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Hurwitz numbers for real polynomials

Ilia Itenberg and Dimitri Zvonkine

Abstract. We consider the problem of defining and computing real analogs of polynomial
Hurwitz numbers, in other words, the problem ofcounting properly normalized real polynomials
with fixed ramification profiles over real branch points. We show that, provided the polynomials
are counted with an appropriate sign, their number does not depend on the order of the branch

points on the real line. We study generating series for the invariants thus obtained, determine

necessary and sufficient conditions for the vanishing and nonvanishing of these generating series,
and obtain a logarithmic asymptotic for the invariants.as the degree of the polynomials tends to

infinity.

Mathematics Subject Classification (2010). 14N10, 14H57, 14P05; 14H30, 05A15, 05C30.
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1. Introduction

1.1. Counting polynomials. Let P eC[z] be a degree n polynomial with complex
coefficients. To any w e C we can assign a partition AUJ of n given by the orders

of the roots of P(z) w. This partition is called the ramification type of w. The

point w is a branch point if and only if A.w (1,..., 1). If it» is a branch point we

can consider the set of critical points z such that P(z) w. The multiplicities of
these critical points, that is, the orders of vanishing of P'(z) compose a partition Xw.
This partition is obtained from Aw by subtracting 1 from every element of Aw and

eliminating the zeros. We call Xw the reduced ramification type of w.
The multiplicity of a branch point w equals |A„,| n — l(Aw), where |A| is the

sum of elements in A, while 1(A) is the number of elements is A. In particular, we
have

J2 |AW|= £>-/(A»)) n-1.
weC weC

A branch point w is simple if it is of multiplicity 1, that is, Aw (2,1,..., 1) and

Xw (!)•
We say that P is normalized if it has the form

P(z) — zn + U2Zn 2 + • • • + an.
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Counting the normalized polynomials with given branch points and their
ramification types is a classical problem of enumerative geometry. It is equivalent to

enumerating minimal factorizations of an n-cycle into a product of permutations of
given cycle types in the symmetric group Sn. It is also equivalent to computing the so-
called polynomial Hurwitz numbers. These numbers enumerate ramified coverings
of the sphere by the sphere with one point of total ramification (corresponding
to oo E CP1) and several other branch points with prescribed ramification
profiles. The problem of counting normalized polynomials was posed by V. Arnold
(see [1, Problem 1996-8]), who also envisaged the possibility of studying the real

case (Problem 1991-2). The problem for complex polynomials was completely
solved in [4,15, 16]. It is important to note that the answer does not depend on
the positions of the branch points, but only on their ramification types.

Now assume that all the branch points are real. In this case it makes sense to
count the real normalized polynomials with a given set of branch points and their
ramification types. However, in this enumerative problem the answer in general does

depend on the order of the branch points on the real line. One of the goals of this paper
is to show that the answer can be made invariant if we count each real polynomial with
an appropriate sign. Such a phenomenon was observed in various real enumerative

problems; the first significant example is the Welschinger theorem [14] providing
an invariant signed count of real rational curves in 4-dimensional real symplectic
manifolds.

There exist other classical counting problems for ramified coverings that admit
real analogs. For instance, the simplest problem is to count degree d ramified

coverings of the sphere by the sphere with 2d —2 simple branch points. The answer
to this problem in the complex setting is {2d — 2)! dd~3; it is a particular case of a

more general formula found by Hurwitz (see [13]) and was rediscovered many times
since then. A real version of this counting problem in the case when all branch points
are real was solved by B. Shapiro and A. Vainshtein in [9],

The most general covering counting problem is to enumerate all ramified coverings
of a genus h surface by a genus g surface with fixed ramification profiles over fixed
branch points. Answers to this problem are usually called Hurwitz numbers. There is

no closed formula for these numbers in either complex or real case, but some more or
less practical methods to compute them. One approach uses the representation theory
of the symmetric groups. We refer to Zagier's appendix to [7] for a review of the

complex case and to A. Cadoret's work [31 for the real case (with h 0). Another
approach is based on a tropical correspondence theorem proved by B. Bertrand,
E. Brugallé and G. Mikhalkin. The complex case is treated in their paper [2]; for the

real case, see the work by H. Markwig and J. Rau [8].
In the complex case, as well as in the setting of [9], the invariance of Hurwitz

numbers (that is, independence of the number of coverings from the positions of the

branch points, provided that the ramification profiles are fixed) is immediate. The

papers [3] and |2] do not contain invariance statements: they enumerate all coverings
with sign "+" which, in general, gives rise to different Hurwitz numbers for different
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positions of branch points. So far, our attempts to generalize the signed count and

the invariance theorem to this general situation have failed.

1.2. The s-numbers.

Definition 1.1. Let P e K[x] be a normalized real polynomial. A disorder of P is

a pair of real numbers X\ < x2 such that P(xi) P(x2) and the ramification order

Figure 1. This polynomial has exactly two disorders: (x\, x2) and (xj, x'2).

Definition 1.2. Let P e R[x] be a normalized real polynomial. The sign e(P) of P
is equal to (— \)d, where d is the total number of disorders in P.

Given a real number w we also define the w-sign of P as (—X)dw, where dw is

the number of disorders x\ < x2 of P such that P(x\) P(x2) w.

Let k and n be two positive integers, k < n. Choose a sequence w\,... ,Wk of
pairwise distinct real numbers, and let (Ai,..., A^) be a sequence of partitions of n

such that
k

- /(AO) n - 1.

i=i
Theorem 1 (The invariance theorem). Consider the set SAl,...,Ak(wi,..., w^) of
real normalized polynomials P with branch points w M such that for
every i the ramification type ofwi is A,-. Then, the sum ofsigns

E s(p>
PeSAl Ak(wiy—,v>k)

does not depend on v)\,..., wk (in particular, on their order on the real line), but
only on the partitions A i,.... A/..
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Definition 1.3. We call the sum

I] *c>
PzSAl Ak(wi,...,Wk)

from the previous theorem the s-number of real polynomials with given ramification

type.

Example 1.4. Let n 4 and k 2. Put Aj (2,2) and A2 (2,1, 1). If
w\ < w2, there are two real polynomials with ramification type (Ai, A2). Their
graphs are shown in Figure 2. The polynomial P\ has three real critical points,
and its sign equals £(Pi) —1. The polynomial P2 has one real and two complex
conjugate critical points, and its sign equals e(P2) — 1.

Pi Pi

Figure 2. Two polynomials in the case w\ < w2.

If wi > w2, there are no real polynomials with ramification type A i, A2). Thus,
in both cases the .v-number of real polynomials is equal to 0.

1.3. Generating series. In the second part of the paper we consider generating
series Fxl>...lxk(l) f°r s-numbers. The coefficient of qm/m\ in Fxu...,xk(q) is the

.v-number of polynomials with k + m branch points. The first k points have reduced

ramification types \k, while the last m points are simple. Each generating
series is decomposed into an even and an odd part: Feven enumerates real polynomials
of even degrees, while F"'M enumerates real polynomials of odd degrees.

Let

eq — e~q q3 q5 q1
f(q) — tanh(<7) q — 2 1-16 272 F • • •
' eq + e~q

H 315! 7!

r i -
1

_
2

_ _
I2 r<lA

__ M I6
g^q

cosh (q) ei + e~q 2! 4! 6!
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Theorem 2. For any partitions X\,..., A&, the generating series

nz,xkw
is a polynomial in q and f(q) with rational coefficients, while the generating series

is equal to g(q) multiplied by a polynomial in q and f(q) with rational coefficients.

Example 1.5. We have F^ven — f and Ffkl g. Indeed, when the set of partitions is

empty, the polynomials only have simple critical values, so all critical points are real.

If we number the critical points x\,..., xn~\ and the critical values w\,..., wn~\ in
the increasing order on the real line, we obtain an alternating permutation a given by
P(xi) wa(i), see Figure 3. The knowledge of wi,..., wn-\ and a determines the

polynomial P uniquely (see Corollary 7 and Lemma 5.2 for a generalization of this
fact). On the other hand, / and g are the generating series for the well-known Euler-
Bernoulli numbers that enumerate alternating permutations, see the survey [12] or
the wikipedia entry Alternating_permutations.

