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Connections on equivariant Hamiltonian Floer cohomology

Paul Seidel

Abstract. We construct connections on S ! -equivariant Hamiltonian Floer cohomology, which
differentiate with respect to certain formal parameters.
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1. Introduction

Floer cohomology often involves formal parameters, which take into account various
topological features. This paper concerns differentiation with respect to such
parameters. Before we turn to that, it may be appropriate to recall other contexts in
which cohomology groups come with similar differentiation operations:

— In algebraic geometry, given a smooth family of algebraic varieties, the fibrewise
algebraic de Rham cohomology carries the Gauss—Manin connection [18]. Griffiths
transversality [14, 15] measures the failure of the Hodge filtration to be covariantly
constant, and that is the starting point for the theory of variations of Hodge structures.

— The Gauss—Manin connection has been generalized to noncommutative geometry
by Getzler [12], where it lives on the periodic cyclic homology of a family of dg
(or Axo) algebras. Recall that periodic cyclic homology can be obtained from negative
cyclic homology by inverting a formal parameter, here denoted by u. In Getzler’s
formula, only a simple pole u~! appears (hence, u times that connection is an
operation on negative cyclic homology). This property is the analogue of Griffiths
transversality, in the formalism of variations of semi-infinite Hodge structures [2].

— There is a related but distinct connection on periodic cyclic homology, which
applies to a single dg algebra, and differentiates in u-direction [19, 31]. More
precisely, the connection is defined for Z/2-graded dg algebras (and is basically
trivial if the grading can be lifted to Z). It involves a =2 term, hence can be thought
of as having (in general) an irregular singularity at the parameter value ¥ = 0. In
algebraic geometry, a related construction appears in the context of exponentially
twisted de Rham cohomology.



588 P. Seidel CMH

— Closer to our interests is the (small) quantum connection in Gromov—Witten theory
[8,13]. This differentiates in direction of the Novikov parameters, as well as another
parameter, which one can think of as being our previous u. In the Calabi—Yau case,
where differentiation in u-direction is not interesting, [11] announced a proof of
the fact that the quantum connection is related to Getzler’s connection on the cyclic
homology of the Fukaya category, through the (cyclic) open-closed string map.

The aim of this paper is to construct connections on S !-equivariant Hamiltonian
Floer cohomology. The idea underlying the construction is quite general, since
it mainly involves certain chain level TQFT operations (geometric realizations
of the Cartan calculus in noncommutative geometry, which underpins Getzler’s
construction). However, we will not aim for maximal generality; instead, we illustrate
the idea by two specific instances, leading, in slightly different contexts, to what we
call the g-connection and u-connection. In cases where Floer cohomology reduces
to ordinary cohomology, these reproduce appropriately specialized versions of the
quantum connection. (One also expects them to be related to the corresponding
structures in noncommutative geometry through open-closed string maps, but we
will not pursue that direction in this paper.)

The original motivation comes from [29]. That paper considers (non-equivariant)
symplectic cohomology, which is a specific instance or application of Hamiltonian
Floer cohomology. One imposes a crucial additional assumption, which is that the
class of the symplectic form should map to zero in symplectic cohomology. One then
gets a connection on that cohomology, which is not canonical (it depends on the choice
of an appropriate bounding cochain, which “certifies” the previously mentioned
vanishing assumption). This looks somewhat different from our g-connection,
which only exists for the S!-equivariant theory, does not require any additional
assumption, and is canonical. In spite of that, one still expects to be able to relate
the two connections, by means of a suitable intermediate object; see [29, Section 3].
The analogous situation in algebraic geometry would be the case of a family of
smooth varieties with vanishing Kodaira—Spencer class (this means that the family
is infinitesimally trivial, but not necessarily globally trivial; after all, any family of
affine varieties satisfies that condition). In that case, one can define a non-canonical
connection on the spaces of fibrewise (algebraic) differential forms, which (in a
suitable sense) induces the Gauss—Manin connection.

The structure of this paper is as follows. Section 2 introduces the relevant
geometric situation, and states our main results. Section 3 collects some background
material about Morse theory on CP*°. Section 4 is a review of some relevant aspects
of Floer theory. Section 5 defines the g-connection, and in Section 6, we adapt the
previous argument to get the u-connection.

Acknowledgements. This work was partially supported by the Simons Foundation,
through a Simons Investigator award; by NSF grant DMS-1500954; and by the
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2. Main constructions

After recalling some basic Floer-theoretic notions and terminology, we explain
the formal structure of the operations to be constructed. We also include a few
comments about the wider context into which they fit (implications; relations with
other developments; and possible generalizations).

2.a. The g-connection. Let (M, ®) be a compact symplectic manifold with convex
contact type boundary. (The boundary could be empty, even though that case is of
less interest for us; also, we will not really make any use of the contact geometry
of the boundary, other than to ensure suitable convexity properties for solutions of
Cauchy—Riemann equations.) For technical simplicity, and also to strengthen the
similarity with classical cohomology, we will assume that

c1(M) = 0. 2.1)

Let A C R be the additive subgroup generated by the integers and the periods
w - Hy(M;Z), and R C R the subring with the same generators. Clearly,
[@] € H?(M;R) can be lifted to H2(M; A); we pick such a lift, denoted by [Q2].
We use a single-variable Novikov ring A where the coefficients lie in R, and the
exponents in A. This means that elements of A are formal series

f(@) =rog® +rg*" +---, ri €R, a; €A, lima; =+o0. (2.2)

By construction, A is closed under differentiation d;. Quantum cohomology is the
graded ring obtained by equipping H*(M ; A) with the (small) quantum product *.
Take u to be a formal variable of degree 2, and extend the quantum product u-linearly
to H*(M; A[u]). Concerning the notation, let’s point out that the distinction between
polynomials and power series in u is strictly speaking irrelevant here, because of the
grading: in each degree, only finitely many powers of u can appear. In spite of that,
we keep the power series notation since it’s appropriate in a more general context;
the same will apply to Floer cohomology. The quantum connection (or rather, the

part of that connection which concerns us at this point) is the endomorphism
Dg: H*(M; Au]) — H*T?(M; Afu]), 23)
Dgx = udgx + ¢~ [Q] * x. '

As defined, Dy is a connection in ud,-direction, which may feel awkward. If one
wants to get a connection in the more standard sense (which means in d,-direction,
hence having degree 0), one can instead take u~! D, acting on H*(M; A((u))).
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We will consider Floer cohomology groups HF*(M, ¢), for € > 0, which are
defined using functions whose Hamiltonian vector field restricts to € times the Reeb
field on dM (assuming that there are no closed Reeb orbits of length €). Each such
group is a finitely generated Z-graded A-module. It also carries the structure of a
module over the quantum cohomology ring, via the quantum cap product, which we
will write as ~. Our main object of study is the S!-equivariant version of Floer
cohomology, denoted by HF ;‘q(M ,€). This is a finitely generated Z-graded module
over A [u]. Equivariant Floer cohomology sits in a long exact sequence

<= HFSTX (M, €) —> HF% (M, €) —> HF*(M, €) —> HF; ' (M, €) — -
(2.4)
We will often make use of the forgetful map (from equivariant to ordinary Floer
cohomology) which is part of that sequence. Also of interest are the PSS maps,
which are canonical maps

H*(M; Au]) . E HF% (M, €) (2.5)
lu=0 l
H*(M; A) B HF*(M, €).

B relates the quantum product with its cap product counterpart. Moreover, if we
choose € small, then both B and B, are isomorphisms. The g-connection can be
described as follows:

Theorem 2.1. There is a canonical additive endomorphism

Ty:HF;,(M,€) — HF,;F>(M,¢), 26)
Ly(fx) = fTq(x) +u(@, f)x for f € Alu], '

which fits into a commutative diagram

r
HF% (M, €) ——— HF}*(M, ¢) (2.7)
l =119~ l
HF*(M, e) — 2 g2, ).

Moreover, for small €, the isomorphism B,, identifies I'q with Dy.

Let’s give at least a hint of the construction. Floer cochain complexes are, by
definition, complexes of free modules over the Novikov ring, with a distinguished
basis (up to signs). Using that basis, one can equip them with the naive operation of
differentiation d, in the Novikov variable, but that operation does not commute with
the Floer differential . In our version of the definition, d counts Floer trajectories



Vol. 93 (2018) Connections on equivariant Hamiltonian Floer cohomology 591

with weights +¢%, where E is the intersection number with a suitable cycle
representing the symplectic class. Clearly, the commutator d,d — d 9, counts those
same trajectories with weights 9, (£9F) = £(g7YE)gf. The idea is to interpret
this new count as a kind of “Lie action” of the cohomology class ¢~ '[Q]. On
the S1-equivariant complex, the Lie action operation becomes nullhomotopic after
multiplication with the equivariant formal parameter #. One uses the nullhomotopy
to add a correction term to ud,, turning it into a chain map, which induces I';.

As one can see from this sketch, the g-connection is closely tied to the origin of
Novikov rings as a way of keeping track of energy, hence to the non-exactness of the
symplectic form. If @ is exact, one can take 2 = @, in which case the coefficients
of the Floer differential are 41; then 0, is already a chain map, and on cohomology,
one has

Iy = udy,. (2.8)

Similarly, suppose that the periods are w - H(M ; Z) = mZ, for some integer m > 2
(and accordingly choose [€2] to be the m-fold multiple of an integral class). In that
case, A = Z((q)), but Floer cohomology can in fact be defined using only powers
of ¢". As a consequence, if we consider the version of the theory with coefficients
mod m, which we denote by HF*(M, ¢; Z/m) (even though it is actually defined
using A ®z Z/m = (Z/mZ)(q)) as coefficient ring), then that version again carries
a trivial d,-operation. The same holds for the equivariant theory, and we have a
commutative diagram which describes “I'y modulo m”:

r
HF} (M, €) ? HF}F2(M, €) (2.9)

| |

)
HF} (M, €;Z/m) ————~ HF (M, &; Z/m).

If one wants a connection in d,4-direction, one can consider u1 'y, acting on
HFZ‘q(M, €) ®zuy Z(u) = HF:q(M, €) @apg Alu). (2.10)

In this context, we should mention how this fits in with the localisation theorem
of [1,36] (even though that will not be pursued further in the body of the paper).
An appropriate generalization of that theorem shows that, after tensoring with Q((u))
instead of Z ((u)) in (2.10), the equivariant PSS map (2.5) becomes an isomorphism for
all e. Moreover, a generalization of the compatibility statement from Theorem 2.1
(not proved here, but not tremendously hard) shows that this map still relates D,
and I';. Hence, the resulting version of I'y; can be recovered, up to isomorphism,
from the standard Gromov—Witten theory of M. The “up to isomorphism” issue is
not negligible, since it may not be easy to see what the localisation isomorphism does
to geometrically relevant symplectic cohomology classes (see [29, Section 3] for an
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example of this, involving Borman—Sheridan classes). Leaving that aside, note that
tensoring with Q((x)) entails some loss of information (Z-torsion and u-torsion); it
seems unlikely that I'; itself has a description in terms of the Gromov—Witten theory
of M.

We want to briefly mention some potential further developments. One could
extend the construction to multivariable Novikov rings; this corresponds to the version
of (2.3) which uses the quantum product with all of H?>(M; A). A genuinely new
question that arises in the multivariable context is that of the (expected) flatness
of the connection. It is also worth noting that the construction applies outside the
context of Novikov completions as well. For instance, consider the case of an exact
symplectic manifold. One can then define Floer cohomology with coeflicients in the
Laurent polynomial ring over Ho(M ; Z)/torsion. For the S'-equivariant version
of that Floer cohomology theory, there is a connection which differentiates in all
H?(M Z)/torsion directions. An analogous idea may apply to string topology
(where one studies the S'-equivariant homology of a free loop space, with twisted
coefficients).

2.b. The u-connection. Let’s replace (2.1) by the assumption that our symplectic
manifold should be either exact or monotone, meaning that

[w] =yc (M) e H*(M:;R), forsomey > 0. 2.11)

In this case, the quantum product can be defined without using the Novikov parameter,
as a 7 /2-graded product on H*(M;Z). We will use a different form of the
quantum connection this time, namely the endomorphism of the Z /2-graded group
H*(M ; Z[u]) given by

Dyux = 2u%d,x — 2¢1 (M) % x + up(x), (2.12)

where
p(x) =kx ifxe H*(M;Z) ® Z[u]. (2.13)

The assumption (2.11) also allows us to define Floer cohomology and its equiv-
ariant cousin without using Novikov coefficients, as a finitely generated 7 /2-graded
abelian group and finitely generated Z /2-graded Z [u]-module, respectively (in spite
of that difference in the formal setup, we will keep the same notation for them as
before). There is also a Z/2-graded analogue of (2.5), involving Z and Z[u] as
coefficient rings. The counterpart of Theorem 2.1, describing the basic properties of
the u-connection, is:

Theorem 2.2. There is a canonical 7. /2-graded additive endomorphism

Ty HF; (M, €) —> HF, (M, ¢),

_ (2.14)
Tu(fx) = fTu(x) + 20> @, f)x for [ € Z]u],
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which fits into a commutative diagram

HF?, (M, €) ——“— HF %, (M, ¢) (2.15)
HF*(M, €) 5™ pps (M, o).

For small €, the isomorphism B, identifies I'y, with D,,.

The u-connection is closely tied to the issue of gradings on Floer cohomology.

If c;(M) = 0 (which in our context implies that [w] must vanish as well), one has

Z-gradings as in Section 2.a. Let deg be the associated grading operator, which

multiplies each element of H. Zq (M, €) by its degree. Then, there is a disappointingly
simple formula

Iy (x) = udeg(x). (2.16)

More generally, suppose that ¢ (M) is m times some class in H?*(M;Z), where
m > 1 (of course, the m = 1 case always applies). A choice of such a class yields a
(Z /2m)-grading, and one has a diagram analogous to (2.9):

Iy

HF}, (M, €) HF:(M. €) 2.17)

| |

deg
HF? (M, €; 7./ 2m) ———— HF*2(M, €; ./ 2m).

