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Kloosterman paths of prime powers moduli

Guillaume Ricotta and Emmanuel Royer

In memory of Kevin Henriot

Abstract. In [12], the authors proved, using a deep independence result of Kloosterman sheaves,
that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums
S(a, bo; p)/ p'/? converge in the sense of finite distributions to a specific random Fourier series,
as a varies over (Z/ pZ)™, by is fixed in (Z/ pZ)™ and p tends to infinity among the odd prime
numbers. This article considers the case of S(a, bo; p™)/p™/?, as a varies over (Z/p" Z)*,
bo is fixed in (Z/p"7Z)*, p tends to infinity among the odd prime numbers and n > 2 is a
fixed integer. A convergence in law in the Banach space of complex-valued continuous function
on [0, 1] is also established, as (a, b) varies over (Z/p"Z)* x (Z/p"Z)™, p tends to infinity
among the odd prime numbers and n > 2 is a fixed integer. This is the analogue of the result
obtained in [12] in the prime moduli case.

Mathematics Subject Classification (2010). 11T23, 11L05, 60F17, 60G17, 60G50.

Keywords. Kloosterman sums, moments, random Fourier series, probability in Banach spaces.

1. Introduction and statement of the results

The shape of the path induced by various partial exponential sums has been considered
by many people since the seventies. See for instance [13], [14] for the case of Gaul3
sums, [15] for polynomial exponential sums of higher degree, [2], [1] and [4] for
the case of character sums. Very recently, E. Kowalski and W. Sawin successfully
investigated the case of partial Kloosterman sums of prime moduli in [12]. The main
purpose of this work is to consider the case of partial Kloosterman sums to prime
power moduli and to give a probabilistic meaning to graphs like the one given in
Figure 1.

I'The axes are orthonormal but a rotation by /2 has been applied to the real plot of ¢t —
K|672 (t, (1, 1))
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Figure 1. Plot of t — Klg72(t; (1, 1)).
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More precisely, let p be a prime number and n > 1 an integer. For a and b
in Z/ p"Z, the corresponding normalized Kloosterman sum of modulus p” is the
real number given by

1 1 b
Kipn (@, b) 1=~ S(a,bi p") = 3 e(m) ,

pn/2 it pn
ptx

where as usual x stands for the inverse of x modulo p” and e(z) := exp (2imz) for
any complex number z. For a and b in (Z/p"7Z)*, the associated partial sums are
the p(p™) = p"~1(p — 1) complex numbers

ax + bx
Klj;pn(a,b)l n/2 ( )

1<x<j
ptx

for jinJy:={je{l,....,p"}, ptJj} lfwewrite J} = {J1s-- s Jo(pn)} With

J1 <Jjz2 < < Jopm
then the corresponding Kloosterman path y,x (a, b) is defined by

p(p")—1
ypr(a,b) = | ) [Kijjpn(a, b),Kij, o (@, b))
i=1

This is the polygonal path obtained by concatenating the closed segments

[th ;o (Cl, b)a Kljz;p” (Cl, b)]

for j1 and j two consecutive indices in J;. Finally, one defines a continuous map
on the interval [0, 1]

t > Klpn(t; (a, b))
by parametrizing the path y,» (a, b), each segment [Kl;,.,n (a,b),Kl;,; pn(a, b)] for

J1 and ja two consecutive indices in J, being parametrized linearly by an interval

of length 1/(¢(p") —1).

For a fixed by in (Z/p"Z)*, the function a + Klpn(*; (a, by)) is viewed as
a random variable on the probability space (Z/p"7Z)>* endowed with the uniform
probability measure with values in the Banach space of complex-valued continuous
functions on [0, 1] endowed with the supremum norm, say C°([0, 1], C).

Remark 1.1. In particular, with our definition, Kl,» (0; (a, b)) is defined y

; ) 1 a+b ‘
Htll—r:}) K|pn ([, (a,b)) = ;}n—/ze(W—) = Klpn(o, (a,b))

The Kloosterman path does not start at the origin, in contrast with [12].
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Let u be the probability measure given by

1
M=550+M1 (1.1)

for the Dirac measure §g at 0 and
1 2 f S(x)dx
x=—2 v 4 — x2

for any real-valued continuous function f on [-2,2].

ui(f) =

Theorem A (Convergence of finite distributions). Let n > 2 be a fixed integer. For
any odd prime number p, fix an element by in (Z./ p"Z)*. Let (Up)pez be a sequence
of independent identically distributed random variables of probability law | defined
in (1.1) and let Kl be the C°([0, 1], C)-valued random variable defined by

e(ht) =1

Vi €[0,1], KI(t) =tUp + Z C2imh

heZ*

The sequence of C°([0, 1], C)-valued random variables Kl yn (x; (*, bo)) on (Z/ p" Z)*
converges in the sense of finite distributions? to the C°([0, 1], C)-valued random
variable Kl as p tends to infinity among the prime numbers.

Remark 1.2. We have chosen to parametrize the partial sums of the Kloosterman
sums so that successive sums always correspond to adding one more term. This
implies that partial sums at integers divisible by p are not defined. Another definition
would be to define Kl;; ,n (a, b) for all integer j and to interpolate in the usual way.
The geometric path, namely the image of ¢t + Kl,» (¢; (a, b)), would be unchanged
and there is no doubt that the same results hold for this different definition.

Remark 1.3. All the main properties of the random variable Kl are given in
Proposition 3.1. As already said, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [12] when n = 1 for a different random Fourier series
given by
e(ht) —1
Vee[0,1], K(@t)=1STo+ » ——n —i 5 STh
heZ*

where (STp)nez is an independent identically distributed sequence of random
variables of probability law ps7, the classical Sato-Tate measure also called the
semi-circle law. The fact that K and Kl have the same analytic shape heavily depends
on the completion method. The fact that K and Kl are different on a probabilistic
point of view is not very surprising since Kl ,» (a, b) is a sum over a finite field when
n = 1, which requires deep techniques from algebraic geometry, and a character
sum when n > 2, which can be computed explicitly via elementary but not so easy
techniques. Thus, the fact that Kloosterman paths of prime moduli and of prime

powers moduli behave differently on a probabilistic point of view is quite expected.

2See Appendix A for a precise definition of the convergence in the sense of finite distributions.
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Remark 1.4. Nevertheless, the referee kindly informed us that both this measure p
and the random series Kl occur when dealing with the path induced by Salié sums
of prime moduli. In addition, let us recall that g is the direct image under the
trace map of the probability Haar measure on the compact group SU,(C) whereas,
according to [8, Remark 1.2], u is the direct image under the trace map of the
probability Haar measure on the normalizer of a maximal torus in SU, (C).

Remark 1.5. In particular, choosing ¢t = 1, Theorem A implies that the normalized
Kloosterman sums Kl,n(a, bg) get equidistributed in [—2,2] with respect to the
measure p, as a ranges over (Z/p"Z)* and p tends to infinity among the odd prime
numbers for a fixed integer n > 2 and by is a fixed element in (Z/ p"Z)*.

Remark 1.6. It is worth mentioning that the proof of this theorem requires A. Weil’s
version of the Riemann hypothesis in one variable. See Proposition 4.8.

The function (a, b) +> Klpn (t; (a, b)) is viewed as a C°([0, 1], C)-valued random
variable on the probability space (Z/ p" Z)* x (Z./ p" Z)™ endowed with the uniform
probability measure. Theorem A trivially implies that the sequence of C°([0, 1], C)-
valued random variables Kl ,» (x; (*, *)) converges in the sense of finite distributions
to the C°([0, 1], C)-valued random variable Kl as p tends to infinity among the prime
numbers too.

Theorem B (Convergence inlaw). Letn > 2 be a fixed integer and p be an odd prime
number. The sequence of C°([0, 1], C)-valued random variables Klpn (%; (%, *))
on (Z/p"7Z)* x (Z.] p"Z)* converges in law? to the C°([0, 1], C)-valued random
variable Kl as p tends to infinity among the prime numbers.

Remark 1.7. Once again, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [12] when n = 1.

Remark 1.8. For a fixed n > 2 and a fixed by in (Z/p"7Z)*, we expect that the
sequence of C?([0, 1], C)-valued random variables Kl,n (x; (x, bg)) on (Z/p"Z)*™
converges in law to the C°([0, 1], C)-valued random variable Kl as p tends to infinity
among the prime numbers too. Nevertheless, such result seems to be out of reach
given the current technology. It relies on expected uniform non-trivial individual
bounds for incomplete Kloosterman sums

1 ax + bpx _
e ) <5

xel

for some § > 0 and where [ is an interval of (Z/p"Z)* of length close to p"/2. See
[12, Remark 3.3] and [10, p. 52] for a discussion on such issues in the prime moduli
case.