214 3 3142 3241 4132 4231

Figure 3. The 5 real polynomials with 4 simple branch points and the corresponding alternating
permutations. The number 5 is the coefficient of g4/4! in the power series g.

Remark 1.6. Note that the superscripts "even" and "odd" refer to the parity of n,
that is, the degree of P. The series Eeven and FoM may be even or odd depending on
the partitions X,•. More precisely, we have m + l^< I « ~ L so that, for instance,
the series Feven is even if II is odd and odd if l^i I is even.

Theorem 3. The generating series

nz,xkw
is not identically 0 ifand only if in each partition Xj every even number appears an
even number of times and at most one odd number appears an odd number of times.

Theorem 4. The generating series

is not identically 0 ifand only if in each partition A, at most one odd number appears
an odd number of times and at most one even number appears an odd number of
times.
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The following statement concerns logarithmic asymptotics of .v-numbers. Denote

by ,v^n \k(m) and ,v^jd ^k(m) the coefficients of qm/m\ in F" ^ (q) and

F^d ^ (q), respectively. These coefficients are, of course, the .v-numbers of
polynomials with given reduced ramification profile and m additional simple branch

points.

Theorem 5. Assume that the nonvanishing conditions of Theorem 3 are satisfied.
Then, we have

ln 147"..,a, (»0 I mZoom[nm for I] lA'î odd>

m even

ln 147,"..a* ("») I mZocm ln m for 1-Xi Ieven-
m odd

Assume that the nonvanishing conditions of Theorem 4 are satisfied. Then, we have

ln 147!...,A* (m)l m lnm î°r Y2 141 odd'
m odd

ln 14?!...,xk (m) I

mZoc mAnm 14' Ieven-
m even

Remark 1.7. Consider the number of complex polynomials with k branch points of
reduced ramification types Ai,..., Xk and m additional simple branch points. It is

easy to deduce from the explicit formulas of [15] that the logarithmic asymptotics
for this number as m -> oo is m In m. Thus, when the nonvanishing conditions of
Theorems 3 and 4 are satisfied, the number of complex polynomials, the absolute
value of the .v-number of real polynomials, and the actual number of real polynomials,
which lies between the two latter numbers, all have the same logarithmic asymptotic.
A similar phenomenon has been observed and proved in many other situations, see,
for instance, [5,6],

Remark 1.8. In the complex case the difference between counting ramified coverings
of the sphere and normalized polynomials is rather trivial: the answers differ by a

factor of n due to the the fact that the change of variables z i-a s/\ z changes the

normalized polynomial, but not the ramified covering. In the real case, however, the

difference is more subtle, since a real polynomial can be normalized by a real change
of variables in 0, 1, or 2 ways depending on its parity and the sign of the leading
coefficient. It seems that the problem that admits a nice real version is the counting
of normalized polynomials rather than ramified coverings.

Remark 1.9. Many of our results, in particular Theorems 1 and 2, remain true if
we allow the real polynomials to have pairs of complex conjugate branch points with
equal ramification types. The notion of a real polynomial dessin, that we introduce
in Section 2 as the preimage under P of the real axis, must then by replaced by the

preimage of a connected graph containing the real axis and the complex branch points.
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The description of such generalized dessins makes the proofs rather cumbersome
without adding much to the understanding; therefore we chose to restrict ourselves

to the case of real branch points.

Plan of the paper. In Section 2 we introduce real polynomial dessins. Such dessins

are a strandard way to capture the combinatorial structure of the preimage I'~] (R).
They are in a one-to-one correspondence with real normalized polynomials. In
Section 3 we prove a combinatorial theorem on black and white real trees. This
theorem is equivalent to Theorem 1 (the invariance theorem) in the particular case

of two critical values. In Section 4 we deduce the full statement of the Theorem 1

from this particular case. Finally, in Section 5 we study the generating series for
.v-numbcrs of real polynomials and prove Theorems 2, 3, 4, and 5.

2. Real polynomial dessins

From now and till the end of this section we fix two positive integers k < n and a

sequence (Ai,..., A&) of partitions of n such that

k

^(n - /(A,)) n-\.
1 1

Let c: S2 —> S 2 be an orientation reversing involution of a 2-dimensional
sphere S2. We assume that the fixed point set E c S2 of c is homeomorphic
to a circle and choose an orientation of this circle. Let us introduce a graph that

captures the combinatorial structure of P~*(R) for a polynomial P.

Definition 2.1. A real polynomial dessin of degree n and type (Ai,..., A^) in S2

is an oriented graph T C S2 whose vertices are labelled by elements of the set

{1,2,..., k, oo} in such a way that

• the oriented graph T (together with the labeling of the vertices) is invariant under c;

• the circle E is a union of edges of T;

• exactly one vertex of F is labelled by oo, and the degree of this vertex is 2n;

• for each integer 1 < i < k, the graph F has exactly /(A,) vertices labelled by i
and their degrees are equal to the elements of A;, multiplied by 2;

• each edge of T is one of the following k + 1 types:

oo —> 1, 1 —> 2, 2 -> 3, k — 1 -> k, k oo,

where i -> j means that the edge starts at a vertex labelled by i and finishes at a

vertex labelled by j ;



448 I. Itenberg and D. Zvonkine CMH

• for any connected component C of S2 \ F, each type of edges appears exactly
once in the boundary 9C of C (in particular, the orientation of the edges in dC
extends to an orientation of C).

Definition 2.2. Two real polynomial dessins Fi c 5^ and V2 C S2 of degree n and

type (Ai,..., Afc) are homeomorphic if there exists a homeomorphism <p: S 2
S2

such that

• (p o Cl c2 o (p,

• (p respects the chosen orientations of E\ and E2 (that is, cp\Et ' E\ -» E2 is of
degree 1 with respect to the orientations of E\ and E2),

• (p(T\) T2, and <p preserves the labels of vertices and the types of edges.

The vertices of a real polynomial dessin T c S2 that belong to E are called real.
The complement of the oo-vertex in £ is a totally ordered set that can be identified
with the real line M.

Definition 2.3. Consider a pair of real vertices vi and v2 of T that are labeled by
the same number different from oo. We say that the pair formed by tq and v2 is a

disorder of T if
• iq is smaller than v2 in E \ {oo},

• the degree of tq is bigger than the degree of v2.

Definition 2.4. The signe(V) of a real polynomial dessin T C S2 is (— l)^r\ where

J(T) is the number of disorders of T.

Definition 2.5. A real polynomial dessin T C 52 is said to be increasing, if E
contains an edge of T of type k -» oo such that the orientation of this edge coincides
with the orientation of E.

In the figures we represent the affine dessins, that is, the dessins without the

unique vertex labeled by oo, see Figure 4.

A typical example of a real polynomial dessin is as follows. Let

C £sourcc ^source U ^source and target — ^target C OOtarget

be two copies of the complex projective line C P1. A holomorphic function

p-CP] ->CP'' • *' ' source 1
target

is polynomial, if P~Hootarget) ooS()urce. In affine coordinates in Csource

and Ctarget such a function is indeed given by a polynomial. A polynomial
function P:CPlmce -> C/Jt{rge( is real if conjtargeto£ P o conjsource, where

conjrCF1 -> CP1 is the standard complex conjugation in CP1. In the affine

coordinate this means that P(z) P(z), i.e. that P has real coefficients.
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W\ W2 W3 W4

Figure 4. An increasing real polynomial dessin obtained as the pull-back of the real axis under
a real polynomial function. The edge of type k -» oo is marked with a ribbon.

Let f:C/,sJ)urce -» CPt'r„el be a real polynomial function of degree n and

such that all the branch points w\,...,Wk of P in Ctarget are real.

