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Strongly dissipative surface diffeomorphisms

Sylvain Crovisier* and Enrique Pujals**

Abstract. We introduce a class of volume-contracting surface diffeomorphisms whose dynamics
is intermediate between one-dimensional dynamics and general surface dynamics. For that type
of systems one can associate to the dynamics a reduced one-dimensional model and it is proved
a type of C°°-closing lemma on the support of every ergodic measure. We also show that this
class contains Hénon maps with Jacobian in (—1/4, 1/4).

Mathematics Subject Classification (2010). 37D10, 37E30, 37D25, 37C25, 37D45.
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1. Strong dissipation

We would like to highlight two main topics in dynamical systems: the C°°-closing
lemma and the search of reduced dynamical models that encapsulates the main

properties of an open class of systems.
The first one was posed by Poincaré and refers to the problem of finding periodic

orbits nearby recurrent points either for a system or a C-perturbation. It was solved

in [19] for the C1 -category. In higher topology it remains widely open except
for certain particular classes of maps: rational maps of the Riemann sphere [8,

10], one-dimensional real endomorphisms [22], and recently Hamiltonian surface

diffeomorphisms [1], For general surfaces diffeomorphisms, it remains completely
open.

The second topic is present in the whole theory of dynamics and consists in looking
for simplified models that could extract the main features of systems. That approach

goes from finding discrete topological representations using symbolic dynamics, first
return maps for continuous dynamical systems and reducing the dimension of the

space.
Related to that problem, Poincaré realized that flows may be reduced to discrete

systems using one-codimensional sections. For instance, the Hénon type map
(x, >') ]—>(!— ax2 + y,bx) appears naturally [9] as the first return map of some

*S.C. is partially supported by the ERC project 692925 - NUHGD.
**E.R.P. is partialy supported by CNPq.
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three-dimensional flows. In case the flow is dissipative, the corresponding invertible
system is area contracting, which heuristically means that the essential dynamics is
confined to a one-dimensional subspace; so the initial dynamics may share some
essential features of the dynamics of the interval map /(x) 1 — ax2. In practice,
the two-dimensional systems are much more difficult to describe: much less is known
for the Hénon map than for the quadratic family. Moreover, many features that are

not detected by the one-dimensional reduction have no one-dimensional counterpart:
for instance there exists a residual set of Hénon maps exhibiting infinitely many
periodic attractors with unbounded period (Newhouse phenomenon), but generic
smooth one-dimensional maps have an upper bound on the period of the attracting
periodic points.

Here, we introduce a new class of dissipative surface diffeomorphisms that we
call strongly dissipative diffeomorphisms that captures certain properties of one
dimensional map but keeps two-dimensional features showing all the well known

complexity of dissipative surface diffeomorphisms. The dynamics of the new class, in

some sense, is intermediate between one-dimensional dynamics and general surface

diffeomorphism. Moreover, under some hypothesis on the relation of the Jacobian

with the C1 -norm and the oscillation of the Jacobian in the attractor, it is proved that
the strong dissipativeness is an open property (see Theorem 1) and it is satisfied by

diffeomorphisms close to one dimensional endomorphisms, proving in particular, that
the new class is also non empty (see Theorem 2). The class of strongly dissipative
surface diffeomorphisms may be compared to the class of moderately dissipative
complex Hénon maps considered in [16]: using different tools, an upper bound on
the Jacobian is used in order to control stable manifolds.

The theory of real one-dimensional dynamics is leveraged on the order structure of
the interval, a feature that does not exist for the plane. However, under dissipativeness,
almost every point of any ergodic measure has a stable manifold that could help "to
order the trajectories"; in fact, the strong dissipativeness hypothesis, which is nothing
else than assuming that the stable manifolds separate an attracting domain (see

Definition 1.1), helps to recover in the particular case of the disk a partial order
and to induce a rich one-dimensional structure. Using that simple observation, the

dynamics can be reduced to a continuous non-invertible map acting on an ordered
one-dimensional path connected metric space (see Theorem 3). One can hope that this
result could lead to obtain many others that hold for one-dimensional systems. Note
that for general surface homeomorphism, another reduction has been developed by
Le Calvez [13]: it provides a foliation transverse to the dynamics on the complement
to maximal sets of fixed points; in this case the foliation is in general not invariant
and the leaves are not proper.