In [12], the authors deduce from their limit theorems the distribution of the
maximum of the partial sums of prime moduli they consider. Their techniques would

3See Appendix A for a precise definition of the convergence in law in the Banach space C ([0, 1], C).
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lead to a straightforward analogue in the case of prime powers moduli investigated in
this work.

One can mention that it seems quite natural to consider the same questions in the
regime* p a fixed prime number and n > 2 tends to infinity. This problem, both
theoretically and numerically, seems to be of completely different nature.

Finally, it makes sense to consider the distribution of paths associated to other
exponential sums of prime powers moduli and to ask whether a distribution result
remains true. For instance, one could be tempted to look at

1 - .
Kon(@) = —77 > e(f(x)),

n
I<x=p" P

where f, = g4/ hs with g, and h, in Z[x] depending on a parameter a modulo p”.
The symbol * means that the summation is over the elements x satisfying p + hg(x).
These exponential sums can be computed explicitly. See [5, Lemma 12.2,
Lemma 12.13] for instance. One key step would be to evaluate asymptotically

: Z 1_[ Ky (a + 7)*®

go(pn) aE(Z/PnZ)X 'CGZ/P"Z

for p = (u(v))rez/prz a p"-tuple of non-negative integers.

Organization of the paper. The explicit description of the Kloosterman paths is
given in Section 2. The relevant random Fourier series, which occurs as an
asymptotic process in Theorem A and Theorem B, is defined and studied in
Section 3. Section 4 contains the asymptotic evaluation of the moments of the
random variable Kl,» (*; (*, *)) whereas the tightness of this sequence of random
variables is established in Section 5. The proofs of Theorem A and Theorem B are
completed in Section 6. A probabilistic toolbox is provided in Appendix A.

Notations. — The main parameter in this paper is an odd prime p, which tends to
infinity. Thus, if f and g are some C-valued function of the real variable then the

notations f(p) = O4(g(p)) or f(p) <4 g(p) mean that | f(p)| is smaller than
a “constant”, which only depends on A, times g(p) at least for p large enough.

— n > 2 is afixed integer.
— For any real number x and integer k, e (x) := exp (2’%).
— For any finite set S, | S| stands for its cardinality.

— We will denote by € an absolute positive constant whose definition may change
from one line to the next one.

— The notation ZX means that the summation is over a set of integers coprime
with p.

40r even worse any intermediate regime.
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— Finally, if & is a property then §p is the Kronecker symbol, namely 1 if & is
satisfied and O otherwise.

Acknowledgements. The authors would like to thank the referee for her or his un-
usually careful reading of the manuscript and very useful suggestions that improved
the presentation of the paper.

The authors would like to thank E. Kowalski for his encouragement and for sharing
with us his enlightening lectures notes [10]. They also thank F. Martin for fruitful
discussions related to Proposition 4.7.

Part of this paper was worked out in Université Blaise Pascal (Clermont-Ferrand,
France) in June, 2016. The first author would like to thank this institution for its
hospitality and inspiring working conditions.

2. Explicit description of the Kloosterman path

Let us construct the Kloosterman path y(a, ) for a and b in (Z/ p"Z)*.

We enumerate the partial Kloosterman sums and define z;((a, b); p") to be
the jth term of (Klj;pn(a,b))jesn. More explicitly, we organise the partial
Kloosterman sums in p”~! blocks each of them containing p — 1 successive sums.
For 1 <k < p"~!, the kth block contains Klx_1)p+1:pn (@, b), ..., Klgp—1:pn (a, b).
These sums are numbered by defining

zZ-1(p-1+£((a, 8); ") = Klg—1)ptg;pn (@, b) (1 =L < p—1).

It implies that the enumeration is given by

2j(@h)ip") =Ky iy a(@b) (1= <o) @D

Forany j € {1,...,¢(p") — 1}, we parametrize the segment
|z ((a,b); p™), zj+1((a, b); p™)]

and obtain the parametrization of y,n (a, b) given by

i — 1
vVt € [0,1], Kipn(t; (a,b)) = a;((a, b); p”)(t — ga_(Jp”)_—l) +zj((a,b); p™)
with
a;((a,b); p") = (9(p") — D(zj+1((@, b); p") — z;((a,b); p"))
and

j = [(e(p™) = Dr].
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Since |z ((a, b); p"), zj+1((a, b); p™)] has length p~ "2, we have

(p")—1
leej ((a, b); p™)| < gop,,—)/z 22)
and ]
Kipn (1 @, B)) = 2 (@, B); ") = . 23)
3. On the relevant random Fourier series
The moments of the measure u defined in (1.1) are given by
1, ifm=20,
f X" dp(x) = {5 m . 3.1)
xeR = (m/2)’ otherwise.

Let U be a random variable of law u on a probability space (2, 4, P). By (3.1),
the value of the expectation of such random variable is 0 and its variance equals 1. In
addition, u is also the law of the random variable —U since the probability measure u
is symmetric.

Let (Up)nez be a sequence of independent random variables of law p on a
probability space (£2, #4, P). One defines for ¢ in [0, 1] the symmetric partial sums

e(ht) — 1

Kig(t;0) = tUp(@) + 2imh

1<|h|<H

Up(w)

for any integer H > 1 and any @ € Q. Lett € [0,1] and w € Q. If Kly (¢; w) has a
limit when H tends to infinity, we denote by Kl(¢; @) this limit, namely

e(ht) — 1

Kl(f;(z)) = IU()(CU) + Z imh

heZ*

Up(w).

It turns out that KI(z; w) is closely related to the set of Fourier random series,
which have been intensively studied in [6].

Proposition 3.1 (Properties of the random series). The following properties hold.
e Foranyt in|0, 1], the random series KI(t; ) converges almost surely, hence in law.
» Foralmostall w € , the random series Kl(x; w) is a continuous function on [0, 1].

e Foranyt in |0, 1], the Laplace transform

E (e/\é)%(Kl(t;*)HMS(Kl(t;*)))

is well-defined for all non-negative integers A and ji. In particular, KI(x; w) has
moments of all orders.
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 Finally, for any t in [0, 1],

Kl (25 %) [|oo < log (H) (3.2)

and
IE(IKI(; %) — Kig (65 %)) < H™Y? (3.3)
Jorany H > 1.
Remark 3.2. In particular, the map
Ki (2,4, P) — (C°(0,1],C),|l-lloo)

Ki(x;w): [0,1] — C

= t —  Ki(t; w)

defines a random variable on the probability space (2, 4, P) with values in the
Banach space of continuous complex-valued functions on the segment [0, 1] endowed
with the supremum norm ||. || eo.

Remark 3.3. The proof is omitted since it is very close to the proof of [12,
Proposition 2.1]. The reader may have a look at [10, Section 4] too.

4. Asymptotics of complex moments

In this section, by is a fixed element in (Z/p"7Z)*. Let k > 1 be a fixed integer,
t = (t1,...,1) be a fixed k-tuple of elements in [0, 1] with t; < -+ < tg, n =
(ny,...,ng)and m = (mq,...,mg) be two fixed k-tuples of non-negative integers.
Let us define

k
Lm +n) =) (m; +m).
i=1

The purpose of this section is to find an asymptotic formula for the complex
moments defined by

1
e(p™)

k
Yo K (i@ o)™ Kipn (ti: (. bo))™ .

ac(Z/pnZ)* i=1

Mpn(t;m,n;by) ==

4.1)
The following proposition describes the asymptotic expansion of these moments.
Its proof will be given at the very end of this section since it requires a series of
intermediate results.
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Proposition 4.1 (Asymptotic expansion of the moments). If
p > max (£(m + n),2n —5) 4.2)
then

k
[T 0™ K *)m)

i=1

Mpn(t;m,n,by) = ]E(

4(n—1)

+O(z(m+,,),€(logz(’”Jr")(p")(p_ o +€+p—1/2))

for any € > 0 and where the implied constant only depends on £(m + n) and €.

For a in (Z/ p"7)*, let us define a step function on the segment [0, 1] by, for any
k € {1,...,[)"_1},

X

k=1 k1 — ]
Vit € (-—— —:I, K|pn (I;(d,bo)) = 7z Z e pn (ax ‘|‘b().7C-), (43)

n—1"’ ,n—1
P 4 1=<x=<xg (1)

where
xi(t) = o(p")t +k — 1.
In addition, let us define for hin Z/p"7Z and 1 <k < p"~1,

k-1 &k 1
e wt0m gy T el 69

P l=<x=xi (1)

These coefficients are nothing else than the discrete Fourier coefficients of the finite
union of intervals given by 1 < x < xx(f) with (p,x) = 1for1 <k < p"~1. All
their useful properties are encapsulated in the following lemma.

