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Periodicity and ergodicity in the trihexagonal tiling

Diana Davis and W. Patrick Hooper

Abstract. We consider the dynamics of light rays in the trihexagonal tiling where triangles and
hexagons are transparent and have equal but opposite indices of refraction. We find that almost
every ray of light is dense in a region of a particular form: the regions have infinite area and
consist of the plane with a periodic family of triangles removed. We also completely describe
initial conditions for periodic and drift-periodic light rays.

Mathematics Subject Classification (2010). 37E35, 78 A05, 37A05, 37E20, 37E15.

Keywords. Tiling billiards, refraction, translation surface, abelian cover, aftine automorphism, .
renormalization, ergodicity criterion.

1. Introduction

Consider a partition of the plane into regions that are each made up of one of two
different transparent materials so that the refraction coeflicient for light traveling
between the two materials is —1. This means that the two materials have indices of
refraction with equal magnitude but opposite sign, and ensures that a light ray exiting
a region made of one material making an angle of # with the normal to the boundary,
enters a region made of the other material making an angle of —6 with the normal
to the boundary. See the left side of Figure 1. Materials with negative index of
refraction were discovered about 15 years ago and have been heavily studied since,
see [27,28]. The connection between these materials and planar tilings was made
in [22]. If it were possible to create metamaterials in sufficiently large quantities, we
could actually construct our tiling out of these materials, shoot a laser through it, and
observe the behaviors that we discuss here.

The trihexagonal tiling is the edge-to-edge tiling where an equilateral triangle
and a regular hexagon meet at each edge. We consider the behavior of a light beam in
such a tiling where the triangles are made with one material and hexagons are made
of a second material with opposite index of refraction. See the right side of Figure 1
for two light beams. Trajectories exhibit a range of behaviors. They may be periodic
or drift-periodic (invariant under a non-trivial translational symmetry of the tiling).
Such behaviors have been seen before in a number of tilings [4]. However we find that
a randomly chosen trajectory exhibits a new kind of behavior. Say that a trajectory
illuminates a point in the plane if the point lies in the closure of the trajectory.
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Figure I. Left: a light ray passing between media with opposite refraction indices. Right:
periodic and drift-periodic trajectories in the trihexagonal tiling.

Theorem 1.1. For almost every initial point and direction, the trajectory with this
initial position and direction will illuminate all of the plane except a periodic family of
triangular open sets in centers of either the upward-pointing triangles or downward-
pointing triangles.

See Figure 2 for an example of a portion of a trajectory which appears to fill part
of the plane, but misses a periodic family of open triangles in the center of upward-
pointing triangles. Theorem 1.1 is a direct consequence of Theorem 1.2 below; see
the end of §2.3 for the proof.

S
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Figure 2. Left: A portion of a trajectory initiating at angle 6 = % from a vertex of a hexagon.
Note the untouched triangle centers. Right: The hyperbolic billiard table A shaded in gray with
a dark gray periodic billiard path starting at i at angle of ig— from the vertical.
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We chose to study the trihexagonal tiling because of the apparent complexity of
trajectories as illustrated in Figure 2. Simpler tilings such as the three edge-to-edge
tilings of the plane by regular n-gons (for n € {3,4,6}) have only periodic and
drift-periodic trajectories ([10]; [22]; [4, Theorem 2.1]). We provide some further
context for the study of this system in §1.1.

By rescaling time, we may assume that light moves at unit speed as measured with
respect to the Euclidean metric on the plane. Then the motion of light defines what
we call the refractive or billiard flow on the tiling, a unit speed flow T': X — X on
the unit tangent bundle X of the plane with singularities at the vertices of the tiling.
Trajectories are not defined through singularities. A trajectory is non-singular if it is
defined for all time.

The behavior of a trajectory is determined to a large extent by the initial direction
of travel. To formally state results of this form, we need a few basic observations
about the behavior of trajectories. First, a trajectory initially traveling in direction 6
in in a hexagon can later only be traveling though a hexagon in a direction from
the set {6,0 + ZX. 6 + X} and only be traveling through a triangle in directions
from {—0, 27”.— 0, 47” — 6}. Here, by direction of travel we mean the signed angle
a tangent vector to the trajectory makes with the horizontal (rightward) vector field.
Second, trajectories through the center of a hexagon hit singularities in both forward
and backward time. Thus, a non-singular trajectory in a hexagon misses the center
and travels in a counter-clockwise (positive) or clockwise (negative) direction around
this center. This notion of clockwise/counter-clockwise turns out to be flow invariant.
This means that we can extend this notion of direction of travel around the center of a
hexagon to trajectories within triangles by flowing until we enter a hexagon and then
evaluating direction of travel there. Given the choice of an angle 6 and a sign s = +
ors = —, we denote by Ty ;: Xg ¢ — Xg ¢ the restriction of T to Xy ¢, the set of unit
vectors in the plane traveling in directions as listed above and traveling with sign s
around the centers of hexagons. The domains Xy ¢ have natural invariant measure
which we call their Lebesgue measures because they arise from Lebesgue measure
on R2. The observations made above are formally described in §2.3.

Above we described the notion of direction as an angle in R /277, but it is also
natural to think of this set of directions as identified with the unit circle S C R?.
We abuse notation by identifying S' with R /27 Z.

The different kinds of behaviors observed in the systems T : X9 — Xg as
we vary 6 are related to dynamics on a triangular billiard table in the hyperbolic
plane H2. This billiard table A is H? modulo a (3, 0o, oo)-triangle reflection group.
For us A represents the specific table depicted on the right side of Figure 2 as a
triangle in the upper half-plane model of H?2.

Let g,: T1A — T A denote the unit speed billiard flow on A. The pointi € C

sits in the boundary of A along a vertical wall. For 8 € S!, let tig € T'A be
the unit tangent vector which is tangent at i to the geodesic ray initiating at i and
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terminating at |cot 8] in the boundary of the upper half-plane. We define & to be
the set of @ € [Z, 2Z] for which the forward billiard orbit {g;(1g) : t > 0} has an

33
accumulation point in the portion of A with imaginary part strictly greater than %

This is the dashed line in Figure 2. In other words,

2 - 1 -
&y = ;9 € [% f} : ltifjl;glm (g:(tg)) > e and ltigliglm (g:(tig)) # +ooy,
1.1

where Im (g, (tig)) here denotes taking the imaginary part of the basepoint of a unit
tangent vector in the upper half-plane. By classic results about geodesic flow on
finite volume hyperbolic surfaces [19], the set &g is full measure in [7, ZT”] In fact,
the set [%, %”] ~ & has Hausdorfl dimension smaller than one; see the discussion in
[21, Proof of Proposition 6].

We define & to be the orbit of & in S under the rotation group of order six,

namely,
€ =28 U(Z+8E)U(EE +8)U(m+ &)U (L + 8) U (E + 8&).

Theorem 1.2 (Ergodic directions). If 0 € & then the flows Ty 4 and Ty _ are ergodic
when the domains Xy 1 and X _ are equipped with their natural Lebesgue measures.

By remarks above this implies that the set of non-ergodic directions has Hausdorft
dimension less than 1.
Example 1.3 (6 = 7). The angle 6§ = 7 lies in &. To see this observe that

¢/ =0+7% = % g[S 27”] By definition 14 is the unit tangent vector based
at i pointed into A at angle 5?” from the vertical. The billiard trajectory is periodic
and is depicted in Figure 2. This billiard trajectory repeatedly travels above the line

where y = % and so by the Theorem above the flows 7y 4 and Ty _ are ergodic.

A trajectory of Ty, + is shown on the left side of Figure 2. We do not know if this
trajectory equidistributes.

Now we will consider what happens when 6 ¢ &. A special collection of such
directions are those parallel to a vector in the Eisenstein lattice, the subgroup A C R?
redundantly generated by

vo=(1.0), vi=(-L1%) ad v=(-1-2L) (12

To explain the dynamics in these directions we need some definitions.

Definition 1.4. We define A, C A to consist of those lattice points visible from
the origin, in the sense that they are not blocked by any other point of the lattice.
Formally,

Avis = {we A :cw @ Aforallc € R with0 < ¢ <1}, (1.3)

These points are indicated by closed and open disks in Figure 3.
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Figure 3. A portion of the plane showing vectors associated to periodic (solid) and drift-periodic
(open) directions. Lattice points without markers are not visible from the origin. The mid-gray

region contains vectors in A with directions in [, 27”].

Definition 1.5. Forv € R?, let |v||o = min{|a|+ ||+ |c| : v = avy + hV| +cVa}.

This norm takes integer values on A: ||v|]o = n when v is in the nth concentric
hexagon shown in Figure 3.
We define two subsets of the circle:

P = {% eS!:weA,;and wllc =0 (mod 3)},
and P = {% eSl:we Ay and||w]lo Z0 (mod 3)}.

Theorem 1.6 (Lattice directions).

1. If 0 € P then Ty 4 and Ty are completely periodic, i.e., every non-singular
trajectory is periodic. Conversely, every periodic trajectory is contained in Xy
or Xg.— for some 0 € P.

2. If 0 € O then Ty 4+ and Ty _ are completely drift-periodic, ie., every non-
singular trajectory is invariant under a non-trivial translational symmetry of the
tiling. Conversely, every drift-periodic trajectory is contained in Xg 4 or Xg _
for some 6 € D.

We also show that periodic trajectories are preserved by order three rotation
symmetries of the tiling (Corollary 5.6), and drift-periodic trajectories are invariant
under one of the six non-trivial translations of the tiling that minimize translation
distance (Corollary 5.4).



666 D. Davis and W. P. Hooper CMH

Remark 1.7. We have 6 € » U D and 6 € [%,2%] if and only if the billiard
trajectory g;(ig) limits on one of the two ideal vertices of A. Furthermore, if the

trajectory limits on the ideal vertex at oo then § € D, and if it limits on the ideal vertex

at @ then 6 € #. This together with order six rotational invariance determines the
sets & and D.

It is natural to ask what can be said about all trajectories since we have not covered
all directions, and ergodicity only says something about almost every trajectory in a
direction. To this end we show:

Theorem 1.8. (a) All non-singular bounded trajectories of T are periodic.

(b) If x € X has a non-singular trajectory under T, then the linear drift rate

t * . - . . . .
lim; 5 4 oo M is zero unless x has a drift-periodic orbit (in which case this
rate converges to a positive constant). Here |T'(x)| denotes the distance from

the unit tangent vector of the basepoint of T'(x) € X to the origin.

Statement (a) of this theorem is proved at the end of §3.

In addition, we remark that in a set of directions of Hausdorft dimension more
than %, the locally-finite ergodic invariant measures for Ty 4 and Ty _ are classified:
they are Maharam measures and are in bijection with group homomorphisms
7Z?> — Ry. This follows from work in [16].

Unfortunately, there are directions for which none of the results mentioned here
apply. For example, if 6 is parallel to (+/2, 3), then the trajectory g; (iig) is asymptotic
to a periodic billiard trajectory below the line y = L

7
Question 1.9. Is it true that if @ is not parallel to a vector in the Eisenstein lattice,
then the Lebesgue measure is ergodic for each of the flows Ty 4 and Ty _?

Assuming an affirmative answer to this question, the system exhibits behavior very
much analogous to the straight-line flow on a compact translation surface with the
lattice property. By definition such a surface is stabilized by a lattice I' C PGL(2, R)
acting by deformations of the translation surface structure. In this setting, Veech
dichotomy guarantees that the straight-line flow in any fixed direction on such a surface
is either uniquely ergodic or completely periodic with the later case corresponding
to directions in which geodesics in H? /I exit a cusp [31, Theorem 8.2].

In fact, lattice surfaces are essential to our proofs. From the tiling, we construct a
translation surface S that is a infinite cover of a torus; see §3. The flows Ty 4 and Ty
are orbit equivalent to straight-line flows in some direction on S (Theorem 3.4). This
infinite translation surface has the lattice property (Proposition 4.6) and indeed the
associated lattice in PGL(2, R) is the triangle group obtained by reflections in the
sides of our triangle A C H?2. We use the orbit equivalence and the symmetries
provided by the Veech group to deduce Theorem 1.6; see §5. The orbit-equivalence
reduces the statement of Theorem 1.2 to a statement about ergodicity of straight-line
flows on S. To verify ergodicity here we use a criterion due to Hubert and Weiss [21]
developed into a context closer to ours by Artigiani [1] which provides a criterion
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for ergodicity of the straight-line flow on S. In §6, we offer an improvement to the
constants in their argument and spell out a geometric description of the directions
shown to be ergodic. (The improvement of constants enabled us to decrease the value
in (1.1) to % from % Our geometric description shows that Hubert and Weiss’
notion of a direction being well-approximated by strips is equivalent in the lattice case
to the corresponding geodesic in the Teichmiiller curve having an accumulation point
in an explicit finite union of cusp neighborhoods.) We apply these methods in §7
where we prove Theorem 1.2. Ergodicity of almost every direction on S also follows
from work of Ralston and Troubetzkoy [25] whose approach to these problems is
similar to that of Hubert and Weiss.

