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Finite-dimensional representations
constructed from random walks

AnnaErschler and Narutaka Ozawa

Abstract. Given a 1 -cocycle b with coefficients in an orthogonal representation, we show that

every finite dimensional summand of b is cohomologically trivial if and only if \\b(X„)\\2/n
tends to a constant in probability, where Xn is the trajectory of the random walk (G, fi). As
a corollary, we obtain sufficient conditions for G to satisfy Shalom's property Hfd. Another
application is a convergence to a constant in probability of fi*n (e)~n*n (g), n 3> m, normalized
by its average with respect to fi*m, for any finitely generated infinite amenable group without
infinite virtually abelian quotients. Finally, we show that the harmonic equivariant mapping of G

to a Hilbert space obtained as an U-ultralimit of normalized p*" — gji*" can depend on the

ultrafilter U for some groups.

Mathematics Subject Classification (2010). 60B15, 60G50, 43A15, 22D10.

Keywords. Orthogonal representations, harmonic cocycle, random walks, transition probabilities,

amenable groups, Shalom's property, Kazhdan's property T, Central Limit theorem.

1. Introduction

Convention. Throughout the paper, G is a compactly generated locally compact
group with a distinguished relatively compact symmetric subset Q which contains
an open generating neighborhood e of G, and /t is a symmetric probability measure
on G that satisfies the following conditions:

• ii is absolutely continuous with respect to the Haar measure m,

Here \x\G '= min{n : x G Qn} (except that \e\G := 0). Note that | • |g is a length
function, that is, it satisfies

\x\G \x
1
|g and \xy\G < \x\G + \y\G.

Put BG(r) := {x e G : \x\G < r}.
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Formulation of the results. Throughout the paper, we will work with real Hilbert
spaces and orthogonal representations. This is purely for our convenience and

all results (but not the proofs) hold true for complex Hilbert spaces and unitary
representations (except that the statement of Theorem 2.4 has to be slightly modified),
because any complex Hilbert space Mc is also a real Hilbert space with the real inner
product (v, w) I—> ?ll(v, w)x and any 1-cocycle (defined below) with coefficients
in a unitary representation can be regarded as the one with coefficients in the

corresponding orthogonal representation.
Let 7t:G Jf be an orthogonal representation on a real Hilbert space M.

Recall that a 1 -cocycle (or simply a cocycle) is a continuous map b:G -»• J£ which
satisfies the 1-cocycle identity: b(gx) b(g) + ngb(x) for all g,x e G. It is a
1 -coboundary if there is v G 31 such that h(x) v — nxv for all x e G. We note
that b is a 1-coboundary if and only if it is bounded on G ([2, Proposition 2.2.9]).
Every cocycle h satisfies that

b(e) 0 and \\b(x) - b(y)\\ \\b{x~ly)\\ < \\b\\Q\x~ly\G,

where \\b\\Q := sup^6ß ||ft(g)|| < oo.
A cocycle b is said to be /i-harmonic (or simply harmonic) if / b(gx) d/i(x)

b(g) for all g, or equivalently f b(x)dii(x) 0. Any cocycle h gives rise to an

affine isometric action
A : G x 3t -* M

by A(g,v) TtgV+b(g) (see Chapter 2 in [2]). Conversely, for any (affine) isometric
action on a Hilbert space and a point v e X, the map b(g) A(g, v) — v defines a

1-cocycle, and harmonicity of this cocycle is same as harmonicity of the orbit map

g A(g, v). Under an appropriate assumption on the decay of a non-degenerate
measure /x, it is known that a compactly generated locally compact group G admits a

non-zero /x-harmonic cocycle with respect to some orthogonal representation if and

only if G does not satisfy Kazhdan' property (T). Existence of a non-zero harmonic

cocycle on groups which do not satisfy property (T) is proved by Mok ([25, Cor. 0.1 ]),
Korevaar and Schoen [22, Thm. 4.1.2] for finitely presented groups (and not discrete

definition of harmonicity) and in general case (and discrete definition of harmonicity)
by Shalom in [32, Thm. 6.1]. We will give somewhat more constructive proof of
this fact in Section 4. See also Gromov [14, Section 3.6], [15, Section 7A] Fisher
and Margulis [11], Lee and Peres [23, Thm. 3.8], Ozawa [29] as well as the book by

Bekka, de la Harpe, and Valette [2] for a non-exhaustive list of references about this
result.

We say that a 1-cocycle h is finite-dimensional if the 7r(C)-invariant subspace

spän/?(G) is finite-dimensional. If Jf JC; is some orthogonal decomposition
of M into 7r(G)-invariant subspaces, then b 0(- b is a decomposition of b

into 1-cocycles P;/ei h (with respect to 7r|j0. We call each P;/^ h a summand of b.

We say that such summand is cohomologically trivial if it is a 1-coboundary.
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Given a probability measure /x on G, let Xn denote the trajectory of the random
walk (G, /x), that is, Xn ,V| ,v2 • • • sn where increments .v, e G are independent and

chosen with respect to /x. The corresponding probability measure and its expectation
are denoted by P and E.

The value of a Hilbert valued /x-harmonic 1-cocycle along a trajectory of the

random walk (G, /x) is a martingale, and therefore

n

V[\\b(Xn)\\2] YJ^[\\HXk)\\2-\\b(Xk-l)\\2]=nE[\\b(X1)\\2].
k=1

That is, the expected value ^ E[||/>(V„)||2] is equal to a constant, not depending on n.
For any (not necessarily harmonic) 1-cocycle b, the expected value £ E[||fi(A„)||2]
has a limit (see Lemma 2.2). Theorem A below characterizes the case when the

random variable \\\b(Xn)\\2 tends to a constant.

Theorem A. Let G be a compactly generated locally compact group with a

probability measure /x on G as in Convention. Let b:G —> 3Î be a \-cocycle.
Then the following conditions are equivalent:

(1) Any finite-dimensional summand ofb is cohomologically trivial.

(2) i \\b(Xn)||2 tends to a constant in probability.

Now assume moreover that b is harmonic and put c fG ||/;(x)||2 dfi(x). Then the

limit

ß lim
n >oo 2 C

112\\HXn)\\- ,2
C

always exists, and ß — 0 if and only if (I) and (2) hold. If ß ^0, then b has a

cohomologically non-trivial finite-dimensional summand ofdimension <\/ß.
A more precise version of Theorem A will be given in Theorem 2.4, where we

describe the limit distribution of \\b(Xn)\\/*/n. This theorem has the following
corollary:

Corollary. Let b be a harmonic cocycle. Then, b is a direct sum of(possibly infinitely
many) finite-dimensional cocycles if and only if \imsupnF(\\b(Xn)\\ < Cyfn) > 0

for every c > 0.

Recall that a group G is said to have Shalom's property HpD if every orthogonal
representation n with non-zero reduced cohomology group Hl(G,n) contains a nonzero

finite-dimensional subrepresentation. In Corollary 2.5 we show that G satisfies
Shalom's property //FD if at least one of the two following conditions hold: either

liminf„ ||/x*" — /x*!1+l5ln||i < 2 for some S > 0 or lim supn p*n (Bg(c^/n)) > Ofor
all c > 0.

Theorem A and its corollaries develop the argument from [29]. While the main
result of [29] is a new proof of Gromov's polynomial growth theorem, the paper
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also provides a more general criterion for the property Hfd for a finitely generated

group in terms of convolutions of random walks is given in Section 4 of [29], It is

shown in [10] that wreath products of Z with finite groups satisfy the assumption of
that criterion, providing examples of groups of super-polynomial growth where the

criterion applies. The assumption of the criterion from Section 4 in [29] uses shifted
convolution, and it is not clear whether this assumption is defined by an unmarked

Cayley graph of G. Assume that (G. p) is a simple random walk on G, that is, p is

equidistributed on a finite generating set of G. The conditions of (1) as well as of (2)
of Corollary 2.5 are clearly defined by the unmarked Cayley graph of G. We do

not know any group which satisfies the assumption of (1) or of (2) of Corollary 2.5

and for which we know that it violates the assumption of Section 4 of [29]. But
the conditions of Corollary 2.5 are easier to check than the assumption from [29].
For example, it is easily applicable to solvable Baumslag-Solitar groups, lamplighter
groups Z k 0Z F with F finite, or to polycyclic groups obtained as extension of Z2

by M e SL(2, d) with eigenvalues of absolute value ^ 1. See Section 3 for more
examples. We do not know any group which satisfies Shalom's property and does

not satisfy the assumption of Corollary 2.5.

