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Lorentzian manifolds with a conformal action of SL(2, R)

Vincent Pecastaing

Abstract. We consider conformal actions of simple Lie groups on compact Lorentzian
manifolds. Mainly motivated by the Lorentzian version of a conjecture of Lichnerowicz, we
establish the alternative: Either the group acts isometrically for some metric in the conformal
class, or the manifold is conformally flat - that is, everywhere locally conformally diffeomorphic
to Minkowski space-time. When the group is non-compact and not locally isomorphic to
SO(1,n), n = 2, we derive global conclusions, extending a theorem of [18] to some simple Lie
groups of real-rank 1. This result is also a first step towards a classification of conformal groups
of compact Lorentzian manifolds, analogous to a classification of their isometry groups due to
Adams, Stuck and, independently, Zeghib [1,2,32].

Mathematics Subject Classification (2010). 53A30, 53B30, 57520, 37D40, 37D25.
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1. Introduction

Given a geometric structure on a differentiable manifold M, an interesting problem
consists in relating the algebraic and dynamical properties of its automorphism group
to the geometry of the manifold. The question we are considering in this article is to
infer geometric information from the dynamics of a simple Lie group, which is acting
by preserving the conformal geometry defined by a Lorentzian metric g on M.

We already had investigated this problem in the real-analytic case in [28]. The
analyticity assumption enabled us to develop strong arguments based on the general
behavior of local automorphisms of analytic rigid geometric structures, first described
by Gromov [19], and then revisited by Melnick [23] for Cartan geometries, see
also [30]. However, these methods were not transposable to smooth structures, the
conclusions of Gromov’s theory being weaker for € structures.

More generally, considering real-analytic rigid geometric structures reduces
significantly the difficulty, be it at a local or global scale, and the corresponding
smooth problem can be much more complicated to handle. For instance, a celebrated
theorem of D’Ambra [8] on analytic, compact, simply connected Lorentzian
manifolds, based on properties of local extensions of local Killing fields, is still
open in the €% case.
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The main contribution of the present article is to introduce what we think to be
a new approach in the study of conformal Lorentzian dynamics, valid in smooth
regularity. We no longer use Gromov’s theory, and the corresponding difficulty of
the problem is now treated via the theory of non-uniformly hyperbolic dynamics.

Ferrand-Obata theorem. One of the main motivations for the study of conformal
dynamics of Lie groups in Lorentzian signature comes from the Riemannian setting.
A strong theorem due to Ferrand [10, 11] and Obata [25] asserts that if a Lie group
acts conformally and non-properly on a Riemannian manifold, then this manifold is
conformally diffeomorphic to the round sphere S” or the Euclidean space E" of same
dimension. Thus, the sphere being the conformal compactification of the Euclidean
space, there is essentially one Riemannian manifold admitting a non-proper conformal
action, and of course, this action is the one of a subgroup of the Mobius group on S”
or S\ {p}, with p € §".

This theorem nicely illustrates the rigidity of conformal dynamics and suggests
that analogous phenomenon could be observed on other kinds of rigid geometric
structures, especially conformal structures in other signatures. Non-properness of
the action is no longer adapted in this context and a pertinent dynamical hypothesis
is essentiality.

Recall that two pseudo-Riemannian metrics g and g’ on a manifold M are said to
be conformal if there exists a smooth function ¢: M — R~ such that g’ = ¢g. The
conformal class of g is [g] = {g’, g’ conformal to g}, and a local diffeomorphism
is said to be conformal if its differential preserves [g]. When dim M = 3, the
group of conformal diffeomorphisms of (M, g) is a Lie transformation group, noted
Conf(M, g).

Definition 1.1. Let H < Conf(M, g) be a Lie subgroup. We say that H acts
inessentially on M, or simply H is inessential, if there exists g’ conformal to g such
that H acts on M by isometries of g’. If not, we say that H acts essentially, or simply
that H is essential.

In fact, a Riemannian conformal action is essential if and only if it is non-
proper [11, Theorem A2], and Ferrand—Obata result concerns essential Riemannian
groups. The question that naturally arises is whether or not there exists a unique
pseudo-Riemannian manifold with an essential conformal group, or at least if one
can classifies such manifolds.

It turned out that the existence of an essential group is far less restrictive for
non-Riemannian manifolds, even when the metric is Lorentzian: In [3], Alekseevsky
built many examples of Lorentzian metrics on R” admitting an essential flow. In [12],
Frances provided infinitely many examples of compact Lorentzian manifolds whose
conformal group is essential. See [15,21,22] for other signatures.

However, all the examples of [12] are locally conformally equivalent, and a
problem remains open on the local geometry of compact Lorentzian manifolds, often
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cited in the literature as Generalized or pseudo-Riemannian Lichnerowicz conjecture,
one of its first appearance is in [9, Section 7.6].

Conjecture 1.2. [fa compact Lorentzian manifold has an essential conformal group,
then it is conformally flat.

Recall that a pseudo-Riemannian manifold (M, g) is conformally flat if any point
admits a neighborhood U such that g|y is conformal to a flat metric on U. Let us
point out that the compactness assumption is necessary since most of the metrics
Alekseevsky exhibited in [3, (7.3)] are not conformally flat.

The main result of this article positively answers this conjecture when the manifold
admits an essential action of a simple Lie group. By an averaging argument, it can
be easily observed that any compact group must act inessentially. Thus, we will
deal with actions of non-compact simple Lie groups, and we will especially consider
the “smallest” ones, namely Lie groups locally isomorphic to SL(2, R). Even with
the simpleness assumption on the acting group, the situation is still very rich. For
instance, all the examples of [12] admit an essential action of a Lie group locally
isomorphic to SL(2, R).

Following the dichotomy inessential/essential, let us first recall the case of
isometric actions of SL(2, R).

Inessential actions: simple Lie groups of Lorentzian isometries. Contrarily to
Riemannian manifolds, there exists compact Lorentzian manifolds whose isometry
group is non-compact. Furthermore, it is possible that the isometry group contains a
non-compact simple subgroup. Indeed, consider H a Lie group locally isomorphic
to SL(2, R) and note gk its Killing metric. This metric is Lorentzian and invariant
under left and right translations of H onitself. Thus, it induces a Lorentzian metric g
on any quotient M := H/T" where I' is a uniform lattice of H. Since the left action
preserves g g and commutes with the right action, it induces an isometric action of H
on (M, g).

As Zimmer first observed in [34], such a situation is singular in the sense that
up to finite covers, PSL(2, R) is the only non-compact simple Lie group that can
act faithfully and isometrically on a compact Lorentzian manifold. Deeper in the
description, Gromov considered in [19] the geometry of a compact Lorentzian
manifold (M, g) admitting an isometric action of a Lie group H locally isomorphic
to SL(2,R). He proved that some isometric cover of M is isometric to a warped
product (H ,x N), where H is endowed with its Killing metric, N is a Riemannian
manifold and w: N — R. ¢ is a smooth function.

Finally, the situation for isometric actions of non-compact simple Lie group is
very rigid and well understood. We now consider essential actions.

Essential conformal actions of simple Lie groups. This subject had been prev-
iously investigated in any signature, when the group that acts has high real-rank.
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In [35], Zimmer proved that if a semi-simple Lie group without compact factor
acts on a compact pseudo-Riemannian manifold of signature (p,q), with p < ¢,
then its real-rank is at most p + 1. In [5], Bader and Nevo proved that if the group
is simple and has maximal rank, then it is locally isomorphic to SO(p + 1, k) with
p+1<k<gqg+ 1. Atlast, in [18], Frances and Zeghib proved that in the same
situation, the manifold must be some quotient of the universal cover of the model
space Ein?*? of conformal geometry of signature (p, q), introduced in Section 4.1.1.
See also [4] for analogous results in other parabolic geometries.

Assuming the real-rank maximal restricts a lot the possibilities for the geometry,
and a larger variety of examples appears when this assumption is removed, even in
Lorentzian signature. As we recalled above, there exists infinitely many compact
Lorentzian manifolds with a conformal essential action of a Lie group locally
isomorphic to SL(2, R), and it seems not plausible to classify these manifolds up to
global conformal equivalence ([12]). However, the dynamics of such a group has
implications on the local geometry, and it is the main result of this article.

Theorem 1.3. Let (M",g), n = 3, be a smooth compact connected Lorentzian
manifold, and H be a connected Lie group locally isomorphic to SL(2, R). If H acts
conformally and essentially on (M, g), then (M, g) is conformally flat.

Since sl(2, R) is the most elementary non-compact simple real Lie algebra, it
will not be difficult to observe that this theorem positively answers Generalized
Lichnerowicz conjecture as soon as the conformal group of the manifold contains a
non-compact simple immersed Lie subgroup.

Corollary 1.4. Let (M", g) be a smooth compact connected Lorentzian manifold,
with n = 3, and let G be the identity component of its conformal group. Assume
that g contains a non-compact simple Lie subalgebra. If G is essential, then (M, g)
is conformally flat.

In particular, if a compact connected Lorentzian manifold admits a conformal
essential action of a connected semi-simple Lie group, then it is conformally flat.

The identity component of the conformal group. Zimmer’s result about simple Lie
groups of Lorentzian isometries led to the full classification, up to local isomorphism,
of the identity component of the isometry group of a compact Lorentzian manifold
by Adams, Stuck [1, 2], and, independently, Zeghib [32]. As explained below,
Theorem 1.3 is also a first step in the direction of an analogous classification for the
conformal group of a compact Lorentzian manifold.

The Maobius sphere has an analogous object in non-Riemannian conformal
geometry: the Einstein Universe Ein?*? of signature (p, ¢) (see Section 4.1.1). Itis a
compact projective quadric, naturally endowed with a conformal class of conformally
flat metrics of signature (p, ¢). Its conformal group is isomorphictoPO(p+1,g+1)
and acts transitively on it.
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By a generalization of Liouville’s theorem, if a Lie group H acts on a conformally
flat pseudo-Riemannian manifold of signature (p, ¢), then its Lie algebra h can be
identified with a Lie algebra of conformal vector fields of Ein?*?. In particular, H
can be locally embedded into PO(p + 1,9 + 1).

Thus, by Corollary 1.4, if (M, g) is a compact Lorentzian manifold of dimension
at least 3 and if G is the identity component of its conformal group, then we have
three possibilities for G:

(1) It is inessential, and necessarily belongs to the list of Adams—Stuck—Zeghib
classification.

(2) Itisessential and contains a non-compact simple Lie subgroup, and necessarily it
is locally isomorphic to a Lie subgroup of SO(2, n) since it acts on a conformally
flat Lorentzian manifold.

(3) It is essential and does not contain non-compact simple Lie subgroups, and by
the Levi decomposition, its Lie algebra has the form g ~ £ x rad(g) where £ is a
compact semi-simple Lie algebra and rad(g) is the solvable radical of g.

In upcoming works, we will establish that if rad(g) has a non-Abelian nilradical,
then G is either inessential or locally isomorphic to a subgroup of SO(2, n) (see [27,
Ch. 7] for partial results).

This suggests that essential conformal groups can always be locally embedded
into SO(2,n). The next important question is to determine which Lie subgroup of
SO(2,n) can exactly be realized as the conformal group of a compact Lorentzian
manifold (compare with [2] and [32, Theorem 1.1]).

