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Lorentzian manifolds with a conformai action of SL(2, R)

Vincent Pecastaing

Abstract. We consider conformai actions of simple Lie groups on compact Lorentzian
manifolds. Mainly motivated by the Lorentzian version of a conjecture of Lichnerowicz, we
establish the alternative: Either the group acts isometrically for some metric in the conformai
class, or the manifold is conformally flat - that is, everywhere locally conformally diffeomorphic
to Minkowski space-time. When the group is non-compact and not locally isomorphic to
SO( 1, «), n $: 2, we derive global conclusions, extending a theorem of f 18] to some simple Lie
groups of real-rank 1. This result is also a first step towards a classification of conformai groups
of compact Lorentzian manifolds, analogous to a classification of their isometry groups due to
Adams, Stuck and, independently, Zeghib [1,2,321.
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1. Introduction

Given a geometric structure on a differentiable manifold M, an interesting problem
consists in relating the algebraic and dynamical properties of its automorphism group
to the geometry of the manifold. The question we are considering in this article is to
infer geometric information from the dynamics of a simple Lie group, which is acting
by preserving the conformai geometry defined by a Lorentzian metric g on M.

We already had investigated this problem in the real-analytic case in [28]. The

analyticity assumption enabled us to develop strong arguments based on the general
behavior of local automorphisms ofanalytic rigid geometric structures, first described
by Gromov [19], and then revisited by Melnick [23] for Cartan geometries, see

also [30], However, these methods were not transposable to smooth structures, the
conclusions of Gromov's theory being weaker for "'00 structures.

More generally, considering real-analytic rigid geometric structures reduces

significantly the difficulty, be it at a local or global scale, and the corresponding
smooth problem can be much more complicated to handle. For instance, a celebrated
theorem of D'Ambra [8] on analytic, compact, simply connected Lorentzian
manifolds, based on properties of local extensions of local Killing fields, is still
open in the case.
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The main contribution of the present article is to introduce what we think to be

a new approach in the study of conformai Lorentzian dynamics, valid in smooth

regularity. We no longer use Gromov's theory, and the corresponding difficulty of
the problem is now treated via the theory of non-uniformly hyperbolic dynamics.

Ferrand-Obata theorem. One of the main motivations for the study of conformai
dynamics of Lie groups in Lorentzian signature comes from the Riemannian setting.
A strong theorem due to Ferrand [10,11 ] and Obata [25] asserts that if a Lie group
acts conformally and non-properly on a Riemannian manifold, then this manifold is

conformai ly diffeomorphic to the round sphere S" or the Euclidean space E" of same
dimension. Thus, the sphere being the conformai compactification of the Euclidean

space, there is essentially one Riemannian manifold admitting a non-proper conformai
action, and of course, this action is the one of a subgroup of the Möbius group on S"

or S" \ {/?}, with p e Sn.

This theorem nicely illustrates the rigidity of conformai dynamics and suggests
that analogous phenomenon could be observed on other kinds of rigid geometric
structures, especially conformai structures in other signatures. Non-properness of
the action is no longer adapted in this context and a pertinent dynamical hypothesis
is essentiality.

Recall that two pseudo-Riemannian metrics g and g' on a manifold A4 are said to
be conformai if there exists a smooth function <p: A4 —> R>0 such that g' (pg. The
conformai class of g is [g] {g', g' conformai to g}, and a focal diffeomorphism
is said to be conformai if its differential preserves [g*]. When dim A4 ^ 3, the

group of conformai diffeomorphisms of (A4, g) is a Lie transformation group, noted

Conf(A4, g).

Definition 1.1. Let H < Conf (A4, g) be a Lie subgroup. We say that H acts

inessentially on A4, or simply H is inessential, if there exists g' conformai to g such

that H acts on A4 by isometries of g'. If not, we say that H acts essentially, or simply
that H is essential.

In fact, a Riemannian conformai action is essential if and only if it is non-

proper |11, Theorem A2], and Ferrand-Obata result concerns essential Riemannian

groups. The question that naturally arises is whether or not there exists a unique
pseudo-Riemannian manifold with an essential conformai group, or at least if one

can classifies such manifolds.

It turned out that the existence of an essential group is far less restrictive for
non-Riemannian manifolds, even when the metric is Lorentzian: In [3], Alekseevsky
built many examples of Lorentzian metrics on R" admitting an essential flow. In [ 12],

Frances provided infinitely many examples of compact Lorentzian manifolds whose

conformai group is essential. See [15,21,22] for other signatures.

However, all the examples of [12] are locally conformally equivalent, and a

problem remains open on the focal geometry of compact Lorentzian manifolds, often
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cited in the literature as Generalized or pseudo-Riemannian Lichnerowicz conjecture,
one of its first appearance is in [9, Section 7.6].

Conjecture 1.2. Ifa compact Lorentzian manifold has an essential conformai group,
then it is conformally flat.

Recall that a pseudo-Riemannian manifold (M, g) is conformally fiat if any point
admits a neighborhood U such that g\u is conformai to a flat metric on U. Let us

point out that the compactness assumption is necessary since most of the metrics

Alekseevsky exhibited in [3, (7.3)] are not conformally flat.

The main result of this article positively answers this conjecture when the manifold
admits an essential action of a simple Lie group. By an averaging argument, it can
be easily observed that any compact group must act inessentially. Thus, we will
deal with actions of non-compact simple Lie groups, and we will especially consider
the "smallest" ones, namely Lie groups locally isomorphic to SL(2, R). Even with
the simpleness assumption on the acting group, the situation is still very rich. For
instance, all the examples of [12] admit an essential action of a Lie group locally
isomorphic to SL(2, R).

Following the dichotomy inessential/essential, let us first recall the case of
isometric actions of SL(2, R).

Inessential actions: simple Lie groups of Lorentzian isometries. Contrarily to
Riemannian manifolds, there exists compact Lorentzian manifolds whose isometry

group is non-compact. Furthermore, it is possible that the isometry group contains a

non-compact simple subgroup. Indeed, consider H a Lie group locally isomorphic
to SL(2, R) and note gx its Killing metric. This metric is Lorentzian and invariant
under left and right translations of H on itself. Thus, it induces a Lorentzian metric g
on any quotient M := H/Y where T is a uniform lattice of H. Since the left action

preserves gx and commutes with the right action, it induces an isometric action of H
on (M, g).

As Zimmer first observed in [34], such a situation is singular in the sense that

up to finite covers, PSL(2, R) is the only non-compact simple Lie group that can
act faithfully and isometrically on a compact Lorentzian manifold. Deeper in the

description, Gromov considered in [19] the geometry of a compact Lorentzian
manifold (M, g) admitting an isometric action of a Lie group H locally isomorphic
to SL(2,R). He proved that some isometric cover of M is isometric to a warped
product (H wx N), where H is endowed with its Killing metric, N is a Riemannian
manifold and co: N -» R>o is a smooth function.

Finally, the situation for isometric actions of non-compact simple Lie group is

very rigid and well understood. We now consider essential actions.

Essential conformai actions of simple Lie groups. This subject had been

previously investigated in any signature, when the group that acts has high real-rank.
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In [35], Zimmer proved that if a semi-simple Lie group without compact factor
acts on a compact pseudo-Riemannian manifold of signature (p,q), with p ^ q,
then its real-rank is at most p + 1. In [5], Bader and Nevo proved that if the group
is simple and has maximal rank, then it is locally isomorphic to SO(p + 1, k) with

p + l^k^q + l. At last, in [18], Frances and Zeghib proved that in the same

situation, the manifold must be some quotient of the universal cover of the model

space EinM of conformai geometry of signature (p. q), introduced in Section 4.1.1.
See also [4] for analogous results in other parabolic geometries.

Assuming the real-rank maximal restricts a lot the possibilities for the geometry,
and a larger variety of examples appears when this assumption is removed, even in
Lorentzian signature. As we recalled above, there exists infinitely many compact
Lorentzian manifolds with a conformai essential action of a Lie group locally
isomorphic to SL(2, R), and it seems not plausible to classify these manifolds up to

global conformai equivalence (| 12]). However, the dynamics of such a group has

implications on the local geometry, and it is the main result of this article.

Theorem 1.3. Let (Mn,g), n ^ 3, be a smooth compact connected Lorentzian
manifold, and H be a connected Lie group locally isomorphic to SL(2, R). IfH acts

conformally and essentially on M, g), then M, g) is conformally flat.

Since sl(2,R) is the most elementary non-compact simple real Lie algebra, it
will not be difficult to observe that this theorem positively answers Generalized
Lichnerowicz conjecture as soon as the conformai group of the manifold contains a

non-compact simple immersed Lie subgroup.

Corollary 1.4. Let (Mn,g) be a smooth compact connected Lorentzian manifold,
with n > ?>, and let G be the identity component of its conformai group. Assume

that g contains a non-compact simple Lie subalgebra. If G is essential, then (M, g)
is conformally flat.

In particular, if a compact connected Lorentzian manifold admits a conformai
essential action of a connected semi-simple Lie group, then it is conformally flat.

The identity component of the conformai group. Zimmer's result about simple Lie

groups ofLorentzian isometries led to the full classification, up to focal isomorphism,
of the identity component of the isometry group of a compact Lorentzian manifold

by Adams, Stuck [1,2], and, independently, Zeghib [32], As explained below,
Theorem 1.3 is also a first step in the direction of an analogous classification for the

conformai group of a compact Lorentzian manifold.

The Möbius sphere has an analogous object in non-Riemannian conformai

geometry: the Einstein Universe Einp'9 of signature (p,q) (see Section 4.1.1). It is a

compact projective quadric, naturally endowed with a conformai class ofconformally
flat metrics of signature (p, q). Its conformai group is isomorphic to PO(p +1, <7 +1)
and acts transitively on it.
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By a generalization of Liouville's theorem, if a Lie group H acts on a confbrmally
flat pseudo-Riemannian manifold of signature (p, q), then its Lie algebra 1] can be

identified with a Lie algebra of conformai vector fields of YL\np'q. In particular, H
can be locally embedded into PO(p + 1, q + 1).

Thus, by Corollary 1.4, if (M, g) is a compact Lorentzian manifold of dimension

at least 3 and if G is the identity component of its conformai group, then we have

three possibilities for G:

(1) It is inessential, and necessarily belongs to the list of Adams-Stuck-Zeghib
classification.

(2) It is essential and contains a non-compact simple Lie subgroup, and necessarily it
is locally isomorphic to a Lie subgroup of SO(2, n) since it acts on a conformally
flat Lorentzian manifold.

(3) It is essential and does not contain non-compact simple Lie subgroups, and by
the Levi decomposition, its Lie algebra has the form g ~ 6 ix rad(g) where f is a

compact semi-simple Lie algebra and rad(g) is the solvable radical of g.

In upcoming works, we will establish that if rad(g) has a non-Abelian nilradical,
then G is either inessential or locally isomorphic to a subgroup of SO(2, n) (see [27,
Ch. 7] for partial results).

This suggests that essential conformai groups can always be locally embedded

into SO(2, n). The next important question is to determine which Lie subgroup of
SO(2, n) can exactly be realized as the conformai group of a compact Lorentzian
manifold (compare with [2] and [32, Theorem 1.1]).

