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Engel structures and weakly hyperbolic flows on four-manifolds

D. Kotschick and T. Vogel

Abstract. We study pairs of Engel structures on four-manifolds whose intersection has constant
rank one and which dehne the same even contact structure, but induce different orientations
on it. We establish a correspondence between such pairs of Engel structures and a class of
weakly hyperbolic flows. This correspondence is analogous to the correspondence between bi-
contact structures and projectively or conformally Anosov ilows on three-manifolds found by
Eliashberg-Thurslon and by Mitsumatsu.

Mathematics Subject Classification (2010). 37D40, 58A30; 37D30, 53D35.
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1. Introduction

Engel structures are maximally non-integrable two-plane fields <D on four-manifolds.
They admit the local normal form ker(dz — ydx) fl ker(dy — wdx) in terms of
coordinates w,x,y,z. Manifolds with Engel structures are parallelisable, and it is

known from work of the second author that all parallelisable four-manifolds do indeed

carry Engel structures [16]. Moreover, all homotopy classes of parallelisations are

induced by Engel structures; see R. Casals, J. Pérez, A. del Pino and F. Presas [5],
This makes it interesting to try to understand the geometry of Engel manifolds, and

to attempt to single out geometrically significant ones.
The fact that Engel structures admit a local normal form is one of many properties

they share with contact structures. Another shared property is the stability under

sufficiently small perturbations, i.e. a C2-small perturbation of an Engel structure is

again an Engel structure. These similarities between contact structures and Engel
structures suggest that notions from contact topology might have counterparts in the

theory of Engel structures.
In this direction, in this paper we define bi-Engel structures in analogy with

the bi-contact structures studied by Y. Eliashberg and W. Thurston [7] and by
Y. Mitsumatsu [11], Among other results, these authors showed that bi-contact
structures correspond to flows satisfying a weak version of hyperbolicity. We define
another notion of weak hyperbolicity which allows us to show how to obtain bi-Engel
structures from weakly hyperbolic flows and vice versa.
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In Section 2 we recall the definitions and simple properties of Engel structures and

of even contact structures and we introduce bi-Engel structures. Section 3 is devoted

to flows which are weakly hyperbolic when restricted to a smooth invariant subbundle
of the tangent bundle. The definition of weak hyperbolicity and the discussion of its

most basic properties require no assumption on the dimensions of the manifold or
the subbundle.

Section 4 contains a detailed proof of our main result:

Theorem 1.1. Let 8 be an orientable even contact structure on a closed oriented
four-manifold M, and "W its characteristic foliation. Then 4V is weakly hyperbolic if
and only if8 is induced by a bi-Engel structure (<£)+, <£)_).

It is clear that with obvious changes of notation our argument also yields the

corresponding result whenever a one-dimensional foliation TV is weakly hyperbolic
with respect to a rank three subbundle 8, regardless of the dimension of the ambient
manifold. In the case when 8 is the tangent bundle of a three-manifold, one obtains
the correspondence between bi-contact structures and projectively or conformally
Anosov flows discussed in [7,11 ]1.

Although bi-contact and bi-Engel structures have very similar definitions and both
have relations to flows which are weakly hyperbolic in an appropriate sense, there are
also important differences. As observed first by Mitsumatsu [12], every orientable
closed three-manifold has a bi-contact structure. More generally, M. Asaoka,
E. Dufraine and T. Nöda [2] proved that every homotopy class of plane fields with
trivial Euler class (this is clearly necessary) is realised by bi-contact structures. For
parallelisable four-manifolds we know that Engel structures exist [5,16], but bi-Engel
structures are harder to come by. In contrast to bi-contact structures, the line field
of the flow associated to a bi-Engel structure is completely determined by one of the

two Engel structures, in fact by the underlying even contact structure. This makes it
difficult to construct examples. Nevertheless, in Section 5 we give many examples on

mapping tori of contactomorphisms of three-manifolds. There are two rather different
kinds of examples. The first, which was studied already in [15], and which was one
of the motivations for this paper, is the Thurston geometry Sol{, including mapping
tori of Nil3-manifolds. The second consists of suspensions of contact Anosov flows,
which are plentiful according to the work of P. Foulon and B. Hasselblatt [8|.

