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Kloosterman paths of prime powers moduli

Guillaume Ricotta and Emmanuel Royer

In memory ofKevin Henriot

Abstract. In [ 12], the authors proved, using a deep independence result of Kloosterman sheaves,

that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums
S (a, bo ; p)/p1 /2 converge in the sense of finite distributions to a specific random Fourier series,

as a varies over (Z//?Z)X, bo is fixed in (Z/pZ)x and p tends to infinity among the odd prime
numbers. This article considers the case of S(a,bo; p")/p'1^2, as a varies over (Z/p"Z)x,
ho is fixed in (TLjp"Z)x, p tends to infinity among the odd prime numbers and n > 2 is a

fixed integer. A convergence in law in the Banach space of complex-valued continuous function
on [0,1] is also established, as (a,b) varies over (Z/p"Z)x x (Z/pnZ)x, p tends to infinity
among the odd prime numbers and n > 2 is a fixed integer. This is the analogue of the result
obtained in [ 12J in the prime moduli case.

Mathematics Subject Classification (2010). 11T23, 11L05, 60F17, 60G17, 60G50.

Keywords. Kloosterman sums, moments, random Fourier series, probability in Banach spaces.

1. Introduction and statement of the results

The shape of the path induced by various partial exponential sums has been considered

by many people since the seventies. See for instance [13], [14] for the case of Gauß

sums, [15] for polynomial exponential sums of higher degree, [2], [1] and [4] for
the case of character sums. Very recently, E. Kowalski and W. Sawin successfully
investigated the case of partial Kloosterman sums of prime moduli in [12]. The main

purpose of this work is to consider the case of partial Kloosterman sums to prime

power moduli and to give a probabilistic meaning to graphs like the one given in
Figure 1l.

'The axes are orthonormal but a rotation by tr/2 has been applied to the real plot of t I-»-

KI672(r;(l,D).
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Figure 1. Plot of t Kl672(t; (1,1)).
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More precisely, let p be a prime number and n > 1 an integer. For a and b

in Z/pnZ, the corresponding normalized Kloosterman sum of modulus pn is the

real number given by

1 1 v—\ ax + bx\
K\pn(a,h):=—s(a,b-p) -^ £ e(—p^)'' 1 1<x<p" V ' 7

p\x

where as usual x stands for the inverse of x modulo pn and e(z) := exp (2inz) for

any complex number z. For a and b in (Z//?"Z)X, the associated partial sums are

the <<p(pn) pn~x(p — 1) complex numbers

E
1<x<j V 7

p\x

for j in Jnp := {j 6 {1,..., pn}, p \ j}. If we write Jnp {ji,..., j<p{pn)} with

jl < )2 < < j<p(p")

then the corresponding Kloosterman path ypn {a, b) is defined by

<p(p")-\

Ypn{a,b)= (J [K\ji-pn(a,b),K\ji+i;pn(a,b)\.
j=i

This is the polygonal path obtained by concatenating the closed segments

[Kljx;pn (a,b), Klj2lpn (a, h)]

for ji and /2 two consecutive indices in Jp. Finally, one defines a continuous map
on the interval [0,1]

t m* Klpn(t; (a,b))

by parametrizing the path ypn{a,b), each segment [Klji;pn(a,b), Klj2lpn(a,b)] for

j\ and j2 two consecutive indices in Jp being parametrized linearly by an interval
of length \/((p(pn) — 1).

For a fixed b0 in (Z/pnZ)x, the function a KIp«(*; (a,bo)) is viewed as

a random variable on the probability space (Z//?"Z)X endowed with the uniform
probability measure with values in the Banach space of complex-valued continuous
functions on [0,1] endowed with the supremum norm, say C°([0,1], C).

Remark 1.1. In particular, with our definition, Kl^« (0; (a, b)) is defined y

3 lim Klpn(f,(a,b)) Klp« (0; (a, b)).
t-y0 p"/2 \ p J

The Kloosterman path does not start at the origin, in contrast with [12].
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Let /x be the probability measure given by

F 2^° +

for the Dirac measure So at 0 and

(1.1)

2 f(x)dx
x=-2 \/4 — X2

for any real-valued continuous function / on [—2,2].

Theorem A (Convergence of finite distributions). Let n >2 be a fixed integer. For

any odd prime number p, fix an element bo in (Z/pn Z)x. Let (Uf^heZ be a sequence

of independent identically distributed random variables ofprobability law /x defined
in (1.1) and let Kl be the C°([0, 1], C)-valued random variable defined by

The sequence ofC°([0, 1 ], C)-valued random variables Kl/;« (*; (*, bo)) on (Z/pn Z)x
converges in the sense of finite distributions2 to the C°([0, 1 j. C)-valued random
variable Kl as p tends to infinity among the prime numbers.

Remark 1.2. We have chosen to parametrize the partial sums of the Kloosterman

sums so that successive sums always correspond to adding one more term. This

implies that partial sums at integers divisible by p are not defined. Another definition
would be to define Klj;pn (a, b) for all integer j and to interpolate in the usual way.
The geometric path, namely the image of t i-> Klpn(t\ (a, b)), would be unchanged
and there is no doubt that the same results hold for this different definition.

Remark 1.3. All the main properties of the random variable Kl are given in

Proposition 3.1. As already said, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [12] when n — 1 for a different random Fourier series

given by

where (STh)hez is an independent identically distributed sequence of random
variables of probability law p>sr, the classical Sato-Tate measure also called the

semi-circle law. The fact that K and Kl have the same analytic shape heavily depends

on the completion method. The fact that K and Kl are different on a probabilistic
point of view is not very surprising since Klpn (a, b) is a sum over a finite field when

n 1, which requires deep techniques from algebraic geometry, and a character

sum when n > 2, which can be computed explicitly via elementary but not so easy

techniques. Thus, the fact that Kloosterman paths of prime moduli and of prime
powers moduli behave differently on a probabilistic point of view is quite expected.

2Sec Appendix A for a precise definition of the convergence in the sense of finite distributions.

heZ*

heZ*
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Remark 1.4. Nevertheless, the referee kindly informed us that both this measure pt

and the random series Kl occur when dealing with the path induced by Salié sums

of prime moduli. In addition, let us recall that ptsr is the direct image under the

trace map of the probability Haar measure on the compact group SU2(C) whereas,

according to [8, Remark 1.2], /x is the direct image under the trace map of the

probability Haar measure on the normalizer of a maximal torus in S f/2(C).

Remark 1.5. In particular, choosing t 1, Theorem A implies that the normalized
Kloosterman sums K\pn(a,bo) get equidistributed in [—2,2] with respect to the

measure /x, as a ranges over (Z///iZ)x and p tends to infinity among the odd prime
numbers for a fixed integer n >2 and b0 is a fixed element in (Z/^>"Z)X.

Remark 1.6. It is worth mentioning that the proof of this theorem requires A. Weil's
version of the Riemann hypothesis in one variable. See Proposition 4.8.

The function (a, b) hv Klpn(t;(a,b)) is viewedasaC°([0, 1], C)-valued random
variable on the probability space (Z/p"Z)x x (Z/pnZ)x endowed with the uniform
probability measure. Theorem A trivially implies that the sequence of C°([0,1],
devalued random variables Kl^« (*;(*, *)) converges in the sense of finite distributions
to the C°([0,1], C)-valued random variable Kl as p tends to infinity among the prime
numbers too.

Theorem B (Convergence in law). Let n >2 be afixed integer and p be an oddprime
number. The sequence of C°([0,\],C)-valued random variables Klp« (*;(*, *))
on (Z//?"Z)X x (Z/pnZ)x converges in law3 to the C°([0, 1], C)-valued random
variable Kl as p tends to infinity among the prime numbers.

Remark 1.7. Once again, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [12] when n 1.

Remark 1.8. For a fixed n > 2 and a fixed b0 in (Z/p"Z)y\ we expect that the

sequence of C°([0, l],C)-valued random variables K\pn (*;(*, b0)) on (Z//?"Z)X
converges in law to the C°(|0,1], C)-valued random variable Kl as p tends to infinity
among the prime numbers too. Nevertheless, such result seems to be out of reach

given the current technology. It relies on expected uniform non-trivial individual
bounds for incomplete Kloosterman sums

for some 8 > 0 and where I is an interval of (Z//?"Z)X of length close to pn!2. See

[12, Remark 3.3] and [10, p. 52] for a discussion on such issues in the prime moduli
case.