Completeness of the associated (G, X)-structure. A conformally flat pseudo-
Riemannian metric of signature (p, q) naturally defines an atlas of (G, X)-manifold,
where X Einp? and G SO(/? + 1, q + 1). Thus, if a non-compact simple Lie

group acts conformally essentially on a compact Lorentzian manifold, then it acts by
automorphisms of the associated (G, X)-manifold. When the group is too small, the

(G, X)-structure may not be complete.
Indeed, if k ^ 2, consider R1'* the (k + l)-dimensional Minkowski space and

T (2 id) the group generated by a non-trivial homothety. Naturally, T acts properly
discontinuously and conformally on R1'* \ {0} and is centralized by the linear action
of SO(l, k). Therefore, SO(l, k) acts conformally on the quotient (R!'fc \ {0})/ T,
usually called a Hopfmanifold. It is a compact conformally flat Lorentzian manifold,
whose associated (G, X)-structure is non-complete. Nevertheless, the structure must
be complete when other non-compact simple Lie groups act.

Let (M, g) be an «-dimensional compact Lorentzian manifold and G

Conf(M, g)(j. If G is essential, then its semi-simple Levi factor is either compact, or
locally isomorphic to a Lie subgroup of SO(2, n). In particular, we recover the main
result of [29], where we classified semi-simple Lie groups without compact factor
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that can act conformally on a compact Lorentzian manifold. Up to local isomorphism,
the possible groups are

(1) SO(l,jk),2 ^ k ^ n;

(2) SU(l,ik),2 ^ k $ n/2;
(3) SO(2,k),2^k
(4) SO(l,fc) x SO(\,k'), k, k' ^ 2, k + k' ^ max(«,4).

Theorem 3 of 118] asserts that when a Lie group locally isomorphic to SO(2,k) is

contained in G, then (M, g) is, up to finite cover, a quotient of the universal cover
of Ein1'"-1 by an infinite cyclic subgroup of SO(2, n). The same conclusion can be

derived from Theorem 1.5 of [4] when we consider actions of SO( 1, k) x SO( 1, k').
An easy consequence of the main result of the present article is that this observation
is still valid for SU(1, k).

Corollary 1.5. Let H be a Lie group locally isomorphic to SU( I, /c), k ^ 2.

Assume that H acts conformally on a smooth compact connected Lorentzian
manifold (Mn,g), with n ^ 3. Then, (M, g) is conformally dijfeomorphic to a

quotient T \ Ein1'"-1, where T < SO(2, n) is a discrete group acting properly
discontinuously on Ein1'"-1.

The proof is very short: By Corollary 1.4, (M, g) is conformally flat and we
can imitate the end of the proof of Theorem 3 of [18]. According to Section 2.4 of
this article, it is enough to establish that if t:su(l,k) so(2,n) is a Lie algebra
embedding, then the centralizer in SO(2, n) of the image of i is a compact subgroup
of SO(2, «). This can be observed by elementary considerations, that we postpone
in an appendix at the end of the article.

Organization of the article. Corollary 1.4 is established in Section 2. Precisely,

we will prove that as soon as G contains an immersed Lie subgroup H locally
isomorphic to SL(2, R), G is essential if and only if H is essential. Once it is proved,

our problematic is reduced to conformai essential actions of such //'s.
In Section 3, we establish a dynamical property of essential conformai actions.

By a result of [28], H is essential if and only if it does not act everywhere locally
freely. We are now going further and describe minimal closed invariant subsets of the

action, inside the subset where the action is not locally free, noted F^2. The problem
is essentially to prove that if a minimal subset contains exclusively 2-dimensional
orbits, then it is in fact a single closed orbit of dimension 2, which we call compact
conical. Quickly, this question will be reduced to prove that the flow generated by an

hyperbolic one parameter subgroup of H has a periodic orbit. It will be treated by

using Osedelec decomposition and general arguments in non-uniformly hyperbolic
dynamics.

Conformai flatness of M is then established in two times. Firstly, we will prove in
Section 4 that the minimal subsets of F<z2 previously described admit a conformally
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flat neighborhood. It is inspired by previous methods (notably [13,17,18] and [28]).
Immediately, we will obtain that F<2 is contained in a conformally flat open set.

Secondly, we will prove in Section 5 that any //-orbit contains a point of F^2 in its
closure. This dynamical observation will directly extend conformai flatness to the

whole manifold.

Conventions. In this article, M everywhere denotes a connected smooth manifold
whose dimension is greater than or equal to 3.

WenoteX(M) the Lie algebra of vectorfields defined on M. If M is endowed with
a pseudo-Riemannian metric g, we note Kill(M, [g]) the Lie algebra of conformai
Killing vectorfields of M, i.e. infinitesimal generators ofconformai diffeomorphisms.
The hypothesis dim M >: 3 implies that Kill(A/, [g]) is always finite dimensional.

Given a differentiable action of a Lie group G on M, we will implicitly identify
its Lie algebra 3 with a Lie subalgebra of 3L(M) via X ^ | e~tX .x}xem

We call sl(2)-triple of a Lie algebra any non-zero triple (2f, T, Z) in this Lie
algebra satisfying the relations [X, Y] Y, [Y, Z] —Z and [T, Z] X.

If / is a conformai transformation of (M, g), the function cp: M —> R>0 such

that f*g ipg is called the conformai distortion of / with respect to g. If </>' is a

conformai flow, its conformai distortion is a cocycle À:MxR^- R>0 over <j>', such

that [((/>')*g]x A(jc, t)gx for all x e M and / e R.

If dim M ^ 4, (A/, g) is conformally flat if and only if its Weyl tensor W vanishes

identically. If dim M 3, W always vanishes, regardless (A/, g) is conformally flat
or not. In this situation, conformai flatness is detected by the Cotton tensor of (M, g).
In this article, by "Weyl-Cotton curvaturewe mean the Weyl tensor or the Cotton

tensor, depending on whether dim M $: 4 or not. This tensor will always be noted W.

Acknowledgements. I would like to thank Sylvain Crovisier for suggesting me the

use of Pesin Theory in the study of a conformai flow. I am also grateful to
Thierry Barbot, Yves Benoist, Charles Frances and Abdelghani Zeghib for useful
conversations around this project.

2. Inessential conformai groups

Isometric actions of non-compact simple Lie groups on compact Lorentzian
manifolds are very well described since the works of Zimmer and Gromov. As
we recalled in the introduction, if H is a non-compact simple Lie group, acting by
isometries on (M, g), Lorentzian compact, then H is a finite cover of PSL(2,R).
Moreover, H acts locally freely everywhere and the metric of M induces on every
orbit H.x a metric proportional to the image of the Killing metric of H by the
orbital map. At last, the distribution orthogonal to the orbits is integrable, with
geodesic leaves, proving that some isometric cover of (M, g) is isometric to a warped
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product H a, x N, with N a Riemannian manifold, m: N -> R>o and H endowed

with its Killing metric.

As it can be easily observed, there are more examples of conformai actions of
non-compact simple Lie groups on compact Lorentzian manifolds, e.g. simple Lie
subgroups of PO(2, n) acting on Ein1'"-1. If they are not isomorphic to a finite cover
of PSL(2, R), then they necessarily act essentially. In the remaining cases, we have:

Proposition 2.1 ([28]). Let H be a connected Lie group locally isomorphic to

SL(2, R) and (M, g) he a compact Lorentzian manifold on which H acts conformally.
Then, H is inessential ifand only if H acts everywhere locally freely.

The aim of this first section is to improve this statement. Precisely, we will see

that, when they exist, conformai actions of Lie groups locally isomorphic to SL(2, R)
characterize the essentiality of the full identity component of the conformai group.
Coupled with the conclusion of Theorem 1.3, this observation will directly give
Corollary 1.4.

Recall the following fact.

Lemma 2.2 ([25, Theorem 2.4]). Let (M, g) be a pseudo-Riemannian manifold and
X G Kill(M, [g]) be a conformai vector field. If X is nowhere light-like, then

V/ Conf(M, g) such that f*X X, we have f G Isom(M, g/\g{X, 301).

The arguments of the proof of Proposition 2.1 of [28] give the following lemma,
that will be reused later in this article.

Lemma 2.3. Let X and Y be two complete conformai vector fields of a pseudo-
Riemannian manifold (M, g), satisfying [X, Y] X.Y for A G R and g(X, X) > 0.

Let go '= g/g(A\ X). If the functions go( Y, Y) and go(X, Y) are bounded along
the orbits of<p'x, then X and Y are Killing vector fields of go. Ifmoreover A f 0,

then Y is everywhere light-like and orthogonal to X.

Proof. Replacing X by A/A if necessary, we can assume that A G {0, 1}. We still
note g the renormalized metric g/g(X, X) (to clarify notations). In any case, since X
is preserved by the flow it generates, Lemma 2.2 ensures that £xg — 0.

If A 0, applying Lemma 2.2, we immediately get that Y also preserves g.
If A 1, we have ((px)*Yx e~'Y(x), and because {fix} C Isom(M, g), we

obtain

g<p'x(x)(Y, Y) e2t gx (Y, Y) and g^x)(X, Y) e'gx(X, T).

Since we assumed the functions {x i-»- gx(Y, T)} and {jc i-» gx(X, T)} bounded

along any fi'x-orbit, we must have

g(T, Y) g(X, Y) 0

everywhere. Now, the relation [Y, X] — —Y gives

(<P'Y)*Xx ~ X<t>>Y(x) + 1 Vy (x)-
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Let A(x,t) be the conformai distortion of (f)'Y with respect to g. Using that Y is

light-like and orthogonal to X, we get

A (x,t)gx(X,X) g^yM(X,X).

By construction, the map {x i-> gx(X, X)} is constant equal to 1. This gives
X(x, t) 1, i.e. 4>'y is an isometry of g.

Proof of Corollary 1.4. Let (M, g) be a compact Lorentzian manifold (recall that

we always assume dim M ^ 3) and let G be the identity component of its conformai

group. Assume that G contains an immersed Lie subgroup H ^ G, locally
isomorphic to SL(2,R). A priori, H may not be properly embedded, but we do

not need to assume it.

We claim that G is inessential if and only if H is inessential. The non-trivial part
of this statement is that if H preserves a metric g0 conformai to g, then so does G.
Let (V, Y, Z) be an sl(2)-triple in 1). Since H acts by isometries on (M, #o)> it acts

locally freely everywhere and, up to a constant positive factor, the ambient metric
induces the Killing metric on the orbits. In particular, the Killing vector field X
satisfies g(X, X) > 0 everywhere. The adjoint representation ad: f) —> gt(g) is a

representation of s((2,R) on a finite dimensional space. Since R.Af is a Cartan

subspace of 1), we have that ad(Af) acts diagonally on g. Thus, if (Zi,.... X^) is

a basis of eigenvectors, by compactness of M we can apply Lemma 2.3 to every
couples (X, Xi) and conclude that if g\ denotes g/g(X, X), then %-Xjgi 0 f°r
all i. By connectedness of G, we obtain G Isom(M, gi)o-

Corollary 1.4 is now immediate: if G is essential, then H acts essentially and

by Theorem 1.3, (M, g) must be conformally flat. We are now reduced to consider
conformai essential actions of Lie groups locally isomorphic to SL(2, R) on compact
Lorentzian manifolds.