Given a not necessarily harmonic cocycle b on a group without property (T), a

harmonic cocycle can be obtained taking averages of b (see Mok, Korevaar Schoen,
Shalom [22,25,31 ], and in particular this can be achieved averaging with respect to a

probability measure p (see e.g. Gromov, Lee-Peres [14,23]). In Section 4 we study
the cocycles b^u, constructed as a ultralimit in ^(G) of normalized p*n — gp*n on
a finitely generated amenable group G. Kesten's criterion [21] (see also [1]) implies
that p*n is a sequence of almost invariant vectors in (2(G), and one can moreover
show (see Theorem 4.3) that the limit is a harmonic 1-cocycle. Applying Theorem A
to this 1-cocycle, one obtains

Theorem B. Let G be a finitely generated infinite amenable group without virtually
abelian infinite quotients. Let p be a finitely-supported symmetric non-degenerate

probability measure. Then (p*2n(e) — p n{X2m))/ot{rn,n) tends to a constant in

probability p*2m as m. oo and n m. Here a(m,n) — p*2n(e) — p*2n+2m(e)
is the average ofp*2n(e) — p*2n(g) with respect to p*2m. Namely

p*2n(e) — p*2n{X2m)
lim lim sup E - 1 0.

p*2n(e) — p*2n+2m(e)

Take n much larger than m. Observe that a group is amenable if and only if
p*2n (g) /p*2n (e) is close to 1 in probability with respect to p*2m. Theorem B gives
a sufficient condition for the concentration of the second order term of p*2n.

Theorem B applies in particular to any finitely generated amenable torsion group
(such as Grigorchuk groups Gw [12]) or to any finitely generated amenable simple

group (such as commutator full topological groups of minimal shifts on Z (which
are simple by a result of Matui [24] and amenable by a result of Juschenko-
Monod 119]), or to simple groups of intermediate growth constructed recently by
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Nekrashevych [26]. If p is equidistributed on a finite generating set of G, then the

assumption of Theorem B depends only on the unmarked Cayley graph of (G, p).
In particular, the theorem gives a necessary condition for an amenable group to be

simple in terms of unmarked Cayley graphs. In general, it is known that the property
of being simple can not be defined by the unmarked Cayley graphs, as it is shown by
Burger and Mozes [4] (their examples are isometric to product of two trees and they
are non-amenable). It is to our knowledge an open problem whether a property of
being a torsion group can be verified geometrically.

Geometric group theory tries to recover properties of a group from the word
metrics of this group. Given a group G, generated by a finite set S, its action on a

metric space X and a point xo £ X, the group G is equipped with two metrics: the

word metric dc,s(g, h) as well as dx,X0(g< h) dx(gxo, hxo). It seems interesting
to study which properties of the action, or of the group G, can be recovered from
these two metrics. Theorem A as well as Corollary 2.5 provide examples of such

situation, for X being a Hilbert space and a group G acting by affine transformations

of X.
Fix a non-principal ultrafilter U on the natural numbers N. Let bp'G be the

mapping to a vector space equipped with a metric, constructed as U ultralimit of
normalized (p*n)q — g{p*n)q, considered as elements of ip{G) (see Section 5).
This means that we divide g(p*n)q — (p*n)q by the lp norm of this expression,
considered as a function on g, and then we take the ultralimit with respect to U.
By the construction, the lp norm of bGq G is one. We recall that any ultralimit
of Hilbert spaces is a Hilbert space, so that for p 2 and any q > 0 we obtain

a cocycle with respect to some orthogonal representation of M. In particular, for

q 1 and p 2, bp'y coincides up to a multiplicative constant with the harmonic

cocycle bßgj, studied in the proof of Theorem B in Section 4. In general, for p ^ 2,
we obtain a cocycle with respect to some isometric representation on an abstract

Lp-space.
In Theorem C below we show that the cocycles bpfv, p>\,q> 0 (in particular,

the harmonic cocycle bPtu) can depend on the choice of a non-principal ultrafilter U.

Theorem C. Take p 1 or 2 and q =0, \, or 2. For any D >2 there exist torsion

groups Gi, G2,.. •, Go such that the following holds. Consider finitely supported
symmetric non-degenerate measures fii on Gi and put

D D

G j~[ Gi and p. — ]~~[ /z,

7=1 7=1

For each j I,.... D there exists a non-principal ultrafilter U such that the limiting
cocycle bp'G factors through G —» Gt.

Theorem C shows in particular that there exist at least D mutually distinct limiting
cocycles among {bp,q; : U), and at least D mutually distinct subgroups among



560 A. Erschler and N. Ozawa CMH

possible kernels of such cocycles. Such groups G admit gi,g2 £ G such that the

ratio

{pt*2\e) - H*2n(gi))/(li*2n(e) - p*2n(g2))

does not have a limit as n -> oo.
The groups G, are constructed as piecewise automatic groups [9], they can be

chosen to be of sub-exponential word growth, but in such a way that for each j the

group G j is in some sense very close to a non-amenable group on some scale while
on this particular scale it does not happen to other Gk, j f- k. The contribution
to b^qv is mainly from Gj on this scale, and the kernel of contains FLt#/ Gk-

The kernels of cocycles b^'fj are particular cases of what we call f^-thin
subgroups: this is a natural family of subgroups, related to the shifts {pt*n)q (see

Definition 5.1), which for p 2, q 1 is related to amenability, for p q 1

to Poisson-Furstenberg boundary and for q 0, p > 1 to growth of groups (see

Lemma 5.6), these groups in some situation may depend on p (see Example 5.9) and

on the measure p. (see Remark 5.10).
Since the group G in the statement of the theorem is a torsion group, it does not

admit a virtual quotient to an infinite cyclic group. In particular, taking p 2 we

can apply the conclusion of Theorem B to (G,/r) to claim that p*n(e) — p*n(g),
normalised by its average a(m, //) is close to a constant in probability p*m, for n » m.
In other words, for each n » m /z*m is concentrated on a set where normalized
H*n (e) — ji*n (g) is close to its mean value, but in view of Theorem C these sets may
depend essentially on n.

We are grateful to Pierre de la Harpe for comments on the preliminary version of
this paper.

2. Harmonic cocycles and finite-dimensional summands

We now recall from Sections 4 and 5 in 116] that the space Z1 (G, n) of 1 -cocycles
is a Hilbert space under the norm

\\b\\mß) (f ll&(*)ll2^(*))7

and it decomposes into an orthogonal direct sum of approximate 1-coboundaries and

/r-harmonic 1-cocycles. We will say b is normalized when \\b\\L2^ 1.

Lemma 2.1. The space Zl(G, n) of 1 -cocycles is a Hilbert space with respect to

the norm || • Hz,2^)- Moreover the norms || • W^Q^cmd || • || q are equivalent.

Proof. We observe that Z1(G, n) is a Banach space w.r.t. the norm || • || q (see [2,

Chapter 3]), and that ||^||z.2^) — W IxIg ^At(x))1/'2ll^llô- The other side inequality
follows, via the Open Mapping Theorem, from the fact that any measurable locally
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integrable 1-cocycle into a separable Hilbert space is automatically continuous
modulo a null set. However, following [16], we give a more direct proof here.

Take an open generating neighborhood U of e such that U C Q and an open
neighborhood V of e such that V2 C U. We observe that

J \\b(x)\\2 dii*2(x)j
'

< 2\\b\\LH^ and e := Jnf^ ~-(x) > 0.

Thus, for every g e U, one has

Il M#) II2 m{Vyl f ||6Q,'x) - 7tgb(x) ||2 dm(x)
Jv

<2m(V)~l\ f \\b(x)\\2 dm(x) + f \\b(x)\\2 dm(x)
lJgV Jv J

<4e-lm{V)~l f \\b(x)\\2dfi*2(x)
Juv

< 16e_1m(V)_1||6||^2(/i).

Since there is N N such that Q C UN, this proves that the norms || • änd

]| • ||g are equivalent, and that Z1 (G, 7r) is a Hilbert space w.r.t. the norm || •

The reduced \-coliomology group H1(G, n) := Zl(G, n)/ß' (G, jv) is defined

to be the space Zl(G, jv) of 1-cocycles modulo the closure of the subspace B1 (G, 7r)

of 1-coboundaries. We note that B1(G, jv) B1(G, jv) if jv is finite-dimensional,
by Theorem 1 in [16]. See Chapter 3 in [2] for an introduction to first reduced

cohomology groups. Thus,

Z\G,jv) B1(G, jv) © B\G, jv)1- and {G, jv) ^ Bl{G, jv)x.