Up to an affine change of coordinates the surface S is square tiled: S is an infinite
cover regular of a flat torus branched at one point. This means that the straight-line
flow on S can be understood as a lift of the straight-line flow on a flat torus. From
the above paragraph, this means that there is a section of each flow T}y  so that the
return map to the section is a skew-product extension of an irrational rotation. When
0 € P U D the base dynamics are given by a rational rotation and otherwise the base
dynamics are given by an irrational rotation. This is why trajectories on this tiling are
unstable under a small change of direction, as noted in [4, §6]. It is worth pointing
out that in the context of straight-line flows on such infinite covers of tori, sometimes
ergodicity is prevalent as here (e.g. [17,21,25]) and in contrast sometimes ergodicity
is atypical [15]. It is not yet completely understood which infinite covers of a square
torus exhibit ergodicity in almost every direction.

Acknowledgements. Sergei Tabachnikov introduced us to tiling billiards in the con-
text of Summer@ICERM, where two groups of students were the first to work on
it [4,10]. ICERM in 2012 and Williams College in 2016 provided excellent working
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We became interested in the trihexagonal tiling and observed phenomena
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open-source FlatSurf package [ 7] written by the second author and Vincent Delecroix.
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We are grateful to Barak Weiss for helpful conversations related to the ergodicity
criterion in [21]. Collaboration between the second author and Weiss was supported
by BSF Grant 2016256.

Northwestern University provided travel funds for our continued collaboration.
Contributions of the second author are based upon work supported by the National
Science Foundation under Grant Number DMS-1500965 as well as a PSC-CUNY
Award (funded by The Professional Staff Congress and The City University of New
York).
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1.1. Context and questions.

1.1.1. Tiling billiards. The connection between metamaterials with a negative index
of refraction and the problem on planar tilings was made by Mascarenhas and
Fluegel [22]. Davis, DiPietro, Rustad and St Laurent named the system tiling
billiards and explored several special cases of the system, including triangle tilings
and the trihexagonal tiling [4]. They found examples of periodic trajectories
in the trihexagonal tiling, constructed families of drift-periodic trajectories, and
conjectured that dense trajectories and non-periodic escaping trajectories exist [4,
Conjectures 5.12-5.13].

Concurrently with our work on the trihexagonal tiling, the first author with Baird-
Smith, Fromm and Iyer in [3] studied tiling billiards on triangle tilings, showing
that trajectories on these tilings can be described by interval and polygon exchange
transformations, and resolving additional conjectures from [4]. These systems are
quite different: if a trajectory visits a single tile twice then the trajectory is periodic.

One can interpolate between the trihexagonal tiling and the tiling by equilateral
triangles by simultaneously shrinking the edges of downward-pointing triangles until
the downward triangles disappear; see Figure 4.

Figure 4. A deformed trihexagonal tiling where the edges of downward pointing triangles have
half the length of edges of upward pointing triangles.

Question 1.10. How does the tiling dynamics change as we vary ratio of lengths of
edges of the upward and downward pointing triangles?

More generally, we wish to understand the dynamics of trajectories on tilings, e.g.:

Question 1.11. What feature of a tiling makes it possible (as here) or impossible (as
in triangle tilings) to have dense regions in tiling billiard trajectories in the plane?

1.1.2. Periodic billiard tables and related systems. Others have studied various
billiard systems on a periodically-tiled plane. In the wind-tree model, there are axis-
parallel rectangular obstacles (trees) at lattice points, with a billiard flow (wind) in
the plane outside of the obstacles. Delecroix, Hubert and Lelievre showed that no
matter the size of the obstacles, for almost every direction the polynomial diffusion
rate is 2/3 [8]. Subsequently Delecroix and Zorich determined the diffusion rates
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for other periodic families of objects with axis-parallel edges, such as the wind-tree
model with a periodic set of obstacles removed, or obstacles with a more complicated
shape [9]. Other work on the wind-tree model is in [2,6,20], and on other periodic
billiard tables in [14, 15].

Other billiard systems are also motivated by optics. Fraczek and Schmoll [12],
Fraczek, Shi and Ulcigrai [13], and Artigiani [1] studied the plane with periodic
optical obstacles called Eaton lenses, which act as a perfect optical retro-flector:
when a light ray enters, it exits parallel but traveling in the opposite direction. In each
paper, the authors replaced the spherical lenses with slits in the plane, and constructed
a related translation surface. Typically the associated flows are non-ergodic [12] but
Artigiani [1] demonstrated that many configurations lead to ergodic flows.

Outline of the paper.

— In §2, we introduce the tiling billiards system, describe the folding technigue, and
give several fundamental results specific to the trihexagonal tiling.

— In § 3, we define a translation surface S from the tiling, and state and prove the
orbit-equivalence result.

— In § 4, we give specific results about S. In particular, we find the Veech (Affine
symmetry) group of the surface.

— In § 5, we use the symmetries of S to investigate periodic and drift-periodic
directions on S. We use the orbit-equivalence to describe the periodic and drift-
periodic directions for the tiling flow.

— In §6, we revisit the well-approximation by strips criterion for ergodicity due to
Hubert and Weiss.

— In § 7, we prove the ergodicity of almost every aperiodic direction.

2. Definitions and basic observations

2.1. The billiard flow on a tiling. Consider a tiling 7 of the plane by regions
with piecewise C! boundaries. For concreteness denote these regions by R;. We
consider a ray in some region R; in 7, which shares a boundary with some region R».
When the ray intersects the boundary between R and R, it is reflected across the
tangent line to the boundary curve at the point of intersection. (If the regions are
polygonal, as they are here, the ray is reflected across the edge itself.) We can extend
this new ray to a line, and continue along this line in the traveling away from the
intersection point. The billiard flow on T is the flow defined by refracting in this way
all trajectories across the boundaries they hit; see Figure 1. In the case that the tiling
can be 2-colored, this agrees with the flow of light when the tiles of each color are
composed with transparent materials with equal but opposite indices of refraction
and we also call the billiard flow the refractive flow.
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2.2. The folding construction. Because the billiard flow reflects a trajectory across
each edge of the tiling, we can use folding to significantly simplify our analysis, as
follows. When a trajectory crosses an edge of the tiling (the left side of Figure 5),
we fold the tiling across that edge, the dotted line in Figure 5. When the trajectory
crosses the next edge, we fold across that edge as well (the middle of Figure 5). The
result is that the trajectory on the folded tiling is always along a single line, alternating
at each edge crossing between forward and backward (the right side of Figure 5).

Figure 5. When we fold the tiling along each edge that the trajectory crosses, the folded trajectory
goes back and forth along a single line.

2.3. Applications to the trihexagonal tiling.

Lemma 2.1. In the trihexagonal tiling, a billiard trajectory initially traveling in
direction 8 in a hexagon (resp. triangle) is traveling in a direction in the set

16,6 + 27/3.6 + 4r/3}
whenever it returns to a hexagon (resp. triangle).

Proof. When a trajectory crosses an edge, its direction is transformed via a reflection
across the line between the midpoint of that edge and the center of the polygon
(hexagon or triangle). These reflections form a symmetry group of order 6.
Furthermore, to get back into the polygon of the same kind, an even number of
reflections is required, since the trajectory alternates between triangles and hexagons.
Thus the change in direction between returns to hexagons (or triangles) is by the action
of an element of the group of rotations of order three. ]

A hexagon and a triangle meet at every edge of the trihexagonal tiling, so the
folded trajectory goes “forward” in hexagons and “backward” in triangles (or vice-
versa, depending on convention), as in the right side of Figure 5. Since hexagons are
larger than triangles, the trajectory makes forward progress in the folded tiling. This
is in contrast to the behavior on the square tiling, for example, where every trajectory
folds up to a finite line segment, on which it goes back and forth (see |4, Figure 5]).
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Lemma 2.2. The center of each hexagon is singular, in the sense that a refractive
flow through the center always hits a singularity.

Proof. A trajectory through the center of the hexagon then passes through a triangle,
since every edge of a hexagon is shared with a triangle. When we fold the trajectory
along this edge, the third vertex of the triangle folds down to the center of the hexagon.
Thus every trajectory through the center of a hexagon passes through a vertex of a
triangle, and is singular. t

Lemma 2.3. The clockwise or counter-clockwise travel around centers of hexagons
is invariant under the refractive flow.

Proof. Suppose, without loss of generality, that a given trajectory travels counter-
clockwise around a particular hexagon, towards the top horizontal edge (the left side
of Figure 6). The refractive flow is symmetric across this edge, and the trajectory
stays on the right side of the lower dotted line in Figure 6, so it must also stay on the
right of the upper dotted line. Thus it hits the right edge of the triangle and passes into
the hexagon on the right. When we fold across these two edges, superimposing the
second hexagon on the first, we can see that the trajectory travels counter-clockwise
in the second hexagon as well. Since counter-clockwise travel in one hexagon leads
to counter-clockwise travel in the next hexagon, and the same holds for clockwise
travel, the orientation is invariant under the refractive flow. L]

A

Figure 6. Counter-clockwise travel in one hexagon leads to counter-clockwise travel in the next
hexagon as well.

It therefore makes sense to distinguish trajectories by the direction they travel
around the centers of hexagons. We introduce notation for this:

Definition 2.4 (Restricted refractive flows). We define Ty 4 (resp. Tp,_) to be the
refractive flow T restricted to the set Xy + C X (resp. Xg,— C X) consisting of unit
tangent vectors representing initial positions and directions of trajectories that travel
in a direction in the set {6, 0 + 27 /3,6 + 47 /3} when within a hexagon and travel
counter-clockwise (resp. clockwise) around the centers of hexagons.
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Definition 2.5 (Lebesgue measure on Xy ). Consider the identification between X
and R? x S which recovers a unit tangent vector’s basepoint and direction. By
Lemma 2.1, vectors in Xg  point in one of six directions (for most 6 or in three
directions if 0 is perpendicular to the edges of the tiles). We define A C X to be
Lebesgue measurable if for each of these six (resp. three) directions, 6’, the set

Ag ={veR?:(v,0') € 4}

is Lebesgue measurable as a subset of R?. We define the Lebesgue measure of A4 to
be the sum of the Lebesgue measures of the six (resp. three) sets Ag-.

Because the index of refraction is negative one, it follows that L.ebesgue measure
on Xy s is Ty s-invariant. We leave the details to the reader.

We will find it convenient to use the symmetries of our tiling to limit the flows
defined above we need to consider. It turns out that up to the symmetries of the tiling,
all these flows Ty ¢ are conjugate to ones which travel in a direction in the interval

[5~ 27“] and that travel counter-clockwise around the centers of hexagons. Formally:
sie 1 on G _ : / T2
Proposition 2.6. For any 0 € S and any sign s € {+,—} there is a 0" € [%, 5]

and an isometry of the tiling I so that
[(XQ,.S) = X91’+ and Té, & = I o Tﬂts (o] 1_1,

Proof. Applying a reflective symmetry of the tiling swaps trajectories that travel
clockwise around the centers of hexagons with ones that travel counter-clockwise.
The interval [7, ZT” represents a fundamental domain for the action of the rotational
symmetries of the tiling on the circle of directions. So, we can always take / to be
such a rotational symmetry or a composition of a reflective symmetry and a rotational

symmetry. L]

The above Proposition allows us to assume that our trajectories travel in a direction
BE (s, %”] and travel counter-clockwise around centers of hexagons.

Let m: X — R? denote the projection of a unit tangent vector in the plane to
the vector’s basepoint in the plane. The next few results describe the closure of the

projection of Xy ¢ C X.

Lemma 2.7. If = < 0 < Z (respectively, 7 < 0 < 27” ), then w(Xp ) is all of the
plane but the periodic family open triangles in upward (resp. downward) pointing
triangles in the tiling which are bounded by segments of singular trajectories hitting
vertices of the triangle from the tiling in forward (resp. backward) time. See Figure 7

. 5 . . ' T . 5 . o 2
Jor illustration of these missing triangles. When 0 = % we have m(Xgy ) = R~
Note that it is a direct consequence that no trajectory is dense in the plane.
Corollary 2.8. For each non-singular trajectory, there is a periodic family of open
sets containing centers of either the upward-pointing triangles or downward-pointing

triangles, such that the trajectory never enters the family of sets.