3. Minimal compact subsets of an essential action

In the previous section, we recalled that essential conformai actions are characterized

by the fact that they are not everywhere locally free. Naturally, the dynamics in, and

near, the closed subset where the action is not locally free plays a central role in the

proof of Theorem 1.3. This section focuses on its minimal compact invariant subsets.

Precisely, we are now going to establish the first main part of the following
proposition, that will be completely proved at the end of the article.

Proposition 3.1. Let H be a connected Lie group locally isomorphic to SL(2, R).
Assume that H acts conformally and essentially on a compact Lorentzian manifold
(M,g). Let K be a minimal H-invariant subset. Then, K is either

(1) A global fixed point of the action;
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(2) Exclusively formed of 1 dimensional orbits;

(3) A compact, positive-degenerate, 2-dimensional orbit, diffeomorphic to a 2-torus.
This orbit is an homogeneous space of the form

PSLfc(2, R)/(Z k U),

where PSLyt (2, R) is the k -sheeted cover o/PSL(2, R), U denotes a unipotent one

parameter subgroup and thefactor Z is generated by an element f normalizing U
and whose projection in PSL(2, R) is hyperbolic.

As for a general "1 -action of a Lie group H, the map x M h> dim H.x is lower
semi-continuous. So, for any x G M and y H.x, we have dim H.y ^ dim H.x.
This elementary observation implies that all orbits in a minimal compact H-invariant
subset have the same dimension. If this common dimension is 0, by connectedness

of H, K is reduced to a global fixed point. Thus, Proposition 3.1 essentially says:

1 There does not exist a compact invariant subset where all orbits have dimension 3;

(2) When all orbits have dimension 2, K is reduced to the compact orbit of the third
point of the proposition.

We leave in suspense the question of compact invariant subset in the neighborhood
of which the action is locally free, their non-existence will be established in Section 5.

This section is devoted to the proof of the second point. Before starting the proof, let
us describe this 2-dimensional orbit more geometrically.

3.1. Compact conical orbits of PSL(2, R). Consider the linear action of SOo(l, 2)

~ PSL(2, R) on the 3-dimensional Minkowski space R1'2. It acts transitively on the

future nullcone

,H+ {(Xi,X2,xf) I x2 xf + X2, X\ > 0}.

Consider now the Hopf manifold (M,g) := (R1'2 \ {0})/(Aid}, A > 1. Since the

homothety Aid acts conformally on R1'2 and is centralized by SO(l,2), the latter
acts conformally and faithfully on the quotient manifold. In particular, the projection
of the nullcone JV+/(A id) is an orbit of PSL(2, R), conformally diffeomorphic to
S1 x S1 with the non-negative degenerate metric dx2 (if x\ is the coordinate on the

first factor S1).

If v e -M+, let [u] denote its projection in the Hopf manifold. The stabilizer
of [u] is the group of elements of SOo(l,2) preserving {Xnv, n G Z}. So, it is

included in the stabilizer of the line R.u, which is isomorphic to the affine group
A+U < SO0(l, 2), where in a suitable basis of R1'2 starting by v, we note

-4+ {C\_,).»£rJ -d
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So, the stabilizer of [u] in SOo(l, 2) is the semi-direct product (/) tx U where

Consequently, if U < PSL(2, R) is a unipotent one parameter subgroup and if
/ G PSL(2, R) is hyperbolic an normalizes U, we say that PSL(2, R)/((/) tx U) is

a compact conical homogeneous space.
More generally, let H be a connected Lie group locally isomorphic to SL(2, R),

let Z denote its center and p. H —>• H/Z — PSL(2,R) the natural covering. We

say that a homogeneous space H/H' is compact conical if Z D H' has finite index
k 1 in Z and p{H)/p(H') is a PSL(2, R)-compact conical homogeneous space.
Note that H/H' is in fact a PSL^(2, R)-homogeneous space.

In any event, a compact conical homogeneous space is diffeomorphic to a 2-torus,

homogeneous under some PSLfc(2,R), with k ^ 1, and it is endowed with the

PSLyt(2, R)-invariant conformai class of non-negative degenerate metrics it inherits
from ,V+.

3.2. Proof of Proposition 3.1 for 2-dimensional orbits. Let (M, g) be a compact
Lorentzian manifold and H a Lie group locally isomorphic to SL(2,R) acting
conformally on (M,g). Let K C M be a minimal compact //-invariant subset

such that for all x G K, dim H.x 2. The aim of this section is to prove that K is a

compact conical orbit.

3.2.1. Tangential information. The first step is to observe that the restriction of
the ambient metric to any orbit in K is degenerate. To do so, we reuse the following
proposition whose proof can be found in [28]. It is based on the main result of [4],
an adaptation of Zimmer's embedding theorem to Cartan geometries.

If jc G M, we note f)x {X e f) | X(x) 0} the Lie algebra of the stabilizer
of x. Differentiating the orbital map H -> H.x, we obtain a natural identification

Tx(H.x) ~ so that f)/l)x inherits a quadratic form qx from the ambient
metric gx.

Let S < H be either an hyperbolic or parabolic one-parameter subgroup, or a

connected Lie subgroup whose Lie algebra is isomorphic to the affine algebra aff(R).
In fact, S is chosen this way because firstly, such groups are amenable, so that for
every compact S-invariant subset K C M, there automatically exists an S-invariant
finite measure whose support is contained in K, and secondly, the Zariski closure of
Ad|,(5) in GL(f)) does not contain any proper algebraic cocompact subgroup. This
ensures that we are in the field of application of Theorem 4.1 of [4],

Proposition 3.2 ([28, Prop. 2.2]). Let S < H be a subgroup as above. Every closed
S-invariant subset F contains a point x such that Ad(S)f)x c ()x and the induced
action AdfiS') on f)/f)x is conformai with respect to qx.
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Let us choose S a connected Lie subgroup of H locally isomorphic to Aff(R).
Applying Proposition 3.2 with this S and in the minimal compact invariant subset K
we have fixed at the beginning of Section 3.2, we obtain a point xo e K satisfying
the conclusions of the previous proposition. Until the end of Section 3, x0 will
always denote this point and we will prove that H.x0 is compact conical, implying
K H.xo by minimality.

Let (X, T, Z) be an sl(2)-triple of 1) such that s Span(Z, Y). Since f)X(l is an

ad(s)-invariant line of \), it must be R.T. Thus, the adjoint action of etY on f)/f)x0 is

given in the basis (Z, X) by

C V)

This action being conformai with respect to qXo, we then have À G R such that

qXo(Z + tX) e^'qXo(Z). Since qXi) is the restriction of a Lorentzian metric,
it does not vanish identically, implying that qM){Z) ^ 0, and then A 0 since

qX0(Z +1X) is polynomial in t. So, X is isotropic and orthogonal to Z with respect
to qX(). This proves that H.x0 is degenerate and that XX(t gives the direction of the

kernel at xo, implying that gXo(Z, Z) > 0.

3.2.2. Stabilizer of xo. Let Z be the center of H and let HXo denote the stabilizer
ofx0. Note U < H and A+ < H the one-parameter subgroups generated by Y and X
respectively, so that (HXo)0 U. In fact, modulo Z, there are only two subgroups
of H admitting U as neutral component. To see this, consider the morphism

Ad: H Ad(//) ~ H/Z ~ SO0(l, 2),

the last identification coming from the Killing form of 1). It is injective in restriction
to A + U. The image Ad(HXo) preserves the line R.T C f), which is isotropic with

respect to the Killing form of fi. Thus, HX() is sent into the stabilizer of R.T, which is

/ a au —au~ Il \ I

Ad(3 (/) ~ 11 o l J, a > 0, u e R c SO0(L2).

Because dim HX() 1, Ad(HXo)/ Ad(U) is either trivial or isomorphic to Z, since

it is closed in Ad(A+U)/ Ad(U).
Finally, HXo/Z is either isomorphic to U or to a semi-direct product Z x U,

where Z is a discrete subgroup of A+. The main issue is to exclude the first case,
since H/HXq will then necessarily be compact conical when H is a finite cover of
PSL(2, R). The case of the universal cover will be treated in Section 3.2.4. Otherwise
stated, we want to prove the existence of t0 > 0 such that (p'^(x0) x0, i.e. that the

orbit of x0 under the flow (j)'x is periodic. To do so, we are going to prove that this
flow is non-uniformly hyperbolic over a compact subset containing xo, with non-zero
Lyapunov exponents having all the same sign — except of course the direction of
the flow. General arguments based on Pesin Theory will then give the existence of a

closed orbit of ^\Yx.
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3.2.3. A lemma on non-uniformly hyperbolic conformai flows. Let x0 denote the

point we have exhibited previously. We define the compact (px-invariant subset

:= {<px(x0), t e R}.

Since we have the general relation (<j)'x )* Yx e~' Y^t and because YXo 0, the

vector field Y vanishes on K0. Since K0 C K, it implies that the vector fields X
and Z are linearly independent in a neighborhood of K(). Moreover, the analogous
relation ((ptx)*Zx e*Z^t ^ and the fact that gXo(X, X) gXQ(X,Z) Oimplies
that X is isotropic and orthogonal to Z everywhere in K0 (since cp'x is conformai).
Because X and Z are non-proportional, we get that gx(Z, Z) > 0 for all x e K0
and by continuity, we have g(Z, Z) > 0 in a neighborhood of K0. Let us note

Q := {x 6 M I gx(Z, Z) > 0 and Xx ± 0}.

In the open subset £2, we note go := g/g(Z,Z). Consider now the Lorentzian
manifold (£2, g0): it is preserved by (j)'x — even though it is not //-invariant — and

Am C £2 is a compact (px-invariant subset. Moreover, X is an essential homothetic
conformai vector field of (£2, g0). Indeed, if A(x, t) > 0 is such that [(4>x)*go\x
A(x,f)[^o]x. applying this relation to Zx, we get e2t A(x,t) for all x 6 and

t e R: the conformai distortion of 4>'x is non-trivial and uniform on the manifold.

Lemma 3.3. Let M, g) be a Lorentzian manifold and X be a complete, non-singular
vectorfield of(M, g) such that (4>x)*g t2t g for all t. Then, any (ifany) compact

(px-invariant subset of M is a finite union of light-like periodic orbits of the flow.

Proof Let K C M be a compact c/)^-invariant subset, and let fi be an ergodic

^-invariant measure such that Supp(/x) c K. We have an Osedelec decomposition
/x-almost everywhere TXM £|(x) © ••• © Er(x), with Lyapunov exponents

Ai < " " < Xr- We claim that xi 0, with multiplicity 1.

By continuity of the Lorentzian metric g, for any arbitrary Riemannian norm ||.||x,
there exists C > 0 such that for all x K and v e TXM, |^(n,t;)| ^ C||u||^.
Note i the index such that /i 0 and let x be in the set of full measure where the
Osedelec decomposition holds. If v E\ (x) © • • • © /?,- (x) is non-zero, we have

lim j log \\((p'x)*v\\(i>t (x) ^ 0.
ï->-+oo t x

But on the other hand,

^(x)((^)*«.(^)'»w) e2tgx(v,v).

Since we can compare g and ||.|| over K, we obtain

21 + log \gx(v, n)| ^ log C + 2log ||(^)*n||^w.
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Therefore, we must have gx(v, v) 0, for any v G E\(x) ©•©£',• (x). Since g has

Lorentzian signature, its totally isotropic subspaces are at most 1-dimensional. Thus,
we get that E\ (x) © • • • ® £)• (x) is /x-almost everywhere reduced to the direction of
the flow, and that this direction is isotropic.