Lemma 4.2 (The completion method).

* For Hpn any complete system of residues modulo p",

ﬁ, 1
Kipn (3 (a. bo)) = —7 > apn(h;t) Kipn(a — h, by). 4.5)
Py hGHpn

» For any integer h and any real numbert € [0, 1],

1, ifh=0,

4.6
S <@t 2adh o O

apn(h;t) < p"'? x {

e For any integer h and any real number t € [0, 1],

1 1
e 6) = G0+ O(ﬁ)’ 4.7)
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where
t, if h =0,
B 1) = 9 ehry—1

TR otherwise.

Remark 4.3. The proof'is omitted since it is very close to the proof of [12, Lemma 2.3,
Proposition 2.4]. The reader may have a look at [10, Section 4] too.

Let us also define the corresponding moment

1

¥ mp —_
o 2 TR @ bo) K a: . b))

ac(Z/pnZ)* i=1

l\7|;;(t;m,n;b0) =

(4.8)
The following lemma reveals that it is enough to prove an asymptotic formula
for Mpn (t;m, n; by).

Lemma 4.4 (Approximation of the moments). One has

logf(m+n) (pn)
pn/z )

Mpn (t;m,n;bo) = M—;:(t;m,n;bg) + 0(

Remark 4.5. The proof is omitted but relies on Lemma 4.2, which implies that

> lapn(hit)] < 4p™? log (p™) (4.9)
heH ,n
for Hpn = {(1 — p")/2,...,(p" — 1)/2}, which is admissible since p is odd,
and is close to the proof of [12, Proposition 2.4]. The reader may have a look at
[10, Section 4] too. Note that both Lemma 4.7 and (4.9) entail that

Kipn (15 (a, b)) — Kipn (¢ (a, b))| < (4.10)

P"/2

for any a, b in (Z/p"7Z)* and any ¢t € [0, 1].
The crucial ingredient in the proof of Proposition 4.1 is the asymptotic evaluation

of the complete sums of products of shifted Kloosterman sums S,n (p; bo) defined
by

1
Spn(p;ho) == o Z 1_[ Kl (@ + t, ho)*® 4.11)
eLp ac(Z/p"Z)* teZ/p"Z

for p = (u(7))rez/pnz a sequence of p"-tuples of non-negative integers different
from the O-tuple.

The following notations will be used throughout this section. Let us define for
such sequence p

T(w) ={r€Z/p"Z,u(x) =1} CZ/p"Z,
T(r) ;= {tmod p,t € T(n)} C Z/pZ.
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Let Bpn (i) be the subset of the |T(p)|-tuples b = (br)rer(n) Of integers in

{1,...,(p —1)/2} satisfying
Y(r,7) € T(w)?>, bZ—7=h%—7" mod p

and
VreT(n). ptbl—t

Let€ = (£1)ret(u) bea|T(p)|-tuple of integers. Forany integer j in{1,..

let us define i

: —2f—
mb,l(]a]) = Z L., /

TET(1)

and the the following associated object

N(w, 2, w) = Z 1

beB,n(p), mp ¢(1,1)=w mod p
Vi€{2,...n—1}, mp ¢ (j,j)=0mod p

for any w modulo p.
Finally, let

Apn(p) = {a € (Z/p"Z)* NVt € T(n),a + v € (Z/p"Z)*)*}.

(4.12)

(4.13)

=1},

(4.14)

(4.15)

(4.16)

Firstly, let us prove and recall some useful facts related to Kloosterman sums of prime

powers moduli.

Lemma 4.6 (Kloosterman sums of prime powers moduli). Let p be an odd prime

number satisfying p > 2n — 5 and a be an integer.

* Ifa is divisible by p or a is not a square modulo p then Klyn(a,1) = 0.

e [fa is a non-zero square modulo p then
s 47 s
Kipn(a,1) = 2(F) cos (?n— + Opn),
where
)0, if 2| norp=1mod4,
S /2, if24}nand p=3mod4,

and s is any solution of

$? = g mod p".

e The bound
[Klpn(a, 1)] <2

holds.

4.17)
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* Let a be a non-zero square modulo p. There exists some integers ¢, ...,Cyp_;
satisfying
Vm e {0,...,n—1}, e, 70 and vy(c,,) =0 (4.18)
and some integers k and b € {0, ..., (p — 1)/2} depending on a and p so that

n—1
Sapn =b Y cp b p k™ (4.19)

m=0
is a solution of s* = a mod p", where b stands for the inverse of b modulo p".

Proof of Lemma 4.6. The three first items are standard. See [5, Ch. 12, Eq. (12.39)].
In particular, recall that a is a non-zero square modulo p is equivalent to saying that a
is a non-zero square modulo p”".

Let us consider the last one. The elements of ((Z/pZ)>)? are given by

b>, 1<b<(p-1)/2.

Thus,
a = h% mod p

forsome 1 < b = b, , < (p—1)/2 so that
a =b*+ pk
for some k = k, p , in Z. The congruence to be solved becomes

s?2 = a = b% + pk = b2(1 + b? pk) mod p"

Il

where b stands for a representative of the inverse of » modulo p”. Let us define the
p-adic integers> ¢cp = 1,¢; = 1/2 and

Ym=>=2, cpi= D" @m - 3)! _1/2(0/2-1)...(1/2—m+ 1).

©22m=Di(m —2)! m!
Obviously,
2m —3
VYm=>1, c¢m=— Cm—1
2m
so that
Vme{0,...,n—1}, vp(cm) =0 (4.20)

since p = 2n — 5. If x € pZ, then, by [9, Chapter IV.1], the power series

Z cmx™ € Zp[x]

m=>0

5Recall that the prime p is odd.



506 G. Ricotta and E. Royer CMH

converges in the p-adic norm to a square root of 1 4+ x. As a consequence, one has

1
s=b ¢! ™ p™k™ mod p",
0

=
|

3
Il

where the coefficients c;, are some integers satisfying ¢, = 1, and
Vm=>1, ¢, =cmymodp”, 0<c, <p".
In particular, if 0 <m < n — 1, then

¢, 70 and v,(cp,) =vp(cm) =0
by (4.20). O
The following proposition contains the upper-bound for N(u,£; w) defined
in (4.15).

Proposition 4.7 (A counting argument). Let o = (1(7))cez/pnz be a sequence of
p"-tuples of non-negative integers satisfying |T(p)| = |T(p)| and £ a |T(p)|-tuple
of integers satisfying

VeeT(u), [&]<p

and £ # 0. One uniformly has
N(p, €5 w) Ljre) 1
for any w mod p where the implied constant only depends on |T(i)|.

Proof of Proposition 4.7. Let k := |T(u)| for simplicity.
Let us assume that k = 1. In this case, T(s) = {79} and one has

Ef()ﬁ =mpe(l,1) = w mod p,

which fixes the value of by, since £, is coprime with p.
Let us assume from now on that kK > 2. One has

N, L;w) = Y Y oL 4.21)

cmod p,  beByn (i), mp(1,1)=w mod p
(P.0)=1 v je{2,....n—1}, mp(j,j)=0 mod p
YTeT(p), b2=c+t mod p

Note that for a fixed c, there is at most one tuple b since their coordinates satisfy the
given quadratic equations modulo p. The basic idea to show that there is a bounded
number of integers ¢ modulo p is to find a polynomial, which vanishes on these ¢’s
and whose degree only depends on k.
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Let us consider the polynomial

Oa; X) = I (X— > era,) eF,la, X

Ez(ft)reT(_u)e{il}k T€T(1)

in the variables a;, 7 € T(u), and X.
This polynomial can be written as

2](—]

0@ X)=Y 0i@x* +x*
i=0

where Q; € T, [a] is a homogeneous polynomial of degree 2k _2ifor0 <i < 2k-1,
which only involves even powers of a; (0 < i < k). The fact that only even powers
of X occur easily follows from the fact that if € belongs to {£1}¥ then so does —e.
The fact that each monomial only contains even powers of a; for 1 <i < k is due to
the obvious invariance property given by

Ve € {+1}*, O(e.a; X) = 0(a; X)

€6 9

where “.” stands for the coordinates by coordinates product between tuples.
The previous discussion implies that

ok—1

2k ok
Re(Y: X) = ( I yr) QY hx)=>" Ri,g(Y)X2i+( 1 Yr) x?
i=0

T€T(p) TeT(p)

where ¥ = (Yp)rerq) and Y™' = (¥ Yierqu and for 0 < i < 2k°1
R; ¢ € Fp[Y?] is a homogeneous polynomial of degree (k — 1)2% + 2i, which only
involves even powers of Y, for € T(x). Here, Y2 = (Ytz),eT(u).