See Figure 2 for an example.
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Figure 7. Left: The dark gray triangle is not in 7(Xg 4.) when % < 6 < Z. Right: Similar but
shown when % <f < ZT”

Proof. Each trajectory lies in some Xy s, which up to a tiling symmetry has the

form X 4 for some 6 € [% %’,1] by Proposition 2.6. If & # 7, then this follows

directly from Lemma 2.7. When 6 = 7, it is not hard to show that all trajectories
are periodic and singular trajectories can not intersect triangle centers. L]

<6 < ZF. We will
rom the same type of

Proof of Lemma 2.7. The lemma concerns the case when
leave the case of & = 7 to the reader though it follows
observations.

—_ WS

First, we will show that the flow covers all of each hexagon. The counter-clockwise
flow in direction € covers half of the hexagon, everything to the right of the singular
trajectory through the hexagon center. The flow in direction 6 also includes the flows
in directions 6 + 27” and 6 + 53&. Thus we also cover the images of this half-hexagon
under rotations of order three. The three rotated images of the half hexagon cover
the entire hexagon.

Now we will explain how this missing triangles appear. A counter-clockwise
trajectory traveling in a direction 8 € [%, ) in a hexagon misses the centers of
upward-pointing triangles: Consider a flow in this direction, which is to the right
of vertical, on a hexagon (Figure 8a). Recall that the flow through the center of
the hexagon is singular (Lemma 2.2), and passes through the top vertex of the next
triangle. This singular flow (thick line) divides the flow on the hexagon and triangle
into a left side (clockwise flow) and a right side (counter-clockwise flow). Since
we restrict our attention to counter-clockwise flow, only the flow to the right of the
singularity is allowed, which misses the center of the triangle. Trajectories in Xg 4
also travel within hexagons in directions which differ from 6 by a rotation of order
three (i.e., by rotations of i%”); see Lemma 2.1. Observe that there are isometries
of our tiling whose derivatives realize these rotations. Such isometries preserve the
sets of upward (resp. downward) pointing triangles. It follows that a triangular island
in the center of each upward pointing triangle is missed, whose boundaries are the

singular flows through the centers of adjacent hexagons.
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Figure 8. Counter-clockwise trajectories are shown in black and clockwise in dark gray.
Counter-clockwise trajectories that travel (a) to the right of vertical in hexagons miss the centers
of upward triangles, while those that travel (b) to the left of vertical in hexagons miss the centers
of downward triangles.

Figure 9. Counter-clockwise trajectories that travel (a) to the right of vertical in hexagons cover
all the downward triangles, while those that travel (b) to the left of vertical in hexagons cover
all the upward triangles.

By the same argument, a counter-clockwise trajectory with 7/2 < 6 < 2m/3
misses a triangular island at the centers of the downward-pointing triangles (Fig-
ure 8b).

Now we will show that when 6 € [7/3,7/2), the image of Xy  covers all of
the downward-facing triangles (Figure 9a). The singular trajectory in this direction
through the hexagon center intersects the edge between the previous (downward-
facing) triangle and the hexagon to the left of its midpoint. The flow is on the right
side of the singular trajectory, so this flow covers a portion of the triangle that includes
more than half of its area, including the triangle center. The flow in direction 6 also
includes the three rotations of order 3 of direction 6, and the 3 rotations of the portion
of the triangle cover the entire triangle.

Again by the same argument, a counter-clockwise flow in direction 6 € (7t /2, 27 /3]
covers all of the upward-facing triangles (Figure 9b). [

Remark 2.9. Although the flows Ty ; equipped with their Lebesgue measures are
often ergodic (Theorem 1.2), trajectories do not equidistribute in the plane (in the
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sense of the ratio Ergodic theorem) even outside the missed triangles, because
different points in the plane are hit different numbers of times (as few as zero and as
many as three times) by the projection of Xg  to the plane. For example, generic
trajectories run through some regions three times as often as other regions of the
same area.

Proof of Theorem 1.1 assuming Theorem 1.2. Recall, we need to show that for
Lebesgue-almost every starting point X and starting direction 6 our T -trajectory
is dense in the plane minus a periodic family of triangular islands.

Recall that the set of ergodic directions & used in Theorem 1.2 is full measure. (See
the discussion under the theorem.) So Lebesgue-almost surely 8 € & and —6 € §.
Therefore by Theorem 1.2, we may assume that 7y 1, Tp —, T_g 4 and T_p _ are all
ergodic.

Think of 6 as fixed and satisfying this statement that the four maps above are
ergodic. Then Lebesgue almost-every x € R? yields a unit tangent vector (x, 6)
lying in one of four possible sets:

— It lies in Xg 4 (resp. Xg ) if X lies in the interior of a hexagon and flow of x in
direction 6 moves counter-clockwise (resp. clockwise) around the center of the
hexagon.

— Itliesin X_g 4 (resp. X_g,—) if X lies in the interior of a triangle and the refractive
trajectory travels counter-clockwise (resp. clockwise) around the center of the next
hexagon entered.

Since each of the four flows Ty 4, Tp,—, T_g,+ and T_¢y _ are ergodic (and the natural
topologies on the domains have a countable basis where all open sets are assigned
positive mass by Lebesgue measure), it follows from standard results in ergodic theory
that almost every trajectory in any of these four domains is dense in that domain.
We conclude that almost every x € R? gives a unit tangent vector (x, &) whose
trajectory is dense in one of the four sets Xg 4, Xg _, X_g 4, 0r X_g . L]

3. From the tiling to a translation surface

We define the vectors vg, vi and v, as in (1.2). We normalize our tiling so that
centers of hexagons lie in 2A = (2vy, 2vy, 2v,). This makes all edges of our tiling
have length one. We use H, to denote the hexagon whose center is ¢ € 2A. We split
each hexagon into three rhombuses: H, = U?:o R where R! is the rhombus which
has the hexagon’s center ¢ as one vertex and has edge vectors at this vertex given by
the two vectors —v; 1 and —v;_; (where subscripts v, are interpreted modulo three).
This means that Ri has vertices ¢, ¢ —Vv;+1, ¢+ v;, and ¢ — v;_;. Note that the vector
representing the short diagonal of R’ pointing away from the center of the hexagon
is v;. We label the edges of each rhombus Ri by {1, 2, 3, 4} counterclockwise starting
with the edge leaving the center ¢ in direction —v; 4 1; see Figure 10.
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Figure 10. Some named rhombi and their edge labels.

The decomposition into thombi is useful for understanding the behaviors of
trajectories:

Lemma 3.1 (Trajectories exiting rhombi). Consider a trajectory traveling through
the interior of a rhombus R’ in a direction which makes an angle 6 € [%, 2X] with

37 3

the vector v;. If such a trajectory exits through the interior of an edge, that edge must
have label either 3 or 4. In addition:

(M

)

Such a trajectory exiting through edge 3 will exit hexagon H through that edge,
pass through the triangle opposite that side, then enter hexagon Hy 2y, and move
through the hexagon until it enters rhombus Ri;;vl_ through edge 1. Furthermore
if the trajectory exits Ri at point p of edge 3 traveling in direction 6, and
enters Rillzv, through edge 1 at point q traveling in direction n, then n = 6 — 27”
and q is the image of p under the rotation by angle % about the vertex in
common between the rhombi.

Such a trajectory exiting through edge 4 will exit hexagon H., pass through a

triangle, and then enter hexagon H. >y, | through edge 2 of rhombus Ri:;vl,_l.

Furthermore if the trajectory exits Ré at point p in edge 4 traveling in direction 6,

and enters Ri:;v,:_] at point q of edge 2 traveling in direction n, thenn = 0 — %’—”«

and q is the image of p under the rotation by angle % about the vertex in
common between the rhombi.
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Proof. We will prove these for ¢ = 0 using Figure 10, and the general case follows
by translation.

(1) Consider a trajectory exiting rhombus Rf)) through edge 3, with a direction
Bels, %’1] This trajectory crosses the adjacent triangle and then enters a hexagon.
Because of the angle condition, it must enter the lower hexagon H»,,,, passing through

rhombus Révo and into rhombus R%v“. We can see this by folding the tiling across

the two edges that the trajectory crosses, so that Ry and R%v() are adjacent, as in the
left two pictures of Figure 11.

The two lines we fold along are separated by an angle of /3, so folding along both
of them amounts to a rotation by twice the angle, 277 /3, about their intersection point.
Thus, ¢ is the image of p under the inverse of this rotation, a rotation by —2m /3 about
the common vertex, and similarly the angle of the trajectory in R%v“ is n=10-— 27”

The geometry is the same for R(l, and R2, with the picture rotated by 27 /3 and
4t /3, respectively.

(2) Consider a trajectory exiting rhombus Rg through edge 4, with a direction

2E 7, %”]. This trajectory crosses R(} and then enters an adjacent triangle. Because

of the angle condition, it must exit through edge 2 of R, and enter the hexagon on
the right H_5,,, into thombus REsz' We can see this by folding the tiling across

the two edges that the trajectory crosses, so that Rg and R?

right two pictures of Figure 11.

2y, are adjacent, as in the

Figure 11. A trajectory leaving through the solid edge of the dark gray rhombus enters the
mid-gray rhombus through the solid edge.

The two lines we fold along are again separated by an angle of 7 /3, so the angle
result and the locations of p and ¢ follow as in part (1). Again, the geometry for R,
and Rj is the same, but with the picture rotated.

To see the general case of ¢ # 0, observe that the refractive flow is invariant
under translations by vectors in 2A. These translations act on rhombus labels by
addition. m

We will build a metric surface S by gluing the rhombi edge-to-edge by rotations.
Technically, to consider S a surface, the vertices of the rhombi must be removed
before making these identifications, because otherwise these points will not have
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Figure 12. A decomposition of the hexagons into subsets of three rhombi. Triples of rhombi
surrounding downward pointing triangles are shown in the same color and outlined.

neighborhoods homeomorphic to a neighborhood in the plane because infinitely many
rhombi will be identified at a single vertex. Our identifications turn out to always be
by a rotation by + 27” about a vertex of the tiling. We partition the rhombi into triples
which appear around downward-pointing triangles in the tiling (Figure 12). Within
such a triple, we identify the rhombi along edges 2 and 4 to form a cylinder. See the
left side of Figure 13. Similarly, there is another partition of the rhombi into triples
given by considering triples of rhombi surrounding upward-pointed triangles in the
tiling. We glue edges labeled 1 and 3 of these rhombi together to form a cylinder.
See the right side of Figure 13. Formally, the gluings are described by the following
rules, where we use £ (R') to denote the edge with label j of rhombus R!:

E\(RY) — Es(RiY), ). Es(R) — Ei(RIZL, ).

c—2viy
Ex(R) — Ea(RiD,,).  Ea(RY) = Ea(RE,,, ).

¢ C

3.1)

Let Y be the surface formed by gluing together opposite sides of Rg by translation.
Since these edges are parallel, the edges are glued by translation and the surface Y is
a torus. The torus Y is depicted in Figure 14. We use Y ° to denote the torus ¥ with
the single point formed by identifying the vertices of the rhombus removed.

Proposition 3.2. The map from the union of interiors of rhombi to the interior of Rg
which carries the interior of each R isometrically to the interior of Rg in a manner
which respects the edge labels by {1,2, 3,4} extends to a covering map w: S — Y°.

Proof. First we must check that the map from the interior of a rhombus R’ to Rg
is well defined. Recall from the definition of R; and the labeling, the center of the
hexagon Hf, is the vertex of Ri which belongs to the edges with labels 1 and 4.
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A 1
\ e/ Y=
., Y N

Figure 13. Far left: A triple of rhombi surrounding an downward-pointing triangle. Arrows
denote gluings used to form a cylinder in S. Second to left: The cylinder obtained by gluing
these edges. Right two figures: The corresponding pictures for rhombi surrounding an upward-
pointing triangle. Colors were chosen to match Figure 12.

Figure 14. The tori ¥ (left) and Z (right).

This is always an obtuse angle. Since edges of rhombi are labeled by {1, 2,3, 4}
in counterclockwise order, all rhombi are isometric by a orientation-preserving and
label-preserving isometry. Thus the map 7 is well defined on the interiors of rhombi.