We observe that h e Z1 (G, jv) belongs to B1 (G, jv)1 if and only if it is ii-harmonic
in the sense f b(x) dß(x) 0 or equivalently / b(gx) dji(x) — b(g) for all g £ G.

Indeed, this follows from the identities b{x~x) + jv~lb(x) b(e) 0 and

j {b(x), v — jvxv) dfi(x) — 2 I^J b(x) r//r(x), uj.

We note that every summand of a /x-harmonic 1-cocycle is /x-harmonic and that

every non-zero /x-harmonic 1-cocycle is not a 1-coboundary.
We recall the general fact about orthogonal representations. Let (jv, M) be an

orthogonal representation of G and put

T0 := E[7r(Z0] J jv(g)d/i(g).
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Then, 7o is a self-adjoint contraction on the Hilbert space M such that

T0k E[n(Xk)]

for every k. By strict convexity of a Hilbert space, a vector v £ ,'K satisfies T0v v

if and only if ngv v for p-a.e. g, which is equivalent to that v is jr(G)-invariant.
Thus by spectral theory, the operators

n-1 n-1

^E^^E *<**>]
k=0 k=0

converge in strong operator topology to the orthogonal projection P0 onto the

subspace of n(G)-invariant vectors. One moreover has convergence in probability

l-1̂
2n(Xk)v - PQv

n
n=0

0.

Indeed, to prove it, one may assume P0 0 and in this case

n—1 n—1
r I ~

E
n

n=0 k,l=0
IE^h2] ^ E ^ °-

Lemma 2.2. For every b £ Z1(G,n) ß1 (G, 7r) © ß1 (G, jr)1- one has

\im]-E[\\h(Xn)\\2] Pharm||22(At),

where ßharm fv t/jc ß1 (G, n)1- summand in the above decomposition. In particular,
b is nonzero in H1 (G, it) ifand only if lim £ E[||ß(Tf„)||2] > 0.

Proof LetTo^ / n(g) dfi(g). If c £ B1(n, M) is a 1-coboundary, c(x) v — nxv,
then for every n one has

iE[||c(^)||2] ^((1 — Tq)v,v) < 2((1 — T0)v, v) \\c\\2LHßy

Since c E[||c(2f„)||2] is norm-continuous by Lemma 2.1, the above inequality
holds for all c £ Bl(G, n). Hence, for any c £ BX(G, it), by approximating it by

cm £ Bl{G, n), one has

lim sup — E[||c(A'„)||2] lim sup - E[||(c - cm)(Xn)\\2] < \\c -cm||22( } -> 0.
n n

Now let b — c + ßharm £ ß1 (G, jt) + ß1 (G, n)-1 be given. Note that since b^.àrm is

p*n-harmonic, it is orthogonal to c in L2(/x*"). Consequently, one has

limlE[||ß(2f„)||2] lim^E[||C(*„)||2 + ||ßharm(2f„)||2] ll&harmll^).



Vol. 93 (2018) Finite-dimensional representations constructed from random walks 563

It is not clear whether 4^ E [|| b (Xn) ||4] is bounded for every 1 -cocycle b. However,
it is the case for any /x-harmonic 1-cocycle b (cf. Footnote 2 in [23]).

Lemma 2.3. For every d, one has

sup sup -^r E[||6(V„)||2^] < oo,
n b n

where the supremum runs over all normalized fi-harmonic 1 -cocycles b.

Proof. We fix a universal orthogonal representation (n, M) and consider the

operators Un from the space of /x-harmonic cocycles into L2d (fi*n\ M), given by
Unb — n !2b. Since

\\Unh\\ ^E[\\b(Xn)\\2d]yl2d ^n^EllX^f'^WbWQ

(by the Holder inequality (J2"=i ai)2d < n2d~x afd lor a i > 0),the operators
Un are bounded by Lemma 2.1. The lemma claims that Un's are uniformly bounded.
For this, by Principle of Uniform Boundedness, it suffices to show sup,, || || < oo
for each b. (The use of PUB can be avoided if one does the following proof more
meticulously.) We in fact prove that

limsup4-E[llM*«)l|2rf] < (2ûf — 1)!!
n n

for each normalized harmonic cocycle b, by induction on d. Here (2d — 1)!!

nt j (2k — 1). The case d 1 is clear. By induction hypothesis and the Cauchy-
Schwarz inequality when k is odd, we may assume that there is C > 0 such that
E[||6(V„)||fe] < CnkI2 for all k < 2(d — 1). It follows that

E[\\b(Xn)\\2d] jj \\b(x) - b(y)\\2d dpL*"-\x)dpi(y)

ff (\\b(x)W2 -2(b(x),b(y)) + \\b(y)\\2)d dpt*n~\x)dli(y)

\\b(x)\\2d + ^J||è(x)||2(rf_1)||è(y)||2

+ 4^ M*) W2{d~2) I(Kx), b(y)) I2 dp*n~x (x) dn(y) + C'n(-2d~3)'2

< ^[\\b(Xn^)\\2d] + (d + 2d(d - 1)) • (2d - 3)!! • nd~1 + C'nd~3/2

n

< < ~ ])!! • dnd~l + c'kd~3/2)
k=l

(2d - 1)\\-nd +o(nd),

where C' is some constant depending on d but not on n. This finishes the proof.
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We start the proof of Theorem A. Recall that the tensor product Hilbert space
3Î 0 3Î is canonically identified with the space of Hilbert-Schmidt operators S2{3()
on 3Î via v' 0 v Sv>®v, where Sv'®v(u) (u, v)v'. Under this identification, the

operators ng 0 ng on 31 0 3f act on S2(3f) by conjugation Ad nx : S i-> ngSn*.
Every Hilbert-Schmidt operator is compact and every compact self-adjoint operator S

has a unique spectral decomposition S — A,- £,' where A,• G E are the nonzero

eigenvalues of 5 and £j are the finite-rank orthogonal projections onto the

corresponding eigenspaces. If v £ M 0 M is (jt 0 7r)(G)-invariant, then S„ is
Ad jr(G)-invariant and so are the spectral projections £, 's, which means that E, 3C.

are finite-dimensional jr(G)-invariant subspaces.
Now let us consider a 1-cocycle b:G -> M and put

and T := f x, * d^).
Then, T is a self-adjoint contraction on 31 <g> M, which is positivity preserving as

an operator on $2(3t). By the previous discussion, ^ J2k=o Tk converges in strong
operator topology to the orthogonal projection P from 31 0 3t onto the subspace
of (n 0 7r)(G)-invariant vectors. In particular, £ Ylk=o Tkw converges to Eu; in

norm and Spw is a positive Hilbert-Schmidt operator which is Ad 7r(G)-invariant.
For any 7r(G)-invariant closed subspace X C 3t, one has

Px^Pw PJC S(P.K®P,%)Pw SP{Pjc®PJC)W — Spu>,jçi

where wx f (bjc <g> bx)(x) d[i(x) for the cocycle bx Pxb. If b is finite-
dimensional, then the trace Tr is norm-continuous and

Tr(S>„;) Tr lim - £ V.) Tr(S„)
k=0

In general, one has the spectral decomposition

sPW=j:xiEi, (*)
i

where A i, X2,... is a finite or infinite sequence ofstrictly positive numbers and £,- ' s

are finite-dimensional 7r(G)-invariant subspaces. Thus for 6;- := Efh and b00 :=
h — hi), one has the direct sum decomposition b b^ + JA hi We claim that
each 1-cocycle hi, i / oo, is nonzero and that b00 is weakly mixing in the sense that

it does not admit a nonzero finite-dimensional summand anymore. First, put

£oo := 1 - E'
i

and observe that for in,- := (£,• <g> £j )w f (hi 0 bi){x) d/i(x), one has

Spwt EiSpwEi A iEt,
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including the case i oo and Aoo := 0. It follows that

e ©

b — boo © ^ ' bj and Spw SpWoo © ^ '
SpWi

i i

in accordance with J( E^M © 0(- £) Jf. That SpWoo 0 means that is

weakly mixing. Thus || Pw\\ ^ 0 if and only if b has a nonzero finite-dimensional
summand. Moreover, one has

TrOW J^TriSpu,,) J]A, Tr(£,) £ \M2l2(ii)
i i i

and

\\Pw\\2 =Tr(S2Pw) yxfTr(Ei).
i

For the proof of Theorem A, in view of Lemma 2.2 and the fact that any
nonzero /x-harmonic 1-cocycle is cohomologically non-trivial, we may assume that
the 1-cocycle b is /x-harmonic. For such b, we have the following more precise form
of Theorem A.