Let us denote by ¢ the ring morphism from ]FP[YZ] to IF,[Z] defined by

YreT(p), yv(¥2)=2Z+r.

Let us assume that (p, w) = 1. Note that if the tuple b satisfies the constraints
given in (4.21) then Rg(b; w) = O since the contribution of € = (1,...,1) in
O(£.b71; w)isexactly w—mp ¢(1,1) = 0 mod p. Thus, ¢ is aroot of the polynomial
W (Rg (Y ; w)), which is of degree k2%~ and leading coefficient w2 # 0 mod p.
As a consequence, the number of ¢’s in (4.21) is less than k2k—1,

Let us assume that w = 0 mod p. Let 7o in T(p) satisfying

p '{' E'C()’

which exists by the conditions of the tuple £.
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Let us consider

zk—l
| _ -
Se(Y) ::( I Y,) QT 5, YY) €F,[¥, Yo,

T€T (1)

where ¥ = (Y, Dretqu\iro; and { = (1)ret(u)\{zo}- This polynomial is
homogenous of degree (k —1)25~! and only involves even powers of Y, for t € T(p).

Thus, the polynomial U = v (S¢(Y)) € IF,(Z) is of degree less than (k — L2,
Let us show that this polynomial is of degree at least one. If not, all the coeflicients
but the constant one of the polynomial U vanish. If the tuple b satisfies the constraints

given in (4.21) then S¢(b) = 0 because of the contribution of € = (—1,...,—1)
~ 1

in Q.Y §£roYr;1)- This implies that U(c¢) = 0 and that U is the constant

polynomial of value 0. Choosing Z = —1 leads to

k—1 k1

e l—[ (t —1%)* =0modp
TET(1)

T#£70

so that

£z, = 0mod p

since the t’s are distinct modulo p. This is a contradiction.
Finally, the c’s satisfy the polynomial equation U(c) = 0 of degree at least 1 and

less than (k — 1)2%72. As a consequence, the number of ¢’s in (4.21) is less than
(k — 1)2k-2, Ol

The following proposition contains the asymptotic evaluation of the cardinality

of the set A= (p) defined in (4.16).

Proposition 4.8 (Applying A. Weil’s version of the Riemann hypothesis). Let u =
(1(1))rez ) pnz be a sequence of p"-tuples of non-negative integers. If p is odd then

n 2T T
|Apn(p)| = §|(ffu))| (1 - 0(—-}%)) (4.22)

Remark 4.9. The equation (4.22) is an asymptotic expansion if and only if

QIT(M)IIT(MN

=0 (4.23)

as p tends to infinity among the prime numbers.
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Proof of Proposition 4.8. Obviously,
Apn() = p"" 3

ac(Z/pZ)™,
YteT(n), a+t€((Z/ pZ)*)>?

— pn_l Z 1
ac(Z/pZ)*,
VteT(n), a+re((Z/pZ)*)?

=p"' > [ 3Ge@+0+0),
ac(Z/pZ)* teT(n),
(a+t,p)=1
where y, is the quadratic character modulo the odd prime number p.

At this point, the problem becomes a variant of the question considered
by H. Davenport in 1931 of counting elements x modulo p such that both

x,x +1,...,x + k are quadratic residues modulo p uniformly with respect to the
integer k > 1. See for instance [7, Section 1.4.2]. Thus, the end of the proof is
omitted. | O

The core of the proof of proposition 4.1 is the following result.

Proposition 4.10 (Moments of shifted Kloosterman sums). Let p = (1(7))zez/pnz
be a sequence of p"-tuples of non-negative integers satisfying

Y u@ =M (4.24)

T€Z/p"Z

for some absolute positive constant M and |T(r)| = |T(p)|. If

p > max (M,2n —5) (4.25)
then
) p(7) :IlAp"(ILN L i RN
Spn(p;bo) = 82lu(c ——— + OM,e o 4.26
2 A0 Lezlj,[,n;'“( )(u(r)/2) oy O hIGE

for any € > 0 and where the implied constant only depends on M and €.

Remark 4.11. In particular, for any non-negative integer m,

1{ m 4(n—1)
Klpn(a,bg)™ =6 —( )-|-0 ( —=5n +6) 4.27)
5 2 D » D0 2|lm m,e\ P
O(P") cdrmzy~ 2\m/2
for any € > 0 under (4.25). In other words, under the same assumption,

1

@(p™)

> Kipn (@, bo)™ = E(U™) + Ome(p™ 57 +9),
aE(Z/an)x



510 G. Ricotta and E. Royer CMH

where U is any real-valued random variable of law the probability measure p defined
in (1.1). Hence, by (3.1), the normalized Kloosterman sums Kl,» (a, bg) become
equidistributed in [—2, 2] with respect to the measure p as briefly indicated in
Remark 1.5. Such equidistribution result was stated without proof'in [8, Remark 1.1].
This measure has already occured in [8], where the author proves that the twisted
normalized Kloosterman sums Kl ,» (a, ) for a fixed a in Z/ p"Z and y ranging over
the Dirichlet characters of modulus p” get equidistributed with respect to pu as p
tends to infinity.

Remark 4.12. It follows from the results proved in [3] thatif 1 <m < p"~! then
1
e(p")

> Kipn(a, )™ =EU™),

ae(Z/p"Z)*

where U is any real-valued random variable of law the probability measure w, which
agrees with (4.27).

Remark 4.13. For any integer r > 1, any non-negative integers my, ..., m, and any
distinct integers 1y, ..., T, the previous proposition implies that

. Z l—[ K|pn (Cl -+ T, b())mi

n
(,0(]) )aE(Z/p”Z)X i=1 3
. _4n—1)
= IE(I—I Uiml) + 0ml+"'+mr,€(p 2n +€)

i=l1

for any € > 0 and for any sequence of real-valued independent random variables
(U;)1<i<r of law the probability measure p under (4.25) provided that

p> max |t — 1.
1<i,j=<r

In other words, the r-tuple (Kl,»(a + i, bo))1<i<r gets equidistributed in [-2, 2]"
with respect to the measure ®” t.

Proof of Proposition 4.10. Firstly,
Klpn (a + T, b()) = K|pn (h()a + byt, 1)

since by is coprime with p. The change of variable a’ = bga in S pn (5 bg) combined
with the change of multiplicities

wiey, if ¢ = bgi',

’[’ —
(@) 0, otherwise

for € Z/ p"Z implies that one has to prove this proposition only for 5y = 1. Thus,
bo = 1 up to the completion of the proof.
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Let us come back to the moment S, (x). By Lemma 4.6,

Z 1—[ ( )u(r)

Spn(p) =
<p(p )beB,,n(u) TET(1)

47T3'a+r,p" 4 9 )),u(t)
p" :

Z l_[ (2 cos ( -

acZ/p"Z, TT(w)
VzeT(pn), aEb%—r mod p

Recall that vg qgpn =A@+ T mod p”. In addition, the second condition in (4.13) is

satisfied since @ has to be coprime with p.
Now, recall that®

M

2cos (DM = (A,Z ) cos (M — 2m)x)

m=0

for any real number x and any non-negative integer M. Thus,

Z 1—[ ( )M(f)

beEBn () TET(R)

2. [ MZ(I:)( )COS[(M(T)~2ur)(ﬁ%+9pn)].

an/p”Z TeT() ur=0
YteT(n), a= b —1 mod p
(4.28)

Spn(p) = (p( )

One can split Spn (p) into Spn () = MT pn () + Errpn (), where

Z l—[ ( )M(T)

beB,n () teT(n)

Z l_[ Z (M( )) cos [(;L(r) - 2ur)(4£;i;nﬂ = 9pn)]

acZ/p"Z teT(p) 2ur=u(z)
YreT(n),a=b2—t mod p

MT ) 1=~

and Err ,n () is the remaining term. Note that MT ,» (i) is nothing else than the term
obtained when the multiplicities p(7) are even and u,; = p(r)/2.

6The referee kindly informed us that this expansion can be interpreted as an expansion in terms of
Chebychev polynomials of the first kind, which are orthogonal polynomials for the measure .
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Let us start with MT ,» (g). Obviously, MT ,» (n) = 0 unless

VieT(n), 2| p(x).