Let’s assume that our symplectic manifold is monotone, which means (2.11) with
y > 0. In fact, let’s normalize the symplectic form so that

[w] = c1(M). (2.18)

One can then define a version of quantum cohomology which is Z-graded but
periodic, by adding a formal variable g of degree 2. More precisely, we want to think
of this as a ring structure on the graded u-adic completion of H*(M ; Z[q,q™*, u]),
which we write as H*(M; Z[q,q '][¢~"u]). This carries a (degree 2) operation D,
as in (2.3). Let deg, be the grading operator on H*(M;Z[q,q '1[g~"u]).
Unlike (2.13) this takes the gradings |¢| = |u| = 2 into account, so one can write it
as

deg, = p + 2udy + 2qd,. (2.19)

Using (2.18), one then has

Dy, = (udeg, —2¢Dg) (2.20)

g=1"

What this means is: the expression in brackets is Z[q, g ']-linear, hence can be
specialized to ¢ = 1 (which simply means reducing the grading back to Z/2), and
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the result then agrees with the previously defined D,. One can similarly define
a version of Floer cohomology which is a Z-graded module over Z[g, g~ ']; and
of equivariant Floer cohomology, over Z|gq, q_l][[q'lu]]. The equivariant version
carries a g-connection as in (2.6). In parallel with (2.20), this turns out to be related
to the u-connection,

Iy = (udeg, — 2qrq)q=1. (2.21)

We want to make one more observation concerning the monotone case (2.18).
In our original framework (2.1), Floer cohomology was Z-graded, and gradings
forced all u-series to be finite. A similar, but slightly more subtle, principle is
at work in the monotone situation, allowing us (after making appropriately careful
choices) to define a polynomial version of equivariant Floer cohomology, denoted by

HF;,"O,Y(M , €), which is a finitely generated Z /2-graded module over Z[u], and from
which the previous version is recovered by completion:
HF, (M, €) = HF,, (M, €) @z Z[u]. (2.22)

*

Similarly, one can define a u-connection on HF,,,,(M, €), of which our previously
considered I'y, is the formal germ at u = 0. This is of interest because the polynomial
(or indeed complex-analytic) theory of irregular connections is much richer than
the formal theory (for applications of this theory to D,, see e.g. [10]). More
immediately, the existence of the polynomial version of the u-connection has the
following consequence:

Corollary 2.3. As a Z[u]-module, H ;‘0 1y(M, €) cannot contain any direct summands
isomorphic to one of the following:

Z[u)/ (u — 1)? forA #0,andd > 1; or

(2.23)
(Z)p)ul/(u—2)?  for an odd prime p, and d, A both coprime to p.

This may be a bit of a letdown, since such summands would yield extra information
specific to the polynomial theory. However, for the Z-torsion part, not all such extra
information is ruled out by Corollary 2.3 (and the remaining possibilites are known
to occur in other contexts; see the example of Z/2-equivariant Lagrangian Floer
cohomology in [28, Section 7c]). The proof is a one-liner: if x were the generator of
such a summand, then

0= Ty(@—A)?%x) = (u— 1) Tyx + 2du?(u — 1) x. (2.24)

If one projects back to the relevant summand, the first term on the right hand side
vanishes, while the second does not. For a more geometric view, let’s replace Z
by C. Then, the idea is that, since the vector field 2u?9, only vanishes at u = 0, a
coherent sheaf that admits a connection in the direction of that vector field can’t have
torsion anywhere else (as in our discussion of D, it would be interesting to see how
this relates to what one might get from localisation techniques).
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3. Morse-theoretic moduli spaces

Following a familiar strategy (compare e.g. [3,28,30]; in the last two references, the
group involved is Z /2 rather than S1), much of our discussion of S !-equivariant Floer
cohomology will be based on the Morse theory of BS! = CP®. In this section, we
use this Morse theory to produce various hierarchies of manifolds with corners (of
course, one could also try to construct those manifolds directly in a combinatorial
way, but that approach seems less natural).

3.a. Setup. The basic notation is:

C*® = {w = (wo,wy,...) : w; € C vanishes for almost all j}, (3.1)
B® = {weC™: |w|? =Y, w2 <1}, 3.2)
§° = 9B, | (3.3)
CP® = §*°/51. " (3.4)

An important ingredient for us will be the shift self-embedding
(r(wg,wl,...):(O,wo,wl,...) (35)

(we will allow a slight ambiguity in the notation here, using o for the shift acting on
either of the spaces above). The quotient map will be denoted by
q:S*®° — CP*>, (3.6)

Let ¢, € CP* be the k-th unit vector (k > 0). We will identify the fibre of (3.6)
over cx with S! in the obvious way. A notational remark is appropriate at this
point. Following Floer theory conventions, we set S! = R/Z throughout, so the

identification is written as
ST — g7 (ex),
r— (0,...,62””,0,...).

3.7)

We will use a specific complex hyperplane in CP *°, as well as a real hypersurface
bounding its preimage in $°°. These are given by, respectively,

H={);w; =0} CCP>, (3.8)

S =g Y(H) c S®, (3.9)

B={Y,w; <0} cCS>. (3.10)

Clearly, H =~ CP® and § = S°. One also has B =~ B, for instance by a suitable

stereographic projection (away from (1,0,...,0), to the linear subspace where the
sum of all coordinates is zero):

w I#ijj(—zhéﬂwj,wl,...). (3.11)
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The quotient map g|B: B — CP® maps B \ 0B isomorphically to CP*° \ H, and
collapses the boundary dB = S onto H. (In the analogous finite-dimensional
situation, ¢|B describes how complex projective space is obtained from its
hypersurface H by attaching a cell.)

We will use the Morse function
h:CP® — R, 3.12)
h(w) = [wy|* + 2w | + 3|ws|* + -+ '

and the standard (Fubini—Study) metric. The critical points are precisely the ¢, and
they have Morse index 2k. The negative gradient flow is the projectivization of the
linear flow

s - (wo, w1, wa,...) = (W, e Pwy, e Pw,,...). (3.13)
The stable and unstable manifolds are
Wi(ck) = {wo = -+ = wg—1 = 0, wy # 0}, (3.14)
WH(cr) = {wg #0, wry1 = Wiy =-++ = 0}

Those manifolds intersect transversally, making the flow Morse—Smale. Moreover,
they are transverse to (3.8).

We also want to fix a connection A on the circle bundle (3.6). This must be
invariant under the shift, and flat in a neighbourhood of each c¢i. Every path joining
two critical points yields a parallel transport map, which in view of (3.7) can be
thought of as an element of S!.

3.b. Spaces of trajectories. Allour spaces are defined as standard compactifications
(by broken trajectories) of suitable spaces of negative gradient trajectories for the
function (3.12). Concretely:

— For k > 0, consider the space of unparametrized trajectories going from cg to ¢
(using (3.5), one can identify this with the space of trajectories from cg4; to ¢y, for
any /). Denote the standard compactification of the trajectory space by Pg. This is
a (2k — 1)-dimensional smooth compact manifold with corners, and comes with a
canonical identification (which describes its boundary as the union of codimension 1
closed boundary faces)

Pr= ) Pe x Pr, (3.15)

ki1+ko=k

We will denote unparametrized trajectories by [v], thinking of them as equivalence
classes under the action of R. Points in the interior of a boundary face (3.15)
correspond to two-component broken flow lines ([vq], [v2]).

— A closely related space is the compactification of the space of parametrized
trajectories, denoted by P,f for k > 0. This has dimension 2k, and satisfies

aP,fz( U Pkle,fz)U( U P,gkaz). (3.16)

ki+kr=k k1+ka=k



Vol. 93 (2018) Connections on equivariant Hamiltonian Floer cohomology 597

— Consider pairs (w,v), where v is a trajectory and w € S a point such that
g(w) = v(0). Such pairs form a circle bundle over the space of parametrized
trajectories. There is also a compactification P}, of dimension 2k + 1, which is a
circle bundle over P,f, satisfying the obvious analogue of (3.16):

aPs = ( U Pex P,fz) u( U P x sz). G.17)

ki+kr=k ki +ka=k

— Finally, one could modify the most recent definition by allowing w € B* to be a
point lying on the line singled out by v(0). This gives a disc bundle whose boundary
is our previous circle bundle. The compactification P,i’ has dimension 2k + 2, and
satisfies

orb=ru( U PaxPl)u( U PhxPo) (3.18)
ki +ka=k ky+k =k

To clarify the “recursive” structure, note that since Py = @, any boundary BPkp only
contains spaces Plp with / < k as factors. The same is true for (3.17) and (3.18).

The reader will have noticed that we have, without further ado, declared our
compactified moduli spaces to be smooth manifolds with corners, in a way which is
compatible with the product structure on boundary strata. Such smooth structures are
constructed in [5,20,34], under the assumption that there is a local chart around each
critical point, in which the Morse function and the metric are both standard. While
our metric does not satisfy that condition, there are local charts around the critical
points in which the gradient flow is linear, see (3.13); and that is sufficient to make
the constructions go through. Alternatively, since our function and gradient flow are
completely explicit, one could construct the necessary charts near the boundary strata
by hand.

Over each of our spaces of trajectories, there is a “tautological family”

&, —>Pk,
P
P
D

J

S

— P,f,

S

(3.19)

S
—> P,

S "N

b
—>Pk.

S

Let’s consider the first case:

— A point of P, is represented by a (possibly broken) flow line with additional data:
(v1,...,vj,£,3) forsomej >1,£€{l,...,j},and s € R. (3.20)
We identify two representatives iff they are related by the action of (ry, ..., r;) € R/:

1,05, 8, 8) ~ (Vi G4+ r1)s e v (4 1) £ s — 1), (3.21)



598 P. Seidel CMH

Py is a noncompact manifold with corners, carrying a free and proper R-action (by
translation on s); the map to Py, which forgets (£, ), is invariant under that action.
In fact, the fibre of the map to P over any broken trajectory with j components
can be identified with a disjoint union of j copies of the real line (ordered in a
preferred way), with R acting by translation on each. This description is compatible
with (3.15), meaning that the restriction of # to Py, x Py, C BPk is canonically
identified with the disjoint union of the pullbacks of &, and $,. Additionally,
Pk comes with a smooth evaluation map to CP°, which takes (vy,...,v;,Z,4)
to vy (4); this intertwines the R-action with the negative gradient flow (3.13).

We also find it convenient to introduce a compactification £ (just as a topological
space, without differentiable structure) by allowing the point on our flow line to
degenerate. In the notation from (3.20), we now allow s = o0, but additionally
identify

(vl,...,vj,£,+oo):(vl,...,vj,lf+1,—oo). (3.22)

The map from (3.19) extends to Py — Pr. The fibre of the extended map over a
broken trajectory with j components consists of j copies of R = R U {400}, with
the 400 point of each glued to the —oo point of the following one (so that overall,
one gets a space homeomorphic to a closed interval). The R-action extends to a
continuous action on J 5k, which leaves P \ & fixed. The evaluation map to CP*°
extends continuously to %%, taking [vq, ..., v;, £, £0o0] to the critical point which is
the s — Z+o0 limit of vy. Moreover, there are canonical continuous sections which
single out the endpoints of the chain of R’s:

([vl,.. ):[vl,...,vj,l,—oo], (3.23)
( vj]):[vl,'--,vj,j,-l-oo].

The compactifications Py, are compatible with (3.15), in a sense which is similar to
our previous statements of the same kind, and which we will therefore not spell out.
The next case in (3.19) is an appropriate modification of the previous construction:

— A point of {P,f is represented by
(v1,...,vj,i,£,8) forsomej >1,i,L€{l,...,j},and s € R. (3.29)

Here, the component v; may be a constant flow line. We divide out by R*~! x {0} x
R/~ C R/, acting as in (3.21).

A fibre of the map J’,f — Pkp over a trajectory with j components again consists
of j copies of R, even if the parametrized component is constant. The space 3’{
comes with the same R-action as before. Additionally, there is a distinguished smooth

section o, pp
il by =y N (3.25)
*([vl,.. j,i]) = [vr, ..., v5,1,1,0].
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There is also a compactification PP with additional sections as in (3.23). The other
two cases in (3.19) are parallel.

Remark 3.1. The reader may have noticed that J_’-k is homeomorphic to P? . hence
after all does carry the structure of a smooth manifold with corners. The same is
true for the other compactified moduli spaces, which can all be thought of as moduli
spaces of broken trajectories with one marked point (which can lie on an additional
constant component). However, those smooth structures will be irrelevant for our
purpose.

3.c. Topological aspects. In low-dimensional cases, the topology of the moduli
spaces of trajectories is easy to determine: there are diffeomorphisms

PlgSl, P2§SIXD2,
PP = point, PP ~ sl x|0,1],
N 1 1 1 [1 | (3.26)
Py =38, Pre 8 %8 x[0,1]

PP e p*

In two of those cases, we want to fix choices of diffeomorphisms, which will be
used in orientation arguments later on. For Py, we take the obvious identification
S' 2 g7 (co) = P§, which was spelled out in (3.7). For Py, we choose

s — p,

| . (3.27)
r— s (@ e 0 )] =[s (e 700

We also need some more topological information about the boundary strata of the
low-dimensional spaces (3.26).

Lemma 3.2. Consider the map induced by (3.15) for k = 2,
Hy(P1) ® H(Py) = H1(Py X P1) — Hy(P2) (3.28)

(the domain and target are isomorphic to 7> and 7Z, respectively; and we know that
the map is onto). This map is diagonal, meaning that it is invariant under switching
the two P factors.

Proof. Take the action of (S1)? on CP> which rotates the first three coordinates.
This induces an action on P,, for which the diagonal subgroup acts trivially, and the
orbits of the subgroup (1, ¢2”*", 1) are contractible (since some of those orbits are
fixed points, and any orbit can be deformed to one of them). If we let the same group
act on the boundary (3.28), that action has weights (0, 1, —1) on the first Py factor,
and weights (1,—1,0) on the second P; factor (because those factors correspond
to flow lines lying in {0} x CP! x {0, ..., }and CP! x {0,...,}, respectively). In
particular, the subgroup (1, 27", 1) acts with weights 1 and —1 on the two boundary
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factors. By taking an orbit of that subgroup, and moving it from the boundary to the
interior, one sees that the element (1,—1) € H{(Py) & H;(Py) lies in the kernel
of (3.28). |

Lemma 3.3. Consider the maps induced by (3.17) for k = 1,

Hl(Pg)GBHl(Pl)——-H}(PgXP1)—>H1(PIS), (3.29)

Hi(P1) ® Hi(P§) = H(P1 x Py) — H1(PY). ‘
All groups involved are isomorphic to 72, and the maps are isomorphisms.
Composing the first map in (3.29) with the inverse of the second map yields an element
of GLy(7.) which, with respect to the bases determined by our fixed identifications,

is given by
0 1
(] ]) ; (3.30)

Proof. Take the action of S xS on C* which rotates the first two coordinates. This
induces an action on Py, each orbit of which is homotopy equivalent to the whole
space. If we restrict the action to P§ x Py C 9P, the action on Pg has weights (0, 1),
while that on P; has weights (1, —1) (for the same reason as in Lemma 3.2). On the
other boundary component P; x Py, we still get weights (1, —1) on the P; factor, but
weights (1, 0) on the Py factor. In other words, the maps (3.29) sit in a commutative
diagram of isomorphisms (in which the desired map (3.30) is the dashed arrow)

Hy(S' x ST 331)
y )
HPF R P o smamm s > Hy(Py x P§)
Hy(PY).
0

Let’s record some information about the topology of the higher-dimensional
spaces of trajectories:

Lemma 3.4. We have
H*(P,0P,) =0 forx <2k —2,
H*(PP,0P]) =0 for* <2k —1,
H*(PE,0P%) =0 for* <2k —1,
H*(PE,aPE) =0 for+ <2k +1.