For any 0 > 0 and any finite or infinite (possibly null) sequence op of positive

numbers, we denote by /(0, op) the distribution of ^jd2 + °k^k' where Sk are

independent standard centered Gaussian random variables.

Theorem 2.4. Let G be as in the Convention section. Let b be a normalized
IL-harmonic 1 -cocycle. Let w, P w, and Spw A; Et be as defined in (*) before
the formulation of the theorem. Then,

lim -E
B->0O 2

\\b(Xn)\\-IvL - l|2j \\Pw\\2 < (mindim^Jf) \
Moreover, the random variables ||/)(A„) || converge in distribution and in

moments to /(9, op), where 6 ||£'oo^IIl2(ju.)> and dp are positive eigenvalues of
1 /2

SpVj counted with multiplicities i.e. op A(- for

i—i i

Y, dim Ei M < k < ^ dim E; M,
l=i i=i

which satisfy
02 + \\hW2L2M X

k

One has 9 > 0 if and only if b admits a weakly mixing summand; and op > 0 far
some k ifand only ifh admits a non-zero finite-dimensional summand.
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Proofof Theorem A and Theorem 2.4. Let h be a normalized /x-harmonic 1 -cocycle.
In the discussion above, we already saw ||Pm|| / 0 if and only if h has a nonzero
finite-dimensional summand. Moreover the above formula implies

\\Pw\\2 y^A?Tr(£,) < (maxA;)Tr(S'pu,) < (minTrCE)))-1,
i

since Tr(Spw) JL A, Tr(Ef) < 1. Note that Tr(Zt,-) dim EjJ£.
Next, we prove that

E[|K^L _ i|2j 2(Pw,w) 2\\Pw\\2.

Recall that

J (h ® b)(x) dfi*n(x)

JJ(h <g> b)(xy) dii*n~1(x) d/i(y)

JJ(b 0 b){x) + (nx <g nx)(h <g> b)(y) dn*n~l (x) dß(y)

J(b^b)(x)dfi*n-l(x) + Tn~1w

(1 + T + --- + Tn~1)w,

and f ||E(x)||2 d/x*n(x) n (see [231 and [29]). Hence

E[\\b(Xn)\\4] J \\b(x)\\4dix*n(x)

JJ {\\Hx)-b(y)\\2)2dfx*n~\x)dii(y)

JJ [IIb(x)\\4+M{b(x),b(y))\2 + \Wy)\\4

+ 2\\b(x)\\2\\b(y)\\2]d^n-1(x)dn(y)
n—2

E[|lè(^_,)||4] + 4( J2 Tkw, w) + E[||è(Ar1)||4] + 2(n - 1)

k=0
ti— 1

— 4^ y"[(« — k)Tk~1w, w^j + n E[||/j(A'i)||4] + n(n — 1)

k=1

< 3/72 + O(n).
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By the Bounded Convergence theorem, this implies that

E
\\b(Xn)\\ -l\2]=E\^\\b(Xn)\\4--\\b(Xn)

1 J Lnz n

4

yj 2

+ 1

n
n—1Iix j- k)Tk~xw, w) + -(EfUMZOII4] - 1)

k=1

—> 2{Pw, w).

Now since sup„ E[|^||6(A„)||2 — 1|3] < oo by Lemma 2.3, the sequence

^||£(X„)||2 tends to a constant (which is necessarily 1) in probability if and only if
one has

E |i||6(X„)||2-l|2] 0.

This completes the proof of Theorem A and the first part of Theorem 2.4.

For the second half of Theorem 2.4, we first note that convergence in distribution
and convergence in moments are equivalent in our setting. Indeed, by the moments
condition sup„ -bj E[||/j(V„)||2^] < oo (Lemma 2.3), convergence in distribution
implies that in moments (see [3, Corollary 25.12]). And conversely, since the normal
distribution and the distributions /($, ak) are uniquely determined by their moments

(see [3, Theorem 30.1]), convergence in moments to such a distribution implies that

in distribution (see [3, Theorem 30.2]).
We use the Martingale Central Limit theorem ([3, Theorem 35.12]) to prove that

for any v £ Jf the random variables Sn := n~l^2(b(Xn), v) converge to a normal
distribution N(0,q(v)) where q(v) (Spwv,v). Consider the martingale array
Sn,k := n~1/2{b(Xk),v},k 1, •••,«, and put

Yn,k Sn,k - Sn*-! n-^iniXk-ObiX^X,t), v).

Since Xk has the same distribution as X\, one has

n \ n

J2EiYn,k II XU---,Xk-i] - ^{(jr (8) 7r)(Vfc-i)w,u <8> v)

k=l
' H

k=l
p
-> (Pw, v <g) v) q(v),

and, for every e,

n

Yh^\-Yn,kX{\Yn,k\>^}\ - E[llè(^l)H2|l';l|2l{||è(Xi)||>enl/2}] ^0.
k=\

This shows that the array S,uk satisfies the assumption of the Martingale Central

Limit theorem, and we can conclude that Sn>n =X N(0, q(v)) in distribution.
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Now recall that

Spw — ^ ^ hj Ej and h — b^ T ^ ^ 6/,
i

and take an orthonormal basis {vij : j 1,..., Tr( £)•)} of £)• Jl. Then, by the
previous paragraph, n~1^2(b(Xn), Vij) converges in distribution to a centered Gaussian

random variable gij with variance q{vij) A,-. Moreover, for any ßij M, the

random variables

J^ßijn~1/2(b(Xn),vu)
ij

converge in moments to

N (o, q E ßi,j
ij

where

d E, ßi,.ivi,j") — E ßf. ißj.i(](vij)-
iyj Uj ij

This means that the family {(n~l^2b(Xn),Vij )}ij are asymptotically independent
as n —> oo. Thus, for any k e N, one has

^1 E^)|f EE \n-1/2(b(Xn),Vij)\2 =» EEWj.
1 i 1 j 1 1 j

where gij are independent standard centered Gaussian random variables. Since

2d
limsupE^I EM-*b)| ] < limcd || Ebi

i>k i>k

where Cd is a constant independent of k (by Lemma 2.3), one has

k

o,
L2(ß)

li„mE[Gl EM*.>|2)'] Ii„mE[Gl Emz„)|Y]
i

for every d. Also, since

i'=t

Ei^oo(A-„)||2 ^ H^ooiiE^)

in moments by the first half of the proof, one has

^(*n)H2 -» Whoo\\2L2(ß) + YlXigh ~
i,j

in moments.
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Recall that a group G is said to have Shalom's property //FD ([31]) if every
orthogonal representation it with H1 (G, jt) 0 contains a non-zero finite-
dimensional subrepresentation. In other words, G has property HpD if and only
if every p.-harmonic 1-cocycle h decomposes into a (possibly infinite) direct sum of
finite-dimensional summands. By Theorem 2.4, the latter happens for h if and only
if

lim/z*"({x G G : ||fc(x)|| < c^/n}) > 0

for all c > 0.

Corollary 2.5. Assume either:

(1) lim inf„ ||/x*n —|| i < 2 for some 8 > 0, or

(2) limsup„ p*n(BG(Cyfn)) > 0 for alle > 0.

Then, G has Shalom's property //i d-

Proof. We prove a stronger statement that if G does not have property Hpd, then for

every 5 > 0 there are c > 0 and a sequence (En)n of open subsets in G such that

p*n(En) -> 1 and fi*{1+5)n(BG(cy/n)EnBG(c<Jn)) -> 0.

Suppose that there is ^-harmonic 1-cocycle b.G -» M without a non-zero finite-
dimensional summand. We can assume that this cocycle is normalized. Take any
0 < 5 < 1. Pute := (20||£||g)_15 and

En := {x G G : ||Z>(x)||2 < (1+5/4)«}.

Then, for every x G En and y, z G BG{c-Jn) one has

||Myxz)||2 < \\h(x)\\2 + 2\\h(x)\\\\h(y) + 7vyxh(z)\\ + \\h(y) + nyxh(z)\\2

< (1 +5/2)«.

