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Non-arithmetic ball quotients from a configuration
of elliptic curves in an Abelian surface

Martin Deraux

Abstract. We construct some non-arithmetic ball quotients as branched covers of a quotient of
an Abelian surface by a finite group, and compare them with lattices that previously appear in
the literature. This gives an alternative construction, which is independent of the computer, of
some lattices constructed by the author with Parker and Paupert.

Mathematics Subject Classification (2010). 22E40, 20H15, 14L30, 20F05, 14H30.

Keywords. Orbifold uniformization, ball quotients, non-arithmetic lattices, complex reflections,
affine crystallographic groups.

1. Introduction

Recall that finite groups generated by complex reflections have been classified by
Shephard and Todd [25]. Such a group G comes with an isometric action on P”"
(for the Fubini—Study metric), and the quotient X = G \ P” turns out to be a
weighted projective space. In fact the ring of invariant polynomials in n + 1
variables is generated by homogeneous polynomials fy,, ..., f4,, where fdj has
degree d;, hence the quotient, which is given by the projective spectrum of the
ring of invariants, is the weighted projective plane P(dy,...,d,). Note that the
weights can be computed from simple combinatorial data, since the degrees satisfy
do-dy---dp = |G|, and }_(d; —1) is equal to the number of reflections in the group
(see [26], for instance).

An analogous classification has been produced for affine crystallographic complex
reflection groups, see [23]. The basis for the classification of affine groups is the
fact that the group of automorphisms of affine space C” is a semi-direct product
V x GL(V), where V is the vector space of translations in C”, which allows us
to reduce the classification to the problem of classifying extensions of finite unitary
reflection groups by a lattice in C”. In particular, if G is an affine crystallographic
group, the quotient G \ C" is the quotient of a complex torus by a finite group. Note
that in general, G is not the semi-direct product of its linear part and its translation
subgroup (see [23, p. 57)).
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It was observed by Bernstein and Schwarzman [4] that, at least in many cases,
if G is generated by complex reflections, the quotient G \ C" is again a weighted
projective plane. The heart of their proof is to construct suitable ®-functions that play
the role of the homogeneous invariant polynomials in the Shephard—Todd—Chevalley
theorem, which they managed to do only when the linear part of G is a real Coxeter
group (in that case, the weights of the weighted projective space are given by the
so-called exponents of the corresponding Coxeter group).

Some quotients G \ C2, where G is an affine crystallographic complex reflection
group whose linear part is not a Coxeter group, were worked out by Kaneko, Tokunaga
and Yoshida [18], building on the Bernstein—Schwarzman result. The corresponding
quotients turn out to be explicit weighted projective planes, but their proof does
not shed much light on the general case. Still, for a general affine crystallographic
complex reflection group G, it is believed that the quotient G \ C” should be a
weighted projective space (see [14, p. 17]).

In this note, we investigate a particular affine crystallographic complex reflection
group G, whose linear part is the Shephard—Todd group G, and whose subgroup
of translations is given by the lattice A = (Z @ i +/27)2. In other words, there is an
extension

1 >A—>G—>Gip—>1, (1.1)

and one can think of the quotient G \ C? as the quotient of the Abelian surface
A = C?/A by the group G1,. For concreteness, we mention that the group G, has
order 48, it is a central extension of the octahedral group, and it is also known to be
isomorphic to GL(2,F3).

Our group G is not a semi-direct product (equivalently the sequence (1.1) does
not split), which characterizes it uniquely up affine equivalence, according to [23].
Note also that the action of G, has no global fixed point in the Abelian surface A,
so our action is not the same as the action given by Birkenhake and Lange (see [5,
Theorem 13.4.5])

Since G2 is not a Coxeter group, it is not in the list of groups treated by Bernstein
and Schwarzman, and it is not in the list of groups treated by Kaneko, Tokunaga and
Yoshida, so the structure of the quotient seems to be unknown.

We will show that the quotient X = G \ C? has two singular points of type
%(1,2) and %(1,3) respectively, and that the map A — X ramifies with order 2
along a (highly singular) rational curve in X, which is given by the image of the
union of all mirrors of complex reflections in the group G. We refer to the branch
locus as the discriminant curve, and denote it by M. It does not contain any of the
singular points of X, and the curve M has four singular points, two ordinary cusps,
a point with multiplicity four and another with multiplicity 6 (see Figure 1 for a
schematic picture of the singularities of M).

Assuming that X is indeed a weighted projective plane, the list of its singular
points shows that it must be isomorphic to P(1, 3, 8). The curve M would then be
an irreducible curve of homogeneous degree 24, whose explicit equation remains
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elusive (see [10] for the analogous equation in the case of P (2, 3, 7) in relation to the
Klein quartic).
We can rephrase the preceding paragraphs as follows.

Theorem 1.1. The pair (X, %M ) is an orbifold which is uniformized by C2, and
(X, %M ) is the affine crystallographic complex reflection group G.

Theorem 1.1 parallels Proposition 2 of [10], which says that P(2, 3,7), with a
specific curve with weight % =1= %, gives an orbifold uniformized by the positively
curved complex space form P2. The main result in [10] is obtained by changing
p = 2 to higher integer values, i.e. changing the weight of the curve to be 1 — % (in
fact, for most values of p, more subtle modifications are needed).

It is then tempting to mimic the construction of [10], and to consider the pairs
(X, — %)M ) for integer values p > 2 (in fact, it is convenient to allow also
p = o0). The basic questions are the following.

(i) When is the pair (X, (1— %)M ) an orbifold? When it is an orbifold, is it modeled
on a space form?