An outstanding problem about Engel structures, again in parallel with three-
dimensional contact topology, is whether there is a useful notion of tightness for
them. While we do not directly address this question here, we will in Subsection 5.3

discuss a remarkable rigidity property of the flow lines of the characteristic foliation
of certain Engel structures, which follows from work of R. Bryant and L. Hsu [4];
compare the very recent [14]. Remarkably, this rigidity property is tautologically
satisfied for bi-Engel structures, which may or may not provide a useful hint towards

isolating non-flexible properties which may distinguish between different kinds of
Engel structures.

'We found the explanations in those references to be somewhat elliptical. Related arguments also

appear in [6|.
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2. Engel and bi-Engel structures

This section contains the definitions and elementary facts about the distributions

appearing in this note. More information about even contact structures can be found
for example in [10], while [9,13] and [16] contain background on Engel structures.

2.1. Even contact structures.

Definition 2.1. An even contact structure on a 2«-dimensional manifold M is a

maximally non-integrable smooth hyperplane field 8.

Such a hyperplane field can be defined locally by a one-form a with the property
that a A (da)"-1 is nowhere zero. A global defining form exists if and only if 8
is coorientable. The two-form da has maximal rank on S. If one changes the

defining form a, then the restriction of da to 8 changes only by multiplication with
a function, so its conformai class is intrinsically defined. The kernel of da restricted
to 8 coincides with the kernel of the (2n — l)-form a A (da)"-1. This kernel is

a line field "W C 8 giving rise to the characteristic foliation of 8, and the quotient
bundle 8/"W carries a conformai symplectic structure. The form (da)"-1 gives 8/'W
an orientation independent of choices precisely when n is odd.

If W is any vector field tangent to 3V, then

L]ya diwoc + iyyda — i\yda

vanishes on 8, and is therefore a multiple of a. Thus any flow tangent to the
characteristic foliation "W preserves 8 kera.

Lemma 2.2. If n is even, the orientability of M is equivalent to the orientahility
ofW.

Proof Note that 8/'W defines a contact structure on transversals to TV, and therefore
orients the transversals canonically exactly when n is even. The holonomy of TV

preserves this orientation. Therefore "W is orientable if and only if TM is.

We now discuss the condition for the existence of a defining form a for 8 which
is preserved by the holonomy of the characteristic foliation.

Lemma 2.3. Let 8 he a coorientable even contact structure, with characteristic

foliation W. The following conditions are equivalent:

(1) The defining form a for 8 can be chosen such that da is ofconstant rank 2 n — 2.

(2) The characteristic foliation W is the kernel ofa closed (2n — \)-form.

(3) The characteristic foliation 'W has volume-preserving holonomy.

Proof. The equivalence of the second and third conditions is well known; both
conditions amount to saying that a spanning vector field is divergence-free with
respect to a suitable volume form.
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We prove the equivalence of the first two conditions. If da is of constant rank
2n — 2, then a A (da)""1 is a closed (2n — l)-torm with kernel W. Conversely,

suppose that ß is an arbitrary defining form for 8, and that y is a closed (2n. — 1 )-fbrm
with kernel W. Then ß A (dß)n~l is another (2n — l)-form with kernel W, and after

replacing y by its negative if necessary, we see that

y fß A (dß)"-1

for some positive smooth function / on M. Set a f1^nß. This is a defining
form for 8, with (da)" identically zero. The rank of da is therefore strictly smaller
than 2m, and as it can not be smaller than 2n — 2, it is In — 2 everywhere.

In the situation of this lemma, if a is chosen such that da is of rank 2m — 2, and W
is tangent to 'W, then L\yot iwda vanishes, as TV is in the kernel of da. Thus the

flow of W preserves the form a, and not just its kernel.

2.2. Engel structures.

Definition 2.4. An Engel structure on a 4-dimensional manifold M is a smooth
rank 2 distribution 4) with the property that [4), 47] is an even contact structure 8.

If 8 is an even contact structure and 4) is an Engel structure whose derived
distribution [<£), <£)] coincides with 8, we say that 8 is induced by 4), and that 4) is

subordinate to 8.

Lemma 2.5. If S) is subordinate to 8, then the characteristic foliation TV of 8 is

contained in 4).

Proof We argue by contradiction. If p e M is a point with 'Wp not contained in IDp,
we choose a local frame X, Y for 4) around p, and a focal defining form a for 8.
Then da is non-degenerate on £)p, and so da(X, Y) does not vanish at p. Therefore

a([X, T]) Lx(a(Y)) - Lr(a(X)) - da(X, Y) -da(X, Y) / 0

contradicting [A, Y] G 8 kera.

We now discuss orientations for the distributions involved in the definition of an

Engel structure subordinate to a given even contact structure.