To see that we can extend to the boundaries, note that the edge gluings of
both § and Y are by orientation-preserving Euclidean isometries (rotations for S
and translations for Y). From (3.1) we observe that the gluing rules always identify
an edge labeled 1 with an edge labeled 3 and always identify an edge labeled 2 with
an edge labeled 4. This was also the choice used to form Y from R{,’. Therefore, we
can extend the map to edges in a well defined way. (]

A translation surface is a topological surface with an atlas of charts to the plane
so that the transition functions are translations. A surface built out of polygons in the
plane with vertices removed and with edges glued in pairs by translations is naturally
a translation surface. When finitely many polygons are identified, cone singularities
typically appear with cone angles in 27 Z. When infinitely many isometric polygons
are used you will often see infinite cone singularities as well, which is what we will
see below.
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Corollary 3.3. The surface S is isometric to a translation surface.

Proof. Any branched cover of a flat torus is naturally a translation surface. Our
surface S covers the punctured torus Y ; see Proposition 3.2. [

Figure 15 depicts S but with rhombi rotated and translated. Rhombi were rotated
so that the rhombi differ from Ry by a translation respecting the edge labeling by
{1,2,3,4} as described earlier. Then the rhombi were translated so that they are
organized into the picture above. Because edges are glued by translation, this Figure
represents an explicit presentation of a translation surface isometric to S. We abuse
notation by identifying S with this translation surface. This is also the translation
structure on S obtained by pulling back the translation structure on Y under the
covering map S — Y.

Figure 15. The surface S viewed as a translation surface. Here adjacent edges of rhombi are
glued, as well as the edges connected by arrows. This, together with the fact that cylinders
are formed from three rhombi in the directions parallel to the rhombi’s sides, determines the
surface.

On a translation surface, the geodesic flow decomposes into natural invariant sets.
For @ € S, the straight-line flow on S is given in local coordinates by
Fjy(x) = x + s(cos 0, sin 0).

The flow Fy is said to be completely periodic if every non-singular trajectory of Fy
is periodic. For compact translation surfaces and covers of such surfaces, Fy is
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completely periodic if and only if there is a decomposition of the surface into cylinders
with geodesic core curves parallel to 6.

We will now formalize the relationship between the refractive flow Tp 4 and
the straight line flow Fy: these two flows are orbit equivalent. A continuous orbit
equivalence between two flows is a homeomorphism between the domains of the

flows which carries trajectories to trajectories.

Theorem 3.4 (Orbit equivalence). Fix an angle 0 with 5 < 6 < 27” There is a

continuous orbit equivalence X: S — Xy 4 depending on 0 from the straight-line
Jlow FBS: S — § 1o the flow Té,+: X9+ — Xo,+. This orbit equivalence respects the
orientations on trajectories provided by the flows. Furthermore, the orbit equivalence
carries the Lebesgue-transverse measure on S (transverse to the orbit foliation of Fj)
to the Lebesgue-transverse measure on Xg 4 (transverse to the orbit foliation ongt, )
There is a constant L so that the restriction of X to any trajectory { F3(p) : s € R} is
an L-bilipschitz map onto the trajectory {TQ‘ ox(p) : t € R} where the trajectories
are endowed with metrics making these flows unit speed.

Proof. Fix 0 as in the theorem and consider the straight-line flow F on § in
direction 6. Let Ag C S denote the union of the short diagonals of the rhombi
making up S. These diagonals are horizontal when viewing S as a translation
surface; see Figure 15. Observe that Ag is a section for the straight-line flow Fj
on S. Given a point p € § ~ Ag, we associate a positive and a negative number:

s+(p) =min{s > 0: Fj(p) € As} and s_(p)=max{s <0: Fj(p) € As}.

Now consider the flow Ty +:Xp+ — Xp 4. Recall from the introduction
that X 4 is refractive flow-invariant subset of the unit tangent bundle of the plane;
see the introduction. We define Ay C Xy 1 to be those unit tangent vectors based
on the short diagonal of one of our rhombi and traveling in a direction making
angle of f with diagonal oriented outward from the center of the containing hexagon
(corresponding to the horizontal direction on §). In light of Lemma 3.1, we see
that A7 forms a section for the flow.

Now we will define the orbit equivalence x: § — Xy 1. We define x(p) by cases.
First suppose that p € Ag. Then p is some point on some short diagonal of a
rhombus in §. The same rhombus is also a subset of a hexagon in the plane. We
define x(p) to be the unit tangent vector based at the corresponding point in the plane
with a direction which makes an angle of 6 with the short diagonal oriented outward
from the center of the hexagon. Observe that with this definition of x, the map sends
the Lebesgue transverse measure on Ag to the Lebesgue transverse measure on Ar.
Now suppose that p € § ~ Ag. Then the points

p-=FyP(p) and py = F; 7 (p)

lie in Ag. Define x- = x(p-) and x4+ = x(p4+) using the first case defined above.
Then x_,x4+ € Ar. Observe that the p4 is the first return of p_ to Ag, and
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by Lemma 3.1 x4 is the first return of x_ to Ar. The quantity s (p) — s—(p)
represents the amount of time it takes p_ to reach p4. Similarly there is some time 7,
representing the time it takes x_ to reach x4. We define:

—Lx5—(p)
s+(p) —s—(p)

x(p) = T'(x-) wheret =

This completes the definition of x: § — Xy 4. Observe that on the orbit segment
from p_ to p4, we have rescaled time affinely by a factor of r = t,. /(s (p) —s—_(p)),
ks

xo Fg(p) =Tg% ox(p) foralls € [s_(p),s+(p)]-

See Figure 16 for an illustrated example. We have that s (p) — s—(p) < tx <
2 4+ 54 (p) —s—(p) because by Lemma 3.1 the portion of the trajectory through x(p)
between returns to A7 is formed by adding a passage through an equilateral triangle
and its reflection (also see Figure 12). This proves that the deformation in the flow
direction is bilipschitz and that the constant can be taken to be independent of p. [

Figure 16. Left: A trajectory on S. Center: The corresponding trajectory in the tiling. Right:
The graph of the time change.

Proof of Theorem 1.8 (a). Consider a refractive trajectory and suppose it is bounded
and non-singular. Up to a symmetry of the tiling, by Proposition 2.6 we may assume
that we are considering an orbit of Ty 4 for some ¢ € [7, 27”]. The preimage of
our trajectory under the orbit equivalence of Theorem 3.4 is a bounded non-singular
straight-line trajectory on S.

Since the trajectory on § is bounded, it only visits finitely many rhombi making
up the surface. We can then build a closed (compact) translation surface S’ using
only the rhombi in S which our trajectory intersects. We need to specify the edge
gluings for S’. If both of two adjacent rhombi in S are included in S’ then we glue
them together in the same way. This will leave some edges unglued and since the

trajectory does not cross these edges, we can glue them together in an arbitrary way
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ensuring that we get a translation surface. With this definition of S’ our trajectory
also represents a trajectory on S’.

We now use the following basic fact: The closure of a non-periodic and non-
singular straight-line trajectory on a flat surface is either the full translation surface
or a subsurface bounded by saddle connections in the direction of the trajectory ([11];
[24, Proof of Theorem 1.8]). Our trajectory in S’ is not dense in S/, so it is either
periodic (Case I), or dense in a subsurface of S’ bounded by saddle connections
parallel to the trajectory (Case II).

Case I is our desired conclusion, so assume by contradiction that Case Il holds, i.e.,
our trajectory is dense in a subsurface of S’ bounded by parallel saddle connections.
The surface S’ is a finite cover of the torus built from one of our rhombi. Thus, all
saddle connections are parallel to a vector in A, and in addition, straight-line flows
on S’ in directions in A are completely periodic since S’ is a finite branched cover
of RZ/A. It follows that our trajectory on S’ is parallel to a vector in A and is
therefore periodic. This contradicts the density of our trajectory in a subsurface and
rules out Case II. L

4. Hidden symmetries

4.1. Background on symmetries of translation surfaces. A rranslation automorph-
ism of a translation surface is a homeomorphism from the surface to itself which
preserves the translation structure. A homeomorphism is a translation automorphism
if and only if it acts as a translation in local coordinate charts. The collection of all
translation automorphisms of a surface form a group Trans(S).

An affine automorphism of a translation surface .S is a homeomorphism from the
surface to itself which preserves the affine structure underlying the translation surface
structure. In other words, the homeomorphism must act affinely in local coordinates.
In a connected translation surface, this means that there is a matrix M € GL(2,R)
such that in local coordinate charts the homeomorphism A has the form

i(3) = () ()

where (cg, ¢1) is a vector that depends on the charts. The matrix M is independent
of the chart, and we call this the derivative of the affine automorphism, D(h).

The group of affine automorphisms of a translation surface forms a group Aff(S),
and the group V(S) = D (Aff(S)) C GL(2,R) is the Veech group of S. We observe
that Trans(S) is a normal subgroup of Aff(.S) since it is the kernel of the derivative
homomorphism D:Aff(S) — GL(2,R), and V(S) is isomorphic to the quotient
Aff(S)/Trans(S).

A cylinder C C § is a subset of a translation surface isometric to R/cZ x (0, h).
We call the constant ¢ the circumference of the cylinder and h the height. The



684 D. Davis and W. P. Hooper CMH

inverse modulus of C is the ratio ¢/ h. Core curves in R/cZ x (0, h) have the form
R/cZ x {y} for some y € (0,h). These are closed straight-line trajectories on the
surface and we say the direction of the cylinder is the direction of travel of these
trajectories in the projectivization PR?. A decomposition of S into cylinders is a
collection of disjoint cylinders {C;} with the same direction so that the collection of
closures of cylinders covers S.

Proposition 4.1 (Thurston [30]). Suppose that a translation surface S admits a
decomposition into cylinders in the direction of the unit vector w where all cylinders
have the same inverse modulus, A. Then there is an affine automorphism ¢ of S
which performs a single right Dehn twist in all cylinders in the decomposition and

o [t AT
D(¢)—Ro[0 l:loR \
where R is the rotation carrying the vector (1,0) to u.

4.2. An abelian covering. The subgroup 2A C R? acts on the plane by translation
and preserves the tiling. It also preserves the collection of rhombi. Indeed, we get an
action of 2A on rhombi defined so that for w € 2A,

tw(R) = R, foralli €{0,1,2} and all ¢ € 2A. (4.1

Furthermore t preserves edge labels. It follows:

Proposition 4.2. The action © of 2A on rhombi induces an action of 2A on S by
translation automorphisms.

Proof. Observe that translation by w € 2A preserves edge gluings; see (3.1). Since
labels of edges are respected, each automorphism acts as a translation in local
coordinates of the translation surface. ]

Define Z° = S/2A. Since the T-orbit of each R! consists of all R}, withw € 2A,
the surface Z° consists of three rhombi with edges identified and vertices removed.
Topologically Z° is a torus punctured at three points (points appearing as vertices
of rhombi). We define Z to be the torus obtained by adding the three points to the
surface; see Figure 14.

By construction, : S — Z° is a regular cover with deck group 2A. Since the
cover is regular, we can define the monodromy homomorphism from the fundamental
group. We choose a basepoint on zy € Z° and a basepoint on sy € S so that
(sg) = zp. Given a loop y based at zy, we can lift to a curve y starting at s and
terminating at a point 2(y)(zo) where /() is an element of the deck group. Because
our deck group 2A is abelian, the monodromy homomorphism is well defined as a
map on homology,

h: Hi(Z°,7) — 2A. 4.2)
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We will now provide an explicit description of the map s. Let ¥ C Z be the three
points of Z ~ Z°. Recall that algebraic intersection number gives a non-degenerate
pairing

N:H(Z,%;2)x Hi(Z°;Z) — Z.
Proposition 4.3. Let ng,ny € H(Z,X;7Z) be the two relative homology classes
depicted on the right side of Figure 17. We have

h(y) = 2(no N y)vo +20m Ny)vy,

where Vo and v are as in (1.2).

Figure 17. Left: Curves generating the fundamental group of Z°. Center: These same curves
on the tiling with line segments joining the arcs within rhombuses according to the gluings
defining S. Right: The relative homology classes ng and 71.