(ii) When it is not an orbifold, is there a suitable model birational to it that is an
orbifold? If so, is that orbifold modeled on a space form?

The main goal of the present paper is to show that, even though the answer to (i) (only
for p = 2) may seem disappointing, there is an affirmative answer to question (ii) for
some other well-chosen values of p, namely p = 3,4, 6 or co. For these values, the
universal cover is the 2-dimensional complex space form of curvature —1, which we
denote by H? (for basic facts on the complex hyperbolic plane H? and lattices in its
isometry group, see Section 2).

The precise statements are somewhat technical (they will only be given in
Section 5), because on the one hand the birational modifications are not that easy to
describe, and on the other only a proper open set turns out to be uniformized by HZ.
For now we suggest that the reader keeps in mind that the statements below roughly
say that there is a indeed a complex hyperbolic uniformization of suitable open sets
in the pairs (X, (1 — %)M), for p = 3,4, 6, c0.

For p = 3, we will prove the following.

Theorem 1.2. The pair (X, (1 — %)M ) is a compactification of a ball quotient. More
precisely, there is a lattice T3 C PU(2, 1) with one cusp, such that Xy = I's \H? has
I-point compactification isomorphic to X. Modulo this isomorphism, the quotient
map H? — X, branches with order 3 along My, which is obtained from M by
removing its point with multiplicity 6.

Note that the presence of a 1-dimensional branch locus for the quotient map
H? — X says that the lattice I'; contains complex reflections, we will see later that
it is actually generated by complex reflections. Observe also that the point that needs
to be removed from X in order to get a ball quotient is characterized by the fact that
it is the only point where the pair (X, (1 — %)M ) is not log-terminal, see Section 5.
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The orbifold structure on X = A/G does not lift to an orbifold structure on
the Abelian surface A, since the corresponding weights on the preimage of the
discriminant curve would have to be equal to 3/2, which is not an integer.

There are statements analogous to Theorem 1.2 for p = 4, 6 or p = oo, but
then the pair (X, (1 — %)M ) is actually not an orbifold, and one needs to perform a
suitable birational modification before it becomes one. After suitable modification,
for each case p = 4, 6 or p = oo, one gets an orbifold which is uniformized by H?,
with orbifold fundamental group given by a non-cocompact lattice I"p,.

For now we simply give a rough statement.

Theorem 1.3. There are a lattices T, C PU(2,1), p = 4,6, 00 such that T, \ H?
has a compactification birational to X. The groups I", have one cusp for p = 4, oo,
two cusps for p = 6.

The explicit birational transformation that yields the corresponding compactifi-
cation will be given later in the paper (see Section 5, Theorem 5.5 in particular).

For the groups that appear in Theorem 1.3, the weight of the orbifold structure
along (the strict transform of) the discriminant curve is even, so the orbifold structure
on (the suitable surface birational to) X = A/G lifts to an orbifold structure on (a
suitable blow up of) the Abelian surface A, with multiplicity 2 = 4/2,3 = 6/2 or
oo respectively at a generic point of the union of mirrors of reflections of G. The fact
that the orbifold structure lifts to A only when p is even has a similar incarnation in
Deligne-Mostow theory, when passing from the Picard integrality condition INT to
the condition 2-INT (see [8,9,21]).

For p = 3,4 and 6, the lattices I', turn out to be conjugate to lattices constructed
by the author in joint work with Parker and Paupert, see [12] and [11], namely the
groups 8 (p, 01), generated by a complex reflection R; of angle 2/ p, and a regular
elliptic element J of order 3 such that tr(RJ) = —1 + i +/2. For basic notation on
these groups, see section 3.

It was proved in [12] and [11] that §(p, 07) is discrete if and only if p = 3,4, 6,
and in those cases it is a non-cocompact lattice. It has one cusp for p = 3,4, two
cusps for p = 6. Note also that the three groups can be checked to be generated
by complex reflections, namely by R;, R, = JRiJ ' and Ry = J7IR,J (see
Section 3).

We will prove the following.

Theorem 1.4. For every p = 3,4,6, the group I', is conjugate in PU(2, 1) to the
group 8(p,o1).

In particular, because of the analysis in [11], we know thatthe I',, p = 3,4, 6 are
non-arithmetic lattices. The group corresponding to p = oo does not appear in [12],
but it is in a sense less interesting since it turns out to be arithmetic.

Complex hyperbolic lattices have been previously constructed from configurations
of elliptic curves on an Abelian surface. One important construction was worked out
by Livne, see [20] (and also [9]), from a point of view that is fairly different from
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ours. Another construction, closer in spirit to the results in this paper, appears in [16]
(see also [13,24,28] for recent developments).

Just as in [10], the results of this paper give an alternative construction of certain
non-arithmetic ball quotients, whose existence was known so far only by giving
explicit matrix generators and constructing a fundamental domain for their action
(see [12] and [11]).

The analysis in [10] shows that some of the non-arithmetic lattices in [11], even
though they are not commensurable to Deligne—-Mostow lattices (see [8, 21]), are
commensurable to Couwenberg—Heckman—Looijenga lattices (see [7], which was
inspired in part by [3]). For brevity, we refer to these two classes of lattices as
DM and CHL lattices, respectively (note that DM lattices are special cases of CHL
lattices). In fact, an analysis similar to the one in [10] shows the following (for
notation of Sporadic and Thompson triangle groups, see Section 3).

Theorem 1.5. (1) The group 8(2,019) is isomorphic to the Shephard—Todd
group Gaz. The lattices 8(p,o19), p = 3,4,5,10 are conjugate to the
corresponding CHL lattices of type Hs.