Assume that wi <w2 < ••• < Wjç, and denote the ramification type of P at in,-

by Ai, i 1 The polynomial function P defines a real polynomial
dessin Tp C C FsJ,urce. As a set, I> is the pull-back P~l(M/Jt'rget), where

R F,'rge| C CPt^get is the fixed point set of conjtarget. The real polynomial dessin

structure on Tp is introduced as follows: the involution c is conjsource, the orientation
of the fixed point set KPs*urce of conjsource is positive (i.e. induced by the order
of M C l<Psôurce)> the only vertex of T labelled by oo is ooSOUrce, the pull-backs
of wi,..., wie are labelled by \,... ,k, respectively; the orientation of Tp is that
induced from the positive orientation of R Ptarget.

Proposition 2.6. Let P : C /Js|mrce —> C Ptarget be a real polynomial function of
degree n such that all the branch points u)\,..., of P in Ctarget are real. Assume

that w\ < W2 < ••• < Wk, and denote the ramification type of P at Wi by A
i 1,,k. Then Tp is a realpolynomial dessin ofdegree n and type (A i,..., A&).

Proof. Straightforward.

A real polynomial dessin corresponding to a real polynomial function P is

increasing if and only if P(x) —> +oo as x —> +oo, in other words, if and only if
the leading coefficient of P is positive.

A real polynomial function whose critical values are all real is said to be totally
real. The following proposition shows that any real polynomial dessin can be

identified with Tp for a certain totally real polynomial function P.
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Proposition 2.7. Let V c S2 be a real polynomial dessin of degree n and type

(Ai,..., Ak), and let wj < u>2 < < be real numbers. Then, there exists

a totally real polynomial function P: C Ps*urce -> C of degree n and type

(Ai,..., Ayt) such that Tp is homeomorphic to T, and up is a branch point of
type Ai of P for each i 1,..., k.

Proof. The points w\,...,Wk, and ootarget divide MPtarget into k + 1 segments,
which are called non-critical. Denote by S+ and S~ the two semi-spheres of S2

which have the common boundary E C S2, and construct a ramified n-fold covering
4>: S2 —> C Ftarget such that conjtargel o4> 4) o c in the following way.

Put the image under <t> of the point labelled by oo to be ootarget- For each vertex
v G S+ of T such that v is labelled by i G {1,...,A;} set the image under <J>

of v to be Wi. For each edge e C S+ of F, let <t> send e homeomorphically to
the non-critical segment between the critical values corresponding to the extremal

points of e (in such a way that the orientation of the edge corresponds to the positive
orientation of EPtarget)- Since the degree of every vertex of the dessin F is even,

the connected components of S 2 \ T possess a chessboard coloring: for any two
neighboring components, one of them is black, and the other is white. Extend 0
to .S'+ sending each connected component of S2 \ F homeomorphically to one of
the halves C Ptarget \ M F,'rgcl in such a way that all the connected components of the

same color are sent to the same half, and connected components of different colors

are sent to different halves. Finally, put conjtarget o4>|5+ o c.

The resulting ramified covering <î>: S2 -> C /Jtarget is equivariant (i.e. satisfies
the condition conjtarget o<f> O o c) and allows one to lift the complex structure

from CPtarget to S2. Namely, due to the Riemann existence theorem, there

exists a complex structure on S2 such that the map 4>: S2 -> CPtarget becomes

holomorphic and the involution c becomes anti-holomorphic. The uniqueness of the

complex structure on a 2-dimensional sphere implies the existence of an equivariant
biholomorphic isomorphism tp: S2 -> Psôurce; composing, if necessary, cp with the

multiplication by —1 in C FsJ)urce, we can assume that <p respects the orientations of E
and E/'sJ)urce. By construction, the map <J> o ^)_1 is a totally real polynomial function
of degree n and ramification type (Ai,..., A^), and the real polynomial dessins T
and Tp are homeomorphic.

A real affine transformation of C /Jsj)urce is a homography of C F>s|)urce which

preserves oosource and commutes with conjsource. In the affine coordinate it has the

form z h> az + b, with a G M* and b G M. Such a transformation is called

positive if it respects the orientation of MPs{,urce (in other words, if a is positive) and

negative otherwise. Denote by K^mJCC the group of positive real affine transformations
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Corollary 6. Let W\ < ••• < wp be real numbers. Then, the correspondence
P Pp establishes a bijection between, on the one hand, the K^mcc-orbits on the

set of totally real polynomialfunctions ofdegree n with branch points W\,, Wk of
types Aj,..., Afc, respectively, and, on the other hand, the set of homeomorphism
classes of real polynomial dessins ofdegree n and type (Ai,..., A k).

Proof. The statement immediately follows from Proposition 2.7 and the fact that
the isomorphism cp in the proof of Proposition 2.7 is unique up to the action (by
composition) of A+urce and conjsource.

Corollary 7. Let uq < < Wk be real numbers. Then, the correspondence P r>
establishes a bijection between, on the one hand, the set »S'a (w \ wf) of
real normalized polynomials of degree n with branch points W\,... ,Wk of types

Aj,..., Afc, respectively, and, on the other hand, the set ofhomeomorphism classes

of increasing (see Definition 2.5) real polynomial dessins of degree n and type

(Ai,...,Afc). Furthermore, for any real normalized polynomial P e S, the

sign e(P) of P coincides with a(Tp).

Proof. A real polynomial P can be normalized by a positive real affine transformation
(an element of A+urce) if and only if its leading coefficient is positive or, in other
words, if and only if the corresponding dessin is increasing. In this case P can
be normalized in a unique way. Thus, Corollary 6 implies the first statement. The
statement about signs is immediate.

Denote by DA Ak the set of homeomorphism classes of increasing real

polynomial dessins of degree n and type (Ai,..., A&). We obtain the following
statement.

Corollary 8. Let uq < • • < be real numbers. Then, the s-number

E
PeSAy Ak foi

is ecpial to

reD+
A]

The number n+ e(r) is called the s-number of increasing real
Ak

polynomial dessins ofdegree n and type (Aj,..., Afc).
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3. Black and white trees

In this section, we introduce auxiliary combinatorial objects that are used in the proof
of the invariance theorem. They are equivalent to real polynomial dessins with k 2

critical values.

Definition 3.1. A black and white tree is a tree embedded into C whose vertices
are colored in black and white in alternation. A black and white tree is said to be

real if it is invariant (including the colors) under the complex conjugation. Two
real black and white trees are isomorphic if one can be transformed into the other

by an equivariant (with respect to the complex conjugation) homeomorphism of C

preserving the orientation of the real axis.

Remark 3.2. To transform a real black and white tree into a real polynomial dessin we

complete C to C U {oo} (the point added being a new vertex labeled oo) and, at each

other vertex, insert an edge leading to the oo-vertex between each pair of successive

edges in such a way that the result is invariant under the complex conjugation. Thus,
the degree of each vertex of the tree is multiplied by 2, while the degree of the

oo-vertex is twice the number of edges of the tree.

For shortness, most of the time in this section we just say tree instead of "real
black and white tree". We always consider trees up to isomorphism.

Definition 3.3. To a tree T we assign its real part sequence: the sequence of colors
and degrees of its vertices lying on the real axis from left to right. The vertices of
the real part RT T H R of 7' are called real vertices of T. The first and last real
vertices are called the border vertices', the other real vertices are called interior real
vertices.

Definition 3.4. A disorder of a tree is a pair of its real vertices of the same color
such that the degree of the first one is greater than the degree of the second one.

Definition 3.5. The sign of a tree T is

e(T) (-l)rf,

where d is the total number of disorders in T.

Definition 3.6. A tree is a white side tree (respectively a black side tree) if its

rightmost vertex on the real axis is white (respectively, black).

Example 3.7. Up to isomorphism, there are exactly 12 black and white real trees

with 4 edges. They are shown in Figure 5 with their signs. The black side trees are

on the left, while the white side trees are on the right.
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-lI

i
Q

O-

Ô

Figure 5. Black and white trees with 4 edges.

Notation 3.8. Fix a positive integer n and two partitions Aw and A/, of«. We will
denote by T\w,Ah, Wa,„,aä> and Ba„;,A/, the sets of trees, white side trees and black
side trees, respectively, whose degrees of white and black vertices are prescribed
by Am and A/,. Thus,

Tau;,Aa WAw,Ah UBAll„A,.