Hence the result follows from Theorem A.

Remark 2.6. By Kingman's subadditive ergodic theorem, the linear rate of escape

lim -\Xn{u))\G lim — E \Xn\G =: lß
n n n n

exists and is constant for a.e. co G (G, /x)N. Hence either of the conditions (1) or (2)
in Corollary 2.5 implies that lß 0 and in particular that G is amenable ([17]).

Remark 2.7. It is known that Z I Z does not satisfy property Hfd ([31, 5.4.1]).
Shalom shows that any infinite amenable group with HpD admits a virtual quotient
to Z ([31, 4.3.1]). By Corollary 2.5, any non-degenerate random walk on a group
without virutal homomorphisms to Z (or Z^Z) does not satisfy either of the conditions
(1) or (2). It is apparently on open problem whether the wreath product Z2 I (Z/2Z)
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has property Hfd (see [31, 6.6]); the simple random walk on it does not satisfy either
of the conditions (for "switch-walk-switch" random walks it follows from Dvoretzky-
Erdös theorem ([7,181) that the number of distinct sites of a simple random walk
on Z2 visited until the time n is asymptotically equivalent to cn/ log(w), where c > 0

is a constant.

3. More on the property /// «

We elaborate on Corollary 2.5. It says G has property //FD provided that (G,/z)
satisfies the following property. We say a /i-random walk Xn is cautious if

limsupP( max \Xk\G < c^/n > 0
n k=\,...,n

for every c > 0. We look at stability of this property under extension. Let N be

a closed normal subgroup of G with a length | • |jv which may not be proper. We

say N is strictly exponentially distorted in G if there exists a constant C > 1 such

that

~ log (\h\N + 1) - C < \h\G < C log (\h\N + 1) + C

for all h e N. We will denote by | • |g/n the length induced by the compact
generating neighborhood QN of e in G/N.
Proposition 3.1. Let N < G be a closed normal subgroup which is strictly
exponentially distorted, and let fi be the push-out probability measure ofp to G/N.
If (G/N, ft) is cautious, then so is (G, p) and in particular G has Shalom's

property INo.

Proof It suffices to show that there is a constant D > 1 with the following property
(cf. [35, Lemma 3.4]). Let .v,- e G be such that |.v,- |g < ' and put gk '.= S\--- Sk e G

and Mn := maxjt=i,...,« \gk^\G/N- Then, one has

max < D(Mn + logn + 1).
k=l,...,n

To show such D exists, for each k, pick hk e N such that

\g~k1hk\G \gklN\G/N <

Then, Ihf^h^G 5 2Mk + 1 < 3Mk, and so Ihf^hklN < exp(4CAIk)- Hence

\hk\N < n exp(4CM„)

for all A; < n, and so

max \hk|tv < C log (2n exp(4CA/„)) < (D — 1 )(Mn + log/? + 1)
k=l,...,n

for some constant D > 1. Since \g~j/xhk\G < Mn, we are done.
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Shalom ([31, Theorem 1.13]) has shown that polycyclic groups have property HpD

by invoking Delorme's theorem ([6]) that connected solvable Lie groups have the

corresponding property, and asked if there is another proof of HFD. It is plausible that
all connected solvable groups are cautious. We note that in light ofOsin's result ([28])
this problem reduces to the case for connected Lie groups with polynomial volume

growth.

Corollary 3.2. Let K be a non-archimedean local field and 7Ld ry Kn be a semi-

simple linear action such that the semi-directproduct Zd\xKn is compactly generated.
Then, 7Ld v. Kn has Shalom's property HFD.

Proof. Let r>o be the standard nearest neighborhood random walk on 7Ld and vi
be a uniform probability measure on the compact subgroup {x e K : |*| < 1}.

Since {7Ld, vo) is cautious, for /r |(v0 + vfn), the random walk (Zd \x Kn, p) is

cautious.

4. Harmonic cocycle constructed from differences of shifts of ji*"

In this section, we give a rather "explicit" (although we crucially use a non-principal
ultrafilter) construction of a non-zero harmonic cocycle on a group that does not
satisfy Kazhdan's property (T). In particular, when G is a discrete finitely generated
amenable group, a normalized /x-harmonic cocycle b^ will be obtained as an

ultralimit of the sequence p*n — gp*n 6 (-2(G) after normalization. Throughout this

section, we assume (in addition to Convention) that p is compactly supported and

/x p1*2 for some symmetric probability measure p' on G.

We fix a non-principal ultrafilter U on N and denote by limty the corresponding
ultralimit. Then, the ultrapower Hilbert space Mu of a given Hilbert space Jf is

defined to be

Mu :=f00(N;^)/{(u„)~t :limt/ KH =0}

with the inner product {[v'n]n, [vn\n) := limu {v'n, vn), where [vn\n is the equivalence
class of (vn)n Ioo(N; M). An orthogonal representation n of G on gives rise to
the ultrapower representation nu on .llu by tv^[vn\n \ngvn\n. (NB: In general,
the ultrapower representation is no longer continuous.) We apply this construction to
an orthogonal representation (jr, ',)() which admits an approximate invariant vectors
but no non-zero invariant vectors. By definition, such an orthogonal representation
exists if and only if G does not satisfy Kazhdan's property (T) (see [ 2]).

Lemma 4.1. Let (n, M) be an orthogonal representation which admits an
approximate invariant vectors but no non-zero invariant vectors, and consider the
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positive and contractive operator T := n (pi) on J£. Then, there is a unit vector
v G 31 such that the corresponding prohahility measure v on [0,1], defined by the

formula
• 1

tn dv(t) (Tnv, v),
I o

satisfies 1 supp v and v({ I}) 0.

/'Jo

Proof. Let Ej denote the spectral measure corresponding to the self-adjoint
operator T. Since (it, M) admits approximate invariant vectors, the spectrum
of T contains 1, which means that Et{[ 1 — 1/«, 1]) 7^ 0 for any n. Hence,
there is a unit vector v e M such that Et([ 1 — 1 /n, l])u / 0 for any n. On
the other hand, ^({l}) 0 since (n,M) has no non-zero invariant vectors. The

probability measure v(-) := (Et(-)v,v) corresponding to v satisfies the desired

conditions.

Take (jt,3i,v) as above and put T 7r(/x). In case G is a discrete finitely
generated infinite amenable group, one can take (n,Jb,v) to be (X,l2(G),8e) by
Kesten's theorem ([21]). Consider the coboundary cn:G M given by

Cn(g) Tn'2V-7t(g)Tn'2V

and its normalization
bn — \\cn\\L2QLfn-

We note that

\\cn\\2L2W 2((Tn-Tn+1)v,v) 2j tn(l-t)dv(t).

We will define the cocycle bß to be the ultralimit of hn. For continuity of bß, we
need equi-continuity offer's. Observe that for every g e G, one has

Cn(g) f ("T" - S-j-)(x)cn-2(x)dm(x).
Jq \(im dm J

Let K Q supp pt (recall that Q is a relatively compact generating subset of G

and that supp pt is assumed compact) and take a constant C which satisfies ||c || <
C||c||L2(M) for every cocycle c (see Lemma 2.1). Then by the above equality, for

every g e Q, one has

||Mg)|| „ n 2|k dpi dpi H II dp dpi
g

c«llL2(/i) dm dm V ||c„||L2(/a)
< C

dm ^ dm L'

Since e L1(G), the function g h* — g^||Li is continuous. Thus, equi-
continuity of fi„'s follows from the following auxiliary lemma.
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Lemma 4.2. Let v he a probability measure on [0,1] such that 1 e stipp v and

v({ 1}) 0. Then,

y(n) := f tn(\—t)dv(t)
Jo

satisfies

y(n) \ 0 and y(n + \)/y(n) y 1.

Proof. The first assertion is obvious. Since

y(n + 1) J tn/2( 1 - 01/2 • «("+2)/2( 1 - 01/2 < y(n)l/2y(n + 2)1/2,

the sequence y(n + 1 )/y(n) is increasing and has a limit S < 1. Suppose for a

contradiction that S < 1. Then, one has y(n) < CS" and so

1 OO

t" dv(t) J2 - C'8"
k=n

for every n, where C and C are some constant independent of n. This implies
supp v c [0,5], a contradiction. Hence 5 1.