(3.32)



Vol. 93 (2018) Connections on equivariant Hamiltonian Floer cohomology 601

Proof. Let’s start with the most basic situation, that of Pkp . From (3.14) one sees
that

PE\P? = C* xC* 1 = §T xR, (3.33)

which means that H*(P[,9P) = Hpr_1_(P]) = 0 for 2k —1 — % > 1, proving
the relevant part of (3.32). The interior of Py is a quotient of that of Pkp by a free
and proper R-action, hence has the same homotopy type. Similarly, P} is a circle
bundle over Pkp (in fact, because of the topology of the latter space, it is necessarily
trivial). Pkb is the disc bundle associated to that circle bundle. L]

The main way in which the topology of these moduli spaces enters into our
discussion is through certain circle-valued maps. We will give two constructions of
such maps: a direct geometric one, and another one by a topological argument.

Lemma 3.5. There are smooth maps
o P — ST, (3.34)

such that: aq has degree 1; and the maps are ‘compatible with (3.15), in the sense
that

o | (Px, X Pr,) = og, + a,. (3.35)

First proof. Given a gradient trajectory v from ci to ¢y, let’s use parallel transport
(for the connection A) to get a map ¢~ ! (cx) — g~ '(co). The parallel transport map
is given by an element of S!, and we set o ([v]) to be that element. The desired
property for k = 1 can be shown, for instance, by deforming our connection A to the
standard round connection, for which the parallel transport maps exactly recover the
identification (3.27). Parallel transport maps extend smoothly to broken flow lines
(this is easy to see since A is flat near the critical points); and the equality (3.35) is
just their basic concatenation property. O

Second proof. Choose an arbitrary «; with the desired property, and consider the
map

8P2: P1 XP] — Sl,
(v, [v2]) — 1 ([v1]) + a1 ([v2]).

Lemma 3.2 (or rather, the dual statement for cohomology) shows that this can be
extended to ap. From there on, one proceeds inductively as follows. Suppose that,
for some / > 3, we have already defined oy, ..., a;—; with the desired properties.
The requirement (3.35) then prescribes the value of @; on dP;. By Lemma 3.4, we
have H?(P;,0P;) = 0 as soon as | > 0. Hence, any circle-valued map can be
extended from dP; to P;. Ol

(3.36)
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Lemma 3.6. There are smooth maps
of, Bi: P — ST, (3.37)

such that: ay is zero, while By has degree 1; and the restriction to (3.17) is given by

ap | (P, X Pry) = o, + ey, (3.38)
B | (P{ % Piy) = B

and
g | (P, x Pf) = o, + o, (3.39)
Bi | (Pry X Pg,) = —ax, + By,

First proof. One can define ) exactly as before, by parallel transport along v.
Similarly, consider inverse parallel transport along v|(—oc, 0], which yields a map
g ' (v(0)) - ¢ ' (ck) = S'. We define 5 (w, v) to be the image of w under that
map. The required properties are obvious. L]

Second proof. Choose the maps first for k = 0. Then (o}, B]) is supposed to be a
map whose restriction to the two boundary components of P} induces the following
maps on homology:

((1) (1)) for P§ x Py, and (_11 (1)) for Py x Pg. (3.40)

Lemma 3.3 shows that such maps exist. It is then easy to adjust them so that (3.39)
and (3.38) are satisfied. Asin Lemma 3.5, the rest of the construction is on autopilot:
by Lemma 3.4, we have H?(P?, dP}) = 0 as soon as ! > 2. Hence, any map
dPF — St x ST extends to P;. O

Remark 3.7. In the second proof of Lemma 3.6 there is one step, the construction of
(af, B]), whose solution is not unique up to homotopy. For each of the two functions
involved, the possible choices form an affine space over

H'(P{,0P;) = 7. (3.41)

To make this more concrete, let’s spell out the kK = 1 case of (3.38) and (3.39),
using Lemma 3.3 and a suitable identification P{ = S x S x [0, 1]: the functions
(af, B7) then have prescribed boundary behaviour

(5 (r1,72,0), Bi(r1,r2,0)) = (e (r1) + a1 (ra2), B3(r1)),

(Ol‘i'(i‘l,rz, 1),ﬁ‘;(1’1, ra, 1)) = (061(1’2) + O{S(I‘l + ), —ay(r2) + ﬁ(s)(rl + rz)).
(3.42)
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Suppose that we deform «; by adding a constant ¢ € R. That can be extended to a
deformation of («f, B7) as follows:

(r1,72,1) —> (af(r1,r2,8) + ¢, B (r1, 72, 1) — ct). (3.43)

Specializing to ¢ = 1, we see that we have changed the homotopy class of g7 rel
boundary by a generator of (3.41). Hence, if one considers the constructions of the
functions from the second proofs of Lemmas 3.5 and 3.6 as a single process, then 8}
is homotopically unique in that context.

There is no such trick for «z}, but one can at least single out a preferred homotopy
class (which is the same as in the first proof of Lemma 3.6). Consider the forgetful
map

pP; — P — Py. (3.44)

On the boundary faces Py x Py and Py x P1, this is projection to the Py component.
We can then ask that o} should be homotopic (rel boundary) to the pullback of a;
via (3.44). ; »
Ultimately, this entire issue is not really important for our applications. The
difference between two choices of (o7, B]), with the same boundary behaviour, can
be thought of (by gluing together two copies of P;{)as amap (S1)* — (S1)2. What
matters for the construction of Floer-theoretic operations is not the homotopy class
of this map, but only its fundamental cycle in H3((S')?), which is of course zero.

Finally, some orientation considerations will be needed. The interior of P,f can
be thought of as a locally closed complex submanifold of CP°°, and we orient it in
the standard way. Again at an interior point [v], the space Py comes with a short
exact sequence

0 — Royv — Ty P —> Ty Pr — 0. (3.45)

We choose our orientation of Py so that, for a splitting 75, P =R T1y) Pi of (3.45),
it is compatible with the orientation of P]f . For P]f and P,i’, we use a similar strategy,
based on the long exact sequences

0— R@GEw,0) — TwuyPg — TuP — 0, (3.46)
0 — C(v(0),0) —> Tw,p) PY —> Ty P{ — 0. (3.47)

As an example, consider P;. In (3.27), (dsv, d,v) is a positively oriented basis
of T, PF; hence, that parametrization is compatible with our overall choice of
orientations. Likewise, the orientation coming from (3.46) is compatible with the
identification P§ =~ S'.

Lemma 3.8. (i) The orientations of Py are compatible with (3.15). This means
that the boundary orientation induced by that of Py agrees with the product
orientation of Pg, X Py,.
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ii) The orientations of PF are compatible with the product orientations of the
k P P

boundary faces Py, X Pk’; , while for faces of the form Pkﬁ X Py, the orientations
are opposite.

(iii) The orientations of P} are compatible with (3.17).

(iv) The orientations of P,f’ are compatible with the product orientations of the
boundary face P}. The same holds for boundary faces Py, X P,fz, while for
those of the form P,i’l X Py, the orientations are opposite.

Proof. We find it convenient to temporarily introduce another space P/, which is
the compactification of the space of flow lines v equipped with two marked points
§1 < 82. More precisely, we divide by the common R-action, so points in the interior
of P,z are equivalence classes [s1, 52, v]. Among the boundary strata of this space are

U PENBPL) x (PL\IPL) C Py, (3.48)
ki+kr=k

where one thinks of the boundary points as trajectories broken into two pieces, each
of them carrying one marked point, which fixes the parametrization. Let’s suppose
that we have oriented P,g by mapping (on the interior)

[s1,52,v] —> (52 — 51, v(- + 51)) € R x PP,

and using the complex orientation of (the interior of) P,f . Then, it is easy to see
that (3.48) is compatible with orientations.

Consider the R2-action on Plg by moving the two marked points. On the interior
of the moduli space, this is given by

(r1,r2) [0, 82, v] = [r1, 82 + 12, v] = [0, 82 + r2 —r1,v( + r1))].
Assuming that v is not constant, one gets a short exact sequence
0>R@®R —> Tios 0 Pf — T P — 0, (3.49)

where the first map takes the standard generators of R? to (0, —1, d,v) and (0, 1, 0).
In order for the resulting splitting

Tio,sy 01 Pt = RO R & Ty Px (3.50)

to be compatible with the chosen orientations, the two R summands would have to
appear in the opposite order; hence, (3.49) is incompatible with orientations. In the
limit where [s1, 52, v] degenerates to a point (vy, v2) in a boundary stratum (3.48),
the R2-action becomes the reparametrization action on both factors. Again assuming
that neither flow line is constant, we have another short exact sequence,

0>ROR — Ty, P} @& To, Pl —> Ty 1Piy ® Tioy1Pr, = 0, (3.51)
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where the first map has image generated by (ds, v1,0) and (0, d,,v2). In order for the
resulting splitting

To, P ® Ty, P =R O R ® Tpyy) Piy @ Tiug) Py (3.52)

to be compatible with the chosen orientation of Py, and Pg,, the second and
third summands in (3.52) would have to swap positions, leading to a Koszul sign
(—l)d""(P x1) = —1, which agrees with that in (3.50). Using our previous observation
about orientations in (3.48), we can now obtain (i).

We derive (ii) by a similar argument. Take a point (v, [v2]) € P,fl % Py, C 0P,
and suppose for simplicity that v; is not constant (to deal with the constant case, one
would have to go back to the spaces PIE). The R-action by reparametrization yields
an analogue of (3.52),

Ty, Pkﬁ D Tivy) Py = R @ T(y,1 Pk, D Tiwg) Py (3.53)

which is compatible with orientations. In the parallel case with ([v1], v2) € P, X P,fz .

one acquires a Koszul sign (—l)dim(P k1) = —1. This explains the sign difference
between the two kinds of boundary faces of P,f’ . To get the correct result, we need
one more observation: the operations of dividing by an R-action, and passing to
the boundary, don’t commute in their effect on orientations (quotienting by R and
then passing to the boundary yields the opposite orientation of first passing to the
boundary and then quotienting by R).

The proof of (iii) is similar to that of (i), and that of (iv) similar to that of (ii). [l

In fact, only the spaces P and P} will play a significant role in our application.
We have included P,f since it appears as an obvious intermediate step in the
discussion; and P,ﬁ’ because another, similarly defined, space will be important
in the next section.

3.d. Trajectories with evaluation constraints. Spaces of trajectories going through
a fixed submanifold are a well-known concept, usually arising in the definition of
the cap product on Morse homology (see e.g. [7, p. 177]). We will use the following
specific instances.

— Let Q,’c’ be the compactification of the space consisting of trajectories v, with
the usual limits, such that v(0) lies on the hypersurface H from (3.8). This is of
dimension 2k — 2, and satisfies

2007 = ( ) P x Q,fz) U ( U o7 x sz). (3.54)
ki +ko=k k1 +er =k

This description of the boundary strata relies on the compatibility of H with the
coordinate shift map (3.5); more precisely, we use the fact that the intersection
H N {wy = 0} is the image of H under the shift.
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— Consider the space of pairs (w, v), where v is a trajectory and w € § = ¢~ (H)
a point such that g(w) = v(0). This is a circle bundle over the previous space. Its
compactification Q7 has dimension 2k — 1, and satisfies

10i=( U Paxo,)u( U 0 xPu) 359

ky+koa=k k1+koa=k

— One obtains spaces Q,lz by instead allowing any point w € B, for B as in (3.10),
which lies on the complex line determined by v(0). The resulting spaces are
2k-dimensional, and satisfy

w0p=0iu( U Puxop)u( U 08 xk,) 356

ki+ka=k ki+ka=k

The smoothness of (3.54) depends on the fact that the evaluation maps Pkf’ — CP®®
are transverse to H ; and that of (3.55) follows immediately. For (3.56), one needs
the projection g|B: B — CP° to be transverse to P,f — CP°°. At an interior
point of B, this is obvious since there, g|B is locally a diffeomorphism; and along
the boundary, it reduces to the previous argument for (3.54).

In low-dimensional instances,

Q7 = point,
0] =~ §', (3.57)

Qg =~ point, Q%’ = pair-of-pants.

Explicitly, the unique point ong consists of the constant trajectoryv = [1 : 0: ---] €
CP*° together with the point w = (—1,0,...) € B. The condition for trajectories
in the interior of QllJ is that v(0) should lie in C* c CP!, and should come with
aw = (wg,w1,0,...) € B\ 0B such that wy/we = v(0). There is one such w
for any v(0), with the exception of v(0) = —1, where one would necessarily have
w € JB. Hence

QYN Qs =C*\ (-1} (3.58)

is a three-punctured sphere, which implies the statement about the compactification
made in (3.57).

Lemma 3.9. There is a sequence of compact manifolds with corners R? k > 0,
satisfying

P __ p p p p
R =0fuP, U( U PaxrL)U( U RELxP) (59
ki+ko=k ki+ko=k

and these identifications of boundary strata are compatible with (3.16) and (3.54).
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Proof. Consider pairs of half-flow-lines (v, v™):

v (—OO, 0] — CP*°, v~ + VA =0, limg_s_oo U_(S) =" s v_(()) =% 4

vt:i[0,00) — CP®, 00" + VA =0, limg_s 400 v (s) = co, vT(0) = xT.

(3.60)
The endpoints (x~, x ™) can be any points in CP > satisfying
x, #0,
Xppq = Xpgp="=0, (3.61)
x(“)*‘ # 0.

One obtains the interior of Q ,f_ by additionally imposing the coincidence conditions

Xg +x1 +---=0,
+
Xy = X, ,
070 (3.62)
xy = xy,

Originally, these equations took place in CP° so we should say that x; = )\x}"
for some A € C*. However, it is notationally a bit simpler to ask for A = 1, and
correspondingly consider the x* up to rotation by a common factor.

Let’s introduce a parameter 6 € C, and deform the conditions in (3.62) as follows:

Xg +x;y +---=0,
Xg = Xg

{x7 == —0x7, (3.63)
Xy —x;'—Qxi",

Note that if one sets xaL = 0 in these equations, it follows that x, = 0 as well,

and then the equations for the remaining x;? reproduce the original ones after an

index shift j — j — 1. There is a minor issue here, which becomes evident

when combining (3.63) with the convergence conditions (3.61): for general 6, we
have to allow the point xT to lie outside CP®, since it satisfies x;-’ = Qx;-r_l for

all j > k. This means that the solutions vt also lie outside CP®°. In practice, this
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is unproblematic: it is still possible to write the combined conditions in terms of
finitely many variables (xgc, ey x,ic), as

xy -+ x; =0,
x;:x{f,

xy =x7 —0xF,
— + +
X5 = x5 — 0=,
. 2 1 (3.64)
x,?:x,j—@x,;"_l,

x;r = 0,

x; # 0.