In what follows, we forget about the conformai Lorentzian aspects of our problem
and only consider the differentiable dynamics of (p' := <px' when t -» +oo. We

note d a distance induced by a Riemannian norm on M. This flow is non-uniformly
hyperbolic since the Lyapunov exponent 0 has multiplicity 1, all other exponents
being negative. So, we are in the setting of Pesin Theory. For any A g]0, %2[, it gives
us a <//-invariant set of full measure A and for all x G A, a local stable manifold
H&(x) of codimension 1 since there are no expanding directions, [6, Theorem 7.7.1 ].

The fundamental property of local stable manifolds that we will use is that there exists

y(x) > 0 such that for all y,z e H^c(x) and t ^ 0,

d((p'{y),(p'{z)) ^ y(x)d(y,z)e~Xt. (3.1)

Shrinking if necessary, we can assume that (3.1) holds for y and z in the

closure of W//C(x) and that W//K(x) is transverse to the flow, so that we have s(x) > 0

such that

(t,y) e] -e(x),e(x)[xH^c(x) i-+(p'(y)

is a diffeomorphism onto its image Bx called a flow box at x.
By the Poincaré recurrence theorem, A fl K contains recurrent points for (j)'x.

Let x be one of them. Let 8 > 0 such that B(x, 8) C Bx^ - where B(x, 8) is the

ball of radius 8 with respect to d. Since x is recurrent, we have T > 0, as big as we

want, such that (pT(x) G B(x, 8/2). By (3.1), we can also assume that T is such that

for all y G lTj^c(x), we have

d{<pT(x),(pT(j)) < 8/2.

Thus, (pT maps IT^x) into the flow box. Let Jtx: Bexx^ -> ITj;^c(x) be the natural
submersion obtained by flowing with times not greater than s(x). Finally, we have a

continuous map

/ := jix o <pT: WJJx) -> W^Jx).

Since Jtx is obtained by flowing in a small region, it is a Lipschitz map. So, replacing

T by a greater value if necessary and using (3.1), we get that / is a contraction

map. The Picard fixed-point theorem applies and gives a fixed point x' G ITj^x).
This means that (pT+t(x') x' for some t g] — e(x),e(x)[: we have found a periodic
orbit of the flow. We claim that, moreover, x G Ox' := {(p1 (xr), t G R}. Indeed, we
have d(cp'(x), <p?(x')) -> 0 and x is a recurrent point. It implies that d(x, Ox') 0,

and then x G Ox> since Ox' is compact.
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This proves in particular that any minimal -invariant subset of K is a periodic
orbit. It is not difficult to see that in fact, any point of K has a periodic orbit.
Indeed, if x G K consider the a-limit set a(x) nï6R{<p,s(x), s ^ t}. What
we have seen above ensures that some point x~ G a(x) has a periodic orbit and

a stable codimension 1 manifold W^K(x~), satisfying (3.1). Thus, x~ admits a

neighborhood V such that there exists C 5= 0 such that for any y G V, there

is t(y) g R such that for all t ^ 0

d(<p'(y),cpt+tM(;O) < Ce~Xt.

Let Ox- denote the orbit of x~. Let tn —> +oo be a sequence such that yn
cp~tn(x) —> x~. If n is large enough, yn G V. So,

d(x, 0X~) 5= d(<pt»(yn),pt''+t(y'>)(x-)) 5= Ce~Xt".

This proves d(x, 0X~) 0, i.e. x belongs to the orbit of x~.
Finally, the same argument gives that if x e K, then x admits a neighborhood V

such that V n K F n {<p'(x), t e R}. By compactness, K contains a finite number

of periodic orbits.

3.2.4. Conclusion. If we apply this result to (Œ, go) with the homothetic action
of (])'x, we obtain that K0 is in fact reduced to a periodic orbit of x0. Thus, we have

to > 0 such that (t>x(xo) xo, i.e. HXq n A+ / {id}. So, HXo/Z ~ Z k U. In

particular, if the center Z is finite, the orbit is compact conical and we are done as

soon as H / SL(2, R).

The case of SL(2,R). Assume now that H is isomorphic to SL(2,R). We still
have HXo/Z (/) ix U where / G PSL(2,R) is hyperbolic and normalizes the

unipotent one-parameter subgroup U. Let £ G Z be a generator. Let ntt -> oo be

an increasing sequence such that 'Ç"k (x0) -> x. Since £ centralizes X, Y and Z,
and is conformai, we recover at x the same properties as at xo: c/)^(x) x, Yx 0

and Xx is isotropic and orthogonal to Zx. The same arguments based on local stable

manifolds at (or near) x ensures that there is a neighborhood V of x such that, if Ox
denotes the (closed) -orbit of x, then for any y G V, d((j)'x(y), (9X) —> 0 when
t —> —oo. But since £ centralizes X, for any k, £"* (xo) is a periodic point of {p'x. So,

if k is such that £"* (xo) G V, then the distance between the orbit of £"* (x0) and the
orbit of x is zero, i.e. £"* (x<>) belongs to the </>^-orbit of x for k large enough. So, for
large/:, we have tyt such that £"* (x0) (px (x). If p nk+\—rik andt —

we obtain £^ ocj)tx{xo) i-e- Çp-etX G HXo. If we had HX() nZ {id}, then we
would have 'Çp G A + U where A+ and U are the one-parameter subgroups generated
by X and Y. This is not possible since no element in A+U centralizes all SL(2, R).
So, some power £m fixes xo, proving that the orbit of xo is also a compact conical
orbit.
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4. Conformai flatness near orbits with small dimension

A conformai action of H ~ioc SL(2, R) on a compact Lorentzian manifold (M, g)
is essential if and only if there exists an orbit of dimension at most 2. Let us note

{x e M I dim H.x ^ 2}.

It is a non-empty //-invariant compact subset of M. Considering a minimal
//-invariant subset of F^2, what we have done so far proves that F<:2 contains
either a fixed point, or a 1-dimensional orbit, or a compact conical orbit. We are now
going to prove that such orbits always admit a conformally flat neighborhood.

Proposition 4.1. Let (M. g) be a compact Lorentzian manifold with a conformai
action of a Lie group H locally isomorphic to SL(2, R). Let H.x C M be an
orbit which is either a fixed point, 1 -dimensional or compact conical. Then, H.x is

contained in a conformally flat open set U C M.

This proves that there exists a conformally flat open subset in M. In Section 5,

we will extend this to the whole manifold. Except in the first case, the key point is

that each time, the isotropy of the orbit contains either an hyperbolic flow, or just
an hyperbolic element, whose dynamics imposes that a neighborhood of the orbit
is conformally flat. Once the action is described, the vanishing of the Weyl-Cotton
curvature easily follows from previous methods ([17,28]). We will determine the

dynamics of this hyperbolic flow or element by using the Cartan geometry associated

to the conformai structure of the manifold.

Let us mention that in the case of a 1-dimensional orbit and of a compact conical

orbit, the techniques involved are focal: we make no use of the global action of H.
In particular, the conclusions are valid in non-compact Lorentzian manifolds.

4.1. Preliminaries on Cartan geometries. Let G be a Lie group, P < G a closed

subgroup and n dim G/P.
Definition 4.2. Let M be a differentiable manifold of dimension n. A Cartan

geometry on M, with model space G/P, is the data of a /^-principal fiber bundle

n: M —> M, together with a 1-form o> e Œ1 (M, g), such that:

(1) Vx e M, co%: TM -> g is a linear isomorphism ;

(2) Wp P, (Rp)*a> Ad(p~l)co ;

(3) VA p, a>(A*) A, where A* denotes the fundamental vector field on M
associated to the right action of e

The bundle n: M —> M is called the Cartan bundle and co is called the

Cartan connection. A morphism between two Cartan geometries (M\,
and (M2, M2,co2) is a focal diffeomorphism f: Mi -> M2 such that there exists a

bundle morphism /: M\ M2 covering /, and such that f*co2 a>\. If the model
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space G/ P is effective, a morphism f uniquely determines the bundle morphism /
covering it ([7, Prop. 1.5.3]). In such cases, we say that / is the lift of /.

At the infinitesimal level, a vector field X e X(M) is said to be a Killing vector
field of the Cartan geometry if its local flow is formed with local automorphisms.
This is equivalent to the existence of X e X(M) such that n*X X, Vp e P,
(RP)*X X and 0. When G/P is effective, we have a well-defined

correspondence X i->- X, and X is called the lift of X.

Holonomy ofa transformation admitting a fixed point. Let / be an automorphism
of a Cartan geometry and x e M. If M is connected, then /, and a fortiori /, is

completely determined by the evaluation /(x) at x. If we assume that /(x) x,
then / preserves the fiber jt_1(x) — x.P. In particular, there exists a unique p e P
such that /(x) x.p. Following [14], we say that p is the holonomy of f at x.
This element p determines / and the principle is that the description of the action
of / near x can be reduced to an algebraic analysis of its holonomy.

If A is a Killing vector field, then X(x) 0 if and only if X is tangent to the

fiber 7r_1 (x). In this situation, Xh '= co^(Xfo e p is called the holonomy of X at x.
Equivalently, it can be defined by the fact that etXh is the holonomy at x of (f>'x, for
small t.

4.1.1. The equivalence principle for conformai structures.

Einstein universe. Let (p,q) be two non-negative integers such that« := p+q ^ 3.

The Einstein Universe of signature (p, q), noted Ein/M/, is defined as the projectivized
nullcone

jfP+ij+i \ {0} {(Xl Xn+2) e R"+2 \ {0} I

-A 4+i +A+2 + -- + A+2 °}-

It is a smooth quadric hypersurface ofRP "+1, that naturally inherits a conformai class

[gp,q\ of signature (p, q) from the ambiant quadratic form of R/;+l>'/+1. It admits
a double cover x S9 —>• Ein'7'9. By construction, there is a natural transitive
conformai action of PO(p + 1, q + 1) on Kmp'q, and in fact Conf(Einp'?, [g^,9])
PO(p + 1,^ + 1). Thus, Ein'''9 is a compact, conformally homogeneous space. It
is the model space of conformai geometry in the following sense.

Theorem 4.3 (Equivalence principle). Let p, q) he a couple ofnon-negative integers
such that p + q >. 3. There is an equivalence of category between the category of
conformai structures of signature (p, q) and the category of normalized Cartan
geometries modeled on Einp'9.

This result was originally proved by E. Cartan in the Riemannian case. See [31,
Ch. V.] and [7, Section 1.6] for references. The normalization condition is an
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additional technical condition imposed on the Cartan connection of the corresponding
Cartan geometry. We do not give detail since it will not be useful for us.

Since Ein^'9, as a PO(/; + 1 ,q + 1 )-homogeneous space, is effective, we can

legitimately consider the lifts to the Cartan bundle of conformai maps and conformai
vector fields defined on the base manifold.

4.1.2. Explicit root-space decomposition ofs o (2, n). The theory of Cartan geometries

allows us to reduce technical problem of conformai geometry to algebraic

questions in the model space. From now on, we only consider Lorentzian conformai

structures and the letter G exclusively refers to the Lie group PO(2, n), and P will
denote the stabilizer in G of an isotropic line in R2'", so that Ein1'"-1 ~ G/F as

G-homogeneous spaces.