Proof. By linearity, it suffices to check the equation for the basis {«, ¢, B1, B2} of
H,(Z°;Z) which consists of the closed curves in Z° depicted in the left side of
Figure 17. First we need to see what / does to this basis. For this, we need to lift
the curves to S and find a deck group element for each curve as noted above. Since
the deck group was defined using the tiling, we lift the curves to S, and then carry
the curves to the tiling using the rhombi. By definition of S, this is equivalent to
developing the curves into the tiling and whenever you cross an edge you use the
edge gluings of S to decide how to develop across the edge. This is carried out in
the center of Figure 17. We find that

h(a) =0 and h(B;) = —2v; fori € {0,1,2}. (4.3)

This evaluates the left side of the equation in the proposition on the basis.
The right side of the equation in the proposition involves intersection numbers
with the classes n¢ and ;. Observe that o does not intersect these classes, while

neNPo=mnNpr =—1, neNP1=nmNPo=0, and neNPo=mNpy = 1.
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Using these algebraic intersection numbers to evaluate the expression on the right
side of the equation yields the same results as (4.3). ]

Proof of Theorem 1.8 (b). Consider a non-singular trajectory of 7" which we may
take to lie in Xp 4+ for some 6 with % < B < 27” It is an elementary exercise
to show that the linear drift rate is zero for a periodic trajectory and positive for a
drift-periodic trajectory. So we can assume 6 is not parallel to a vector in A. (This
is a consequence of the fact that the flow is semi-conjugate to straight-line flow on §
and § is a periodic cover of the torus Y of Figure 14. Itis an elementary observation
that a unit vector in R? is parallel to a vector in A if and only if the straight-line flow
in that direction is periodic on Y. Thus all trajectories on S in these directions are
periodic or drift periodic.)

By Theorem 3.4, our trajectory is the image under a bi-Lipschitz orbit equivalence
x: S — Xy 4 of a straight-line trajectory in §. Any ¢ € 2A determines a cylinder
on S in direction v namely Cc = R U R(,,, U RZ , on S; see the left side
of Figure 13. The collection of such cylinders {C, : ¢ € 2A} forms a cylinder
decomposition in direction vy. Such cylinders are all isometric and parallel and so
are crossed in constant time (depending on #). Observe that there is a uniform upper
bound on the distance from x(s) to ¢ where ¢ € 2A is defined so that x(s) € C,. (This
holds by definition of the orbit equivalence.) Let C,, be the sequence of cylinders

crossed by the T -orbit of x(s¢) for some sy € S. Taken all together, we see that

TH(x(:
lim M =0 if and only if lim

t—00 ! n—o00 P

x|

= 0. “4.4)

Consider the projection of the Fy-trajectory of s( to the punctured torus Z°.
The sequence of centers ¢, can be recovered by intersecting increasing segments
of this trajectory with the curves 1y and 1y of Figure 17. This is the content of
Proposition 4.3. Note that the curves can be moved onto the boundary of the cylinder
(the negatively sloped boundary edges of the rhombi). Consider the return map of
flow in direction 6 to the union of negative sloped boundaries of rhombi making
up Z. From assumptions in the first paragraph, this is an irrational rotation. Then ¢,
is determined by Birkhoff averages of two functions which take the values 1, —1 and
zero on intervals each making up one third of the circle. (These functions come from
the direction in which the curves 1o and n; move over the boundary components.)
Since the functions have zero integral, their time average value is zero in the sense
of the Birkhoff ergodic theorem. This verifies that the right side of (4.4) is true. The
left side is the desired conclusion. ]

4.3. Lifting affine automorphisms. Since Z° is “parallelogram-tiled,” it has a
lattice Veech group. This guarantees there are many affine automorphisms of Z°.
We now consider which of these lift to S. 1t turns out they all lift:
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Lemmad.d. Let .S — Z° denote the covering map. For any affine automorphism
f:Z°— Z°, there is an affine automorphism f: S — S sothat f om = mo f.

We carry out the proof using ideas from [18]. It follows from work there that
there can be only one Z2-cover of Z° so that straight-line flow recurs in almost every
direction; see [18, §4]. The surface S turns out to be this unique cover.

Proposition 4.5. The collection of six homology classes

{no, —no, N1, —N1, N0 — N1, —no + M} C H1(S,%; Z)

is invariant under the action of the affine automorphism group of Z°.

For the proof we need the concept of holonomy. The holonomy of a curve
in a translation surface obtained by developing the curve into the plane using local
coordinates and then measuring the vector difference between the start and end points.
This concept of holonomy induces a linear mapping hol: H,(Z,%;7Z) — R?,

Proof. We will explain why these six classes are canonical in an affine-invariant
sense. First of all they have trivial holonomy which is certainly an affinely invariant
concept. Second, consider the boundary map

S H(Z,X,7) — Ho(X: 7).

Note that § is equivariant under the induced actions of a homeomorphism of (Z, X).
Furthermore, the action of homeomorphisms on Hy(2;7Z) is by permutation
matrices. We observe that a class in H;(Z, X;7Z) is determined by its holonomy
and its image under §. This is because two elements with the same image under §
differ by absolute homology classes in H(Z; Z), and non-trivial absolute homology
classes have non-trivial holonomy since Z is a flat torus.

Let po, p1 and p, denote the three points of X and let [p;] denote the corre-
sponding classes in Hy(X; Z). Observe that the images under & of the six classes in
the proposition have the form

colpol + c1[p1] + c2[p2],  where {cq, c1,c2} = {—1,0, 1}, (4.5)

i.e., each coeflicient is in the set {—1, 0, 1} and each coefficient appears once. Observe
that there are six elements of Ho(X; Z) of this form and these six classes coincide
with the six stated in this proposition. This collection is clearly invariant under
the permutation action on 2. Thus, the six relative homology classes listed in the
proposition are invariant under the action of affine automorphisms of Z°: They
are precisely those classes with trivial holonomy and whose images under § have
expressions as in (4.5). L]
Proof of Lemma 4.4. Let f:Z° — Z° be a homeomorphism. From covering

~

theory, f lifts to a homeomorphism f:S — § if and only if the induced action



688 D. Davis and W. P. Hooper CMH

on homology fi: Hi(Z°,7Z) — H{(Z°; Z) preserves the kernel ker i, where £ is as
defined in (4.2). By Proposition 4.3, ker 4 consists of those classes whose algebraic
intersection numbers with 7y and n; are zero. Observe that the span of 1y and n;
in Hi(Z,%;7Z) is 2-dimensional and coincides with the span of the six classes of
Proposition 4.5. When f is an affine homeomorphism, these six classes are preserved
by the action of f and it follows that their span W C H,(Z, £;R) is also preserved.
The kernel can then be written

kerh ={y € Hi(Z°;Z):nNy = 0foralln € W},

which is fi-invariant because W is invariant. O

4.4. Hyperbolic geometry. To understand and visualize the Veech groups of trans-
lation surfaces, it is useful to consider the hyperbolic geometry of these groups.

We will be using the fact that PGL(2, R) is the isometry group of the hyperbolic
plane H? = O(2)\PGL(2,R). From this point of view, the isometric action is
given by right multiplication. The subgroup PSL(2, R) C PGL(2, R) forms the unit
tangent bundle of the hyperbolic plane. The geodesic flow on the unit tangent bundle
is then given by the left multiplication action of

et 0
gt = [ 0 e’f] (4.6)
on PSL(2, R).

The upper half-plane model of H? identifies points in H? with complex numbers
with positive imaginary part. To be concrete, we choose our identification so that
M € PSL(2,R) represents a unit tangent vector based at

di —b
&=l

a bl
when M = |:c d:l, 4.7)

this point coincides with the projectivization of the vector M~'(i,1) € C?. In
particular, the isometric action of PGL(2, R) on the upper half plane is given by

[a b} % ifad —be > 0,
sz > {4T
c d 4z2-b it ad —be < 0.

a—cz

(The action of M € PSL(2, R) is by the inverse of the usual Mdbius transformation
associated to M .)

With these conventions, i is the point in the upper half-plane represented by the
coset O(2) of H? = O(2)\PGL(2,R). Letrg € O(2) be the vector which rotates the
vector (1,0) to (cos@,sinf) . Ast — oo, the O-direction of the plane is contracted
by gtre_l. This is the geodesic leaving i in the upper half-lane at an angle of —26
from the vertical. The geodesic limits on cot(f) € R U {oo} as t — +oo. (This
geodesic coincides with the g; (1) when 0 < # < 7 in the introduction.)



Vol. 93 (2018) Periodicity and ergodicity in the trihexagonal tiling 689

4.5. The affine automorphism groups. Recall that Z° is the torus built out of three
rhombi with the vertices removed; see Figure 14. We will now work out some facts
about the affine automorphism group and the Veech group of Z°.

We observe using Proposition 4.1 that Aff (Z°) contains the following elements:

— The right Dehn twist ¢ in the single maximal cylinder in direction v;.
— The right Dehn twist ¢, in the single maximal cylinder in direction v,.
— The right Dehn twist ¢bg in the three maximal cylinders in direction v.
In addition, by inspection we can find the following orientation-reversing element:

— There is an affine automorphism p of Z° which preserves each of the three rhombi
making up Z and acts as a reflection in the short diagonal of each rhombus.

We let P; = D(¢;) and R = D(p) and by computation find that in the basis {v{, v2}:

B I N T S O

Finally, we note that there is an affine automorphism with derivative —/ which
preserves rhombus Ry and swaps rhombus R; with R,. This is convenient because it
means that V(Z°) C GL(2, R) is the preimage of a subgroup PV (Z°) C PGL(2, R)
under the natural map GL(2, R) — PGL(2, R).

Proposition 4.6. The projectivized Veech groups PV(Z°) and PV (S) are isomorph-
ic to the reflection group in a (3, 0o, 0o)-triangle (i.e., a hyperbolic triangle with one
angle Of% and two ideal vertices). Reflections generating the Veech group are given
by R, RPy, and P{'RPy.

Proof. By Lemma 4.4, it suffices to prove the statement for PV(Z°). A matrix
calculation reveals

-1 2 ipp =1 =i
RP()—[O 1] and P] RP()—I:O ]]

We consider the standard matrix action on the hyperbolic plane realized as the upper
half plane bounded by the projectivization of R?. It may be verified that a fundamental
domain for this action is shown in Figure 18.

From remarks above the proposition we know that G = (R, R Py, P ' RPy) is
contained in PV(Z°). To see that G = P V(Z°) observe that because Z° covers the
torus (which is “square” with respect to the basis {vy, v2}), we must have PV (Z°) C
PGL(2,7). By a covolume calculation one can see that (R, RPy, P{ ' RPy) is
index four inside PGL(2,7Z). But PV(Z°) must be at least index three inside
PGL(2, 7Z) since there are elements of M € PGL(2,7Z) so that M, M%? & PV (Z°)
but M3 € PV(Z°). (If the left cosets M - PV(Z°) and M?- PV (Z°) are not distinct
then you can show M € PV(Z°).) A primary example of such an M is given by

0 —1
M= [1 ml] (4.9)
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t[1:0] ' . .5[1:0]

P 'RP,
__|rp

[-1:1] [-1:2] 1:1]

Figure 18. A fundamental domain for the action of P V(Z°) on the hyperbolic plane. Edges are
labeled by matrices reflecting in that edge. The domain is divided into fundamental regions for
the action of PGL(2, Z) by isometry.

which cyclically permutes the vectors v, vi and v,. Note that vq is geometrically
different that v; and v, in that the cylinder decompositions are different; see the
definitions of ¢; above. By multiplicativity of subgroup indices,

[G : PGL(2, Z)] = [G : P V(Z°)] . [P V(Z°) : PGL(2, Z)].
Since

[PV(Z°): PGL(2,Z)] =3 and [G :PGL(2,7)] =4,
we must have

[PV(Z°) : PGL(2,Z)] =4 and [G:PV(Z°)]=1,
ie,G = PV(Z°). O

Corollary 4.7. The region A C H? of Figure 2 is a fundamental domain for the
action of PV (Z°) (written in the standard basis) on H?.

Proof. Above we have done calculations in the basis {v{,v,}. Matrices in the
standard basis can be obtained from matrices in basis {v;, vo} by conjugating by the
matrix C whose columns are v; and v,. In particular multiplication by C carries a
fundamental domain for P V(Z°) in the basis {vy, v} to the fundamental domain in
the standard basis. Let R be the matrix from (4.8) which is an element of V(Z°)
written in the basis {vy, vo}. To obtain A, we apply CR to the fundamental domain
in the basis {vy, v2} shown in Figure 18. L]
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The proposition above found generators for PV (Z°). We will now give a method
for distinguishing when an element M € GL(2,Z) represents an action of an
element in V(Z°) in the basis {v,v2}. Let me denote the set of non-zero pairs
(m,n) € 72 consisting of points visible from the origin in R%. Equivalently, 72,
is those pairs (m, n) which are not both zero and satisfy ged(m,n) = 1. Observe
that Z2_is GL(2, Z)-invariant. We define

E={(mn)eZl:m=n (mod3)}. (4.10)

Theorem 4.8. The Veech groups V(Z°) and V (S), thought of as a subset of GL.(2, Z.)
by writing the elements in the basis {v1,Va}, are given by

{M € GL(2,Z) : M(E) = E)}.