Hence

() — PN Q) :||Ap”(ﬂ)|.
s LQM 2'““(u(r)/2) o)

Let us bound Err,n (p). Trivially,

Errpn (1) <m sup Errpn(p,£),
e[ ety [—u(D),n(@)]
€40
where
1
Bt .8 = oM 2 2, el’”( 2 KTS““’P")i
P bheB,n (p) acl/p"Z T€T(p)
VreT(p),a=b2—1 mod p
1
= Errpn(p, €,b)|.
n Z | p
o(p )beBpn(u,)

for any |T(u)|-tuple £ of integers with the properties written above.
Let us fix from now on a |T(p)|-tuple € = (£1)et(n) of integers different from
the tuple 0 and satisfying
VoeT(n), [b|=<p@x)<M<p (4.29)
by (4.24). Let 1y be a fixed element of T(p). For b in Bp» (p), (4.12) implies that
Ve eT(n), Id €Z, b2 —1=b] —19—dyp.
One gets a |T(p)|-tuple d = (dr)er(u) Of integers. The change of variables
a= btg —To +up

with ¥ mod p"~! so that

a+r=bfo—t0—f—up+r=b$+(dt+u)p
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and (4.19) entail that

Errpn(p,€,b) = Z ep”( Z Efsb%+(dr+u)P,P”)

u mod pn—1 TET(1)

n—1
- Z epn( Z L.b, Z c,’nb_rzmpm(dr + u)m)
m=0

u mod pn—1 T€T())

= Y epn(Pp(u)

u mod pn—1

where
n—1 )
T ()
Pp(u) = E L.bhy E c,’nbr p"(dy +u)™ (4.30)
TET(1) m=0 ,

is a polynomial in the variable u of degree less than n — 1 with integer coefficients.
Note that all the quantities defined here and below depend on the tuples p, £, b and d
but we only state the dependence on b for simplicity. One can check that

n—1
Py(u) = ) a;(B)u’,
j=0

where
n—1 r
Vie{0,...on—1} a;jB)= Y (j)cimb(r,j)p'
r=j

and

Vjie{0on—1} Yrelj.oon—1} my(rj)= Y &b di7.
TeT(u)

An important fact is that p/ divides a;(b) for any j € {0,...,n — 1}. Note also that
when r = j, the quantity mp(r, j) gets simpler and does not depend on the tuple d
since mp(j, j) = mpe(j, j) previously defined in (4.14) for 1 < j <n —1. In
particular,

mp(1,1) = Y L:hy.

T€T(1)

Let us define

i) =sup({j €{l,....,n—1}p" J(aj(b)}) ef{l,...,n—1} U {—o0}.
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Having this notation in mind,

n—1
Errpn(p,€,b) = Z epn(Zaj(b)uj).

% mod p—1 j=0

This new polynomial in the exponential sum is still denoted by Pp(u) for simplicity,
even though some terms are missing.
The strategy to find an upper-bound for Err,n (i, £) is to decompose it into

1
Ert pn (s, £) = ) > |Erpn (n. 2. b)| + o > |Erpn (u. 2, b)|
U beB,n (1), ¢ beEB,n (1),
J(b)=—c0 jb)=1
& o > IErpn (. £,b)| (431)
go p beBp" (.“«),

j(b)ef2,....n—1}

and to proceed as follows.

* In the first term of (4.31), the exponential sum Err ,n (e, £, b) is bounded trivially
by p"~! but the counting of the tuples b is done carefully;

* In the third term of (4.31), Weyl’s differencing process enables us to find an upper-
bound for the exponential sum Err,n (p, £, b) and the counting of the tuples b is
done trivially by < p. Note that this term only occurs if n > 3.

* In the second term of (4.31), both the exponential sum Errp»(p, €, b) and the
counting of the tuples b are handled carefully.

Let us define N = p"~! for simplicity.
Let us begin with the third term of (4.31). The purpose is to show that if
b € Bpn(p) with j(b) € {2,...,n — 1} then

-4z 4.

Errpn (i, £,b) < p" (4.32)

for any € > 0 and where the implied constant only depends on €. For these tuples b,
Py () is a polynomial of degree j(b) and leading coefficient divisible by p/®. Let
us define ajp)(b) = pkozj(b) where j(b) < k <n—1and p { a;p. We are
tempted to apply Weyl’s differencing process (see [16]). By [5, Proposition 8.2]),
one gets

|Errpn (1, €, b)| < 2N x E2 ", (4.33)

where

1 . iy D)yl y—1
E= 2. min (N’ 1= p—i®) 1 1)'
—N<81 ..... Ej(b)_|<N
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As usual, || * || stands for the distance to the nearest integer. The contribution to X ;)
of the integers satisfying £; ... £ ;)—1 = 0 is trivially bounded by 1/N. Up to this
error term,

1
E:W Z d(b) 1(£)m1n(

0F£|L|<NFB)—1
(=1 (B)-1)-1

a;(b)](b)'f “‘1)

1 O (%) (D)1
=v® L > dyy-a@ymin ([ ZEE] )
=0 0£|¢|<N/B)—1,
plie
(n—=1)(j(b)—1)—-1
1 o ey J (b))
=0 2. diw-1(p'min (N ﬂ == ” )
i=0 O%wkm(b) 1
(p,6)=1

The contribution to E of the non-negative integers i less than n —k — 1 can be written
as

1
E0) >, >

0=i=(—D(B)-D-1, |p|<(p"F~i-1)/2,
i<n—k—1 (p,v)=1

=)

Z dj@wy—1(p' E)mm(N ‘
07/2|K|<Nj(b) 1

L=a @) i)l mod pt—k—i

and is bounded by (pN )€/ N . The contribution of the remaining integers i is trivially
bounded by (pN)€/p™*, which is less than (pN)€/N. As a consequence,

|Ertpn(p, £,b)| K (pN)ENl—zl—j(b) < (pN)€N1—22_”’

which implies (4.32).
About the first term of of (4.31), let us show that

1 pn—l
o D |Erpn(p.£,b)] < ( H)N(ﬂ,z;()), (4.34)
(") peg ), o(p
j(b)=—00

where N(u, £; w) is defined in (4.15) for any w modulo p. The exponential sum
in (4.31) is trivially bounded by p"~!'. Now, let b in B,n(p) with j(b) = —oo.
If 1 < j <n—1then p" divides a;(b), which implies that

¢ymp(j, j) = 0 mod p

and mp(j, j) = 0 mod p since c;. is coprime with p for p > 2n — 5 by (4.18). This
implies (4.34).
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Finally, let us prove that

! ! S —k 1 7. k—1
o 2 B < e SOt T NG equptT).
beB,n (1), k=1 v mod p”_k,
j(B)=1 (p,v)=1

(4.35)
For these tuples b, Pp(u) is a polynomial of degree 1 and leading coeflicient divisible
by p. By [5, Equation (8.6)],

1 ai(b
[ty (1, €, D) < 5 min (2, | a1 (4.36)
so that
al(b)/P =4
Y Erpen<y, ¥ [“00
beB,n (u), k=1 beB,n(n),
J®)=1 p*llai (®)
n—1 7 1
= > Y |
k=1 v mod p"—*, beBpn (1),
(pv)=1  a;(b)/p¥=v mod p"—*
n—1 |
_ n—k
ST x Loxa
k=1 v mod p"*—k, beB,n (u),
(p,v)=1 ay (b)/ p¥=v mod p"—k

Now, if b in Bpn(p) satisfies a;(b)/p¥ = v mod p"* then this implies

cymp(1,1) = a1 (b)/p = vp*~1 mod p with c1 coprime with p by (4.18). This is
exactly (4.35).
By (4.31), (4.32), (4.32) and (4.34), one gets

4(n—1) N(w,£:;0
Errpn(p, ) K p~ 27 €+ N, £:0)

P
n—1 1 1 .
+> — Y —=N(p.ticivp*T) @37
2 P ]
v mod p .
(p,v)=1

for any € > 0. Everything boils down to bounding N(x, £; w) uniformly with respect
to w mod p. Proposition 4.7 implies that

4(n—1)

Errpn(p,8) e p~ 27 T

for any € > 0. L



Vol. 93 (2018) Kloosterman paths of prime powers moduli 517

The following lemma will be used in the proof of Proposition 4.1.

Lemma 4.14. Let M > 2 be an integer. If ay, is a sequence of real numbers indexed
by non-negative integers satisfying

ifh =0,

VheN, 0<a=< )
, otherwise,

o T
-

then
M

M
Su= Y [Jan < w.

Oshls'-'sthpn’ l=1
Elif,éj, hiEhj mod p,
hi#h;

Proof of Lemma 4.14. Let us proceed by induction on M. If M = 2 then

log (p"™) , log (p")log (p")

Yp=2a0 Y ap+ ) anap, < p >

I<h<p", 1<hi,hy<p",
rlh h1=hs mod p

Let us assume that M > 3. We use the combinatorial identity given in [11,
Lemma 7.1], which entails that

M Ky
Sm=2 ) > ITa
s=1 geP(M,s) O0<hy,...hg<p™, u=l1
di#j, hj=h; mod p,
i#h;j

where
Yuefl,...,s}, o= o {udl

and for 1 <s < M, P(M, s) stands for the set of surjective functions
ofl,.... M} —>{1,...,s}
satisfying

Vjiell,....M}, o()=1 or Fk<j, o(j)=0(k)+1.