Define R,f % 0 be the compactification of the space of solutions of (3.60) and (3.63)
by broken trajectories. This is smooth for any 6, and satisfies

IRDO — ( U P x R,ff) U ( U R2x sz). (3.65)
ki +kr=k ki+ka=k

If we set & = 0, (3.63) reduces to the original (3.62), and correspondingly
Ri),e:o = Q,’C’. On the other hand, for # = 1 the sum of all equations in (3.64)
says that x,:r = 0, hence x;.r = O forall j > k and we land back in CP°.

We want to introduce another parameter-dependent set of coincidence conditions:

Xy +nxy +nPxy 4o =0,
X7 +nxg + x4 = —xy, (3.66)
Xy +0x3 +ntxg 4= —xy

This has the same property as before: if x;” = 0, then a linear combination of the first
two equations in (3.66) shows that x, = 0, and the remaining equations reproduce
the original ones up to index shift. The analogue of (3.64) is

x0_+nx1_+---—l—nkx,: =

—
= —xk 3

x(',";éO,
x; # 0.
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(The remaining coordinates x;f, j > k, are also always zero.) One defines
spaces R;’" as before, and those satisfy the analogue of (3.65). If we set n = 1,

then (3.66) becomes equivalent to the # = 1 case of (3.63), so R,’;’"Zl = R,‘?’ezl.
On the other hand, if we set n = 0, (3.66) says that x; = 0, and that the rest of x™
agrees with x™ up to index shift (and a —1 sign, which is of course irrelevant in
projective space), so RPT=" = PP .

To define R,f , one takes the union of R,f % for 6 lying on a path in the complex
plane from 0 to 1; the same for R;>" and another path of the same kind; and the two
pieces are then glued together by identifying 6 = 1 and n = 1 (to make the smooth
structures match up, one chooses paths whose derivatives to all orders vanish as one
approaches the endpoint & = 1 or n = 1). ]

Taking circle bundles into account yields the following analogous statement:

Lemma 3.10. There is a sequence of compact manifolds with corners R;, k > 0,
satisfying ' '

oRg =0 uPi U U PaxRL)U( U R xPo). G68)
k1+k2=k k1+ko=k

and these identifications are compatible with (3.17), (3.55).

Proof. The proof is as before, only requiring minimal clarifications. To define the
counterpart of Rfc’g, one starts with a point R} % and additionally chooses a preimage
w~ € S® of [x~] € CP (this choice avoids the problem of x* not lying in CP*° for
general 6). The same applies to Ri’", and for n = 0 one can shift coordinates to obtain
a preimage of [x ], which is used in the identification of that space with Py I

From the proofs of these two lemmas, one sees that the interpolating spaces are
in fact fibrations over the parameter space (consisting of 8 or n). Using a version
of Ehresmann’s theorem for manifolds with corners (whose proof follows the same
strategy as for closed manifolds), one concludes that

07 = P! |, QF = P;_,, (3.69)
R =[0,1]x P ,, Rj=[0,1]xP_,. (3.70)

One could choose such diffeomorphisms for all k, so that they are compatible with the
recursive nature of the boundary strata (however, they are still non-canonical). There
can be no analogue of (3.69) relating QZ and P,f_l, since the topologies differ even
in lowest nontrivial dimension (in fact, the combinatorial structures of the boundary
are also different, hence one can’t even have a sensible cobordism type statement).
Instead, we will determine the topology of Q,’z directly:

Lemma 3.11. H*(Q,l;, aQi) = 0 for x <2k — 2.
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Proof. By definition,
08\ 808 = {w = (wo,..., wy) € S*FT c CkH!:
wo # 0, wr #0, Y ;wj <0} (3.71)
This is clearly a quotient of
CkH1\ {wg =0orwg =0o0r Y, w; =0}
by the diagonal action of C*, hence isomorphic to
CcP* \ {three hypersurfaces in general position} = C* x C* x C¥~2,

One now argues by Poincaré duality as in Lemma 3.4. |

Lemma 3.12. The real part of le’ (the fixed part for the involution induced by
complex conjugation on C*) has four connected components. Their interiors are
distinguished by having points w, as in (3.71) but with real coordinates, with signs

(sign(wo), sign(wz)) = (£, £). (3.72)

Each component is homeomorphic to a disc, and generates Hz(le’, an) =
The (+-+) component is a triangle with

one side lying in each of: O3, Py X 0°?, Q’l’ x Pi; 3.73)

one corner lying in each of: Py X Qg x Py, P1 x Q3, OF x P1. '
Proof. By the same argument as in Lemma 3.11, we have H,(Q%) = Z. In terms
of (3.71), this is generated by the homology class of the torus

{lwo| = |wo| = €} C 05\ 305  for sufficiently small € > 0. (3.74)

Again using (3.71), the interior of the real part, denoted by (Q5 \ BQQ)R, is
diffeomorphic to

R P2\ {three real lines in general position}.
g Y

It is then obvious that the components are distinguished by (3.72). Moreover,
each component intersects (3.74) transversally in a single point, hence generates
H,(Q%,005) by Poincaré duality.

The boundary of the (++) component of (Qé’)R contains exactly one interval
which belongs to (Q%)R. Because of the way in which the boundary components
intersect, it then also contains exactly one interval each in (Q’f x P1)® and (P; x Q‘.’f )R,
It contains no points belonging to the other codimension one boundary faces Qg X Py
and P> x Qb (because on those faces, wy = —1 or wg = —1). |
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Our main application of moduli spaces with evaluation constraints is to construct
certain other spaces, which bound the previous P;_, . Namely, take Q ,’g and Ry, and
glue them together along their common boundary face Q7. This yields a sequence
of manifolds with corners, denoted by R,’;, satisfying

ORP = P§_ U ( U Pux Rgz) U ( U R x sz). (3.75)
ki+ka=k k1+ko=k

In the lowest-dimensional cases,

Rg — Qg = point, (3.76)

Ri’ = Q’l’ Ugs RS = pair-of-pants U1 annulus = pair-of-pants.

In fact, from the second part of (3.70) it follows that R? ~ Q,’; for all k.

Lemma 3.13. Suppose that (o) and (af, B}.) have been chosen, as in Lemmas 3.5
and 3.6. Then, there are smooth maps

ab, B2 R — S, (3.77)

whose restriction to (3.75) is given by

b _
ak | Plg—l - ali—l’ (3.78)
ﬁlic’ | Pe_y = ﬂlsc~1

as well as
%“f | (Pry X Rp,) = oy + e, (3.79)
BY | (P, x R,’ﬁz) = —op, + ﬁfc’z, '
and
ia,’g | (R x Pp,) = o +au,, 5.20)
By | (RY X Pry) = B2 '

Proof. In view of the more complicated construction of the R?, we will use an
abstract topological argument, along the line of the second proofs of Lemmas 3.5
and 3.6.

Let’s start with k = 1. Equip the interior of Q?, thought of as in (3.58), with
its complex orientation. The boundary circle corresponding to the puncture at —1
is identified with Qf, but its boundary orientation is the opposite of the natural
orientation of Q7 (by which we mean, the orientation Q7 = S U inherits from being
a fibre of S*° — CP). By definition, R%’ is obtained by attaching RY to that
boundary circle of R?. Now, R{ is a circle bundle over the interval R?. Hence,
the previous observation carries over: the boundary orientation of Pj C BR? is
opposite to its natural orientation. The same orientation behaviour appears at the
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boundary circle coming from the puncture at 0 in (3.58), which corresponds to
Py x Qg = P; X Rg C 3R’1’. In contrast, on the boundary circle coming from
the puncture at oo, which corresponds to Q4 x Py = RS x Py C 0R?, the two
orientations agree. With that taken into account, the condition (3.78) says that on
Pg C 8R[1’ (equipped with its boundary orientation), " has degree 0, while 87 has
degree —1. From (3.79) one gets that on P; X Rg (again, equipped with its boundary
orientation), &} has degree —1, and 87 has degree 1. Similarly by (3.80), on Rg x Py,
af has degree 1, while 8% has degree 0. Given functions on the boundary with these
properties, one can therefore extend them to all of Rll’ ;

By the recursive conditions, these choices determine the values of our functions
on dRS = (S1)3. A generator of H,(R%, 3RE) can be constructed as in Lemma 3.12.
Namely, take the (++) component of (Qg )R and then attach to part of its boundary
the corresponding component of (R%)IR (this makes sense provided that R carries
an appropriate real involution; this can be ensured by taking the parameters 6 and n
from the proof of Lemma 3.9, or rather their counterparts in Lemma 3.10, to lie on
the real axis). The outcome is a triangle in Rg’ which, because of (3.73), has:

one side each lying in P;, Py X Rll’ and R’l’ x Py

- b s b (3.81)
one corner each lying in Py x Rg x P, Py x Py, Py x Py.

If we take the two last-mentioned sides in (3.81) and project them to the Rf factors,
we get two paths, one going from Rg x P1 to Pg, and the other from P; x Rg
to Py. Because all three boundary circles of R’f appear in this way, our two
paths generate H;(R?, BRJI’) ~ 72. Now let’s go back to the previous step: when
defining a’l’ and B2, we were free to add arbitrary functions Rll’ — S which vanish
on the boundary. By modifying our choice in such a way, one can always achieve that
aé’ and ,3’29 have degree zero along the boundary of our triangle. This is a necessary
and sufficient condition for extendibility to R3.

Finally, suppose that, for some / > 3, we have defined (a,’g, ﬁ,’?) for all k < [,
with the desired properties. This determines the values of (ozf’ ,,3;’) on BRlb.
By construction, R;’ — Qf’ . From this and Lemma 3.11, one sees that
H 2(R;’, 8Rlb) = 0; hence, the extension of our circle-valued functions over Rf’ is
always possible. tl

We will also we need to consider orientation issues for the higher-dimensional
moduli spaces. Equip Q,f with their complex orientations. For the circle bundles
Q; — Q,f , we then choose orientations in the same way as in (3.46). Choose

orientations of Qz which are compatible with those of Q7 C dP}, and extend them
to orientations of R,’g. Then, we have the following statement, whose proof we omit:
Lemma 3.14. The orientations of R,’; are compatible with the orientations of the
boundary faces P,_,. The same holds for boundary faces Py, x R,lzz, while for those
of the form R,’il X Py, the orientations are opposite.
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Finally, we need to discuss the analogues for our moduli spaces of the tautological
families (3.19). Clearly, the spaces Q,f, Q; and Q,tc’ each carry such a family, with
a distinguished section as in (3.25), and with the usual kind of compactification.
Slightly less obviously, the same holds for the spaces RII(.) , Ry and R,lc’, except that the
total spaces of the tautological families no longer come with maps to CP*°. Take
for instance one of the spaces Rz appearing in the proof of Lemma 3.9, and a point
in its interior, represented by a pair of half-flow-lines (v—,v*). Over this point,
the fibre of the tautological family can be a point on either half-flow line, which
means either s~ € (—00,0] or sT € [0, 00), with the convention that we identify
s~ = 0 with s = 0; but the evaluation maps v—(s~) and v* (s 1) fail to respect that
identification, for 8 # 0. The tautological family over R,f restricts to that for Q,’CJ
on the appropriate boundary face. One then defines the (most complicated) family
over Ri by gluing together those on Q,’; and Ry, just as in the definition of the
space R,lc’ itself.

4. Floer cohomology background

This section reviews Hamiltonian Floer cohomology and some of its properties,
selected with a view to their usefulness later on. The technical choices made in
presenting the construction largely follow classical models, specifically [9,16,22,24].

4.a. Geometric setup. Let (M,w) be a 2n-dimensional compact symplectic
manifold with boundary. We assume that (2.1) holds. We also fix oriented
codimension two submanifolds €21,...,2; C M (which are allowed to have
boundary on dM), and multiplicities m;,...,m; € A, such that the cycle
2 =mQq +---+m;Q2; satisfies

[Q] = mi[Q1] + -+ +m;[Q;] € H*(M; A) —> [w] € H*(M;R).  (4.1)

On the complement of €2, there is a one-form 6 satistying df = @, and with the
following property. Whenever S is a compact oriented surface with boundary, and
u:S — M amap such that u(dS) N 2 = @, then

/ o =u-Q + f u*o. (4.2)
S Y

That concludes the topological part of our setup, and we now turn to Hamiltonian
dynamics and holomorphic curve theory. We assume that M comes with a function J€
such that:

H is locally constant on OM, with the gradient pointing outwards;

. . . ) 4.3
in particular, there are no critical points on IM. )
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Let X be the Hamiltonian vector field of #. We also assume that M comes with a
compatible almost complex structure ¢, such that the following holds:

OM is weakly Levi convex with respect to §. This means that
—d(d ¥ o &) is nonnegative on each §-complex line in T (OIM).
Additionally, we assume that Lx(dJH o &) vanishes along the
boundary.

4.4)

The use of this kind of convexity condition in pseudoholomorphic curve theory is
classical, but for convenience, we will describe its implication in a basic form:

Lemma 4.1. Let S be a connected Riemann surface, with complex structure j,
equipped with a one-form B € Q' (S,R) such that dp < 0. Consider maps
u: S — M which satisfy

(Du—-X@ P> = 3(Du+gJoDuoj—-X®@B—-FX®Poj)=0. (45)
If such a map meets OM, it must be entirely contained in it.
Proof. Itis well known that one can rewrite (4.5) as the property of it(z) = (z,u(z))

to be a pseudo-holomorphic map into M = § x M, with respect to the almost
complex structure § defined by

JE = gk for £ € TM,
I+ XB) = jn+ XB(jn) forneTS.

Let J be the pullback of # to M . The Levi form at a boundary point of M is

—d(dF o P+ XB() + £, jn+ XB(n) + JE)
= —(X, §X)dB(n, jn) —d(dHK o $)(E, JE) (4.7

forne TS,§ € T(AM) N ¢T(3M). By assumption, (4.7) is nonnegative. One now
applies [6, Corollary 4.7] to show that if % meets d M, it must be entirely contained
in it. L]

(4.6)

Application 4.2. The most commonly studied situation where (4.3) and (4.4) hold
(and the one we adopted when stating our results in Section 2) is that of a symplectic
manifold with convex contact type boundary, where one takes the Hamiltonian flow
to be an extension of the Reeb flow on the boundary (see e.g. [33]). Let M be such
a manifold, and Z a Liouville vector field, defined near oM. We then define H
near OM by asking that

H|OM =1,
(4.8)
Z.H = H;
the associated X restricts to the Reeb vector field on OM. One chooses § so that
—dH o =w(Z,) (4.9)

is the primitive of the symplectic form near M .
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We will only really use the Taylor expansion to second order of # along the
boundary, and the corresponding first order expansion of g, which are enough in
order for (4.3) and (4.4) to make sense. Those data are considered to be part of the
structure of M, and will be kept fixed. From now on, when we use Hamiltonian
functions H on M, these are always assumed to agree with some multiple e to
second order along dM . Here, € > 0 is such that:

X|0M has no e-periodic orbits. (4.10)

Similarly, all almost complex structures J will be assumed to agree with ¢ to first
order along dM .