In 112], the authors deduce from their limit theorems the distribution of the

maximum of the partial sums of prime moduli they consider. Their techniques would

3See Appendix A for a precise definition of the convergence in law in the Banach space C°([0, 1 ], C).
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lead to a straightforward analogue in the case of prime powers moduli investigated in
this work.

One can mention that it seems quite natural to consider the same questions in the

regime4 p a fixed prime number and n > 2 tends to infinity. This problem, both

theoretically and numerically, seems to be of completely different nature.

Finally, it makes sense to consider the distribution of paths associated to other

exponential sums of prime powers moduli and to ask whether a distribution result
remains true. For instance, one could be tempted to look at

where fa ga/ha with ga and ha in Z[x] depending on a parameter a modulo pn.
The symbol * means that the summation is over the elements x satisfying p \ ha(x).
These exponential sums can be computed explicitly. See [5, Lemma 12.2,

Lemma 12.13] for instance. One key step would be to evaluate asymptotically

for /i (n(r))xez/pnz a Pn-tuple of non-negative integers.

Organization of the paper. The explicit description of the Kloosterman paths is

given in Section 2. The relevant random Fourier series, which occurs as an

asymptotic process in Theorem A and Theorem B, is defined and studied in
Section 3. Section 4 contains the asymptotic evaluation of the moments of the

random variable Kl^« (*; (*, *)) whereas the tightness of this sequence of random
variables is established in Section 5. The proofs of Theorem A and Theorem B are

completed in Section 6. A probabilistic toolbox is provided in Appendix A.

Notations. - The main parameter in this paper is an odd prime p, which tends to

infinity. Thus, if / and g are some C-valued function of the real variable then the

notations /(p) C>A{g{p)) or f{p) <^a g{p) mean that \f{p)\ is smaller than

a "constant", which only depends on A, times g(p) at least for p large enough.

- n > 2 is a fixed integer.

- For any real number x and integer k, e^(x) := exp (—^—).

- For any finite set S, |S| stands for its cardinality.

- We will denote by e an absolute positive constant whose definition may change
from one line to the next one.

- The notation means that the summation is over a set of integers coprime
with p.

4Or even worse any intermediate regime.
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- Finally, if P is a property then 8g> is the Kronecker symbol, namely 1 if P is

satisfied and 0 otherwise.

Acknowledgements. The authors would like to thank the referee for her or his

unusually careful reading of the manuscript and very useful suggestions that improved
the presentation of the paper.

The authors would like to thank E. Kowalski for his encouragement and for sharing
with us his enlightening lectures notes [10]. They also thank F. Martin for fruitful
discussions related to Proposition 4.7.

Part of this paper was worked out in Université Blaise Pascal (Clermont-Ferrand,
France) in June, 2016. The first author would like to thank this institution for its

hospitality and inspiring working conditions.

2. Explicit description of the Kloosterman path

Let us construct the Kloosterman path y (a, b) for a and h in (Z/pn Z)x.
We enumerate the partial Kloosterman sums and define Zj((a,b); p") to be

the jth term of (Klj;pn(a,b))jejn. More explicitly, we organise the partial
Kloosterman sums in pn~x blocks each of them containing p — 1 successive sums.

Fori <k < p"-1, the kth block contains Kl(yt-i)^+i;pn («, Ä),..., Klytp-i;p« («, è).
These sums are numbered by defining

Z(k-i){p-i)+z({a, h)-, pn) KI(fc_Dp+e-pn (a,b) (1 < i < p - 1).

It implies that the enumeration is given by

Zj((a,b);pn) K\j+[j^];pn(a,b) (1 < j < cp(pn)) (2.1)

For any j e {1,..., cp(pn) — 1}, we parametrize the segment

] Zj ((a, b)\pn), zj+1 ((a, b); pn)]

and obtain the parametrization of ypn (a,b) given by

V? G [0,1], K\pn(r,(a,b)) aj((a,b);pn)^t - ^ ^ + Zj((a,b); pn)

with

oij((a,by,pn) ((p(pn) - \)(zj+1((a,b); pn) - zj((a,by pn))

and

i \{<p{Pn)-\)t\
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Since ]zj ((a, b)\pn), Zj+i ((a, h); pn)\ has length p "/2, we have

(2.2)

and

\K\pn(t;(a,b))-Zj((a,b);pn)\ < (2.3)

3. On the relevant random Fourier series

The moments of the measure /z defined in (1.1 are given by

(3.1)

Let U be a random variable of law /z on a probability space (£2, A, P). By (3.1),
the value of the expectation of such random variable is 0 and its variance equals 1. In
addition, /z is also the law of the random variable —U since the probability measure /z
is symmetric.

Let (Uh)hez t>e a sequence of independent random variables of law /z on a

probability space (£2, A, P). One defines for t in [0,1] the symmetric partial sums

for any integer H > 1 and any w e Q. Let 1 e [0,1] and o> e £2. If Kl//(t; co) has a

limit when H tends to infinity, we denote by Kl(f ; co) this limit, namely

It turns out that Kl(t;a>) is closely related to the set of Fourier random series,
which have been intensively studied in [6].

Proposition 3.1 (Properties of the random series). The following properties hold.

• For any t in [0, 1 ], the random series Kl(t ; *) converges almost surely, hence in law.

• For almost all a> f2, the random series Kl(*; co) is a continuousfunction on [0,1],

• For any t in [0,1], the Laplace transform

is well-defined/or all non-negative integers A and /z. In particular, Kl(*;a>) has

moments ofall orders.

1 <\h\<H

E/eA9t(KI(f;*))+/xa(Klp;*



Vol. 93 (2018) Kloosterman paths of prime powers moduli

• Finally, for any t in [0,1],

501

||KM*;*)||oo «logtfO (3-2)

and

|E(|KI(f ; *) - KlH(f, *)|)| « H~1/2 (3.3)

for any H > 1.

Remark 3.2. In particular, the map

Kl: (Q,A,P) -> (C°([0,1],C), IMIoo)

Kl(*; co): [0,1] -> C

t » Kl (f;cw)

defines a random variable on the probability space (12, A, P) with values in the

Banach space of continuous complex-valued functions on the segment [0,1] endowed

with the supremum norm ||.||oo-

Remark 3.3. The proof is omitted since it is very close to the proof of [12,

Proposition 2.1]. The reader may have a look at [10, Section 4] too.

4. Asymptotics of complex moments

In this section, k0 is a. fixed element in (Z/p"Z)x. Let k > 1 be a fixed integer,
t (t\,..., t/ç) be a fixed k-tuple of elements in [0,1] with t\ < ••• < tk, n
(n i,..., nfo) and m (m i,..., mk) be two fixed /c-tuples of non-negative integers.
Let us define

k

t(m + n) := ^ (m,- + «;).
i l

The purpose of this section is to find an asymptotic formula for the complex
moments defined by

j
k

m.
Mpn(f,m,n;bo) := — Y\ Kl/>»(?i; (a,b0)) '^»(f,; (a,b0))n'.

' ae.(2j/pn Z)x i=1
(4.1)

The following proposition describes the asymptotic expansion of these moments.
Its proof will be given at the very end of this section since it requires a series of
intermediate results.
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Proposition 4.1 (Asymptotic expansion of the moments). If

p > max (l(m + n), 2n — 5) (4.2)

then

k

Mpn(t;m,n,h0) eT ]~[ Kl{tr, *)m'KI(f,; *)"' \
N' 1

'

+ Ol(m+nU(\og^m+n\p'%p-^+< + p-"2))

for any e > 0 and where the implied constant only depends on l(m + n) and e.

Fora in (Z/pnZ)x, let us define a step function on the segment [0,1] by, for any
k {1,..., pn~1},

I<i^(';(«'ôo)):=-L £ epn(ax + b0x), (4.3)
V/ 7 J 7 1<*<**(0

where

Xfc(t) := <K/?")f + k - 1.

In addition, let us define for h in Z/p"Z and 1 < k < p"_1,

Vf G (y.-Irl. otpn{h\t) := X) V'(Äx). (4.4)

These coefficients are nothing else than the discrete Fourier coefficients of the finite
union of intervals given by 1 < x < Xk(t) with (p, x) 1 for 1 < k < pn~l. All
their useful properties are encapsulated in the following lemma.

Lemma 4.2 (The completion method).

• For Hpn any complete system of residues modulo pn,

Klpn(t;(a,h0)) —^ ^ apn(h\t)K\pn(a - h,b0). (4.5)
^ hHpn

• For any integer h and any real number t e [0,1],

a„n(h',t) < pn72 x
I ^ '

(4.6)
(2M' & \h\ - (p" ~ l)/2andh ^ 0.