A clear result that highlights the richness of the strongly dissipative class is

our last theorem (see Theorem 4) that shows that the periodic points are dense in
the support of any invariant measure (in particular, for the Hénon type maps, see

Corollary 1.2); in that sense, we get a C°°-closing lemma (without perturbing) for
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invariant measures. This was proved in [11] for hyperbolic measures, however that
result does not apply to measures that have a zero Lyapunov exponent, which is the

case for instance, of surfaces diffeomorphisms with zero entropy and in particular
the ones in the boundary of chaos (see [15]). A strong application of that result is

obtained in [5] where the dynamics of strongly dissipative diffeomorphisms of the

disk with zero entropy is studied. In short, in the last theorem, we conclude that for
strongly dissipative diffeomorphisms of the disk, the closure of all periodic points
contains the closure of the union of the supports of all invariant probability measures.
To conclude a general closing lemma, it would be needed to prove that generically
the recurrent set is contained in that set.

Let us consider a boundaryless surface S and a C-diffeomorphism / : S -»
f(S) C S, where r > 1. If / is dissipative, i.e. if | det(D/(x))| < 1 for any x e S,
then any /-invariant ergodic probability measure ji which is not supported on a

hyperbolic sink has one negative Lyapunov exponent and another one which is non-
negative. In particular for /i-almost every point x, there exists a well-defined one-
dimensional stable manifold Ws(x). We denote by Wß(x) the connected component
of Ws(x) which contains x.

We introduce a class of surface diffeomorphisms which strengthen the notion of
dissipation:

Definition 1.1. A Cr-diffeomorphism /: S —> f(S) C S is strongly dissipative if

- /(S) is contained in a compact subset of S,

- f is dissipative,

- for any ergodic measure /i which is not supported on a hyperbolic sink, and for

/i-almost every point x, each of the two connected components of Wîi(x) \ {x}
meets S \ f(S).

(When S is the disc B, the last condition says that WjJ(x) separates the disc, see

Figure 1.)

We denote Diff(Diss(.S), r > 1, the set of strongly dissipative C-diffeomorphisms.

As it is shown at the end of Section 4, there are dissipative diffeomorphisms
(meaning that the first two items in Definition 1.1 are satisfied) which are not strongly
dissipative; however, those examples are not Kupka-Smale and in particular observe
that any dissipative Axiom A exhibiting transversality is strongly dissipative. So it is
natural to ask the following:

Problem 1. Is any Kupka-Smale dissipative diffeomorphism also strongly dissipative?
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When the Jacobian is small enough, then the strong dissipation is an C'-open
property:

Theorem 1. Let f eDififDiss(S), satisfying1forx, y S andany unit vector u TyS,

|detD/(x)|$||D/(y).w||9/10. (1.1)

Then, inside any C2-boundedset ofC2-dijfeomorphisms, any dijfeomorphism g that
is C1 -close to f is strongly dissipative.

This result is based on a kind of continuity of Pesin's blocks and uniformity of
stable manifolds, which will be stated and proved in Section 2. It uses that for non

periodic ergodic measures, the negative Lyapunov exponent is close to (the logarithm
of) the minimum contraction of /. This property is reminiscent of the works on the

non-uniform hyperbolicity of some Hénon maps [3].

We will show that the strong dissipation is satisfied by dynamics close to one-
dimensional endomorphisms. That result is stated in its full generality in Section 4,
Theorem 2. In the case of polynomial automorphisms, one can also apply tools from
complex analysis and in particular Wiman theorem, as it was explained to us by
Dujardin and Lyubich. This has already be used in [7,16] and a small variant of the

arguments there gives the following stronger form of Theorem 2 for the Hénon map:

Theorem 2 (Version for the Hénon map). Foranya£ (1,2) andfor be (—1/4. V4)\{0{,
the Hénon map

Ha,b\(x,y) I-» (1 -ax2 + y,-bx) (1.2)

is strongly dissipative on the surface S {(x,y) : |x| < t/2 + l/a, |_y| < 1/2 — a/t}.

'In the following we will also denote || Df || := supA j| Df(x) || and | det Df\ := supx | del Df(x)\.
Hence condition (1.1) can be written as | det Df\ < ||D/_1 ||_9/l0.
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The following shows that, conversely to the previous theorem, strongly dissipative
diffeomorphisms (in particular Hénon maps with |h| small) have a one-dimensional
structure. This somewhat generalizes Williams construction [21] of branched

manifolds associated to hyperbolic surface attractors: in that case, the reduction
obtained through the quotient of the stable manifolds gives an endomorphism on a

branched one-dimensional manifold. For strongly dissipative theorem, even lacking
a uniformly stable foliation, using the strong dissipation, a reduced one-dimensional

dynamics is obtained as a continuous non-invertible map acting on a real tree.
We recall that a real tree is a path connected metric space such that for any two

points a, b there exists a unique subset homeomorphic to [0,1] whose endpoints are

a and b.

Theorem 3. Let f G DiffgDiss(B)), r > 1, be a strongly dissipative diffeomorphism
of the disc. Then there exists a semi-conjugacy jt\ (D, f) —> (X, h) to a continuous

map h on a compact real tree which induces an infective map on the set ofnon-atomic
ergodic measures p of f. Moreover the entropies ofp and n*(p) are the same.