We adopt here some of the notations of [7, Section 1.6.3], In a basis of R2'" in
which the quadratic form reads

2xiX«+2 + 2X2X„ + 1 + x| + • • + x2,

and P is the stabilizer of [1 : 0 : • • • : 0], the Lie algebra g so(2, n) has the form

g {(x Za -z* V a e R, X G R", Z £ (R")*, A e so(l,n — 1)}
IV o -X* -a / >

where Z* denotes J 'Z, X* 'XJ and JA + ' AJ 0, with J :=( o /„_2 o Y
Vi o o/

Abusively, we will write Z (or X) to denote the corresponding elements of g.
This decomposition yields the grading g g_! © g0 © gi (see [7, p. 118]) and we

have p go © gi- Deeper in the description, we can decompose the so(l,n — 1)

factor similarly:

50(1,«-1) i( u b -°r|, b eR, U e R"-2, T e (R"~2)*, B eso(n-2)[.
(V 0 -'U -b J

Then, we identify a Cartan subspace in so(2, n), with respect to the Cartan involution

6(M) M:
((ab \a=<l o J, a, A G R >.

The corresponding restricted root-space decomposition is summarized below

/ß g« Qa+ß Qa+2ß 0 ^

0 0/8 0 Qa+2ß
tn g^ Qa+ß

ö ga

\ a /
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(the negative root spaces being obtained by transposition). The factor m 3^(0) is

isomorphic to so(n —2) and corresponds to the block matrices B in the decomposition
of so(l,n — 1). The simple roots a and ß are given by a(a,b) a — b and

ß{a,b) b, where (a, h) abusively refers to the corresponding matrix of a. The

root spaces 0±p and 0±(a+p) have dimension n — 2, while 0±a and 0±(<x+2p) are
lines. We have 0i 0« ® Qa+ß © Qa+2ß-

4.2. 1-dimensional orbits. Let H be a Lie group locally isomorphic to SL(2, R)
and (M, g) a Lorentzian manifold on which H acts conformally. We assume in this
section that there exists a 1-dimensional orbit H.x0 in M. The stabilizer t)XQ is a

2-dimensional subalgebra of s 1(2, R). So, it must be isomorphic to the affine algebra
and there exists an sl(2)-triple (X, Y, Z) such that 1)X(l Span(V, Y).

4.2.1. Holonomy of the stabilizer. Let tz : M -» M and u> G L21 AV. g denote the

Cartan bundle and the Cartan connection defined by the conformai class [g], If A is

a conformai vector field vanishing at a point x and x e n~l{x), its holonomy at x,
noted Ah G p, determines the behaviour of A near its singularity x. However, it is

complicated to relate explicitly, in full generality, the dynamics of A near x to the

algebraic properties of Ah-
We start here by describing the holonomies of X and Y. Since we have here an

sl(2)-triple of conformai vector fields, this question will essentially be reduced to a

classification of morphisms s 1(2, R) —> so(2, n).

Let xo e 7r_1(xo) and let Xh and T/, denote the holonomies of X and Y at xo.
Remark that a different choice of xo, say xo p with p G P, changes Xh and T/, in

Ad(p~1)Xh and Ad(p~1)Yh- Let Z* e so(2, n) denote the element ojX()(Z). Note
that Z* ^ p since Z(x0) ^ 0. We claim that (—Xf,, —Yh, — Z*) is an sl(2)-triple of
so(2, n). To see this, we introduce a central object of Cartan geometries: the curvature
form £2 := dco + \[a>, co\ e £22(M,so(2, n)). As it is done in [4, Lern. 2.1], we can

compute that for all x 6 M,

œx([A, B]) + K(T),^(/1)] B),

for any pair of conformai vector fields {A, B). An elementary property of the

curvature form is its horizontality: it vanishes as soon as one of its argument is

tangent to the fiber of M ([31, Ch. 5, Cor. 3.10]). Since X and Y vanish at xo, their
lifts are vertical and the previous formula ensures that —X^, —Yh and —Z* satisfy
the bracket relations of s 1(2, R).

Thus, P being the stabilizer of an isotropic line in R2'", we have obtained a

representation p:sl(2,R) -> so(2,n) such that p(X) := —Xh and p(Y) := —Yh

admit a common isotropic eigenvector v G R2'", which is not an eigenvector for
p(Z) := —Z*. In particular, v is a highest weight vector for p, and it follows that
the subspace V Span(p(Z)kv, k >; 0) is a faithful irreducible subrepresentation
of p of dimension at least 2.
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Orthogonal representations ofs 1(2, R). The following property reduces the
possibilities for V.

Lemma 4.4. Let itj: sl(2, R) —> gl(Vd) be the d-dimensional irreducible
representation of sl(2, R). Let Q be a non-zero quadratic form on Vj such that
Jtd(s 1(2, R)) C so(Q). Then, d is odd and Q is non-degenerate, with signature
((d — l)/2. (d + 1 )/2) or the opposite. Moreover, Q is uniquely determined up to

a multiplicative constant.

Since V is a subspace of R2'" with dimension greater than 1, we distinguish four
possibilities:

(1) dim V 2 and V is a totally isotropic plane;

(2) dim V 3 and has signature (1,2);
(3) dim V 3 and has signature (2, 1);

(4) dim V 5 and has signature (2,3).
We now treat each situation separately. We note Q the quadratic form of R2'".

We wish to obtain the form of p(X) and p{Y), up to conjugacy in P, which is the

stabilizer of the line R.u c R2'". So, we will say that a basis (ei,... ,en+2) is

adapted if Q reads

2X\Xn+2 + 2x2Xn-t-i + Xj + • • • + x2

and e\ Xv.

Case (1). The orthogonal V1 is also a subrepresentation of p and Q is non-negative
on K"1, with Ker(ö|F_i_) V. Since Q\y±. ^ 0, Lemma 4.4 ensures that any non-
trivial irreducible subrepresentation of p\v±- must be an isotropic plane, i.e. must
coincide with V. Since p\yx is completely reducible, this means that there exists a

subspace E such that p\s 0 and V1 V © E. Since E is a Euclidean subspace

of R2'", E1- has signature (2,2) and is also a subrepresentation of p. If V is now an

isotropic plane such that E1- — V © V and if (e\, e-i, en+\, en+2) is a basis of EL
adapted to this decomposition, such that e\ v and the quadratic form reads

2xixn+2 + 2X2X„+I,

then p\E± has the form

fa h 0 0 \
2aX + V2bY + V2cZ ^[c0~0a °a \V 0 0 -c -a)

If we complete this basis with an orthonormal basis of E, we obtain an adapted basis

of R2'" in which
,010" oo

G so(E ~ so(2,2).

2p(X)

(1 —i
o

and s/~2p(T)

/ U 1

/ 0

-1 '

o o
o -1

o
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Case (2). In this situation, V1- is Lorentzian and supplementary to V. We then have

two subcases.

a. If p\vx 0, then p (p|^,0) (orthogonal decomposition). The Lorentzian

representation V has the form

ciX + b Y + cZ I—> c o —b ^ £50(L) ~ so(l, 2)
V 0 —c —a '

in a basis (ei, e3, en+2) such that e\ v and the quadratic form reads lx\xn+2 + x^.
Thus, this basis can be completed into an adapted basis of R2,n in which we have

P(X)

b. If p\y± 0, then it is a faithful representation of sl(2, R) into so(I/-L) and V1-

is Lorentzian. But up to conjugacy in O(L-1), this representation is unique. Indeed,

it admits a non-trivial irreducible subrepresentation V c V±. By Lemma 4.4, the

only possibility is that this subrepresentation is 3-dimensional and Lorentzian. So,

if E (V © V,)J", then E is Riemannian and p-invariant, so p\e 0. Thus, p is

conjugate to {p\v, p\v', 0) (orthogonal decomposition). Thus, if (cq, e3, en+2) is the

same basis of V as in Case (2).a, if (t?2, e^, en+\) is a basis of V' in which p\y has

the form

aX + bY + cZ \-> (c o -b 6 so(L') ~ so(l, 2)
V 0 —c —a /

and if we choose (£5,..., en) an orthonormal basis of E, then (e\,..., en+2) is an

adapted basis of R2'" in which

P(X)

'0 0 1

0 0
0

1 0

and p(Y)

0
0

0 -1

-1 0
0 0

-1
0 /

Case (3). In this situation, V1- is Riemannian. Therefore, p\v±_ =0 and we are in
a situation similar to Case (2).a. So, there is an adapted basis of R2'" in which
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Case (4). Here, V1- is Riemannian and p\v± 0. In this situation, we have an

adapted basis such that (e\, e2, c3, en+\, en+2) is a basis of V and

p(X)

-l —2 '

4.2.2. Dynamics of X. A fundamental property that can be easily read on the holo-

nomy of a conformai transformation / fixing a point x is its linearizability near x.
Note p the holonomy of / at x G 7T_1(x), i.e. the unique pel' such that f (x)
x.p. Recall that P can be seen as the (affine) conformai group of R1'"

CO(l,n - 1) ix R".
namely

Proposition 4.5 ([14, Prop. 4.2]). The conformai dijfeomorphism f is linearizahle
near x ifand only if its holonomy is linear (as an affine transformation), i.e. its action

on R1'"-1 has a fixed point.

Remark that the condition on the holonomy is invariant under conjugacy by
elements of P, so that the choice of x in n~l(x) has no influence on it. If / is

linearizable, choose a point x in the fiber so that its holonomy p is in CO(l, n — 1

i.e. has the form
X

p C"x-')
with A > OandM G 0(1, n —1). Because p G G0, it is not difficult to see that Txf
is conjugate to Ad(/?)|0_1 (see [14, Proof of Prop. 4.2]).

In the previous section, we have described the possible forms of the holonomy
Xh —p(X) of X at some point in the fiber of xt). In every situation, the holonomy
is linear. So, there exists a neighborhood U C M of xo, a neighborhood U C 0-i
of 0, and a diffeomorphism \(r.U U which intertwines — a priori for small t
— the flow (p'x and the action of Ad(etXfl). Taking derivative at l 0, we obtain
that A'|cr is conjugate to the infinitesimal generator of M(etXh) on K. Since we
know explicitly Xh in each situation, we obtain that in suitable coordinates near xo,
some positive multiple of X reads:

0

*2
in Cases (1), (2).b.,

xn—\

~Xn

X\
: in Cases (2).a. (3), and

Xn

Xl
2x2

2xn—\
3Xn

in Case (4).

Reducing U if necessary, we obtain that 4>'x preserves U for all negative times.

Considering its dynamics when t -> —oo, we can already conclude in several cases.
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Strongly stable dynamics. Consider the Cases (2).a., (3), and (4). What we have

recalled above ensures that <pf' is conjugate near xo to the flows (for t 2= 0)

Thus, cpf' has strongly stable dynamics when t —> +oo (see Section 3.2 of [13], the

notion was first introduced by A. Zeghib in [33]). By Proposition 4.(iii) of the same

paper, we get that a neighborhood of x0 is conformally flat.

Remark 4.6. These dynamics are prototypes of those studied in Frances' paper. In

our situation, it is almost direct to verify that the Weyl-Cotton curvature must vanish
in a neighborhood of xo.