• For any integer h and any real number t G [0,1],

-Lapn(h;t)==ß(h;t) + o(-^y (4.7)
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where

(f h 0,

\eJ2êr> otherwise.

Remark 4.3. The proof is omitted since it is very close to the proofof [ 12, Lemma 2.3,

Proposition 2.4]. The reader may have a look at [10, Section 4] too.

Let us also define the corresponding moment

] JL. m,
Mpn(t;m,n-,b0) := ^2 11 («, V)) Kl(a,b0))ni.

^ P ' ae(Z/p"Z)* i l
(4.8)

The following lemma reveals that it is enough to prove an asymptotic formula
for Mpn (t;m,n;ho).
Lemma 4.4 (Approximation of the moments). One has

— f\ogl(m+n)(pn)\
Mpn(t-,m,n;b0) Mpn(t;m,n;b0) + Ol J.

Remark 4.5. The proof is omitted but relies on Lemma 4.2, which implies that

\apn(h;t)\ < Apn/2\og{pn) (4.9)

hEHpti

for Hpn {(1 — pn)/2,..., (pn — l)/2}, which is admissible since p is odd,
and is close to the proof of [12, Proposition 2.4], The reader may have a look at

[10, Section 4] too. Note that both Lemma 4.7 and (4.9) entail that

\K\pn{p,(a,b)) - \%n(t-{a,b))\ < (4.10)

for any a, b in (Z/pnZ)x and any t 6 [0,1].
The crucial ingredient in the proof of Proposition 4.1 is the asymptotic evaluation

of the complete sums of products of shifted Kloosterman sums Spn (p, ; b0) defined

by

Spn(fi]b0) := —Y2 FI kip"(« + L^o)m(t) (4.11)
^ P ae(Z/p"ZY reZ//i"Z

for p. (p-{t))TeZ/p"Z a sequence of pn-tuples of non-negative integers different
from the 0-tuple.

The following notations will be used throughout this section. Let us define for
such sequence p

T(p) := {r 6 Z/pnZ,p(r) > 1} C Z/pnZ,
T (p) := {t mod p, re T(/t)} c Z/pZ.
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Let Bpn(fi) be the subset of the |T(/i)|-tuples b (fiT)reT(/t) of integers in

{1,..., (p — l)/2} satisfying

V(i,r')eT(jt)2, b2 — r b2, — x' mod p (4.12)

and

Vre TOO, p\b2- r. (4.13)

Ixtf (ix)xeiQi) bea |T(/i)|-tupleof integers. For any integer / in {1,..., n — 1},
let us define

mb,i(JJ)=
1

(4-14)

reT(/i)

and the the following associated object

1 (4-15)

beBpn (p.), mj,,i (1,1)=U) mod p
Vy{2,.mhi (j,j)=0 mod p

for any w modulo p.
Finally, let

Apn(n) := {a e (Z//Z)x,VreT(/i),a + r6 ((Z//Z)x)2}. (4.16)

Firstly, let us prove and recall some useful facts related to Kloosterman sums of prime

powers moduli.

Lemma 4.6 (Kloosterman sums of prime powers moduli). Let p be an odd prime
number satisfying p > 2n — 5 and a be an integer.

• If a is divisible by p or a is not a square modulo p then Klpn {a, 1 0.

• Ifa is a non-zero square modulo p then

IV(fl,l) 2(-^)cos (i^£ + 0^),

where

\0, if 2 I n or p 1 mod 4,
0pn {

In/2, if 2 \ n and p 3 mod 4,

and s is any solution of
s2 « mod pn.

• 77ze bound

|1V(<1,1)| <2 (4.17)

holds.
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• Let a be a non-zero square modulo p. There exists some integers c'(),, c'n_l
satisfying

Vm G {0,...,« — 1}, c'm 0 and vp(c'm) — 0 (4.18)

and some integers k and b G {0,...,(/? — 1 )/2} depending on a and p so that

n—1

sa,Pn=bYJc'mb2mpmkm (4.19)
m=0

is a solution ofs2 a mod pn, where b stands for the inverse ofb modulo pn.

Proofof Lemma 4.6. The three first items are standard. See [5, Ch. 12, Eq. (12.39)].
In particular, recall that a is a non-zero square modulo p is equivalent to saying that a
is a non-zero square modulo pn.

Let us consider the last one. The elements of ((Z/pZ)x)2 are given by

b2, 1 < b < (p - l)/2.

Thus,

a b2 mod p

for some 1 < b ba,p < (p — l)/2 so that

a b2 + pk

for some k ka^,p in Z. The congruence to be solved becomes

s2 a b2 + pk b2{ 1 + b2pk) mod pn

where b stands for a representative of the inverse of b modulo pn. Let us define the

p-adic integers5 \,c\ — \/2 and

(-ir~1(2m-3)! _ 1/2(1/2— 1)... (1/2 — m + 1)
— ' m

22(>m~1lm\(m — 2)! m\

Obviously,
2m — 3

Vm > 1, cm cm-1
2m

so that
Vm e{0,...,«-l}, vp{cm) 0 (4.20)

since p > 2n — 5. If x G pZ^, then, by [9, Chapter IV. 1], the power series

cxm eIjpix 1

m> 0

5Recall that the prime p is odd.
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converges in the p-adic norm to a square root of 1 + x. As a consequence, one has

n-1
S =bJ2 c'mb2mpmkm m"d P">

m—0

where the coefficients c'm are some integers satisfying c'Q 1, and

V/77 > 1, c'm cm mod pn, 0 <c'm< pn.

In particular, if 0 < m < n — 1, then

c'm ^ 0 and vp(c'm) vp(cm) - 0

by (4.20).

The following proposition contains the upper-bound for l\l(ju,,f; in) defined
in (4.15).

Proposition 4.7 (A counting argument). Let p. (p(r))Tei/p»z be a sequence of
pn-tuples ofnon-negative integers satisfying |T (fi)\ |T(/x | and t a \T{fi)\-tuple
of integers satisfying

VreT(p), \tx\ <p
and I 0. One uniformly has

NQu.,f;u;) «|T(#t)| 1

for any w mod p where the implied constant only depends on |T(/a) |.

ProofofProposition 4.7. Let k := |T(/i)| for simplicity.
Let us assume that k 1. In this case, T(p) {r0} and one has

fT()//To 1) s in mod p,

which fixes the value of hZQ since fT() is coprime with p.
Let us assume from now on that k >2. One has

E E '• (4.21)
c mod p, beBpii (/t), m/,(l,l)=u> mod p
Cp>c)=1 Vye{2,...,n—1}, mj(y,y)=0 mod p

VreT(|i), bz=c+r mod p

Note that for a fixed c, there is at most one tuple b since their coordinates satisfy the

given quadratic equations modulo p. The basic idea to show that there is a bounded
number of integers c modulo p is to find a polynomial, which vanishes on these c's
and whose degree only depends on k.
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Let us consider the polynomial

Q(a;X)= n p[a,X]
e=(fr)reT(/t)6{±l}A' rT(/t)

in the variables at, r 6 T(/r), and X.
This polynomial can be written as

Q(a;X) £ Ô;(«)*2,'+*2*
!=0

where (9, e F^ [a] is a homogeneous polynomial of degree 2k —2 i for 0 < i < 2k~x,

which only involves even powers of a,- (0 < i < k). The fact that only even powers
of X occur easily follows from the fact that if e belongs to {±l}fc then so does —e.

The fact that each monomial only contains even powers of a; for 1 < i < k is due to
the obvious invariance property given by

Vee{±l}*, Q(e.a-X) Q(a-X)

where stands for the coordinates by coordinates product between tuples.
The previous discussion implies that

/ \2k 2k~X \2k
fl£(r;X):=( f] Yx\ Q{t.Y-l-X)=YJRiAV)X2i + [ ü YA ^

TT(/i) i=0 r6T(/r)

where Y (FT)reT(#t) and Y_1 (Y~y)zeT(ll) and for 0 < i < 2k~l,

Rij e F/?[F2] is a homogeneous polynomial of degree (k — \)2k + 2i, which only
involves even powers of Yx for r e T(//,). Here, F2 (F2)r6T(/t).

Let us denote by x/r the ring morphism from FP[Y2] to F/)[Z] defined by

Vr T(/t), f(Y2) Z + t.