As an application of the notion of strong dissipation, we show that the periodic
points approximate the support of any invariant measure, generalizing the result for
one-dimensional endomorphisms. Our argument also provides a simpler proof of the

result presented in [22] (see the Section 6) and also proving that periodic points are
dense in the non-wandering set of endomorphisms of compact real tree as dehned
above.

Theorem 4. Forf DiffgDiss(D), r > 1, the support ofany f -invariant probability p
is contained in the closure of the periodic points. In particular, if f preserves
a non-atomic ergodic measure, then there are infinitely many periodic points with
unbounded period.

As a consequence we obtain:

Corollary 1.2. For any a e (1,2) and b e (—1 /4,1/4) \ {0}, the support of any
probability measure p which is invariant by the Hénon map Ha j, is contained in the

closure of the periodic points.

Dujardin has recently obtained (with a completely different approach) a similar
statement for the complex Hénon automorphisms, once the Jacobian b satisfies
0 < \b\ < 1: his result provides a dense set of periodic points in the union of the

support of the ergodic probability measures in C2 which are not supported on a

periodic circle. Note that in the case of real Hénon maps, it does not conclude about
the existence of periodic points in the real plane and does not imply the Corollary 1.2

above.

Acknowledgements. This work started during the preparation of [4], where a

dichotomy for strongly dissipative diffeomorphisms of the annulus is proved, and we
are indebted to Alejandro Kocsard and Andres Koropecki for the discussions we
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exchanged on this topic. We also thank Romain Dujardin and Mikhail Lyubich for
their explanations about Wiman theorem: the stronger version of Theorem 2 for the
Hénon family stated in the introduction is due to them. Finally, we thank the referee

for his comments which improved the first version of this text.

2. Stable manifolds

The proof of Theorems 1 and 2 requires a strong version of the stable manifold
theorem for non-uniformly hyperbolic orbits. As it is explained in the remarks

below, it provided a uniformity of Pesin's stable manifold theorem with respect to the

measure. The assumptions not only require a contraction and a domination with the

transverse direction, but also a pinching.

Theorem 5 (Stable manifold at non-uniformly hyperbolic points). Consider a com-

pactset A C S, two neighborhoods U, V, aC2_-boundedsetS)ofC2-dijfeomorphisms

f:U —» V and a, ct, p, p G (0, 1 such that > a.

Then, for any f S)2, the points x e nn^0 f~" (A) having a direction E C TXS

satisfying

VnZ 0, crn ^ \\Dfn(x)\E\\ ^ a" and p" ^ <c p", (2-1)

have a one-dimensional stable manifold varying continuously in the C1 -topology
with the point x and with the dijfeomorphism f in the space S) endowed with the
C1 -topology.

Remarks 2.1. (1) The statement is also valid for C1+<*-diffeomorphisms a e (0, 1)

if<0 is a C1+<*-bounded set of C1+a-diffeomorphisms and if the condition ^ > aa
holds.

(2) The second part of condition (2.1) can be restated (see also [20]): E repels

exponentially for the action on the directions. More precisely, Df induces an action

on the unit tangent bundle; if yx(E) denotes its derivative at (x, E) along the circle
T^S, then \y"(E)\ > p~n for each n ^ 0.

(3) This result implies the stable manifold theorem of Pesin theory for surface

diffeomorphism. Indeed ifp is an ergodic measure having some Lyapunov exponents
A- < A+ with A" < 0, then for any s > 0, there exists N >; 1 and a set with

/x-measure larger than 1 — e of points x such that condition (2.1) holds for fN with

a, a exp(N(X- ± e)) and p, p exp(N(A_ — A+ ± £)).

In particular this result also gives a uniformity with respect to the measure.

(4) This result is close to [3, Section 5] where stable manifolds are obtained by
successive approximations.
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Proof. As in the proof of Pesin's stable manifold, the idea is to consider a sequence
of local charts following the orbit of x. These charts are scaled so that the dynamics
of / behaves as a uniformly hyperbolic diifeomorphism. On the other hand, their
size has to be controlled in order to guarantee that the stable manifold in the charts

corresponds to a stable manifold for the initial diffeomorphism.

Since ^ > cr, one can choose Aj e (er, 1) and X2 e (0, p) satisfying

O X2
T^>AI. (2.2)
MP

Let Co > 0 such that

C0>^(^/A1)fc and C0>J2(^/p)k- (2-3)

k^O kZO

The dynamics of / in a neighborhood of the forward orbit of x can be lifted
by the exponential map to the tangent bundle as maps gn: Tfn(x)S —> Tfn-\ i (x)S
defined on uniform neighborhoods of 0. Let F := Ex. One considers the orthogonal
decomposition Tf»(x)S En © Fn such that En Dfn(E) and Fn — Ex. We

then set

mn \\Df"E(x)\\ and Mn | det(D/"(x))|/m„.