Vanishing of the Weyl-Cotton curvature on the Zero set of X. We are left to prove
conformai flatness in Cases (1). and (2).b.. In both situations, the flow (p, t 2 0,

is conjugate to

This flow is not strongly stable, but just stable and it is not enough to conclude. So,

we also consider the behavior of the flow of Y near xo and use technical properties
of conformai flows with non-linear and unipotent holonomy established in [17].

In Case (1), the holonomy of Y at xo has the form of a light-like translation of
Ein1'"-1. By Theorem 4.3 of [17], there exists an open, conformally flat subset

U C M such that xo e £/. In Case (2).b., the holonomy of Y at xo has the form
of the expression (20), Section 5.3 of [17]. By Section 5.3.4 of the same paper, x0
belongs to the closure of some conformally flat open set.

Remark 4.7. In Section 5 of [17], the authors study conformai vector fields of real-

analytic Lorentzian manifolds. However, the real-analytic regularity is not used in
the proofs of the two technical facts cited above.

So, in both cases, the point xo is in the closure of a conformally flat open subset
and by continuity, we get that WXo 0. So, for the moment, we have come to the

Partial conclusion. If a point admits a 1 -dimensional //-orbit, then the Weyl tensor
vanishes at this point.

Now, let U be the linearization neighborhood of (p'x. The latter admits a segment
of fixed points in restriction to U. Note it A. The holonomy of Y gives us more
information thanks to the notion of development of curves. Even if it could be

explained relatively easily, we will directly use the following property.

—t
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Lemma 4.8 (Follows from [16, Prop. 5.3]). Let x £ M and x £ jr_1(x). Let

y(t) 7r(exp(x, tX0)) £ M and yx{t) Jtx(etX°), where nx'.G —X G/P
is the natural projection, Xo £ 0 and t e] — e, e[ with s sufficiently small. Let

f £ Conf(M, g) fixing x and having holonomy p at x. If the left action of p on X
fixes pointwisely the curve yx, then the action off on M fixes pointwisely y.

We can now see that in both cases, Y also vanishes on the curve A.

Case (1). Here, we have a non-zero X-a-2ß £ Q-a-2ß such that

[Xh,X-a-2ß] =0.

Thus, for all s, t £ R,

e* 'T/; gSX—a—2ß — QSX—a—2ßfXh

This proves that the curve s h> 7r(exp(xo, sX-a-2ß coincides with A in a

neighborhood of x0. Moreover, since Yh e ga, we also have [Yß,X-a-2ß] 0.

So, fiy also fixes pointwisely A near x0-

Case (2).b. Here, we have a non-zero X-a £ such that [Xß,X-a] 0.

The same reasoning as above gives that A coincides locally with the curve
s i > 7r(exp(x0, sX-a)).

We have Yß and Ya+ß such that

Yh Ya+ß + Yß and [Ya+ß, Yß\ 0.

Neither a — ß nor 2ß are restricted roots. So, ex~a and eYv commute and since

hA{etXa+ft)X-a X-a + t[Xa+ß, X-a\ + (t2/2)[Xa+ß, [Xa+ß, X-a]]

e0/j©0a+2/3

we have

a t^cc+ß — çSX—ct gs(t[Xa+ß>X—oc\-\-{t~/2)[Xa^.ß,\Xa+ß,X—o,]])

6 P

and finally
etYh(,sX-a _ p(sJy

with p(s,t) P. According to Lemma 4.8, we get that f'Y fixes each point of
the conformai geodesic 7i(exp(xo, sX_a)), that coincides with A in a neighborhood
of Xo-

So, in both cases, the vector fields X and Y vanishes on A near x0- Since

dim(//.xo) 1, any point in a neighborhood of xo has an //-orbit of dimension at

least 1. So, reducing U if necessary, we have that for all x G A, dim H.x 1. By
the previous partial conclusion, we know that W vanishes in restriction to A.
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Conclusion. Finally, <pff has a stable dynamics when t —> +00, and for all x e U,
fofj (x) -> Xoo £ A, with WXoo 0. By Proposition 4(i) of [13], we obtain
that W\u 0, proving that a neighborhood of x0 is conformally flat in Cases (1)
and (2).b. This concludes the proof of Proposition 4.1 in the case of 1-dimensional
orbits.

4.3. Compact conical orbits. Let H be a connected Lie group locally isomorphic
to SL(2,R) that acts conformally on a Lorentzian manifold (M,g). Assume that
there exists a point xo e M such that H.x0 is a compact conical orbit, with
stabilizer HXo. We know that Ad()(HXo) ~ Z 1x U, where U denotes a unipotent
one-parameter subgroup and the factor Z is generated by a non-trival hyperbolic
element normalizing U. Let / HXo be in the preimage by Adf, of this hyperbolic
element. The action of / in restriction to the orbit H.x0 will almost completely
prescribe its dynamics near the orbit, as the following proposition shows.

Proposition 4.9. The conformai diffeomorphism f is linearizahle near x0-' there

exists an open neighborhood of the origin U C Tx0 M and U C M an open
neighborhood ofx0, and a diffeomorphism f:U—> U such that js conjugates TxJ
and f. Moreover, replacing f by its inverse ifnecessary, we have a basis (ei,, en)

ofTXoM in which gX() reads 2x\xn + x\ + 1- x„_v Xxo e\ and

where 0 < A < 1 and R is a rotation matrix o/ Span(c2,..., en-\).

The eventual "compact noise" commutes with the first matrix and has no influence

on the dynamics. The arguments that we developed in [28] in a similar context are

easily adaptable here to the dynamics of /, and it will not be a difficult problem
to prove conformai flatness of a neighborhood of H.x0. Thus, the important point
here is to describe the action of /, and for this we make a crucial use of the Cartan

geometry associated to (M, [g]) to reduce the problem to an algebraic question.

4.3.1. Algebraic description of the holonomy of /. Let (M, g) be a Lorentzian
manifold, and it : M —> M and m be the Cartan bundle and Cartan connection defined
by [#]. For all x 6 M, we have a linear isomorphism cp%: TXM g/p defined as

follows. If v e TXM, let v e TXM such that ir*v v. Then, (p%(v) is (well-)defined
as the projection of cox(v) in g/p. If Ad denotes the representation of P on g/p
induced by the adjoint representation, then cp^ p Ad(p~1)(p% ([31, Ch. 5, Th. 3.15]).
There exists a Lorentzian quadratic form Q on g/p, such that Ad(P) < Conf(g/p, Q)
and such that, by construction of the Cartan geometry associated to (M, [g]), the

map cpx sends gx on a positive multiple of Q.
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We saw in Section 4.1.2 that g admits a grading g g_i © go © gi, where

P go © 0i, and g_i g_a 0 Q-a-ß © Q-a-iß- Moreover, P contains a Lie
subgroup Go with Lie algebra g0 and such that P ~ G0 k gi ([7, Prop. 1.6.3]).

Identifying g/p ~ g_i, the lines g_o; and g_a_2^ are isotropic with respect to Q,
and the orthogonal of the Lorentzian plane they span is Q-a-ß We choose a basis of
(<?!,..., en) of g_i such that e\ G g_a, Q~a-ß Span(e2,.. -, en), en G Q-a-2ß,
and in which Q reads 2x\ xn +x\ 4 The adjoint action of G0 preserves g_i
and, in the basis we chose, gives an identification

G0 ~ CO(l,n - 1) R>0 x 0(1,n - 1).

Now, let H be a Lie group locally isomorphic to SL(2, R) acting conformally on

(M, g), with a compact conical orbit H.x0. Let / G HXq be the hyperbolic element

we chose at the beginning of this section and let U {etY, t G R} < Hx0 the

unipotent one parameter subgroup normalized by /. Diagonalizing Ad(/), we get
X, Z G h such that (X, Y, Z) is an sl(2)-triple, with Ad(f)X X, Ad(/)T
A~lY and Ad(/)Z AZ, with A > 0, A ^ 1. Since Y G f)Xo, necessarily XXo is

isotropic and orthogonal to ZXQ, and gX()(Z, Z) > 0 (see Section 3.2.1).

Let xo be a point in jt~1(xo) and let lXq(X) (oX0(XX0). Since XXo is an

isotropic vector of TXoM, the projection of iXQ(X) in g/p is isotropic with respect
to Q. Since AdCGojlg.! — CO(g_i, Q), it acts transitively on the set of isotropic
vectors of g_i. Thus, there is go e G0 < P such that

Ad(go)t-c0(^) lx0.go(X) e 0-a + P-

Hence, there is a choice of xo, in the fiber over x0, such that iXo(A) X-a + Ap,
and we keep this element xo It will be modified in the sequel, but in a way that does

not change the projection of iXQ(X) in g/p.

Let p G P be the holonomy of / at x0- We have

Adg(p)^(X) i^p(X) ifCxJX) iX0(Adh(/)(Z)) %(Z).

So, let us define

P= {P'eP I Ad(p')iX0(X) cX0(X)}.

It is an algebraic subgroup of P, and p G Px°. Remark that for all p' G P,

pXo-p' — p'pxOp'-l

Stabilizer of X-a modulo p. According to the decomposition P G0 k gi, every
element of P can be written p' yo cxp(Z|), with go G Go and Z\ G gi. Now,

[gi, g-i] c go, SO Ad(exp(gi)) is trivial on g/p, and

Ad (p') Adfeo) Ad(g'o)|g_1



Vol.93 (2018) Lorentzian manifolds with a conformai action of SL(2, R) 427

if we identify g/p and g_i. Thus, M(p') fixes X-a mod p if and only if Ad(go)
fixes X-a. If we reuse the decomposition of Section 4.1.2, we see that an element go

fixing X-a has the form

with x > 0, k e M ~ 0(n — 2) and Tß e Qß.

Conformai distortion. The group Px° being algebraic, we can consider the Jordan

decomposition of p: it decomposes into a commutative product p — PhPuPe of
hyperbolic, unipotent and elliptic elements of Px° ([24, Section 4.3]). Write

Since Ad: P CO(g/p, Q) is an algebraic morphism, g^, g% and gjj are respectively
hyperbolic, unipotent and elliptic elements of G0- Thus, we necessarily have

with kh,ku and ke respectively hyperbolic, unipotent and elliptic elements of 0(n — 2).
Thus, we have k^ ku /„_2. Moreover, the map conjugates TX()f to Ad(p).
We deduce that x^2 is the conformai distortion of TXQf. We have !>(),!/ I

such that Ad(/)Z ÀZ, implying TXQf.ZXQ AZXo. Since gXo(Z, Z) > 0, the

conformai distortion of / at x0 is equal to A2. This proves that x/, A-1 / 1.

Replacing / by its inverse if necessary, we assume that A e]0,1[.

Hyperbolic component. If we let Tjj := 1/(1 — A)Tjj and pp exp(T^), we
obtain that

(4.1)

Ph go exp(Zf), pu gl exp(Z"), pe ge0 exp(Zf).

PßPhPß -l exp(Ad (j>ß)Z\).
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This choice of conjugacy comes in fact from an interpretation of P as the (affine)
conformai group of R1'"-1. Now, let (x\,... ,xn)be the coordinates of Ad (pß)Z^,
seen as a vector of (R")*> i.e.