Completeness of the associated (G, X)-structure. A conformally flat pseudo-
Riemannian metric of signature (p, ¢) naturally defines an atlas of (G, X)-manifold,
where X = Ein? and G = §(J)(p + 1,g + 1). Thus, if a non-compact simple Lie
group acts conformally essentially on a compact Lorentzian manifold, then it acts by
automorphisms of the associated (G, X)-manifold. When the group is too small, the
(G, X)-structure may not be complete.

Indeed, if k > 2, consider R'* the (k + 1)-dimensional Minkowski space and
' = (2id) the group generated by a non-trivial homothety. Naturally, I acts properly
discontinuously and conformally on R"¥ \ {0} and is centralized by the linear action
of SO(1, k). Therefore, SO(1, k) acts conformally on the quotient (R1* \ {0})/T,
usually called a Hopf manifold. 1t is a compact conformally flat Lorentzian manifold,
whose associated (G, X)-structure is non-complete. Nevertheless, the structure must
be complete when other non-compact simple Lie groups act.

Let (M, g) be an n-dimensional compact Lorentzian manifold and G =
Conf(M, g). If G is essential, then its semi-simple Levi factor is either compact, or
locally isomorphic to a Lie subgroup of SO(2, ). In particular, we recover the main
result of [29], where we classified semi-simple Lie groups without compact factor
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that can act conformally on a compact Lorentzian manifold. Up to local isomorphism,
the possible groups are

(1) SO(1,k),2 <k <n;

(2) SU(1,k),2 <k <n/2;

(3) SO(2,k),2 <k < n;

(4) SO(1,k) x SO(1,k"), k. k' = 2, k + k' < max(n, 4).

Theorem 3 of [18] asserts that when a Lie group locally isomorphic to SO(2, k) is
contained in G, then (M, g) is, up to finite cover, a quotient of the universal cover
of Ein'""~! by an infinite cyclic subgroup of SO(2, n). The same conclusion can be
derived from Theorem 1.5 of [4] when we consider actions of SO(1, k) x SO(1, k).
An easy consequence of the main result of the present article is that this observation
is still valid for SU(1, k).

Corollary 1.5. Let H be a Lie group locally isomorphic to SU(1,k), k = 2.
Assume that H acts conformally on a smooth compact connected Lorentzian
manifold (M",g), with n = 3. Then, (M, g) is conformally diffeomorphic to a
quotient T" \ Ein!"~! where I' < SO(2,n) is a discrete group acting properly
discontinuously on Ein!"~ 1.

The proof is very short: By Corollary 1.4, (M, g) is conformally flat and we
can imitate the end of the proof of Theorem 3 of [18]. According to Section 2.4 of
this article, it is enough to establish that if ¢: su(1,k) < so(2,n) is a Lie algebra
embedding, then the centralizer in SO(2, n) of the image of ¢ is a compact subgroup
of SO(2,n). This can be observed by elementary considerations, that we postpone
in an appendix at the end of the article.

Organization of the article. Corollary 1.4 is established in Section 2. Precisely,
we will prove that as soon as G contains an immersed Lie subgroup H locally
isomorphic to SL(2, R), G is essential if and only if H is essential. Once it is proved,
our problematic is reduced to conformal essential actions of such H'’s.

In Section 3, we establish a dynamical property of essential conformal actions.
By a result of [28], H is essential if and only if it does not act everywhere locally
freely. We are now going further and describe minimal closed invariant subsets of the
action, inside the subset where the action is not locally free, noted F<;. The problem
is essentially to prove that if a minimal subset contains exclusively 2-dimensional
orbits, then it is in fact a single closed orbit of dimension 2, which we call compact
conical. Quickly, this question will be reduced to prove that the flow generated by an
hyperbolic one parameter subgroup of H has a periodic orbit. It will be treated by
using Osedelec decomposition and general arguments in non-uniformly hyperbolic
dynamics.

Conformal flatness of M is then established in two times. Firstly, we will prove in
Section 4 that the minimal subsets of F<; previously described admit a conformally
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flat neighborhood. It is inspired by previous methods (notably [13, 17, 18] and [28]).
Immediately, we will obtain that F<, is contained in a conformally flat open set.
Secondly, we will prove in Section 5 that any H -orbit contains a point of F<; in its
closure. This dynamical observation will directly extend conformal flatness to the
whole manifold.

Conventions. In this article, M everywhere denotes a connected smooth manifold
whose dimension is greater than or equal to 3.

We note X (M) the Lie algebra of vector fields defined on M . If M is endowed with
a pseudo-Riemannian metric g, we note Kill(M, [g]) the Lie algebra of conformal
Killing vector fields of M , i.e. infinitesimal generators of conformal diffeomorphisms.
The hypothesis dim M > 3 implies that Kill(M, [g]) is always finite dimensional.

Given a differentiable action of a Lie group G on M, we will implicitly identify
its Lie algebra g with a Lie subalgebra of X(M) via X +— { (;’—t ’::0 e 2heewr

We call sl(2)-triple of a Lie algebra any non-zero triple (X, Y, Z) in this Lie
algebra satisfying the relations [X, Y] =Y, [X,Z]=—-Z and [Y, Z] = X.

If f is a conformal transformation of (M, g), the function ¢: M — R~ such
that f*g = @g is called the conformal distortion of f with respect to g. If ¢’ is a
conformal flow, its conformal distortion is a cocycle A: M X R — R over ¢’, such
that [(¢")*glx = A(x,1)gx forallx € M andt € R.

Ifdim M = 4, (M, g) is conformally flat if and only if its Weyl tensor W vanishes
identically. If dim M = 3, W always vanishes, regardless (M, g) is conformally flat
or not. In this situation, conformal flatness is detected by the Cotton tensor of (M, g).
In this article, by “Weyl—Cotton curvature”, we mean the Weyl tensor or the Cotton
tensor, depending on whether dim M = 4 or not. This tensor will always be noted W'.

Acknowledgements. I would like to thank Sylvain Crovisier for suggesting me the
use of Pesin Theory in the study of a conformal flow. I am also grateful to
Thierry Barbot, Yves Benoist, Charles Frances and Abdelghani Zeghib for useful
conversations around this project.

2. Inessential conformal groups

Isometric actions of non-compact simple Lie groups on compact Lorentzian
manifolds are very well described since the works of Zimmer and Gromov. As
we recalled in the introduction, if H is a non-compact simple Lie group, acting by
isometries on (M, g), Lorentzian compact, then H is a finite cover of PSL(2, R).
Moreover, H acts locally freely everywhere and the metric of M induces on every
orbit H.x a metric proportional to the image of the Killing metric of H by the
orbital map. At last, the distribution orthogonal to the orbits is integrable, with
geodesic leaves, proving that some isometric cover of (M, g) is isometric to a warped
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product H ,, x N, with N a Riemannian manifold, w: N — R-y and H endowed
with its Killing metric.

As it can be easily observed, there are more examples of conformal actions of
non-compact simple Lie groups on compact Lorentzian manifolds, e.g. simple Lie
subgroups of PO(2, n) acting on Ein!""! If they are not isomorphic to a finite cover
of PSL(2, R), then they necessarily act essentially. In the remaining cases, we have:

Proposition 2.1 ([28]). Let H be a connected Lie group locally isomorphic to
SL(2,R) and (M, g) be a compact Lorentzian manifold on which H acts conformally.
Then, H is inessential if and only if H acts everywhere locally freely.

The aim of this first section is to improve this statement. Precisely, we will see
that, when they exist, conformal actions of Lie groups locally isomorphic to SL(2, R)
characterize the essentiality of the full identity component of the conformal group.
Coupled with the conclusion of Theorem 1.3, this observation will directly give
Corollary 1.4.

Recall the following fact.

Lemma 2.2 ([25, Theorem 2.4]). Let (M, g) be a pseudo-Riemannian manifold and
X € Kill(M,[g]) be a conformal vector field. If X is nowhere light-like, then
Vf € Conf(M, g) suchthat *X = X, we have [ € Isom(M, g/|g(X, X)|).

The arguments of the proof of Proposition 2.1 of [28] give the following lemma,
that will be reused later in this article.

Lemma 2.3. Let X and Y be two complete conformal vector fields of a pseudo-
Riemannian manifold (M, g), satisfying [X,Y] = AY for A € Rand g(X, X) > 0.
Let go := g/g(X, X). If the functions go(Y,Y) and go(X,Y) are bounded along
the orbits of ¢, then X and Y are Killing vector fields of go. If moreover A # 0,
then Y is everywhere light-like and orthogonal to X .

Proof. Replacing X by X /A if necessary, we can assume that A € {0, 1}. We still
note g the renormalized metric g/g (X, X) (to clarify notations). In any case, since X
is preserved by the flow it generates, Lemma 2.2 ensures that £x g = 0.

If A = 0, applying Lemma 2.2, we immediately get that Y also preserves g.

If A = 1, we have (¢%)+Yx ="' Y4t (x)» and because {95} C Isom(M, g), we
obtain

Lot (Y, Y) = e* g, (Y,Y) and ot ()X, Y) = elg (X,Y).

Since we assumed the functions {x — gx(Y,Y)} and {x — g,(X,Y)} bounded
along any ¢’ -orbit, we must have

g(¥.Y)=g(X,Y)=0
everywhere. Now, the relation [Y, X] = —Y gives

(¢;')*Xx = X¢§,(x) + tY¢§,(x)'
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Let A(x,?) be the conformal distortion of ¢} with respect to g. Using that ¥ is
light-like and orthogonal to X, we get

A(x7t)gX(X’ X) = gqbg,{x)(X’ X)

By construction, the map {x +— gx(X, X)} is constant equal to 1. This gives
A(x, 1) = 1, ie. ¢% is an isometry of g. O

Proof of Corollary 1.4. Let (M, g) be a compact Lorentzian manifold (recall that
we always assume dim M = 3) and let G be the identity component of its conformal
group. Assume that G contains an immersed Lie subgroup H <— G, locally
isomorphic to SL(2,R). A priori, H may not be properly embedded, but we do
not need to assume it.

We claim that G is inessential if and only if H is inessential. The non-trivial part
of this statement is that if H preserves a metric go conformal to g, then so does G.
Let (X, Y, Z) be an sl(2)-triple in h. Since H acts by isometries on (M, g¢), it acts
locally freely everywhere and, up to a constant positive factor, the ambient metric
induces the Killing metric on the orbits. In particular, the Killing vector field X
satisfies g(X, X) > 0 everywhere. The adjoint representation ad:h — gl(g) is a
representation of sl(2, R) on a finite dimensional space. Since R.X is a Cartan
subspace of h, we have that ad(X) acts diagonally on g. Thus, if (Xq,..., Xy) is
a basis of eigenvectors, by compactness of M we can apply Lemma 2.3 to every
couples (X, X;) and conclude that if g; denotes g/g(X, X)), then £x,g; = 0 for
all i. By connectedness of G, we obtain G = Isom(M, g1)o.

Corollary 1.4 is now immediate: if G is essential, then H acts essentially and
by Theorem 1.3, (M, g) must be conformally flat. We are now reduced to consider
conformal essential actions of Lie groups locally isomorphic to SL(2, R) on compact
Lorentzian manifolds.

3. Minimal compact subsets of an essential action

In the previous section, we recalled that essential conformal actions are characterized
by the fact that they are not everywhere locally free. Naturally, the dynamics in, and
near, the closed subset where the action is not locally free plays a central role in the
proof of Theorem 1.3. This section focuses on its minimal compact invariant subsets.