Let us assume that (p, w) 1. Note that if the tuple b satisfies the constraints

given in (4.21) then Ri(b\w) 0 since the contribution of e — (1,..., 1) in

<2(f .ft-1; u>) is exactly u;—n?^(l, 1) 0 mod p. Thus, eis a root of the polynomial

ty(Rt(Y;w)), which is of degree k2k~y and leading coefficient w2k ^ 0 mod p.
As a consequence, the number of c's in (4.21) is less than k2k~y.

Let us assume that w 0 mod p. Let tq in T(/t) satisfying

p\l ro>

which exists by the conditions of the tuple i.
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Let us consider

/ _
S*(F):=( [] YA Q(lY ;£Tör-1)eFp[Y,Ytö],

V
TT(|l) '

where Y
1

(Fr"1)rsT(/t)\{r0} and l WtOi)\{to}- This polynomial is

homogenous of degree (k — \)2k~x and only involves even powers of Yt for r T (//,).

Thus, the polynomial U \js(Si(Y)) G F/,(Z) is of degree less than (k — \)2k~2.
Let us show that this polynomial is of degree at least one. If not, all the coefficients
but the constant one of the polynomial U vanish. If the tuple h satisfies the constraints

given in (4.21) then Si(b) 0 because of the contribution of e (—1,..., — 1)

in Q{i.Y ;£ZoT"1). This implies that U(c) 0 and that U is the constant

polynomial of value 0. Choosing Z — To leads to

n ~ t°^1 ° m°d p
reT(/t)
r^r0

so that

lTo s 0 mod p

since the r's are distinct modulo p. This is a contradiction.

Finally, the c's satisfy the polynomial equation U(c) 0 of degree at least 1 and

less than (k — \)2k~2. As a consequence, the number of c's in (4.21) is less than

(k - \)2k~2.

The following proposition contains the asymptotic evaluation of the cardinality
of the set kpn (/a) defined in (4.16).

Proposition 4.8 (Applying A. Weil's version of the Riemann hypothesis). Let pt

(l<t-(T))zeZ/p"r£ be a sequence ofpn-tuples ofnon-negative integers. If p is odd then

IV (/*) I 1 + o(2'T7r)l)). (4-22)<p(pn)(
2lT(/OI V

Remark 4.9. The equation (4.22) is an asymptotic expansion if and only if

p 1/2

as p tends to infinity among the prime numbers.

(4.23)
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ProofofProposition 4.8. Obviously,

IAp»(fi)\ pn~1 1

ae(
x\2VrGT(/i,), û+tg((Z//?Z)x)

/>"-' E 1

16(
\x\2V/GT(/t),

^_1 E W\(X2{a + t) + \),
16T(/i),

(a+/,/>)=l

where /2 is the quadratic character modulo the odd prime number p.
At this point, the problem becomes a variant of the question considered

by H. Davenport in 1931 of counting elements x modulo p such that both

x, x + 1,..., x + k are quadratic residues modulo p uniformly with respect to the

integer k > 1. See for instance |7, Section 1.4.2]. Thus, the end of the proof is

omitted.

The core of the proof of proposition 4.1 is the following result.

Proposition 4.10 (Moments of shifted Kloosterman sums). Let p (p(r))tez/p"Z
be a sequence ofpn-tuples ofnon-negative integers satisfying

E < M (4.24)

reZ/pnZ

far some absolute positive constant M and |T(/r)| |T(/t)|. If
p > max (M, 2/2 — 5) (4.25)

then

SPn(p\b0) 82^L(r)/2 + ' (4'26)
<p(Pn)

l-zeZ/p"Z

far any e > 0 and where the implied constant only depends on M and e.

Remark 4.11. In particular, for any non-negative integer m,

—- K]P"(a'ho)m hmJ /\ + Ora>e(//—+£) (4.27)
YKI ' a6(Z//>"Z)x V ' /

for any e > 0 under (4.25). In other words, under the same assumption,

' £ K\pn(a,b0r E(Um) + Om,e(p-^+£),
(p(pn)rv/ ' ae(Z/p"Z)x
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where U is any real-valued random variable of law the probability measure /x defined
in (1.1). Hence, by (3.1), the normalized Kloosterman sums K\pn(a,b0) become

equidistributed in [—2,2] with respect to the measure /z as briefly indicated in
Remark 1.5. Such equidistribution result was stated without proof in [8, Remark 1.1].
This measure has already occured in [8], where the author proves that the twisted
normalized Kloosterman sums Klpn {a, /) for a fixed a in Z/p"Z and x ranging over
the Dirichlet characters of modulus pn get equidistributed with respect to /z as p
tends to infinity.

Remark 4.12. It follows from the results proved in [3] that if 1 < m < pn~l then

where U is any real-valued random variable of law the probability measure /z, which

agrees with (4.27).

Remark 4.13. For any integer r > 1, any non-negative integers m\ mr and any
distinct integers x\,..., xr, the previous proposition implies that

for any e > 0 and for any sequence of real-valued independent random variables

(Ui)i<i<r of law the probability measure /z under (4.25) provided that

In other words, the r-tuple (Klpn(a + r,-,£0))i<j<r gets equidistributed in [—2,2]r
with respect to the measure p..

ProofofProposition 4.10. Fi rstly,

since b0 is coprime with p. The change of variable a' b0a in Spn(fi; b0) combined
with the change of multiplicities

E(fl (/,"") / 4(/i—1) y

+ Omi-\ \-mr,\P 2n

p > max \Xi — Xj
1 <ij<r

Klpn(a + x,b0) Klpn(b0a + bQx, 1)

/z(r)
/z(r'), if x b0x',

0, otherwise

for x e Z/pnZ implies that one has to prove this proposition only for b0 1. Thus,
b0 1 up to the completion of the proof.
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Let us come back to the moment Spn (ft). By Lemma 4.6,

511

Jp•w~ e n (£)'
bCBpn(n) rST(/t)

aeZ//?"Z, reTOt)
VteTfit), a=bx—z mod p

e n (2cos(^+^))"w.

Recall that s^+x p„ a + r mod pn. In addition, the second condition in (4.13) is

satisfied since a has to be coprime with p.
Now, recall that6

M /M\
(2 cos (x))M ^ I I cos ((M - 2m)x)

m=0\m/

for any real number x and any non-negative integer M. Thus,

v(")=^ e n (^)
Y1 J

beBpn{p) zeUp) '

bT \^W

/i(r)

e n e '>N-«(T+«*)]•asZ/^Z rsT(/i) uz=0 V r / P

VrST(/t), a=bx—z mod />

(4.28)

One can split S^« (/r) into Spn (/r) MTP" (fi) + Err^» (fi), where

e n (£)
beBpn(n) T6T(#i) '

bT \MO)

e n e (f yas[MT)-2
a&l*lpnIi reT(/i) 2ur=/x(r)

VT6T(/t),a=fe2_T mod />

and Err^« (/r) is the remaining term. Note that MT^« (/i) is nothing else than the term
obtained when the multiplicities ji(x) are even and ux — /x(r)/2.

6The referee kindly informed us that this expansion can be interpreted as an expansion in terms of
Chebychev polynomials of the first kind, which are orthogonal polynomials for the measure \x.
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Let us start with MT^n 00. Obviously, MT^« (fi) 0 unless

Vr g T(/l), 2 | /x(r).

Hence

|Apn (H)\
MTpn(jl) n

LreT(#i)

l*(t) V

\fi(x)/2 Hp")

Let us bound Errpn(p,). Trivially,

Errpn(fi) <£m sup Err
*6rireT(//.)[-rt0)>/4r)]

1+ 0

where

Errpn(fi,t) — ^2 ^2 ep"i ^2 ^s"+r,P',J' beBpn(ll) a&Z/p"Z VreT0t)
Vr6T(/r),a=f)^—x mod p

beBpn (ll)

for any |T(/r)|-tuple I of integers with the properties written above.

Let us fix from now on a |T(/r)|-tuple I (fr)rsT(/i) of integers different from
the tuple 0 and satisfying

Vr G TOt), \tx\ < l*(t) < M < p (4.29)

by (4.24). Let r0 be a fixed element of T(/i). For b in Bpn (p.), (4.12) implies that

Vr G T(/t), 3c/t g Z, bz- r b^Q - r0 - dtp.