Ad(pß)Zhl

/ 0 x\ X2 xn—\ xn 0
0 0 • 0 0 -Xn

0 —X2

0 xn— i
0 —Xl

0

Then, the 2 x 2 block in the upper left corner of pß ph Pß
1 is

/A-1 A_1jcA
V 0 A-1 J •

Since pßpuPßX is R-split, this block matrix must be R-split, and we get x\ 0.

So, if we choose

ZJ (o, • i, j_^2

and let pi exp(Zj) then

PiPßPhPß Vi1

with pß G expfßjg) and pi G exp(0a+(g © Qa+2ß) C exp(gi). Note that the adjoint
actions Ad(p^) and Ad(pi) on g/p fix the projection of g_a. So, let us replace x0
by xo-(PiPß)1- The component of ix0(X) on g_i is still A_a and ph has now the

diagonal form we have exhibited above.

Trivial unipotent component. As we observed before, the decomposition of pu
according to P Go k 0i is pu exp(T^) exp(Z"). Let us decompose

yM yM I 'yll yM
"T" ^a+ß "T Z/a+2/8'

the indices indicating in which root-spaces the elements are. Using the fact that

Ph G A exp(a), we see that

PhPuPh1 exp Ad(ph)Tß exp Ad(ph)(Z" + Z%+ß + Z%+2ß))

exp (A-1 Tß exp (Z»a + A~lZ»a+ß + A~2Z»+2ß).

Since ph and pu commute, by uniqueness of the decomposition P G0 x gi, we

get

7>"=0, Z»a+ß= 0, and Z„"+2/J 0.

So, pu exp(Z£).
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We finally consider Ad{pu)X-a modulo gi. Let us write

OtoW x-a + *o mod gi,

where X0 e g0. On the one hand, we have

Ad(pu)i20(X) i2o(X).

Since pu e exp(gi), we have

Ad(pu)X0 X0 mod gi.

Thus,

Ad(pu)iSc0(X) Ad(pu)X-a + X0 mod 0!,

and we obtain

Ad(pu)X-a X-a mod gi.

But on the other hand, since g±a has dimension 1, Z£ is a multiple of 6X-a. So, if
Z" jiOX—a with j± e R, by Proposition 6.52(a) of [20], we have

[X-a,ZZ] pBe(X-a,X-a)Aa,

where Aa e a is the element associated to a by the Killing form B and

Be -B(6.,.). So,

Ad(ezZ)X-a X-a +[Z^,A^]+1 [Z^[Zl,X-a]\
Sa

— X—& /xBq (X—a, X—q;) Aa mod g i.

So, we must have p, 0, i.e. pu id.

Elliptic component. Consider now P as the conformai group of R1'"-1. Since ph
has a diagonal form, its conformai affine action fixes a vector u0 R1'"-1. As for
any elliptic element of SL(V, R), the set {(pe)n, n £ Z} is relatively compact in P.
Therefore, the orbit of vq under iterations of pe is also relatively compact. Consider
the convex hull

C Conv^ {{pe)n.vo, n e Z} ^ C R1'"-1.

It is a compact, ^-invariant, convex subset of R1'"-1. Since pe acts affinely, it has

a fixed point in C. Moreover, ph commutes with pe and fixes vq. So, it fixes every
point of C. Thus, pe and ph admit a common fixed point in R1'"-1 : it is then a fixed

point for p PhPe, proving that f is linearizable near x0.
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Derivative of /. As we recalled above the derivative TXof is conjugate by <p%0 to
the adjoint action Ad(/?) on g/p, which is the commutative product Ad{ph)Ad{pe).
In the basis of g_i we choose at the beginning of this section, we have

the eigenspaces for 1 and A2 being the projections of g_a and Q~a-iß respectively.
Since Ad(pe) commutes with Ad(p^), it preserves the lines g_<* mod p and

Q-a~2ß mod p. The standard form of linear Lorentzian isometries fixing two

isotropic lines finally gives the desired form of Ad(pe), and then for 'lX0 f which is

conjugate to Ad (/?/,)Ad (/?<,). Thus, Proposition 4.9 is proved.

4.3.2. Vanishing of the Weyl-Cotton tensor near x». Now that the action of /
near jc0 has been determined, we can prove that xo is contained in a conformally flat

open subset. The arguments are basically the same as those of Section 4.1 of [28].
We summarize them briefly. The first step is to see that the Weyl curvature vanishes in

restriction to the orbit of xo. We note (e\,..., en) the basis given by Proposition 4.9
and M Span(e2, en). Using the fact that the (3,1)-Weyl tensor is /-invariant
and considering the contraction rates, we see that

The point is then the following fact.

Lemma 4.10 ([28, Lemma 4.5]). Let 3t\ and Jf2 be two degenerate hyperplanes

ofTX0 M. Assume that they both satisfy points /. and 2. above. Then,

So, if we had IT^ f 0, then we would have TX()cp'Y M M because the properties
involved in the previous lemma are conformai. Thus, the derivative would

preserve 3tC\TXo(H,xq), which is a space-like line in Tx« (H.xo). It is then immediate

to see that this is not possible, proving that W \h.x0 0.

Finally, the fixed points of / near x0 form a segment A, that coincides with the

orbit {4>'x(xo)}. In particular, IT|a =0, and we are in a discrete version of the

conformai dynamics exhibited in Cases (1) and (2).b. in Section 4.2.2. Similarly,
we can apply Proposition 4(i) of [13] to conclude that a neighborhood of xo is

conformally flat. This proves Proposition 4.1 in the case of compact conical orbits.

(1) WXo(Je,X,X) 0;

(2) WX0(TX0M, TXoM, TX(,M) c M.

0.
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4.4. Fixed points. Let (M, g) be a compact Lorentzian manifold with a conformai
action of H ~ioc SL(2, R). We assume here that there exists a point xo fixed by
all elements of H, and prove that a neighborhood of xo is conformally flat. To do

this, we will use the following property, that is essentially based on the linearizability
of conformai actions of simple Lie groups near a fixed point. Its proof uses similar
arguments as in [28, Section 3]. In Corollary 3.4 of the same article, we observed

that necessarily H ~ PSL(2, R) ~ SOo(l, 2).

Proposition 4.11. Let Xo be a fixed point of the action. There exists an open
neighborhood W ofxo and W' C W an open-dense subset such thatfor all x G IV,
dim H.x 0 or 2 andfor all x G W', H.x does not contain fixed points.

Assume that this proposition is established. Letx G W'. According to Section 3,

any minimal //-invariant subset K c H.x C 2 is either a compact conical orbit,
or a circle. In any event, thanks to Sections 4.2 and 4.3, there exists x' G H.x
admitting a conformally flat neighborhood V. If h H is such that h.x V,
then h~l V is a conformally flat neighborhood of x.

This proves that W' is conformally flat, and by continuity of the Weyl-Cotton
curvature, all of W is conformally flat. Thus, it is enough to prove Proposition 4.11

to conclude that a neighborhood of xo is conformally flat.

Local orbits near a fixed point. To do so, we reintroduce the notations of [28,
Section 3.3], We fix a basis (e\,... ,en) of TXo M such that gXo reads

-xf + xf + • • • + xf

and such that the isotropy representation has the form

A G SO0(l,2) i-> id) G SO0(l,n — 1).

Let E denote Span(ej, ej, e^). By the linearizability of conformai actions of simple
Lie groups fixing a point, there exists K C W C E and V c E1- neighborhoods of
the origin, a neighborhood W of x0 in M, a neighborhood Vh C H of the identity
and a diffeomorphism xjr\ W x V -» W C M such that ^(0,0) xo, V/i G Vh,
pXQ(h)(U x V) c W x V and

V(w, v) G U x V, \fr(pXo(h)(u, u)) h.\//(u, v). (4.2)

Reducing the open sets if necessary, we assume that U, U' (resp. V) are open
balls in E (resp. E1-) with respect to x\ + x| + xf (resp. x\ + • • + x^). Note

q —Xj + xf + xf, the quadratic form induced by gX() on E.



432 V. Pecastaing CMH

We claim that it is enough to set

w' f((Kn{^o})xV),
i.e. the union of all local //-orbits of type H2 and dS2, with the terminology of
[28, Section 3.3], The point is that Lemma 3.7 of the same paper is in fact valid for
any local orbits, not just local //-orbits of type H2. Let us explain how it can be

adapted to local orbits of type dS2. The minor difference is that contrarily to Se, Sh

has index 2 in its normalizer in SOo(L 2). If note

he (' Rh) SOo(L2),

where R$ denotes the rotation of angle 6 in Span(e2, £3), then the normalizer Nn(Sh)
is spanned by hK and Sh. We reuse the notation

Vu G V, As(v) {ifr(se3,v), s e]0,e[},

where s denotes the radius of the ball U C E. Every local //-orbit of type
dS2 in W meets a unique As(v) at a unique point. For all s and v, the circle
{pXo(hg)(se2, v), 6 e RJ is included in U x V. So, property (4.2) above ensures
that for all 6, hß^r(se3, v) x/r^shgej, v). In particular, hn does not fix any point
x G A,s(u), proving that Hx Sh- The proof of Lemma 3.7 of [28] is now directly
adaptable do local orbits of type dS2.

Let x W' and let x\ be a fixed point. Of course, the local description of the
action of H that we have made above is valid in the neighborhood of x\. Let W\

denote an analogous neighborhood and assume that (H.x) 0 W\ / 0. If y is a

point in this intersection, then its stabilizer is conjugate either to Se or Sh- It implies
that y belongs to a local orbit of type H2 or dS2 in W\. By Lemma 3.7 of [28], we

get that (H.y) D W\ is reduced to the local //-orbit of W\ containing y. Since this
local //-orbit is a locally closed submanifold of W\, which does not contain x\, we

necessarily have x\ H.x. This finishes the proof of Proposition 4.11, and hence of
Proposition 4.1.

5. Extending conformai flatness everywhere

Let H be a Lie group locally isomorphic to SL(2, R) acting conformally and

essentially on a compact Lorentzian manifold (M.g). We still note F^2 the compact,
//-invariant subset of M where the //-orbits have dimension at most 2. We have

seen with Proposition 4.1 that any minimal closed //-invariant subset of F<:2 admits

a conformally flat neighborhood. It is in fact immediate that all of F^2 is contained
in a conformally flat open subset: if x G F^2, then H.x C F^2 and contains a

minimal //-invariant subset Kx. If V is a conformally flat neighborhood of Kx,
there is h H such that h .x G L,and h~lV is a conformally flat neighborhood of x.
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5.1. Orbits whose closure meets F^2. We are now going to refine this observation.
Define

Lemma 5.1. U is an open, conformally flat neighborhood of F^2-

Proof By considering a minimal //-invariant subset in H.x n F^2, the same

argument as above immediately gives that any point in U admits a conformally
flat neighborhood. The important point here is that U is open. We denote by
Int(F<c2) the interior of F<2.