Lemma 2.6. 1. Every Engel structure defines a canonical orientation on its induced

even contact structure.

2. Thefollowing conditions on a 4-manifold M endowed with an Engel structure are
equivalent:

(a) M is orientable,

(b) 'VV is orientable,

(c) 8 is coorientable.
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Proof. Suppose that X and Y are vector fields forming a local frame for an Engel
structure £). Then X, Y and [X, Y] form a local frame for the induced even contact

structure, and the local orientation of 8 given by this frame is independent of the
choice of X and Y. This proves the first statement.

The equivalence of (a) and (c) follows immediately from what we just proved.
The equivalence of (a) and (b) was proved in Lemma 2.2.

2.3. Bi-Engel structures. The first part of Lemma 2.6 motivates the following:

Definition 2.7. A bi-Engel structure on a 4-dimensional manifold M is a pair of
Engel structures (£)+, <©_) inducing the same even contact structure 8, defining
opposite orientations for 8, and having one-dimensional intersection.

By Lemma 2.5, the two Engel structures making up a bi-Engel structure must
both contain the characteristic foliation TV of the induced even contact structure 8.
Thus their intersection is precisely TV, and their span is 8.

The geometric meaning of the definitions of Engel and bi-Engel structures can
be elucidated as follows. The holonomy of the characteristic foliation TV of an even

contact structure 8 preserves 8. An Engel structure fD subordinate to 8 is a plane
field inside 8, which turns in a fixed direction around the axis TV under the holonomy
of TV. Specifying the direction in which Î) turns amounts to specifying an orientation
for 8. The two Engel structures S)± making up a bi-Engel structure intersect in 'VV,

and rotate around it in opposite directions under the holonomy of TV. Moreover, the

condition that the two Engel planes never coincide, prevents them from making full
turns around TV. This means that for the flow <pt of a spanning vector field for TV one
has Dcp-t(S)((pt(p))) / £)(p) for all t ^ 0.

To end this section, we point out that the requirement that <£)+ D <£)_ be one-
dimensional can not be omitted from Definition 2.7. If two Engel structures, not
necessarily forming a bi-Engel structure, are subordinate to the same even contact
structure 8 and define opposite orientations of 8, then they turn in opposite directions
under the holonomy of the characteristic foliation. Therefore, on every leaf of TV

the points where the two Engel distributions coincide form a discrete subset of the
leaf. In particular, the two Engel distributions are different almost everywhere, but it
is possible that they coincide at some points. This is what happens in the following
example, which is a variation on the classical prolongation, cf. [13].

Example 2.8. Let N be a closed 3-manifold and Ç a contact structure which is

trivial as a vector bundle over N. Pick a global framing of £ by vector fields X
and Y. Consider S1 with coordinate te M modulo 2jv, and let M N x S1.

The distribution 8 £ ® TS1 is an even contact structure on M with characteristic
foliation TV TS1 Rjjj.

Let £)± be the span of TV and cos(t) • X ± sin(f) • Y. Then the D± are Engel
structures subordinate to 8, but inducing opposite orientations on 8. However, they
do not form a bi-Engel structure because they agree at the points where sin(t) 0.
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3. Weakly hyperbolic flows

In this section we introduce a weak notion ofhyperbolicity for flows which are tangent
to a fixed distribution, and which preserve this distribution.

Let M be a closed manifold, 8 c TM a smooth subbundle, and IV c 6 an

orientable line field with [4V, £?] c 8. This ensures that 8 is preserved by any flow
tangent to 4V. Moreover, such a flow then acts on the quotient bundle 8/IV.
Definition 3.1. The flow (pt on M generated by a non-zero vector field W spanning TV

is said to be weakly hyperbolic if there are constants K, c > 0 and a continuous metric
on 8/IV such that for all p e M there is a decomposition

S(p)/4V(p) g+(p)©S_(p)

for which the following inequality holds for all t > 0 and 0 ^ v± G S±

IID<pt(v+)\\ ct \\D(pt{v-)\\
77 77 > Ke (3.1)
Il M II »-II

This condition is independent of the spanning vector field W chosen for TV, as

long as we fix an orientation tor TV. It is also independent of the choice of metric g,
cf- [1].

Remark 3.2. If <p is weakly hyperbolic with respect to the metric g, then after

replacing g by \/T f<p/g dt one can choose K 1 if T is large enough.