4.b. Floer cohomology. Choose a time-dependent Hamiltonian H = (H;);eg1
(in the class defined above, for some ¢-independent ¢), and let X = (X;) be the
associated vector field. Consider 1-periodic orbits, which means solutions

Sl s M.

4.11
dx/dt = X;. 11

All such orbits lie in the interior of M, by construction, and we additionally assume
that they should be nondegenerate and disjoint from £2. From now on, we will only
use 1-periodic orbits which are nullhomologous, meaning that

[x] =0 € Hi (M) (4.12)

(for a version involving non-nullhomologous orbits as well, see Remark 5.5). We
also choose a time-dependent almost complex structure J = (J;). The construction
of Floer cohomology is based on solutions of

wRxS'— M :

asu + J,(atu — Xt) =0, (413)

limg— 400 u(s, 1) = x4(2).
Here, x4 are orbits (4.11) satisfying (4.12). (There is a budding notational clash,
between pseudo-holomorphic maps # on one hand, and the formal variable u in the
equivariant theory on the other hand. Since the objects involved are so different,

chances of confusion are hopefully minimal.) The operations on Floer groups that
will appear use more general “continuation map equations”, of the overall form

w:R x St — M,
osu + Jg, (0u — Xg,) =0,
limg——oo u(s,1) = x—(2),

limgs oo u(s,2) = x4 (t + 7).

(4.14)
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Here, we have chosen 7 € S, and a family of functions and almost complex structures
(Hg,, J§,), with associated vector fields X;, such that:

* * (H 5 J) s K 0,
(Hy Jy) =107 (4.15)
(Ht+l's Jt—l—r) s > 0.

(Later, when many different choices of (H{,, JJ",) will occur, the superscript * will
be replaced by the name of the Floer-theoretic operation under construction.) The
basic analytic aspects of (4.13) and (4.14) are familiar:

— No solution can reach dM . To see that, one follows the argument from Lemma 4.1,
for S = R x S! and B = edt. The almost complex structure on M constructed
from (HJ,, JJ,) still satisfies (4.7). Because the limits of u lie in the interior,
it is impossible for that map to be entirely contained in dM, and this concludes
the argument. The same property holds for the nodal pseudo-holomorphic curves
produced from sequences of solutions by sphere bubbling.

— Let i(x) € Z be the Conley—Zehnder index of a 1-periodic orbit, which is well-
defined thanks to (2.1). The linearization of our equation is a Fredholm operator D,,
with

index(Dy) = i(x-) —i(xy). (4.16)
— Transversality issues can be dealt with by varying the auxiliary data, as in [9, 16]
(and the same applies to “transversality of evaluation”). The fact that those data have

to be kept fixed along M does not affect our argument, since solutions remain in the
interior.

— One defines the action of a 1-periodic orbit to be

Ag(x) = fSl —x*0 + H,(x(t)) dt. 4.17)

Then, the energy of any solution u can be written as

‘(BSHS":t)(u(S, 1)).

(4.18)
The last term is bounded independently of u, because of (4.15). Hence, an upper
bound on the intersection number u - £2 € A yields a bound on the energy.

B = [ 1P = AnGe) - AnGe) tue2+ [

The Floer cochain complex is

CF*(H) = @ Ax. (4.19)

Here, the sum is over all 1-periodic orbits x, each of which contributes a one-
dimensional summand A, (identified with A in a way that’s canonical up to a sign,
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and placed in degree i (x); we will usually write £x for the preferred generators of
that summand). The differential

d:CF*(H) — CF*T'(H),
. 4.20)
dxy :Z:I:qugx_, (
u

is obtained by counting solutions of (4.13). More precisely, one counts non-stationary
solutions which are isolated up to s-translation, with signs (given more intrinsically
by an isomorphism Ay, — Ay_ for each u). Up to canonical isomorphism, the
resulting Floer cohomology depends only on ¢; we denote it by HF* (M, €).

Example 4.3. As a very simple instance of the well-definedness property, let’s see
how, (H, J) being kept fixed, Floer cohomology is independent of 2. Suppose
that we have two choices 2.1, with associated 6. Take a cycle Qin R x M with
A-coefficients, which interpolates between the two, meaning that it equals R* x Q. at
infinity. Then, the associated map between Floer cochain complexes simply rescales
each generator by a suitable power of g:

r(x) = ¢A®x, @.21)
where
AX) =R xx)-Q = —f x*04 +/ x*6_. (4.22)
S1 Sl

The two expressions for A () show that it lies in the subgroup A, and also that it is
independent of the choice of €2; the equivalence of those expressions is shown by
capping off x4 with surfaces in M (hence uses the fact that x4 is nullhomologous).

4.c. Operations. The general structure of operations on Floer cohomology is
roughly as follows. Suppose that we have an equation (4.14), where the data
(Hg,, Jg;) can depend on additional parameters. The simplest case is when the
parameter space is a compact oriented manifold with boundary, denoted by P. Then
(assuming suitably generic choices to ensure transversality), counting isolated points
in the parametrized moduli space of solutions of (4.14), in the same way as in (4.20),
yields a map

¢p: CF*(H) —> CF*9m(P) (), (4.23)

which is related to its counterpart for the restriction of the parameters to dP by
(=) PV dpp — ppd + dyp = 0. (4.24)

If P is closed, ¢p is a chain map of degree —dim(P). A standard generalization is
where

P = Py x P, (4.25)
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is a product, and the family of equations (4.14) does not smoothly extend to the
boundary, but instead asymptotically decouples into two equations parametrized
by P; and P, which are limits over parts of the cylinder that are separated by
an increasingly long neck. In that case, the modified formula for the boundary
contribution in (4.24) is

dop = (—1)ImFVINEDgp, g, (4:26)

There are further generalizations of those basic setups, involving parameter spaces
that are manifolds with corners. These are all routinely used in Floer theory, and we
will not spell out the details; the very short discussion here was intended merely as
an indication of our notation and sign conventions.

Remark 4.4. The Koszul sign in (4.26) may deserve some explanation. Points
in a parametrized moduli space are pairs (r,u) consisting of some r € P and
a map u satisfying the appropriate r-dependent equation (4.14). Linearizing the
equation (with variable r) yields an operator which is an extension of the ordinary
linearized operator D,, with the domain enlarged by 7, P. The top exterior power
of the tangent space of the parametrized moduli space is the determinant line of this
extended operator, which can be identified with

AP(T, P) @ det(D,,). (4.27)

In the limit where r degenerates to a point (ry,r,) € Py X P, and u converges to a
limit consisting of pieces (u1, #3), the corresponding expression along the boundary
would be

AP (T, P1) @ det(Dy,) @ AP (Ty, P2) ® det(Dy,). (4.28)

To compare (4.27) and (4.28), one uses the isomorphism
AP(TP)|OP = AP(TPy) ® \'P(T P5)
induced by (4.25), as well as the gluing formula for determinant lines,
det(Dy) = det(D) ® det(D3).

When applying those two results to (4.28), one exchanges the middle two factors in
the tensor product, and that comes with a Koszul sign (—1)"ex(Pu )dim(P2) "y the
construction of determinant line bundles (see [37] for a comprehensive exposition).
But since the relevant argument considers isolated solutions (r, u1) and (r3, u3), the
index of Dy, is minus the dimension of Pj.

As a warmup for later considerations, we want to discuss certain specific
operations. The simplest of these is the quantum cap product with the class
g~ '[Q] € H?(M; A). To define the underlying chain map

: CF*(H) — CF*2(H), (4.29)
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choose some (H',J') = (Hy,, Jg,) which satisfies (4.15) with T = 0, meaning
that it reduces to (H;, J;) for |s| > 0. Then, consider solutions of the associated
equation (4.14) which satisfy the incidence condition

u(0,0) € g7 Q2. (4.30)

(There is nothing special about (0, 0): any other point on the cylinder could be used
instead. Similarly, we could have used any fixed value of 7.) The notation (4.30) is
shorthand for the following. For each component €2 ;, we count solutions such that
u(0,0) € ; with weights +¢**?, and then take the sum of those contributions with
multiplicities ¢ ~'m ; taken from (4.1). Obviously, one has to assume that the space
of solutions satisfies suitable transverse intersections conditions with the €2 ;, but that
is easy to achieve, given the freedom to choose (Hj,, Jg,). Instead, one could also
opt for a more restricted choice, which is to just use the given (Hg ,, Jg ;) = (Hy, J).
This would require an additional transversality argument for the original (H,, J;),
which is again within the scope of standard methods. :

There is a similar operation where one allows the evaluation point to move,
A:CF*(H) — CF**1(H). (4.31)
For that, one introduces a parameter r € S, and replaces (4.30) with
u(0,—r) € ¢g7'Q. (4.32)

As before, one implements this by choosing a family (H*, J*) = (Hr%s,t’ J,’}s’t)
which, for each value of r, satisfies (4.15) with T = 0. Alternatively, the special
choice (H,f”, J,’}S,t) = (H;, Jy) also still works, assuming suitable transversality
properties. The advantage of adopting this special choice (which will be crucial later
on) is that then, (4.29) can be viewed as a sum over the same solutions as in the Floer

differential, but with modified multiplicities:

Axy) =Y g (- Q)x_. (4.33)

The idea is that, if u(s, ?) € €2, one can translate u in s-direction so that (4.32) holds,
with r = —f. The sign in (4.32) may seem puzzling in view of (4.33); we refer to
[29, Section 8a] for a detailed explanation.

The final operation we want to consider is the BV operator

A:CF*(H) — CF* '(H). (4.34)

Again, this is based on a moduli problem with one parameter r € S, but where that
parameter now affects the rotation of the end s — o0. Concretely, this means that
one chooses (H2,J2) = (HA JAs’t) satisfying (4.15) for

r,s,t>vr,

TN, (4.35)
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and uses the resulting parametrized space of solutions of (4.14) (more generally, one
could let T = z(r) be any degree 1 function S — S1). This time, there is no option
to use the original (H, J), because they are not time-independent (there are special
cases where this is possible, leading to vanishing of A; see Section 4.d below).

Lemma 4.5. There is a chain homotopy
A AL—tA. (4.36)

Proof. We begin by rewriting the two terms on the right hand side in a more compact
manner, up to chain homotopy. Namely, consider a setup which still has a parameter
r € S!, with T = r, and additionally the incidence condition (4.32). This gives rise
to an operation

A B2 Al (4.37)

To get the homotopy in (4.37), one uses a neck-stretching argument in which our
family degenerates to that for A, glued together with the surface underlying ¢ (one
can also think of this argument as moving the marked point towards s — +00). This
works because (to put it in the simplest terms) after a coordinate change (s, ?) =
u(s,t — r), part of the original conditions looks like this:

7(0,0) e g7,

_ (4.38)
limgs 400 U(s,2) = x4 (2).

On the other hand, one can consider another parametrized moduli problem, where
still ¢ = r, but the incidence condition is the r-independent one (4.30). By a similar
argument, this gives rise to an operation

A_ ~ (A, (4.39)

There is another family of equations (4.14) parametrized by the compact pair-of-pants,
whose restrictions to the three boundary circles are: the family underlying A 4 ; that
underlying A_, with the orientation of the circle reversed; and the family underlying A,
again with reversed orientation. From that, one gets a homotopy

A+ —A_~A. (440)

By combining (4.37), (4.39), and (4.40), one obtains (4.36). We have divided the
construction of (4.36) into three parts for ease of exposition. However, one can
also implement it as a single homotopy given by a combined parametrized moduli
problem, where the parameter space is a modified pair-of-pants (with one boundary
circle and two ends; equivalently, a closed disc with two interior points removed). []

Lemma 4.6. There is a nullhomotopy

AA + AL ~ 0. 4.41)
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Proof. Each of the two terms in the equation is chain homotopic to what one would
get from a moduli problem with parameters in S' x S'. For AA, we denote the
parameters by (r;", r;"), and the conditions are

T= r1+, u(0, —r1+ — r2+) eq Q. (4.42)
For AA, we denote the parameters by (r;", 7;) and the counterpart of (4.42) is
t=ry, u(,-r))eqg . (4.43)

(More precisely, these families give operations homotopic to —AA and —A A, because
of the sign in (4.26), but that ultimately makes no difference to our argument.) The
conditions (4.42) and (4.43) are related by an orientation-reversing parameter change

i k) = (5,7 = 15). (4.44)

One can therefore combine the two chain homotopies to get (4.41). As before, one
could also encode the entire argument in a single parametrized moduli problem, with
parameter space R x §1 x §1. O

Lemma 4.7. There is a nullhomotopy
A% ~ 0. (4.45)

Proof. This is the most familiar among our relations. As before, A? is chain
homotopic to what one gets from a moduli problem with parameters (ry,rz) €
S1 x S, and which has

T=1r1+r. (4.46)

Since only r; + r, appears, one can extend the relevant family over the solid torus,
and that yields the nullhomotopy. L]

The preceding three lemmas are not independent; in view of (4.45), (4.36) clearly
implies (4.41). Nevertheless, we have explained them separately, since each argument
forms the toy model for one of the constructions later on.

4.d. Relation with Morse theory.  Our next task is to review the isomorphism
between ordinary cohomology and Floer cohomology, which holds when the
Hamiltonian is sufficiently small. Ordinary cohomology will be realized through
Morse theory. Let f be a Morse function which is locally constant on dM, with
the gradient pointing outwards. After choosing a metric g which makes Vf Morse—
Smale, one can associate to it the Morse complex CM*(f) (with A-coefficients),
whose cohomology is canonically isomorphic to H*(M; A).

First approach (direct isomorphism). There is a classical argument [9] which allows
one to identify the Morse complex and Floer complex on the nose, assuming
precise coordination of the choices involved in defining each of them. The main
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technical result from [9] (with minor adaptations to our context) says that there is
a function H and compatible almost complex structure J (not depending on any
additional parameters), with the following properties:

— Along the boundary, H = e to second order, for some small ¢ > 0, and J = ¢
to first order.

— H is Morse, and its gradient flow with respect to the metric w(-, J-) is Morse—
Smale.

— All 1-periodic orbits of the Hamiltonian vector field X of H are constant.

— Any non-stationary solution of Floer’s equation (4.13) (with the given z-inde-
pendent choice of H and J) has nonnegative expected dimension, meaning that
index(D,) > 0. Moreover, the solutions with index(D,) = 1 are all z-independent,
and regular (this means that they are negative gradient flow lines of H; since H is
small, they will also be regular in the Morse-theoretic sense).

— All (non-constant) J-holomophic spheres avoid the critical points of H, as well
as its isolated gradient flow lines.