The sum over /1, ..., hs can be decomposed into
S S S
Oy Oy Oy
> Ilan+ > [Tam+ > Ilam

0<hy,....hs<p", u=l1 0<hy,....hs<p", u=1 1<hy,...hs<p", u=l
hi,...,hg distinct, hy,...,hs distinct, hy,...,hs distinct,

3i(),hi0=0, 3i(),h,‘0=0, Ji#j, hyj=h; mod p

3j#io, h ;=0 mod p Vi#ig, pth;,

Ji#j#io, hi=hj mod p
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The first sum is trivially bounded whereas the second and third sums are bounded by
induction. This gives

M -
lo s—2 n 10 n—1 ]0 s—2 n 10 n—1
o <<Z Z ( g (p; g(p )Jr g (p; g(p")

log*™"! (p") log (p"“))

s=1 geP(M,s)

o
P

which ensures the result. L]
Let us give now the proof of Proposition 4.1

Proof of Proposition 4.1. By Lemma 4.4, it is enough to consider I\W;n (t;m,n,by).
Recall that Hp» = {(1 — p")/2,...,(p" — 1)/2}. By (4.5),

p— 1
M n(t;m,n;bo):
p pnﬂ(m—l—n)/zgo(pn) ae(Z;Z)X

k

1—[( Z apn(u,-;t,-)Klpn(a—u,-,bo)) i(

i=1 “u;€H,n

ni
Z o pn (Ui; Ii)Klpn (Ll—'Ui ’ b()))

V;€H ,n

since the complete Kloosterman sums are real numbers. Expanding the powers, one
gets

k
~ 1
Mpn (t’man’b()) = an(m+n)/2¢(p") Z l—I Z
ac(Z/ P EY* =1 yyelup ool S B
m;
Z l—[ @ pn (Uie;5 1) Klpn (@ — Ui e; , bo)

n e.—1
Vi =V, 1,V n; )Eﬁ’p;7 €

nj

1_[ ap”(vi,f,j;ti) K]pn(a — vi,fi,b()).
fi=1

Letussetforl <i <k,

hi = (hf,la sy hi,m,- ) hi,m,——i—l, ey hi,m,:+n,-)

m;+n;
— (u,-,l, cevs Uigmgs Vils e v o Ui,nl-) € Hpnl i

and
h=(hi,....hg) € H",
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Exchanging the order of summations, one is led to

k m
o~ 1 R T
Mpn (t;m, n;bo) = W Z l—[ 1_[ apn(hi,j;ti)

peREm i=1 j=1

m;+n; 1 k m;+n;
] a‘,,n(hi,j;z,-)W > I T1 K@=ty bo).
j=m;+1 pLp ae(Z/phzZy* i=1 j=I

By Lemma 4.14 and (4.6), the contribution of the tuples & different from the
tuple 0 and whose components are not distinct modulo p is bounded by

lo L(m+n) (p")
<Lt(m-+n) S : (4.38)
p
where the implied constant only depends on £(m + n).
Thus, up to all the previous error terms,

1 kB

W Z Hl—[aﬁ”(htj»tz

heHﬁ(nm—i—n) i=1j=1

Mpn (;m,m; bo) =

m;+n; 1 k m;+n;

11 apn(h,»,j;z,-)m Y I1 1 K@= hijbo), (439

j=mi+1 a€(Z/pnZ)* i=1 j=1
where the * means that the summation is over the tuples k = (h; ;) 1<i<x Whose

1<j<m;,
components are either equal or distinct modulo p, namely

hijj=hke or pthi;—hgy

for any (i, j) # (k, £) in the relevant ranges.
Note that by (4.11),

k m;+n;

Z [T ] Kipr(a—hij.bo) = Spn(rnibo),

ae(@/p"Z)* i=1 j=1

1
@(p")

where pp = (n(7))cez/pnz is the p”-tuple of non-negative integers defined by

k

Ve e Z/p"Z, pa(r) =) [{j €{l,....m; +n;},—h;; = mod p"}|.
i=1

Note also that

> ua(@) = Lm +n)

t€Z/phZ
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so that

{r mod p.v € Z/p"Z, pn(v) = 1}| = {r € Z/p"Z, pa(v) = 1}| < €(m + n)

according to the property satisfied by the relevant tuples A in (4.39).

Hence, one can apply Proposition 4.10. By (4.6), the contribution of the error
term is bounded by

_4(n—1)

<<£(m+n),e ]Ogﬁ(m+n) (pn)p C

for any € > 0, where the implied constant only depends on £(m + n) and €. Thus,
up to the previous error terms,

kK m;
— 1 S S
Mp"(t:m,mbo) = W Z 1_[ 1_[ “p”(hi,lei)

heHégn+n) i=1 j=1
)24

il Apn
I PR R

n
Jj=m;+1 t€Z/pnZ (P(P )

where Ap,n (jup (7)) is defined in (4.16).

Let us apply Proposition 4.8. By (4.6), the contribution of the error term is
bounded by

lOgE(m+n)(pn)
JP

where the implied constant only depends on £(m + n) and, up to all the previous
error terms,

Le(m+n)

b

k  m;
S 1  —
Mpnim,mibo) =~ 2 L] [TewGugin)

her]sIm+n) i=1 j=1
m;+n;
pn () 1
[T e hiyin) [ I1 32|u:.(r)( )] ST
Jj=m;+1 T€Z/p"Z Feh (‘C)/2 2T
It should be pointed out that the fact that
IT(ra)l = [T(rn)|

is crucial since recognizing the moments of the measure p requires the left-hand side
of the previous equation whereas the right-hand side appears by Proposition 4.8.
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By (3.1),

kK m;
—_— 1 * - S —
Mpn(t;m, n;bg) = otz E H 1_[ apn(hyj;ti)
hEHf)Slm+n) i=1 ]=1

m;—+n; k mi+n;
l_[ apn(hijiti) E(l_[ H Uhi.j)
1

j=m;+1 i=1 j=

for any finite sequence of real-valued independent random variables (Up)pez/pnz Of
law the probability measure p defined in (1.1). The fact that

E([k'[ mﬁniuhi’j) = IE( I1 U#(’))

i=1 j=1 TE€Z/p"Z

has also been used. One can add the missing tuples £ at the admissible cost given
in (4.38) so that, up to all the previous error terms, ‘

k m;
— 1 S
Mpn (t;m, n;bo) = prlentn)]2 > 11 [Terun

hEHﬁszm_Hl) i=1 j=1

m;+n; k m;+n;
l_[ O.’pn(hi’j;l‘j)IE(n l_I Uhi,j)'

j=mi+1 i=1 j=1

Let us approximate the coefficients a,» (h; t). By (4.7) and (4.6), one gets, up to
all the previous error terms,

k m;
p— 1 _—
Mpr (Gmomibo) = s 2 L1 1AW

heHﬁgu—!—n) i=1 j=1

m;+n; k mj+n; Lm+n)—1, _n

log (r")
[T 80 E(TT TT Uhe, ) + Octmsm (2 2),
j=m;+1 i=1 j=1 P

Reverting the computation done at the very beginning of the proof of this proposition,
one is led to

k

— ———; .

Mpn (t;m, n; by) = E(l_ll Klproa(ti) - Klpai (l‘i)"')
=

up to all the previous error terms and where

K pn 1 (%) = > Bh:t) Up(x).

k<271
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Finally, by (3.2) and (3.3) in Proposition 3.1, up to all the previous error terms,

lOgE(m+n)(pn))

k
Mpn(t;m,n; bo) = ]E(l—[ Kl(t,-)mz Kl(fi)ni) + 0€(m+n)( pn/2
i=1

where

KI(t; %) = Z B(h; t)Up(*)

heZ

for any sequence of real-valued independent random variables (Uj)pez of law the
probability measure . ]

5. The tightness condition

5.1. The counting ingredient. The following lemma states, without any proof, the
version of Hensel’s lemma, which will be used in the proof of Lemma 5.2. This
result is so standard that we do not give any reference too.

Lemma 5.1 (Hensel’s lemma). Let k be a positive integer and f be a polynomial

with integer coefficients. Assume that xq is a solution modulo p* of the congruence
f(x) = 0 mod p*.

 If p t f'(xq) then there is exactly one solution modulo p
f(x) = 0mod p**1 congruent to xy modulo p*.

k+1 of the congruence

e If p | f'(x0) and f(xo) = 0mod p**t! then there are exactly p solutions
modulo p**1 of the congruence f(x) = 0 mod p**! congruent to xo modulo p*.
They are given by xo + p* j for j modulo p.