Since bn's are equi-continuous and ||£„(g)|| < |g|öll^nllß is bounded for each g,
the formula

bß{g) := [bn(g)]n e Mu

defines a continuous map such that

bß(gh) Mg) + ng bßifif.

Since h)L is continuous, the ultrapower orthogonal representation nu is continuous
when restricted to spänh(G). Hence bjL is a 1-cocycle. It is normalized:

HMLHß) J ^mu\\bn{x)\\2 dp,{x) lim^ J \\bn(x)\\2 dp,(x) 1,

where, to interchange the ultralimit and integration, we have used the fact that pt is

compactly supported and bn's are equi-continuous. The constructed 1-cocycle bjL

may depend on the choice of a non-principle ultrafilter U (see Theorem C), and we

will write bjLy instead of bjL when we want to emphasize the role of the ultrafilter U.
The following reproves the results of Mok ([25]), Korevaar-Schoen ([22]), and

Shalom ([32]) mentioned in Introduction.

Theorem 4.3. Let G be a compactly generated locally compact group which does

not have Kazhdan's property (T) and ji, (n, M, v), and bß be as above. Then, btl is

a normalized /x-harmonic cocycle.

L
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Proof. It only remains to prove that bß is harmonic. Put y(n) j tn{\ —t) dv(t).
Then, one has

/ bn(x) d[i(x)
2 y(n) — y(n + 1)

0
2y(n)

by Lemma 4.2. Hence, for every v' [v'n]n e 3£u, one has

(J bß(x) dn(x),v'^j J \\mu {bn(x), v'n) d/i(x)

limn J{bn(x),v'n) dii(x)

lim[/| J bn(x) d/j,(x), v'^ 0.

This means / bß(x) dfi(x) 0 and bß is harmonic.

In case G is a discrete amenable group and (n,J£,v) (A, £2(G),Se), a

computation yields that

I\cn\\2L2(ll) 2(ti*n(e)-fi*n+1(e))

and

IIVfe)ll2 limc/IIM#)!!2 limj/-
M ^ ß ^

ji*n(e) — /z*n+1(e)'

ProofofTheorem B. By Theorem A we know that E[| 1 |2J —> 0 for any
normalized harmonic cocycle c without non-zero finite-dimensional summands. We

will show that in case G does not admit any non-zero harmonic finite-dimensional
cocycle (which is the case when G is a finitely generated amenable group without
virtually abelian infinite quotients), this convergence is uniform for normalized
harmonic cocycles c on G. Indeed, we have seen in the proof of Theorem A
that

E
IH*m)l|2 " ' m 1

A 1

] ^ H- —ll^llö E[I^IIG] 0
m 1 J \1—' 1 mk= 1

for every normalized /x-harmonic 1-cocycle c, where T f{n® n)g d/i(g) and

w f(c <g> c)(g) d/z(g). Note that ||c||g is uniformly bounded by Lemma 2.1.

Therefore, it suffices to prove that lim^ ||Tfcu;|| =0 uniformly for c. Suppose that
the latter is not the case: there are e > 0, a subsequence km —> 00, and normalized
harmonic cocycles cm with the corresponding Tm and wm such that || Tmm wm || > e

for all m. Fix a non-principal ultrafilter U and let cu denote the U-ultralimit cocycle
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of the sequence (cm)m, with the corresponding objects denoted by Tu and wu Then,

cu is a normalized harmonic cocycle. Moreover since t2k is decreasing in k for any
t [— 1,1], one has for each k

(Tukwu,wu) limj/(T2kwm, wm) > limu{T2kmwm,wm) > s2.

Let Q denote the spectral projection of Tu corresponding to eigenvalues {—1, +1}.
Then,

WQwuW2 lim(fc-1(l + T2 + T4 + ••• + T2(-k~l))wu,wv) > e2.
k

Since T^Qwu Qwu, the vector Qwu is invariant under (n (g> n)g for all

g supp/x*2. However since Go := (supp/x*2) has finite-index in G, it does

not admit a non-zero /x*2-harmonic 1-cocycle, which implies that Qwu 0 (as

discussed in the proof of Theorem A). We have arrived at a contradiction.
It follows that if G satisfies the assumption of Theorem B, then

En|c(-r»)l2_1|2i o
LI m I J

uniformly for normalized /x-harmonic 1-cocycles c. In particular,

12 ,u(Xm)\\2 ]2-
m I j m y Li m

(Note that lim supw Xn sup^ limy \n for any bounded sequence A„.) Since

iimiimsupEniMV)!i_1|2i limsupEri
m „ LI m I J m r, LI

j_ _ /x*"(g)-/x*"+1(g)
m n" n*n(e) — /x*"+m(g)

by Lemma 4.2, this completes the proof of Theorem B (after exchanging /x with /x*2).

5. I p-thin subgroups

5.1. Definitions. Take a finitely generated group G equipped with a probability
measure /x, and ask again what information about its subgroups and quotient groups
one can obtain by looking on the behavior the random walk (G, /x). To ensure the

existence of non-trivial quotients, we may search normal subgroups of G defined by
convolutions of G. A more general question one can ask is what are possible (not
necessarily normal) subgroups defined in such terms.

Definition 5.1 (ip-thin subgroups Let G be an infinite group generated by
a finite set S, and /x be a probability measure on G. Fix some q > 0, p > 1 and a
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sequence tending to oo. Assume that p, is such that (/x*")9 is in lp(G) for all n
(this holds for example if /x has finite support). Let a(n) denotes the maximum of ip
norm of (pt*n)q — g(/x*")?, where the maximum is taken over g G S. Consider

g G G for which

\\(p*ni)9 - g(ß*ni)q\\p/a(ni) -» 0

as i —>• oo. If G contains at least two elements, then by the triangular inequality in ip,
such elements form a subgroup of G, which we we call the main lp-thin subgroup
and which we denote by HßtP^<ni (and HßtP for short, if m is specified and <7 1).

Now we define f^-thin subgroups associated an arbitrary function a(n).
Consider g such that

\\Qi*n)9-gOi*HnpMn)
tends to 0 as n tends to infinity. By triangular inequality in lp such elements form a

subgroup of G, which we denote HßtP,q<a. We call this subgroup lp-thin subgroup
associated to a(n).

Remark 5.2. For q — 0 in the definition above we use the convention 0° 0;
the t\ norm in this case is therefore the cardinality of the symmetric differences of
the supports of p*n and gp*n, that is the cardinality of the set of points x such

that either x is in the support of /x*'! and gx is not in this support or vice versa.
In the definition we have assumed that p > 1. We can extend the definition for
the case p — 0, defining a(n) as the maximum of the cardinality of the support of
(p*n)q — g{pt*n)q, where the maximum is taken over g G S. In this case we obtain

H0,i,ß H\,o,u for all /x. Observe that if the support of /x is a finite symmetric
generating set containing the identity, then the support of /x*" is the ball of radius n

in the word metric associated to S.

It is clear that the scaling sequence a(n) depends of a finite generating set S up to

multiplication by a constant only, and thus the definition of main Ip-\hm subgroups
does not depend on the choice of S.

In many situation the limit behavior of (pt*n)q — g(pt*n)q does not depend on
the subsequence of possible n's. However, in some situation this quantity, and the

corresponding f^-thin subgroups may depend on the choice of a subsequence, see

Theorem C and Corollary 5.11.

Remark 5.3. If p > 1, it is known that a normalized sequence vn G l\(G) is

almost invariant in l\ with respect to the shift by some element g G G if and only

if v\Jp (which is clearly a sequence in lp{G)) is almost invariant in tp with respect
to the shift by g (see e.g. the proof of Theorem 8.3.2 in [30 J). This implies that the

main f^-thin subgroups satisfy HPti H\tP IIp/q,q for any p,q > 1 whenever

(p*n')p does not admit a subsequence of almost invariant vectors in I j. This happens
for example for p 2, if G non-amenable and for p 1 if the Poisson boundary
of (G, /x) is non-trivial, for all ([20]).
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It is possible that the statement of Remark 5.3 remains valid without the

assumption of non-almost-invariance.
Instead (/i*n)q in the Defintion 5.1, one can consider more generally a sequence

of functions f and consider the difference of corresponding shifted functions, as a

function of g.
We have already remarked that for p 2, q — 1, p being equidistributed on a

finite symmetric set of G, the values of bßtu are defined by the unmarked Cayley
graph of G. In particular, for p 2, q I and p being a measure equidistributed
on a finite generating set S the f^-thin subgroups can be described in terms of
unmarked Cayley graph of (G, S):

Remark 5.4. p 2, q 1, p is symmetric measure on G. Fix a sequence at,
tending to infinity. An element g belongs to the subgroup Hßi2,1,a if and only if

{p2n(e)-p*2n(g)]/a2n)-> 0

as n -» 0. In particular, if p is equidistributed on a finite symmetric generating set S,

subgroups HILj2.i,aj are defined by unmarked Cayley graph of (G, S).