In these coordinates, the map Dgn{0) has the form ^I""1 Mn*xjMn Y

Note that

HD/"1!!"1 ^ < \\Dfl Mk+1/Mk^ WDf-'W |detD/|. (2.4)
mk

We introduce the linear change of coordinates A„ on Tf(x)S which is defined
in the coordinates En © Fn by the diagonal map A„ Diag(4„. An Bn) where

Art — ^ '
2-1 Wln+k!Win

k^O
n

Bn £a£"k-n Mk/Mn
mk/mn

k=o K/ n

Assumptions (2.1) and (2.3) imply that A„ is finite and A0 ^ C0. Note that An, Bn

are larger than or equal to 1 so that || A„ || An Bn and || A"11| A~l < 1. An easy
computation gives:

An+i——-A~l Ai(l — A"1) < X\, (2.5)
mn

».+.%tiV=fo^ + %tlV>Aï1^±i. (2.6)
Mn Wln Win
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In particular

(2.7)
An mn+i

A„ ^ A0 A? — ^ Co Xn,(j~n. (2.8)

With (2.4), we also have

1

< ^"+1
IIDf || HD/"11| ^ An

From (2.1 and (2.3) we have

m2A"* " fc|detD/fc(x)|
" \det(Df(x))\ 2

m\

ml\7n

(2.9)

(2.10)

< n 2

|det(D/"(x))| k=o
£(A2/p)* (p/A2)"CO.

One then defines the local diffeomorphism hn A„+i o gn o A"1 and its tangent
part Hn '.= A„+i Dgn(0) A"1. The map Hn has the form (g dc Using (2.4), (2.5),
(2.6), (2.7) and (2.9), one gets the estimates

(2,,)

X?\a\ A2lAn+i"^A~l < \c\ An+iBn+i^±Bfx 4"1 (2.12)
mn Mn

< (A, A^1II Df i| II Df~l H -F A, H Df~x ||2 I det Df |)

171

\d\ ^ An+1 II Df II A~x Bf1 II Df II |a| —BfX ^ \\Df\\ \\Df~l\\ |a|. (2.13)
mn+1

In particular, the H„, IIfx are uniformly bounded, and there exists a horizontal cone
which is uniformly contracted into itself and whose vectors are uniformly expanded
under //"' by a factor larger than A71.

Since the diffeomorphism / is C, r > 1, there exists a > 0 and C/ > 0 such

that

\\Dhn(y)-Dhnm ^ IIA«+iII IIA"1 II CyllA"11| \\yf ^ C/||A„+11| Uyf.

Let us choose s > 0 small. One can extend hn as a global C1 -diffeomorphism
hn:Tfn(x)S —> Tfn+i^S which is e-close to the linear map Hn for the
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C1 -topology, and which coincides with hn on the ball centered at 0 and of radius rn
such that

r" := (2.14)» Cf || A„+11| Cf An Bn

This gives from (2.8), (2.10) and (2.2):

" c,ci \ A, \c,cl 1

One has obtained a uniformly bounded family of dilfeomorphisms (hn) whose

inverses expand uniformly a horizontal cone. The classical stable manifold theorem

for sequences of dilfeomorphisms (see for instance [12]) asserts that a uniform family
of C1 -graphs is preserved.

For r > 0 small, the ball of radius r and centered at 0 in the graph of TXS is a curve
contracted by the composition hn-\ o • • o /i0 by more than A", hence is contained in
the ball of radius rn. Conjugating by the coordinates changes (A„), this proves that
this curve (which has uniform size) is exponentially contracted by the gn, hence is

a stable manifold. All the constants are still valid for C-diffeomorphisms that are
C1-close to f and have the same Cr -bound. Since the stable manifold for sequences
of diffeomorphisms depends continuously on (hn) for the C1-topology, the stable

manifold for the surface diffeomorphism depends continuously on (x, /).

3. Robustness: proof of Theorem 1

The robustness of the strong dissipation is obtained from the uniformity of the stable

manifolds with respect to the measure and the diffeomorphism. The proof requires
to check that condition (2.1 holds (for any measure not supported on a sink) on a set

with uniform measure. This result is based on the following version of Pliss' lemma.