Lemma 3.3. The subspaces 8±{p) for p e M of 8/"W in Definition 3.1 are
(pt-invariant, have constant dimension and depend continuously on p.

Proof. The proof is a modification of a proof in [ 1 ] ; cf. p. 121 of the English version.
Let first p e M be arbitrary. Note that if 0 7^ X e 8-(p), then for all

Y 8 \8- there are constants Ty, Ky > 0 depending only on the angle between Y

and (and K. c, of course) such that

iiowooik „ .„mi
lûwïï - Kre Wii (3'2)

fort > Ty.
For the verification let X e 8- and fix Y G 8 \ 8— We write Y Y+ + T_

with Y± G 8±, 0 / Y+ and k > 0 such that ||T_|| < k||T+|[. By (3.1) we have

IMHI < K-h-^ <,,IIOft(r+)ll "
where the last inequality holds for large enough t. Then because of

||y||<||y+|| + ||r_||<(i+*)||y+||
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and (3.1) we get

\\D<Pt(r)\\
>

\\D<Pt(X)\\ -
>

\\D<Pt(Y+)\\ - K-le-ctK\\D(pt(Y+)\\

\\Dft(X)\\
K - Ke~ct

ct || Y ||

l+K "
||V||

'

Thus we can choose Ty so large that K > 2ice~cTY and Ky K/(2(1 + /c)). These

constants depend only on K, c and k.
Now we show that 8_ is continuous at p e M. Let p„ be a sequence converging

to p. After passing to a subsequence we may assume that lim„^.oo[g-t(/?„)]
for some 8'±, and that dim(g+(/?n)) is constant. Since dim(6?+(/?„)) and

dim(g_(/?„)) have constant sum dim (M) — 1), the latter is also constant.
Let us assume that 8'_ is not contained in 8-(p). Then we may fix sequences

Xn G 8-(pn), Y„ G 8{pn) such that lim,,^*, Xn X <£ 8-(p) and lim„^oo Yn —

Y G 8-{p). In particular, we may assume that the angle between Yn and 8-(pn)
is uniformly bounded away from 0. This means that for Yn Yn+ + T„_,
Yn± £ 8±(pn) the ratio ||T„_||/||T„+|| is bounded from above by a constant k > 0,

which is independent of n. The constants Ty, Ky appearing in (3.2) actually depend
only on c, K and k, thus choosing Ty independently of n such that for t > Ty we
have

Since <pt is smooth, we get a contradiction if t satisfies Kyect > 1 as n goes to oo.
This implies 8'_ C 8-{p).

Considering <p-t instead of <pt one shows é?+ C 8+{p). The fact that

dim(g+(/j)) + dim(6L_(/?)) dim(A/) — 1 dim(g(|_) + dim(g(_)

then implies 8'± 8±(p).
The (^-invariance of the bundles 6_ now follows from the property described

in (3.2) since this property can be used to characterize the elements of 6?_.

If we change the orientation of TV, by replacing W with —W, say, then weak

hyperbolicity is preserved, but the roles of 8± are interchanged. The holonomy
of TV preserves 8 and acts naturally on the quotient 8/TV, and the condition in the

definition is that the holonomy is much more expanding on 8+ than on 6?_. This does

not preclude the possibility that the holonomy could be expanding (or contracting) on
both 8±, as long as the expansion (or contraction) rates are such that (3.1 is satisfied.

Ira *Kre M-
IIDftOOII _ _ „11X11

—— > Kye ——-.

\\D<Pt(Yn)\\ ^ ct\\Yn\\

II Dcpt (7)11 - Il Y
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In the case that 8 is the tangent bundle of a three-manifold, Definition 3.1 reduces

to the definition of flows that are conformally Anosov [7] or projectively Anosov

(PA)|11J.
By an obvious simplification of terminology, we call 4V weakly hyperbolic,

without saying something like "weakly hyperbolic with respect to 8". A given line
field 4V may of course preserve several distributions it is contained in, and be weakly
hyperbolic for some but not for others. However, it will always be clear which
distribution is used for 8 when discussing weak hyperbolicity of TV.

If the distribution 8 is integrable, then it defines a foliation, and a flow tangent
to 4V c g restricts to every leaf of this foliation. The flow is weakly hyperbolic in
the sense of Definition 3.1 if and only if its restriction to every leaf is conformally
Anosov.

For the purposes of this paper we are interested in the case when 8 is an even

contact structure, and 4V is its characteristic foliation. If the dimension of M is four,
then 8 has rank three, and the subbundles 8± are actually line fields. However, even
in higher dimensions, when these subbundles have higher rank, they tend to have a

very specific geometry. We shall return to this in Subsection 5.2 below.

