts

The deduction of Theorem 2.5 from Theorem 2.4 uses Beurling—Selberg functions.
For z € C, let

e = (T (8 @ D) ko= ()

h=—00

Beurling proved that the function Bt (x) = H(x) + K(x) majorizes sgn(x) and its
Fourier transform has restricted support in (—1, 1). Similarly, the function B~ (x) =
H(x) — K(x) minorizes sgn(x) and its Fourier transform has the same property (see
Vaaler [13, Lemma 5]).

Let A > 0 and a, b be real numbers with ¢ < b. Take d = [a, b] and define

| P -
Fy(z) = E(B (A(z —a)) + B~(A(b —2))).
The function Fy has the following remarkable properties. First, we have
0 < 14(x) — Fy(x) < K(A(x —a)) + K(A(b — x)), (7.1)

for all x € R. For x # a, b, this follows from the identity

sgn(A(x —a)) + sgn(A(h — x))
2

1y(x) =

together with the inequality B~ (x) < sgn(x) < BT (x). Since H(x) and K(x) are
continuous, the restrictions on x can be removed.
Additionally, one has

15+ 0(L), if|g] <A,

7.2
0, if |£] > A (72)

Fy(€) =

The first estimate above follows from (7.1) and the second follows from the fact that
the Fourier transform of B~ is supported in (—1, 1). Before proving Theorem 2.5 we
first require the following lemmas.
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Lemma 7.1. For x € R we have |Fyg(x)| < 1.

Proof. 1t suffices to prove the lemma for A = 1. Also, note that we only need to
show that Fy(x) > —1. From the identity

oo

Z 1 B ( 4 )2
L= (n— Zy? sinmz
it follows that for y > 0
H(y) = 1= K(»)GO), (7.3)

where
= 1
G = 2y? — 2y —1.
() =2y ,;)()’4'"?)2 y
In Lemma 5 of [13], Vaaler shows for y > 0 that

0<Gly) =1 (7.4)

Also, note that for eachm > 1,and 0 < y < | one has

m " t
s = _[ —"?dt
(y +m) m—1 (y & t)‘
sothatfor0 < y <1

m o t
G'(y) =4y ———254y[ ————dt—2=0. (7.5)
E(J’*Pmp o (v+1)?
First consider the case ¢ < x < b. By (7.3) we get that in this range

Fy(x) = %(2— K(x —a)(G(x —a)+ 1) — K(bh—x)(Gh—x) + 1)).

which along with (7.4) implies Fy(x) > —1 fora < x < b. Now consider the case
x < a. Since H is an odd function (7.3) and (7.4) imply

Fy(x) = %(K(x —a)(G(a—x)—1) — K(b —x)(G(h — x) + 1))

1
> 5(—K(x—a)—2K(x~b)),
which is > —1 if K(x —b) < 1/2. If K(x —b) > 1/2 we also have
K(x—a)>K((x—b) and 0<b—x< 1.

By this and (7.5) we have in this range as well that
1
Fg(x) > E(K(x —b)(G(a—x)—G(h—x) — 2)) = —1.

Hence, Fy(x) = —1 for x < a. The remaining case when x > b follows from a
similar argument. []
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Lemma 7.2. Fix 1/2 < o < 1, and let s be a complex number such that Re(s) = o
and |Im(s)| < T+©=2) Then there exists a positive constant c¢1(o) such that
for |u| < ci(o)(log T)? we have

7 (u,0) K exp(_u_) and O7(0,u) K exp( ! )

Slogu Slogu
Proof. By a straightforward modification of Lemma 6.3 of [10] one has that
E(exp (iu Re log £ (s, X))) < exp ( ~3 ](T;lgu)
d ]E( i Im log £(s, X )<< (— )
an exp (iuImlog (s, X)) exp Slog

Using the first bound and applying Theorem 2.4 with J = 1 establishes the first claim.
The second claim follows similarly by using the second bound and Theorem 2.4. []

Proof of Theorem 2.5. First, we claim that it suffices to estimate the discrepancy over
(R1,...,Ry) such that for each j we have

R; C[—logT. JlogT | x[— logT, /logT .
To see this consider (ﬁl, TP ﬁj), where

Ri=R;N[—VogT, JlogT | x [ —logT, iogT].