One gets a |T(/r)|-tuple d (dr)z6T(/t) of integers. The change of variables

a />r2 - T0 + upro

with m mod /j"-1 so that

a T r Z?^0 - r0 + up + r bz + (dz + u)p



Vol. 93 (2018) Kloosterman paths of prime powers moduli 513

and (4.19) entail that

Errpn(jL,l,b)= J2 eP"( Jl l^Hdr+u)p,p")
u mod pn~1 rsT(/t)

Y eP" Y lxbx Y C'mhr2mPm{dr + W)m)

u mod pn~1 rT(p) m—0

ePn(Pb(u))
u mod p"~1

where
n—1

Pb(u) := J2 Y c'mbr2mpm(dr + u)m (4.30)

reT(/t) m=0

is a polynomial in the variable u of degree less than n — 1 with integer coefficients.
Note that all the quantities defined here and below depend on the tuples fi,l,b and d
but we only state the dependence on b for simplicity. One can check that

n—1

Pb{u) Y^aj(b)uJ,
j=o

where

V; G {0,1}, aj(b)= ^ {^jc'rmb(r, j)pr

and

Vy e {0,— 1}, Vr G — 1}, mb(r,j)= ^ lTbT2r
1

drr~].
tsT(/r)

An important fact is that /V divides ay (b) for any y G {0,.... « — 1}. Note also that
when r j, the quantity «n(r, y gets simpler and does not depend on the tuple d
since mb(j, j) mb^(j,j) previously defined in (4.14) for 1 < j < n — 1. In

particular,

mô(l, 1) fT/?T.

r6T(#i)

Let us define

y'(ô) := sup({y G - 1},/?" I ay(£)}) G {1,..., n — 1} U {-oo}.
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Having this notation in mind,

Eri(pn(ji,l,b) Y eP"( Y Uj(b)uJ
u mod pn~' j— 0

This new polynomial in the exponential sum is still denoted by Pb(u) for simplicity,
even though some terms are missing.

The strategy to find an upper-bound for Err^n (/z, t is to decompose it into

ErXpn(jL,l) -Y- Y lErr/»"(/t''i)l + ^T Y lErr/,»(M,A)|
' beB„n(ii), ' beBpn(n),

j(b)=-oo j(b)=1

+ E l&v(f.Z4)l (4.31)
J

b<EBpn(n),
j(b)e{2,...,n-l}

and to proceed as follows.

• In the first term of (4.31), the exponential sum Errpn (//,, I, b) is bounded trivially
by pn~x but the counting of the tuples b is done carefully;

• In the third term of (4.31 Weyl's differencing process enables us to find an upper-
bound for the exponential sum Err^» Qi,l,b) and the counting of the tuples b is

done trivially by 4C p. Note that this term only occurs if n > 3.

• In the second term of (4.31), both the exponential sum Errpn(fi,i,b) and the

counting of the tuples b are handled carefully.

Let us define N pn~x for simplicity.
Let us begin with the third term of (4.31). The purpose is to show that if

b G Bpn (fi) with j(b) G {2,— 1} then

Errpn(/L,t,b) «e (4.32)

for any e > 0 and where the implied constant only depends on e. For these tuples b,

Pb(u) is a polynomial of degree /(b) and leading coefficient divisible by p^h\ Let
us define cij(b)(b) pk<*j(b) where j(b) < k < n — 1 and p \ ctj(b)- We are

tempted to apply Weyl's differencing process (see 116]). By [5, Proposition 8.2]),
one gets

|Eri'pn(jL,l,b)\ < 2N x £2'~,l,'>, (4.33)

where

E :=
AJ jib) Z-J \ ' 11 pn-j(b)

-N<eu...,ij(h)- i<n 1
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As usual, || * || stands for the distance to the nearest integer. The contribution to ^j(b)
of the integers satisfying I\ lj(b)~t 0 is trivially bounded by 1 /N. Up to this

error term,

E ^l(b) J2 dm^(t) nan (n,
0^|1\<NJU>>-1

j («—i)0'W—i)—i

-1\
pti—k

L L | J
r n ~ //,. IT »7*^-1 *

NJ(t>)
i= 0 0^\l\<NJ(h)

p' I If

(n-l)(y'(ft)-l)-l UhWf ,-K
E EN i(f>)
i=o 0^Ki<Ä=l

Pl
(P,t)=i

The contribution to E of the non-negative integers i less than n—k — l can be written
as

E EN j(b)
0<i<(i—l)O(ft)—1)—1, |„|<(pn-k-i-l)/2,

i<n—k—\ {p,v)=l

£ djM-ttfl) min (v,IIo^\l\<NKh)~\
Pl

n—k—il=ttj(b)j(b)\v mod p

and is bounded by (pN) /N. The contribution of the remaining integers i is trivially
bounded by (pN)/pn~k, which is less than (pN)/N. As a consequence,

\Errpn(ji,t,b)\ <<e (/WrA1-2'"^' < (PN) N1'22'",

which implies (4.32).
About the first term of of (4.31), let us show that

-2- •£ |Err,„(M.S}l« -£2N(M;0), (4.34)
2é6Bp„(A), 7

j(b)=-oo

where N(/r,f ; w) is defined in (4.15) for any w modulo p. The exponential sum
in (4.31) is trivially bounded by p"~1. Now, let b in Bpn(p,) with j(b) —oo.

If 1 S j < n — 1 then pn divides aj(b), which implies that

c'jmb(j, j) 0 mod p

and mb(j, j) 0 mod p since c'j is coprime with p for p > 2n — 5 by (4.18). This
implies (4.34).
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Finally, let us prove that

rtT) E .«>>1 «^ E
rKI ' beBpn(ß), ' k=1 „mod/-",

1 1

y'(é)=l (/>w)=l
(4.35)

For these tuples b, P/, (u) is a polynomial of degree 1 and leading coefficient divisible
by p. By [5, Equation (8.6)],

Errpn(fi, I, b)\ < ^min (lN, ||-^|| (4.36)

so that

n— 1

J2 \ETTpn(ll,l,b)\ < J2 J2
k=1 beBpn(p),

Pk\\a\(l>)
beBpn(p)
m=i

flt(A)/p*
nn—k

-1

n—1

E E
fc—1 u mod p" Ä

E nn—k

beBpn(p),
(p,v)= 1 a, (fi)/pk=xj mod pn~k

-1

n—1

S jj,
u mod pn ", b&Bpn(p),

(p>v)=1 ai (b)/pk=v mod p"~k
k=1

E '•

Now, if b in B/,n(/i) satisfies a\(b)/pk v mod pn~k then this implies
CjWft(l, 1) a\(b)/p vpk~1 mod p with coprime with /? by (4.18). This is

exactly (4.35).
By (4.31), (4.32), (4.32) and (4.34), one gets

4(n —1)

Errpn(fL,t) <£e p 2« + N(M;0)

+ Ei E à (431)
k=\ v mod pn~k,

(P,v)=1

for any e > 0. Everything boils down to bounding N(/r, I ; in) uniformly with respect
to w mod p. Proposition 4.7 implies that

4(n—1)
Errp"(fi,l) <^e p 2« +e

for any e > 0.
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The following lemma will be used in the proof of Proposition 4.1.

Lemma 4.14. Let M >2 be an integer. Ifa h is a sequence of real numbers indexed

by non-negative integers satisfying

VAe N, 0 < < IV
14, otherwise,

then
M logM (pn)

X! n ahi <<:

0<Ä1 i 1 '
3i ^ j, hj =hj mod />,

hi¥=hj

ProofofLemma 4.14. Let us proceed by induction on M. If M 2 then

„ l°ë (P"'1) log (pn) log (p"-1)
S2 2a0 ah+ y ahah<îg 1

' P P
\<h<p", l<huh2<p",

p\h h\ s/j2 mod />

Let us assume that M > 3. We use the combinatorial identity given in [11,
Lemma 7.1 J, which entails that

M S

Sm E Z E rK:>
j=1 creP{M,s) 0<hi,...,hs<pn, »=1

li^j, hi=hj mod p,
hi^hj

where
Vu e {1,..., s}, au := |ct_1({u})|,

and for 1 < s < M, P(M, s) stands for the set of surjective functions

ct: {1,..., M} -> {l,...,s}

satisfying

V./ G {1,... ,M}, o(j) 1 or < /, o-(y') o(fc) + 1.

The sum over h\,... ,hs can be decomposed into

E U<:+ E FK"+ E n
0<h\,...,hs<p", u=1 0<A I ,...,hs<p", u=1 t<h\,...,hs<p", u—1
h\,...,hs distinct, Al distinct, Ai distinct,

3<o,^;o=0, 3io,Ä/0=0, 3j'V7, hi=hj mod/)
3y/ù)i hj=0 mod /> Vi^i'o, p\hj,

3; ^J4i(h hi =hj mod />

s
<ru

Uh"w
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The first sum is trivially bounded whereas the second and third sums are bounded by
induction. This gives

« £ J2 ("logJÎ~2^n^log(/;"~^ I

1°gJ"2(/?,')loë(/>"~1)

s=l aeP(M,s) ^ P P

|

log*"1 (/>") log (/>"-')
)•

which ensures the result.

