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Non-arithmetic bail quotients from a configuration
of elliptic curves in an Abelian surface

Martin Deraux

Abstract. We construct some non-arithmetic ball quotients as branched covers of a quotient of
an Abelian surface by a finite group, and compare them with lattices that previously appear in
the literature. This gives an alternative construction, which is independent of the computer, of
some lattices constructed by the author with Parker and Paupert.
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1. Introduction

Recall that finite groups generated by complex reflections have been classified by
Shephard and Todd [25]. Such a group G comes with an isometric action on P"
(for the Fubini-Study metric), and the quotient X G \ P" turns out to be a

weighted projective space. In fact the ring of invariant polynomials in n + 1

variables is generated by homogeneous polynomials /j0,..., fdn, where fdj has

degree dj, hence the quotient, which is given by the projective spectrum of the

ring of invariants, is the weighted projective plane P(c/o> • • • • dn). Note that the

weights can be computed from simple combinatorial data, since the degrees satisfy
do • d\ • • • dn |G |, and XX— 1) is equal to the number of reflections in the group
(see [26], for instance).

An analogous classification has been produced for affine crystallographic complex
reflection groups, see [23], The basis for the classification of affine groups is the

fact that the group of automorphisms of affine space Cn is a semi-direct product
V xi GL(V), where V is the vector space of translations in C", which allows us

to reduce the classification to the problem of classifying extensions of finite unitary
reflection groups by a lattice in C". In particular, if G is an affine crystallographic

group, the quotient G \ Cn is the quotient of a complex torus by a finite group. Note
that in general, G is not the semi-direct product of its linear part and its translation
subgroup (see [23, p. 57]).
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It was observed by Bernstein and Schwarzman [4| that, at least in many cases,

if G is generated by complex reflections, the quotient G \ C" is again a weighted
projective plane. The heart of their proof is to construct suitable ©-functions that play
the role of the homogeneous invariant polynomials in the Shephard-Todd-Chevalley
theorem, which they managed to do only when the linear part of G is a real Coxeter

group (in that case, the weights of the weighted projective space are given by the

so-called exponents of the corresponding Coxeter group).
Some quotients G \ C2, where G is an affine crystallographic complex reflection

group whose linear part is not a Coxeter group, were worked out by Kaneko, Tokunaga
and Yoshida [18], building on the Bernstein-Schwarzman result. The corresponding
quotients turn out to be explicit weighted projective planes, but their proof does

not shed much light on the general case. Still, for a general affine crystallographic
complex reflection group G, it is believed that the quotient G \Cn should be a

weighted projective space (see [14, p. 17]).
In this note, we investigate a particular affine crystallographic complex reflection

group G, whose linear part is the Shephard-Todd group G\2, and whose subgroup
of translations is given by the lattice A (Z © i In other words, there is an

extension
1 -> A -> G -* Gi2 -> 1, (1.1)

and one can think of the quotient G \ C2 as the quotient of the Abelian surface
A C2/A by the group G\2. For concreteness, we mention that the group G\2 has

order 48, it is a central extension of the octahedral group, and it is also known to be

isomorphic to GL(2, F3).
Our group G is not a semi-direct product (equivalently the sequence (1.1) does

not split), which characterizes it uniquely up affine equivalence, according to [23],
Note also that the action of G\2 has no global fixed point in the Abelian surface A,
so our action is not the same as the action given by Birkenhake and Lange (see [5,
Theorem 13.4.5])

Since G\2 is not a Coxeter group, it is not in the list of groups treated by Bernstein
and Schwarzman, and it is not in the list of groups treated by Kaneko, Tokunaga and

Yoshida, so the structure of the quotient seems to be unknown.
We will show that the quotient X G \ C2 has two singular points of type

|(1,2) and |(1,3) respectively, and that the map A -> X ramifies with order 2

along a (highly singular) rational curve in X, which is given by the image of the

union of all mirrors of complex reflections in the group G. We refer to the branch
locus as the discriminant curve, and denote it by M. It does not contain any of the

singular points of X, and the curve M has four singular points, two ordinary cusps,
a point with multiplicity four and another with multiplicity 6 (see Figure 1 for a

schematic picture of the singularities of M).
Assuming that X is indeed a weighted projective plane, the list of its singular

points shows that it must be isomorphic to P(l, 3, 8). The curve M would then be

an irreducible curve of homogeneous degree 24, whose explicit equation remains
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elusive (see [10] for the analogous equation in the case of P (2, 3,7) in relation to the

Klein quartic).
We can rephrase the preceding paragraphs as follows.

Theorem 1.1. The pair (X, \M) is an orhifold which is uniformized by C2, and

n\)rb(X, \M) is the affine crystallographic complex reflection group G.

Theorem 1.1 parallels Proposition 2 of [10], which says that P(2,3,7), with a

specific curve with weight ~ — 1 — gives an orbifold uniformized by the positively
curved complex space form P2. The main result in 110] is obtained by changing

p 2 to higher integer values, i.e. changing the weight of the curve to be 1 — j (in
fact, for most values of p, more subtle modifications are needed).

It is then tempting to mimic the construction of [10], and to consider the pairs
(X, (1 — j)M) for integer values p > 2 (in fact, it is convenient to allow also

p oo). The basic questions are the following.

(i) When is the pair (X, (1 — j)M) an orbifold? When it is an orbifold, is it modeled

on a space form?

(ii) When it is not an orbifold, is there a suitable model birational to it that is an

orbifold? If so, is that orbifold modeled on a space form?