Theorem 9. Fix a positive integer n and two partitions Aw and Ab ofn. We have

E e(r) - E= °-
TGWAlu,A. TeBAu,,A/)

In other words, there is the same number of white side and black side trees whose

degrees of white and black vertices are prescribed by Aw and Ab provided that we

count the trees with signs given in Definition 3.5.

Example 3.9. Figure 6 shows all trees with Ab (4,2,2), Aw — (2,2,1,1,1,1).
The disorders are shown as grey arcs, their number is written to the left of each tree
and the resulting sign to the right of each tree. The sum of signs is equal to 2 both
for the white side trees on the left and for the black side trees on the right.
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Figure 6. White side trees are on the left, black side trees on the right. All trees have

A/, (4,2,2), Aw (2,2, 1,1,1,1). The disorders, their number, and the resulting signs arc
shown in grey.

To prove the theorem we need an auxiliary way of weighting trees.

Definition 3.10. We define the weight co{T) of a tree T as follows. If the real part
sequence of a tree T is not symmetric, we have co(T) 0. If T has only one real

vertex, then at (T) 1. If the real part sequence of T is symmetric, T has more than

one real vertex, and the middle real vertex has the same color as the border vertices,
then co(T) —1. If the real part sequence of T is symmetric, T has more than one
real vertex, and the color of the middle real vertex is not the same as the color of the

border vertices, then co(T) 1.

The statement of Theorem 9 is a consequence of the following lemmas.

Lemma 3.11. Fix a positive integer n and two partitions A w and A/, ofn. Then we
have

E £(r) - E E - E
reWAu;.Aft TeBS.w,Ab TeWau)iA/) TeBaw,aô

In other words, the difference between the numbers of white and black side trees is

the same whether we count the trees with signs of Definition 3.5 or with weights of
Definition 3.10.

Example 3.12. Figure 7 shows all trees with (4,2,2), Aw (2,2,1,1,1,1)
and symmetric real part sequence, together with their weights. Note that the three
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first trees on the white side of Figure 6 got replaced by just one tree whose weight is

equal to the sum of signs of the three trees.

Figure 7. White side trees are on the left, black side trees on the right. All trees have

Aft (4,2,2), A w (2,2,1,1,1,1). The weights of the trees are shown in grey.

Lemma 3.13. We have

J2 o>(T) - £ co(T) 0.

TeWA„,,Aft TBAu),Aft

ProofofLemma 3.11. We start with the sum

£ HT)- 2] HT)
TeWAu),Aft TeBA„,,Aft

and reduce it by finding pairs of trees that cancel with each other.

Consider a tree T e Taw,A/,-

A. Symmetrizing the border vertices. If the border vertices have the same color but
different degrees, we can construct a new tree T' by interchanging them together with
their forests. We have e{T') —e(T). This is due to the fact that the degrees of the

border vertices are odd and therefore are never equal to the degrees of the other real

vertices that are even. The trees T and T' cancel in the sum. We see that we can

erase from the sum all trees in which the two border vertices have the same color, but
different degrees.
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B. Symmetrizing an interior stretch. Choose a stretch formed by an even number
of consecutive interior white vertices in the real part of T. Pick the two middle
vertices of the stretch. If their degrees are different we can interchange these two
vertices together with the forests growing on them. We obtain a tree T' such that

e(T') —e(T). Thus, T and T' cancel in the sum, so we can disregard all trees

having the same length of the real part as T and in which the two middle white
vertices of the stretch have different degrees. Now assume that the degrees of the two
middle white vertices of the stretch are equal. Then, we look at the two white vertices

surrounding these two and perform the same operation. By the same argument as

above, we can disregard all trees T where the degrees of the 4 white vertices are not

symmetric. Continuing in the same way we see that, among the trees with a given
length of the real part, we can erase from the sum all the trees in which the degrees

of the real white vertices in a chosen stretch are not symmetric. Of course, the same
considerations apply to black vertices as well.

Now consider four cases.
1. If T has only one real vertex we just leave T in the sum. In this case s(T)
co(T) \.

2. The tree T has more than one real vertex and the border vertices of T are both

white.
The first possibility is that there is an even number of white interior vertices and

an odd number of black interior vertices. By (A) we can assume that the degrees
of the border vertices are equal. By (B) we can assume that the degrees of the

white vertices are symmetric. Also by (B) we can exclude the leftmost black vertex
and assume that the other black vertices have symmetric degrees. The signs of the

remaining trees are all equal to 1. Indeed, because of the symmetry, all disorders,
both black and white, come in pairs. Since we are trying to symmetrize the real part
sequence of the tree we now replace T by a new tree T' by moving the leftmost black
vertex to the middle position in the real part. This changes the sign of the tree, but

we must still count it with the original sign co(T') s(T).
The second possibility is that there is an even number of black interior vertices

and an odd number of white interior vertices. By (A) we can assume that the degrees

of the border vertices are equal. By (B) we can assume that the degrees of the black
vertices are symmetric. Also by (B) we can exclude the leftmost interior white vertex
and assume that the other interior white vertices have symmetric degrees. The signs
of the remaining trees are all equal to —1. Indeed, because of the symmetry, all

disorders, both black and white, come in pairs, except for the disorders involving a

border vertex and the excluded interior white vertex. Since the degrees of the border
vertices are equal, there is exactly one exceptional disorder like that, so the total
number of disorders is odd. As before, to symmetrize the real part sequence of the

tree we replace T by a new tree T' by moving the leftmost interior white vertex to
the middle position in the real part. This changes the sign of the tree, but we must
still count it with the original sign a>(T') s(T).
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Thus, we see that in both situations all trees with non-symmetric real part
sequences cancel out and we are only left with trees having symmetric real part
sequences. Every tree like that is counted with weight en.

3. The tree T has more than one real vertex and its border vertices are both black.
This case is treated in the same way as the previous one.

4. One border vertex of T is white and one is black. In this case there are as many
white vertices as black ones.

If the number of interior white (and therefore black) vertices is even, we can

assume by (B) that their degrees are symmetric. Consider the tree T' obtained
from T by a rotation by 180°. We have e(T) s(T'). Indeed, as we revert the

orientation of the real line all disorders appear or disappear in pairs because of the

symmetry. On the other hand, among the trees T and T' one is a white side tree

while the other is a black side tree. Thus, these trees cancel in the sum.

If the number of interior white (and therefore black) vertices is odd, we can exclude
the interior vertices closest to the border vertices of the same color and assume by (B)
that the degrees of the remaining interior vertices are symmetric. Consider the tree T'
obtained from T by a rotation by 180°. Once again, we have s(T) — s(T'). Indeed,
as we revert the orientation of the real line all disorders appear or disappear in pairs
because of the symmetry, except for the disorders involving the border vertices and

their adjacent vertices of the same color. These two exceptional disorders modify the

sign by an extra factor of (—l)2 1. Now, as before, among the trees T and T' one
is a white side tree while the other is a black side tree, so they cancel in the sum.

We see that all the trees of the sum have canceled, so the sum is equal to 0. Note
that in this case there are no trees with symmetric real part sequence.

The lemma is proved.

ProofofLemma 3.13. If the number n of edges of our trees is odd, every tree has

two border vertices of different colors. In that case there are no trees with symmetric
real part sequence, so the weights of all trees vanish.

The interesting case is when n is even. In that case we will prove that there is a

cancellation between the trees with a unique real vertex and the trees with more than

one real vertex.
Consider a tree T with a unique real vertex. Take the two symmetric trees growing

on it closest to the positive direction of the real axis. In each of these trees construct
the midline: the sequence of edges that starts at the real vertex and divides into two
equal parts the degree of each vertex that it meets, see Figure 8.

Denote by A and A! the half-trees closest to the real axis and by B and B' the
half-trees separated from the axis by the midlines. Now assemble A and A! into a new
real tree along the positive direction of the real axis; the midline will follow the real

axis. Similarly, assemble B and B' into a new real tree along the negative direction
of the real axis; the midline will follow the real axis. We have obtained a new tree T'



with more than one real vertex and symmetric real part sequence, see Figure 9. This
construction establishes a bijection between the set of trees with a unique real vertex
and the set of trees with a symmetric real part sequence composed of more than one
vertex (in both cases we consider only trees with n edges).