It follows that

‘IPT(logg'(s,- +inyeR; Vj <)
—Pr(logL(sy +it) € Ry, logl(s; +if) € Ry, 2< j < J)}

L Pr(|logt(si +ir)| = logT) K exp(— logT),

where the last bound follows from Theorem 1.1 and Remark 1 of of [9]. Repeating
this argument gives

'PT(long(sj vitye R, V)< J)—Pr(logl(s; +it) e Rj, Vj < J)‘
< Jexp(—logT).
Similarly,
‘]P’(l()gé‘(.s'j,X) R, Vji<J)—P(loglis;. X) € R, Vj < J)‘
& Jexp(— /logT).

Hence, the error from restricting to (ﬁ g 5 5 § R J) is negligible and establishes the
claim.
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Let
A =e1lo)logT)®/d and Ry = [a;.bi] % [e5.dy]

forj =1,...,J, with

lbj —ajl,ldj —cjl <2ylogT.

Also, write d; = [aj,b;] and §; = [c¢;,d;]. By the Fourier inversion, (7.2), and
Theorem 2.4 we have that

o7 o
/ l_[ Fy,(Relogl(s; +it))Fg, (Imlogl(s; +it))dt
j=1

J
= fRZI (1_[ ﬁ!;j(uj)[?gj (vj))(bT(u,v) dudv
s\
J ~ ~
= [ (1_[ Jj(uj)ng(vj))d)rand(u,v)dudv
j=1

cylog T )) (7.6)

2J
O (2A+/logT —
T (( i ) - ( loglog T’

J

= ]E( 1_[ FJ_,.(Relogé‘(sj,X))ng(lmlogg(sj,X)))

J=i
calogT
0 -1
w (exp( 210g10gT))
Next note that i?(é) = max(0,1 — |&]). Applying the Fourier inversion,
Theorem 2.4 with J = 1, and Lemma 7.2 we have that

2T
7[ Relogé(s—ﬂt)—a))dt

— ‘El —2nia§ i
_ f r(E.0)d < .

where « is an arbitrary real number and s € C satisfies 0 < Re(s) < | and
|Im(s)| < T4©~2). By this and (7.1) we get that

1 2T
?/ FJI(RCI()gé_(Sl +z't))dt
T

3P
= %fT 1y, (Relog@‘(xl s it)) dt + O(1/A). (1.7)
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Lemma 7.1 implies that |Fy, (x)|,|Fg,(x)| < 1for j = 1,...,J. Hence, by this
and (7.7)

1 27 J
?[ l_[ Fy,(Relogt(sj +it))Fyg, (Imlog&(s; +it)) dt

T

] 2T
— F/T" 14, (Relogl(s; +it))Fg, (Imlog&(s; +it))

J
X 1—[ FJj(Re]ogC(Sj + it))ng(ImlogC(.vj + it)) dt + O(1/A).
j=2

Iterating this argument and using an analog of (7.7) for Imlog {(s + it), which is
proved in the same way, gives

1 27 J
?[T l_[ Fy,(Relog¢(s; +it))Fg, (Imlogl(s; + it))dt
j=1

=Pr(logl(s; +it) e R;, Vj = J)+ O(J/A). (71.8)

Similarly, it can be shown that

J
]E( n Fy,(Relogl(s;, X)) Fg, (Imlog¢(s;, X)))

Jj=1
=P(logl(s;, X) e R;, Vj <J)+ O(J/A). (19

Using (7.8) and (7.9) in (7.6) completes the proof. ]
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