The main goal of the present paper is to show that, even though the answer to (i) (only
for p — 2) may seem disappointing, there is an affirmative answer to question (ii) for
some other well-chosen values of p, namely p 3,4, 6 or oo. For these values, the

universal cover is the 2-dimensional complex space form of curvature — 1, which we
denote by H2 (for basic facts on the complex hyperbolic plane H2 and lattices in its

isometry group, see Section 2).
The precise statements are somewhat technical (they will only be given in

Section 5), because on the one hand the birational modifications are not that easy to
describe, and on the other only a proper open set turns out to be uniformized by H2.
For now we suggest that the reader keeps in mind that the statements below roughly
say that there is a indeed a complex hyperbolic uniformization of suitable open sets

in the pairs (V, (1 — j)M), for p — 3,4,6, oo.
For p 3, we will prove the following.

Theorem 1.2. The pair (V, (1 — \)M) is a compactification ofa ball quotient. More
precisely, there is a lattice T3 C PU(2, 1 with one cusp, such that Xq T3 \H2 has

1-point compactification isomorphic to X. Modulo this isomorphism, the quotient

map H2 -> Xq branches with order 3 along Mq, which is obtained from M by

removing its point with multiplicity 6.

Note that the presence of a 1-dimensional branch locus for the quotient map
H2 -» X says that the lattice T3 contains complex reflections, we will see later that

it is actually generated by complex reflections. Observe also that the point that needs

to be removed from X in order to get a ball quotient is characterized by the fact that

it is the only point where the pair (V, (1 — \)M) is not log-terminal, see Section 5.
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The orbifold structure on X A/G does not lift to an orbifold structure on
the Abelian surface A, since the corresponding weights on the preimage of the

discriminant curve would have to be equal to 3/2, which is not an integer.
There are statements analogous to Theorem 1.2 for p — 4, 6 or p oo, but

then the pair (X, (1 — j)M) is actually not an orbifold, and one needs to perform a

suitable birational modification before it becomes one. After suitable modification,
for each case p 4, 6 or p oo, one gets an orbifold which is unifbrmized by H2,
with orbifold fundamental group given by a non-cocompact lattice Tp.

For now we simply give a rough statement.

Theorem 1.3. There are a lattices F;, C PU{2, 1), p 4,6, oo such that Tp \ H2
has a compactification birational to X. The groups Yp have one cuspfor p — 4, oo,

two cusps for p 6.

The explicit birational transformation that yields the corresponding compactification

will be given later in the paper (see Section 5, Theorem 5.5 in particular).
For the groups that appear in Theorem 1.3, the weight of the orbifold structure

along (the strict transform of) the discriminant curve is even, so the orbifold structure

on (the suitable surface birational to) X A/G lifts to an orbifold structure on (a
suitable blow up of) the Abelian surface A, with multiplicity 2 4/2, 3 6/2 or
oo respectively at a generic point of the union of mirrors of reflections of G. The fact
that the orbifold structure lifts to A only when p is even has a similar incarnation in

Deligne-Mostow theory, when passing from the Picard integrality condition INT to
the condition E-INT (see [8,9,21]).

For p 3,4 and 6, the lattices Yp turn out to be conjugate to lattices constructed

by the author in joint work with Parker and Paupert, see [12] and [11], namely the

groups S(p, cti), generated by a complex reflection R\ of angle 27t/p, and a regular
elliptic element J of order 3 such that tr(RiJ) — 1 + i \[2. For basic notation on
these groups, see section 3.

It was proved in [12] and [11 ] that -8(p, ax) is discrete if and only if p 3,4,6,
and in those cases it is a non-cocompact lattice. It has one cusp for p 3,4, two

cusps for p 6. Note also that the three groups can be checked to be generated

by complex reflections, namely by Ri, R2 JR\J~l and R3 — J~XR\J (see

Section 3).
We will prove the following.

Theorem 1.4. For every p 3,4,6, the group Vp is conjugate in PU(2, 1) to the

group S (p, a1).

In particular, because of the analysis in 111], we know that the T^,, p 3,4, 6 are

non-arithmetic lattices. The group corresponding to p 00 does not appear in [12],
but it is in a sense less interesting since it turns out to be arithmetic.

Complex hyperbolic lattices have been previously constructed from configurations
of elliptic curves on an Abelian surface. One important construction was worked out
by Livne, see [20] (and also [9]), from a point of view that is fairly different from
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ours. Another construction, closer in spirit to the results in this paper, appears in 116]

(see also [13,24,28] for recent developments).
Just as in [10], the results of this paper give an alternative construction of certain

non-arithmetic ball quotients, whose existence was known so far only by giving
explicit matrix generators and constructing a fundamental domain for their action
(see [12] and [11]).

The analysis in [10] shows that some of the non-arithmetic lattices in [11], even

though they are not commensurable to Deligne-Mostow lattices (see [8,21]), are
commensurable to Couwenberg-Heckman-Looijenga lattices (see [7], which was

inspired in part by [3]). For brevity, we refer to these two classes of lattices as

DM and CHL lattices, respectively (note that DM lattices are special cases of CHL
lattices). In fact, an analysis similar to the one in [10] shows the following (for
notation of Sporadic and Thompson triangle groups, see Section 3).

Theorem 1.5. (1) The group S(2,ai0) is isomorphic to the Sliephard-Todd

group G23- The lattices 8(p, a\o), p 3,4,5,10 are conjugate to the

corresponding CHL lattices of type H3.

(2) The group 8(2, <74) is isomorphic to a subgroup of index two in the Shephard-
Todd group G24, both groups having isomorphic projectivizations oforder 168.