Lemma 3.1 (Pliss). For any oq < a2 < a3, and any sequence (an) G (ai, +oo)N
satisfying

lim sup -(a0 4 b an-1) ^ a2,
+00 tt

there exists a collection of integers 0 ^ n \ < n2 < • • • such that

- for any k ^ 1 andn > nk, one has l/(n-nk)(ank + ••• + an-\) ^ 03,

- the upper density lim sup k/nk of the sequence (nk is larger than (a3-«2)/(a3-ai).

Sketch of the proof. The argument is similar to [17, Chapter IV, Lemma 11.8]. Up to
replace an by an — n 013 and each a,- by a,- — a3, one can assume that 0.

We build the sequence (nk) inductively: n\ realizes the maximum of the set

{a0 + + an-1, n ^ 0}, which exists since lim sup+oc V"(«o + • •• + an~ 1) < 0.

One chooses nk+\ as the smallest integer n > nk which realizes the maximum
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of {a0 + ••• + an-1, n > nk}. Hence, the integers nk satisfy tor any n > nk the

inequality ank -\ + an~\ ^ 0 as required.
In order to estimate the density, one first notes that

Uo + • • • + Un/c + 1— 1 ^ (a0 + ' • ' + Unk~l) + a„k (Uq + • • ' + Unk-l) + Ct\.

One deduces inductively that tor each k,

do + "' ~F ank—i ^ (k — 2)a\ + ao + ''" + f/î2—!•

Combining with our assumption, one gets a2 ^ limsupfc k/„ka\, which gives since

ctq < 0:
k a2 a3 -of2 „limsup— —

k nk a 1 a3-ai
For any C1-diffeomorphism / anda, o, p,p G (0,1), we introduce A f(o,ö,p,p),

the compact set of points x e S such that there exists a one-dimensional subspace
E C TXS satisfying (2.1). The previous lemma has the following consequence.

Proposition 3.2. Consider f G Diff1 (S), an invariant compact set A and

D sup I det Df(x)\, m — sup ||Z)/_1(;c)||_1.
xeA xeA

Let 0 — m, p m2/D, a D^5 and p D3/4.

If D < m 9/'0, then > o and for any ergodic measure p on A which is not
supported on a sink, the measure of the set A f (a, o, p, p) is larger than '/fi.

Proof For any ergodic measure p on A which is not supported on a sink, the two

Lyapunov exponents X" $ A+ satisfy A- ^ log(D) and 0 ^ A+. Since /r-almost

every point x satisfies the Oseledets theorem, for any unit vector u G Es(x) we have

— log IIZ)/"71 (jc).m H —» A" ^ log(D),
n n-*+oo

1, \\Dfn(x)\Es.u\\2 _""lQg \Awnrr\w —> (A — A ^ log(D).
n I det(Z)/(x))| «->+00

On the other hand we have the bounds

|D/ W'"ll S m •|del(D/W)|
55

Since D < m9Iw, we check:

2 r2\nffi-
°-l m3D_1_4/5_3/4 > D47/60 > a.
op
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Using Pliss' lemma 3.1, the first condition of (2.1) holds on a set with /x-measure
larger than

4/5 log D — log D 9

4/5 log D — log m 14

Similarly the second condition of (2.1) holds on a set with /x-measure larger than

3/4 log D — log D 9

3/4 log D — 2 log m + log D 17

Hence (2.1) holds on a set with /x-measure larger than 9/m + v/n — 1 > i/ô.

Let / G DiffgDiss(S) be adiffeomorphism as in the statement ofTheorem 1 and let

a, a, p, p given by Proposition 3.2. We relax the constants and choose S0 < ct, ct0 > a,
Po <p, Po> P such that >a0 still holds. For any diffeomorphism g that is
enclose to /, one introduces the set Ag := Ag(a0,ä0, po, Po)• By Proposition 3.2, its

measure is larger than i/6 for any g-invariant ergodic measure which is not supported
on a sink. We also define:

X(g) := {x G U fl Ag, the branches of Ws(x) are not contained in /(N)}.

The continuity of the stable manifold obtained in Theorem 5 gives:

Lemma 3.3. Consider a set 3)' ofCr diffeomorphisms which is houndedfor the Cr
topology. Let x G X(f). Ifg G S)r is C1 -close to f, and ify G Ag is close enough
to x, then y belongs to X(g).

One can now give the proof of the theorem.

Proofof Theorem 1. Let 3)r be a C-bounded set of Cr -diffeomorphisms. It is

enough to check that for any diffeomorphism g G 3D' that is C1-close to /, and for
any ergodic measure v of g which is not a hyperbolic sink, v(X(g)) is non-zero.