Precisely, we are now going to establish the first main part of the following
proposition, that will be completely proved at the end of the article.
Proposition 3.1. Let H be a connected Lie group locally isomorphic to SL(2, R).
Assume that H acts conformally and essentially on a compact Lorentzian manifold
(M, g). Let K be a minimal H -invariant subset. Then, K is either

(1) A global fixed point of the action;
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(2) Exclusively formed of 1 dimensional orbits;

(3) A compact, positive-degenerate, 2-dimensional orbit, diffeomorphic to a 2-torus.
This orbit is an homogeneous space of the form

PSL;(2,R)/(Z x U),

where PSLy (2, R) is the k-sheeted cover of PSL(2, R), U denotes a unipotent one
parameter subgroup and the factor Z is generated by an element f normalizing U
and whose projection in PSL(2, R) is hyperbolic.

As for a general €!-action of a Lie group H, the map x € M +> dim H.x is lower
semi-continuous. So, for any x € M and y € H.x, we have dim H.y < dim H.x.
This elementary observation implies that all orbits in a minimal compact H -invariant
subset have the same dimension. If this common dimension is 0, by connectedness
of H, K is reduced to a global fixed point. Thus, Proposition 3.1 essentially says:

(1) There does not exist a compact invariant subset where all orbits have dimension 3;

(2) When all orbits have dimension 2, K is reduced to the compact orbit of the third
point of the proposition.

We leave in suspense the question of compact invariant subset in the neighborhood
of which the action is locally free, their non-existence will be established in Section 5.
This section is devoted to the proof of the second point. Before starting the proof, let
us describe this 2-dimensional orbit more geometrically.

3.1. Compact conical orbits of PSL(2, R). Consider the linear action of SO (1, 2)
~ PSL(2, R) on the 3-dimensional Minkowski space R'2. It acts transitively on the
future nullcone

vN+ = {(xl,)Cz,X3) | JC% = X% +x§a X1 > O}

Consider now the Hopf manifold (M, g) := (RY? \ {0})/(Xid), A > 1. Since the
homothety A id acts conformally on R? and is centralized by SO(1,2), the latter
acts conformally and faithfully on the quotient manifold. In particular, the projection
of the nullcone N * /(A id) is an orbit of PSL(2, R), conformally diffeomorphic to
S! x 8! with the non-negative degenerate metric dx? (if x1 is the coordinate on the
first factor S).

If v € N7, let [v] denote its projection in the Hopf manifold. The stabilizer
of [v] is the group of elements of SOg(1,2) preserving {A"v, n € Z}. So, it is
included in the stabilizer of the line R.v, which is isomorphic to the affine group
ATU < SOy(1,2), where in a suitable basis of R1? starting by v, we note

el o
A+:{( i ),zeR} and U:%((l)i t_,/z),reR;.
et 00 1
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So, the stabilizer of [v] in SOy (1, 2) is the semi-direct product ( /') x U where
_{* +
¥ = ( 1 ,1—1) € A",

Consequently, if U < PSL(2, R) is a unipotent one parameter subgroup and if
f € PSL(2, R) is hyperbolic an normalizes U, we say that PSL(2, R)/({f} x U) is
a compact conical homogeneous space.

More generally, let H be a connected Lie group locally isomorphic to SL(2, R),
let Z denote its center and p: H — H/Z ~ PSL(2,R) the natural covering. We
say that a homogeneous space H/H' is compact conical if Z N H' has finite index
k= 1inZ and p(H)/p(H') is a PSL(2, R)-compact conical homogeneous space.
Note that H/H' is in fact a PSLg (2, R)-homogeneous space.

In any event, a compact conical homogeneous space is diffeomorphic to a 2-torus,
homogeneous under some PSLg(2,R), with k& = 1, and it is endowed with the
PSLg (2, R)-invariant conformal class of non-negative degenerate metrics it inherits
from N T,

3.2. Proof of Proposition 3.1 for 2-dimensional orbits. Let (M, g) be a compact
Lorentzian manifold and H a Lie group locally isomorphic to SL(2,R) acting
conformally on (M, g). Let K C M be a minimal compact H -invariant subset
such that for all x € K, dim H.x = 2. The aim of this section is to prove that K is a
compact conical orbit.

3.2.1. Tangential information. The first step is to observe that the restriction of
the ambient metric to any orbit in K is degenerate. To do so, we reuse the following
proposition whose proof can be found in [28]. It is based on the main result of [4],
an adaptation of Zimmer’s embedding theorem to Cartan geometries.

If x € M, wenote hy = {X € h | X(x) = 0} the Lie algebra of the stabilizer
of x. Differentiating the orbital map H — H.x, we obtain a natural identification
Ty(H.x) =~ b/by, so that h/b, inherits a quadratic form g, from the ambient
metric gx.

Let S < H be either an hyperbolic or parabolic one-parameter subgroup, or a
connected Lie subgroup whose Lie algebra is isomorphic to the affine algebra aff(R).
In fact, S is chosen this way because firstly, such groups are amenable, so that for
every compact S-invariant subset K C M, there automatically exists an S-invariant
finite measure whose support is contained in K, and secondly, the Zariski closure of
Ady (S) in GL(b) does not contain any proper algebraic cocompact subgroup. This
ensures that we are in the field of application of Theorem 4.1 of [4].

Proposition 3.2 ([28, Prop. 2.2]). Let S < H be a subgroup as above. Every closed
S-invariant subset F contains a point x such that Ad(S)byx C by and the induced
action Ad(S) on h/by is conformal with respect to gx.
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Let us choose S a connected Lie subgroup of H locally isomorphic to Aff(R).
Applying Proposition 3.2 with this S and in the minimal compact invariant subset K
we have fixed at the beginning of Section 3.2, we obtain a point xo € K satisfying
the conclusions of the previous proposition. Until the end of Section 3, x, will
always denote this point and we will prove that H.x( is compact conical, implying
K = H.x( by minimality.

Let (X, Y, Z) be an s[(2)-triple of h such that s = Span(X, Y). Since by, is an
ad(s)-invariant line of b, it must be R.Y . Thus, the adjoint action of /¥ on bh/bx, is
given in the basis (Z, X) by

1 0
(- 7)

This action being conformal with respect to gx,, we then have A € R such that
4xo(Z + tX) = e*q,,(Z). Since gy, is the restriction of a Lorentzian metric,
it does not vanish identically, implying that g,,(Z) # 0, and then A = 0 since
9xo (Z +eX ) is polynomial in 7. So, X is isotropic and orthogonal to Z with respect
to gx,. This proves that H.xq is degenerate and that X, gives the direction of the
kernel at xo, implying that g,,(Z, Z) > 0.

3.2.2. Stabilizer of xo. Let Z be the center of H and let Hy, denote the stabilizer
of xo. Note U < H and A < H the one-parameter subgroups generated by Y and X
respectively, so that (Hy,)o = U. In fact, modulo Z, there are only two subgroups
of H admitting U as neutral component. To see this, consider the morphism

Ad: H — Ad(H) ~ H/Z ~ SOy(1,2),

the last identification coming from the Killing form of h. It is injective in restriction
to ATU. The image Ad(Hy,) preserves the line R.Y C b, which is isotropic with
respect to the Killing form of . Thus, H,,, is sent into the stabilizer of R.Y, which is
Ad(ATU) ~ :(‘6 T _“i‘,'flfz), >0, ue R} C SOo(1,2).
00 a
Because dim Hy, = 1, Ad(Hy,)/ Ad(U) is either trivial or isomorphic to Z, since
it is closed in Ad(A*TU)/ Ad(U).

Finally, H,,/Z is either isomorphic to U or to a semi-direct product Z x U,
where Z is a discrete subgroup of A™. The main issue is to exclude the first case,
since H /Hy, will then necessarily be compact conical when H is a finite cover of
PSL(2, R). The case of the universal cover will be treated in Section 3.2.4. Otherwise
stated, we want to prove the existence of 7o > 0 such that gb;? (x9) = xy, i.e. that the
orbit of xo under the flow ¢§( is periodic. To do so, we are going to prove that this
flow is non-uniformly hyperbolic over a compact subset containing xg, with non-zero
Lyapunov exponents having all the same sign — except of course the direction of
the flow. General arguments based on Pesin Theory will then give the existence of a
closed orbit of ¢ .
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3.2.3. A lemma on non-uniformly hyperbolic conformal flows. Let xy denote the
point we have exhibited previously. We define the compact ¢’ -invariant subset

Ko :={¢% (x0), t € R}.

Since we have the general relation (q.')f,()*Yx =@ 4T . (x) and because Yy, = 0, the
vector field Y vanishes on K. Since Ky C K, it implies that the vector fields X
and Z are linearly independent in a neighborhood of K. Moreover, the analogous
relation (¢ )« Zx = e’Z¢fY(x) and the fact that g, (X, X) = g,,(X, Z) = Oimplies
that X is isotropic and orthogonal to Z everywhere in K (since ¢>3( is conformal).
Because X and Z are non-proportional, we get that g,(Z, Z) > 0 for all x € K
and by continuity, we have g(Z, Z) > 0 in a neighborhood of K. Let us note

Q:={xeM|g«(Z,Z)>0and X, # 0}.

In the open subset €2, we note go := g/g(Z,Z). Consider now the Lorentzian
manifold (£2, go): it is preserved by ¢} — even though it is nor H -invariant — and
Ky C Q is a compact ¢ -invariant subset. Moreover, X is an essential homothetic
conformal vector field of (2, go). Indeed, if A(x,#) > 0 is such that [(¢%)*golx =
A(x,1)[go]x, applying this relation to Z,, we get e?’ = A(x,t) for all x €  and
t € R: the conformal distortion of ¢} is non-trivial and uniform on the manifold.

Lemma 3.3. Let (M, g) be a Lorentzian manifold and X be a complete, non-singular
vector field of (M., g) such that (p%,)*g = e* g for all t. Then, any (if any) compact
¢’ -invariant subset of M is a finite union of light-like periodic orbits of the flow.

Proof. Let K C M be a compact ¢’ -invariant subset, and let x be an ergodic
qbe -invariant measure such that Supp(p) C K. We have an Osedelec decomposition
p-almost everywhere TxM = E{(x) @ --- & E,(x), with Lyapunov exponents
X1 < --- < xr. Weclaim that y; = 0, with multiplicity 1.

By continuity of the Lorentzian metric g, for any arbitrary Riemannian norm |||,
there exists C > 0 such that for all x € K and v € TxM, |gx(v,v)| < C|v]2.
Note i the index such that y; = 0 and let x be in the set of full measure where the
Osedelec decomposition holds. If v € E1(x) @ --- @ E;(x) is non-zero, we have

] "
t—1>1{|-noo 7 log ||(¢X)*U||¢g{(x) <0.
But on the other hand,
g¢§((x)((¢f)()*v’ (¢${)*U) = e gx(v,v).
Since we can compare g and ||.|| over K, we obtain

2t + log|gx(v,v)| < log C + 2log ”(Q-";()*U“,pi\,(x)-
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Therefore, we must have g, (v,v) = 0,forany v € E{(x)®---® E;(x). Since g has
Lorentzian signature, its totally isotropic subspaces are at most 1-dimensional. Thus,
we get that E(x) @ --- @ E;(x) is u-almost everywhere reduced to the direction of
the flow, and that this direction is isotropic.