The lattices 8(p, <74), p 3,4, 5,6, 8, 12 are conjugate to the corresponding
CHL lattices.

(3) The group T (2, S2) is isomorphic to a subgroup of index two in the Shephard-
Todd group G21, both having isomorphic projectivization of order 360. The

lattices T (p, S2), p 3,4, 5 are conjugate to the corresponding CHL lattices.

The three families of lattices in Theorem 1.5, together with Deligne-Mostow
lattices, exhaust the list of CHL lattices in PU(2,1) (the other ones constructed
in [7] are in PU(n, 1) for n > 2).

In particular, we have the following.
Theorem 1.6. The lattices 8{p,a\), p — 3,4,6 are not commensurable to any CHL
lattice (and in particular not to any DM lattice either).

Some lattices in [11] are still not treated by the methods in [ 10] nor of the present

paper, for instance the sporadic lattices 8(p. rr5). Indeed, in the family of o5 groups,
there seems to be no finite nor any crystallographic group.

Acknowledgements. I wish to thank Stéphane Druel for many stimulating
discussions related to the results in this paper, as well as Xavier Roulleau for several

comments that significantly helped improve the exposition.

2. Basic complex hyperbolic geometry

Recall that the complex hyperbolic plane H2 is the only complete, simply connected
Kähler surface of holomorphic sectional curvature —1. It is biholomorphic to the
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unit bail B2 C C2, and we equip it with the only metric that is invariant under
the group of biholomorphisms of B2 (normalized so that the holomorphic sectional

curvature is —1). In terms of Riemannian symmetric spaces, H2 is the non-compact
dual of P2. We summarize a few basic facts that we will use in this paper (see [15]
for much more information).

Working in homogeneous coordinates for P2 and seeing B2 c2C P2 as sitting
in an affine chart of the complex projective plane, one can see biholomorphisms of B2

as induced by linear transformations of C 3 that preserve a Hermitian form of signature
(2,1), say (Z, W) —ZqWq + Z\W\ + Z2W2. The unit ball is then identified
with the set of negative complex lines in C3, i.e. lines spanned by a vector V with
{V,V} < 0. This description gives an isomorphism Bihol(B2) ~ PU(2,1), which
produces almost all isometries of H2 (the full group of isometries is generated

by P U{2,1) and the single isometry given by complex conjugation).
We will use the classification of (non-trivial) isometries of H2 into elliptic,

parabolic and loxodromic elements (see [6] for instance). Elliptic isometries are
characterized by the fact that they fix at least one point in H2. Parabolic elements

have unique fixed point at infinity, i.e. in 3ooH2 ~ S3. Loxodromic elements have

precisely two fixed points at infinity.
Elliptic isometries whose matrix representatives have distinct eigenvalues are

called regular elliptic isometries. Among non-regular elliptic isometries, an

important class is given by complex reflections, that fix pointwise the intersection
with B2 of an affine complex line in C2. These are characterized in terms of their
matrix representative in U(2,1) by the fact that they have a double eigenvalue, and

that the simple eigenvalue eigenspace is spanned by a vector with positive square
norm.

A lattice T C PU{2,1) is a discrete subgroup such that T \ PU(2,1) has finite
Haar measure. Equivalently, the quotient T \H2 has finite volume for the Riemannian
volume form on H2. F is called co-compact (or uniform) if the quotient T \ H2 is

compact. If it is not, there are finitely many conjugacy classes of maximal parabolic
subgroups in T, and the quotient decomposes as a disjoint union of a compact part and

finitely many cusps (a cusp is the quotient of a sufficiently small horoball centered

at the fixed point of one of the parabolic subgroups). We say T has n cusps if
the quotient has n cusps, equivalently if there are n conjugacy classes of maximal

parabolic subgroups in T.

3. Complex hyperbolic lattice triangle groups

3.1. Sporadic triangle groups. In this section we briefly review some of the basic

facts and notation in [11] (and also previous papers cited there). In the following
statement, we write co (— 1 + i a/3)/2.
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Proposition 3.1. Let p G M*, u e2jli^3p, r, x' G C. Up to conjugacy in SL{3, C),
there is a unique pair (R\,./) ofmatrices such that

• R\ has eigenvalues u2,ü, ü;

• J has eigenvalues 1 ,(0,œ;
• tr(/?i J) x and tr(7?i J~l) r'.
The group generated by R\ and J preserves a non-zero Hermitian form if and only

ifr' —ux, and in that case the form is unique up to scaling.

Choosing the basis of C3 given by e\,e2 Jet, e3 J~lei, we can write

/w2 r r'\ A) 0 l\
Rx 0 it 0 y I 1 0 0 1. (3.1)

\0 0 ü) \0 1 0/

In the Hermitian case, i.e. when r' —ux, and assuming moreover that w3 / 1, the

invariant Hermitian form is given (up to a nonzero scalar) by

a ß ß\
ß a ß (3.2)

ß ß otj

where a — 2 — u3 — ü3, ß (m2 — u)x. Note that this matrix tends to 0 when p —>

+oo (recall u e27Zl^3p), but after rescaling it by 1 /s/2 — u3 — Ü3, it converges to

0 —i x i x \
1 x 0 — ix I

—ix ix 0 J

which gives the invariant Hermitian form when u3 1.

Definition 3.2. We denote by S(p, x) the group generated by R\ and J as in (3.1),
where x' — —ux, and refer to it as a sporadic triangle group with trace parameter r.

In such a sporadic triangle group, it is natural to consider

R2 JRiJ~\ R3 J~1RiJ.