4. Proof of the main theorem

In this section we prove Theorem 1.1. In the proof we shall use some facts about the

cross ratio. One of the numerous sources for this material is [3],
Let F be a real vector space of dimension 2. If x\, x2, X3 G P(F) are distinct

and z G P(F) is arbitrary, then the cross ratio [xi,x2,x3,z] G MP1 is the

image of z under the unique homography /: P(F)—»-MP1 with /(x 1) [1 : 0],

fix2) [0 : l],/(x3) [1 : 1]. In particular, if/: V—>V' is a linear isomorphism
(in our application of the cross ratio / will be the linearized holonomy of a foliation
of rank 1) and / is the induced map between projective spaces, then

[xi,x2,x3,z] [/(xi),/(x2),/(x3),/(z)]

After identifying EP1 \ [1 : 0] with the real numbers, we can treat the cross ratio as

a number unless z x 1. In other words, [xi,x2,x3,z] [1 : 0]Aoo if and only if
z — x

If xi,x2,x3,z G P(F) \ {pt} are pairwise distinct, then the cross ratio

[xi,x2,x3,z] G MP1 \ {00} can be computed in terms of affine coordinates on

P(F) \ {pt} as follows:

(x3 -xi)(z -x2)
[xi,x2,x3,z] -

(z -Xl)(x3 -x2)
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Using this formula one can show the following relation for pairwise distinct points

x,a,a',b',b,y ofP(K)

[x, a', b', y] [x, a, b, y] • [a, a', b', b] [a, a', h, y] • [x, a, b', b].

In particular, when the points x,a,a',b',b,y lie in this order on the projective
line P(V), then it follows from the dehnition of the cross ratio that

[a,a',b,y] > 1, [x,a,b',b] > 1

Therefore we obtain the following inequality if the assumption on the ordering of
x, a, a1, b', b, y is satisfied:

[x,a',b',y] > [x,a,b,y] [a,a',b',b]. (4.1)

We can finally prove our main result.

Proofof Theorem 1.1. Recall that by Lemma 2.2 the characteristic foliation ~W is

orientable if and only if the same is true for M.
Let S be an orientable even contact structure whose characteristic foliation TV is

weakly hyperbolic and oriented. We fix a positive spanning vector field W for "W

and denote its flow by <tpt. We also fix the splitting 8/"W é?+ ® S_, a continuous
metric g and constants c and K as in the definition of weak hyperbolicity. By
Remark 3.2 we may assume K 1.

Assume first that the line fields 8± are orientable, and that X± are sections of 8

projecting to 8/"W as spanning vector fields for 8±, of unit length with respect to g,
say. As the line fields 8± are invariant under the flow of W, we find that there are

continuous real-valued functions X±(t, p) on M x M such that

Dp(pt(X±(p)) A±(t, p)X±(cp(t)) mod W.

That (pt is a flow implies A±((), p) 1, and

A±0, <ps(p)) • A±0\ P) A±(t + s, p)

for all p e M. The definition of weak hyperbolicity of the flow in this case means
that there is a constant c > 0 such that

A+(t, p) > ec,X-(t, p) (4.2)

for all p M and all t > 0.

If we assume that the vector fields X± are smooth, then so are the functions A±.
In this case, by differentiating at 0 e E, the inequality (4.2) implies

A'+ (0, p) > c + A'_(0, p). (4.3)
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We can define smooth rank two subbundles C 8 as the span of W and X+ ± X-.
Using the smoothness assumption, we can calculate commutators:

[W,X±](p) ^(D<p-t)(X±(<pt(p)))dt
d

dt t=o(x±(t,p)X±ip)) mod TV

-A'±(0 ,P)X±(p).

It follows that

[W, X+ ± x-](p) + A'+(0, p)(X+ ± XJ)(p)
±(A'+(0, p) - A'_(0, p))X-{p) mod "W.

Combining this with (4.3) we see that the £)± are Engel structures subordinate to 8
and that they induce opposite orientations of 8. Thus they form a bi-Engel structure.