Proof. Observe that

\gp*" -p*n\\ \p*"\2 + \gp*n\l-2{p*n,gp*n)
2\p*n\22-2(p*n,gp*n)

2(E (p*n(x))2 - J2 ß*n(x)p*n(gx)\
^xeG xeG '

Since p is symmetric, this is equal to

l( P*n(x)p*n(x~l) - Y P*n(gx)p*n(x-l)\ 2{p2n(e) - p*2"(g)).
VsG xeG J

If p is equidistributed on a finite symmetric generating set S, observe that p*2n(e)
and p*2n{g) are defined by the unmarked Cayley graph of (G, S) and the vertex in
this Cayley graph corresponding to g-

Remark 5.5. In a particular case when q 1, p 2 and G is non-amenable, the

main f2-thin subgroup in 5.1 coincides with the group, studied by Elder and Rogers
in 181. However, if q 1, p 2 and G is amenable, the group defined in the above

cited paper coincides with G, while the main l2-thin subgroup HßtP is never equal
to G (for any infinite group G).

Now assume that p has finite support, and consider the mappings defined
in the introduction. Namely, for any non-principal ultrafilter U on N, put

ap'"(n) max Up*")" - s(p*n)«\\p
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and define the cocycle bp'^: G —> lp{G)u by

KVs) [«**(n)-1((/0*~g(ß*H)q)]n 6 iP{G)u.

The cocycle bp^'qu is independent, modulo scalar multiple, of the choice of the finite

generating subset S. We note that tp(G)u is an abstract Lp-space on which G acts

isometrically. Hence bp'y(G) is contained in a G-invariant separable L^-subspace
of lp{G)u.
Lemma 5.6. (1) Direct products, q 0, p > 1. Let G be a direct product of A of
subexponential growth and B of exponential growth, and let p. hA x hb where

Ha (e) > 0. Then there exists a subsequence >ii such that subgroup HßßtP(G)
Hß,p,o(G) contains A. Moreover, for any n,- as above, any ultrafilter U such that

U(ni) 1 for q 0 and p > 1

uP-1 _ uP,1
°U,ß -

(2) Direct product, p q 1. Let G be a direct product of a group A and B;
let ha, hb be non-degenerate measures on A and B such that the Poisson boundary
ofa random walk (A, ha) is trivial and Poisson boundary of (B, hb) is non-trivial.
Put h Ha x HB- Then for any choice ofUj the main i \ -thin subgroup ffijA (G)
contains A. Moreover, for any ultrafilter U it holds

b1'1 -h1'1°U,u ~ °U,ßB-

(3) Direct products, q 1, p 2. Let G be a direct product ofan amenable A and
non-amenable group B, h Ha x Hb- Then for any tit, the main l2-thin subgroup

IfßAy(G) //,x,2,i (G) contains A. Moreover, for any ultrafilter U it holds

7 2,1 _ ,2,1
°U,ß - u,ß B

Proof First we prove the claims of (1 (2), and (3) about f^-thin subgroups. Observe
that since B is of exponential growth, for any finite set S there exists v > 1 such

that VG,s{n) > vn for all n. This implies that for each finite generating set Sp of B
and each C\ < 1 there exists C2 > 0 such that for all n at least Cin among balls

of radius i 1have boundary greater than C2Vß,sB (0- (Indeed, otherwise

Vß,sB(n) < RnB^~Cl\ 1 + C2)Cl", where Rp denotes the cardinality of ß,5ß,and
taking C\ close to 1 and C2 close to 0 we would get a contradiction).

Since A is of subexponential growth, for each C and any ei,e2 > 0 at least

(1 — e2)« among the the balls of radius i 1have boundary at most e2u,i(/).
Consider a generating set S — Sa x Sp, where Sa, Sb are generating sets of A,

B, respectively. We have

Bs(i) BsA(i) x BsB{i).
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Here BGtsU) denotes the ball of radius i in G, S. Observe also that for S e SA il
holds

sBg,s(0 \ Bg,s(i) s(Ba,sa(0 x BB,sB(i)) \ {Ba,sa(0 x Bb,sb(î))
(sBa,sa (0 \ x BB,sB(i),

and the cardinality of this set is at most

2(Va,Sa (0 - U/t.iy, 0' - l))us>5s(i),

and with the same argument the cardinality of sBG,s(i) \ BG,s(i), for s e SB is at

least

2/\SB\{vB,sB(i) -vB,sB(i ~ 1)vA,sa(0)

for some s e SB. This shows that there exists a sequence tending to infinity, such

that
VA,sA(nj) - VA,sA(nj - 1) VB,sB{nj)

VA,sA(ni) vB,sB(ni) - vB,sB(rii - 1)

tends to 0 as i tends to infinity. By Remark 5.2 we know that for any group it holds

Hß,o,P(G) Hß,P,o(G).

Note that for any n as above the this thin subgroup

Hm{G) Hß,p,0(G)

with respect to a subsequence n, contains all s e SA. Therefore, in this case this

subgroup contains A.

(2) We recall that fi*n /i Take a A. Observe that

It holds therefore

\\(p*n-aii*n)\U \\(^-a^)h.
Since the non-degenerate walk (A,[iA) has trivial Poisson-Furstenberg boundary
for any a G A it holds

\\{B*Â ~aB*Â)h ^0
as n tends to oo, and therefore

\\{li*n-an*n)h -+0

as n tends to oo (see Kaimanovich-Vershik [20]). The above mentionec
characterization also shows that since the Poisson boundary of (B, /iB) is non-trivial
there exists b e B such that

IIW-W)«! >c>o,
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and hence

\\<ji*n-bn*n)h >c>0
for some positive constant c and all n.

(3) For g (gi,g2), gl e A, g2 G B,

B>*a" (gl)1*7(82)

For h e A,

f**n{h(gl,g2))/t**n(gl,g2) l*An(hgl)/l*An(gl) 1

as n —> oo, by 11] since A is amenable [1 ]. Analogously, for h G B it holds

li*n{h(gi,g2))/fi*n(jgi,g2) I*7(hg2)/l*7(g2) Ch,

where Ch / 1 for some h among generators of B, since B is non-amenable [1 ]. This

implies that the scaling sequence a(n) is equivalent up to multiplicative constant to

li*n(e) fi*Jl(e)n2(e).

Using Remark 5.4 we conclude that for all s & Sa

||sfi*n — /i*n\\2/oi(n) —> 0,

and hence any s G A, s belongs to the t2 thin subgroup for q 1, p 2. By
Remark 5.3 we know that under assumption of (3) it holds

#iU,2 (G) Hß,2,i(G).

Now to prove the claims about the cocycles, take g (a, b) e A x B, put
g' (e, b) and g" (a,e). It holds g g'g". Under the assumption on p and q
in (1), (2), and (3) observe that

\\(B*ni)q-g'(B*ni)q\\p - \\(B*ni)q-g"(B*ni)q\\p
<11 (B*ni)q-g(B*ni)q\\p
< \\(l**nir~g'(B-*ni)q\\p + \\(B*ni)q-g"(^ni)q\\p

and that

\\(B*ni)q-g'(n*ni)q\\p \\(B*Bni)q -g'^TywpW^Àh-

This allows us to use 1 of Remark 5.7 and completes the proof of the lemma.
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Remark 5.7. G A x B, p p^ x pB, S Sa x Sb, Sa and Sb are finite
generating sets of A and B.