The groups are constructed so that R\J has finite order (its order is actually
independent of p). When that order is not a multiple of 3, the group generated
by R\,R2 and R2 is actually the same as the group generated by Ri and J (in
particular, in those cases, S (p, r) is generated by complex reflections).

The main groups of interest in this paper will be the groups S (p, oy), for suitable

integer values of p, and

cs\ — 1 + i ~Jl.
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The following is easily obtained using (3.2) and the above discussion.

Proposition 3.3. For p >2 an integer, the Hermiticinform preserved by 8(p, o\) is

definite ifand only if p 2, and it has signature (2,1 for all p > 2. For every p,
RI J has order 8, and the group 8 (p, ay) is generated by R\, R2 and R3.

Note that R1J having order 8 is easily seen to imply that J R1R2 R3 Ri R2 R3 R1 ^2-

3.2. Thompson triangle groups. The groups T(p, T) are analogs of the sporadic

groups that were constructed in James Thompson's Ph.D. thesis [29]. They are

generated by three complex reflections Ri, R2 and R3, that have the same rotation
angles, but are not cyclically conjugated by any element of J order 3. Here T
(p, a, r) is a triple of complex numbers that generalizes the trace parameter of sporadic
triangle groups, related to traces of Rj Rg. Since they are not central to this paper,
we omit the detailed description of these groups and simply refer to [11 ].

The Thompson triangle groups that appear in Theorem 1.5 are the groups

T (p, S2), with trace parameter triple S2 (1 + co^—-, 1,1).
We will also use the description of 8(p, a1) as 3,3,4;6 triangle groups, in other

words, in the terminology of [11 ], as T(p, Ei), where Ei (i *J2, 1,1).
Recall that the integers in 3,3,4;6 stand for specific braid lengths br(a,b), namely

br(R2, R3) 3, br(R3, If) 3, br{Ru R2) 4, br(Ru Rfl R2R3) 6, and

br(a, b) k means
(1ab)kI2 (ba)k^2,

but (ab)nI2 ^ (ba)n/2 for every n < k.
In other words, T(p, Ei) is a group generated by three reflections If, R2, R3 of

the same order p, such that

(R1R2)2 (R2R1)2, R2R3R2 R3R2R3, R3R1R3 R1R3R1.

(.R1 R2lR2R3)3 (Rj1R2R3 Ri)3.

The fact that 8 (p, rrt is conjugate to T (p, Ei) follows from a change ofgenerators
along the same lines as in 117] (for details, see [11, Section 7.1]). Explicitly, if Mi,
M2 — JM\ J~1, M3 — J~x M\J denote standard generators for 8(p, oy then the

matrices

Ri (M3M1 M2M1_1)M3(M3Mi M2Mf1)~l,
R2 — (M3Mi)M2(M3M]) R3 Mi

give another generating set, which exhibits an isomorphism with T(p, E]).

4. The aflinc crystallographic reflection group

We start by describing the relevant afflne crystallographic group. One way to write it is

to use the matrices given in [12], which would give slightly complicated matrices, and
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then to diagonalize the corresponding Hermitian form by a suitable coordinate change.
Here we only give the matrices in a nice basis. For computational convenience, rather
than choosing the generators to have determinant one as we did in [11], we adjust the

repeated eigenvalue to be equal to 1 (this amounts to multiplying the generators by a

suitable root of unity).
Definition 4.1. Let G be the group generated by the matrices R\, IG and R3 given
below

n o o\
*1= 0 1 0 R2

\0 1 — i a/2 -\)
1 °

r3 _ 1+|V2 J

V 1 0

First observe that G can be thought of as a subgroup of the semi-direct product
C2 x U(2). To see this, we write (zo, zj, z2) for the coordinates in C3, and denote

by 7r: C3 -> C2 the projection onto the last two coordinates. Note that the group G

clearly preserves every hyperplane z0 A, A 6 C. We will study the affine action
of G on C2 given by

B (zi,z2) 7r(ß(l,zi,z2)).
Concretely, we think of the linear part of B as being given by the lower right 2x2
block of the 3x3 matrix B, and the translation part by the lower left 2x 1 block. We
denote by xjs: G -> GL2(C) the corresponding homomorphism. Note that the image
of xf preserves a positive definite Hermitian form, namely (z, w) w* Hz where

H

The unitary group U(H) is isomorphic to (7(2) since the matrix H has eigenvalues
2 ± a/3, which are both positive. One checks that the matrices xfr(Rj) are complex
reflections of order 2 (i.e. each has eigenvalues 1 and -1), so G is an affine group
generated by complex reflections. Next, we show that this group is crystallographic,
i.e. it is discrete, and the quotient of C 2 by its action is cocompact. This follows from
Propositions 4.2 and 4.3 below.

Proposition 4.2. The linear part xj/(G) of G is isomorphic to the Shephard-Todd

group G12, which is isomorphic to GL (2, F3).

Proof. One easily checks that the three matrices A\ \jf(R\), A2 xj/(R2) and

A3 f (R3) generate a group of order 48, and that they satisfy the relations in a

presentation for Gi2, see [25], namely

42 /I2 A23 (AxA2)4 (/M3)3 (/MO3 Id, (4.1)

and the element (A\Af)2 is central of order 2.
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We refer to the matrix
1 0 0

wi 1 0

v2 0 1

as a translation with vector v (iq, v2). Let K denote the kernel of \fr, and let 7a
denote the group of translations Tv, where v e A is a lattice vector.

Proposition 4.3. The groups K and T\ are equal.