Lemma 5.2 (Hensel’s lemma in degree 2). Let n = 1 be an integer and f(X) =

X2 — sX + 7w be a polynomial of degree 2 with integer coefficients satisfying

s =1 + 1 mod p". Assume that p* || & — 1 for some integer £ > 1. The number of

solutions of the congruence f(x) = 0 mod p" equals

2pt, ifl1<l<n/2-—1,
p?, ifnj2<t<n,

if n is even, and

2pt, fl=t=m-1/2
pr V2 i (n—1)/2+1<€<n,

if n is odd.

Remark 5.3. This lemma is proved by a quite technical induction on n > 1 but
understanding the set of solutions for 1 <n < 3 of f(x) = 0 mod p" gives an idea
of how the induction works.
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Proof of Lemma 5.2. 1n this proof, recall that p | & — 1.

Obviously, 1 is the only solution of the congruence f(x) = 0 mod p with
s=m + 1 mod p.

Let us quickly check what happens for n = 2. One has f(1) = 0 mod p? and
f/(1) =2 —5 =0mod p. By Lemma 5.1, the only solutions of f(x) = 0 mod p?
withs = 7 4+ 1 mod p? are 1 4 pky for 0 < k; < p.

Let us do the case n = 3. For 0 < k; < p, 1 + pk; is a solution of f(x) =
0 mod p? satisfying f'(1 + pk;) = 0 mod p and

f(1 + pky) = pki(1 — 7 + pki) mod p°.

If ky = O then by Lemma 5.1, 1 4 p2k, for 0 < ko < p are the only solutions
of f(x) = 0 mod p? congruent to 1 modulo p?. Otherwise, p || 7 — 1 and ky
must be the unique invertible integer modulo p satisfying pk;, = 7 — 1 mod p2.
Then, by Lemma 5.1 1 + pky + p%*k, for 0 < ky < p are the solutions of
f(x) = 0 mod p3 congruent to 1 + pkj_, modulo p?. We have just seen that the
solutions of f(x) = 0 mod p3 withs = 7 4+ 1 mod p> are '

o 14 p?kyfor0 <k, < p,
o 1+ pkyig+ p%kyfor0 <k, < pandif p || —1and pky r =7 — 1 mod p2.

Note that the previous simple use of Hensel’s lemma proves Lemma 5.2 for
1 < n < 3. We will conclude by induction on n > 2.
Let us set

(n/2—1,n/2), if n is even,

(£1(n), £2(n)) == ((n—1)/2,(n —1)/2), ifnisodd.

Let us prove that for any n > 2, the solutions of the congruence f(x) = 0 mod p”
for any polynomial f(X) = X2 — sX + & of degree 2 with integer coefficients
satisfying s = & + 1 mod p” are

1 + pn—lkn—la
where 0 < k,—; < p and forany 2 < m < £,(n),
I+ pn_mkn—m SRkl o pn_lkn—la

where 0 < kp—m < P, 0 < kp—m+1,...,kn—1 < p provided that p™ | = — 1 and for
any 2 <m < £y(n),

1+ pmkm,:u' sk oite pn_m_lkn—m—l,zr ~+ Pn_mkn—m s wis Pn_lkn—ly

where 0 < kp—pm, ..., ky,—1 < p provided that p™ || = — 1. Here, the numbers k,, 5,
m <u <n—m— 1, are fixed integers modulo p satisfying

Pk + oo+ p" ™ e = — 1 mod p*.
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In particular, k,,  is invertible modulo p. This fact trivially implies Lemma 5.2 for
n > 2. The casesn = 1, n = 2 and n = 3 have just been seen above.

Let n > 2. Let us assume that the result holds at the rank » and let us check that
it remains true at the rank n + 1. For instance, let us assume that n is even. We do
not provide the proof when 7 is odd since this is completely similar.

For0 < k,_1 < p, x, = 1+ p"lk,_, is a solution of f(x) = 0 mod p”,
which satisfies f’(x,) = 0 mod p and

S () = p"kn—1(1 =7 + p"lkn—1) mod p" 1.

n+1

By Lemma 5.1, the only solutions of f(x) = 0 mod p congruent to x, are

e 1+ ptk,for0 <k, <pitk,—1 =0,
e 14+ p" Yky—y + pky for0 < kp—1 < p,0 <k, < pandif p? | m —1.

Let2 <m < {(n) = n/2. Assume that p™ | w —1. For0 < ky—m+1,...,kn—1
<pand0 < ky_pm < p,

Xm,n = 1 4 pn_mkn—m o & 0 pn_lkn—l
is a solution f(x) = 0 mod p", which satisfies f'(xm ) = 0 mod p and

f(xm,n) = pn(kn—m b lls o pm—lkn—l)
] —
( T + pn—kan_m gy s Pn_l_mkn—l) mod pn-l-l.

m

If 2 < m < n/2 then by Lemma 5.1, the only solutions of f(x) = 0 mod p"*!
congruent to Xy, , are

1+ pn—mkn—m £ gk pn_lkn—-l .k pnkn,

where 0 < kp—m < p, 0 < kn—m+1,...,kn < p provided that p™*! | 7 — 1. If
m = n/2 then by Lemma 5.1, the only solutions of f(x) = 0 mod p"*! congruent
to Xy, /2, are

I+ P"/anIZ,n + Pn/2+lkn/2+1 = 6 Pn—-lkn—l + p"ky,

where 0 < k/241,...,kn < p provided that p*? || w—1and p"2kpjpn = —1
mod P"/2+1.

Letl <m < ¥£1(n) =n/2—1. Assume that p™ || # — 1. For 0 < ky,—py, ...,
kn—l < p:

Xmp =1+ pmkm,n r phalhe n pn_m_lkn—m—l,n + Pn_mkn—m ek lie o pn_lkn—l



Vol. 93 (2018) Kloosterman paths of prime powers moduli 525

is a solution f(x) = 0 mod p”, which satisfies f’'(xm ) = 0 mod p and

.f(xm,n) =p" (km,n = me o) Pn_zm_lkn—m—l,n
o pn—kan_m s wamr e pn—l—mkn_l)
) (1 — 7w+ pmkm,n' + ot [)n_l_mkn—m—l,zr

pn_m

+ kn—m + pkn—m+1 + - + k,,_lp”_l_’”) mod p"*1.
By Lemma 5.1, the only solutions of f(x) = 0 mod p"*! congruent to x,, , are
L Pk + -+ D" hnemm + PV knemy + o+ Pk,
where 0 < kj,—m+1,...,kn <P and where
Pk + o+ o Py = — Lmod pf 7,

This completes the induction on ». L1

Proposition 5.4 (The counting ingredient). Let n > 1 be an integer and I be a
non-empty interval in (Z./ p"Z)*. The number of quadruples (x1, X2, x3,x4) € 1*
satisfying

X1 + X2 = x3 + x4 mod p”,
X1 + X2 = X3 + X4 mod p”

is bounded by an absolute positive constant times n|I|°.

Proof of Proposition 5.4. Let us denote by Ni¢(p";I) the number of these
quadruples (x1, X, x3, X4) satisfying p¥ || x3 4+ x4 and p® || x3 — x4 for some
fixed integers k,¢ € {0,...,n}, which must satisfy k£ = 0 since p is odd. Let
(x1,Xx2,Xx3,x4) be such a quadruple. Let us fix x4. There are at most |/| such xy.
The bijective change of variables y; = Xx; for 1 <i < 3 leads to the system

y1+ y2 = y3+ 1 mod p”*,
¥1+ y2 = y3 + 1. mod p”,

where the triple (y1, y2, y3) belongs to (¥3/)3 and whose components satisfy p¥ ||
y3+ 1and p? || y3 — 1. Let us set

s=y1+y2 and w = y1y;.
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The previous system becomes
s = y3 + 1 mod p" (5.1)
and
ws = y3 + 1 mod p".

Thus,
l=y3y3=(—1)(ws—1) mod p"

so that s(s — (w + 1)) = 0 mod p” and
s =w + 1 mod p" k. (5.2)

Let f(X) = X? —sX + w. Obviously, y; and y, are solutions modulo p" of the
congruence
f(x) =0mod p". (5.3)
Note also that
f(X)= (X —1)(X — @) mod p"* (5.4)

by (5.2). In particular, if n — k > 1 then the only solutions modulo p of
J(x) = 0mod p

are 1 and @, which satisfy f’(w) = —f'(1) = w — 1 mod p by (5.2). Let us
consider three distinct cases.