Now let us consider the case when the X± are only continuous, not necessarily
smooth. In this case we first show that we may assume the X± to have continuous first
and second derivatives along the flow lines of W. To achieve this we fix a mollifier,
i.e. a smooth function h: M—UR(}~ with support in [—1,1] and fRh(s)ds l,and
consider the usual convolution

(h * X±)(p) f h(s)D<ps(X±((p-s(p)))ds (4.4)
Am

By definition h * X± is a section of S± which is nowhere tangent to 'W. When h(s)
is replaced by hK(s) kIi(k.s) in (4.4) then hK * X± converges uniformly to X± as

k -> oo. Moreover, the restrictions of h * X± to segments of TV are smooth when
viewed as sections of the smooth bundle 8fW. The derivatives

Lwih » X±){p) Mm
»7—>o rj

are continuous on M (not only along the leaves of 'W), the same is true for derivatives
of higher order.

We choose smooth sections Z± of 8 which are C° close to X± and such that
the first and second derivatives along 'W are also close to those of X±. There are

continuous functions w±,s±, u± which are C2 along the leaves of 'VV such that

W T 5± X— T U-{-X.

Because Z+ approximates X+, the function ,y+ is C°-close to 0 and u+ is C°-close
to 1, and similarly for the approximation of X- by Z_. Their first derivatives in the

direction of "W are close to zero. Therefore the calculation of commutators performed
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with Z± in place of X± shows that W and Z+ ± Z_ span two Engel structures 0±
subordinate to 8 and inducing opposite orientations on 8.

Finally if the line bundles 8± are non-trivial, then we can only choose X± up
to sign. Nevertheless, the functions A± are well-defined, and the whole argument

goes through by using the approximating sections Z± to be invariant under sign
change. Thus we have proved that an even contact structure with weakly hyperbolic
characteristic foliation has a subordinate bi-Engel structure.

It remains to prove the converse. Let (0+,0_) be a bi-Engel structure
subordinate to 8 and W a vector field spanning the characteristic foliation 'W c 8.
Then the flow (pt of W preserves 8. In order to show that this is weakly hyperbolic
we have to find a splitting 8/TV 6?+®6?_ such that (3.1) holds. This is done in two
steps. First we find invariant plane fields 0°° and 0_o° whose intersection is TT.

Then we check weak hyperbolicity for the induced splitting with 8± 0±oo/TT.
For the plane fields 0±o° we have candidates

£>±(p) lim D<p-t(£>±(<pt(p)))
t-XOO v

0±°°(p) lim D<p-t(g>±(<pt(p))
t-*—oo

for p e M. Each of these limits exists. We explain this for 0£\ Let p e M
and consider the planes D(p-t (0+(<jOf (/?))) and Dcp-t (£)-((pt(p))) in 8{p). Both
of them contain W(p) and the fact that 0± are Engel structures inducing opposite
orientations of 8 ensures that these planes rotate without stopping around TV in

opposite directions as t increases. Since they are always transverse to each other this

implies that the limit defining 0^° exists.

Let us now show that <2Vjf(p) 0^°(p) for all p G M. Since M is compact,
there exists a sequence (f(/))ieN and q e M such that lim,-^ /(;') oo and

lim/^oo (pid)(p) — q. Fix a compact local transversal C of TT through q and e > 0

such that

Cx[—s, e] —» M

(c r) I—> (fix (c)

is an embedding. For t 6 R let

d±(t) [D<p-t{S)±{<pt{p)))\ G P{8{p)/T9(p)).

Recall that 0+ Pi 0_ TT. Because 0+,0_ are Engel structures which
induce opposite orientations of 8, it follows that for 0 < t < s, the lines

<i+(0), d+ (/), d+ (,v), d-{s), d-(t), d—(0) are ordered in this way on P(8(p)/'W(p))
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and these six lines are all distinct. In particular, all cross ratios below take values

in (1, oo). By compactness of C there is an a > 1 such that

Id+(t(i) — s), d+{t(i) + e), d-(t{i) + s), d-(t(i) — £)] > a

for all i. According to (4.1)

[c/+(0), d+ (t(i) + £), d-(t(i) 4- £), d- (())]

> a\d+{()), d+(t(i) — s), d-(t(i) — e), <i-(0)]

> a\d+(0), d+(t(i — 1) + e), d-(t{i — 1) + s), üL(0)]

>•> a'.

Hence
lim fd+(0), d+(t), d-(t), d-(0)l oo.

/->oo L J

This implies lim^co d+ (t) lim^oo d- (f and we have proved : JD+0°

(and <0"°° 0r°° =: 0"°°).
We now dehne é?+ 0_o° and 0°°. This choice of signs is the correct

one in view of (3.1) and the standard definition of the commutator used to orient
8 8+ © 8c.f. Figure 1.