Proof. One verifies that

(R2R\R2R\)2R2R2 — r(iV2i), {R2R2R\R2)2R2R\ — T(0,i),

R2[(R2RI)2 R3]R2 7(_i;_i), (R2RI R2RI)2R\R2R3R\ =T^_l i^y

and the element Z (R2Ri)2 commutes with 7^i and R2, and it has order 2.

The commutator ZR3Z~X Rfl (ZRf)2 is given by the translation Tv, where

v — (— 1 — i >/2, —2). Once again, using the Shephard-Todd presentation for G12,

we get that G/ 7a is a quotient of G\2, but since 7a C K and G/K has order 48,

In what follows, we denote by F the finite group G\2. We denote by A the

Abelian variety C2/A, and by X the quotient of A by the action of F G/T\.
The following two propositions follow from painful (but not particularly difficult)

computation and bookkeeping.

Proposition 4.4. The group F contains precisely 12 reflections, all oforder 2, whose

fixed point sets are elliptic curves in A. The group F acts transitively on the set of
these 12 elliptic curves.

For completeness, we list equations for these elliptic curves in Table 1.

We denote by M the union of the mirrors in A, and by M its image in X. By
transitivity of the action, M is an irreducible curve in X.

Proposition 4.5. The action of F on A has precisely two orbits offixed points in

A\M, one with isotropy group oforder 3, the other with isotropy group oforder 8,

as in Table 2. The isotropy groups of points in M are all generated by complex
reflections, the generic point having isotropy of order 2. The points in M with

isotropy oforder larger than 2 consist of two orbits ofpoints with isotropy group of
order 6, one orbit ofpoints with isotropy of order 8, and one orbit of points with

istropy oforder 12, see Table 3.

These four translations generate 7a, so we have 1\ C K.
In order to show the other inclusion, we observe that

R2 R2 R2 (Ri R2)4 (R2R3)3 (R3Rx)3 Id, (4.2)

both quotients of G must have order 48.
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1 Z2

2 Z2 4r^>
3 Z2 _

1

2

121 Z2

131 z2 (1 - i VZ)zi - \
212 Zl 0

232 Zl
1+2/ \[2 l-iV2- 3

1

6

32121 Zl l+lV2_ 1+1+/2- 2 +2 1

4

23121 Zl " z2 + 1+^
21321 Zl i \/2 1 2+i -s/2

2 2 4

12321 Zl _ 2+1 \/2 1 i \/2- 2 Z2+ 4

21231 Zl (1 +/V2)Z2 +

Table 1. Equations in C2 of (representatives of) the 12 mirrors of reilections in A C2/A.

Group Order eigenvalues coords

(RiR2R3) 8 Ç8,ï$ (b1^)
(R1R3) 3 co,05 (3^,33^)

Table 2. Representatives of the orbits of points with non-reflection stabilizer (these produce
singular points of the quotient).

Generators Order ST-group Sing, of M notation coords

/?1, /^3 6 G(3,3,2) z3 - z2
1 — 2 P13

/I+1V2 lx
3 ' 2>

Z?2, #3 6 G(3,3,2) 3 2z3 =z2 P23 / —2—/ \[2 1 x

f 6 '22
^1» ^2 8 G(2,1,2) Z4 - z2

Z1 — z2 P12 (0,0)

Äl,Ä3(Ä2Äl)2 12 G(6,6,2) z6 - Z2
Z1 — z2 Z2! 3(21)2 (0'è)

Table 3. Representatives of the orbits of points whose stabilizer is a rellection group (these

produce smooth points of the quotient).
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The results in Proposition 4.5 follow by explicit calculations. For a definition of
the groups G(m, p,n), see [25], and also [18, §1], for instance. The local analytic
structure of the branch locus of the quotient (fourth column in Table 3) can be obtained

by computing explicit invariant polynomials for the group, the results are tabulated
in [2].

It follows from Proposition 4.5 that X has exactly two singular points. Let V
denote the subset of A of points with trivial isotropy for the /''-action, and let U
denote its image in X.

Proposition 4.6. We have x(V) 48, hence /((/) 1.

Proof. There are 48/3=16 points above the isolated singularity of order 3, 48/8=6

points above the isolated singularity of order 8. There are 2 • (48/6) + (48/8) +
(48/12) 16 + 6 + 4 26 points with reflection isotropy of order > 2. This gives
48 points.

There are also 12 mirrors, each being an elliptic curve and containing 8 special

points. The Euler characteristic of the generic stratum of each mirror is then —8, so

we get

0 x(A) 48 + 12 • (—8) + /(F),
hence x(F) 48, and /(t/) x(Y)/48 1, since F has order 48.

We will also need to study the stabilizer of a mirror of reflections.

Proposition 4.7. Each mirror in the group contains precisely 8 points with special
isotropy i.e. stabilizer oforder strictly larger than 2 The curve M is a P1 with two

pairs ofpoints identified, and the map from each irreducible component of M to M
is a branched cover ofdegree 2.

Proof. In the coordinates we used above, the mirror of R2 P i P2 corresponds to the

elliptic curve zj 0. The intersections with the other mirrors can be computed
explicitly from the equations in Table 1, they are listed in Table 4.