In what follows, we forget about the conformal Lorentzian aspects of our problem
and only consider the differentiable dynamics of ¢’ := ¢} when t — +o00. We
note d a distance induced by a Riemannian norm on M. This flow is non-uniformly
hyperbolic since the Lyapunov exponent 0 has multiplicity 1, all other exponents
being negative. So, we are in the setting of Pesin Theory. For any A €]0, y2[, it gives
us a ¢’ -invariant set of full measure A and for all x € A, a local stable manifold
W5 (x) of codimension 1 since there are no expanding directions, [6, Theorem 7.7.1].
The fundamental property of local stable manifolds that we will use is that there exists
y(x) > O such that for all y,z € W’ (x)and t = 0,

loc

d(¢' (), ¢'(2)) < y(x)d(y,z)e™. 3.1)

Shrinking W} (x) if necessary, we can assume that (3.1) holds for y and z in the
closure of W;*_(x) and that W3 _(x) is transverse to the flow, so that we have (x) > 0
such that

(t,y) €] — e(x), e(x)[x Wig. (x) = ¢ (y)

is a diffeomorphism onto its image BE™, called a flow box at x.

By the Poincaré recurrence theorem, A N K contains recurrent points for ¢%.
Let x be one of them. Let § > 0 such that B(x,8) C BE™ - where B(x,8) is the
ball of radius § with respect to d. Since x is recurrent, we have 7" > 0, as big as we
want, such that @7 (x) € B(x,8/2). By (3.1), we can also assume that T is such that
forall y € W .(x), we have

d (" (x), " (y)) < 8/2.

Thus, ¢ maps W2, (x) into the flow box. Let m.: BE®) — W (x) be the natural
submersion obtained by flowing with times not greater than e(x). Finally, we have a

continuous map

f =m0 WS (x) - WE.(x).

Since 7, is obtained by flowing in a small region, it is a Lipschitz map. So, replac-
ing T by a greater value if necessary and using (3.1), we get that f is a contraction
map. The Picard fixed-point theorem applies and gives a fixed point x” € W3 (x).
This means that o7 7/ (x’) = x’ forsome ¢ €] — &(x), &(x)[: we have found a periodic
orbit of the flow. We claim that, moreover, x € Oy = {¢’(x’), t € R}. Indeed, we
have d(¢'(x), ¢"(x’)) — 0 and x is a recurrent point. It implies that d(x, @,/) = 0,
and then x € @, since @,/ is compact.
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This proves in particular that any minimal ¢’-invariant subset of K is a periodic
orbit. It is not difficult to see that in fact, any point of K has a periodic orbit.
Indeed, if x € K consider the a-limit set a(x) = Nieri@®(x), s <t}. What
we have seen above ensures that some point x~ € «(x) has a periodic orbit and
a stable codimension 1 manifold W .(x7), satisfying (3.1). Thus, x~ admits a

neighborhood V' such that there exists C = 0 such that for any y € V, there
is #(y) € Rsuch that forall t = 0

d(¢'(y), o' (x7)) < ce™.

Let @x— denote the orbit of x~. Let ¢, — 400 be a sequence such that y, =
¢ ™ (x) — x~. If n is large enough, y, € V. So,

d(x,0x-) < d(p" (yn). " O (x7)) < CeHm.

This proves d(x, Ox—) = 0, i.e. x belongs to the orbit of x™.

Finally, the same argument gives that if x € K, then x admits a neighborhood V
suchthat VN K = VN{p'(x), t € R}. By compactness, K contains a finite number
of periodic orbits. 0

3.2.4. Conclusion. If we apply this result to (2, g¢) with the homothetic action
of ¢f,(, we obtain that K is in fact reduced to a periodic orbit of x,. Thus, we have
to > 0 such that ¢2(xo) = xo, i.e. Hy, N AT # {id}. So, Hy,/Z ~ Zx U. In
particular, if the center Z is finite, the orbit is compact conical and we are done as
soon as H # §I:(2, R).

The case of gf,(Z, R). Assume now that H is isomorphic to §£(2, R). We still
have Hy,/Z = (f) x U where f € PSL(2,R) is hyperbolic and normalizes the
unipotent one-parameter subgroup U. Let { € Z be a generator. Let ny — oo be
an increasing sequence such that "% (xo) — x. Since { centralizes X, Y and Z,
and is conformal, we recover at x the same properties as at x: (,b;? K=x,Y=0
and X is isotropic and orthogonal to Zx. The same arguments based on local stable
manifolds at (or near) x ensures that there is a neighborhood V' of x such that, if O
denotes the (closed) ¢’ -orbit of x, then for any y € V, d(¢%(y),Ox) — 0 when
t — —oo. Butsince  centralizes X, for any k, {"* (xo) is a periodic point of ¢%. So,
if k is such that {"% (xo) € V, then the distance between the orbit of "4 (xo) and the
orbit of x is zero, i.e. {"& (xg) belongs to the ¢% -orbit of x for k large enough. So, for
large k, we have #; such that £k (xq) = gbf{f (x). If p =ngqy—ngandt =ty —tg 41,
we obtain {” o % (x9) = xo,1.e. {P.e'X € Hy,. If wehad Hy,NZ = {id}, then we
would have {? € AU where AT and U are the one-parameter subgroups generated
by X and Y. This is not possible since no element in AU centralizes all §]:(2, R).
So, some power {™ fixes xg, proving that the orbit of x¢ is also a compact conical
orbit.
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4. Conformal flatness near orbits with small dimension

A conformal action of H ~,. SL(2,R) on a compact Lorentzian manifold (M, g)
is essential if and only if there exists an orbit of dimension at most 2. Let us note

Fey = {x eM ‘ dim H.x < 2}

It is a non-empty H -invariant compact subset of M. Considering a minimal
H -invariant subset of F<,, what we have done so far proves that F<; contains
either a fixed point, or a 1-dimensional orbit, or a compact conical orbit. We are now
going to prove that such orbits always admit a conformally flat neighborhood.

Proposition 4.1. Let (M, g) be a compact Lorentzian manifold with a conformal
action of a Lie group H locally isomorphic to SL(2,R). Let Hx C M be an
orbit which is either a fixed point, 1-dimensional or compact conical. Then, H.x is
contained in a conformally flat open set U C M.

This proves that there exists a conformally flat open subset in M. In Section 3,
we will extend this to the whole manifold. Except in the first case, the key point is
that each time, the isotropy of the orbit contains either an hyperbolic flow, or just
an hyperbolic element, whose dynamics imposes that a neighborhood of the orbit
is conformally flat. Once the action is described, the vanishing of the Weyl-Cotton
curvature easily follows from previous methods ([17,28]). We will determine the
dynamics of this hyperbolic flow or element by using the Cartan geometry associated
to the conformal structure of the manifold.

Let us mention that in the case of a 1-dimensional orbit and of a compact conical
orbit, the techniques involved are local: we make no use of the global action of H.
In particular, the conclusions are valid in non-compact Lorentzian manifolds.

4.1. Preliminaries on Cartan geometries. Let G be a Lie group, P < G a closed
subgroup and n = dim G/ P.

Definition 4.2. Let M be a differentiable manifold of dimension n. A Cartan
geometry on M, with model space G/ P, is the data of a P-principal fiber bundle
M —> M , together with a 1-form @ € Q! (M g), such that:

(1) Vx € M, w3 ™™ — g is a linear isomorphism ;
(2) Vpe P, (Ry)*w = Ad(p o ;

(3) VA € p, w(A*) = A, where A* denotes the fundamental vector field on M
associated to the right action of e’/

The bundle 7: M — M is called the Cartan bundle and o is called the
Cartan connection. A morphism between two Cartan geometries (M, 1@1,601)
and (M,, Mz, @7) is a_ local d1ffeomorphlsm f:My — M2 such that there exists a
bundle morphism f M1 =1 Mz covering /', and such that f *ws = wq. If the model
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space G/ P is effective, a morphism f uniquely determines the bundle morphism f
covering it ([7, Prop. 1.5.3]). In such cases, we say that f is the lift of f.

At the infinitesimal level, a vector field X € X (M) is said to be a Killing vector
field of the Cartan geometry if its local flow is formed with local automorphisms.
This is equivalent to the existence of - %(A//?) such that . X = X,VpeP,
(R P)*)? = X and Lo = 0. When G/ P is effective, we have a well-defined

correspondence X +— X , and X is called the lift of X.

Holonomy of a transformation admlttmg afixed point. Let / be an automorphism
of a Cartan geometry and X € M. 1t M is connected, then f and a fortiori f, is
completely determined by the evaluation f (X) at xX. If we assume that f(x) = x,
then f preserves the fiber n~1(x) = X.P. In particular, there exists a unique p € P
such that f (X) = X.p. Following [14], we say that p is the holonomy of f at X.
This element p determines f and the principle is that the description of the action
of f near x can be reduced to an algebraic analysis of its holonomy.

If X is a Killing vector field, then X(x) = 0 if and only if X is tangent to the
fiber 7! (x). In this situation, X, := a)g()?g) € p is called the holonomy of X at X.
Equivalently, it can be defined by the fact that e’*# is the holonomy at X of ¢, for
small 7.

4.1.1. The equivalence principle for conformal structures.

Einstein universe. Let (p, g) be two non-negative integers such thatn := p+q = 3.
The Einstein Universe of signature (p, ¢), noted Ein”?, is defined as the projectivized
nullcone

NPELIFIN {0} = {(x1, ..., Xp12) € R"T2\ {0} |
2 2 ) 2
X T T Xpy T X T T X :0}'
It is a smooth quadric hypersurface of RP"!, that naturally inherits a conformal class
[gp.q] Of signature (p,q) from the ambiant quadratic form of R?+1:4+1 [t admits
a double cover S x S — Ein”. By construction, there is a natural transitive
conformal action of PO(p + 1, ¢ + 1) on Ein?*?, and in fact Conf(Ein”?, [g, ,]) =
PO(p + 1,9 + 1). Thus, Ein”*? is a compact, conformally homogeneous space. It
is the model space of conformal geometry in the following sense.

Theorem 4.3 (Equivalence principle). Let (p, q) be a couple of non-negative integers
such that p 4+ q = 3. There is an equivalence of category between the category of
conformal structures of signature (p,q) and the category of normalized Cartan
geometries modeled on Ein?*4.

This result was originally proved by E. Cartan in the Riemannian case. See [31,
Ch. V.] and [7, Section 1.6] for references. The normalization condition is an
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additional technical condition imposed on the Cartan connection of the corresponding
Cartan geometry. We do not give detail since it will not be useful for us.

Since Ein”?, as a PO(p + 1,q + 1)-homogeneous space, is effective, we can
legitimately consider the lifts to the Cartan bundle of conformal maps and conformal
vector fields defined on the base manifold.

4.1.2. Explicit root-space decomposition of so(2, n). The theory of Cartan geom-
etries allows us to reduce technical problem of conformal geometry to algebraic
questions in the model space. From now on, we only consider Lorentzian conformal
structures and the letter G exclusively refers to the Lie group PO(2,n), and P will
denote the stabilizer in G of an isotropic line in R?", so that Ein'"~! ~ G/P as
G-homogeneous spaces.