Let us give now the proof of Proposition 4.1

Proofof Proposition 4.1. By Lemma 4.4, it is enough to consider Mp« (t,m,n, h0).
Recall that Hpn {(1 - p")/2, ...,(pn- l)/2}. By (4.5),

Mpn(f,m,n;b0) nt(m+L2
rPn^'l^pn) ^

k / \mi f \n'n e apn(ui;ti)K\pn(a-Ui,b0)\ I ^ apn {vp, U)K\pn (a-vi, h0) J

i l Ui&Hpii ViSHpii

since the complete Kloosterman sums are real numbers. Expanding the powers, one

gets

j k

m b,)= eh e'

e n Up" («!>,- ; ti) Klpn (a - Ui,e, ho)

"i=(vi,ie'=1
ni

J 1 upn (vitf. ; f,) Kip« (a - viJi, h0).

fi=t

Let us set for 1 < i < k,

hi (hip, hi>m., + \,
/ \ ^- rrmi+ni

— (Wi,l, • • • ^i,mi ty',1 > • • • > Vi,ni ^ Hpn

and

h (hu...,hk)e HlJ,r+n).
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Exchanging the order of summations, one is led to

I
k mi

Mpn(t;m,n;b0) e(m+n)/2 £ fl Y\<*P"(hi,i>ti)
heHe<tn+n) < 1 J 1

P

mi+rii j k mi+rii
PJ dp" (hij; ti) £ PJ J~[ K\pn(a — hij,bo).

j=m,+l ^ ' ae(Z//>"Z)x i l j 1

By Lemma 4.14 and (4.6), the contribution of the tuples h different from the

tuple 0 and whose components are not distinct modulo p is bounded by

log^+»V) M _<£(m+n) : (4.38)
P

where the implied constant only depends on t(m + n).
Thus, up to all the previous error terms,

J
* k mj

wÇn(r,m,n-,b0)
<(m+,)/2 £ nn^M)

heH^+nU=lj=l
mj+ni j k mi+n/

P[ apn(hij;ti) —— £ f] Fl K\pn(a-hij,b0), (4.39)

j=mt +1
*

ae(Z/pnZ)x i l j 1

where the * means that the summation is over the tuples h (/z;j) i<;<yt whose
1 <j<mi

components are either equal or distinct modulo p, namely

hij hkit or p \ hij - hkj

for any (i, /') / (k, t) in the relevant ranges.
Note that by (4.11

j
k mi+ni

; y PI PI K\p"(a — hij,bo) — Spn(fih',bo),
' as(Z//?"Z)x 1=1 7 1

where p,k (phi^xez/p»z is the p"-tuple of non-negative integers dehned by

k

Vr e Z/pnZ, (t) := £|{j G {1 m,- + «/},-A,-j r mod /?"}|.
Ï 1

Note also that

£ Ph (j) Km + «)
xeZ/p"Z
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so that

|{t mod p, x eJj/pnJj,pLh{i) > 1}| |{t g Z/pnh,PhV) > Ul < (m + n)

according to the property satisfied by the relevant tuples h in (4.39).
Hence, one can apply Proposition 4.10. By (4.6), the contribution of the error

term is bounded by

«Km+nU logl{m+n\pn)p
4(n—1)

2n +e

for any e > 0, where the implied constant only depends on i(m + n) and e. Thus,

up to the previous error terms,

j
k mi

M^n (t-, m, n; ho) „(w+„)/2 E fl fl„nl(m+n)/2
heH^n+n) i 1 J 1

mi+"i r- I \ \~
n UpnQtijUi) n 52|/x/,(r)(/T(r)/2)

j—mi + i '-zeZ/p"v, >' /-
|A/>" 0**00)1

where Apn (/z^ (r)) is defined in (4.16).
Let us apply Proposition 4.8. By (4.6), the contribution of the error term is

bounded by

\ogt{m+n) (pn)
<t(m+n)

VP

where the implied constant only depends on i{m + n) and, up to all the previous
error terms,

j
k m,

Mjn (t ; m, n; ho) l(m+n)/2 E U 11 apVhijUi)
heHu'"+n) i=l i=lpn

mt+rii |-

]~I apn(hij',ti) ]~[ 82\ßi, (r) I

j=mi +1 *-reZ/p"Z

It should be pointed out that the fact that

\T(lih)\ |T(/tA)l

PhV) i

PhV)/2)

1

2lT0*/.)l
'

is crucial since recognizing the moments of the measure /z requires the left-hand side

of the previous equation whereas the right-hand side appears by Proposition 4.8.
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By (3.1),

j * k m,

M^(f,m,n;b0)= ,(m+„)/2 E H il
heHu,'n+n) i 1 J 1

pri

nti+rii k mi+ni"O T/t; / i\, x

]~[ oipn(hij-, ti) E f ]~[ ]~[ Uhi j j
7=m,+l Vi l 7 1 7

for any finite sequence of real-valued independent random variables (Uh)hez/pnz of
law the probability measure /.i defined in (1.1). The fact that

k mi+nj

e(
i 1 j=1 7 yxeZ/p"

has also been used. One can add the missing tuples li at the admissible cost given
in (4.38) so that, up to all the previous error terms,

/ k mi+ni

(u nO=E( n",*>)
i l 7 1 7 reZ/p"Z 7

k

nnt(m+n)/2
heHeri'l"+") 1 1 7 1

j
k mt

M,"(f;in,«;feo)=b E rUlvfeD
mi+nt k mi+nt

n ^(/iu;q)iE( n n^,7 •

7=m, + l ri' l 7 1 7

Let us approximate the coefficients apn (h;t). By (4.7) and (4.6), one gets, up to
all the previous error terms,

j
k mi

Mpn(f,m,n-,b0)= l{m+n)/2 E lin ß&iJ*)
h<EHu+n) 1 1 7 1

pll

mi+ni / k mi+ni i £(m+ii)_l _.

n ßihtj-.u) e( n n ^ )+<W)(g p„ 0-
7=m/+l Vi=l 7=1 7 '

Reverting the computation done at the very beginning of the proof of this proposition,
one is led to

Mpn(f,m,n;b0) K1 pn-1 (U)"1' Kl Pn-1 (q)"'^

up to all the previous error terms and where

Kl nn-\ (t\ *) E ß(h',t)Uh(*).
\h\<-p"-i
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Finally, by (3.2) and (3.3) in Proposition 3.1, up to all the previous error terms,

Mpn(t;m,n;b0) ]~] Kl(fî)m' KI(/,)"!'^ + <%,„+„)^°ë ^
where

Kl(f; *) J2ß(h'>0uh(*)
heZ

for any sequence of real-valued independent random variables (Uh)hez of law the

probability measure p..

5. The tightness condition

5.1. The counting ingredient. The following lemma states, without any proof, the
version of Hensel's lemma, which will be used in the proof of Lemma 5.2. This
result is so standard that we do not give any reference too.

Lemma 5.1 (Hensel's lemma). Let k be a positive integer and f be a polynomial
with integer coefficients. Assume that Xq is a solution modulo pk of the congruence
f(x) 0 mod pk.

• If p \ f'(xo) then there is exactly one solution modulo pk+1 of the congruence

f(x) 0 mod pk+l congruent to Xq modulo pk.

• If p I f'(xo) and f(xo) 0 mod pk+1 then there are exactly p solutions
modulo pk+l ofthe congruence f(x) s 0 mod pk+l congruent to x0 modulo pk.
They are given by Xq + pkj for j modulo p.

Lemma 5.2 (Hensel's lemma in degree 2). Let n 1 be an integer and f(X) —

X2 — sX +Ji be a polynomial of degree 2 with integer coefficients satisfying
s jt + 1 mod pn. Assume that p \ \ it — 1 far some integer I > 1. The number of
solutions of the congruence f(x) 0 mod pn equals

(2pl, if\<t<n/2-\,
\pn'2, if n/2 < I < n,

if n is even, and

\2pl, if \ < I < (n — l)/2,
L(n-t)/2) if {n-\)/2+ \ <l<n,

if n is odd.

Remark 5.3. This lemma is proved by a quite technical induction on n > 1 but

understanding the set of solutions for 1 < n < 3 of /(x) 0 mod pn gives an idea

of how the induction works.
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ProofofLemma 5.2. In this proof, recall that p \ n — 1.