In view of Lemma 3.3 the continuity of 8± is automatic, however there is a simple
argument in the present situation. Let p e M be arbitrary. If \T\ is large enough,
then d±(T) are very close to each other at p and for 7' > 0 respectively T < 0,

the section of P(g/TV) which corresponds to 0°° respectively 0~°° is confined
between d+(T) and d-(T) near p. Therefore 0+°° and 0~°° are continuous plane
fields.
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It follows immediately from the definition of S)±OG that these plane fields are

preserved by the holonomy of TV. From the condition that <£)+ and 5)_ are always
transverse to each other in 8 it follows that <£)+0° ^

It remains to find a continuous Riemannian metric on 8/W and constants c > 0

and K > 0 such that

\\D(p,(v+)\\
> KeCt

11 D(pt{v-)\\
(4.5)

IIM
for all t > 0 and 0 ^ v± e 8±.

Let X± be nowhere vanishing sections of 8± such that

(i) V X+ + X- is smooth and tangent to <£)+/"W,

(ii) X+, X- is a positively oriented framing of 8/'IV with respect to the orientation
defined by <£)+,

(iii) X+, X- are smooth along the leaves of IV. As above, this can be achieved by

convoluting V, X+, X- with the same bump function.

Because the flow of W preserves there are continuous functions a± such that

d
{D<p-t(X±)) a±X±.dt t=o

This implies

[w,n - (D<p-,(X+ + _))
t=0

a+X+ + a-X-
Since 8 is oriented by W, V, [IT, V] and this orientation is equivalent to the one given
by IT, X+, X-, it follows that a- > a+. For all 7' 6 M there are continuous functions

k±(T) on M such that D(pjX± — X±(T)X±. These functions satisfy

A'±(T)X± ~ Dcpt{X±) -DcpT(D<p-tX±)dt t=T \dt t=o >

— D(Pt{u±X±) — {a± o <p_t)\±(T)X±.

By definition A±(T) is positive for all T. Because of the compactness of M, there is

a positive number c such that a_ — a+ > c. Thus we have the following differential

inequality

d

dt
log (-±12)

t=T h\X-{t))
A+(0\ AV(T) A f_(T)

X+(T) A_(D
—a+ o (p_T + a- o <p_T

> c.

If we choose a metric on 8/'W for which X+, X_ is an orthonormal frame, then we

get the desired inequality (4.5) by integration.
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5. Examples and further discussion

5.1. The Thurston geometry Sol*. The Lie group Solj is a semidirect product

1 —* Nil3 — Sol{ —»-R—> 1

where Nil3 is the three-dimensional Heisenberg group, and R acts by t (x, y, z)
(e~'x, e'y, z). The Lie algebra of Nil3 has a basis X, Y and Z with Z central and

[X, Y] Z. Therefore X and Y span a contact structure £ on Nil3. The action of R

preserves £ and acts on it contracting X and expanding Y. The Lie algebra of Sol*
has an additional generator W with

[W, X] -X [W, Y] Y [W, Z] 0.

This means that X, Y and W span an even contact structure 8 with W tangent to the

characteristic foliation TV of 8. The quotient 8/IV is spanned by the images of X
and Y, and the flow of W is hyperbolic on this quotient. Therefore, by Theorem 1.1,

the distributions <£)± spanned by W and X ± Y form a bi-Engel structure. Of course

our theorem is not needed in this case, as one can check explicitly that the £>± are

Engel structures subordinate to 8 whose intersection is obviously TV, and which
induce opposite orientations on 8. This was done in [15].

All these structures on Sol] are left-invariant, and therefore descend to closed
four-manifolds obtained as quotients by lattices. Examples of such quotients are

certain mapping tori of Nil3-manifolds, with the monodromy preserving the contact
structure induced by £ on the fibers of the mapping torus.

5.2. Suspensions of contact-Anosov flows. We now want to discuss a large class of
bi-Engel structures obtained by suspending contact-Anosov flows. As in the previous
example, the manifolds we obtain in this way are mapping tori, but the fibers will be

very different.
We begin with a more general setup in arbitrary dimensions. Suppose that 8

is an even contact structure with volume-preserving characteristic foliation TV,

cf. Lemma 2.3. We choose a defining form a with da of constant rank 2n — 2.