Mirrors Z2

1,2, 121,212 0, -i V2/2
212,232, 12321 ±(1 + iV2)/6

212, 32121,21231 ±(1 +2/V2)/6
1,3, 131,212, 32121,21231 1/2

1,212, 232, 23121,21321, 12321 (1 +iV2)/2

Table 4. Special points on the mirror of R2 R1 R2- We list the corresponding reflections whose
mirrors meet at that point.
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One verifies that the only reflection that stabilizes the mirror of R2R\R2 is Ri
(note that Ri commutes with R2R\R2, since R\R2 has order 4). Now Ri acts

on z\ =0 by z2 r-> —z2. Among the points listed in Table 4, the two points
±(1 + i \/2)/6 get identified, and so do the points ±(1 +2i \/2)/6. The other four

points are fixed by the action of R\.

5. Statement of the main result

Recall that X denotes the quotient A/F, where A is the Abelian variety C2/A,
and F is a specific group of order 48, isomorphic to the Shephard-Todd group G12.

As above, we denote by M c X the curve which is the image of the set of mirrors
in A of reflections of F.

We denote by p\2 the image in X of the fixed point of R \ R2, etc (see Table 3).
As in [10], in order to produce orbifolds uniformized by the ball, we will need to
perform suitable blow-ups on X.

The curve M has a local analytic equation of the form (z\—z2)(z\+z2) — 0 near

Pi3(2i)2 (see Table 3), so locally there are two tangent components. The space Y is

obtained from X by blowing up /r3(2i)2 three times (the first blow-up preserves the

tangency, the second makes the intersection transverse, the third makes the two local

components disjoint). The exceptional locus of n: Y -> X is a chain of projective
lines with self-intersections -1,-2, —2.

Definition 5.1. The space Y is obtained from Y by contracting the two —2 curves in
the exceptional locus of Jt: Y -> X. We denote by y. Y —> Y the contraction, and

(p\Y -> X the corresponding birational transformation. We denote the exceptional
locus of ip by E.

Similarly, the space Z is obtained from X by blowing up both points pi3(2i)2
and p\2. Near the first one, the modification is the same as in the construction of Y.
Near p\2, the curve M has a local equation of the form (z\ — z2)(zf + z2) 0

(see Table 3 again). At that point, we perform two successive blow-ups (the first one
makes the two tangent local components transverse, the second makes them disjoint),
which produces a chain of two projective lines with self-intersection —1, —2.

Definition 5.2. The space Z is obtained from Z by contracting the two —2 curves
above /?13(21)2, and the (—2)-curve above p\2. With a slight abuse of notation, we still

denote by y: Z -> Z the contraction, and cp: Z -> X the corresponding birational
transformation. We denote the exceptional lines by E and F, above /A3(2i)2 an(J Pu
respectively.

Finally, we consider W, which is obtained from X by blowing up all points

Vi3(2i)2 an(i Pi2, Pi3 and P23- Near each point p\2 and p22, we need to perform
three successive blow-ups, producing a chain of three P1 with self-intersections

-2,-1,-3 (see [10]).
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Definition 5.3. The space W is obtained from W by contracting the two —2 curves
above p13(2j)2, and the (—2)-curve above p12, the (—2) and the (—3)-curves above

p i3 and P23. We still denote by y : W -> W the contraction, and (p: W -» 9f the

corresponding birational transformation. We denote the exceptional lines by E, F,
G, H, above /?13(21)2, pi2, pi3 and p23 respectively.

Remark 5.4. Whenever a point of x e Z is not blown-up in order to get Y (resp., Z),
we will use the same notation for its proper transform in Y, Y, Z or Z.

Theorem 5.5. (1) The pair (X', | M') is a ball quotient orbifold with one cusp,
where X' X \ {pi3(2i)2} and M' M CI X'.

(2) The pair (Y|M' + |E) is a ball quotient orbifold with one cusp, where
Y' Y\{pï2}, and M ' denotes the intersection with Y ' of the strict transform
of M in Y.

(3) The pair (Z', |M' + \E + !F) is a ball quotient orbifold with two cusps,
where Z' — Z\ {p i3, p23}, and M' denotes the intersection with Z' of the strict
transform of Ml in Z.

(4) The pair (W', ~F + | G + |// is a ball quotient orbifold with one cusp, where
W' W \ M', and M' denotes strict transform of M in W.

6. Proof of the main result

The basis of the proof, like in [10], will be a detailed study of the pairs {X^p\ D^),
where

Z(3) X, X(4) Y, X(6) Z, X(oo) W

and the D^'s are Q-divisors given by

D(3) |M, D(4) |M4-|£,
D(6) |M + \E + |F, and D(oo) M + \F + \G + \U.

Proposition 6.1. For each p as above,

(1) the pair (X(p\ D^) has at worst lof> canonical singularities;

(2) the log-canonical divisor KX(P) + is ample, i.e. the pair (X^p\ D(p^) is

its own canonical model;

(3) c\(X'(p\ D'(p)) 3c2(X'(p), D,(p>), where X'(p) denotes the log-terminal
locus (obtained from X^ by removing the points where the pair is not log-
terminal), and D'(p) D(p) CI X'(p).

By a theorem of Kobayashi, Nakamura, and Sakai [ 19], Proposition 6.1 implies
Theorem 5.5.
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A schematic picture of the spaces X, Y, Z, W showing the

combinatorics/singularities of the relevant Q-divisors is given in Figure 1. Note that all
these spaces map to X, and these maps are isomorphisms over X \ M, where X
(hence Y, Z, W as well) has two isolated singularities, of type |(1,2) and |(1, 3).

96

Vl3

P23

96

G

H
(c) Z (d) W

Figure 1. Schematic picture of the orbifold structure on X A/F, and of the relevant birational
surfaces Y, Z and W. We label each curve with the relevant orbifold weight (in the case of W,
the dotted curve is removed).