Furthermore, the actions of these groups on B and 7.2.. ~ B are both transitive.
VIS

Proof. Write G = {M € GL(2,7Z) : M(E) = E}. By Lemma 4.4, it suffices to
prove the statement for V(Z°). To see V(Z°) C G, it suffices to show that the
generators of V(Z°) lie in G. By Proposition 4.6 the group elements R, Py, P, and
P> of (4.8) together with —/ generate V(Z°). Each can be shown to lie in G by a
simple calculation which we demonstrate for the case of Py. Suppose (m,n) € E.
Then gcd(m,n) = 1 and there is an integer k so n = m + 3k. Observe

Po(m,n) = (n,2n —m).
Since Py € GL(2, Z) we know that ged(n,2n —m) = 1. Observe
2n—m=n+n—m)=n+ 3k

son = 2n —m (mod 3). This proves Py € G.

We have shown that V(Z°) C G. Toshow V(Z°) = G we use an index argument
similar to the end of the proof of Proposition 4.6. We will show [V(Z°) : G] = 1.
From the paragraph above we have V(Z°) C G C GL(2, Z) and therefore

[V(Z2°): GL(2,Z)] = [V(Z°) : G] -G : GL(2, Z)]. 4.11)

From our explicit description of V' (Z°) above we know that [V(Z°) : GL(2, Z)] = 4.
Since subgroup indices are positive integers, it suffices to prove that

[G:GL(2,Z)] > 2.

Consider the matrix M € GL(2, Z) of (4.9) and observe that (1,1) € E while
M(1,1) = (=1,0) and M2(1,1) = (0,—1). Thus M, M? ¢ G while M3 € G.
We conclude that [G : GL(2,Z)] > 3. Since the index must divide four we have
[G : GL(2,7)] = 4and so [V(Z°) : G] = 1 as desired.
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Algebraically, cusps of the quotient of the hyperbolic plane, H?/V(Z°), are
V(Z°)-orbits in Z2 /—1 where —1 is acting by scalar multiplication. (Concretely,
monodromy around the cusp gives a conjugacy class of parabolics, whose collective
eigenspaces constitute such a V(Z°)-orbit in the real projective line. Since
—1 € V(Z°), V(Z°) acts transitively on eigendirections rather than just eigenspaces.)
By Proposition 4.6, there are two such cusps (also see Figure 18). Since —1 € V(Z°),
this also means there are two orbits of V(Z°) in Z2,. The paragraph above shows

that E is V(Z°)-invariant. It follows that the two V(Z °)-orbits corresponding to the
cusps must be E and Z2,_~ E. This proves the last sentence of the theorem. []

vis

5. Periodic and drift-periodic directions

In this section, we explicitly describe the set & of periodic directions, and the set
of drift-periodic directions, and then give results about periodic and drift-periodic
trajectories.

5.1. Characterization of periodic and drift-periodic trajectories. We establish
the following corollary to Theorem 4.8.

Corollary 5.1 (Periodic directions on S). Letw = mv{+nv, € A,y where A,;; C A
was defined in (1.3). Let = Y- € S'. Then:

Iwl
(1) If m = n (mod 3), then the straight-line flow Fy on S is completely drift-
periodic (i.e., for every non-singular Fy-trajectory there is an infinite-order
translation automorphism of S which preserves the trajectory.)

(2) Otherwise, the straight-line flow Fg on S is completely periodic.

On the other hand, if 0 is not parallel to any vector in A, then Fy has no periodic or
drift-periodic trajectories.

Proof. First we consider the special case when 6 is horizontal. This direction may
be represented as v; + v,. There are three horizontal cylinders on Z°. All lift to
strips on the surface S. To see this, refer to the left and central part of Figure 17;
the three horizontal cylinders in Z° have core curves that are homologous to « + .,
B1 and B,. Curves representing these classes do not lift to cylinders on S because
the corresponding curves in the tiling to not close up; see the figure. Instead the
cylinders lift to strips invariant under deck group elements —2vy, —2v; or —2v;
respectively. By normality of the cover, S is covered by horizontal strips; i.e., the
horizontal direction is completely drift-periodic.

Now consider (1). Here, we have (m,n) € E, see (4.10). The vector (m,n)
represents v in the basis {vi, v2}. By Theorem 4.8 there is an element M € V(Z°)
when written in this basis carries (1, 1) to (m, r). In standard Euclidean coordinates,
this carries the horizontal vector —vy = v; + v, to w. By Lemma 4.4 M also
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represents an element of the Veech group V(S). Since the horizontal direction is
completely drift-periodic on S, the direction 6 must also be completely drift-periodic.

Now consider the direction of vy, represented by (1, 0) in our usual basis. There
is a single cylinder on Z° in direction the v, and its core curve is homomorphic
to o shown in Figure 17. Observe that this cylinder lifts as a cylinder to .S since the
curve « lifts to a closed curve; see the middle of the figure. By normality again, the
direction of v; is completely periodic on S.

Now consider (2). In this case (m,n) ¢ Z. Theorem 4.8 tells us there is an
element M € V(Z°) carrying (1,0) to (m,n). Repeating the argument above, we
see that the direction € is completely periodic for §.

To see the final statement suppose that p € S has a periodic or drift periodic
trajectory under Fy for some 0 € S!. Let p € Y° be the image of p under
the covering map to Y° as in Proposition 3.2. Let Fy denote straight-line flow in
direction @ on Y°. In either case, p has a periodic trajectory under Fp. But, Y is
a torus and closed geodesics are parallel to vectors in A because of the particular
geometry of this torus. (Edges of Y are glued by translations by vectors in A.) [

Proof of Theorem 1.6. First suppose 0 = ﬁ where w € A,;; = P U D. Note
that by construction, J and £ are invariant under the order twelve dihedral group
preserving A. So, we may assume without loss of generality that 6 € [, 27”] and
restrict to considering trajectories in Xg 1 ; see Proposition 2.6. Asw € A,;, we
have w = mv| + nv, where gcd(m,n) = 1. As 0 € [%, 2?”] we have ||w|o, = 0
(mod 3) if and only if m = n (mod 3). In view of the orbit equivalence provided
by Theorem 3.4, it follows from Corollary 5.1 that 6 is a completely drift-periodic
direction if 8 € O and 6 is a completely periodic direction if 6 € P.

To prove the stated converses, suppose € is not-parallel to a vector in A. We
may again assume by rotational symmetry that 6 € (%, 27”) and consider trajectories
in Xg 4. The last statement of Corollary 5.1 guarantees that the straight-line flow in
direction 8 on S lacks both periodic and drift-periodic trajectories. From the orbit

equivalence, so does the flow Ty ;. ]

It would be nice to know finer information about the periodic orbits. For example,
the combinatorial period of a periodic tiling billiard trajectory is the number of
polygons crossed by the trajectory in a period.

Question 5.2. For a trajectory whose direction is parallel to a vector in A, what is
the combinatorial period of the corresponding periodic or drift-periodic trajectory?

In [4], §5 explores the trihexagonal tiling, and answers this question for several
directions in the lattice. For example, Proposition 5.10 in [4] says, in our notation,
that for a direction of the form —(3n —2)vp — (6n + 3)v;, with n > 1, the trajectory
is drift-periodic with combinatorial period 12n — 6. As n increases, these approach
the vertical direction. These directions correspond to the white vertices that are just
to the right of the vertical line through the origin, on the first, third, fifth, etc. red
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hexagons in Figure 3. They have a similar result for trajectories approaching the
direction 7r/3, our vector v, [4, Proposition 5.7].

The answer to this question is well understood for the square torus and square
billiard table, and is explored for the double pentagon surface and the pentagonal
table in [5].

5.2. Geometry of periodic and drift-periodic trajectories. Since S is a Z?-cover
of Z°, acylinder C C Z° either lifts to a cylinder in S or the universal cover embeds
into S. In the latter, we call this embedded image in S a strip and denote it by C.
For each such strip, there is pair of opposite elements +w € 2A which when acting
on § as an element in the Deck group preserves the strip C and whose action on the
strip generates the deck group of the covering C — C. Note that given C C Z°,
there are multiple choices of a lift of C, but if one of these lifts is a strip then they all
are and the pair &=w only depends on C so we denote it by w(C). We call £w(C)
the deck group generators of C.

If C C Z° is a cylinder a holonomy vector hol(C) € R? of C is a vector parallel
to a core curve of C with length equal to the length that curve.

v
Then Z° has a decomposition into three cylinders of equal area in direction 0. These

three cylinders v as a holonomy vector and can be indexed so that +w(C;) = +2v;
Jori € {0,1,2}.

Proposition5.3. Let 0 = |l be a drift-periodic direction on S withv =mv+nvy € A ;.

Proof. Fix 6 and v as above. By Theorem 4.8, there is an element M € V(Z°) which
carries vo = (1,0) to v. The holonomies of the three cylinders in the horizontal
direction on Z° are each vy, and it follows that the holonomy of vectors in direction 6
are given by M(vy) = v.

Let yo = @ + By, Y1 = P1 and y, = B, denote the homology classes of core
curves of the three horizontal cylinders; see Figure 17. By definition of 4 in (4.2),
the deck group generators of the horizontal cylinders are given by £h(y;) = £2v;
foreachi. Let f: Z° — Z° be an affine homeomorphism with derivative M. Then
the core curves of cylinders in direction v have homology classes given by f.(y:).
Then by Proposition 4.3,

ho fulyi) =2(no N fx(vi))vo + 2(m N fulyi))vi
= 2(f (o) N yi)vo + 2(f (1) N yi)va

Since f~! is an affine homeomorphism, Proposition 4.5 guarantees that f, (1)
and £, !(n1) each take values of the form g, £n; or (1o — 11). Using this and
linearity it follows that & o f.(y;). We have

{+w(Ci) 10 =0,1,2} = {dho fu(yi) 11 = 0,1,2} = {£2vp, £2v;, £2v,}. [
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Corollary 5.4. Drift-periodic trajectories of the tiling billiard T: X — X are
preserved by translation by 2vy, 2vy, or 2v,. For any drift periodic direction
0 € D and any sign s, there are trajectories of Ty s which are invariant under each
of 2vg, 2vy, and 2v,.

Notice that the drift-periodic trajectory on the right side of Figure 1 is preserved
by a horizontal translation of distance 2; the preceding corollary shows that every
drift-periodic trajectory has this property, in one of the three directions parallel to
edges of the tiling. This means that as we “zoom out” from a drift-periodic trajectory,
it will converge to a line parallel to one of the three directions vy, vy, or v;.

Recall that the torus Z is a triple cover of the torus Y formed from a single
rhombus; see Figure 14. So we have a chain of covers S — Z° — Y°, where Y°
represents Y punctured at the identified vertices of the rhombus. The covers are
all regular and the covering S — Y° has a deck group which is isomorphic to
a semidirect product of Z2 and 7/37%: Concretely, this deck group is the group
of orientation preserving isometries of the plane which permute the rhombi in the
decomposition of the hexagons while respecting the notion of direction on the rhombi
(see Figure 10 and the discussion of direction below Corollary 3.3). Elements of this
deck group either have order three or are translations.

Proposition 5.5. Each cylinder of S is invariant under an order three element of the
deck group of the covering map S — Y°.

Proof. Let C be a maximal cylinder of S. Then by Corollary 5.1, core curves of C
are parallel to a vectorw = mv; +nv, € A, withm # n (mod 3). By Theorem 4.8
there is an element M € V(Z°) = V(S) so that M(v;) = w. Let f/:S — S be an
affine automorphism with derivative M. Then f~!(C) is a maximal cylinder of S
in direction v;. Such cylinders in direction v; consist of three rhombi, which are
arranged symmetrically around a downward triangle in the tiling. (Triples of rhombi
of this form are colored in the same way in Figure 12.) Let §: S — S be the order
three rotation of the tiling which permutes the three rhombi forming f~!(C). Then
the cylinder C is preserved by the order three element f o § o /™!, []

Corollary 5.6. Each periodic trajectory of the tiling billiard T: X — X is invariant
under a rotational symmetry of the tiling of period three but is not invariant under a
rotational symmetry of period six.