(2) The group 8(2,04) is isomorphic to a subgroup of index two in the Shephard—
Todd group Ga4, both groups having isomorphic projectivizations of order 168.
The lattices 8(p,04), p = 3,4,5,6,8, 12 are conjugate to the corresponding
CHL lattices.

(3) The group T (2,S3) is isomorphic to a subgroup of index two in the Shephard—
Todd group G,7, both having isomorphic projectivization of order 360. The
lattices T (p,Sz), p = 3,4, 5 are conjugate to the corresponding CHL lattices.

The three families of lattices in Theorem 1.5, together with Deligne—-Mostow
lattices, exhaust the list of CHL lattices in PU(2, 1) (the other ones constructed

in[7] arein PU(n, 1) forn > 2).

In particular, we have the following.

Theorem 1.6. The lattices 8(p,01), p = 3,4, 6 are not commensurable to any CHL

lattice (and in particular not to any DM lattice either).

Some lattices in [11] are still not treated by the methods in [10] nor of the present
paper, for instance the sporadic lattices 8 (p, 05). Indeed, in the family of o5 groups,
there seems to be no finite nor any crystallographic group.

Acknowledgements. 1 wish to thank Stéphane Druel for many stimulating dis-
cussions related to the results in this paper, as well as Xavier Roulleau for several
comments that significantly helped improve the exposition.

2. Basic complex hyperbolic geometry

Recall that the complex hyperbolic plane H? is the only complete, simply connected
Kihler surface of holomorphic sectional curvature —1. It is biholomorphic to the
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unit ball B> C C2, and we equip it with the only metric that is invariant under
the group of biholomorphisms of B2 (normalized so that the holomorphic sectional
curvature is —1). In terms of Riemannian symmetric spaces, H? is the non-compact
dual of P2. We summarize a few basic facts that we will use in this paper (see [15]
for much more information).

Working in homogeneous coordinates for P2 and seeing B2 € C? C P2 as sitting
in an affine chart of the complex projective plane, one can see biholomorphisms of B2
as induced by linear transformations of C? that preserve a Hermitian form of signature
(2,1), say (Z, W) = —Z¢Wy + Z1 W1 + Z,W,. The unit ball is then identified
with the set of negative complex lines in C3, i.e. lines spanned by a vector V with
(V,V) < 0. This description gives an isomorphism Bihol(B2) ~ PU(2, 1), which
produces almost all isometries of H? (the full group of isometries is generated
by PU(2, 1) and the single isometry given by complex conjugation).

We will use the classification of (non-trivial) isometries of H? into elliptic,
parabolic and loxodromic elements (see [6] for instance). Elliptic isometries are
characterized by the fact that they fix at least one point in H?. Parabolic elements
have unique fixed point at infinity, i.e. in d5H? ~ §3. Loxodromic elements have
precisely two fixed points at infinity.

Elliptic isometries whose matrix representatives have distinct eigenvalues are
called regular elliptic isometries. =~ Among non-regular elliptic isometries, an
important class is given by complex reflections, that fix pointwise the intersection
with B2 of an affine complex line in C2. These are characterized in terms of their
matrix representative in U(2, 1) by the fact that they have a double eigenvalue, and
that the simple eigenvalue eigenspace is spanned by a vector with positive square
norm.

A lattice I' C PU(2, 1) is a discrete subgroup such that I' \ PU(2, 1) has finite
Haar measure. Equivalently, the quotient I"\ IH? has finite volume for the Riemannian
volume form on H?2. T is called co-compact (or uniform) if the quotient I \ H? is
compact. If it is not, there are finitely many conjugacy classes of maximal parabolic
subgroupsin I, and the quotient decomposes as a disjoint union of a compact part and
finitely many cusps (a cusp is the quotient of a sufficiently small horoball centered
at the fixed point of one of the parabolic subgroups). We say I' has n cusps if
the quotient has »n cusps, equivalently if there are n conjugacy classes of maximal
parabolic subgroups in I'.

3. Complex hyperbolic lattice triangle groups

3.1. Sporadic triangle groups. In this section we briefly review some of the basic
facts and notation in [11] (and also previous papers cited there). In the following
statement, we write @ = (—1 4+ i+/3)/2.
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Proposition 3.1. Let p € R*, u = e2mi/3p ¢ ¢/ e C. Up to conjugacy in SL(3,C),
there is a unique pair (Ry, J) of matrices such that

* Ry has eigenvalues u?, i, u;

e J has eigenvalues 1, 0, w;

e r(R1J) =tandtr(RyJ 1) =71,

The group generated by Ry and J preserves a non-zero Hermitian form if and only
if t' = —ut, and in that case the form is unique up to scaling.

Choosing the basis of C3 given by eq, e, = Jep, e3 = J ey, we can write
g y

2 !

u® Tt 0 0 1
Ri=10 u 0}, J={1 00 (3.1)
0 0 u 010
In the Hermitian case, i.e. when t’ = —uz, and assuming moreover that u> # 1, the
invariant Hermitian form is given (up to a nonzero scalar) by ‘
a BB
B oa B, (3.2)
p B

where @ = 2 —u3 —u3, B = (4% — u)7. Note that this matrix tends to 0 when p —
400 (recall u = ¢27#/3P)_ but after rescaling it by 1/4/2 — u3 — 3, it converges to

0 —it it
iT 0 —it],
—it it 0

which gives the invariant Hermitian form when u> = 1.

Definition 3.2. We denote by &§(p, t) the group generated by Ry and J as in (3.1),
where 7’ = —u7T, and refer to it as a sporadic triangle group with trace parameter .