Note that we are not claiming that all u are regular (it might be possible to get
such a stronger statement using more sophisticated techniques [35], and that would
simplify our argument a little; but it is not necessary). In spite of that, one can
define HF* (M, €) using the given (H, J), and it will be canonically isomorphic to
the standard definition, by a continuation map argument. Obviously, for this special
choice, we have an identification of chain complexes

CM*(H) = CF*(H), (4.47)

and hence H*(M; A) =~ HF*(M, ¢). A weakness of this approach is that it is not a
priori clear whether this isomorphism is canonical; but as we will see, one can work
around this issue, at the price of imposing additional conditions on (H, J).

Second approach (PSS map). In the construction of the PSS map [22], the Morse and
Floer sides are a priori unrelated. We work with some choice of ( f, g) to define Morse
cohomology; and some €, which can be arbitrary except for (4.10), and (H;, J;) to
define Floer cohomology. Consider solutions of the following equation:

u:(R x SN U {+o00} — M,

z:[0,00) — M,

u(+o0) = z(0),

dsu + J 2 (0u — X2) =0, (4.48)
952+ V8 f% =0,

limg_s oo u(s,*) = x,

limg— 400 2(s) = .
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Here, (R x S1) U {400} is a partially compactified cylinder, which is a Riemann
surface isomorphic to the complex plane. The limit x is a 1-periodic orbit of H,
while y is a critical point of the Morse function f. The auxiliary data appearing
in (4.48) have the following form:

- (HE,JE) = (H;,J) for s < 0. For s > 0, the family JJ5 extends
smoothly over +oo, and Hsﬁ vanishes. The boundary behaviour of the almost
complex structures is as usual. For the functions, we require that (to second order)
H ft = x(s)J, where y(s) is a nonincreasing function, equal to € for s < 0 and to 0
fors > 0.

— The function f,Z equals f for s > 0, and also agrees with f near M. Similarly,
the metrics satisfy gf = g fors > 0.

By arguing as in Lemma 4.1 (with S = (R x §') U {400} and B = y(s)dt), one
sees that any solution u remains in the interior of M. Therefore, the point z (0) lies in
the interior, which implies that the same holds for all of z. By counting (for generic
choices of all the auxiliary data) isolated solutions of (4.48), with the usual signs and
powers of the Novikov variable ¢, one defines a chain map

B:CM*(f) —> CF*(H). (4.49)

A similar construction, with an added parameter, shows that (4.49) is independent
of all choices up to chain homotopy. In the same sense, it is compatible with the
continuation maps that relate different choices of (f,g) and (H,J). Hence, the
induced cohomology level map is canonical. Obviously, in this generality, it is not
an isomorphism.

Lemma 4.8. For sufficiently small € > 0, there is a choice of time-independent
(H, J) to which (4.47) applies, and for which the composition of that isomorphism
and the Morse-theoretic continuation map CM*(f) — CM*(H) recovers (4.49) up
to chain homotopy.

Sketch of proof. The argument is essentially a retread of [9], hence will only be
outlined. We consider time-independent (H, J), and similarly choose (H 2, J5)
in (4.48) to be 7-independent, while not imposing any constraints on the Morse
theory side. One can achieve that:

— (H, J) has all the conditions required for (4.47);

— Any solution of (4.48) has nonnegative expected dimension. Moreover, the
solutions with expected dimension zero are all #-independent, and regular.

— Forany s € R U {oo}, all JB-holomorphic spheres avoid the points u(s, ¢), where
u is a solution of (4.48) with expected dimension zero.
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If one adopts such a choice, isolated solutions of (4.48) reduce to broken flow lines,

of the form
u:R U {+o0} — M,

dsu =0 fors > 0,
4 z:[0,00) — M,
u(+o0) = z(0),
limg——oo u(s) = x,
limg—s 400 2(s) = .
We have omitted the ODE which u and z satisfy (both are s-dependent gradient

equations). While (4.50) may not be the standard definition of a Morse-theoretic
continuation map, it is chain homotopic to that map. (|

(4.50)

As a consequence of Lemma 4.8, the PSS map in that particular instance is an
isomorphism on cohomology; on the other hand, it follows that then, (4.47) agrees
with the PSS map on cohomology, hence fits into the general framework of canonical
isomorphisms.

5. The g-connection

This section is the core of the paper. We introduce operations on S!-equivariant
Hamiltonian Floer cohomology, which constitute a rudimentary Cartan homotopy
formalism. Just like in the classical definition of the Gauss—Manin connection, or in
Getzler’s noncommutative geometry version, the g-connection arises by combining
that formalism with “naive” differentiation.

S.a. Structure of the equivariant theory. We continue in the geometric setup of
the previous section. Define

CFY(H) = CF*(H)[u], (5.1)

where u is a formal variable of degree 2. We will introduce A [u]-linear endomorph-
isms of this space, of the form

dog = d + uh + O@W®): CF,,(H) — CF,'(H), (5.2)
Aeg = A+ O(u):CF, (H) —> CF,; ' (H), (5.3)
leg =t + O(u): CFy,(H) — CF,F*(H). (5.4)
They will satisfy a kind of Cartan homotopy formalism:
dy, =0, (5.5)
degheq + Aegdeg = 0, (5.6)

degleqg — legdeq = UM ey, (5.7)
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These equations are higher-order extensions of (4.45), (4.41), and (4.36), respectively;
the higher-order correction terms include our original chain homotopies, which is
why we get equalities.

Before discussing the construction, let’s note some consequences. Define
HF; (M,¢€) to be the cohomology of d.,. This clearly sits in a long exact
sequence (2.4). By (5.6), A.4 induces an endomorphism of H. :q(M ,€), and (5.7)
shows that this endomorphism vanishes after multiplication with u. In fact, (5.7)

implies that for an equivariant cocycle x = x¢o +ux; + -,
Aeg(x) = U dogteg(x0) + dogteg(x1 + uxz +--). (5.8)

This shows that the cohomology level map induced by A, is the composition of two
maps from (2.4) and the map induced by ¢, in the following order:

e

HF:q(M, €) — HF*(M, ¢) —— HF*T2(M,¢) — Hqu‘H (M,e). (5.9
In a sense, this is disappointing, since it means that (on the cohomology level) A, is
not a genuinely new operation in the equivariant theory, but rather derived from its
relation with ordinary Floer cohomology.

Remark 5.1. For the arguments so far, we could have used any cohomology class
on M instead of ¢~![Q2]. More systematically, one can generalize (5.3) and (5.4) to
operations

C* @ CF, (H) — CF; ' (H), (5.10)
C* ® CF,(H) — CF,,(H), (5.11)

where C* is a suitable chain complex underlying H*(M; A) (to strictly generalize
our approach, this complex should admit submanifolds as cycles; however, other
choices, such as Morse homology, may be technically easier). The first of these is a
chain map, and the second satisfies an analogue of (5.7).

A short digression may be permitted at this point. Let’s place ourselves in the
context of Application 4.2. Consider symplectic cohomology SH* (M), and its
underlying chain complex SC* (M), as well as the equivariant versions SH;, (M) and
SCZI(M ). Then, one can construct operations

[+ Jeq: SC*(M) ® SC;; (M) —> SC 7 (M), (5.12)
.1 SC*(M) ® SC} (M) —> SCi (M), (5.13)

which satisfy
deglx1, X2)eq + [dx1, X2]eq + (—1)P1[x1, degxz)eq = 0, (5.14)

U[x1, X2)eq — deg(x1 ®0q X2) + dx1 @4 X2 + (—1)|x1|x1 o dogxs = 0. (5.15)
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One recovers (5.10) and (5.11) (in a suitable chain homotopy sense) from these by
composing with PSS maps C* — SC*(M) in the first entry. On the cohomology
level, the outcome is that SH*T1(M) acts on SH; (M) via (5.12); and that
action becomes trivial after multiplying with u. This parallels the situation in
noncommutative geometry, involving Hochschild cohomology acting on (negative)
cyclic homology.

5.b. The equivariant differential. Each construction in equivariant Floer coho-
mology amounts to setting up an infinite hierarchy of parametrized moduli spaces
with suitable recursive properties. Our basic organizing principle will be to use the
spaces of Morse trajectories from Section 3 as parameter spaces. At least in the case
of the equivariant differential, the construction is not new, but we reproduce it here
since it serves as the model for all subsequent arguments. We will give two versions
of the definition, where the difference is mainly one of the language used.

First definition. (This is close to the approach in [3].) Ateach point w € §$°°, choose
a Hamiltonian and almost complex structure

(HS, I, (5.16)

w:’Yw

smoothly depending on w, and subject to the following conditions:
— The choice should be invariant under shift: (H% ., J y) = (Hy', Ju).

g(w)’ Yo(w
— With respect to g~ !(cg) = S, the restriction of (H®, J¢) to that fibre should
agree with the previously chosen (H;, J;).

— In a neighbourhood of each ¢y, the family (Hy', J,,) should be preserved
by parallel transport for our chosen connection A (this makes sense because the
connection is assumed to be flat locally near cg).

Let v be a negative gradient flow line, going from ¢ (k > 0) to ¢g. By
parallel transport for the connection A, we get a trivialization of (3.6) over v. This
trivialization is a map v fitting into a commutative diagram

R x §? z e (5.17)
| X
R - CPe.
Then,
(oo uite) = (HS 1 I58 1) el

satisfies (4.15) for T = o (v), where o are the functions defined in the first proof of
Lemma 3.5. We consider the moduli space of pairs (v, u), where v is a flow line and u
a solution of the equation (4.14) associated to the data (5.18), divided by common
translation (which reparametrizes v and u simultaneously). Counting points in this
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space (with signs and powers of ¢, as in the definition of the Floer differential) yields
an operation

dogr: CF*(H) —> CF*Y172k(H), (5.19)

By the first part of Lemma 3.5, d,,,; is indeed (a valid choice for) the BV operator.
Because of the inductive structure of the boundary (3.15), the maps (5.19) satisfy the
equations

- ddeq,k eq kd Z deq k| eq.ko — 0. (5.20)
ki1+ka=
ky ,k2>0
Concerning the signs in (5.20), the first two come directly from (4.24), and the last
one from (4.26) together with Proposition 3.8(i). It is natural to extend the definition
to k = 0 by setting d.;,0 = d. Then, (5.20) just says that the following expression
satisfies (5.5):

dgq = deq,o + udgq,l + - (5.21)

Second definition. The second version is a little more detached from the specific
Morse-theoretic construction of the parameter spaces Pr. Instead of starting with
S and then pulling back data from there to the moduli spaces of flow lines, we use
the fact that the Py carry tautological families (3.19), and make our choices directly
on the total spaces of those families. Fix arbitrary functions ax which satisfy the
properties from Lemma 3.5. Suppose that for each [v] € P and preimage y € P
we have chosen a family

(7. 55)

b (5.22)

tes!
with the following properties:
— If y is sufficiently close to some point z € Pr \ Pr. (522) should agree

with (H;, J;) up to a rotation in S!-direction, which means that (Hye,", g5, e,") =
(Ht++(y)s J1+1(»)); and the amount of rotation 7(y) € S should be locally constant
under the R-action on #%. In the case z = y_([v]), this amount of rotation should

be zero, while for z = y ([v]) it should be equal to ay ([v]).

— If we consider a point ([v1], [v2]) € (Px, \ 9Pk,) X (Pg, \ 9Pk,) C 0Py, and a
preimage y € P in the R-component belonging to [v], then (5.22) agrees with
the corresponding family associated to y as a point of #%,. In the same situation,
if y lies in the R-component belonging to [v2], (5.22) agrees with the corresponding
family over P, up to rotation by a, ([v1]) in S!-direction. The analogous property
holds for broken trajectories with more than two components.

These conditions can easily be met by a recursive construction. In a nutshell, because
of the second condition, the restriction of (5.22) to dP; is completely determined by
the choices made for Py, k < [; and one then extends that to the interior, using the
fact that the space of overall choices is contractible (of course, additional care must
be exercised near 2 \ #)
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Fix [v] € P; \ 0P, and choose a representative v. This is the same as fixing
a parametrization of the preimage of [v] in #%, which we write as s — y(s).
From (5.22), we then obtain an analogue of (5.18), this time defined by

e deg d,
(Hlii,.s?,t’ Jv s t) = (Hy(s) e Jy(;’),t)’ (3:23)

which again satisfies (4.15) with T = ay ([v]). Suppose that we have a sequence [v']
of such flow lines, which converges to a broken flow line

(vl [v2]) € (Pe, \ 9Pk,) X (Piy \ 0Pk,).

Choose representatives v’ and vy, v as well as o}, o} € R with 0} — ol — oo, such
that .
v (s + a}) — v1(s5),
o) 1(5) (5.24)
V(s + 05) —> va(s)
(in the sense of uniform C°°-convergence on compact subsets). The corresponding
convergence statement for (5.23) says that (in the same sense as before)
d, d, de de
(H T ) ()

v stof,t’  vistol,t Vi,8,E YugLs,t )

(o oo okt ) = (o v Gonly Tonte g, @ord)- -
vhs+ao,,t  vhs+o5,t 2,8, Tk, (V] 2,8, 0Tk, (LU]
If one fixes a sufficiently large L and restricts attention to i >> 0, then
(Hy, Jy) 5 € (—00,01 — L],
QB ol N o O 5ol o) s€lol +Loi—L], (526)

(Hita @i Jeva @) 8 € oz + L,00),

where the t¥ € S themselves converge to o, ([v1]). Each case in (5.26) corresponds
to a region where y (s) is close to a point of P \ Py; this point is y_([v']) in the
first case and y, ([v']) in the third case, explaining the particularly simple nature
of the formulae given there The combination of (5.25) and (5.26) describes the
£ d”’ .) uniformly on all of R x S'. This kind of
description generalizes to hmlts Wthh are broken flow lines with an arbitrary number
of components.

To define d,,, we again consider pairs (v, u), where [v] € P \ 0P, and u is a
solution of the equation (4.14) associated to (5.23). Given our previous discussion of
the limiting behaviour of (5.23) as one approaches 9Py, it is clear how to implement
the necessary compactness argument; a similar strategy applies to gluing issues.

We end by comparing the two versions of the definition: the first one is a special
case of the second. Namely, take oy defined by parallel transport for the connection A.
Supposing that (5.16) have been chosen, we define (5.22) by

limiting behaviour of (H

(Hoa, gdey = (H o TS ) (5.27)

y,t> eZi‘rlIv(y)’ ez;rrztv(y) *
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where v(y) € S is defined as follows: first use the evaluation map P, — CP*®
to associate to y a point v(y) € CP, and then use parallel transport along the
flow line from cg to v(y) to determine a preferred lift v(y) € S°. Because the
evaluation map is smooth, this indeed yields a smooth family, which satisfies all our
desired properties; and if one then considers the associated data (5.23), those agree
with (5.18).