We adopt here some of the notations of [7, Section 1.6.3]. In a basis of R*" in
which the quadratic form reads

2 2
2xiXp 10+ 2X5 X1 = Xq + o X,

and P is the stabilizer of [1 : 0 : --- : 0], the Lie algebra g = so(2, n) has the form

Z
g:{(?( 4 -%*),aeR,XeR",ZG(R")*,Aeso(l,n—l)}
0 —X* —a

0 0 1
where Z* denotes J /Z, X* = 'XJ and JA + 'AJ = 0, with J = (01,2 0).
0
Abusively, we will write Z (or X) to denote the corresponding elements of g.
This decomposition yields the grading g = g—1 & go D g1 (see [7, p. 118]) and we
have p = go ® gi. Deeper in the description, we can decompose the so(1,n — 1)

factor similarly:

b T 0
so(l,n—1) = %(u B _tT), beR, UeR" 2 TecR">* B eso(n—Z)}.
0 —-tU —-b

Then, we identify a Cartan subspace in so(2, n), with respect to the Cartan involution

O(M)=—-"M:
0= {( bo_b ) a,beR
—a

The corresponding restricted root-space decomposition is summarized below

a go Ya+B Ya+28 0
a  gg 0 Ga+t2p
m g8 Ga+p

a Ja

a
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(the negative root spaces being obtained by transposition). The factor m = 3¢(a) is
isomorphic to so(n —2) and corresponds to the block matrices B in the decomposition
of so(1,n — 1). The simple roots & and B are given by «(a,b) = a — b and
B(a,b) = b, where (a, b) abusively refers to the corresponding matrix of a. The
root spaces g+g and g4 (e g) have dimension n — 2, while g+ and g4y 42p) are
lines. We have g1 = go D go48 D@ Gat28-

4.2. 1-dimensional orbits. Let H be a Lie group locally isomorphic to SL(2, R)
and (M, g) a Lorentzian manifold on which H acts conformally. We assume in this
section that there exists a 1-dimensional orbit H.xq in M. The stabilizer by, is a
2-dimensional subalgebra of sI(2, R). So, it must be isomorphic to the affine algebra
and there exists an s[(2)-triple (X, Y, Z) such that b, = Span(X, Y).

4.2.1. Holonomy of the stabilizer. Let x: M —> Mando € Ql(]\//} , g) denote the
Cartan bundle and the Cartan connection defined by the conformal class [g]. If A4 is
a conformal vector field vanishing at a point x and X € n~!(x), its holonomy at X,
noted A, € p, determines the behaviour of A near its singularity x. However, it is
complicated to relate explicitly, in full generality, the dynamics of A near x to the
algebraic properties of Ay.

We start here by describing the holonomies of X and Y. Since we have here an
s[(2)-triple of conformal vector fields, this question will essentially be reduced to a
classification of morphisms s[(2, R) — so0(2, n).

Let Xy € m~'(xo) and let X, and Y}, denote the holonomies of X and Y at X.
Remark that a different choice of Xy, say Xo.p with p € P, changes X} and Y}, in
Ad(p~H) Xy, and Ad(p~1)Y}. Let Z* € s50(2, n) denote the element w;m(f). Note
that Z* ¢ p since Z(xo) # 0. We claim that (—Xp, —Yy, —Z™) is an sl(2)-triple of
s0(2, n). To see this, we introduce a central object of Cartan geometries: the curvature
form Q := dw + %[a),a)] € Qz(ﬁ,so(Z,n)). As it is done in [4, Lem. 2.1], we can
compute that for all X € M,

0z ([4, B]) + [wz(A), wz(B)] = Qz(4, B),

for any pair of conformal vector fields (A, B). An elementary property of the
curvature form is its horizontality: it vanishes as soon as one of its argument is
tangent to the fiber of M ([31, Ch. 5, Cor. 3.10]). Since X and Y vanish at X, their
lifts are vertical and the previous formula ensures that —Xj, —Y}, and —Z* satisfy
the bracket relations of s[(2, R).

Thus, P being the stabilizer of an isotropic line in R?>” we have obtained a
representation p:sl(2, R) — s0(2,n) such that p(X) := —Xj, and p(Y) := —Y}
admit a common isotropic eigenvector v € R>", which is not an eigenvector for
p(Z) := —Z*. In particular, v is a highest weight vector for p, and it follows that
the subspace V = Span(p(Z)*v, k = 0) is a faithful irreducible subrepresentation
of p of dimension at least 2.
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Orthogonal representations of s[(2, R). The following property reduces the poss-
ibilities for V.

Lemma 4.4. Let nyz:sl(2,R) — gl(Vy) be the d-dimensional irreducible
representation of sI(2,R). Let Q be a non-zero quadratic form on Vg such that
74(s(2,R)) C s0(Q). Then, d is odd and Q is non-degenerate, with signature
((d —1)/2,(d + 1)/2) or the opposite. Moreover, Q is uniquely determined up to
a multiplicative constant.

Since V is a subspace of R?" with dimension greater than 1, we distinguish four
possibilities:
(1) dimV = 2 and V is a totally isotropic plane;
(2) dim V' = 3 and has signature (1, 2);
(3) dim V' = 3 and has signature (2, 1);
(4) dim V = 5 and has signature (2, 3).

We now treat each situation separately. We note Q the quadratic form of R%",
We wish to obtain the form of p(X) and p(Y), up to conjugacy in P, which is the
stabilizer of the line R.v C R%*". So, we will say that a basis (eq,...,en+2) iS
adapted if Q reads

2 2
2X1Xn+2 + 2X2Xp41 + X3 + -0+ Xy

and e; = Av.

Case (1). The orthogonal V= is also a subrepresentation of p and Q is non-negative
on VL, with Ker(Q|, 1) = V. Since Q| L = 0, Lemma 4.4 ensures that any non-
trivial irreducible subrepresentation of p|;, . must be an isotropic plane, i.e. must
coincide with V. Since p|y L is completely reducible, this means that there exists a
subspace E such that p|z = 0and V- = V @ E. Since E is a Euclidean subspace
of R?", E- has signature (2, 2) and is also a subrepresentation of p. If V' is now an
isotropic plane such that E+ = V @ V' and if (e}, €2, €p41, €n2) is a basis of E+
adapted to this decomposition, such that e; = v and the quadratic form reads

2X1xXp+2 + X3 X 41,

then p| 1 has the form

ab 0 0
2aX + V2bY + V2¢Z (§ _g“ v _Ob) € so0(EL) ~ 50(2,2).
—C —d

If we complete this basis with an orthonormal basis of £, we obtain an adapted basis
of R%" in which
1 010 ~ 00
-1 0
0

2p(X) = and  v/2p(Y) =
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Case (2). In this situation, V- is Lorentzian and supplementary to V. We then have
two subcases.

a. If plyy. = 0, then p = (p|y,0) (orthogonal decomposition). The Lorentzian
representation V' has the form

aX +bY +cZ — (% 3 —Ob) € so(V) ~ s0(1,2)

—C —a

inabasis (ey, €3, e54+2) such that e; = v and the quadratic form reads 2x; x,4+2 + x%.
Thus, this basis can be completed into an adapted basis of R2" in which we have

1
0

p(X) = ,
0
-1

b. If p|,L # 0, then it is a faithful representation of s[(2, R) into so(V+) and V+
is Lorentzian. But up to conjugacy in O(V ), this representation is unique. Indeed,
it admits a non-trivial irreducible subrepresentation V' C VL. By Lemma 4.4, the
only possibility is that this subrepresentation is 3-dimensional and Lorentzian. So,
if E = (V @ V')L, then E is Riemannian and p-invariant, so p|z = 0. Thus, p is
conjugate to (p|y, p|v’, 0) (orthogonal decomposition). Thus, if (1, e3, ¢,+2) is the
same basis of V as in Case (2).a, if (¢2, ¢4, €,+1) is a basis of V'’ in which p|y+ has
the form
aX +bY +¢cZ (g gc —02) € so(V') >~ s0(1,2)

and if we choose (es, . .., e,) an orthonormal basis of E, then (eq,...,e,42) is an
adapted basis of R?" in which

p(X) = and p(Y) =
0
Case (3). In this situation, ¥+ is Riemannian. Therefore, p|;,. = 0 and we are in

a situation similar to Case (2).a. So, there is an adapted basis of R%>" in which

1
0

p(X) =

=il
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Case (4). Here, V1 is Riemannian and plyL = 0. In this situation, we have an
adapted basis such that (eq, €2, €3, €,+1, €n+2) is a basis of V' and
2

1
0

p(X) =

4.2.2. Dynamics of X. A fundamental property that can be easily read on the holo-
nomy of a conformal transformation f fixing a point x is its linearizability near x.
Note p the holonomy of f at ¥ € w~1(x), i.e. the unique p € P such that f(ic\) =
X.p. Recall that P can be seen as the (affine) conformal group of R"~!, namely
CO(1,n —1) x R".

Proposition 4.5 ([14, Prop. 4.2]). The conformal diffeomorphism f is linearizable
near x if and only if its holonomy is linear (as an affine transformation), i.e. its action
on RV~ has a fixed point.

Remark that the condition on the holonomy is invariant under conjugacy by
elements of P, so that the choice of X in 7~ !(x) has no influence on it. If f is
linearizable, choose a point X in the fiber so that its holonomy p is in CO(1,n — 1),

i.e. has the form
B (l )
A1

with A >0and M € O(1,n—1). Because p € Gy, it is not difficult to see that Ty f
is conjugate to Ad(p)|4_, (see [14, Proof of Prop. 4.2]).

In the previous section, we have described the possible forms of the holonomy
X, = —p(X) of X at some point in the fiber of xq. In every situation, the holonomy
is linear. So, there exists a neighborhood U C M of xg, a neighborhood U C g—1
of 0, and a diffeomorphism ¥: U — U which intertwines — a priori for small ¢
— the flow ¢ and the action of Ad(e'Xh). Taking derivative at 1 = 0, we obtain
that X |y is conjugate to the infinitesimal generator of Ad(e**#) on U. Since we
know explicitly X3, in each situation, we obtain that in suitable coordinates near xg,
some positive multiple of X reads:

0 X1
X2 X1 2)C2
in Cases (1), (2).b., | : inCases (2).a. (3), and : in Case (4).
Xn—1 Xn 2Xn—1
2%n 3xn

Reducing U if necessary, we obtain that ¢% preserves U for all negative times.
Considering its dynamics when ¢ — —o0, we can already conclude in several cases.
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Strongly stable dynamics. Consider the Cases (2).a., (3), and (4). What we have
recalled above ensures that q’); is conjugate near xg to the flows (for # = 0)

e—t

( ) ((2).a., (3).) and (Case (4)).
e—t -2t

e
—3t

Thus, ¢ has strongly stable dynamics when ¢ — +o00 (see Section 3.2 of [13], the
notion was first introduced by A. Zeghib in [33]). By Proposition 4.(iii) of the same
paper, we get that a neighborhood of x( is conformally flat.

Remark 4.6. These dynamics are prototypes of those studied in Frances’ paper. In
our situation, it is almost direct to verify that the Weyl-Cotton curvature must vanish
in a neighborhood of xy.

Vanishing of the Weyl-Cotton curvature on the Zero set of X. We are left to prove
conformal flatness in Cases (1). and (2).b.. In both situations, the flow ¢3*, ¢ = 0,
is conjugate to

This flow is not strongly stable, but just stable and it is not enough to conclude. So,
we also consider the behavior of the flow of Y near x( and use technical properties
of conformal flows with non-linear and unipotent holonomy established in [17].