Figure 8. A tree with a unique real vertex; the midlines of its rightmost branches are shown in

grey.

I. Itcnberg and D. Zvonkine CMH

Figure 9. A bijection between trees with a unique real vertex and trees with a symmetric real

part sequence composed of more than one vertex.

If, among the trees T and T', one is a white side tree and the other a black side

tree, then cù(T) co(T') 1, so the trees cancel in the sum. If both trees are white
side or both are black side, then a>(T) 1 while co(T') — 1, so the trees cancel as

well.
The lemma is proved.
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4. Proof of the invariance theorem

Let k and n be two positive integers, k < n, and let (Ai,, A&) be a sequence of
partitions of n such that

k

^(77 - /(A,)) 77-1.
1=1

In view of the equality between the .s-numbers of real normalized polynomials and

increasing real polynomial dessins (Corollary 8), the invariance theorem (Theorem 1)

is equivalent to the following proposition.

Proposition 4.1. For any integer 1 < i < k — 1, the s-number of increasing real

polynomial dessins ofdegree n and type

(Aj,..., Aj_i, A;, Aj+i, A;+2> • Ak)

is equal to the s-number of increasing real polynomial dessins ofdegree n and type

(Ai, AA;+1, Ai, A,+2, • Afc).

The rest of the section is dedicated to a proof of this proposition. The proof uses

the invariance theorem for black and white trees (Theorem 9). To match the notation,
we put At — A/, and A,-+i Aw.

Let w i < • • • < w/c be real numbers, and consider be the set of (homeomorphism
classes of) increasing real polynomial dessins T of degree n and type

(Al,..., A,_i, Ab, Aw, A;+2,..., Aß).

For each real polynomial dessin T we color in black the vertices labelled with i
(they correspond to Ab), and in white the vertices labelled with i +1 (they correspond
to Ay,).

These black and white vertices together with the edges of type i —> i + 1 of T
form a collection of black and white trees embedded into C. Some of them are real;
others split into pairs of trees that are complex conjugate (symmetric to each other).
To distinguish between the two cases we use, until the end of this section, the terms
real trees for real black and white trees of Definition 3.1 and imaginary trees for
black and white trees without vertices on the real axis.

Given a real polynomial dessin T as above, we can contract all its i ->7 + 1 edges

in order to obtain a new real polynomial dessin T. Thus, each real and imaginary tree

gets contracted to a vertex. The vertices obtained from contracted trees are labeled
with 7. The vertices that were labelled with indices j >7 + 1 are now labeled with

j — 1. Moreover, we enhance each vertex of T labeled by i with the couple (t?/,, /7U))

of partitions 777, and nw describing the degrees of white and black vertices of the real

or imaginary tree contracted to this vertex.
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Definition 4.2. An i -enhanced dessin is an increasing real polynomial dessin with an

extra data, for each vertex v labelled by i, of a pair (nj,,n w) ofpartitions of (deg v)/2,
where deg v is the degree of v. The vertices labelled with / of an /-enchanced dessin

are called special.

Definition 4.3. Let F be an /-enhanced dessin. A disorder for vertices with label

j f i is defined in the usual way. For special vertices, however, we have a special
definition of disorders. Consider two real special vertices ui < v2. Choose an

element n i of one of the partitions assigned to vi and an element n2 of the partition
of the same color assigned to v2- The couple (n\,n2) is called a special disorder

if « i > n2.

Definition 4.4. The sign ofan enhanced dessin T is £(T) (—1 )d, where d is the

total number of disorders of T, both special and ordinary.

Denote by 1 the collection of (homeomorphism classes of) / -enhanced dessins of
type Ai,..., A,-_i, A, A,-+2, • • • » Afc such that if we take the union over the special
vertices of the black partitions «£ we get Ai and if we take the union of all white

partitions nw we get AThus, any /-enhanced dessin obtained by contraction from
an increasing real polynomial dessin of type (Ai,..., Ak) belongs to "I.

Lemma 4.5. If an i -enhanced dessin Tel is obtained from a dessin T by

contraction then

£(r) e(f)x]~[e(r),
T

where the product is taken over the contracted real trees in T.

Proof Let t/(F) be the number of disorders in T. Let d(T) be the sum of the

numbers of disorders of all real trees in T that got contracted. Finally, let D be the

number of pairs of vertices (iq, v2) in two distinct contracted trees T\ and T2 such

that

• the tree 7j lies to the left of T2,

• the degree of v\ is greater than the degree of v2,

• either v\ or v2 (or both) is not real.

Then the number of disorders of T is equal to

d(f) + J2d(T)~D-
T

It is easy to see that D is always even, since the pairs (vlt v2) come in couples or
quadruples of complex conjugate vertices. Thus

e(r) e(f)xY\e(T)
T

as claimed.
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Now let us study the set of increasing real polynomial dessins T that contract to
a given T "I. Let FR be the set of special real vertices of F, and let V+ be the
set of its special vertices with a positive imaginary part. For convenience, for every
special vertex v e Fr U V+, we mark an adjacent edge in the following way. For any
vertex » e 7r, we mark the edge to the right of the vertex on the real axis. For any
vertex v G V+, we mark at random an edge of type i -» i + 1 (or i -> oo if' i is the

largest critical value).

Assign a set Tv to each special vertex of V as follows.

• If v is in V+ and the corresponding partitions are (iib,nw), we assign to v the set Tv

of imaginary trees with one marked white half-edge (i.e. a half-edge adjacent to
a white vertex), such that the degrees of black and white vertices of the tree are

given by nb and nw.

• If v V® is a real vertex, (rib,nw) the corresponding partitions, and the marked

edge to the right of v is of type i -»• i + 1 or i -> oo, then we assign to v the

set Tv of white side real trees with degrees of black and white vertices given by rib
and nw.

• Finally, if v e Fr is a real vertex, (iib,nw) the corresponding partitions, and the

marked edge to the right of v is of type i — 1 -> i or oo —»• i, then we assign to v

the set Tv of black side real trees with degrees of black and white vertices given
by rib an<i nw-

Lemma 4.6. The set of increasing real polynomial dessins V of type (Aj,..., A^)
that contract to T is in a one-to-one correspondance with the product

n
ueFRUKf

Proof The dessin V is constructed by inserting into each special vertex v the

corresponding tree. The real trees are inserted in the natural way: the marked

edge of T is glued to the rightmost vertex of the real tree, and this vertex has the

appropriate color by the construction of our sets of trees. For a vertex v e V+,
we insert the tree in such a way that the marked edge of T is glued to the white
vertex of the marked white half-edge of the plane tree, right after this half-edge in the

counterclockwise direction. For a vertex v with negative imaginary part, the trees are

glued so that the invariance of the dessin by complex conjugation is preserved.

Let T "1 be an i -enhanced dessin. For a vertex v G F+, denote by mv the
number of imaginary trees with partitions (nb,nw) given by the vertex and with one
marked white half-edge. For a vertex v e Fr, denote by mv the ^-number of real
black side trees with partitions (tib,nw) given by the vertex v.
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Remark 4.7. Note that, by Theorem 9, the ,v-number of real black side trees
with partitions (ttb,nw) is the same as the .y-number of real white side trees with
partitions (rib,nw). This equality makes it possible to define the number mv in an

invariant way and is the main reason why the proof of invariance goes through.

Lemma 4.8. The s-number of increasing real polynomial dessins Y of type
(A i,..., Afc) that contract to T is equal to

e(T) Y\ mv-
i»eKRUk+

Proof The set of dessins T was described in Lemma 4.6. The sign of each dessin like
that is given in Lemma 4.5. The lemma follows by combining the two statements.

ProofofProposition 4.1. The .v-number of increasing real polynomial dessins T

of type (Ai A/_i, Aft, Aw, Ai+2, • • •, Afc) that contract to Y is given by
Lemma 4.8. It is clear that this number does not depend on the order of the

partitions Aft and Aw. More precisely, if, at each vertex of T, we replace the

pair of partitions {tib,nw) by (nw,tib), the .v-number of Lemma 4.8 stays the same.