Remark 5.2. One can also ask the converse question, namely whether the
choice (5.18) is indeed less general than (5.22) (making the second definition
genuinely more flexible). The answer is yes, but a precise understanding of the
amount of additional flexibility hinges on tricky technicalities. Roughly speaking,
our first approach was to choose a (time-dependent) almost complex structure and
Hamiltonian for each point of CP°°; and our second approach was to choose one
such structure for each point on a nonconstant gradient flow line. Ignoring critical
points (where we have extra constraints anyway), any point of CP lies on a unique
such flow line. However, the notions of smoothness used in the two versions are not
the same: in the first one the smooth structure of CP *° is used, while the second one
involves the smooth structures on compactified trajectory spaces.

S.c. The operation A,,. The construction of this operation is entirely parallel to
that of d,,, but using P} instead of Pg. The additional information provided by
having P,f as a parameter space is used to implement an incidence condition.

First definition. Let’s suppose that the first construction of the equivariant differential
has been adopted, with data (5.16). Given a point (v, w) € P} \ dP;, we use the
same associated data (5.18) as before, but (for consistency) change notation to

Ae Ae
(Hv,tf),s,t’ Jv,uf;,s,z) = (Hst(ls’t)s J;Z’S,t)), (5.28)
One considers solutions of the associated equation (4.14), with the condition
u(0, (v, w)) € g'Q. (5.29)

Here, g} are the maps from the first proof of Lemma 3.6. For k = 0 the flow line
is constant, (5.28) reduces to (H;, J;), and (5.29) to (4.32), except for orientations:
in (4.32), the point of evaluation on R x S! goes in negative direction around the
circle, whereas in (5.29) it proceeds positively, assuming we have oriented P as in
Section 3.c. To account for that discrepancy, we will define A., using the opposite
orientation of P} for all k. In parallel to our previous discussion of the differential,
this yields maps

Aegje: CF*(H) — CF* 172k (), (5.30)
of which the simplest (k = 0) one agrees with A. These maps satisfy
Z de%kl Aeq,kz + Z )Leq,k1 deq,kz = 0. (5.31)

k1+kx=k k1+k2=k
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The geometry underlying that relation is the description of the boundary (3.17),
with signs coming from our general conventions and Lemma 3.8(iii). One combines
the A,k into a u-Taylor series to define A,.

Second definition. Take functions (ay, ;) as in Lemma 3.6. Suppose that the
equivariant differential has been defined using some choice (5.22). We then similarly
proceed to choose, for each (v, w) € P and preimage y € &}, data

(Hyo, ) st (5.32)
subject to conditions that are entirely analogous to the previous ones. The only
(fairly obvious) difference is that, on the preimage of a point of dP}, the behaviour
of (5.32) is governed by the previous choices of the same kind (for lower values of k)
on exactly one connected component (corresponding to the part of the broken flow
line which contains the marked point), and by (5.22) on the other components. For
(v,w) € P} \ 0P} one then defines, in analogy with (5.23),

(s oibisd) = (3,0 338.0) (533)
where y(s) € P/ is the preimage corresponding to the point v(s) on the gradient
flow line v. Equivalently but in slightly more abstract terms, the choice of y(s) is
normalized so that for s = 0, it gives back the canonical section y,: P} — #/. The
evaluation condition is again of the form (5.29), and the rest of the construction
proceeds as before. In parallel with the situation of the differential, the first
construction is a special case of the second one (this time, a lot more flexibility
is allowed in the second approach; this was already true for the two proofs of

Lemma 3.6).

5.d. The operation t,,. This follows exactly the same method as for A,,, but using
the spaces Ri from (3.75). Because of the more abstract nature of those spaces,
the second approach works better at this point, so we will stick to that. Namely, we
choose functions as in Lemma 3.13, and consider the tautological family :Rﬁ. At

each point y € R?, we choose

leg Leg
(Hy,t’ Jy,t)zesl’

(5.34)

subject to the same conditions as before, and which of course must restrict to
the corresponding family on Pj7_, over that boundary face. The definition of the
associated maps (4.14) proceeds exactly as in (5.33), and we use the same evaluation
condition. This leads to operations

teg: CF*(H) —> CF**272k (), (5.35)

which reduce to ¢ for k = 0. Because of the boundary structure (3.75), these satisfy

Z deq,k| beg,ky — Z Leg,ky deq,kz - Aeqv,k—l = 0. (5.36)
ki+ka=k ki+kr=k
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The Koszul signs (4.26) disappear, because one of the two parameter spaces involved
is always even-dimensional. What remains is a single —1 sign in front of the
Leg,ky deq ko term, for ko > 0, which comes from Lemma 3.14. Finally, the sign
in front of A, x—1 arises from the orientation-reversal convention we adopted when
defining that operation.

S.e. The differentiation property. At this point, we pick up the thread initiated
in (4.33), which justifies the special role afforded to the class ¢~![2] in our setup.
Namely, let d, be the operation of differentiation in g-direction, acting on CF*(H ).
This makes sense because, as a free A-module, CF*(H) carries a canonical basis
(up to signs). Differentiation does not commute with the boundary operator: instead,
we have

dgd —ddg = A. (5.37)

To be precise, this holds exactly provided that A has been defined by counting solutions
of Floer’s equation with the additional condition (4.32); in fact, the left hand side is
precisely (4.33). The property (5.37) is an instance of a general idea which, in [29],
was called the “differentiation axiom” (in Gromov—Witten theory, a corresponding
property is implied by the divisor axiom). There is also an equivariant refinement:

Dgdeg — dogdy = Aeg- (5.38)

This assumes that the first version of the definition of d,, and A., has been used.
Given that, the proof is exactly the same as for (5.37). As an immediate consequence
of (5.38) and (5.7), the homomorphism

[y:CF,(H) — CF,*(H),

(5.39)
Cg(x) = udgx + teq(x)

is a chain map. We define the g-connection to be the induced map on cohomology,
using the same notation for it. This definition clearly satisfies the property from (2.6),
already on the chain level. The commutativity of (2.7) is also obvious, since I'; (x) =
t(x)+ O(u). We can also immediately address the remaining properties mentioned in
Section 2.b. Namely, if @ is exact, one can choose the cycle €2 to be empty, in which
case both A, and ¢, vanish, yielding (2.8). Similarly, if - Ho(M;7Z) = mZ for
some integer m > 2, one can choose €2 so that all its components have multiplicities
in mZ. Then, A., and ., vanish modulo m, leading to (2.9).

Remark 5.3. Let’s briefly explain the expected situation for symplectic cohomology,
continuing the discussion from Remark 5.1 (this is just an outline; the details, which
would require a combination of the techniques from here and [29], remain to be
carried out). One has a chain homotopy

Aeg = [y egs (5.40)
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where k € SC?>(M) is a cocycle representing the image of ¢~![Q] under the PSS
map. Denoting the chain homotopy in (5.40) by p.,, one would then reformulate the
definition of the g-connection on SH; (M) in the following equivalent (up to chain
homotopy) way:

Fg(x) > udgx + upey(x) + k o4 x. (5.41)

To tie that discussion to [29, Section 3], suppose that k is in fact nullhomologous,
say k = df. One can then further rewrite (5.41) as

Tg(x) = u(3gx + peg(x) — [6, X]eq)- (5.42)

At this point, one can divide the entire right hand side by u, which produces a
(degree 0) endomorphism V,, of SH;"q satisfying

Voo (fx) = fVex + (0, fx,
eq(fX) = fVegx + (0g f) (5.43)
Ty = uVe,.
Furthermore, setting u = 0 in the definition of V,, reproduces the connection vl
from [29].

S.. Well-definedness. In our discussion of (2.8) and (2.9), we have implicitly
made use of a property which requires justification, namely, independence of
the g-connection from the choice of representative €2, within a fixed class
[2] € H>(M; A). Generally speaking, the same issue arises with respect to all
the other choices made in the construction. Luckily, the necessary well-definedness
statements can all be proved in a uniform and fairly routine way; we will not give the
details, but we will explain how the construction is set up.

Suppose that we are given two choices (Hy, Ji, 24) of data underlying the
definition of Floer cohomology. On R, choose a Morse function f = f(p) with
exactly three critical points, namely local minima at p = 1 and a local maximum
at p = 0. Instead of (4.13), we now consider coupled equations involving a gradient
flow line of f:

w:R x ST — M,

z:R — R,
Bew & Jogs).0 Bpu — Xogy) =0,
aSZ + .f,(z) = 09

(5.44)

with the obvious asymptotics. The main point is that the almost complex structure J
and Hamiltonian H depend on the additional parameter p € R. We ask for
(ﬁp’,, fp,,) to agree with (H_,, J_;) if p < € (for some small ¢ > 0), and with
(Hyy, Jyy) for p > 1 — €. We also assume that a cycle Q C R x M is given,
which equals R x Q_on {p <e}and R x Q4 on {p > 1 —€}. We then consider
a Floer cochain space whose generators are pairs consisting of a critical point of f
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and a one-periodic orbit of the Hamiltonian associated to that critical point. The
differential counts solutions of (5.44) with weights given by the intersection number
of the cylinder

RxS!—RxM,

(s, 1) /= (2(s), u(s, 1))

with Q. The resulting complex, denoted by CF *(17 ), can be written as a mapping
cone

(5.45)

(5.46)

CF*(f) = {CF*(H_) B gl e CF*(H.,.)}.
Example 5.4. Let’s consider the case where (Hy,J1) = (H,J) are the same
(and we choose (H,J) trivially), but with different 24.. The solutions of (5.44)
relevant for the continuation map, as defined in (5.46), consist of a trivial cylinder
u(s,t) = x(t) together with the unique (up to translation) z(s) connecting p = 0
and p = 1. Hence, the resulting map is precisely (4.21).

As an immediate consequence of (5.46), we have a chain homotopy commutative
diagram
continuation map

CF*(H_) CF*(H4) (5.47)

CF*(H)

in which both projections are chain homotopy equivalences. To see how this
viewpoint is useful for studying the well-definedness of various additional structures
on Floer cohomology, take for instance the operations (4.29) on CF*(Hy), denoting
them by ¢. One can define a similar operation 7 on CF* (H ), using a suitable version
of (5.44) with evaluation constraints in g ! Q. By construction, this operation will be
strictly compatible with the projections in (5.47), which proves that the continuation
map relates ¢+ up to chain homotopy (of course, there is nothing miraculous about
this: the desired chain homotopy is encoded into the definition of ¢).

The same idea can be used to show that equivariant Floer cohomology is
independent of the choices made in its construction. One defines a version of the
equivariant theory that is coupled to Morse theory as in (5.44), denoted by CF ;"q(ﬁ ),
which comes with projections to CF} (Hx). A filtration argument (by powers
of the equivariant parameter u) shows that these projections are chain homotopy
equivalences. One defines the equivariant continuation map, up to chain homotopy,
by filling in the analogue of (5.47):

equivariant continuation map

CFL(H-) <——==—=="2=0 CF,(Hy) (5.48)

prw Aﬂn

CFy, (i)
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Following the same strategy as before, one can show that CF;"q(ﬁ ) carries all
the same structures as CFZ‘q(Hi), including the g-connection, in a way which is
compatible with the projections. This implies compatibility of the g-connection with
the equivariant continuation map.

Remark 5.5. We have allowed only nullhomogous 1-periodic orbits, since that
simplifies the exposition a little. Let’s see what modifications are necessary in order
to drop that restriction. The resulting Floer cohomology group will come with a
splitting

P HF*(M.e)a, (5.49)

acH (M)

with the previous definition contained in this as the ¢ = 0 summand. The same
decomposition will apply in the equivariant case, and all the structures we are
considering, including the g-connection, are compatible with the splitting.

To obtain a Z-grading on (5.49), one needs to choose a trivialization of the
anticanonical bundle; in fact, only the homotopy class of the trivialization is
important. Changing that class by o € H!(M;Z) has the effect of shifting the
grading of each summand in (5.49) by an even amount 2 [ «; see e.g. [26].

The other issue has to do with the maps (4.21) which relate different choices
of €. Let’s suppose that we define this map using intersection numbers with an
interpolating €. Changing & by « € H2 (R x M; A) = H'(M; A) has the effect
of multiplying the map (4.21) with

x —> gla®x (5.50)

on each summand (5.49). Hence, the continuation maps are no longer quite canonical.
One can try to cure the ambiguity by adding more data, but that is irrelevant for our
purpose: I'; is compatible with those maps for any choice of Q.

The last-mentioned observation may seem paradoxical, and deserves some
further explanation. An equivalent statement is that I'; remains invariant under
the automorphism (5.50) of (5.49). By its connection property,

g~ Ja® Fq(qfa“ x) =Tg(x) +ug™ ' ([ a)x. (5.51)

Hence, what we are saying is that the action of u [, « € Au] on HF} (M, €), is
trivial for any a. Indeed, one can prove directly that this is the case (one possible proof
goes via the formalism mentioned in Remark 5.1). As a noteworthy consequence, if a
is a primitive non-torsion class, then u acts trivially on HF ’e"q(M , €)a, and hence the
behaviour of I'; on that summand is entirely determined by the cap action of ¢~ [<2]
on HF*(M, €), (the forgetful map being injective).

5.g. Small Hamiltonians. Suppose now that we have time-independent (H, J),
satisfying the properties which are necessary for (4.47) to apply. When defining
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equivariant Floer cohomology, one can choose all the data involved (either (5.16)
or (5.22), depending on the approach chosen) to be equal to (#7, J). This means that
all the equations (4.14) which appear reduce to the standard Floer equation for (H, J).
If one looks at the parametrized moduli space which underlies d,, x for some k > 0,
all its points have expected dimension

2%k — 1 + index(Dy) > 2k — 1 > 0. (5.52)

As a consequence, if we use this setup to define the equivariant differential, then
deqr = 0 for all k > 0, so that
dey=4d. (5.53)

This means that (5.1) is an isomorphism of chain complexes, and hence
HF:q(M, €) = HF* (M, ¢)[u]. (5.54)

For A,, and t,,, one can use a similar apprdach. Namely, take some family
(H'Sﬁ”;, ij), with (s,7) € R x S! as usual, and which agrees with our fixed (H, J)
for |s| >> 0. What one can arrange is that all equations which appear in the definition

of A4 and ¢, are of the form

fix fix _
Osu + 5y 4o (B — X7, g)0u = 0, (5.55)
u(0,0) € g7,

In words, all the (H*, J*) that we encounter in (4.14) are rotated versions of
(H/*, J7), and the amount of rotation is dictated by the position of the point at
which the incidence condition is imposed; this is possible only because the limiting
data (H, J) are t-independent. As a consequence, parametrized moduli spaces again
can’t have any isolated points, which means that

Aeg =0, (5.56)
beg = L. (5.57)

Hence, we have
[y =udy +1t. (5.58)

By construction, ¢ is the quantum cap product with g~1[Q]. We have therefore shown
that the isomorphism (5.54) identifies the g-connection with ud, + ¢~ 1[Q] ~ -.