In such a sporadic triangle group, it is natural to consider
R, =JR,JY, Ry=J'RJ.

The groups are constructed so that R;J has finite order (its order is actually
independent of p). When that order is not a multiple of 3, the group generated
by Ri, R» and Rj is actually the same as the group generated by R; and J (in
particular, in those cases, §(p, 7) is generated by complex reflections).
The main groups of interest in this paper will be the groups & (p, o1), for suitable
integer values of p, and
o1 =—1+iv2.
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The following is easily obtained using (3.2) and the above discussion.

Proposition 3.3. For p > 2 an integer, the Hermitian form preserved by 8 (p, 1) is
definite if and only if p = 2, and it has signature (2, 1) for all p > 2. For every p,
R1J has order 8, and the group 8(p, 01) is generated by Ry, Ry and R3.

Note that R; J having order 8 is easily seentoimply that / = R{ R, R3R1 R2 R3 R R>.

3.2. Thompson triangle groups. The groups 7 (p, T) are analogs of the sporadic
groups that were constructed in James Thompson’s Ph.D. thesis [29]. They are
generated by three complex reflections R;, R, and Rs3, that have the same rotation
angles, but are not cyclically conjugated by any element of J order 3. Here T =
(p, 0, ) isatriple of complex numbers that generalizes the trace parameter of sporadic
triangle groups, related to traces of R; Ri. Since they are not central to this paper,
we omit the detailed description of these groups and simply refer to [11].

The Thompson triangle groups that appear in Theorem 1.5 are the groups

T (p,Sz), with trace parameter triple S, = (1 + @ 1+2‘/§, 1,1).

We will also use the description of §(p, 07) as 3,3.,4;6 triangle groups, in other
words, in the terminology of [11], as 7 (p, E;), where E; = (i o2 1, 1).

Recall that the integers in 3,3,4;6 stand for specific braid lengths br(a, b), namely
br(R,, R3) = 3, br(R3, Ry) = 3, br(Ry, Ry) = 4, br(Ry, R; Ry R3) = 6, and
br(a, b) = k means

(ab)k/2 - (ba)k/Z’

but (ab)*'? # (ba)"/? for every n < k.
In other words, 7 (p, Ey) is a group generated by three reflections Ry, R», R3 of
the same order p, such that

(R1R2)> = (R2R1)®>, R2R3R> = R3R2R3, R3R1R3 = RiR3Ry,
(Ri- R3'RyR3)* = (R3'RaR3 - Ry)>.
The factthat § (p, o1) is conjugate to 7 ( p, Eq) follows from a change of generators
along the same lines as in [17] (for details, see [11, Section 7.1]). Explicitly, if My,

My = JMyJ ™!, M3 = J~M,J denote standard generators for 8 (p, o1), then the
matrices

Ry = (MM MM YM3(M3M MM 7!,
Ry = (MsM)My(MsM)™ !, R =M,

give another generating set, which exhibits an isomorphism with 7 (p, E;).

4. The affine crystallographic reflection group

We start by describing the relevant affine crystallographic group. One way to write it is
to use the matrices given in [12], which would give slightly complicated matrices, and
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then to diagonalize the corresponding Hermitian form by a suitable coordinate change.
Here we only give the matrices in a nice basis. For computational convenience, rather
than choosing the generators to have determinant one as we did in [11], we adjust the
repeated eigenvalue to be equal to 1 (this amounts to multiplying the generators by a
suitable root of unity).

Definition 4.1. Let G be the group generated by the matrices R;, R, and R3 given
below

1 0 0 1 0 0
R, =10 1 0], Ra=|0 —-1+i2 2 ,
0 1—i/2 —1 0 1+4+iv2 1-iv2
1 0 0
Ry=(1¥2 1 3348,
1 0 -

First observe that G can be thought of as a subgroup of the semi-direct product
C? x U(2). To see this, we write (zg, z1, z2) for the coordinates in C3, and denote
by : C3 — C? the projection onto the last two coordinates. Note that the group G
clearly preserves every hyperplane zo = A, A € C. We will study the affine action
of G on C? given by

B . (Zl,Zz) = Tl.'(B(],Z], 22)).
Concretely, we think of the linear part of B as being given by the lower right 2x2
block of the 3x3 matrix B, and the translation part by the lower left 2x1 block. We
denote by ¥: G — G L,(C) the corresponding homomorphism. Note that the image
of Y preserves a positive definite Hermitian form, namely (z, w) = w™ H z where

( 1 —1—iﬁ)
H = ' 2 )
—1+i/2 1

2

The unitary group U(H) is isomorphic to U(2) since the matrix H has eigenvalues
2 + +/3, which are both positive. One checks that the matrices ¥ (R j) are complex
reflections of order 2 (i.e. each has eigenvalues 1 and -1), so G is an affine group
generated by complex reflections. Next, we show that this group is crystallographic,
i.e. it is discrete, and the quotient of C? by its action is cocompact. This follows from
Propositions 4.2 and 4.3 below.

Proposition 4.2. The linear part ¥ (G) of G is isomorphic to the Shephard-Todd
group Gz, which is isomorphic to GL(2,F3).

Proof. One easily checks that the three matrices A; = ¥ (R;), A2 = ¥ (R>) and
Az = Y (R3) generate a group of order 48, and that they satisfy the relations in a
presentation for G, see [25], namely

A2 = A2 = A2 = (4142)* = (A243)° = (434,)° =14, (4.1)

and the element (A1 A;)? is central of order 2. O
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We refer to the matrix
1

0 0
Tv =lve 1 0
%] 0 1

as a translation with vector v = (v, v2). Let K denote the kernel of ¥, and let Ty
denote the group of translations 73, where v € A is a lattice vector.