6.1. Log-canonical singularities. For part (1) of Proposition 6.1, the only point
to consider is the point Pi3(2i)2, since the others have local descriptions that were
handled in [10]. In what follows, to simplify notation, we write q Pi3(2i)2.

At the point q, we denote by X the minimal resolution of the pair (A, AM),
which is given by n: X -> X, and has exceptional locus a -1,-2,-2 chain of
projective lines, denoted by Ei, E2 and E2 (note that E\ intersects the proper
transform M twice, but E2 and E$ do not intersect M). One checks that

Kg 7x*Kx + El+ 2E2 + 3E3,

and

n*M M + 2E\ + 4E2 + 6E3.

This gives

Kg + AM 7t*(Kx + AM) + (1 - 2A)EX + (2 - 4A)£2 + (3 - 6A)£3,

hence the pair (X, AM) is log-canonical at q ifand only if A < 2/3. ForA 1 — 1 /p,
this means p < 3. For p 3 the pair is not log-terminal at q.

z

E
(b) Y
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Near p\2, the pair (X, M) is log-canonical for p < 4, and log-terminal for p < 4;

at /?i3 and p22, it is log-canonical for p < 6, log-terminal for p < 6 (see [10] for
more details, where the same type of singularities of the pair occur).

6.2. Miyaoka-Yau equality. The formulas for c2(X^pK D^) are very similar to
those in [10]. If we knew that X was a weighted projective plane, the formulas below
would be obtained from those in [10] by replacing 2,3,7 by 1,3,8. We give a slightly
different argument, that relies on the fact that X A/F, where F is a specific group
of order 48. In other words, there is a map f: A —> X of degree 48, that ramifies
with order 2 along the union U Ej of 12 elliptic curves.

It follows from the discussion in Section 4 that for every k, E,t • Xw=i Ej 24

— - 4- 12-24 24.
48

(more specifically, see Table 4). From this, it follows that

M2 Lhy ej)2 1
48 V ^ J) 41

Note also that f*(Kx + \M) Ka, so

Kx M • f*M - X-if*M)2) -12,

where we have used the adjunction formula and the fact that x(Ej) 0-

Finally, note that (Kx + \M)2 0 (since Ka is trivial), hence

K2 -Kx M - X-M2 6.

In particular, we get for any A 1 — 1 /p, that

(Kx + AM)2 6(—1 + 2A)2 —(—12 + 24A)2.

The last expression is written so as to resemble the formula in [10].
We now write

D AM on X,

AM + pE on Y,

AM + puE + vF on Z,

AM + pE + vF + crG + gH on W

(recall that the coefficient of each divisor has the form 1 — 1 /k, where k is an integer
or oo).

We get for p 3,

,9
1 / 2\2 2

(Kx + AM) — ^ — 12 + 24-J -.
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For p 4, we take A /x l — 1/4, and get

(Ky +XM + plE)2 1(-12 + 24A)2 - 1(3 - 6A + /x)2 11.

For p 6, we take A v 1 — 1/6, /x 1 — 1/2, and get

{Kz+XM+plE+vF)2 1^(—12+24A)2—1(3—6A+/x)2—1(2—4A+v)2 11.

For p oo, we take A 1, /x 1 — 1 0, v <r r l — 1/2, and get

(^ + AM + fiE + vF + oG + oH)2 ^-(—12 + 24A)2 - -(3 - 6A + /x)2

_1(2 —4A + v)2-2-l(4-6A + a)2 1.

The orbifold Euler characteristics are given by the following. For p 3, we get

nrh ,111 1-4 2
rhrr,D) - + i + - + 2- + T + -.

For p 4, we get

1111 1 —4 —1 7

/ (AC, D) - H h 2 + + 2 1 1 h 1 —.V
3 8 4-4 3-4 96 4 4 16

For p 6, we get

/,rb(AT,D) 1 + 1 + 2—+ 2—+ — + — + —+ — + — + 1 —,y
3 8 2-6 6-6 3-2 2-6 6 2 6 72

For p oo, we get

/)rb(A:, D) 1 + 1 + 1 + -!- + 2-1- + 2-1- + ^1 + ^ + 2^-1 + 1 1-
3 8 3 2-2 2-2 2-3 1 2 2 8

Putting this together, we get that c2 — 3c2 for all relevant values of p.

6.3. Ampleness. Our argument relies in part on the following fact, which would be

obvious if we knew X to be a weighted projective plane.

Proposition 6.2. Let X C2/G A/F be as above. Then x(X) — 3, and

Pic(Z) Z.

Proof. The fact that ~/(X) 3 follows from the arguments in Proposition 4.6.

Indeed, we use the stratification of X corresponding to isotropy groups, there are 2

isolated singularities, 4 points with non-cyclic reflection stabilizers, 1 6-punctured
projective line, and the open part that has Euler characteristic 1. We then have

*(30 6-4+1 3.
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We then use the fact that X is simply connected, because its orbitold fundamental

group is generated by point stabilizers (this follows from a theorem of Armstrong,
see [1]). This gives b\{X) — 0. Since X has quotient singularities, it satisfies

Poincaré duality (see [27, Theorem 1.13]), hence x(%) — 3 gives b2{X) 1.

The fact that the Picard number is one then follows, see the proof of
Proposition 4.20 of [22], for instance.

From this and the analysis in the beginning of Section 6.2, it follows that Kx is

numerically equivalent to —\M.
We want to check whether the log-canonical divisors

KX + \M (case p 3),

Ky + f M + §E (case p 4),

Kz + lM + ^E + ^F (case p 6),

Kw + M + ^F + ^G + ^H (case p oo)

are ample.
For the case p 3, we simply have KX + \M |M, which is clearly ample (for

instance, by the Nakai-Moishezon it is enough to show that its intersection with M
is > 0, but M 2 24 > 0).