Let x e U \ Int(/L;2). The closed //-invariant subset H.x n F^2 is non-empty.
According to Section 3, it must contain an orbit H.xo that is either a compact-conical
orbit, a 1-dimensional orbit or a fixed point of H. Since the interior of F<2 is

//-invariant, we have xo e <)F<2. By Proposition 4.11, in the neighborhood of any
fixed point, every //-orbit is either another fixed point or a 2-dimensional orbit. So,

the set of fixed points is included in Int(/Lg2), proving that the //-orbit of the point x0
is either compact-conical or a 1 -dimensional orbit. By Sections 4.3 and 4.2, we know
that there is X e 1) hyperbolic such that:

• Either {<px(xo), t £ R} is a non-singular periodic orbit of X and if to > 0 is such

that (j)'x(xo) xo, then <px is linearizable near x0 and conjugate to

where À e]0,1 [ and R is a rotation matrix. The fixed points of f'x in the linearization
neighborhood coincide with the circle À {<px(x0), t R}. In particular, we have

À C F^2 since it is contained in H.xo and dim H.xo — 2;

• Or A(xo) 0 and 4>x is linearizable near xo and is conjugate to one of the

following linear flows:

In the first situation, if y is a point in the linearization neighborhood of Xq, then

proving that this neighborhood of x0 is included in U.
In the second situation, when t —» +00, either <p'x{y) —> xo for any y in the

linearization neighborhood, or fx(y) —> y00 £ A', where A' denotes the zero-set
of X. Of course, A' c F^2, proving y e U.

U {x e M I H.x n F^2 ± 0}.

(<COO) > Too £ A C TS2,
X «->00
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Thus, in any case, the point xo is in the interior ofU. Since U is //-invariant, we
alsohavex lnt((/). Finally, (/ \Int(/£c2) C Int(//), proving that U Int(f/).

Our aim is to prove that U — M. So, until the end of this section, we assume
that U / M, and consider K := dU. Since U is //-invariant, K is non-empty,
compact and //-invariant. We are going to prove that the dynamics of H must be

stable near K. This will be in contradiction with the fact that there are points in U
arbitrarily close to K.

5.2. Stability of H -orbits in a neighborhood of K. Since U is open and F<r:2 C U,
we have K D F^2 — 0, i.e. H -acts locally freely in a neighborhood of K. This
observation implies that for any hyperbolic X e f), the corresponding conformai
vector field is space-like in a neighborhood of K, as the following lemma shows.

Lemma 5.2. Let (M, g) be a Lorentzian manifold on which H acts conformally. Let
K C M be a compact subset such that H acts locally freely on K, i.e. hx 0 for
all x e K. Assume that there is an hyperbolic element X 1} ~ s 1(2, R) whose flow
preserves K. Then, X is space-like in a neighborhood of K.

Proof. Let A+ := \etX }?6r < H and consider the compact A+-invariant subset

Kn{xeM lgx(X,X)^Oj.
Assume that this subset is non-empty. By Proposition 3.2, it must contain a point x0
suchthat Ad|}(A+) C Conf(h,^fX0). Wenotea, := Adf,(etX). Sineeat is linear and

conformai with respect to qX(t, there exists A 6 R such that a*qX(] ex'qX(). Since X
is hyperbolic, there exists Y and Z such that at(Y) e'Y and at(Z) e~'Z. We

now use the following observation, which was proved in [28, Lemma 2.3],

Fact. Let q be an Ad(Vx)-conformally invariant sub-Lorentzian quadratic form on h-

Then, q is Lorentzian, X is space-like and orthogonal to Y and Z, which are both

light-like.

Thus, we get that gX() (X, A") >0, contradicting x0 G K n{x eM | gx(X, X) ^0}.
Hence, X is space-like on K, and necessarily this is true in a neighborhood of K.

Let us fix (X, Y, Z) an sl(2)-triple in 1). By Lemma 5.2, we know that X must
be space-like in a neighborhood of A'. If we note V {x e M \ gx(X, X) > 0},
let go denote the metric g/g(X, X) on V. By compactness of K c V, the functions

go(Y, Y), go(Z, Z), go(Y, X) and go(Z, X) are bounded over K. Therefore, for any

x e K,YX and Zx are isotropic and orthogonal to Xx (see the proof of Lemma 2.3).
So, for all x e K, the subspace Span(Ax, Yx. Zx) is Lorentzian.

Hence, H acts locally freely with Lorentzian orbits in a neighborhood of K. So,

let us define the open set

£2 {x G M I dim(//.x) 3, H.x Lorentzian, Xx space-like}.

We have proved that K C £2. Remark that £2 is a priori only 4>(x-invariant.
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Let us consider the Lorentzian manifold (£2, g). This manifold is endowed with an

sl(2)-triple (X, Y, Z) of conformai vector fields, everywhere linearly independent,
with Span(V, Y, Z) Lorentzian and such that X is space-like and complete. To

simplify notations, we assume that g has been renormalized by g{X, X) > 0, so that
4>'x e Isom(£2, g) by Lemma 2.2. Define V to be the distribution in £2 orthogonal
to Span(Z, Y, Z). It has codimension 3, is ^-invariant, and for all x e £2, Jfx is a

Riemannian subspace of Tx£2.

Finally, we define for small enough s > 0

Ke (exp^u), x K, v e Mx, gx(v,v) ^ e}.

(The notation exp refers to the exponential map of the metric g.)

Lemma 5.3. Ifs is small enough, KE is a (well-defined) -invariant neighborhood
of K, andfor any neighborhood V of K, there is s > 0 such that Ks c V.

Proof Let h be some auxiliary Riemannian metric on £2. We note T1 £2 the unit
tangent bundle with respect to h. By compactness of K, there exists a > 0 such that

Vx e K, Vv e Mx, gx(v, v) ^ ahx(v, v).

On can take a to be the infimum of gx(v, v) over the compact subset (T1 £2 n M)\k
of F £2.

By compactness of K, there is ?7o > 0 such that ifx G K and v e Tx£2 is such that

hx(v, v) $ r]o, then v is in the injectivity domain of exp^. Thus, Ke is well-defined
as soon as e ^ arj0. If r] < rj0, let Vv denote the exponential neighborhood

Vv — {expx(u), x e K, v TxÇl, hx(y,v) ^ rj\.

By continuity of the exponential map of g and compactness of K, for any
neighborhood V of K, there is r\ such that Vv c V, implying that Kai] c V.

Weare leftto prove that Ke is a neighborhood of K. Letx G K. We know that H.x
is an immersed 3-dimensional Lorentzian submanifold of (M, g), and that H.x C K.
Choose U c M an open neighborhood of x, i(r\U —? Co C R" a local chart at x,
and V c H a neighborhood of the identity such that t// maps diffeomorphically V.x
onto an open ball B0 c E0 where E0 is a 3-dimensional subspace of R". We note go
the push-forward by \jr of the metric g on U0- Immediately, B0 is a Lorentzian
submanifold of Uo and we note -V° the push-forward by i\r of the Riemannian
distribution V.

Note xo if/(x). if V C E^ is a small enough neighborhood of the origin,
consider the differentiable map

<p: B0 x V -> U0

(yo,v) expJO(u),
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where the notation exp refers to exponential map of the metric g0- Remark that for

any y0 e B0, we have <A= Eq. It is then immediate that T(Xo,o)<P>s inversible, so

that cp is a local diffeomorphism at (xo, 0). So, there is an open neighborhood Uq of xo
that is contained in the image of (p. By construction, this means that i//"1 {Uf) c KE,

proving that Ke is a neighborhood of x, for any x G K.

The last ingredient leading to a contradiction is the following fact.

Lemma 5.4. The action of H preserves g in a neighborhood of K.

Proof If e is small enough, Ke is relatively compact in £2. Since Ke is (^-invariant,
the functions g(X, Y), g(Z, Z), g(Z, Z), and g(Y, Y) are bounded along the orbits
of <j>'x in Ke. Thus, we can apply Lemma 2.3 to the couples of conformai vector fields

(Z, Y) and (Z, Z) and conclude that X, T, Z are Killing vector fields of (Int(Ke), g),
where Int(/f£) denotes the interior of Ks.

We can now finish the proof. If e > 0 is chosen small enough, KE is included
in the neighborhood of K on which II acts by isometries of g. Therefore, all of H
preserves these Kfs. On the one hand, we always have Ker\U f 0 since K dU.
So, by //-invariance of Ke, we obtain that Ke fl F^2 ^ 0> by definition of U.

But on the other hand, since K fl F^2 0. these compact subsets can be separated

by open neighborhoods. So, there exists a neighborhood V of F^2 such that for small

enough e > 0, Ke fl V 0. This is our contradiction.

5.3. Conclusion. Finally, U M, i.e. for all x e M, H.x fl F^2 0. Dynamically,

this proves that there does not exist a compact //-invariant subset of M in which
all orbits are 3-dimensional, and completes the proof of Proposition 3.1.

At a geometrical level, since we already know that F^2 is contained in a

conformally flat open subset, this proves that (M, g) is conformally flat, and completes
the proof of Theorem 1.3.

A. Appendix

We give here a justification to the following lemma, used for Corollary 1.5.

Lemma A.l. Let k ^ 2 and n ^ 3. If f:su(\, k) —so(2, n) is a Lie algebra
embedding, then the centralizer in 0(2, n) of the image off is compact.

Proof Let be aCartan involution of f) := su(l,k), and fix

f) Of, © u(k - 1) 0 i)±x © f)±2A

a corresponding restricted root-space decomposition. We have dim b±A 2k — 2,

dim t)±2X 1 and the bracket xi)x ^ f)2A is such that fu © f)2y is isomorphic
to the Heisenberg Lie algebra of dimension 2k — 1.
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Choose A e at,. There exists a Cartan involution 0g of g so(2,n) such that

f o6\, dgof. In particular, at, is sent into a Cartan subspace of g with respect to 00,
and up to conjugacy in 0(2, n), we get that ct[, is sent into the Cartan subspace a0

of g described in Section 4.1.2, corresponding to the standard Cartan involution of
matrices Lie algebras. We reuse the notations of this section.

Write f(A) (a,b). Then, using the fact that [/((u), /( Ija] with
dim /(1)2a) 1, we obtain, by considering exhaustively all the possibilities, that

necessarily (a, b) is proportional to (1,1) and that /Ou) C Qß®Qa+ß and / (1}2a)

Qa+2ß (of course, up to exchanging A and —A).

Now, let g G 0(2, n) centralizing /([}). Firstly, since g centralizes /(A), whose

form is known, it has the form

with go GL(2, R), Go 0(n — 2) and g\ V '(gt)_1 V, where V (Î q)-
Secondly, using Ad(g)/(f)2A) /(*)2\), we get g0 G SL(2,R). To finish, we

claim that gr0 is in fact elliptic, what will be enough. To observe this, take a non-zero
element X G 1}^. The matrix block-form of f(X) is

f(x) (°u with u (uv\ ::: Z-D-

Since we have ([20, Prop. 6.52(a)])

lf(X),d0f(X)} f([X, 6t,X}) g /(a„),
and since f(A) is proportional to the diagonal matrix

('•-.J
we obtain that the vectors u (u\,..., un-2) and v (ui,..., u„_2) satisfy
\u I |u| and are orthogonal with respect to the standard Euclidean structure of R"~2.
In particular, they are linearly independent.

Finally, the fact Ad(g)/(2f) f(X) gives goU UGo, meaning

iuG0
au + bv, (a h\where go I •

vGo cu + dv, Ve d

Thus, Go preserves the plane spanned by u and v and induces there the linear
endomorphism g0. Since G0 is orthogonal, we get that g0 is indeed elliptic.
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