One can argue by contradiction, consider a sequence of diffeomorphisms (gn)
in 3Dr which converge to / in the C1 -topology, and a sequence of ergodic measures vn

(not supported on hyperbolic sinks) converging to an invariant measure /x of / and

assume that vn(X(gn)) 0 for each n. Note that if /x gives positive measure to a

hyperbolic sink, then vn, n large, gives positive measure to the hyperbolic continuation
of the sink, which is a contradiction. We may now assume that /x-almost every point
has one negative Lyapunov exponent and one non-negative Lyapunov exponent. The
same holds for vn. Up to considering a subsequence, one can assume that (Agn)
converges for the Hausdorff topology. Note that the limit is contained in A f.

From Proposition 3.2, there exists a family of compact sets Zn c Agn with
vn-measure larger than i/6 which converge to a compact set Z C Af, whose

/x-measure is larger or equal to i/ö. Since the support of /x is disjoint from the

hyperbolic sinks of /, the set Z C\X{f) has also measure larger or equal to /e. Hence,

up to take slightly smaller subsets, one can assume furthermore that Z C X(f).
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Lemma 3.3 (and a compactness argument) implies that for n large enough, Zn is

contained in A"(g„). This proves that vn(X(gn)) > 0 which is a contradiction. This
ends the proof of Theorem 1.

4. Strong dissipation for dynamics close to one-dimensional endomorphisms:
proof of Theorem 2

We explain in this section how to build naturally dissipative surface diffeomorphisms
from one-dimensional systems acting on an interval or the circle.

4.1. Dynamics close to one-dimensional endomorphisms.

Definition of the two-dimensional extension. Given a one-dimensional manifold /
(the circle S1 or the interval (0,1)), a C!-map h: I -* I isotopic to the identity (such
that h(dl) C Interior(/) in the case of the interval), s > 0 small and b e (—1, 1)

even smaller, we get a map fb on S := / x (—e, e) defined by

fb' (x, y) (h(x) + y, b(h(x) - x + y)). (4.1)

Indeed for any y e R close to 0 and any x h(I), the sum x + y is well defined
and, since h is isotopic to the identity, the difference h{x) — x belongs to R.

Note that the Jacobian is constant and equal to b. When h f 0, the map fb is a

diffeomorphism onto its image. When h 0 the image fo(S) is contained in / x {()}
and the restriction of /0 coincides with / x {0}.

Example 4.1. Let us consider the quadratic family x i->- x2 + c, for c G (—2,-1).
It sends the interval / (c/2 — 1, —c/2 + 1 into its interior. The map fb in this case

is conjugate to the Hénon map 1.2) with parameter a —<k2/4 — c — è/2 through the

map (x, y) (—ax — bli, —ay — abx).

Example 4.2. A class of circle maps isotopic to the identity is the Arnol'd family
on S1:

ha,(o-x x + a sin(27Tx) + a>, a,coeR. (4.2)

We can now state the general version of Theorem 2.

Theorem 2 (General version). If h: I I is a one-dimensional C2-map, isotopic
to the identity such that h(dl) C interior(Z) and ifb e M is close enough to 0, then

the diffeomorphism fb is strongly dissipative.

Proof The arguments is close to the proof of the robustness: for b 0, the map /o
is an endomorphism which contracts the curves h(x) + y cte to a point: these

curves are analogous to strong stable manifolds. One can check moreover that,
for any ergodic measure which is not supported on a sink, the points in a set with
uniform measure are far from the critical set, implying that these curves cross the
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domain / x (—e, e), see Figure 2. For h > 0, the control of the uniformity of the
stable manifolds ensures that for points in a set with uniform measure has stable

manifolds close to these parabolas.

Figure 2. The map f) associated to the quadratic family xh-F + c. Each curve y x2 + cte
is contracted to a point. For b f- 0 small, "most" of the stable manifolds are C1 -close to these

parabolas.

Let K > 1 such that || Dh < K and \\Dfb\\ < K for any b close to 0. We have
r-1 il —1
b lloo '\b\ || det Dfb ||oo and set m(b) || Dfb 'lloo1- Note that

5K

Let us choose 8 > 0 small such that

— s: m := IIDfb 'Hj < \b\.

2,0g* <1. (4.3)
2 log A" + V2! log 51 15

We choose a uniform L K and we set

a(b) := L.\b\, cr(b)=m(b), p(b) := m2/\b\, p L2.\b\.

Note that pS/pa m3/(L.\b\)3 ^ 1/(5KL)3 is larger than a when \b\ is small

enough.
We introduce the set A A( fb) of points x having a direction E c TxS

satisfying (2.1). Then, the same proof as for Proposition 3.2 shows that, for any
ergodic measure /x having a non-negative Lyapunov exponent, /i(A) > 1/6. In
particular is non-empty.

Our goal now is to prove that both branches of the stable manifold of points of ^4

intersect S \ fb(S). For that purpose we recast the proof of Theorem 5 in order to

get a uniformity for the focal stable manifold of points in A.