Proposition 4.3. The groups K and Tz are equal.
Proof. One verifies that

(R3R1RyR1)*RsRy = T(; 51y, (R3RaR1R2)*R3Ry = Tg,yy,
Ra[(R2R1)? R3)R2 = T—1,—1), (R2R1R3R1)’RiRyR3R; = T _1.:v2)

These four translations generate T, so we have T, C K.
In order to show the other inclusion, we observe that

R = R} = R} = (R1R2)* = (R2R3)* = (R3Ry)® =14, (4.2)

and the element Z = (R, R;)? commutes with R; and R,, and it has order 2.
The commutator ZR3Z ' R3' = (ZR3)? is given by the translation T, where
v = (=1 —i+/2,—2). Once again, using the Shephard—Todd presentation for G,
we get that G/ Ty is a quotient of G2, but since Tp C K and G/K has order 48,
both quotients of G must have order 48. L]

In what follows, we denote by F the finite group G;2. We denote by A the
Abelian variety C?/A, and by X the quotient of A by the action of F = G/ Tj,.

The following two propositions follow from painful (but not particularly difficult)
computation and bookkeeping.

Proposition 4.4. The group F contains precisely 12 reflections, all of order 2, whose
fixed point sets are elliptic curves in A. The group F acts transitively on the set of
these 12 elliptic curves.

For completeness, we list equations for these elliptic curves in Table 1.
We denote by M the union of the mirrors in A, and by M its image in X. By
transitivity of the action, M is an irreducible curve in X.

Proposition 4.5. The action of F on A has precisely two orbits of fixed points in
A\ M, one with isotropy group of order 3, the other with isotropy group of order 8,
as in Table 2. The isotropy groups of points in M are all generated by complex
reflections, the generic point having isotropy of order 2. The points in M with
isotropy of order larger than 2 consist of two orbits of points with isotropy group of
order 6, one orbit of points with isotropy of order 8, and one orbit of points with
istropy of order 12, see Table 3.
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1

2

3

121
131
212
232
32121
23121
21321
12321
21231

Zn ——g—

Zy = —5—

)
)
)
Z1
Z1
Z1
Z1
|
Z1

Z1

- : 1+i+/2
= (1 +iv2)zp + 1+

543

Table 1. Equations in C? of (representatives of) the 12 mirrors of reflections in 4 = C2 /A.

Group Order eigenvalues coords
(RiR2R3) 8 Zs. L3 (3 L+1+/2
(RiRs) 3 0@ (L2, 1322

Table 2. Representatives of the orbits of points with non-reflection stabilizer (these produce

singular points of the quotient).

Generators Order ST-group Sing.of M notation coords
Ry, Rs 6 G(3.3.2 =22 prs (2L
Ra, R3 6 G(3,3,2) z}=12; P23 (_2_6iﬁ, !
Ri, R, 8 G(22,1,2) z}=2z2 P12 (0,0)

Ri,R3(R2R)” 12 G(6,6.2)  z{=2z7 ppay  (0.3)

Table 3. Representatives of the orbits of points whose stabilizer is a reflection group (these
produce smooth points of the quotient).



544 M. Deraux CMH

The results in Proposition 4.5 follow by explicit calculations. For a definition of
the groups G(m, p,n), see [25], and also [18, §1], for instance. The local analytic
structure of the branch locus of the quotient (fourth column in Table 3) can be obtained
by computing explicit invariant polynomials for the group, the results are tabulated
in [2].

It follows from Proposition 4.5 that X has exactly two singular points. Let V
denote the subset of A of points with trivial isotropy for the F-action, and let U
denote its image in X.

Proposition 4.6. We have (V') = 48, hence x(U) = 1.

Proof. There are 48/3=16 points above the isolated singularity of order 3, 48/8=6
points above the isolated singularity of order 8. There are 2 - (48/6) + (48/8) +
(48/12) = 16 + 6 + 4 = 26 points with reflection isotropy of order > 2. This gives
48 points.

There are also 12 mirrors, each being an elliptic curve and containing 8 special
points. The Euler characteristic of the generic stratum of each mirror is then —8, so
we get

0= x(A) =48+ 12-(=8) + x(V),

hence (V) = 48, and y(U) = x(V)/48 = 1, since F has order 48. ([l

We will also need to study the stabilizer of a mirror of reflections.

Proposition 4.7. Each mirror in the group contains precisely 8 points with special
isotropy (i.e. stabilizer of order strictly larger than 2). The curve M is a P! with two
pairs of points identified, and the map from each irreducible component ofﬁ oM
is a branched cover of degree 2.

Proof. In the coordinates we used above, the mirror of R, Ry R, corresponds to the
elliptic curve z; = 0. The intersections with the other mirrors can be computed
explicitly from the equations in Table 1, they are listed in Table 4.

Mirrors Z2
1,2, 121,212 0, —i+/2/2
212,232, 12321 (1 4 i+/2)/6
212, 32121, 21231 +(1 4 2i+/2)/6
1,3,131, 212, 32121, 21231 1/2

1,212,232,23121,21321, 12321 (1 +i~/2)/2

Table 4. Special points on the mirror of Ry R1 R>. We list the corresponding reflections whose
mirrors meet at that point.
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One verifies that the only reflection that stabilizes the mirror of R, Ry R, is R;
(note that Ry commutes with R, R R,, since Ry R, has order 4). Now R; acts
on z;y = 0 by z; — —z,. Among the points listed in Table 4, the two points
+(1 + i+/2)/6 get identified, and so do the points +(1 + 2i +/2)/6. The other four
points are fixed by the action of R;. 0

5. Statement of the main result

Recall that X denotes the quotient A/F, where A is the Abelian variety C2/A,
and F' is a specific group of order 48, isomorphic to the Shephard—Todd group G15.
As above, we denote by M C X the curve which is the image of the set of mirrors
in A of reflections of F'.