In Case (1), the holonomy of Y at xo has the form of a light-like translation of
Ein'""!. By Theorem 4.3 of [17], there exists an open, conformally flat subset
U C M such that xo € U. In Case (2).b., the holonomy of ¥ at xq has the form
of the expression (20), Section 5.3 of [17]. By Section 5.3.4 of the same paper, xq
belongs to the closure of some conformally flat open set.

Remark 4.7. In Section 5 of [17], the authors study conformal vector fields of real-
analytic Lorentzian manifolds. However, the real-analytic regularity is not used in
the proofs of the two technical facts cited above.

So, in both cases, the point x is in the closure of a conformally flat open subset
and by continuity, we get that Wy, = 0. So, for the moment, we have come to the

Partial conclusion. If a point admits a 1-dimensional H -orbit, then the Weyl tensor
vanishes at this point.

Now, let U be the linearization neighborhood of ¢% . The latter admits a segment
of fixed points in restriction to U. Note it A. The holonomy of Y gives us more
information thanks to the notion of development of curves. Even if it could be
explained relatively easily, we will directly use the following property.
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Lemma 4.8 (Follows from [16, Prop. 5.3]). Let x € M and X € n~'(x). Let
y(t) = m(exp(X,1Xo)) € M and yx(t) = nx(e'X0), where nx:G — X = G/P
is the natural projection, Xog € g and t €] — &, e[ with ¢ sufficiently small. Let
f € Conf(M, g) fixing x and having holonomy p at X. If the left action of p on X
fixes pointwisely the curve yx, then the action of f on M fixes pointwisely y.

We can now see that in both cases, Y also vanishes on the curve A.

Case (1). Here, we have a non-zero X_o_»g € g_g—2p such that
[Xha X—a—zﬁ] = 0.
Thus, for all 5,7 € R,

etXheSX_a—Zﬂ _ esX_a_zﬁetXh -

This proves that the curve s > m(exp(Xo,sX_4—2g) coincides with A in a
neighborhood of x¢. Moreover, since Y3 € go, We also have [Yy, X_y4—28] = 0.
So, ¢}, also fixes pointwisely A near x.

Case (2).b. Here, we have a non-zero X_, € g—, such that [X;, X_o] = O.
The same reasoning as above gives that A coincides locally with the curve
s > m(exp(Xo, sX—q)).

We have Yg and Y, g such that
Yp =Yuqp +Yg and [Yet8:¥s] = 0.
Neither & — B nor 28 are restricted roots. So, eX—« and e¥# commute and since

Ad(etXaJrﬁ)X—a =X+ t[Xa+,Ba X—a] + (tz/z)[XoH—ﬁa [Xa+,6a X—a]]

S — "

€gpDdat25
we have

etXa+ﬁ eSXfOt e_tXa+B = eSXftx es(t[Xot+ﬂsX—a]+(I2/2)[Xo¢+,‘}s[Xot+ﬂ>X—cx]])

~— —
S

eP

and finally

et Yy esX_ sX_ o

«“ —¢ p(s, 1),

with p(s,7) € P. According to Lemma 4.8, we get that ¢}, fixes each point of
the conformal geodesic 7 (exp(Xp, sX—q)), that coincides with A in a neighborhood
of X0-

So, in both cases, the vector fields X and Y vanishes on A near xy. Since
dim(H.xg) = 1, any point in a neighborhood of x¢ has an H -orbit of dimension at
least 1. So, reducing U if necessary, we have that for all x € A, dim H.x = 1. By
the previous partial conclusion, we know that W vanishes in restriction to A.
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Conclusion. Finally, 45;(‘ has a stable dynamics when t — +o00, and for all x € U,
¢x' (x) = xoo € A, with Wy, = 0. By Proposition 4(i) of [13], we obtain
that W|y = 0, proving that a neighborhood of x( is conformally flat in Cases (1)
and (2).b. This concludes the proof of Proposition 4.1 in the case of 1-dimensional
orbits.

4.3. Compact conical orbits. Let /7 be a connected Lie group locally isomorphic
to SL(2, R) that acts conformally on a Lorentzian manifold (M, g). Assume that
there exists a point xo € M such that H.xy is a compact conical orbit, with
stabilizer Hy,. We know that Ady(Hy,) ~ Z x U, where U denotes a unipotent
one-parameter subgroup and the factor Z is generated by a non-trival hyperbolic
element normalizing U. Let f € Hy, be in the preimage by Ady of this hyperbolic
element. The action of f in restriction to the orbit H.x, will almost completely
prescribe its dynamics near the orbit, as the following proposition shows.

Proposition 4.9. The conformal diffeomorphism f is linearizable near x,: there
exists an open neighborhood of the origin U C Ty,M and U C M an open
neighborhood of xo, and a diffeomorphism : U — U such that  conjugates Ty, |
and f. Moreover, replacing [ by its inverse if necessary, we have a basis (e1, . .., ey)
of TxyM in which gx, reads 2x1x, + x5 + -+~ + x2_,, Xx, = €1 and

n—1’

1
A 1
Tof = ( R )’
A 1

/'\,2
where 0 < A < 1 and R is a rotation matrix of Span(es, ..., ep—1).

The eventual “compact noise” commutes with the first matrix and has no influence
on the dynamics. The arguments that we developed in [28] in a similar context are
easily adaptable here to the dynamics of f, and it will not be a difficult problem
to prove conformal flatness of a neighborhood of H.xy. Thus, the important point
here is to describe the action of /', and for this we make a crucial use of the Cartan
geometry associated to (M, [g]) to reduce the problem to an algebraic question.

4.3.1. Algebraic description of the holonomy of f. Let (M, g) be a Lorentzian
manifold, and 7: M — M and @ be the Cartan bundle and Cartan connection defined
by [¢]. For all £ € M, we have a linear isomorphism ¢3: Tx M — g/p defined as
follows. If v € Ty M, let 9 € Tz M such that 7, = v. Then, @z (v) is (well-)defined
as the projection of wz(7) in g/p. If Ad denotes the representation of P on g/p
induced by the adjoint representation, then ¢z , = Ad(p~")gz ([31,Ch. 5, Th.3.15]).
There exists a Lorentzian quadratic form Q on g/p, such that Ad(P) < Conf(g/p, Q)
and such that, by construction of the Cartan geometry associated to (M, [g]), the
map ¢z sends g, on a positive multiple of Q.
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We saw in Section 4.1.2 that g admits a grading g = g—1 ® go @ g1, where
p=go®@g,and gy = g—o ® g—o—p D g—a—28. Moreover, P contains a Lie
subgroup Gy with Lie algebra go and such that P ~ Gq x g1 ([7, Prop. 1.6.3]).
Identifying g/p ~ g, the lines g, and g_,_,g are isotropic with respect to Q,
and the orthogonal of the Lorentzian plane they span is g_,_g. We choose a basis of
(e1,...,e,) of g_j such that e; € g—o, g—o—p = Span(ez,....en), € € g_q_2p,
and in which Q reads 2x1x, +x2+---+x2_,. The adjoint action of G preserves g_i
and, in the basis we chose, gives an identification

Go ~CO(l,n —1) = Rog x O(1,n — 1).

Now, let H be a Lie group locally isomorphic to SL(2, R) acting conformally on
(M, g), with a compact conical orbit H.x,. Let f € Hy, be the hyperbolic element
we chose at the beginning of this section and let U = {e'Y, t € R} < H,, the
unipotent one parameter subgroup normalized by f. Diagonalizing Ad(f), we get
X.Z € b such that (X, Y, Z) is an sl(2)-triple, with Ad(f)X = X, Ad(f)Y =
A7lY and Ad(f)Z = AZ, with A > 0, A # 1. Since Y € by, necessarily X, is
isotropic and orthogonal to Z,, and g,,(Z, Z) > 0 (see Section 3.2.1).

Let %o be a point in 7! (xp) and let 15, (X) = ch‘o()?f()). Since Xy, is an
isotropic vector of Ty, M, the projection of 15, (X) in g/p is isotropic with respect
to Q. Since Ad(Gp)|g_, = CO(g—1, Q), it acts transitively on the set of isotropic
vectors of g_1. Thus, there is gg € Gy < P such that

Ad(gO)L:?()(X) = Lf().g() (X) € 0« + p.

Hence., there is a choice of Xy, in the fiber over x, such that 1z, (X) = X—o + X,
and we keep this element Xy. It will be modified in the sequel, but in a way that does
not change the projection of 1z, (X) in g/p.

Let p € P be the holonomy of f at Xy. We have
Adg(p)izy(X) = tzy.p(X) = Lf(}c‘o)(X) = 130 (Adp (f) (X)) = 13,(X).
So, let us define
P¥ = {p' € P | Ad(p)iz,(X) = 15,(X)}.
It is an algebraic subgroup of P, and p € P*o_ Remark that for all pepP,
Pf().p’ - p/Pf()p/—ll
Stabilizer of X_, modulo p. According to the decomposition P = Gg X g, every

element of P can be written p' = goexp(Zy), with gg € Gp and Z; € g;. Now,
[g1,9-1] C go. so Ad(exp(gy)) is trivial on g/p, and

Ad(p') = Ad(go) = Ad(go)lg_,
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if we identify g/p and g_;. Thus, Ad(p’) fixes X_, mod p if and only if Ad(g)
fixes X_,. If we reuse the decomposition of Section 4.1.2, we see that an element g
fixing X_4 has the form

x
x
g0 = ( £ )eXP(Tﬂ) @.1)
=1
withx >0,k € M >~ O(n —2) and Tg € gg.

Conformal distortion. The group po being algebraic, we can consider the Jordan
decomposition of p: it decomposes into a commutative product p = pppupe of
hyperbolic, unipotent and elliptic elements of P*¢ ([24, Section 4.3]). Write

ph=gaexp(Z),  pu=ghexp(ZY). pe = giexp(Z9).

Since Ad: P — CO(g/p, Q) is an algebraic morphism, gg, g, and g§ are respectively
hyperbolic, unipotent and elliptic elements of G. Thus, we necessarily have

1 1
1 1
g0 = ( ku )exp(Té‘ ), & = ( ke )exp(TE),
1 1

with kp, k,, and k. respectively hyperbolic, unipotent and elliptic elements of O (n—2).
Thus, we have k;, = ky, = I,,—». Moreover, the map g5, conjugates Ty, / to Ad(p).

We deduce that x,;z is the conformal distortion of Ty, f. We have A > 0, A # 1

such that Ad(f)Z = AZ, implying Tx, f-Zx, = AZx,. Since gx,(Z, Z) > 0, the
conformal distortion of f at xq is equal to A2. This proves that x;, = A~! # 1.

Replacing f by its inverse if necessary, we assume that A €]0, 1].

Hyperbolic component. If we let Tﬁ0 =1/(1 - A)Té’ and pg = exp(Tf?), we
obtain that

l_l
_ A1
papnpp ' = In—zl eXP(Ad(Pﬁ)Z{')
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This choice of conjugacy comes in fact from an interpretation of P as the (affine)
conformal group of R'*~1. Now, let (x1, ..., x,) be the coordinates of Ad(pg)Z™2,
seen as a vector of (R™)*, i.e

0 x1 X2 Xp—1 Xn 0

00« 0 0 —x
0 —x3
Ad(pp)Zt = o
0 —xp—1
0 —xi
0

Then, the 2 x 2 block in the upper left corner of pg pj, pﬁ_l is

A1 A_IJCI
o AV )

~1 is R-split, this block matrix must be R-split, and we get x; = 0.