Since the equality holds for each /-enhanced dessin, we conclude that the
.v-number of increasing real polynomial dessins of type

(A],..., A;_i, A ft, Au, A j +2. • •, A if)

is the same as for the type

(Ai,..., Aj—i, Au, Aft, Ai+2, • • • j Ajt). O

5. Generating series

In this section we study the generating series for .v-numbers of real normalized

polynomials and prove Theorems 2, 3, 4, and 5.

Let Ai,..., Afc be a fixed list of partitions. We are interested in the .v-number

of real normalized polynomials with k branch points w\,...,Wk having reduced

ramification types Ai,..., Afc, respectively, and with m more simple branch points

wic+i,..., Wk+m- Since the .v-number does not depend on the order of the branch

points on the real line, we place the branch points so that w\ > w2 > • • > Wk+m-
Let P be a real normalized polynomial whose branch points are all real, and

consider its affine dessin, that is, the real polynomial dessin Yp without the oo-vertex.
Choose a real number a lying between Wk and Wk+\. To prove the theorems, we

extract from the affine dessin several parts that contain all the required information
about the polynomial.
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• The preimage of the interval (a, oo). In general this preimage consists of several

connected components. We will call a connected component interesting if it
contains either a real point or a critical point of P. The union of interesting
components is called the base of the affine dessin.

• The real part of the preimage of the interval (—oo, lu^+i]. The real part of
P_1((—oo, Wk+i\) also may consist of several connected components. We call
them chains. The real part of F_1((—oo, u^+i]) automatically contains all the

critical preimages of Wk+i, • • •, Wk+m-

The full preimage of (a, oo) and the base extracted from it are shown in Figures 10

and 11, respectively. The mid-light grey lines in the picture are the preimages of
(a, wjc). Some of them are contained in the regions between the mid-dark grey rays.
These mid-light grey lines lead directly to the n preimages of —oo in the affine dessin

without encountering any critical points. Other mid-light grey lines lie in the regions
that contain a black box. Those are connected to a chain.

Figure 10. The complete preimage of (a, oo). Here n 24, k 3, Ai (2,2,1,1),
A2 (2,1,1), A3 (1). The black boxes contain the chains.

Definition 5.1. Suppose that a base of the affine dessin and its chains are given.
We call regions the connected components into which the base divides the upper
half-plane ()Hx > 0}. For each chain c, let pc be the number of preimages of a in
the region adjacent to c. Then, on each chain we can single out the pc maxima to
which these preimages are connected. A chain with pc maxima singled out is called
marked.
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s

m

Figure 11. The base of the affine dessin. The black boxes contain the chains.

Theorems 2, 3, and 4 are proved by counting the .s-n umber of real normalized

polynomials with a given base and then performing a summation over the finite set

of possible bases. Before proceeding with the proofs we state three simple lemmas.

Lemma 5.2. An affine dessin can be uniquely recovered if its base and marked chains-

are given.

Proof. Once we have connected the preimages of a to the chains according to the

markings, all the vertices of the affine dessin of degree greater than 2 and the edges
between them are drawn. The remaining part of the affine dessin is a union of rays
consisting of vertices of degree 2 and ending at vertices labeled ±oo. The first
interval of each ray like that is uniquely determined by the vertex structure of the
affine dessin, namely, by the fact that the edges (i —> i + 1) and (i — 1 -> i) alternate
at each vertex of color k. Once we know the first interval of a ray, it can be extended
in a unique way.

Lemma 5.3. Introduce the differential operator D — q-j^. Then, we have

Dq q,

Df=q{\-f2),
Dg ~qfg.

Proof. This is just a computation.



Vol.93 (2018) Hurwitz numbers for real polynomials 465

Notation 5.4. Put

fP -l)(D-3) •••(£>-2p + l)f2p pi

gp ^—D(D-2)---(D-2p + 2)g.
2p pi

Lemma 5.5. The series fp (respectively, gp) is the generating seriesfor the numbers

of alternating permutations of odd (respectively, even) length with p distinguished
maxima.

Proof The operator D multiplies the coefficient of qm in a generating series by m.
An alternating permutation of odd length m has (m — l)/2 maxima. Therefore, to
choose p maxima we need to multiply the number of alternating permutations by

m—1 m—3 m—2/7+1
2

"
2 2

p\

An alternating permutation ofeven length m has m/2 maxima. Therefore, to choose p
maxima we need to multiply the number of alternating permutations by

m m—2 m—2/7+2
2 2 2 Q

p\

Proofof Theorem 2. Let X\,..., \k be a given list of partitions. Consider a possible
base of the affine dessin P'+R). Denote by s the sign of the base, that is, (—1)

to the number of disorders present in the base. Suppose that the base leaves h gaps
for chains and that there are p\, Pi, Pb maxima to choose in the b chains to be

connected with the preimages of a in the base.

We claim that the .v-number of polynomials with the given base and m additional

simple branch points equals the coefficient of qm/ml in the power series

b

e fPi for n even, (5.1)
i l

b

e sPi n fpi for n °dd- (5-2)
i =2

Indeed, it follows from Lemma 5.5 that the products nf=i .fpi ar|d gPl Flf=2 fpi
correctly count the chains with distinguished maxima, taking into account the

disorders within each chain. The sign e also takes into account the disorders in
the base. Note that all the real preimages of critical values are contained in the union
of the base and the chains. Thus, every disorder takes place either within the base

(for critical values between W\ and w^), or within a chain, or between two chains.
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U>k+m

Wk+l

Wk+2

Figure 12. The chains. Here n is odd, so that the leftmost chain extends to —oo. There are

m= 7 simple branch points divided between b — 2 chains. The numbers of selected maxima
is pi =1 and p2 0.

L

The disorders within each chain are accounted for by the signs in the series ni=i fn
and gPl n?=2 fpi The number of disorders between two chains is always even.
Indeed, a disorder between two chains appears between a simple critical point on
some level w^+i in the left chain and a simple preimage of Wk+i in the right chain.
But the right chain crosses the level w^+i an even number of times, so there is an

even number of disorders.

Now, Lemma 5.3 implies that (5.1) is a polynomial in q and /, while (5.2)
is g times a polynomial in q and /. The generating series ^ (respectively,

Fg ^ is obtained as a sum of expressions (5.1) (respectively, (5.2)) over the finite
set of all possible bases of the affine dessin. Thus, F^e" ^ is a polynomial in q

and /, while Fj[)dd ^ is g times a polynomial in q and /.
Proofof the "if' part of Theorem 3 (nonvanishing for even degree polynomials).
Consider k partitions Ai,... ,Xk and assume that in each of them every even number

appears an even number of times and at most one odd number appears an odd number
of times. Let s be the number of partitions in which one of the numbers appears an
odd number of times.

Given a partition A, denote by [A/2] the partition defined by the following rule:

if an integer a appears na times in A then it appears [na/2] times in [A/2], where [•]

is the integer part. For instance, if A (1,1,1,1, 1,2,2, 3,4, 4,6, 8) then [A/2]
(1,1,2,4).
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Denote by I the total number of elements in the partitions [A, /2]:

/([A1/2]) + - + /([A*/2]).

Let us call a base simple if all critical points lie on different connected components
of the base and if there is at most one real critical point on each level w\,... ,Wk,
see Figure 13. In particular, a simple base contains s real critical points and i pairs
of complex conjugate critical points.

Figure 13. A simple base for even n. The preimages of +oo are represented as black dots; those

of a as white dots. In this example s 2,1 5.

We know that the series F^en ^ is a polynomial in q and /. We claim that each

simple base gives rise to a nonzero contribution to the coefficient ofqlifli+s+l in this

polynomial; this contribution has sign (— l)e; moreover, no other base contributes to

this coefficient. To prove this claim, we, first, study the power of q, then the power
of /, and then the sign.