Notice the order-three rotational symmetry of the periodic trajectory on the right
side of Figure 1; this corollary shows that all periodic trajectories have this property.

Proof. Period three invariance follows from Proposition 5.5 since the deck group
corresponds to symmetries of the tiling as noted above. Order six symmetry is
impossible because the portions of a trajectory inside hexagons only travel in three
directions; see Lemma 2.1. [
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6. The ergodicity criterion of Hubert and Weiss

6.1. The ergodicity criterion. For this section, we will temporarily work in a more
general context. Let X be a compact translation surface X and let X C X be a finite
collection of points containing the cone singularities of X. Let S be a G-cover of
a compact translation surface X° = X ~ X. That is S is a cover of X° with deck
group G and G\ S = X°. We will only consider the case where G is abelian.

A cylinder in X ° is said to be maximal if it is not contained in any other cylinder,
i.e., it can not be nested inside another cylinder with the same circumference and
holonomy. If C C X° is a cylinder, then the preimage of C under the covering map
S — X° is either a disjoint union of cylinders or a disjoint union of strips. Fix C
and choose a closed curve y:[0,1] — C running once around the cylinder. Let
¥:[0,1] — S be a lift. Then there is a G¢ € G so that G¢ - ¥(0) = y(1). Since G
is abelian, the value of G¢ depends only on the direction y wraps around C. The
cylinder C lifts to strips if and only if (G¢) C G is isomorphic to Z. We suppress y
from our notation for G¢ and just assume that our cylinders come with the choice of
an isotopy class of oriented core curves.

We have the following definition:

Definition 6.1. Let 6 be a direction for straight-line flow and let G € G. We say
the pair (0, G) is well-approximated by strips on S if there is an € > 0 and infinitely
many maximal cylinders C on X ° with areas bounded from below by some positive
number satisfy G¢ = G and

lhol C| - [ug Ahol(C)| < (1 —€) Area(C). (6.1)

An equivalent definition appears in [21, §1] and [1, Def. 5] except that in those
articles the right side of (6.1) was scaled by a factor of %

We are also not assuming that C lifts to strips because it is unnecessary for the
proof and allowing torsion may be useful in some cases. (The work of Hubert and
Weiss [21] considered G == Z while Artigiani [ 1] considered Z?2. The generalization
to abelian groups clearly follows.) In the case G has finite order “well-approximated
by strips” should be “well-approximated by finite covers of cylinders” but we will not
concern ourselves with semantics.

We have the following which is a strengthening of [21, Theorem 1] and [1,
Proposition 7] because of the aforementioned lack of % in (6.1)). We thank Barak
Weiss for pointing out that this factor of % could be removed.

Theorem 6.2 (Hubert—Weiss ergodicity criterion). Suppose S — X is a G-cover
where G is abelian as above. Suppose (G, ..., G ) is a finite index subgroup of G
and that 0 is an ergodic direction for straight-line flow on the finite cover of X
obtained by (Gq,...,Gy)\S. If for each i, (0, G;) is well-approximated by strips
on S, then 0 is an ergodic direction on S.
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6.2. Proof of the ergodicity criterion. We will follow the approach of Hubert and
Weiss. See in particular §2.4 and §3.1 of [21]. Let F5: X° — X®and F*:S — §
be the straight-line flows in direction 8. We do not define the flows through X, but
this affects only a set of zero measure.

The flow F¥ is measurably conjugate to a G-valued skew product over the flow F*.
To see this, select a basepoint xo € X ° and make a choice of a path 8 in X° starting
at xo and ending at x. Then for any x € X° and s € S we may define the loop
Yx.s: 10, 1] — X° by first following B, then following the trajectory F (0.1 () forward
(or F1501(x) backward if s < 0) and finally moving backward over B Fs(x) returning
to xg. Select a lift Xy € S of xg € X°, and let Yy : [0, 1] — S be the lift of y,  that
begins at X,. We define the cocycle

a: X xR —> G sothata(x,s) € G satisfies yx (1) = a(x, 5)(Xp).
This choice makes F* measurably conjugate to the skew product
F@:XxG — X xG; F'(x,G) = (F'(x),G + a(x,s)).

Let G be adiscrete group. Let  be Lebesgue measure on X and 1 be the measure
on X x G which is the product of i and the counting measure on G. The conjugacy
between F and F* carries /L to Lebesgue measure on S.

With G discrete as above, a group element G € G is an essential value for the
cocycle « if for any A C X with p(A) > 0, there is a set of s in R of Lebesgue
positive measure for which

p({x € A: F*(x) € Aand a(x,s) = G}) > 0.

The following is a consequence of work of Schmidt [26, Cor. 5.4]:

Theorem 6.3. Assume G is a discrete abelian group and Gi,...,G, € G are
essential values. Then F° is ergodic if and only if the induced action of F* on
X x({(Gy,...,G)\G) is ergodic.

Note that we are stated the definition of essential value and the above theorem in
the context of discrete groups, both this definition and result above extend with some
modification to the indiscrete setting. See [26] for details.

Theorem 6.2 then follows from the following:

Lemma 6.4. If (0, G) is well-approximated by strips, then G is an essential value.

The remainder of this subsection is devoted to the proof of this lemma.

To simplify our arguments, rotate the surface so that 0 is horizontal. Fix G € G
and assume (6, GG) is well approximated by strips. This guarantees the existence of
an € > 0 and a sequence of distinct maximal cylinders C,, C X° with area bounded
from below so that G¢,, = G and so that by defining the width of C, to be w, > 0
and hol(C,) = (an, bh,) we have

|br| < (1 — €)w,. (6.2)
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(The equation above is equivalent in this context to (6.1).) Given any bound, a
translation surface has only finitely many maximal cylinders whose circumference is
below this bound. Thus we have

lim w, =0, lim b, =0, and lim |a,| = +oc. (6.3)
n—o00 n—>C0 n—>00

For any r < 1 and any n, let C,,(r) be the set of points x € C,, for which the open
1

metric ball B(x; %rwn) centered at x and of radius 5 rw, is contained in the interior
of C,,. Observe that C,(r) is the closed central cylinder of C, of width (1 — r)w,
and in particular

Area C,(r) = (1 —r)Area C,,. (6.4)
Proposition 6.5. For any r with O < r < 1, the set limsup,,_, . C,(r) has full
Lebesgue measure on X.

The proof mirrors the proof of [21, Lemma 14].
Proof. Recall that ;e denotes the Lebesgue measureon X . Set L, = limsup,,_, o, Cn(r).
From the lower bound on areas of cylinders and (6.4), we see that that
p(Ly) > limsup u(Cp(r)) > 0

for all r.
The key observation is that for every s € R and every r’ < r we have

F*(Cu(r)) C Cy(r") for n sufficiently large,

where F denotes the flow on X in direction 6. Indeed if A C B are nested cylinders
and v = hol(B), then the image of A under straight-line flow by vector w depends
only on the projection of w onto the direction orthogonal to v. In our setting we see
F3(C,(r)) is the same as the image of C, (r) under straight-line flow by the vector

|5hn| = (1 —€)|swn
Jaz+ b2 Jai+ b2

(as long as the images of C, (r) stay contained in C,). Recalling that C,(r’) is the
central cylinder in C,, of width (1 — r")w, we see that

Proj (b, —a,)(s,0)  which has norm

2(1 — €)|s]
Jaz b2

From the limiting information of (6.3), we see that our key observation holds.
From the key observation it follows that for each s and each r’ < r we have

F*(Cu(r)) C Ca(r") whenever 0 < r’ <r —

F*(L,) = limsup F*(Cy(r)) C limsup C(r') = L.
n n

This holds independent of s so we see that that the F*-orbit of L, is contained
in L,/. By ergodicity of the flow in direction & we have that (L, ) = pn(X) since
w(L,) > 0. This holds for all r’. |
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Proof of Lemma 6 4. Continue using the notation as above. For this proof fix r to
be the value 1 — 5 (where € comes from the definition of well-approximation). Let
L = limsup,,_, C (r) which has full measure from the prior proposition. To verify
that (0, G) is an essential value, fix a measurable A C X with p(A) > 0. Let x be a
density point of A which also lies in the full measure set L. That is, we insist

pw(B(x; R) N A) B

Ilei—>mo pw(B(x; R)) (6.5)

Since x € L, there is an increasing: sequence of integers ny so that x € Cy, (r)
for each k. We set By = B(x; rw,,,\) and by definition of C,, (r) we see that
B C Cy,. Set Ay = AN By. Observe that by (6.3), the radii of By tends to zero
as k — oo so that limg o ,u(Ak)/,u(Bk) = 1,

Let Bk C S be a lift of By and let Ak C Bk be the preimage of A;. We will
argue that for values of s nearby ay, , there is a large intersection between Fs (Ek)
and G(Bk) see Figure 19. Then for sufficiently large k, density kicks in and implies
that FS(Ak) and G(Ak) intersect in a set of positive measure. Translating this in
terms of cocycles, we see that this implies that G is an essential value.

Figure 19. In light grey we depict the strip Cy, and in dark grey the lift of Cy, (r). The
intersection between F %"« (Bx) and G(By) is shown.

We will complete the proof by demonstrating that the intersection F5(B)NG(By)
is large when k is large. Let C C S be the connected component of the preimage
of Cy, containing B. Typically Cy will be a strip and we assume this for simplicity.
(If Ck is not a strip we could work on the universal cover.) Let dev: Ck — R2bea
developing map to the plane which is a translation in local coordinate charts. This
is a homeomorphism to a strip in the plane. The action of G translates along the
strip Cy and in fact:

dev o G(By) = (@ny » bny,) + dev(By)
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and
dev o ﬁs(Ek N 5k) D ((A‘,O) 53 a'ev(Bk)) N ék.

Considering the particular case of s = a,,, we see that the distance between the
two circles (dp, , by, ) + dev(By) and (s, 0) + dev(By) differ by a vertical translation
by |bp, |. Thus from (6.2) and consideration of the radius of By we see that the region

dev o G(By) Ndevo F%x (B N Cy) (6.6)

has height
€ ¢
FWp, — lhnkl - (1 - E)U)!I/\» - |bnk| il Ewnk

(where we use our definition of r and (6.2)), which is a positive proportion of the
radius rwy, of By. In particular, there is an 7 > 0 so that

f(G(By) N Fre (By))

A (B)

Note that this ratio of areas varies continuously as s varies near ay, , so this ratio is

nearly as large when s is near a,, . By the remarks of the previous paragraph, this
completes the proof. L]

>n forall k.

6.3. A geometric interpretation. We will now give a geometric interpretation of
the concept of well-approximation by strips in the case where the base surface X°
has Veech’s lattice property. Essentially this amounts to working out a statement
of [21, Proposition 5] which was left to the reader with attention to the explicit
bounds.

We begin with some hyperbolic geometry. We continue to follow the conventions
established in §4.4. Recall H? = O(2) \ PGL(2,R). For M € PGL(2,R) we use
[M] € H? to denote the associated coset. For each vector v € R?, we may define the
Busemann function

By:H? - R; [M]r> log|Myv|.

If v has unit length this coincides with the usual notion of the Busemann function
for the geodesic ¢ + [g,ry '] where rg € SO(2,R) is a rotation so that r, ' (v)
is horizontal and g, is as in (4.6). The Busemann functions yield a natural
compactification of H? where [M,] — [v] if and only if By([M,]) — —oco. A
horodisk neighborhood of [v] € RIP? is a set of the form

H(v,e) = {[M] € H? : expoB,([M]) < €} forsomee > 0. (6.7)

Let I' C SL(2, R) be a non-uniform lattice and P € I' be a parabolic preserving
the eigenvector v € R2. Then the quotient H?/I" has a cusp associated to P and v.
We define € (v, €) to be the image of the horodisk H (v, €) in H?2/T". It is useful to
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observe that for any # € SL(2,R) and any € > 0 we have M € H(h(v),¢) if and
only if M € H(v,€)-h™! and thus

Hv,e)- T =) H(y(v).e) (6.8)

yell

or equivalently €(v, €) = €(y(v),¢) forall y € I,

Lemma 6.6. Let I' C SL(2, R) be a discrete group and let v € R? be an eigenvector
of a parabolic P € T. Let ug € R? be the unit vector in direction 0. Then the
Jollowing statements are equivalent for any d > 0:

(a) There is a sequence y, € I so that the vectors v,, = y,(V) are pairwise distinct
and satisfy
liminf |v,| - |ug Av,| <d,
n—>0oC

where Ug A v, is the signed area of the parallelogram with the two vectors as
edges.