This establishes the last part of Theorem 2.1, but in a form that involves the a
priori non-canonical isomorphism (5.54). Following the same idea in Section 4.d,
we will now outline how to resolve that remaining issue. In general, one can (using
spaces of half gradient flow lines as parameter spaces) define an equivariant version
of the PSS map, which is a chain map

B., = B + O(u): CM*(f)[u] —> CF},(H). (5.59)
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The induced map H*(M; Afu]) - H 2g(M, €) is independent of all choices. It
is an isomorphism whenever the ordinary PSS map is, thanks to an easy spectral
sequence comparison argument. Now, one can find a time-independent (H, J) for
which all our previous argument goes through, such that the PSS map reduces to a
Morse-theoretic continuation map, and all the higher terms in (5.59) vanish, for the
same reason as in our discussion of (5.54). For that particular choice, it then follows
that (5.54) agrees with the cohomology level map induced by (5.59), hence is after
all part of the standard framework of canonical isomorphisms.

Remark 5.6. A natural next step would be to look at the following situation.
Suppose that M is a manifold with contact type boundary, such that the Reeb
flow on dM is 1-periodic and extends to a Hamiltonian circle action on the whole
of M. Let’s assume that the circle action is “Calabi—Yau”, which means that
there is a trivialization of the anticanonical bundle which is S!-invariant. In that
case, a version of the isomorphisms from [25] (see more specifically [23]) yields
HF*(M,1 + €) =~ HF*(M, ¢) for all €. In particular, if € > 0 is small, one has

HF*(M, 1+ €) = H*(M: A). (5.60)

The S !-equivariant version of this story appears to be more interesting, and closely
related to the “shift operators” (studied e.g. in [4]). The analogue of (5.60) says that,
still for small € > 0,

HF;"q(M,l +€) =~ H;:](M; A), (5.61)

where the right hand side is equivariant cohomology for the circle action on M.
Given that, it seems plausible to conjecture that the g-connection on HF' Z‘q(M ,1+¢€)
should correspond to the equivariant quantum connection on the right hand side. That
equivariant connection is interesting even in cases where ordinary Gromov—-Witten
invariants vanish (see e.g. [4,21]).

5.h. Finite analogues. To round off our discussion of the g-connection, we would
like to mention a conjectural analogue in which S! is replaced by a cyclic group Z/ p
(this addresses a question raised by Ganatra). Cyclic symmetries exist for a much
wider class of (not necessarily Hamiltonian) symplectic Floer cohomology groups.
Our main point of reference is [27], which only considers the case p = 2; hence, we
will ultimately restrict to that case, even though this can be a bit misleading.

Let ¢: M — M be a symplectic automorphism, and My its mapping torus. We
require a strengthened form of (2.1), which is that the fibrewise tangent bundle of
My — S should have vanishing first Chern class. This is equivalent to saying
that ¢ can be lifted to a graded symplectic automorphism [26]; we fix such a lift.
Similarly, we assume that the cohomology class of the fibrewise symplectic form w
on My is integral, and fix an integral lift [Q24]. Finally, one has to make certain
requirements on the behaviour near dM , which we omit (but see e.g. [32]). One can
then define fixed point Floer cohomology HF* (¢), as a Z-graded module over Z((q)).
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The Floer cohomology of iterates ¢? carries a canonical action of Z/ p. That action
can be refined to yield a Z/p-equivariant version of the theory. From now on,
assume that p is prime, and use (Z/ p)((¢)) rather than Z ((q)) as coeflicients for Floer
cohomology. Let’s denote the resulting version of the equivariant theory simply
by HF,(¢?), omitting any mention of the coefficients for the sake of brevity. It is a
finitely generated module over H*(BZ/ p; (Z/ p)(q))). We denote by u the standard
degree 2 generator of that ring (for p = 2, u is the square of the degree 1 generator,
which we denote by #; this is of course no longer true for p > 2, even though there
is a relation between the two via Massey products). The conjectural analogue of the
g-connection is an endomorphism satisfying the same condition as in (2.6),
Ty HF, (¢7) — HF 7> (@7). (5.62)
We will not attempt to construct (5.62) here, but we can outline a bit of the formal
skeleton of the construction. For simplicity, suppose from now on that p = 2. Let
CF*(¢?) be the chain complex underlying HF*(¢?). Using an incidence condition
with ¢ 124, one defines

1:CF*(¢?) — CF**2(¢?), di—id =0,

5.63
A:CF*(¢?) — CF*t1(¢?), dA+Ad =0, (-05)

much as before. The operations (5.63) don’t depend on having the square of a map,
but the next steps do: one has

o: CF*(¢?) — CF*(¢?), do +od =0,

5.64
X: CF*(¢p*) — CF* 1 (¢?), d= + =d =02 +id. (.64

The first of these maps induces an endomorphism on cohomology, and the second
shows that this endomorphism is an involution (recall that we are in characteristic 2,
so signs don’t matter). We can introduce further operations, which can be seen as
measuring the failure of ¢ to be compatible with the Z /2-action:

£:CF*(¢%) — CF*t1(¢?), dE+&d =01+ 10,

o 42 . 7 o L (5.65)
E:CF™(¢p°) — CF*(¢?), dE+Ed =0+ &0+ Z1+1X+A.

The equivariant differential on CF, (¢*) = CF*(¢?)[1] is of the form

doy = d+h(id+0)+h*S+O0(h?): CF’;q(qbZ) — CF*T1(¢?), dgq — 0. (5.66)

eq

One would then define the discrete analogue of the g-connection on CF Zq(gbz) by a
formula

Ty =+ hE + h*(3, + B) + O(h®): CF (¢*) —> CF 2 (¢?). (5.67)
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Let’s conclude this sketch by mentioning why one might be interested in studying
such operations. On the algebraic side, the theory of differential operators in finite
characteristic is much richer than its characteristic O counterpart (see e.g. [17] for
applications to Gauss—Manin connections). On the geometric side, one has the
equivariant squaring map [28]

HF*(¢) N HFZ (). (5.68)

This satisfies Q(gx) = g Q(x), hence its image is a subspace over (Z/2)(¢?)). The
kernel of I'; is a subspace of the same kind. One can speculate that the composition
of (5.68) and T'; should be zero, and then further consider the relation of such
statements with localisation theorems as in [28].

6. The u-connection

This section adapts the previous arguments to prove the results stated in Section 2.b.
To avoid repetition, much of the discussion will be presented in abbreviated form.
The main difference can be expressed as follows. Originally, we worked in a situation
where Floer cohomology groups were Z-graded, which was useful in simplifying
technical aspects of pseudo-holomorphic curve theory, but played no fundamental
role in our argument. This time, grading issues will be key to our discussion.

6.a. Floer cohomology revisited. We will again work with a manifold M and
(#, &) satisfying (4.3) and (4.4), but now assume (2.11). Choose a codimension two
cycle C = mCy+---+m;C;,withm; € 7, which represents the first Chern class.
On the complement of C, we fix a trivialization of the anticanonical bundle K =1
such that the following holds. Suppose that S is a compact oriented surface with
boundary, u: S — M a map such that u(dS) N C = @, together with a section £
of u*K ;11 which is nonzero on the boundary. Then,

> kl=u-C+wEds). (6.1)
£-1(0)

Here, the left hand side is the count of zeros with the usual signs, and w(£]0S) is
the winding number (or degree) of £|dS as a map 0S — S, defined using the given
trivialization. (In an algebro-geometric context, one would get to (6.1) by taking a
rational section of K,/ whose zeros and poles equal the divisor C, and using that
for the trivialization.)

When defining the Floer cochain complex, we choose (H;,J;) so that all
1-periodic orbits of H are disjoint from C. Then, each such orbit still has an
index i (x) € 7Z, but (4.16) should now be replaced by

index(Dy) = i(x=) —i(x4) +2(u-C). (6.2)
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Because of (2.11), one also has a one-form 6 on M \ C, such that for the resulting
actions A g (x), the analogue of (4.18) holds:

B = [P = AnGe)—Ane) +y-0)+ [

Rx

o (0 H;::)(“ (s,1)).
(6.3)
Equivalently, one can define the normalized action as

A () = An ) - Li(x), 6.4)

and then a combination of (6.2) and (6.3) yields the familiar energy bound for
solutions with a given index:

E(m)=Ag(x_)— Ag(x4) + -;iindex(Du) + f

(BSH;:t)(u(s,t)). (6.5)
RxS!

Dropping Novikov coefficients, we define the Floer cochain complex as the Z /2-
graded group (with the grading given by i (x) mod 2)

CF*(H) = (P Z.. (6.6)

Let’s define operations A and ¢ in parallel with those in Section 4.b, but using C
instead of ¢~ in all incidence conditions. In particular, the cohomology level map
induced by ¢ is now the quantum cap product with ¢ (M). These operations, and the

BV operator, still satisfy Lemmas 4.5-4.7. Consider the endomorphism
:CF*(H) — CF*(H),

p: CF( . ) (H) 67)

plx) = i(x)x.

This is not compatible with the differential. Instead, assuming that A has been defined
using the same (H, J) as the Floer differential, one has an analogue of (5.37), namely

pd —du =d — 2. (6.8)

To see why this is the case, let u be a solution of (4.13) which contributes to the Floer
differential. Then index(D,) = 1, and hence

i(x-)—i(xy)=1-2u-C). (6.9)
With that in mind, we write

pd(xg) —dp(xy) = dxy —2) (- C)x-. (6.10)

The term = (u-C') counts (with signs) the possible ways of translating u in s-direction,
and introducing some r € S 1 so that the incidence condition (0, —r) € C is
satisfied. Hence, that term is exactly the coefficient of x_ in A(x4).
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6.b. The equivariant theory. We define CF; (H) = CF*(H)[u],asaZ/2-graded
Z[u]-module. This carries the same formalism of operations as in Section 5.a, again
using C instead of g~ ' Q. Let’s extend the operator (6.7) u-linearly to C e";(H ). The
analogue of (5.38), which holds assuming appropriate choices in the definition of A
is

eq»

(e ]
frdeg — degit = Y (1 = 2k)u¥dog f — 21, 6.11)
k=0
Solutions »# which contribute to d,,x have index(Dy) = —dim(Pr) = 1 — 2k,

which explains the occurrence of that term; the rest is exactly as before. One can
differentiate elements of C e’; in u-direction in the obvious way, and this satisfies

Oudeg — degdy = Y k" "'y . (6.12)
k

With that in mind, (6.11) can be rewritten as
(Qudy + p)deg — deg(Rudy + 1) = deg — 2A¢4. (6.13)
It follows that the map
Ty:CF (H) — CF; (H),

q q

(6.14)
Ty (x) = 208, x + upn(x) — 2t0,(x)

satisfies
Cydeg — dogly = u dey. (6.15)

Even though (6.14) is not a chain map, it does induce a map on cohomology.
We define the u-connection to be that induced map, which clearly satisfies
the property from (2.14). Commutativity of (2.15) is also obvious, because
['y(x) = —2i(x) + O(u). The properties (2.16) and (2.17) follow in the same way
as their counterparts for the g-connection.

Remark 6.1. In this context, it is unproblematic to drop the assumption that the
I-periodic orbits should be nullhomologous, leading to Floer cohomology groups as
in (5.49). One wrinkle of the resulting discussion deserves some mention. Namely,
suppose that ¢; (M) = 0. Then, Floer cohomology admits a Z-grading, but that
grading is not unique if one includes all 1-periodic orbits, as already mentioned
in Remark 5.5. In spite of that, (2.16) holds for any choice of Z-grading: given
two choices, the difference between the resulting grading operators multiplies each
summand HF’;q(M, €)aby2 [ a, fora e H'(M:;7); and that operation becomes
trivial if multiplied by u. In particular, if a is primitive and non-torsion, then

[y = mdep = 0:6n HF;‘q(M, €)q. Similar observations apply to (2.17).
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Our next task is to explain (2.21). Let’s change the definition of CF™*(H) to make
it into a Z-graded module over C[q, g™ '], where |g| = 2. In view of (6.9), this is
done by defining the differential to be

dxy =) +q"x_. (6.16)
u

The same principle will be applied to all other operations. For instance, the graded
version of the u-connection is an endomorphism of C ;"q(H ) of degree 2, still given
by (6.14). The g-connection can be defined as

[y(x) = udgx + q_lteq(x). (6.17)

If one assumes (2.18), then this is indeed the same as our original approach
towards defining the g-connection (taking into account that we are using C, which
represents [w], instead than ¢ !, which represented g '[w]). Clearly, one has

Iy + 29Ty = u(p + 2udy + 299,) = udeg, (6.18)

where deg is the grading operator, multiplying each element of CF} (H) by its
degree, exactly as in (2.19). The relation (6.18) implies (2.21).

What remains to be discussed is the polynomial version of equivariant Floer
cohomology. For that purpose, we adapt the argument from [28, Section 7] to the
S'-equivariant case. Suppose as before that (2.18) holds, meaning that y = 1. Let’s
consider the definition of the equivariant differential. Maps u that contribute to d, k
have index(Dy,) = 1 — 2k. The key point is to govern the last term in (6.5), so
that it grows less slowly than the index term, yielding an energy which becomes
negative (implying that the relevant moduli spaces must be empty) for k > 0. For
the equation (4.13) of the Floer differential itself, the problematic term vanishes;
in the definition of the BV operator (at least, as we have approached it, which
means avoiding Morse—Bott methods) it is necessarily nontrivial, but can be made
arbitrarily small by choosing the Hamiltonians to be close to time-independent ones.
More systematically, one has the following:

Lemma 6.2. Fix some constant § > 0. Then, one can choose the data underlying
the definition of the equivariant differential d.,, such that the following holds. For
any equation (4.14) which contributes to dy, i (k > 0),

[ maxyem (05 H, ,(x)) < dk. (6.19)
RxS1 ’

Proof. We follow the second construction of the equivariant differential. Suppose
that, when defining Floer cohomology, one takes (H;) to be a small perturbation
of a time-independent Hamiltonian. Then, one can certainly define d,,; (the BV
operator) so that the k = 1 case of (6.19) is satisfied. That prescribes what (5.22)
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does over dP,. If we extend (6.19) to broken cylinders by adding up the relevant
terms for each component, then the given choice over dP, satisfies that condition.
Now, among all functions (H,) satisfying (4.15) for some t, those for which the left
hand side of (6.19) is less than a given constant form an open convex subset. Hence,
when extending the choice of (5.22) from d P, over the whole of P,, one can arrange
that (6.19) remains true, by using partitions of unity. Openness is important since it
allows us to achieve transversality while still satisfying the necessary bounds. The
same inductive procedure is then repeated for higher k. L]

For us, it is sufficient to take § < 1. Then, (6.5) shows that d,, is indeed

polynomial in u, hence yields a differential on C ;‘oly(H ) = CF*(H)[u]. The same

principle applies to A., and t.,, hence to the definition of the u-connection.
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