First case: k = 0 and 0 < £ < n. In this case, p } s by (5.1) and p* || @ — | since
y3—1=5—2=wm—1mod p"” by (5.1) and (5.2). Let us fix y3, which implies
that s is fixed by (5.1) and @ is fixed by (5.2). There are < 1 + |I|/p® such ys.
By Lemma 5.2, the number N;(p") of solutions modulo p™ of the congruence (5.3)
satisfies

Pe, ifnisevenand0 <€ <n/2—1,
" p"'?, ifnisevenandn/2 < ¢ <n,
Ne(p™) < §

e, ifnisoddand 0 <€ < (n—1)/2,
p—V/2 ifpisoddand (n —1)/2+1 < € < n.

In total,

I
Mo 1) < I11(1-+ 23 min (Ve 1),

Second case: 1 <k <n—1and £ = 0. Inthiscase, p* || sby (5.1)and p } w —1
by (5.1) and (5.2). Let us fix y3, which implies that s is fixed by (5.1) and @ is
fixed modulo p"~* by (5.2). There are < 1 + |I|/p* such ys. By Lemma 5.2, the
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congruence f(x) = 0 mod p"~* has exactly two solutions. Hence, the same holds
for the number of pairs (y1, y2) modulo p"~*_ In total,

Nio(p"s 1) < 1111+ I |)(1 +;i) < |2

Third case: k = n and £ = 0. In this case y3 = —1 mod p” is fixed and given yq,
y2 is fixed. In total,
Nuo(P"; 1) < |1,

Altogether, the number of quadruples (x;, x2, x3, X4) equals

n—1
ZNOK(P D)+ D Neo(P"s 1)+ Nuo (P73 1)
{=0 k=1
and is bounded by < n|I|*. O

5.2. The fourth moment of incomplete Kloosterman sums.

Proposition 5.5 (Bounding the fourth moment). Let n = 2 be an integer and I be a
non-empty interval in (Z/ p"Z)*. One has

Ma(l) = —— 3 | n/ZZepn(ax+bx)‘ i

ny2 (2"
O™ (o pye@imayexasmzy< P xel »(P")
Proof of Proposition 5.5. Expanding the fourth power, one is led to

Ms(I) = 1 Z ( Z epn(a(xl + x5 — X3 —x4)))

n\2 p2n
(p(p ) p (JC],)C2,X3,X4)EI4 aE(Z/an)x
( D b+ -5 —x—4))).
be(Z/pnZ)*

The orthogonality of additive characters ensures that

n n—1
Z epn (cz) = p"6:=0 moa pn — D 6250 mod p"—1
ce(Z/p"Z)*

for any z in Z/ p™7Z. Thus,

1 1
M) = e 2. T 2, 1

(x1,x2,x3,x4)€I?, (x1 JX2,X3,x4)ET*
x_1+x2 x3+x4 mod p” o x1+x2=x3+x4 mod p"
X1 +x2=x3+Xx3 mod p" X1+X3=x3+X3 mod p"—1
: 1+ : 1
D ST
o(p")*p p(p™)?* p?

(x1,%2,x3,x4)ET%, 1
?
3

(x1,%2,%3,%4) €I,
x1+x2=x3+x4 mod p"_' s X1+x2=x3+x4 mod p

X1+X3=x3+%x2 mod p" X1 +¥2=%3+%2 mod p"~!

Proposition 5.4 completes the proof. L]
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5.3. The tightness condition via Kolmogorov’s criterion.

Proposition 5.6 (Tightness). Letn > 2 be an integer. The sequence of C°([0, 1], C)-
valued random variables Klpn(x;(*,%)) on the random space (Z/p"Z)* x
(Z,] p" ) where p is an odd prime number is tight.

Proof of Proposition 5.6. Let us show thatif 0 < s,¢ <1 then

1
O Y IKipa(t; (a, b)) — Kipn(s; (@, b)) [* < nlt — 5%, (5.5)
)™ (e 2y <@/ p 2y

where the implied constant is absolute. The bound (5.5) is enough by Proposition A.1
to ensure the tightness of the sequence of C°([0, 1], C)-valued random variables
Klpn (#; (, %)) as p tends to infinity among the odd prime numbers. One can assume
that0 <s <t < 1.

Firstrange: 0 <t —s < 1/(p(p™) —1). So that

4
P

p" <

(5.6)

Let us show that
|Klpn (25 (a, b)) — Klpn(s; (a, b))| <24/t — 3,
which implies (5.5) in this range. Let us assume that

i-1 j
e B E
p(p") —1 e(p") =1
where 1 < j < ¢(p") — 1. Two cases can occur.

First case: 4 )
J— J
—— =< —,
p(p") —1 e(p") —1
In this case,

[Kipn (25 (@, b)) — Kipn (s: (a,b))| = |e; ((a, b); p")|(t — 5)

< qD(I;;l)/z_ t — _5) < 24/t

by (2.2) and (5.6).
Second case:

=2 g d=b o T

e(p") —1 e(p") —1 T e(pm) -1’
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where 2 < j < @(p") — 1. In this case,

Klpn (1: (a, b)) — Kipn (s; (@, b)| < [Klpn (2 (a, b)) — 2 ((a, b); p")|
+ 1z ((a, b); p*) — Kipn (s: (a, b))|.

The first term is less than
j—1
o (@, 8); P (1 — =2 =)
ep
whereas the second term is less than

oy, b (oo =),

Altogether,
n
INMMMJ»—mw@mmmn_¢@) (—s) <275
p"

by (2.2) and (5.6).
Second range: t —s > 1/(¢(p") —1). So that

1
t—s

(5.7)

ph =
Let us assume that
J=1 j k—1 k
<§<——— an s
o(p") —1 p(p") —1 o(p") —1 p(p") —1
where 1 < j <k —1 < ¢(p") — 2. In other words,
J=1e(@")—Ds] and k= [(e(p")— Dt].
By (4.10) and Holder’s inequality,
1
SO > IKipn(t; (@, b)) — Klpn(s: (a, &)
(a,b)e(Z/p" L)X (Z[p"ZL)*

1
=Ma(Ls) + 07 ) = Mallo) + O(( — ),
P
where I ; is the non-empty interval in (Z/p"Z)* given by

(xj () = @(p™)s + j — 1., xx (1) = @(p™)t + k — 1] N (Z/ p"Z)*.
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Its length satisfies

[s,el = Lxk ()] — [x;(s)]
< o(p")(t —s5) + [(p(p") — Dt] — [(p(p") — 1)s]
<4e(p") - D@ —s5)+1
< 8(p(p") — 1) — )

since (¢(p™) — 1)(t — s) > 1. Proposition 5.5 implies (5.5). O

6. Proof of Theorem A and Theorem B

Let us prove Theorem A. By Proposition 3.1, the random variable KI has moments
to all orders. Thus, we are allowed to use the method of moments. Proposition 4.1
leads to the result.

Theorem B is implied by Theorem A.3, Theorem A and Proposition 5.6.

A. Probabilistic tools

This section contains some probabilistic results needed in this work. The main
reference for both the statements and their proof is [10].

Let us say a few words about random variables with values in the Banach space
C°([0, 1], C) of C-valued continuous function on [0, 1] endowed with the supremum
norm. Confer [10, Section B.9] for more details. For each n > 1, let X,, be a random
variable on the random space (2, /4y, IP,) with values in C°([0, 1], C). Let X be a
C°([0, 1], C)-valued random variable.

The sequence (X, ),>1 converges to X in the sense of finite distributions if for all
integers k£ > 1 and all k-tuples (1, ..., tx) with

0<pfu <<t <1,

the sequence of C¥-valued random vectors (X, (t1), ..., X,(fx)) converge in law to
the random vector (X (1), ..., X(t)).

The sequence (X,)a>1 converges in law to X if for any C-valued continuous
and bounded map ¢ on the Banach space C°([0, 1], C), the sequence of complex
numbers (E(¢(X,)))n>1 converges to E(¢p(X)).

Each X, induces a probability measure u,, on the Banach space by

VA CCo0,1,C),  pn(A) = Pu(X, ' (4)).

The sequence (X,),>1 is said to be right if for any € > 0, there exists a compact
subset K of C°([0, 1], C) satisfying

Vn>1, puu(K)>1—e.
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A practical criterion for tightness is due to Kolmogorov.

Proposition A.1 (Kolmogorov’s criterion for tightness). If there exists « > 0 and
8 > 0 so that

V(s,1) € [0,11%, E(|1Xn(s) — Xa()|?) < |5 —2|**°

Remark A.2. This is [10, Proposition B.9.5, p. 82].

Last but not least, the main tool of this work is Prokhorov’s criterion for
convergence in law in C°([0, 1], C).

Theorem A.3 (Prokhorov’s criterion). If (X,),>1 converges to X in the sense of
finite distributions and (X, )n>1 is tight then (Xy)n>1 converges in law in the sense
of C°([0, 1], C)-valued random variables.

Remark A.4. This is [10, Theorem B.9.4, p. 82].
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