(b) The geodesic ray [0, +00) — H2/T defined by t [g,r‘s,_l '] has an accum-
ulation point in the open neighborhood of the cusp € (v, v/ 2d).

Statement (a) is related to the notion of well-approximation by strips, see (6.1).
Lemma 6.6 gives a geometric criterion for deducing well-approximated by strips
in the case when the Veech group is non-elementary.

Proposition 6.7. Let S be a G-cover of X° where G is abelian as in §6.1. Let
I' € SL(2,R) denote the subgroup of the Veech group of S consisting of derivatives
of affine automorphisms which commute with all elements of the deck group G.
Let C be a cylinder on X which lifts to a strip in S so that hol C is preserved by a
parabolic P € T'. Then, if 0 is a direction so that the geodesic ray [g;ry '] has an
accumulation point in the open neighborhood of the cusp € (hol C, \/2 Area(C)) in
the surface H? /T then (0, G¢) is well-approximated by strips on S.

Proof assuming Lemma 6.6. The commutativity assumption tells us that for any
y € I', there is an affine automorphism ¢ with derivative y so that the cylinder ¢(C)
satisfies Gy(cy = G¢. Such cylinders are therefore available to use for verifying
that (6, G¢) is well-approximated by strips. By hypothesis we have statement (b)
of Lemma 6.6 for v = hol C and d = Area(C). Since (b) implies (a), there is a
sequence y, € I so that v, = y,(v) are pairwise distinct and so that

liminf [v,|-|ug Av,| <d.
n—oo

Let K denote the lim inf above. For each n, choose an affine automorphism ¢, with
derivative y, so that ¢, commutes with all elements of G. Set C,, = ¢,(C) which
are cylinders with the same area and G¢, = G¢ from our first remarks. Observe
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that [hol Cy| - [ug A hol(C,,)| coincides with |v,]| - [ug A v, | and so the limit inferior
of this quantity is K. The definition of well-approximated is therefore satisfied when

K

—_—. Ul
Area(C)

O<e<l1—

The remainder of the section is devoted to the proof of Lemma 6.6. In order to
simplify the argument, we assume without loss of generality that the direction @ is
horizontal and ug = (1, 0). Denote v,, by (x,, y,). Then we have

|Vn| - [ug A vy| = |yl X?ﬁ-y%- (6.9)

It will be useful for us to observe:

Proposition 6.8. For any sequence v, = (Xn,yn) so that [v,] — [(1,0)] in
RP? = R?/(R ~ {0}),

liminf |x, y,| = liminf |y,|\/x2 + y2.
n—>00 n—oQ

The proof is elementary and left to the reader.

Proposition 6.9. Let w = (x,y) be a a vector in R? with |x| > |y| > 0. The
geodesic ray {[g] : t > 0} is tangent to the horoball H(w, \/2|x||y]).

Proof. By adirect calculation we observe that [g;] is in the boundary of the horoball
H(w,e 'x + e'y). The minimum attained by ¢ “x + ¢’y taken over all 1 € R
is v/2|x]||y| and this is attained for the ¢ satisfying |¢~"x| = |e’y| which occurs
for ¢t > 0 since |x| > |y| > O. ]

Proof of Lemma 6.6. Fix the parabolic P € ' with eigenvector v as in the statement
of the theorem. Assume without loss of generality that 6 is horizontal as mentioned
above. Fixad > 0.

Suppose we have sequences y, so that v, = y,(v) = (x,,y,) satisfies
statement (a) of the theorem. Recall that because I is a discrete group, the orbit of the
eigenvector v of the parabolic P € T isdiscrete. This forces us to have |v,| — oo, and
it follows from (6.9) and our hypothesis on {v,} that [v,] — [(1,0)] and |x,| — oo
where v, = (x,, y,). By possibly removing finitely many terms, we may assume
|xn| > |yul| forall n. Let K = liminf, o |Vs| - |Va A ug| and recall that K < d by
hypothesis. By Proposition 6.8 and (6.9), we know liminf, o [x,y,| = K. Asa
consequence of Proposition 6.9, we know that the ray {[g;] : ¢ > 0} is tangent to the
horoball H (v,, v/2|x,||ya|) for each n. On the surface this horoball descends to the
cusp neighborhood € (v, +/2|x,||y,])). Asd > K, there are infinitely many n so that
the ray visits the closure of the horoball H(v,, ~/ K + d) so we get an accumulation
point in the closure of € (v, /K + d) which is contained in € (v, v/2d).
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Now suppose that the ray {[g,] : ¢ > 0} has an accumulation point in the open
cusp neighborhood € (v, +/2d). This accumulation point lies in the boundary of
€, V2K ) for some K < d. That is, there is a sequence of times ¢, — +o00 so that
g1, - I converges to a point in the closure of € (v, V2K). Lifting to SL(2, R), we geta
sequence y, € I so that g;, y, converges to a point in the H (v, Vv2K). In particular,
the ray {g;y, : t > 0} passes through the open horoball H(v, /K + d). From the
discussion above (6.8), this is equivalent to the statement that the ray {g; : ¢ > 0}
passes through H(y,z(v), VK + d). Set v, = yu(v) = (xn,yn). This ray is
tangent to the horoball H (vs, v/2|xp||ya]) by Proposition 6.9. In particular then
V2|xn||ynl < ¥/ K + d for each n. It follows that liminf |x,||v,| < (K + d)/2.
Then by Proposition 6.8,

K +d
Jr<d. O

lim inf|y;:|(|xn| + |yn|) =

7. Ergodicity of aperiodic directions

Our Theorem 1.2 on the ergodicity of the tiling billiard flows is a consequence of an
ergodicity result for the translation surface S. We show the following using methods
introduced in the previous section.

Theorem 7.1. Let 0 < 0 < 7 and let iig € T1(A) be the unit tangent vector based
at i which is tangent to the geodesic ray in the upper half-plane terminating at |cot 6|
as described above (1.1). Consider the billiard trajectory g,(ug) in A as in the
introduction. If

— ] . -
limsupIm (g,(tig)) > —= and ltimlm‘ Im (g;(tig)) # +o0,
—=>T 0

t—+o00 \/§

then the straight-line flow Fg: S — S is ergodic.

The criterion we use to prove this is given in Theorem 6.2. Our surface S is a Z?
cover of Z°. We define I" to be the subset of the Veech group V(S) consisting of
elements M € I" so that there is an affine automorphism f: S — S which commutes
with all elements in 2A, the deck group of the cover § — Z°. To this end we show:

Proposition 7.2. An affine automorphism f:72° — Z° has a lift to S which
commutes with all elements of the deck group of the cover S — Z° if [ preserves
the set X C Z of punctures pointwise.

Proof. It follows from Proposition 4.5 that the classes ng,n1 € H(S, X;7Z) are
preserved by f. (The six classes are distinguished by their images in Hy(2, Z)
under the boundary map.)

Let pg € Z° be the basepoint for the curves a, Bo, B1 and B> on the left side
of Figure 17. When the curves 8y and B, are lifted to curves By and 1 on S, the
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endpoints differ by the deck group elements —2vy and —2v,, respectively. Denote
these two deck group elements by Dy and D, respectively, and note that they generate
the deck group 2A.

Let f S — S be alift of f* which exists by Lemma 4.4. Since D; is the element
of the deck group carrying the starting point of §; to the end point, it follows that
fo Do _]'”:1 is the element of the deck group carrying the starting point of f o f3;
to its end point. The curveﬁf o Ei is a lift of the curve f o f8; and therefore the deck
group element f o D; o f~! coincides with the monodromy A( f o f;); see (4.2).
We can compute A#( f o B;) using Proposition 4.3:

h(f o Bi) =2(n0 N fx(Bi))vo + 2(m N fx(Bi))v1
= 2( £ (o) N Bi)vo + 2( /5 " (n1) N Bi)vy.

Since f, ! stabilizes 1o and 11, we see h( f o ;) = h(B;) or equivalently

Corollary 7.3. The subgroup I' C V(S) is at most index six.

Proof. The affine automorphisms satisfying Proposition 7.2 lie in the kernel of a
group homomorphism to the permutation group of X. L]

Proposition 7.4. With 0 satisfying the hypotheses of Theorem 7.1, the straight-line
flow on Z° in direction 0 is uniquely ergodic.

Proof. By hypothesis the billiard trajectory g;(tig) has an accumulation point in
SL(Z,R)/(V(ZO) N SL(2, IR{)). (This quotient is naturally the unit tangent bundle
of the double of A across its boundary.) By Masur’s criterion [23, Theorem 1.1],
straight-line flow on Z° in direction 6 is uniquely ergodic. ]

Recall that a cylinder C which lifts to a strip has an element of the deck group G¢
associated to it, see §6.1.

Proposition 7.5. In the horizontal direction, Z° has a horizontal cylinder decomp-
osition consisting of three cylinders Cy, Cy, C which lifts to strips in S. The cylinders
can be indexed so that hol(C;) = (1,0), Area(C;) = +/3/2 and Gg, = —2v;.

This follows from the geometric description of Z° and Proposition 4.3.
The cylinders lifting to strips as above determine cusp neighborhoods as in

Proposition 6.7. The following gives the geometry of a corresponding horodisk
defined in (6.7).

Proposition 7.6. The horodisk H((1,0), ¥/3) is given by {z € C : Im z > 1/+/3}.
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Proof. Let H denote H((1,0), ¥/3). By definition, for M € PSL(2,RR), we have
[M] € H if |M(1,0)| < ¥/3. Consider M = g, as in (4.6). By (4.7), g, is the unit
tangent vector based at e?*i. Also, |g/(1,0)| = e~ so that ¢?’i € H if and only
if e < /3. Thus —=i € H. Since H is a horodisk based at co, the proposition

/3
follows. ]

Proof of Theorem 7.1. This is a consequence of Theorem 6.2. Fix 6 as in the
statement of the theorem. The straight-line flow in direction € is ergodic on Z° by
Proposition 7.4. Consider the deck group elements of S associated to 2vy and 2v;.
We need to show that (6, —2vq) and (6, —2v;) are well-approximated by strips. We
use Proposition 6.7 for this. The subgroup I' C V(Z°) used in the Proposition is
finite index by Corollary 7.3. In particular the parabolic P € V(Z°) has a power
which lies in I'.

By Proposition 7.5 the horizontal direction has three cylinders on Z° which
satisfies G¢, = —2v; for i = 0,1,2. Proposition 6.7 then guarantees that both
(6, —2vy) and (6, —2v,) are well-approximated by strips if there is an accumulation
point of [g;r, ' '] in the cusp neighborhood €((1, 0), ¥3) of H?/ T which is defined
as the projection of H((1,0), ¥/3) to H2/T.

The Veech group V(Z°) acts transitively on strip direction of S by Theorem 4.8.
Also, all strip directions have oriented cylinders with G¢ = —2v; fori € {0, 1,2}
by Proposition 5.3. In particular, for all M € V(Z°), if [gtrg_1 '] accumulates in a
point in the cusp neighborhood € (M (1,0), ¥/3), then we also get that both (6, —2v;)
are well-approximated by strips for each i € {0, 1,2}.

Recall from Corollary 4.7 that A = H2/V(Z°). Since ' C V(Z°), there is
a natural covering map p:H2/T" — A. The cusps neighborhoods found above
consist of preimages under p of the neighborhood consisting of points z € A
with Imz > 1/ /3. This follows from naturality of the definition of neighborhood
(see (6.8)) and Proposition 7.6 in the case of the horizontal direction. Since
the covering is finite-to-one, there is an accumulation point in one of these cusp
neighborhoods if and only if there is an accumulation point of [g;r, W(Z°)] in
the cusp neighborhood of A described above. This is guaranteed by hypothesis
in the statement of the Theorem. Thus we get that (6, —2vq) and (6, —2v;) are
well-approximated by strips and therefore the flow in direction 8 is ergodic on S by
Theorem 6.2. [l

Proof of Theorem 1.2. By Proposition 2.6 and invariance of & under symmetries
of the tiling, it suffices to consider the flow Ty : Xy 4+ — Xg 4 for some
0eé&ni3, 27”]. By Theorem 7.1, the flow Fy: S — S is ergodic. Consider the
orbit-equivalence x: S — Xy 4 given by Theorem 3.4. Because the orbit equivalence
is bilipschitz in the flow direction and measure preserving in the transverse direction,
an Fy-invariant measurable set A C § has measure zero if and only if x(A) C Xy +

has measure zero. Thus Ty 4 is also ergodic. ]
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