We denote by p;, the image in X of the fixed point of Ry R5, etc (see Table 3).
As in [10], in order to produce orbifolds uniformized by the ball, we will need to
perform suitable blow-ups on X. ~

The curve M has a local analytic equation of the form (z} —z,)(z} +z2) = O near

P13(21)2 (see Table 3), so locally there are two tangent components. The space Y is
obtained from X by blowing up py3(,1)2 three times (the first blow-up preserves the
tangency, the second makes the intersection transverse, the third makes the two local
components disjoint). The exceptional locus of : Y — X is a chain of projective
lines with self-intersections —1, —2, —2.

Definition 5.1. The space Y is obtained from Y by contracting the two —2 curves in
the exceptional locus of x: Y — X. We denote by y: Y — Y the contraction, and
¢:Y — X the corresponding birational transformation. We denote the exceptional
locus of ¢ by E.

Similarly, the space Z is obtained from X by blowing up both points p;3(21)2
and p12. Near the first one, the modification is the same as in the construction of Y.
Near pi», the curve M has a local equation of the form (z7 — z5)(z} + z2) = 0
(see Table 3 again). At that point, we perform two successive blow-ups (the first one
makes the two tangent local components transverse, the second makes them disjoint),
which produces a chain of two projective lines with self-intersection —1, —2.

Definition 5.2. The space Z is obtained from Z by contracting the two —2 curves
above py3(21)2, and the (—2)-curve above p1,. With a slight abuse of notation, we still

denote by y: Z — Z the contraction, and ¢: Z — X the corresponding birational
transformation. We denote the exceptional lines by E and F, above py3(51)2 and p12
respectively.

Finally, we consider W, which is obtained from X by blowing up all points
P13(21)2 and p12, p13 and py3. Near each point p;3 and p»3, we need to perform
three successive blow-ups, producing a chain of three P! with self-intersections
—2,—1,-3 (see [10]).
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Definition 5.3. The space W is obtained from w by contracting the two —2 curves
above pj3(21y2, and the (—2)-curve above pi3, the (—2) and the (—3)-curves above

p13 and p,3. We still denote by y: W — W the contraction, and ¢: W — X the
corresponding birational transformation. We denote the exceptional lines by E, F,
G, H, above P13(21)2> P12> P13 and p,3 respectively.

Remark 5.4. Whenever a point of x € X is not blown-up in order to get Y (resp., Z),
we will use the same notation for its proper transformin Y, Y, Z or Z.

Theorem 5.5. (1) The pair (X', %M "y is a ball quotient orbifold with one cusp,
where X' = X \ {p13@2tand M" = M N X'.

(2) The pair (Y, %M "+ %E) is a ball quotient orbifold with one cusp, where
Y' =Y \ {p12}, and M’ denotes the intersection with Y’ of the strict transform
of M inY.

(3) The pair (Z', %M "+ %E + %F ) is a ball quotient orbifold with two cusps,
where Z' = Z \{p13, p23}, and M’ denotes the intersection with Z' of the strict
transform of M in Z.

(4) The pair (W', %F + %G + %H ) is a ball quotient orbifold with one cusp, where
W' =W\ M’, and M’ denotes strict transform of M in W.

6. Proof of the main result

The basis of the proof, like in [10], will be a detailed study of the pairs (X (7, D(P)),
where
X®=x, x® =y, xO=7z xC_Ww

and the D®)’s are Q-divisors given by

3) _ 2 4) _ 37 3
D® =2M, DW=3M+3E,
DO =3 +1E+2F, and D =M +1F+16+1H.

Proposition 6.1. For each p as above,

(1) the pair (X, DP)) has at worst log canonical singularities;

(2) the log-canonical divisor K yp) + DP) s ample, i.e. the pair (X P, D(P)) is
its own canonical model;

(3) clz(X’(p), D'P)Y = 3c,(X'P) D'P)) ywhere X'P) denotes the log-terminal
locus (obtained from XP) by removing the points where the pair is not log-
terminal), and D'(p) = D®P) N X' (p).

By a theorem of Kobayashi, Nakamura, and Sakai [19], Proposition 6.1 implies
Theorem 5.5.
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A schematic picture of the spaces X, Y, Z, W showing the combina-
torics/singularities of the relevant Q-divisors is given in Figure 1. Note that all
these spaces map to X, and these maps are isomorphisms over X \ M, where X
(hence Y, Z, W as well) has two isolated singularities, of type 1(1,2) and (1, 3).

24 4 96
3 4 ! P13
D12
D23
FE %6
b)Y
G
1 - 9 -
Smoad . \\(-/ 9 \\
P23 -7 R N v
b2 BN B i _\H
©Z aw

Figure 1. Schematic picture of the orbifold structure on X = A/ F, and of the relevant birational
surfaces Y, Z and W. We label each curve with the relevant orbifold weight (in the case of W,
the dotted curve is removed).