Any flow tangent to TV preserves the form a, and therefore preserves the symplectic
structure2 defined by da on 8/TV. Now assume that the flow of a spanning vector
field W of TV is not just weakly hyperbolic in the sense of Definition 3.1, but satisfies
the following genuine hyperbolicity condition: there exist a continuous metric and a

positive constant h, such that for the flow (pt of W we have

|| Dipt (Oil < K'le~bt\\v-\\ Vv_ G 8-,
\\D(pt(v+)\\ > Kebt\\v+\\ Wv+e8+,

for all f > 0.

2Here the symplectic structure itself is invariant, not just its conformai class.
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Lemma 5.1. In this situation 8± are both ofdimension n — 1, and are Lagrangian
for the symplectic structure defined by dec on 8+ © éL_.

Proof. Suppose v,w e 8Then, using Lwoi 0, we find

da(v,w) (<p*da)(v,w) da{D(pt(v), D(pt(wj).

Using the auxiliary metric g, we find that there is a constant c such that

\da(v,w)\ < c ||dor|| • ||D^(u)|| • \\D<p,(w)\\ < c ||dor|| • K~2e~2bt ||u|| • ||w||.

Letting t go to infinity, the right-hand-side becomes arbitrarily small. Therefore

da{v.w) 0, and 8_ is isotropic for da. By the analogous argument, letting t
go to —oo, we conclude that 6+ is also isotropic. As the two distributions are

complementary, they must be equidimensional and Lagrangian.

Example 5.2. Let A be a manifold of dimension 2n — 1, with a contact Anosov
vector field X. This means that we have a continuous invariant Anosov splitting
TN MA © 8s © 8" with the flow of X being exponentially contracting on 8s
and exponentially expanding on 8", and that the one-form a with kernel 8s © 8"
and a(X) 1 is a contact form. Then a is invariant under xjrt, so that a descends

to the mapping torus M of the time one map \j/\. The kernel of a on M is an even

contact structure 8. Its characteristic foliation TV is spanned by the monodromy
vector field W of the fibration M —» S1. This integrates to a flow <pt on XI, such

that <pi restricted to a fiber coincides with \j/\. Thus the characteristic foliation TV

satisfies the strengthening of the weak hyperbolicity condition described above.

As the monodromy is isotopic to the identity, the mapping tori M in the

example are diffeomorphic to IV x S1. For any N supporting a contact Anosov

flow, we obtain an even contact structure on/VxS1 whose characteristic foliation is

weakly hyperbolic (and much more). By the work of Foulon and Hasselblatt [8], it
is now known that there are very many closed three-manifolds N admitting contact
Anosov flows. For any such N the product iVxS1 has bi-Engel structures obtained

by suspension. Note that by varying the time t for which one suspends, one obtains

even contact structures on N x S1 with varying dynamics, e.g. closed orbits of TV

appear and disappear with varying t.

5.3. Rigidity of curves tangent to TV. That the Engel planes of a bi-Engel structure

never make full turns around TV leads to a global rigidity property for their integral
curves tangent to TV. Consider two points p and q in M, and let Q.$)(p,q) be the

space of piecewise C1 paths from p to q, which are tangent to an Engel structure ID,

equipped with the C1 topology. As ID is bracket-generating, the Chow-Rashevskii
theorem implies that &£)(p,q) is non-empty for any pair of points. A path in
Q.£>(p,q) is called rigid, if it has a neighbourhood in £ig)(p,q) such that every
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element of this neighbourhood is a reparametrisation of the original path. Bryant
and Hsu [4] proved that a path tangent to an Engel structure is rigid if and only if it
is tangent to the characteristic foliation TV, and has the property that along the path
the Engel plane does not make (more than) a full turn around TV. As a corollary we
have:

Proposition 5.3. Ifan Engel structure D is part ofa bi-Engel structure, then any path
tangent to the characteristic foliation 'W c £> of the induced even contact structure
is rigid.

The absence of full turns of the bi-Engel planes around TV is in marked contrast
with the properties of the Engel structures constructed by Casals, Pérez, del Pino and

Presas [5], Their construction crucially relies on the presence of several full turns

along certain orbits, and therefore never produces this kind of structure. The original
existence proof of the second author [16] can always be made to have some leaves

of TV with full turns, but, unless one adds these by hand, it may also produce Engel
structures without full turns.

There are very few explicit examples of Engel structures known not to have full
turns which do not come from bi-Engel structures. In [15] Engel structures without
full turns were found not only on the Thurston geometry Sol{, which is bi-Engel, but
also on some other solvable geometries and on Nil4, which are not bi-Engel.
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