For p 4, we have

Ky + XM + p,E cp*(Kx + AM) + (3 - 6A + p)E,

where <p is as in Definition 5.1. Since <p* M M + 6E, the right hand side is

linearly equivalent to

(A - i)(M + 6E) + (3 - 6A + n)E (X-^jM + \lE.

We check that the latter divisor is ample by the Nakai-Moishezon criterion. As

explained in Section 3.3 of [ 10], since Pic(X) Z, it is enough to check that its
intersection with M and with E is > 0.

Now we recall that E2 —1/3, and compute

(V(.A - -)M + (3 - 6A + H)E) M

+ Q-6X + vl)E}-(<P*M-6E)

(A - ^)M2 - 6(3 - 6A + p)E2 - > 0,

and

p*(X-^)M + (3-6A + {I)E) E (3-6A + fi)E 7
1

2 - > 0.
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The cases p — 6, p oo are similar, simply with slightly longer computations.
The basis of the computation is

Kz + A M + A E + ptF (A — ^J<p*M + (3 — 6A + p)E + (2 — 4A + v)F,

and

Kz + A M + AE + p,F + oG + aH ^A — -^jcp* M + (3 — 6A + p)E

+ (2 - 4A + v)F + (4 - 6A + rr)(G + f/).

Also, for (p: Z —> X, we have

M +6E + 4F,

and for cp: W -> X, we have

(p* M M + 6E + 4F + 6(G + H).

6.4. Identifying the groups. In this section we briefly explain why the holonomy

group of the complex hyperbolic structures constructed by uniformization (using the

Kobayashi-Nakamura-Sakai version ofequality case in the Miyaoka-Yau inequality)
is isomorphic to the relevant sporadic triangle groups.

Theorem 6.3. Let Vp be the group obtainedfrom the statement of Theorem 5.5 for
p 3, 4, or 6. Then Tp is conjugate to the triangle sporadic group S (p, o\).

Proof. This follows from the description of orbifold fundamental group T2, which is

generated by three complex reflections Rj, j 1, 2,3 of order 2, such that:

• br(Rx, R2) 4, br(R2, R3) 3, br(R3, R,) 3.

• RiR3R3 (has linear part which) is regular elliptic of order 8.

Given how the orbifold structure with holonomy is constructed, these same

properties will hold, with complex reflections of order p instead of order 2, except
that in the cases p > 2, the isometry R^R2R3 is regular elliptic of order 8 (the
analogue of taking the linear part is then simply to view it as an element of the

stabilizer of its fixed point, which is isomorphic to U(2)).
The result then follows from Proposition 6.4, stated and proved below.

Proposition 6.4. Let T be a lattice generated by three complex reflections Rj,
j 1,2,3 such that br(/?i, Rfl) 4, br(R2, R3) 3, br(R3, R\) 3 and
RI R2 R3 is regular elliptic oforder 8. Then F is conjugate to the Thompson group
T (p. Ei), which is isomorphic to the sporadic triangle group S (p. nj
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Proof. First, the fact that T(p, Ei) and S(p,<ti) are conjugate follows from a

suitable change of generators, in the same vein as in [17]; the details are given
in Proposition 7.1 of [11 ].

Any group as above must be conjugate to 8(p, oy) or S(p, ay), but the last group
is not discrete if p 3 or 6 (see section Section 9.4 of [12]).

One checks that 8(4,öi) is not discrete either, for instance by showing that
M R2R\R2J is regular elliptic but has infinite order (here Ri, R2 and R3 stand

for the standard generators of 8(4, öy and J stands for the regular elliptic element

of order 3 that conjugates Rj into Rj+\ Indeed, one checks that

tr(M) (V3 + i)(i - (1 + /)V2)/2 := r,
and

|r|4 - 894e(r3) + 18|r|2 - 27 88 - 64^2 < 0,

so A/ is regular elliptic (see 115, Section 6.2.3]).
The characteristic polynomial of M is equal to A3 — rA2 + fA — 1, and one verifies

that only one of its roots is a root of unity (namely — (i + x/3)/2). Indeed, the other

two roots have a minimal polynomial of degree 16, that is not cyclotomic.
Note that in 8 (4, of, the element R2R\R2J is loxodromic (and indeed, we know

that this is a lattice, see [11]).

Remark 6.5. The argument we just gave provides a short proof that S (p. of) is

indeed a lattice for p — 3,4,6, a fact which was proved using heavy computer power
in [111-

For p 00, Proposition 6.4 has the following analogue (recall that unipotent
elements are isometries whose matrix representative has a single eigenvalue of
multiplicity 3), which can be proved with very similar methods as in 112], We

omit the details because the corresponding group turns out to be arithmetic.

Proposition 6.6. Let F be a lattice generated by unipotent elements Rj, j 1,2,3
such thatbr(R\, R2) 4, br(R2, Rf 3, br(R3, R1) 3 and R\ R2R2 is regular
elliptic of order 8. Then F is conjugate to Thompson group 7~(oo,Ei), which is

isomorphic to the sporadic triangle group S(00, ai).
The arithmeticity of the group £(00, of is fairly obvious from the description

given in Section 3, where we give a generating set with entries in Z + i \/2Z. From
this it follows that the adjoint trace field is Q, hence the group is indeed arithmetic
(see [11], for instance).
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