6.1. Log-canonical singularities. For part (1) of Proposition 6.1, the only point
to consider is the point py3(,1)2, since the others have local descriptions that were
handled in [10]. In what follows, to simplify notation, we write ¢ = pj3(21)2-

At the point ¢, we denote by X the minimal resolution of the pair (X,AM),
which is given by m: X — X, and has exceptional locus a —1, -2, —2 chain of
projective lines, denoted by E;, E> and Ej (noteAthat E intersects the proper
transform M twice, but E5 and E3 do not intersect M). One checks that

K)"; =na*Kxy + E1 +2E; + 3E3,
and
T*M = M + 2E; + 4E, + 6Es.

This gives
K¢ +AM = n*(Kx + AM) + (1 —20)E1 + (2 —40)E; + (3 — 61) E3,

hence the pair (X, AM ) is log-canonical at ¢ ifand only if A <2/3. ForA = 1-1/p,
this means p < 3. For p = 3 the pair is not log-terminal at q.
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Near pi2, the pair (X, M) is log-canonical for p < 4, and log-terminal for p < 4;
at p13 and pas, it is log-canonical for p < 6, log-terminal for p < 6 (see [10] for
more details, where the same type of singularities of the pair occur).

6.2. Miyaoka-Yau equality. The formulas for ¢ (X (»), D(P)Y are very similar to
those in [10]. If we knew that X was a weighted projective plane, the formulas below
would be obtained from those in [10] by replacing 2,3,7 by 1,3,8. We give a slightly
different argument, that relies on the fact that X = A/ F, where F is a specific group
of order 48. In other words, there is a map f: A — X of degree 48, that ramifies
with order 2 along the union UE; of 12 elliptic curves.

It follows from the discussion in Section 4 that for every k, Ey - 2;2:1 E; =24
(more specifically, see Table 4). From this, it follows that

1

1 2
2 ) = —.4.12- =
M* = 48(2 E EJ) = 13 4.12-24 = 24.

Note also that /*(Ky + %M) = K4,80

1 1
Ky M= —(Kq-f*M — =(f*M)?) = —12,
x M= o (Ka- f*M = 5(f"M)?)

where we have used the adjunction formula and the fact that y(E£;) = 0.
Finally, note that (Kx + %M)2 = 0 (since K 4 is trivial), hence

1
K,z(:—KX-M—ZMZ:Q

In particular, we get forany A = 1 — 1/ p, that
1
(Kx +AM)? = 6(—1 +21)% = ﬂ(—12 + 242)2.

The last expression is written so as to resemble the formula in [10].
We now write

D =M on X,
Aﬂ+uE onY,
AM—l—p,E-}«vF on Z,

AM + pE +vF +6G +0H onW

(recall that the coefficient of each divisor has the form 1 — 1/k, where k is an integer
or Q).
We get for p = 3,

1 2\2 2
K MZ:—(—lz il
(Kx +AM)" = 3 3) 3
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For p =4, wetake A = u =1 —1/4, and get

~ 1 1 21

Ky + AM + pE)® = —(—=12+240)* — (3 =61 + pu)> = —.

(Ky + A + pE)* = (=124 240 = 23— 62+ p)” = 2
Forp =6, wetakeA =v=1—-1/6,u =1—1/2, and get

~ 1 1 1 43
(Kz+AM+pE+vF)?* = ﬁ(—12—|—24A)2—§(3—6)L—|—,u,)2—5(2—4)k+v)2 = oz

Forp=o00,wetakeA =1, u=1—1=0,v=0=7=1-—1/2, and get

2 1 1
(Kw +AM + pE +vF +0G +oH)? = sE=1E+ 241)% — ;B —6A+ w)?
1 2 1 s 9
- =2- —2-—-(4—-6A+0)" = -.
2(2 4A +v)° =2 6( + o) g
The orbifold Euler characteristics are given by the following. For p = 3, we get

Ofb(XD)—1+1+i+2i+_—4+l—%
XA =3 g T iy T3 T Ty

For p = 4, we get

O B = = B e B e = 2
4 T3 78 T4.4 3.4 796 4 4 16
For p = 6, we get
11 1 1 | 1 -4 -1 -1 43
orb
X,D)=-+—+2 2 — — 4 —+1=—.
X D) = gt st st ettt st t st T »

For p = oo, we get

11 11 1 1 -1 -1 -1 3
orb

X.D)=~+~+ - 2 2 N D W R .
L e R S v e B v S i S S

Putting this together, we get that ¢ = 3¢, for all relevant values of p.

6.3. Ampleness. Our argument relies in part on the following fact, which would be
obvious if we knew X to be a weighted projective plane.

Proposition 6.2. Let X = C2/G = A/F be as above. Then y(X) = 3, and
Pic(X) = Z.

Proof. The fact that y(X) = 3 follows from the arguments in Proposition 4.6.
Indeed, we use the stratification of X corresponding to isotropy groups, there are 2
isolated singularities, 4 points with non-cyclic reflection stabilizers, 1 6-punctured
projective line, and the open part that has Euler characteristic 1. We then have

y(X)=6—4+1=3.
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We then use the fact that X is simply connected, because its orbifold fundamental
group is generated by point stabilizers (this follows from a theorem of Armstrong,
see [1]). This gives b;(X) = 0. Since X has quotient singularities, it satisfies
Poincaré duality (see [27, Theorem 1.13]), hence y(X) = 3 gives h2(X) = 1.

The fact that the Picard number is one then follows, see the proof of
Proposition 4.20 of [22], for instance. ]

From this and the analysis in the beginning of Section 6.2, it follows that Kx is
numerically equivalent to —%M .
We want to check whether the log-canonical divisors

Kx +2M (case p = 3),
Ky +3M +3E (case p = 4),
Kz +3iM+1E+3F (case p = 6),

KW+A7+%F+%G+%H (case p = 00)

are ample.