Lemma 4.3. For any rj > 0, there are ro, h() > 0 such that any map fb, \h\ < b0

has the following property: at any xb 6 A, the /"o-neighborhood ofXq in Ws(xo is

a disc of radius 2rb which is p-close to a linear segment: all the tangent spaces are
rj-close to a fixed direction.
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Proof. One reproduces the constructions made at Section 2, keeping the dependence
in \b\. We set Ai 2rr and A2 := P/2. Note in particular that Co in (2.3) is uniform
in b.

As before, one defines a local diffeomorphism hn A„+i o gn o A"1 from a

neighborhood of 0 G 7/«(X)S to a neighborhood of 0 G Tfn+\(x)S. Its tangent

map Hn has an inverse of the form

1 _ /l/a d/ac\ _
\ (\ d/c\

V 0 1/c a V° a/c J '

2m

From (2.12) and (2.13), we have

d

c

Let us consider the horizontal cone C of size r]:

C {(mi,M2), r].\ui\ ^ |w2|}.

A.2 XTTi ^ 1*1 and
2\b\

\\Dfb-l\\.\\Dfb\\X2^K.

One can reduce rj > 0 and assume that rjK <£ 1. Hence the horizontal cone is

preserved by any linear map which is t/2a-close to The C2-norm of is

bounded by C.\b\~2, where C is uniform in b. This shows that Dh~l is t/2a-close
to Hn

1

on a ball of radius

rj\bf
rn+\ 2C.a.||A„||.||A-|1f

Since || A~.|i || < 1 and || A„|| AnBn, the estimates (2.11), (2.8), (2.10) imply

>
rj\h\2 /A2ô\ >

rj\b\ 3 3
"+1 " 2CC02Ai\A1pJ " 4CC2L

The maps Dhf1 expand vectors in the horizontal cone by more than A j-1 \/{2L.\b\)
from (2.11). One deduces that there exists a Lipschitz graph containing 0 in TXS

with uniform size

A) 5=
8CC2L2

whose iterates by the sequence of focal diffeomorphisms h„ remain Lipschitz for
each n, and after n iterates have radius smaller than rn.

Projecting in S, by expoA0, one gets a local stable manifold at x with uniform
size 2r0 and tangent to the projection of the constant horizontal cone which is

p-thin.

It remains to control the slope of the local stable manifolds. This is done outside

a neighborhood of a "critical region". Let us define

{x, \ Dh(x)\ ^ à'} x (s, s).



Vol. 93 (2018) Strongly dissipative surface diffeomorphisms 391

Lemma 4.4. For \b\ small enough, and any ergodic measure p of having one

Lyapunov exponent non-negative, p(A \ L) > t/io.

Proof. Since p(A) > i/e, it is enough to check that pÇC) < i/is. Note that for \h\

small, the Lyapunov exponent of p. is bounded above by

p()2 log(S) + (1 - p())2 log || Dhlu.

Since p does not charge sinks, the exponent is non-negative so that with (4.3) one

gets:

^
2log K + V2| log <5|

<
15'

D

Lemma 4.5. For points z in A \ ', the slope of the direction E is larger than 3/4<5-

Proof Let z (x, y), let v be a unit vector tangent to E and let ct be the angle
between v and the line M x {0}. From (2.1 its image has norm smaller or equal to a.
From the definition of //,, the first projection of Df^.v has a modulus larger than

||Z)A(x)||| cos(a)| — I sin(a)|. Since z does not intersect the modulus ||D/j(x)|| is

larger than 8. One thus gets | tan(a)| ^ 8 — a/\ cos(a)| which implies that the slope
is larger than 3<5/4 when a — \b\4^5 is small enough.

End of the proofof Theorem 2. From Lemmas 4.3 and 4.5, if \h\ is small enough,
for points in A \ " the stable manifold has uniform size and slope larger than fi.
Consequently, if e has been chosen small enough, this proves that for \h\ small and

for points in A \ x, both branches of the stable manifold intersect the boundary of
I x (—e, s). By Lemma 4.4, this set has positive measure for any ergodic ft,-invariant
measure pi having a non-negative Lyapunov exponent. This proves that fb is strongly
dissipative.

4.2. Hénon diffeomorphisms. Let / be a dissipative Hénon automorphism of C2

with jacobian be C (with 0 < \b\ < 1) and degree d := deg(/) ^ 2. In [7] it
is proved that if |b| < d~2, then for any periodic point p which is not a sink, the
connected component of p in Wcs(p) fl K~ is {p}. In that setting W^^p) is the

strong stable manifold in C2 (a biholomorphic copy of C), and K~ is the set of points
zeC2 whose backward orbit remains bounded. We explain here how the proof of
this result also gives the version of Theorem 2 stated in the introduction. For more
details, the reader should consult [7].