Since pg prpp
So, if we choose

1 _ 1 1 1
Zl — (0, '1___'xx2,. . ey 1_;\_)('”_1, l_lz.xn)

and let p; = exp(Z7) then

-1 -1 _ A1
PiPBPhPB P11 — In—z/l ,
A

with pg € exp(gp) and p1 € exp(ga+p D Ga+2p) C exp(g1). Note that the adjomt
actions Ad(pﬁ) and Ad(p;) on g/p fix the projection of g_o. So, let us replace X,
by Xo.(p1Pg)~ 1. The component of tz,(X) on g is still X_4 and py has now the
diagonal form we have exhibited above.

Trivial unipotent component. As we observed before, the decomposition of p,
according to P = Go X g1 is py = exp(T”)exp(Z}‘). Let us decompose
Zlu — Zu + Zu+ﬁ + Za+2ﬂ’

the indices indicating in which root-spaces the elements are. Using the fact that
pr € A = exp(a), we see that

prpupy' = exp (Ad(p)Tg) exp (Ad(pr)(Zy + Zy g + Zt 1 2p))
=exp(A7'TH).exp(Zy + 1712} 5 + )L_zza+2ﬁ)
Since pjp and p, commute, by uniqueness of the decomposition P = Gy x gy, we

get
T§ =0, Z¥.5=0, and Z% ;=0

So, p, = exp(Z}).
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We finally consider Ad(p, ) X_, modulo g;. Let us write
1z0(X) = X_q + Xo mod g1,
where Xy € go. On the one hand, we have
Ad(pu)iz, (X) = 1z,(X).
Since p, € exp(g1), we have
Ad(py)Xo = Xo mod g;.

Thus,
Ad(pu)lfo (X) = Ad(Pu)X—a + Xo mod g1,

and we obtain
Ad(py)X—¢ = X—u mod g;.

But on the other hand, since g+, has dimension 1, Z% is a multiple of 6X_,. So, if
ZY = nbX_, with u € R, by Proposition 6.52(a) of [20], we have

[X—C!! Z(lx‘] - /’LBQ(X—(I’ X—L‘!)Aaa

where A, € a is the element associated to « by the Killing form B and
Bg = —B(Q.,.). So,

Ad(e%)X o = X_g + [Z}, X—a] +3 [Z4,[Z¥, X ]

-

€a €0o

=X o —uBg(X—y, X_o)Ay, mod g;.

So, we must have u = 0, i.e. p,, = id.

Elliptic component. Consider now P as the conformal group of R*~1. Since p,
has a diagonal form, its conformal affine action fixes a vector vy € R1"*~1. As for
any elliptic element of SL(N, R), the set {(p.)", n € Z} is relatively compact in P.
Therefore, the orbit of vy under iterations of p, is also relatively compact. Consider
the convex hull

= Conv( {(pe)”.vo, ne Z}) R

It is a compact, p.-invariant, convex subset of R1""~1. Since p, acts affinely, it has
a fixed point in C. Moreover, p, commutes with p, and fixes vg. So, it fixes every
point of C. Thus, p, and p;, admit a common fixed point in R1"*~1: it is then a fixed
point for p = py, pe, proving that f is linearizable near xg.
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Derivative of f'. As we recalled above the derivative Ty, f is conjugate by ¢z, to
the adjoint action Ad(p) on g/p, which is the commutative product Ad(py)Ad(pe)-
In the basis of g—; we choose at the beginning of this section, we have

1
A

Ad(pp) = "
A
,12

the eigenspaces for 1 and A? being the projections of g, and g—a—2p respectively.
Since Ad(p.) commutes with Ad(py), it preserves the lines g_, mod p and
g—g—2p mod p. The standard form of linear Lorentzian isometries fixing two
isotropic lines finally gives the desired form of Ad(p.), and then for Ty, f which is
conjugate to Ad(py)Ad(p.). Thus, Proposition 4.9 is proved.

4.3.2. Vanishing of the Weyl-Cotton tensor near xy. Now that the action of f
near xq has been determined, we can prove that x is contained in a conformally flat
open subset. The arguments are basically the same as those of Section 4.1 of [28].
We summarize them briefly. The first step is to see that the Weyl curvature vanishes in
restriction to the orbit of xo. We note (e, . .., e,) the basis given by Proposition 4.9
and #¢ = Span(es, ..., e,). Using the fact that the (3, 1)-Weyl tensor is f -invariant
and considering the contraction rates, we see that

(1) Wy (H,3,3) =0;
(2) Wy (TxyM, TxyM, Tx,M) C K.
The point is then the following fact.

Lemma 4.10 ([28, Lemma 4.5]). Let #; and ¥, be two degenerate hyperplanes
of Tx, M. Assume that they both satisfy points 1. and 2. above. Then,

2%1 %Jez:> Wx() :0.

So, if we had Wy, # 0, then we would have T ¢}, H = H because the properties
involved in the previous lemma are conformal. Thus, the derivative T,¢} would
preserve J NTx,(H.xp), whichis a space-like line in 7'y, (H .x¢). Itis thenimmediate
to see that this is not possible, proving that W|g ,, = 0.

Finally, the fixed points of f near xo form a segment A, that coincides with the
orbit {¢% (xo)}. In particular, W|a = 0, and we are in a discrete version of the
conformal dynamics exhibited in Cases (1) and (2).b. in Section 4.2.2. Similarly,
we can apply Proposition 4(i) of [13] to conclude that a neighborhood of x is
conformally flat. This proves Proposition 4.1 in the case of compact conical orbits.
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4.4. Fixed points. Let (M, g) be a compact Lorentzian manifold with a conformal
action of H ~,. SL(2,R). We assume here that there exists a point xq fixed by
all elements of H, and prove that a neighborhood of x( is conformally flat. To do
this, we will use the following property, that is essentially based on the linearizability
of conformal actions of simple Lie groups near a fixed point. Its proof uses similar
arguments as in [28, Section 3]. In Corollary 3.4 of the same article, we observed
that necessarily H ~ PSL(2,R) >~ SOy(1, 2).

Proposition 4.11. Let xo be a fixed point of the action. There exists an open
neighborhood W of xo and W' C W an open-dense subset such that for all x € W,
dim H.x = 0 or 2 and for all x € W', H.x does not contain fixed points.

Assume that this proposition is established. Let x € W’. According to Section 3,
any minimal H -invariant subset K C Hx C F<5 is either a compact conical orbit,
or a circle. In any event, thanks to Sections 4.2 and 4.3, there exists x’ € H.x
admitting a conformally flat neighborhood V. If h € H is such that h.x € V,
then A~1V is a conformally flat neighborhood of x.

This proves that W'’ is conformally flat, and by continuity of the Weyl-Cotton
curvature, all of W is conformally flat. Thus, it is enough to prove Proposition 4.11
to conclude that a neighborhood of x¢ is conformally flat.

Local orbits near a fixed point. To do so, we reintroduce the notations of [28,
Section 3.3]. We fix a basis (ey, ..., ep) of Ty, M such that g, reads

_x% +x%_|_..‘_|_xr2l
and such that the isotropy representation has the form
A €8S0y(1,2) — (4 id) € SOy(1,n —1).
Let E denote Span(ey, ez, e3). By the linearizability of conformal actions of simple
Lie groups fixing a point, there exists U C U’ C E and 'V C EL neighborhoods of
the origin, a neighborhood W of x, in M, a neighborhood Vg C H of the identity

and a diffeomorphism ¢: U’ x V — W C M such that ¥(0,0) = xo, Vh € Vg,
Pxo (MU Xx V) C U xVand

Y(u,v) € U x V, ¥ (pxy(h) (1, v)) = h.ypr(u, v). (4.2)

Reducing the open sets if necessary, we assume that U, U’ (resp. V) are open
balls in E (resp. E1) with respect to x? + x2 + x3 (resp. x2 + -+ + x2). Note
g = —x? + x3 + x3, the quadratic form induced by gx, on E.
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We claim that it is enough to set
W' =y ((UN{g #0}) x V),

i.e. the union of all local H-orbits of type H?> and dS?, with the terminology of
[28, Section 3.3]. The point is that Lemma 3.7 of the same paper is in fact valid for
any local orbits, not just local H -orbits of type H?. Let us explain how it can be
adapted to local orbits of type dS?. The minor difference is that contrarily to S,, Sy,
has index 2 in its normalizer in SOy(1, 2). If note

ho = (' g,) € SOo(1,2),

where Rg denotes the rotation of angle 6 in Span(ex, e3), then the normalizer Ng (Sy,)
is spanned by %, and Sj,. We reuse the notation

YveV, As()= {1//(se3,v), 8 G]O,a[},

where ¢ denotes the radius of the ball U C E. Every local H-orbit of type
dS? in W meets a unique Ag(v) at a unique point. For all s and v, the circle
{px,(ho)(ses,v), 6 € R} is included in U x V. So, property (4.2) above ensures
that for all 8, hgy(se3,v) = Y(shges, v). In particular, h, does not fix any point
x € Ag(v), proving that H, = S;,. The proof of Lemma 3.7 of [28] is now directly
adaptable do local orbits of type dS>.

Let x € W' and let x; be a fixed point. Of course, the local description of the
action of H that we have made above is valid in the neighborhood of x;. Let W;
denote an analogous neighborhood and assume that (H.x) N W; # 0. If yisa
point in this intersection, then its stabilizer is conjugate either to S, or Sp. It implies
that y belongs to a local orbit of type H? or dS? in W;. By Lemma 3.7 of [28], we
get that (H.y) N W is reduced to the local H -orbit of W; containing y. Since this
local H -orbit is a locally closed submanifold of Wj, which does not contain x1, we
necessarily have x; ¢ H.x. This finishes the proof of Proposition 4.11, and hence of
Proposition 4.1.

5. Extending conformal flatness everywhere

Let H be a Lie group locally isomorphic to SL(2,R) acting conformally and
essentially on a compact Lorentzian manifold (M, g). We still note F<, the compact,
H -invariant subset of M where the H -orbits have dimension at most 2. We have
seen with Proposition 4.1 that any minimal closed H -invariant subset of F<, admits
a conformally flat neighborhood. It is in fact immediate that all of F<; is contained
in a conformally flat open subset: if x € F<,, then H.x C F<, and contains a
minimal H -invariant subset K,. If V' is a conformally flat neighborhood of K,
there is & € H suchthath.x € V,and h~'V is a conformally flat neighborhood of x.
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5.1. Orbits whose closure meets F<>. We are now going to refine this observation.
Define

U={xeM|HxnN Fg, # 0}.

Lemma 5.1. U is an open, conformally flat neighborhood of F<,.

Proof. By considering a minimal H -invariant subset in H.x N F<, the same
argument as above immediately gives that any point in U admits a conformally
flat neighborhood. The important point here is that U is open. We denote by
Int( F<>) the interior of Fgs.