(1) Let ctg?(it) be the maximal tp norm of (p*n)q — s(p*n)g, where the maximum
is taken over s e 5; and let apfq(n) be the maximal tp norm of (p*f)g — s(p)g,
the maximum is over s e Sa and apB'q (n) is defined analogously. Let 9ß(n) be equal

to aQ9(n) divided by the ip norm of (p*n)g. If 9r^'q(nl)/6pj'q(nt tends to zero for
some sequence n, and U is a non-principal ultrafilter such that [/({«;}) 1, then

(2) Takeq \,p 2. Put0(n) := (p*2n- p*2n+l) /p*2n. Then0(«) dß(n)2.
In particular, if tends to zero and U is a non-principal ultrafilter such

that U({rii}) 1, then the corresponding harmonic cocycle is defined by that of B,
that is

bß,u bßB,u-

Remark 5.8. The fact that A x B, A is of subexponetial growth, B is of exponential
growth, satisfy the claim of Lemma 5.6(1) not only for some sequence but for
all sequences that can be shown to be equivalent to a positive answer to both of the

following questions:

(A) Is it true that no subset of balls is a Foelner sequence in A2

(B) Is it true that all balls form a Foelner sequence in A?

To our knowledge, it is not known whether to answer to (A) is positive for all

groups of exponential growth (this question is mentioned e.g. in [34]), and whether
the answer to (B) is positive for all groups of subexponential growth.

Example 5.9 (Dépendance of f^-thin subgroups on p). Let G Fm xZd l A, where

m > 2, d > 3 and A is a finite group containing at least two elements. Let gbea
non-degenerate symmetric finitely supported measure. Then 12-thin subgroup is not
equal to ti-thin subgroup.

Proof. Observe that the f^-tfiin subgroup Hßpp Hßi2,1 contains 7Ld IA by (3) of
Lemma 5.6 (in fact, it is equal to 7Ld I A), while there exists g G Zd IA which does not

belong to £i-thin subgroup since the Poisson boundary of Zd I A is non-trivial.

Remark 5.10. Let G C l A, where C is an infinite group of at least cubic growth
and A is a finite group containing at least two elements. Let p. be a symmetric finitely
supported "switch-walk-switch" measure on G. One can show that Hßt 1,1 is a finite
subgroup of G. One can also show that for any integer k > 0 there exists /x as

above such that Hßtu is isomorphic to Am. In particular, this main l\ thin subgroup

i,i depends on the choice of a finitely supported symmetric measure p and this

subgroup is not normal.
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ProofofTheorem C. Assume d 2 (the general case d > 2 is analogous).
We construct G\ and G2 as piecewise-automatic groups with returns of automata

Ti, x2, where t\, t2: A x X —> A, the group generated by (A, ti) is of intermediate

growth, r2: A x X —> A, the group H2 generated by (A, x2) is non-amenable, and

the action of A, considered as generators of H, is contracting for the action of r\ for
each brach of the rooted tree (see [9]).

More precisely, we chose automata %\ and x2 with the following properties: x2 is a

finite state automaton, containing e,a,h,c,d as its states, such that e acts trivially and

a, h, c, d generate the free product Z/2Z * (Z/2Z + Z/2Z) in the group generated

by x2.

If the states of x2 are e,a,h,c,d and the alphabet is 0,1, we take as ti the
standard finite state automaton for the first Gigorchuk group A {e, a, h, c, d},
X {0,1}. In this case we can take as G\ and G2 either piecewise-automatic group
or a piece-wise automatic group with returns defined by x\, x2 and 0,7), i > 1,

I)-1 < ti < Ti. We do not know if r2 as above exists, and therefore we consider as

in [9] an automaton x2 with the space of states possibly larger than e, a, h, c, d (such
automata exist by the result of Olijnyk [27], that shows that any free product of finite

groups imbeds in a group generated by a finite state automaton), and we take as ti
the standard finite state automaton for the first Grigorchuk group, (extended to some

larger alphabet than 0 and 1 if the alpaheth of x2 contains more than two letters) and

consider the corresponding piecewise automatic group with returns GTl>T2(fj, Ti).
To construct G\ and G2, we fix x\, x2 and construct sequences tf, Tf and tf, Tf

(Tf_x < tf < Tf, Tf_j < tf < Tf) by a simultaneous inductive procedure and we

put
Gl Gr, >t2 (tl, Tf) and G2 Gr, ,T2 (tf, Tf).

We need the following properties of piece-wise autmatic group with returns

GZuz2(ti, Ti) (see the proof of Proposition 1 in [9]). There exist N —> N, and for
each i there exist "comparison groups"

Mh, T\,t2, T2,... ,ti) and 2(t\, T\, t2, T2,..., fi, 7}),

such that the following holds for all non-decreasing sequences l, Tf.

(1) all groups A>(G, T\,t2, T2,..., 7 /_j) have a finite index subgroup which imbeds

as a subgroup in a finite direct power of the the first Grigorchuk group G\ (generated

by (A, ti);
(2) all groups !B(t\, T\, t2, T2,..., 7)_t, ti) have a finite index subgroup which
admits a surjective homomorphism to the group, generated by the automaton (A, r2);

(3) the balls of radius 9^() in G(G, t2,..., 7), T2,...) and A(t\,T\,t2,T2,...
ti-i, Ti-i) coincide;

(4) the balls of radius f(Ti) in G(t\,t2,..., T\, T2,...) and <S(G, T\,t2, T2,...
Ti-i,ti,) coincide.
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Let G, Sg, H, Sh be finitely generated groups such that the balls of radius R + C
in the marked Cayley graphs of G, Sg, H, Sh coincide. Let iih and /xg are measures
which are equal after the identifications of these balls and such that Ig (.v) < C for

any s in the support of /xg. Observe that for any n < R the scaling functions in the

definition of f^-thin subgroups are equal:

<XG,nG,p(n) aH,ßH,p(n), a'G>flGtP(n) a'HillH,p(n),

and for each g in the ball of radius C in the Cayley graph of (G, Sg) ip norms of
Sit1c"^1 ~ itl*G)q are equal to the lv norm of — (li*/fl)q for h being the

corresponding element in the ball of radius C of (H, Sh)-
Suppose that we have chosen already

A J, 1 A rpl rp\ 2 rp2 A T2 f2
L\ » 1 i > l2"> 1 2 » * * * ' 1 i — 1 1 ' 1 ' l2 ' 1 2 > * * * > li '

For any e > 0 there exist M,- such that for all M[ > M;- there exists M* with the

following property. For any > M* and n> M*, and any n : M, < n < M-
the ratio of lp norms ^i(/xw)? ~ (ji**)« and s2ifM*n)q - iti*n)q in G Gx x G2

is smaller than e for all s e Si and some s e S2.

To prove this, we combine the observation about Cayley graphs above with the

claims (1), (2), and (3) of Lemma 5.6, for

Tj,..., 7^,), S S(G2, 72, t\, F2,..., tf).

The group A is of intermediate growth and hence this group is amenable and

finitely supported random walks have trivial boundary, B has a finite index subgroup
subjecting to a non-amenable group, and hence non-amenable.

Now suppose that we have chosen already

t\, ?V t} and *f, 7j2, t\, T2,..., tf, Tf.

For any e > 0 there exist N, such that for all N{ > Ni there exists N* with the

following property. For any Tf > N* and tf+l > M*, and any n : Nt < n < N[
the ratio of tp norms of s2(fj,*n)q — ifi*n)q and si(/i*n)q - (/x*")? in G Gi x G2

is smaller than e for all s2 G S2 and some .sq G Sj.
This implies that for some choice of tf, Tf and tf, Tf there exist sequences m,-

tending to infinity, such that the following holds. The ratio of lp norms of
s\i\i*n')q — (/x*"')9 and the scaling sequence a(n;) tend to 0 for all sq G S\. This

implies that all .sq G .S'i, as well as all g G G\ belong to the main fp thin subgroup

Hß,P,q> corresponding to n, The ratio of tp norms of s2ii±*mr)q — (n*m' )q and

the scaling sequence a(m/) tend to 0 for all s2 G S2. This implies that all s2 G Se,

as well as all g G G2 belong to the main lp thin subgroup HßtP>q, corresponding
to mi. Consider an ultrafilter Um such that t/(m,) 1 and an ultrafilter Un such that

U(rii) 1. Using (1), (2), and (3) of Lemma 5.6 we also observe that is equal

to bf'qTI and that bf'fr is equal to bf'qTT
M2 Nn ß,Um ^ ß\,Um
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Corollary 5.11. Let G{, /r, be as in the formulation of Theorem C. Take <7 0, 1,

or 2 and p 1 or 2. For each j : 1 < j < D there exists njj such thatfor all the

main lp-thin subgroup HßtP,qofG with respect to j contains Wk k^j ^k-
In particular, there exist at least D not equal tp-thin subgroups.
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