Obviously, 1 is the only solution of the congruence f(x) 0 mod p with
s n + 1 mod p.

Let us quickly check what happens for n 2. One has /( 1) 0 mod p2 and

/'( 1) 2-ss0 mod p. By Lemma 5.1, the only solutions of f(x) 0 mod p2

with .v s jt + ] mod p2 are 1 + pk\ for 0 < ki < p.
Let us do the case n — 3. For 0 < ki < p, 1 + pk\ is a solution of f(x)

0 mod p2 satisfying /'( 1 + pk\) 0 mod p and

If k\ — 0 then by Lemma 5.1, 1 + p2k2 for 0 < k2 < p are the only solutions
of f{x) 0 mod p3 congruent to 1 modulo p2. Otherwise, p || jr — 1 and k\,n
must be the unique invertible integer modulo p satisfying pk\t7I n — 1 mod p2.

Then, by Lemma 5.1 1 + pk\t7t + p2k2 for 0 < k2 < p are the solutions of
f(x) 0 mod p3 congruent to 1 + pki,„ modulo p2. We have just seen that the

solutions of /(x) 0 mod p3 with s n + 1 mod p3 are

• 1 + p2k2 for 0 < k2 < p,
• 1 + pk\;3r + p2k2 fbrO < kj < p and if p || rr — 1 and pki>jr 7T — 1 mod p2.

Note that the previous simple use of Hensel's lemma proves Lemma 5.2 for
1 < n < 3. We will conclude by induction on n > 2.

Let us prove that for any n > 2, the solutions of the congruence /(x) s 0 mod pn
for any polynomial f(X) X2 — sX + n of degree 2 with integer coefficients

satisfying s n + 1 mod pn are

where 0 < kn-m < p, 0 < kn-m+1,..., kn-\ < p provided that pm \ n — 1 and for

any 2 < m <

1 + pmkm,n + • • • + p" m xkn-m-\>7t + p" mkn-m + --- + pn xkn-1,

where 0 < kn-m,..., kn-\ < p provided that pm ||jr —1. Here, the numbers kUi7t,

m < u < n — m — 1, are fixed integers modulo p satisfying

/( 1 + pk\) pk\{\ — n + pk\) mod p3.

Let us set

(U{n)A2{n))
(h/2— l,n/2), if « is even,

((n — l)/2, (n — 1 )/2), if « is odd.

1 + p" 1kn-\,

where 0 < kn-\ < p and for any 2 < m < l2(n),

1 + pn mkn-m + -— + pn lkn-1,

vmkm jr H Y v' ik _i 7T — 1 mod r)n m
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In particular, km,x is invertible modulo p. This fact trivially implies Lemma 5.2 for
n >2. The cases n 1, n 2 and n 3 have just been seen above.

Let n > 2. Let us assume that the result holds at the rank n and let us check that

it remains true at the rank n + 1. For instance, let us assume that n is even. We do

not provide the proof when n is odd since this is completely similar.
For 0 < kn-1 < p, xn := 1 + pn~xkn-\ is a solution of f(x) 0 mod pn,

which satisfies f'(xn) 0 mod p and

/(xn) pn~lkn-1(1 - 7T + pn~lkn-\) mod pn+1.

By Lemma 5.1, the only solutions of f(x) 0 mod pn+l congruent to xn are

• 1 + pnkn for 0 < kn < p if kn-\ 0,

• 1 + pn~1kn-\ + pnkn for 0 < kn-i < p, 0 < kn < p and if p2 \ n — 1.

Let 2 < m < l2(n) — «/2. Assume that pm \ n — 1. ForO < kn-m+i, • .^«-t
< p and 0 < kn-m < p,

xm,n -= 1 T P kn—m + • • • + p kn — i

is a solution f(x) se 0 mod pn, which satisfies f\xm,n) 0 mod p and

f(xm,n) pn(kn-m H h pm~xkn-1)

• + pn~2mkn—m + ••• + pn~l-mkn-,) mod pn+x.

If 2 < m < n/2 then by Lemma 5.1, the only solutions of f(x) 0 mod pn+l
congruent to xm,n are

1 _|_ pn _|_... _)_ pn lkn-\ + pnkn,

where 0 < kn-m < p, 0 < kn-m+\,... ,kn < p provided that pm+x \ n — 1. If
m n/2 then by Lemma 5.1, the only solutions of /(x) 0 mod pn+1 congruent
to xn/2,n are

1 + pn^2kn/2,n + pn^2+Xkn/2+i + ••• + p" xkn-1 + pnkn,

where 0 < kn/2+\, ,kn < p provided that pnI2 || n — 1 and pn^2kn/2,7I n — 1

mod p"/2+1.
Let 1 < m < l\(n) n/2 — 1. Assume that pm || n — 1. For 0 < kn-m,

kn-1 < P,

xm,n := 1 + pmkm,7r +••• + /?" m 1 kn-m-i^ + p" mkn-m + ••• + p" Xkn-1
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is a solution /(x) 0 mod pn, which satisfies f'{xm,n) 0 mod p and

f{xm,n) pn{km,7T + ••• + pn~2m'xkn-m-x^

+ pn-^mkn_m+... + pn-X-mkn_ï)

1-7r + pmkm,n -\ h pn~l~mkn-m-i^
•(-

pn-m

+ kn-m + pkn-m+i + + kn-ipn 1 mod pn+1.

By Lemma 5.1, the only solutions of /(x) 0 mod pn+1 congruent to xOT;„ are

1 + pmkm>7Z + • • • + pn mkn-m^ + pn m+1kn-m+\ +••• + p"kn,

where 0 < kn-m+\,... ,kn < p, and where

Pmkm,n H + pn~mkn-m,7i n - 1 mod pn~m+l.

This completes the induction on n.

Proposition 5.4 (The counting ingredient). Let n > 1 be an integer and I be a

non-empty interval in (Z/pn Z)x. The number of quadruples (x\, X2, X3, X4) 74

satisfying

xi + X2 X3 + X4 mod pn,

x[ + X2 s X3 + X4 mod pn

2is bounded by an absolute positive constant times n\I\

ProofofProposition 5.4. Let us denote by Nk,i(.pn\I) the number of these

quadruples (xi, X2, x3, X4) satisfying pk || X3 + X4 and pi || X3 — X4 for some
fixed integers k,i {0,... ,n}, which must satisfy ki 0 since p is odd. Let
(xi, X2, X3, X4) be such a quadruple. Let us fix X4. There are at most 111 such X4.
The bijective change of variables >',• xfxi for 1 < i < 3 leads to the system

Ji + y2 y3 + 1 mod p",

yl + Yi Ys + 1 mod pn,

where the triple (ji, j2. ^3) belongs to (X4/)3 and whose components satisfy pk ||

y s + 1 and /r 11 y3 — 1. Let us set

s y\ + j2 and m — y\y2-



526 G. Ricotta and E. Royer CMH

The previous system becomes

s y3 + 1 mod pn (5.1)

and

ms sjj + l mod pn.

Thus,
1 T3j3 (s - l)(m.v - 1) mod pn

so that s (s — (m + 1)) 0 mod pn and

s m + 1 mod pn~k. (5.2)

Let /(X) X2 — sX + m. Obviously, y\ and y2 are solutions modulo pn of the

congruence

/(x) 0 mod pn. (5.3)

Note also that

f(X) (X - 1)(X - ur) mod pn~k (5.4)

by (5.2). In particular, if n — k > 1 then the only solutions modulo p of

/(x) 0 mod p

are 1 and m, which satisfy f'(m) —/'(1) — m — 1 mod p by (5.2). Let us

consider three distinct cases.

First case: k 0 and 0 < I <n. In this case, p \ s by (5.1) and p \ \ m — 1 since

j3 — 1 s — 2 m — 1 mod p" by (5.1) and (5.2). Let us fix y3, which implies
that s is fixed by (5.1) and m is fixed by (5.2). There are <§( 1 + \I\/pi such >>3.

By Lemma 5.2, the number Ni(pn) of solutions modulo pn of the congruence (5.3)
satisfies

ip^,

if n is even and 0 < I < n/l — 1,

pn!2, if n is even and n/2 < I < n,

p^, if n is odd and 0 < I < (n — l)/2,
p("~I)/2, if /7 is odd and (n — l)/2 +1 < i < n.

In total,

AI) « |/|(l + ^7) min (Ne(pn), |/|).