Let x € U \ Int(F<3). The closed H -invariant subset H.x N Fgj is non-empty.
According to Section 3, it must contain an orbit /{.x that is either a compact-conical
orbit, a 1-dimensional orbit or a fixed point of H. Since the interior of Fg<; is
H -invariant, we have xy € dF<,. By Proposition 4.11, in the neighborhood of any
fixed point, every H -orbit is either another fixed point or a 2-dimensional orbit. So,
the set of fixed points is included in Int( F<3), proving that the H -orbit of the point x
is either compact-conical or a 1-dimensional orbit. By Sections 4.3 and 4.2, we know
that there is X € b hyperbolic such that:

* Either {¢, (xo), ¢ € R} is a non-singular periodic orbit of X and if z > 0 is such
that qﬁé‘(’ (x0) = Xxo, then ¢;? is linearizable near x¢ and conjugate to
1

A 1
; - ( R ) ’
A 1 1
where A €]0, 1] and R is a rotation matrix. The fixed points of gb;}’ in the linearization

neighborhood coincide with the circle A = {¢% (xo), ¢ € R}. In particular, we have
A C Fg; since it is contained in H.xp and dim H.xoy = 2;

* Or X(xo) = 0 and ¢% is linearizable near x, and is conjugate to one of the
following linear flows:

1 et
e_t e—t e—2t
s ( ' e—‘) l e 2!
e—2t e-—3t
In the first situation, if y is a point in the linearization neighborhood of xg, then
1
(¢;O(J’)) —— You € A C Fes,
n—>00

proving that this neighborhood of x is included in U.

In the second situation, when t — o0, either ¢f¥ (y) — xo for any y in the
linearization neighborhood, or ¢% (y) — yoo € A’, where A’ denotes the zero-set
of X. Of course, A’ C F<,, proving y € U.
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Thus, in any case, the point xy is in the interior of U. Since U is H -invariant, we
also have x € Int(U). Finally, U \ Int(F<;) C Int(U), proving that U = Int(U). [J

Our aim is to prove that U = M. So, until the end of this section, we assume
that U # M, and consider K := dU. Since U is H-invariant, K is non-empty,
compact and H -invariant. We are going to prove that the dynamics of ' must be
stable near K. This will be in contradiction with the fact that there are points in U
arbitrarily close to K.

5.2. Stability of H -orbits in a neighborhood of K. Since U isopenand F<, C U,
we have K N F<; = @, i.e. H-acts locally freely in a neighborhood of K. This
observation implies that for any hyperbolic X € b, the corresponding conformal
vector field is space-like in a neighborhood of K, as the following lemma shows.

Lemma 5.2. Let (M, g) be a Lorentzian manifold on which H acts conformally. Let
K C M be a compact subset such that H acts locally freely on K, i.e. hy = 0 for
all x € K. Assume that there is an hyperbolic element X € b >~ sl(2, R) whose flow
preserves K. Then, X is space-like in a neighborhood of K.

Proof. Let AT := {e'*},cx < H and consider the compact A*-invariant subset
Kﬂ{x eM | gx(X,X) SO}.

Assume that this subset is non-empty. By Proposition 3.2, it must contain a point xg
such that Ady (A1) C Conf(h, gx,). Wenote a; := Ady (e*X). Since a; is linear and
conformal with respect to g, there exists A € Rsuchthata; g, = e*qy,. Since X
is hyperbolic, there exists ¥ and Z such that a,(Y) = e'Y and a,(Z) = ¢ Z. We
now use the following observation, which was proved in [28, Lemma 2.3].

Fact. Let g be an Ad(e’*)-conformally invariant sub-Lorentzian quadratic form on b.
Then, g is Lorentzian, X is space-like and orthogonal to Y and Z, which are both
light-like.

Thus, we get that g, (X, X) >0, contradicting xo € KN{xeM | g, (X, X)<0}.
Hence, X is space-like on K, and necessarily this is true in a neighborhood of K. [

Let us fix (X, Y, Z) an sl(2)-triple in h. By Lemma 5.2, we know that X must
be space-like in a neighborhood of K. If wenote V' = {x € M | g.(X, X) > 0},
let g¢ denote the metric g/g(X, X) on V. By compactness of K C V, the functions
go(Y,Y),g0(Z,Z), go(Y, X) and go(Z, X) are bounded over K. Therefore, for any
x € K, Y, and Z, are isotropic and orthogonal to X (see the proof of Lemma 2.3).
So, for all x € K, the subspace Span(Xy, Yx, Z) is Lorentzian.

Hence, H acts locally freely with Lorentzian orbits in a neighborhood of K. So,
let us define the open set

£} = {x € M | dim(H.x) = 3, H.x Lorentzian, X space-like}.

We have proved that K C 2. Remark that 2 is a priori only ¢ -invariant.
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Let us consider the Lorentzian manifold (€2, g). This manifold is endowed with an
sl(2)-triple (X, Y, Z) of conformal vector fields, everywhere linearly independent,
with Span(X, Y, Z) Lorentzian and such that X is space-like and complete. To
simplify notations, we assume that g has been renormalized by g(X, X) > 0, so that
¢ € Isom(Q2, g) by Lemma 2.2. Define N to be the distribution in € orthogonal
to Span(X, Y, Z). It has codimension 3, is ¢3(~invariant, and for all x € Q, Ny isa
Riemannian subspace of 7, €2.

Finally, we define for small enough ¢ > 0
K. = {exp,(v), x € K, v € Ny, gx(v,v) <&}

(The notation exp refers to the exponential map of the metric g.)

Lemma 5.3. If¢ is small enough, K is a (well-defined) ¢fx—invariant neighborhood
of K, and for any neighborhood V of K, there is ¢ > 0 such that K, C V.

Proof. Let h be some auxiliary Riemannian metric on . We note T'!'Q the unit
tangent bundle with respect to 2. By compactness of K, there exists & > 0 such that

Vx € K, Vv € Ny, gx(v,v)=ahy(v,v).

On can take « to be the infimum of g, (v, v) over the compact subset (T'Q N N)|g
of T Q.

By compactness of K, thereis ng > O suchthatif x € K and v € T, is such that
hx(v,v) < 1o, then v is in the injectivity domain of exp,. Thus, K, is well-defined
as soon as € < ang. If n < no, let V3, denote the exponential neighborhood

Vy = {exp,(v), x € K, v € Ty, hyx(v,v) < n}.

By continuity of the exponential map of g and compactness of K, for any
neighborhood V' of K, there is n such that V;, C V, implying that K, C V.

We are left to prove that K is aneighborhood of K. Letx € K. We know that H.x
is an immersed 3-dimensional Lorentzian submanifold of (M, g), and that H.x C K.
Choose U C M an open neighborhood of x, ¥: U — Uy C R” a local chart at x,
and V' C H aneighborhood of the identity such that ¥ maps diffeomorphically V.x
onto an open ball By C E, where E| is a 3-dimensional subspace of R”. We note g
the push-forward by ¥ of the metric g on Uy. Immediately, By is a Lorentzian
submanifold of Uy and we note N° the push-forward by ¥ of the Riemannian
distribution N .

Note xo = ¢¥(x). If V C EOl is a small enough neighborhood of the origin,
consider the differentiable map

¢: By xV — U

(Yo, v) = expy, (v),
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where the notation exp refers to exponential map of the metric go. Remark that for
any yo € By, we have JV}?O = Ej. Itis then immediate that T(y, o) is inversible, so
that ¢ is a local diffeomorphism at (xo, 0). So, there is an open neighborhood U of x
that is contained in the image of ¢. By construction, this means that ! (Ug) K,
proving that K, is a neighborhood of x, for any x € K. ]

The last ingredient leading to a contradiction is the following fact.

Lemma S5.4. The action of H preserves g in a neighborhood of K.

Proof. 1f ¢ is small enough, K is relatively compact in Q. Since K is ¢ -invariant,
the functions g(X,Y), g(X, Z), g(Z, Z), and g(Y, Y) are bounded along the orbits
of ¢% in K. Thus, we can apply Lemma 2.3 to the couples of conformal vector fields
(X,Y)and (X, Z) and conclude that X, Y, Z are Killing vector fields of (Int(K;), g),
where Int(K,) denotes the interior of K. (]

We can now finish the proof. If ¢ > 0 is chosen small enough, K is included
in the neighborhood of K on which H acts by isometries of g. Therefore, all of H
preserves these K,’s. On the one hand, we always have K, N U # @ since K = dU.
So, by H -invariance of K, we obtain that K, N F<, # @, by definition of U.

But on the other hand, since K N F<, = @, these compact subsets can be separated
by open neighborhoods. So, there exists a neighborhood V' of F<; such that for small
enough ¢ > 0, K, NV = @. This is our contradiction.

5.3. Conclusion. Finally, U = M, i.e.forall x € M, H.x N F<; # @. Dynamic-
ally, this proves that there does not exist a compact H -invariant subset of M in which
all orbits are 3-dimensional, and completes the proof of Proposition 3.1.

At a geometrical level, since we already know that F<, is contained in a
conformally flat open subset, this proves that (M, g) is conformally flat, and completes
the proof of Theorem 1.3.

A. Appendix

We give here a justification to the following lemma, used for Corollary 1.5.

Lemma A.l. Letk = 2 and n = 3. If f:su(l,k) — s0(2,n) is a Lie algebra
embedding, then the centralizer in O(2,n) of the image of [ is compact.

Proof. Let 6y be a Cartan involution of b := su(1, k), and fix
b=ap@ulk —1) ®bhsy @ bhioa

a corresponding restricted root-space decomposition. We have dimbhy,; = 2k — 2,
dim b4,y = 1 and the bracket b x hy — b,y is such that h @ by, is isomorphic
to the Heisenberg Lie algebra of dimension 2k — 1.
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Choose A € ay. There exists a Cartan involution 6y of g = s0(2,n) such that
foby = 60 f. Inparticular, ay is sent into a Cartan subspace of g with respect to 6,
and up to conjugacy in O(2,n), we get that a; is sent into the Cartan subspace ag
of g described in Section 4.1.2, corresponding to the standard Cartan involution of
matrices Lie algebras. We reuse the notations of this section.

Write f(A) = (a,b). Then, using the fact that [ f(h;), f(hs] = f(hza), with
dim f(h3) = 1, we obtain, by considering exhaustively all the possibilities, that
necessarily (a, b) is proportional to (1, 1) and that f(h,) C gg @ ga+p and f(h2y) =
ga+2p (of course, up to exchanging A and —A).

Now, let g € O(2, n) centralizing f (). Firstly, since g centralizes f(A), whose
form is known, it has the form

80
e ( o )’

with go € GL(2,R), Go € O(n —2) and g1 = V '(g1) "'V, where V = (9 }).

Secondly, using Ad(g) f(h23) = f(bh2y), we get go € SL(2,R). To finish, we
claim that g is in fact elliptic, what will be enough. To observe this, take a non-zero
element X € b,. The matrix block-form of f(X) is

a0 =(""-ty), wihu = (4 43).
Since we have ([20, Prop. 6.52(a)])
[f(X), 05/ (X)] = f([X, 05 X]) € f(ap),

and since f(A) is proportional to the diagonal matrix

1
1
0 )
~1
-1

we obtain that the vectors u = (U1,...,Up—2) and v = (v1,...,Vy—3) satisfy
|u| = |v| and are orthogonal with respect to the standard Euclidean structure of R* 2.
In particular, they are linearly independent.

Finally, the fact Ad(g) f(X) = f(X) gives goU = UGy, meaning

uGy = au + bv, (a b)
where gg = i
vGy = cu + dv, c d

Thus, G preserves the plane spanned by u and v and induces there the linear
endomorphism gg. Since G is orthogonal, we get that g is indeed elliptic. L]
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