For the case p = 3, we simply have Kx + %—M = 1M, which is clearly ample (for
instance, by the Nakai—Moishezon it is enough to show that its intersection with M
is > 0, but M2 = 24 > 0).

For p = 4, we have

Ky + AM + pE = ¢*(Kx + AM) + (3 — 6\ + w)E,

where ¢ is as in Definition 5.1. Since ¢*M = M + 6E, the right hand side is
linearly equivalent to

I\ ~ 1\ ~
(X—E)(M +6E) + (3—6A + pE = (A—-Z-)M + uE.
We check that the latter divisor is ample by the Nakai-Moishezon criterion. As
explained in Section 3.3 of [10], since Pic(X) = Z, it is enough to check that its

intersection with M and with £ is > 0.
Now we recall that £2 = —1 /3, and compute

(<p*(l—%)M4—(3—6k+,u)E)-l\7
- (<p*(A— %)M +(3—6A —I—[,L)E)-(qo*M _6E)
=(A—%)M2—6(3—6A+M)E2:§>0,
and

(w*(l—%)M—i—(B—()/l—{—u)E)-E:(3—6A+M)E2:%>0.
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The cases p = 6, p = oo are similar, simply with slightly longer computations.
The basis of the computation is

- 1
Kz +AM + AE + uF = (A—E)ga*M+(3—6)\+u)E+(2—4A+v)F,

and

Kz +AM +AE + uF +0G +oH = (z\—%)(p*M+(3—6)L+u)E
+2—-4A+v)F 4+ (4—6A+0)(G + H).
Also, for ¢: Z — X, we have
@*M = M + 6E + 4F,
and for p: W — X, we have

©0*M = M + 6E + 4F + 6(G + H).

6.4. Identifying the groups. In this section we briefly explain why the holonomy
group of the complex hyperbolic structures constructed by uniformization (using the
Kobayashi—-Nakamura—Sakai version of equality case in the Miyaoka—Yau inequality)
is isomorphic to the relevant sporadic triangle groups.

Theorem 6.3. Let I', be the group obtained from the statement of Theorem 5.5 for
p = 3, 4, or 6. Then I"), is conjugate to the triangle sporadic group 8(p, o1).

Proof. This follows from the description of orbifold fundamental group I'5, which is
generated by three complex reflections R, j = 1,2, 3 of order 2, such that:

e bl'(Rl, Rz) = 4, bI'(Rz, R3) — 3, bI'(Rg, Rl) = 3,
* RjR3R3 (has linear part which) is regular elliptic of order 8.

Given how the orbifold structure with holonomy I", is constructed, these same
properties will hold, with complex reflections of order p instead of order 2, except
that in the cases p > 2, the isometry R; R, R; is regular elliptic of order 8 (the
analogue of taking the linear part is then simply to view it as an element of the
stabilizer of its fixed point, which is isomorphic to U(2)).

The result then follows from Proposition 6.4, stated and proved below. ]

Proposition 6.4. Let I' be a lattice generated by three complex reflections R;,
Jj = 1,2,3 such that br(R{, Rz) = 4, br(R,, R3) = 3, br(R3,R;) = 3 and
R1 R Rj is regular elliptic of order 8. Then T is conjugate to the Thompson group
T (p, Ey), which is isomorphic to the sporadic triangle group 8(p, o1).
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Proof. First, the fact that 7 (p,E;) and 8(p,o01) are conjugate follows from a
suitable change of generators, in the same vein as in [17]; the details are given
in Proposition 7.1 of [11].

Any group as above must be conjugate to §(p, o1) or 8(p, a1), but the last group
is not discrete if p = 3 or 6 (see section Section 9.4 of [12]).

One checks that §(4,061) is not discrete either, for instance by showing that
M = R3R;R,J is regular elliptic but has infinite order (here Ry, R, and R3 stand
for the standard generators of 8(4,a1), and J stands for the regular elliptic element
of order 3 that conjugates R; into R;1). Indeed, one checks that

tr(M) = (V3 +i)(i — (1 +0)v2)/2:=7,
and
|7|* — 8Re(z?) + 18|7|> —27 = 88 — 64+/2 < 0,

so M is regular elliptic (see [15, Section 6.2.3]).

The characteristic polynomial of M is equal to A3 — A2 +TA — 1, and one verifies
that only one of its roots is a root of unity (namely —(i + +/3)/2). Indeed, the other
two roots have a minimal polynomial of degree 16, that is not cyclotomic.

Note that in § (4, 51), the element R3 Ry R, J is loxodromic (and indeed, we know
that this is a lattice, see [11]). |

Remark 6.5. The argument we just gave provides a short proof that §(p,oy) is

indeed a lattice for p = 3, 4, 6, a fact which was proved using heavy computer power
in [11].

For p = oo, Proposition 6.4 has the following analogue (recall that unipotent
elements are isometries whose matrix representative has a single eigenvalue of
multiplicity 3), which can be proved with very similar methods as in [12]. We
omit the details because the corresponding group turns out to be arithmetic.

Proposition 6.6. Let I' be a lattice generated by unipotent elements R, j = 1,2,3
such that br(Ry, Rz) = 4, br(R3, R3) = 3, br(R3, R1) = 3 and Ry Ry R3 is regular
elliptic of order 8. Then T" is conjugate to Thompson group T (co, Ey), which is
isomorphic to the sporadic triangle group § (00, 01).

The arithmeticity of the group & (o0, 01) is fairly obvious from the description
given in Section 3, where we give a generating set with entries in Z + i +/2Z. From
this it follows that the adjoint trace field is Q, hence the group is indeed arithmetic
(see [11], for instance).
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