Second case: 1 < k < n — 1 and 1 0. In this case, pk || s by (5.1) and p \ m — 1

by (5.1) and (5.2). Let us fix y3, which implies that s is fixed by (5.1) and m is

fixed modulo pn~k by (5.2). There are 1 + \ I\/pk such yj. By Lemma 5.2, the
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congruence f(x) 0 mod pn~k has exactly two solutions. Hence, the same holds

for the number of pairs {y\, y2) modulo pn~k. In total,

NkAp"'1) « Ul(i + y)(! + ~~~k) « I'l2-

Third case: k — n and £ — 0. In this case y3 — 1 mod pn is fixed and given y1,

j2 is fixed. In total,
N„,o(pn; /) « |/|2-

Altogether, the number of quadruples (xi, x2> x3, xf) equals

n n—1

£ n0,i(ph> 0 + £ Nk,*{pn\ O + 0
l-0 k=1

and is bounded by n\I\2.

5.2. The fourth moment of incomplete Kloosterman sums.

Proposition 5.5 (Bounding the fourth moment). Let n > 2be an integer and I he a

non-empty interval in (Z///'Z)x. One has

4 n\I\«^ 175E<>"(<«+«) ~ 2.' (a,b)e(Z/p" Z)xx(Z//>"Z)x ^ xe/ 7

ProofofProposition 5.5. Expanding the fourth power, one is led to

M4(/)= „(„nV-ln £ £ ep"(a(xi+X2-X3-X4)
(xi ,X2,X3,X4)6/4 ae(Z//>"Z)x

£ epn{b(x\ + x2 -x3 -x4)) J.
^ h^CZ.t ntlT/XX '~b^(z/pnzy

The orthogonality of additive characters ensures that

' epniçz) P <^z=0 mod p" ~ P &z=0 mod pn~]
ce(Z/p»Z)x

for any z in TL/pn7L. Thus,

M4(/)
HP")2 ^ *

<P(P")2P ^ 14
(X[ ,X2,X3,X4)e/Z (X\,X2,X3,X4)eI*

Xl+X2=X3+X4 mod p" Xl+X2=X3+X'4 mo'i p"
x\ +X2=X3+X4 mod p" x] +X2=X3+X4 mod pn~l

_J y-
1

y^
v(pn)2p

4

+
cp(pn)2p2

"

(Xl ,X2,X3,X4)S/4, (xi ,X2,X3,X4)e/4,
xi +x2=x3+*4 mod /)"—1, X| +X2=x3+X4 mod /)"—1,

Xi+X2=x3+X4 mod/)" xi+X2=X3+X4 mod /)""'
Proposition 5.4 completes the proof.
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5.3. The tightness condition via Kolmogorov's criterion.

Proposition 5.6 (Tightness). Letn > 2 be an integer. The sequence ofC°([0, 1],C)-
valued random variables K\pn (*; (*, *)) on the random space (Z///'Z)x x
(Z//?"Z)X where p is an odd prime number is tight.

ProofofProposition 5.6. Let us show that if 0 <s,t< 1 then

]n\2 \K\pn(f,(a,b))-K\pn(s;(a,b))\4 <&n\t-s\2, (5.5)
' (a,è)e(Z/p"Z)xx(Z/p"Z)x

where the implied constant is absolute. The bound (5.5) is enough by Proposition A. 1

to ensure the tightness of the sequence of C°([0, l],C)-valued random variables

Klpn (*; (*, *)) as p tends to infinity among the odd prime numbers. One can assume
that 0 < s < t < 1.

First range: 0 < t — s < 1 /(<p{pn) — 1). So that

pn (5.6)
t — s

Let us show that

|KIpn(t; (a,b)) — K\pn (,y; (a,b))\ < 2Vt — s,

which implies (5.5) in this range. Let us assume that

J~l <,<
<p(Pn) ~ 1 <P(Pn) - 1

'

where 1 < j < <p(pn) — 1. Two cases can occur.

First case:

j - 1 /'
< s <t <

<p(p")- I" -<p(pn)-l
In this case,

\K\pn(t;(a,b))-K\pn(s;(a,b))\ \otj({a, b)\ pn)\(t - s)

<p(pn) - 1

by (2.2) and (5.6).

Second case'.

pfi/2

j - 2 j - 1

< s < — < t <

"(t — .v) < 2 y/t — S

<p(pn) -1 <p(pn) -1 <p(pn) -1 '
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where 2 < /' < (p{pn) — 1. In this case,

|KIpn(t; (a,b)) - Kip«(.v; (a,b))\ < |Klp«(t; (a,b)) - Zj((a,b); pn)\

+ IZj((a,b); pn) - Kip«(,v; (a,b))\.

The first term is less than

M(«.0; p")l(» - ^rprf)
whereas the second term is less than

Altogether,

w(pn) — 1

I Kip« (t; (a, A)) - Klp« (,v \{a,b)) | < ——(t - s) < 2Jt-s

by (2.2) and (5.6).

Second range: t — s > 1 /(<p(pn) — 1). So that

Pn>~^~. (5.7)
t — s

Let us assume that

j — 1 j k — 1 k
—— < .v < and — < f < —-———,Hp") - i HP") - 1 HP") -1 HP") -1

where 1 < j < k — 1 < <p(p") — 2. In other words,

r(Hp") - 1)^1 and k \(Hp") ~ l)'l •

By (4.10) and Holder's inequality,

L2 J2 \K\pn(t:(a,b))-K\pn(s-(a,b))\4
^ P ' (a,b)e(Z/pn Z)x x(Z/pn Z)x

M4(/Jtt) + o(-^r) M4(/,,t) + 0((t - *)2),

where 7s>f is the non-empty interval in (Z/pnZ)x given by

(xy(.v) <?(/>"> + 7 - 1-, ,xfc(r) <?(/>")' + k -1] n (Z/Pnzr.
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Its length satisfies

I/s,/1 L*Jfc(0J - IXrOOl

< <p(pn)(t-s) + \(<p(pn) - 1)0 - \(<p(pn) - 1)0

<A{<p{pn)-\){t-s) + \

< 8(tp(pn) - 1)0-0
since ((p(pn) — 1)0 -s) > 1. Proposition 5.5 implies (5.5).

6. Proof of Theorem A and Theorem B

Let us prove Theorem A. By Proposition 3.1, the random variable Kl has moments
to all orders. Thus, we are allowed to use the method of moments. Proposition 4.1

leads to the result.
Theorem B is implied by Theorem A.3, Theorem A and Proposition 5.6.

A. Probabilistic tools

This section contains some probabilistic results needed in this work. The main
reference for both the statements and their proof is [10].

Let us say a few words about random variables with values in the Banach space
C°([0, 1], C) of C-valued continuous function on [0, 1] endowed with the supremum
norm. Confer [ 10, Section B.91 tor more details. For each n > 1, let Xn be a random
variable on the random space (£2„, An, P„) with values in C°([0,1], C). Let A be a

C°([0,1], C)-valued random variable.
The sequence (Xn)n>\ converges to X in the sense offinite distributions if for all

integers k > 1 and all k-tuples {t\,..., tk) with

0 < h < • • • < tk < 1,

the sequence of -valued random vectors (Xn{t\),..., Xn(t^)) converge in law to
the random vector (A(?i),..., A(fit)).

The sequence (A„)„>i converges in law to X if for any C-valued continuous
and bounded map <p on the Banach space C°([0,1], C), the sequence of complex
numbers (E(<p(A„)))„>i converges to E(<p(A)).

Each Xn induces a probability measure jin on the Banach space by

VA C C°([0,1],C), pn(A) Pn(X~\A)).

The sequence (Xn)n>i is said to be tight if for any e > 0, there exists a compact
subset K of C°([0,1], C) satisfying

V« > 1, n„(K) > 1 - e.
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A practical criterion for tightness is due to Kolmogorov.

Proposition A.l (Kolmogorov's criterion for tightness). If there exists a > 0 and
S > 0 so that

V(.v, t) e [0, l]2, E(|Y„(.y) - Xn{t)\a) « \s-t\1+S

then (Xn)n>\ is tight.

Remark A.2. This is [10, Proposition B.9.5, p. 82].

Last but not least, the main tool of this work is Prokhorov's criterion for

convergence in law in C°([0,1], C).

Theorem A.3 (Prokhorov's criterion). If (Xn)n>\ converges to X in the sense of
finite distributions and (Xn)n>i is tight then (Xn)n>i converges in law in the sense

o/C°([0, 1], C)-valued random variables.

Remark A.4. This is [10, Theorem B.9.4, p. 82],
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