The power ofq. The series F^e" ^ is a sum of expressions of the form

b

eTI fpn
i=i

where p; is the number of distinguished maxima in the fth chain. Recall that

Df —q{f2 — 1), Dq q. The highest possible power of q in the above

expression equals because every time we apply the operator D we increase
the power of q by at most 1. Thus, the highest possible coefficient of q is obtained
from the bases with the largest possible number of distinguished maxima. Moving
along the affine dessin from a distinguished maximum of a chain towards a preimage
of a and beyond, we eventually arrive at a non-real critical point. Thus, the greatest
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possible number of distinguished maxima is achieved when as few critical points
as possible are real and when there is a distinguished maximum assigned to each

non-real critical point. The number of distinguished maxima is then equal to i, so

this is also the highest possible degree in q.

The power of f. From now on we restrict ourselves to bases that contribute to the

coefficient of qWe know that the contribution of a base like that is obtained by
applying I copies of D to h copies of /, where h is the number of chains. Applying
the operator D increases the power of / by at most 1. Thus, we get the highest
possible power of / if we start with as many chains as possible. Since we only have

s real critical points available on levels u>\ to wg, there are at most s + 1 chains. In
that case, the largest power of / is equal to I + s + 1 and the base is simple.

The sign. In a simple base there is exactly one real critical point between two chains.

Therefore, this critical point is a focal maximum. It follows that there is an even
number of simple preimages lying to the right of this critical point on the same level.

Thus, the number of disorders in a simple base is even, so its sign equals e 1. The
coefficient of the monomial qe fi+s+1 in fj-ii fpi is equal to (—\/2)1. Indeed,

we have a change of sign and a division by 2 every time we apply the operator D,
and there are I operators to apply. Thus, we see that every simple base contributes
exactly (—1/2)^ to the coefficient of ql fl+s+].

Simple bases obviously exist; thus we see that the coefficient of q1- fl+s+l is

nonzero. For completeness, let us compute this coefficient. The number of simple
bases is given by the number of possible orderings of the pairs of complex conjugate
critical points (or, more precisely, their distinguished maxima) and real critical points.
One should also take into account the fact that critical points of the same multiplicity
lying on the same level are indistinguishable. Denote by Aut[A,/2] the number of
automorphisms of the partition [A,/2]. Then the coefficient of q^ fl+s+1 equals

Proofof the "if" part of Theorem 4 (nonvanishing for odd degree polynomials). The

proof goes along the same lines as above, but with an extra complication. We skip
some details in the parts of the proof strictly analogous to the proof above, but

highlight the differences.

Consider k partitions Ai,..., Xg and assume that in each of them at most one

even and at most one odd element appears an odd number of times. Let s be the

number of partitions in which one of the odd numbers appears an odd number of
times.

To every partition A ; we assign a sign e,- ±1 in the following way. If A has an

odd element that appears an odd number of times and no even element that appears

II Aut[A,/2]
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an odd number of times, then e;- — 1. If A; has an odd element that appears an odd
number of times and an even element that appears an odd number of times and if the
odd element is greater than the even element then £,• — 1. In all other cases we set

£( 1. We also let s I~lf=i £i
As before, we introduce the partitions [A,- /2] and denote by I their total length

k

f £/([A.-/2]).
i l

To avoid confusion we will call crossing and extremal the real critical points of
even and odd multiplicity respectively. Thus the graph of the polynomial P crosses
the horizontal line y — wi at a crossing critical point, but not an extremal one.

Let us call a base simple if all non-real critical points and all real extremal critical
points lie on different connected components of the base and if there is at most one
real crossing and at most one real extremal critical point on each level wg,
see Figure 14.

Figure 14. A simple base for odd n. The preimages of +oo are represented as black dots; those

of a as white dots. In this example s 2,1 5.

A simple base contains I pairs of complex conjugate critical points and s real
extremal critical points. Each of those critical points is contained in its own connected

component of the base. One more connected component of the base contains the real

half-line to the right of the rightmost chain. Altogether there are s + 1 "real" and

21 "imaginary" connected components. In addition to the critical points mentioned
above, there is a certain number of real crossing critical points. Those are distributed

among the s + 1 "real" connected components of the base.

We call the skeleton of a simple base the part obtained by removing all the non-real

edges adjacent to real crossing critical points. In Figure 14 the edges to be removed

are shown in thick grey lines, while the skeleton is shown in black.
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We know that the series F£dd ^ is g times a polynomial in q and /. We claim

that each simple hase gives rise to a nonzero contribution to the coefficient ofq1 fl+s
in this polynomial; the sum of these contributions over all simple hases with the same
skeleton has sign (— 1 /' • e; moreover, no other hase contributes to this coefficient.
To prove this claim, we, first, study the power of q, then the power of /, and then the

sign.

The power ofq. As before, the highest possible coefficient of q is obtained from the
bases with the largest possible number of distinguished maxima, or, in other words,
when as few critical points as possible are real and when there is a distinguished
maximum assigned to each non-real critical point. The number of distinguished
maxima is then equal to I, so this is also the highest possible degree in q.

The power of f. From now on we restrict ourselves to bases that contribute to the

coefficient of qt:. We know that the contribution of a base like that is obtained by

applying I times the operator D to one copy of g (the left-most chain) and several

copies of / (the other chains). Applying the operator D increases the power of /
by at most 1. Thus, we get the highest possible power of / if we start with as many
chains as possible. Note that two chains have to be separated by at least one local
maximum in the base, that is, a real extremal critical point. Since we only have s of
those available on levels w\ to w£, there are at most s + 1 chains. In that case, the

largest power of / is equal to i -|- s and the base is simple.

The sign. Given the skeleton of a simple base, one can "graft" the crossing critical
points and the grey edges growing out of them in several ways. More precisely,

suppose that in the partition A, an even element appears an odd number of times. In
that case (and only in that case) simple bases contain a real crossing critical point on
level Wi. All real preimages of tu,- are contained in the skeleton. One of them may be

the extremal critical point (if there is one). At all the other preimages the graph of the

polynomial crosses the level y uq and therefore there is an odd number of such

points. The crossing critical point can be grafted at any of these points. Note that the

signs of the bases thus obtained alternate. Indeed, every time we move the crossing
critical point one position to the right without jumping over the extremal critical point
we destroy exactly one disorder. If we do jump over the extremal critical we destroy
one disorder and might create two more, but in both cases the parity of the number
of disorders changes. We see that the contributions of the simple bases cancel out,

except for the last simple base where the crossing critical point is at the rightmost
position. The same reasoning holds for every level w;. Thus, we conclude that for
a given skeleton the contributions of all simple bases cancel out, except for the one

simple base in which all crossing critical points are at the rightmost positions on their
respective levels, that is, to the right of the last chain. The sign of this simple base

equals s (defined at the beginning of the proof). Indeed, consider a critical level tu,-

for 1 < i < k. It contains at most two real critical points: at most one extremal one
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that is then necessarily a local maximum, and at most one crossing one. If it has no
real critical points, it contains no disorders and contributes a sign +1. If it has only
a crossing critical point, it contains no disorders, since the crossing point is in the

rightmost position. If it has only a local maximum, it contains an odd number of
disorders, and therefore contributes a sign —1. If it has both a local maximum and

a crossing critical point in the rightmost position, the parity of disorders depends on
which of these two critical points has a greater multiplicity.

The coefficient of the monomial g • ql fi+s in

S

spi n fpi
1=2

is equal to (—1/2)^. It follows that every skeleton contributes exactly (—1/2)^ • e to
the coefficient of q^ f('+s.

For completeness, let us compute this coefficient of ql fl+s. It is given by the

number of possible orderings of the pairs of complex conjugate critical points (or,

more precisely, their distinguished maxima) and real odd critical points. One should
also take into account that critical points of the same multiplicity lying on the same
level are indistinguishable. Denote by Aut[A;/2] the number of automorphisms of
the partition [A//2], Then, the coefficient of qt fti+s equals

(_')«.
n Aut[A; /2]
;=i

Proofof the "only if' part ofTheorem 3 vanishing for even degree polynomials).
Assume that in one of the partitions A ; an even element appears an odd number
of times. Then, there must be an even real critical point on level u;,-. Since the

s-number of polynomials does not depend on the order of critical values, we may
assume that u>, is the global minimum of the polynomial. But the lowest level can

only contain odd critical points, so there are no polynomials at all satisfying the given
branching conditions.

Now assume that in one of the partitions A; there are two odd elements a and h

each of which appears an odd number of times. As before we can assume that wi
is the lowest critical level. We divide all dessins under consideration into pairs of
dessins with opposite signs.

Given a dessin T, let us find all of its real vertices corresponding to level u;,- and

to critical points of multiplicities a and h. There is an odd number of vertices of
either type. Now make two cuts on the real line to the left and to the right of every
chosen vertex. Remove the chosen vertices from the affine dessin, together with all
the edges that grow on them. Now place them back into the affine dessin in the
reversed order. We have obtained a new dessin f. It is obvious that this operation
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is an involution: if we reverse the order of the chosen vertices again we get back the
dessin T. Note that it is only possible to exchange critical points in that way if they
are all local minima or all local maxima. In our case, since we have chosen Wi to be

the lowest critical level, all critical points are local minima.
Now we claim that the operation T r" described above changes the parity of

the number of disorders. Indeed, consider first the disorders between two chosen

vertices. There is an odd number of pairs (v, w), where v is a vertex of multiplicity
a and w a vertex of multiplicity b. When we have reversed the order of the vertices,
each pair like that has reversed its type: if it was a disorder it is no longer a disorder
and if it was not a disorder it has become a disorder.

Now consider the disorders between a chosen and a non chosen vertex. Suppose v
and w are two chosen vertices that got permuted and u is another vertex with label i.
If u does not lie between v and w the number of disorders between v and w on the

one hand and u on the other hand does not change. If u lies between v and w it can

change by 2 or remain unchanged. Thus the parity of the number of disorders like
that has not changed.

To sum up, we see that the total number of disorders has changed parity. Since we
have divided all dessins into pairs of opposite signs, we conclude that the .v-number

of polynomials vanishes.

Proofof the "only if' part of Theorem 4 vanishing for odd degree polynomials).
Assume that in one of the partitions Atwo different even elements appear an odd

number of times each. Then, there must be at least two even real critical points on
level Wi. Since the .v-number of polynomials does not depend on the order of critical
values, we may assume that Wi is the lowest critical level. But the lowest level can

only contain one even critical point, so there are no polynomials at all satisfying the

given branching conditions.
Now assume that in one of the partitions A; there are two odd elements a and b

each of which appears an odd number of times. The proof repeats literally the proof
in the even degree case.

ProofofTheorem 5. Given a holomorphic function in the disc \q\ < r with a unique
singularity on the circle \q\ r, it is well known that the coefficients am of its Taylor
expansion at 0 satisfy

In \am\ ~ —m In r.

In our case, the generating function F is holomorphic on \q\ < n/2 and has exactly
two poles at q ±i n/2. (Indeed, it follows from the proof of Theorems 3 and 4 that
Fcvcn and Fodd/g are polynomials in q and / of nonzero degree in /. Both f and g
have poles at ±/jr/2 and these poles cannot cancel out, because Fevcn and Fodd/g
are polynomials in q and / with rational coefficients, while in/2 is transcendental.)
Thus, we have to apply the property above after dividing the generating function F
by q if it is odd and substituting Q — q2. We obtain that the logarithmic asymptotic
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of even (if F is even) or odd (if F is odd) coefficients of F is given by —m \r\{n/2).
Finally, we are actually interested in the logarithmic asymptotic of the coefficients

multiplied by ml. Taking into account that Inm! ~ m In m we see that the factorial
"beats" the coefficients of F so that the logarithmic asymptotic of the .v-numbers is

equal to m lnm.

References

1.1] V. I. Arnold (ed.), Arnold's Problems, Translated and revised edition of the 2000 Russian

original. With a preface by V. Philippov, A. Yakivchik and M. Peters, Springer-Verlag,
Berlin-Heidelberg-New York and PHAS1S, Moscow, xvi + 639pp. Zbl 1051.00002
MR 2078115

|2] B. Bertrand, and E. Brugallé, and G. Mikhalkin, Tropical open Hurwitz numbers, Rend.

Semin. Mat. Univ. Padova, 125 (2011 157-171. Zbl 1226.14066 MR 2866125

131 A. Cadoret, Counting real Galois covers of the projective line, Pacific J. Math., 219 (2005),
no. 1, 53-81. Zbl 1098.12002 MR 2174220

141 I. P. Goulden and D. M. Jackson, The combinatorial relationship between trees, cacti and

certain connection coefficients for the symmetric group, European J. Combin., 13 (1992),
no. 5, 357-365. Zbl 0804.05023 MR 1181077

151 I. Itenberg, V. Kharlamov, and E. Shustin, Logarithmic equivalence of Welschinger
and Gromov-Witten invariants, Russian Math. Surveys, 59 (2004), no. 6, 1093-1116.
Zbl 1086.14047 MR 2138469

16] I. Itenberg, V. Kharlamov, and E. Shustin, Welschinger invariants of real del Pezzo surfaces

of degree > 2, Internat. J. Math., 26 (2015), no. 8, 1550060, 63pp. Zbl 1351.14035
MR 3372187

171 S. Lando and A. Zvonkin, Graphs on Surfaces and Their Applications. With Appendix by
D. Zagier, Springer-Verlag, 2004. Zbl 1040.05001 MR 2036721

18] H. Markwig and J. Rau, Tropical real Hurwitz numbers, Math. Z., 281 (2015), no. 1-2,
501-522. Zbl 06481996 MR 3384883

19] B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values,
Moscow Math. J., 3 (2003), no. 2, 647-659. Zbl 1039.58035 MR 2025277

[101 J. Solomon, Intersection theory on the moduli space of holomorphic curves with
Lagrangian boundary conditions, preprint, 2006. arXiv:math/0606429

[11] J. Solomon and R. Räsdeaconu, Relative Open Gromov-Witten Invariants, in Real
enumerative questions in complex and tropical geometry, G. Mikhalkin, E. Shustin,
J. Walcher, J.-Y. Welschinger (cds.), Oberwolfach Reports, 8 (2011), no. 2, 1135-1138.
Zbl 1334.00098 MR 2978637

[12] R. P. Stanley, A survey of alternating permutations, in Combinatorics and graphs, 165—

196, Contemp. Math., 531, Amer. Math. Soc., Providence, RI, 2010. Zbl 1231.05288
MR 2757798

[131 V. Strehl, Minimal transitive products of transpositions - the reconstruction of a proof
of A. Hurwitz, Sern. Lothar. Combin., 37 (1996), Art. S37c, 12pp. Zbl 0886.05006
MR 1463926



474 I. Itenberg and D. Zvonkine CMH

[14] J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real

enumerative geometry, Invent. Math., 162 (2005), no. 1, 195-234. Zbl 1082.14052

MR 2198329

115] D. Zvonkine, Multiplicities of the Lyashko-Looijenga map on its strata, C. R. Acad. Sei.

Paris Sér. I Math., 324 (1997), no. 12, 1349-1353. Zbl 0884.58019 MR 1457085

[161 D. Zvonkine and S. K. Lando, On multiplicities of the Lyashko-Looijenga mapping on
strata of the discriminant (Russian), Funktsional. Anal, i Prilozhen., 33 (1999), no. 3,

21-34, 96; English translation in Fund. Anal. Appi, 33 (1999), no. 3, 178-188 (2000).
Zbl 0953.32007 MR 1724267

Received September 26, 2016

I. Itenberg, Institut de Mathématiques de Jussieu - Paris Rive Gauche,
Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 5, France; and

Département de mathématiques et applications, Ecole Normale Supérieure,
45 rue d'Ulm, 75230 Paris Cedex 5, France

E-mail: ilia.itenberg@imj-prg.fr

D. Zvonkine, Bât. Fermât, Université de Versailles,
45 avenue des États-Unis, 78000 Versailles, France

E-mail: dimitri.zvonkine@uvsq.fr


	Hurwitz numbers for real polynomials