Let us consider an ergodic measure p for the action of/ in C2, which is not a sink.
It has a unique negative Lyapunov exponent A~~(p) -< log(fi) and /i-almost every
point x has a strong stable manifold VL^x): it is the image of C by a holomorphic
parametrization (px:C C2.
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Let G : C2 —» R denotes the backward Green function defined by

G~(z) lint -^-log+ \\f~n(z)\\.
n—r+oo Cln

For /x-almost every x, one gets a non-negative subharmonic function gf := G~ o <px

which vanishes exactly no the set K~. We consider its order

P(Sx) '= lim sup-log log ||£~||flr,
r—>00 r

where Br denotes the ball of radius 1 centered at 0. From [2, Section 4], it is equal to

logW)
p(Sx)

lA-OOf

Under the assumption \b\ < d~2, the order is thus smaller than 1/2. Since the

order is non-zero it is not bounded. Since the supremum of two subharmonic
functions is subharmonic, one can consider for each T > 0, the subharmonic function

x i-> max(g(x), T) — T and apply the following version ofWiman's theorem (see \ 16,

Theorem 35]):

Theorem (Wiman). Let g:C R be a non-constant subharmonic function with
order smaller than 1 /2. Then all components ofg 0 are bounded.

Hence for R > 0, the connected component of {z,<px(z) ^ R} containing x is

bounded.

Proofof Theorem 2 for Hénon maps. Let us consider a real Hénon difféomorphism
Ha,b as defined in the introduction, such that 0 < \b\ < 1/4. Its degree equal d 2,

so that the condition \b\ < d~~2 holds. Let p. be any ergodic probability measure

on R2 which is not supported on a sink. For /i-almost every point x, the strong stable

manifold Ws(x) is the restriction of Wfox) to IR2. Moreover, from Pesin theory
there exists e > 0 such that for any N ^ 1, the set of point y Ws{x) satisfying
d{ fk{x), fk(y)) < e for any k ^ N is a compact subset for the intrinsic topology of
the curve Ws(x). In particular if one considers a parametrization fx'- R -> Ws(x),
its lift by the parametrization of W^(x) is proper, i.e. we have |<pfl o xfrx(t)\ —> 00
as |f I -> 00. From the previous arguments, one deduces that the connected sets

+00) and \jfx[0, —00) are not bounded in R2 C C2.

4.3. A difféomorphism which is not strongly dissipative. We close the section

by showing a dissipative diffeomorphisms which is not strongly dissipative. The

attracting domain is a disk and the non-wandering domain is given by four attracting
fixed points (denoted as A,- in Figure 3 and three saddle fixed points (denoted as Si).
Both branches of the stable manifolds of the saddles S\ and S3 are not contained in

the disk but both branches of the saddle S2 are in the disk; one branch coincides with
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one unstable branch of Si and the other with one unstable of S3. To make the example

dissipative, it is required to chose appropriately the eigenvalues of the saddles.

Figure 3. Dissipative diffeomorphism that is not strongly dissipative (the stable manifold of .S3

is contained in a compact subset of the open disc D and does not separates).

5. Reduction to one-dimensional dynamics: proof of Theorem 3

It is well known that the space of leaves for foliations in the plane generates a one-
dimensional structure. In our setting the strong dissipation provides us with a large
collection of disjoint curves: the stable manifolds. The idea of the proofofTheorem 3

is to "quotient" the disc along these curves.

Figure 4. The one-dimensional structure associated to the family of stable manifolds.

One chooses a countable collection T of proper C1 -arcs in D with the following
properties.

(1) Each y e T is contained in the stable manifold Ws(x) of a regular point x for an

aperiodic ergodic measure (but x is not necessarily in y). In particular, elements

of T are pairwise disjoint or coincide.
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(2) Each y £ T is the CMimit of arcs in T and is accumulated on both sides.

(3) For y e T, the connected components of /-1(y) D D which intersect /(D) are
also in T.

(4) For each aperiodic ergodic measure /x, there exists a full measure set of points x
such that the connected components of Ws(x) fl D are C1 -limits of arcs in V

and are accumulated on both sides.

The space X. One considers open connected surfaces s of D bounded by finitely
many elements of T. One denotes S the collection of sequences (sn of such surfaces
such that Closure(A>,+i c sn for each n and one sets (sn) $ (s'n) if for any n, there
is m such that Closure(.vm) c s'n. Fet S0 be the collection of sequences that are
minimal for the relation One defines X as the quotient of S0 by the relation
"(sn) ^ (s'n) and (s'n) ^ (sn)". Note that T may be identified to a subset of X: the

arc y is represented by sequences (s„ such that Y C Sn for each n and (lsn y;
such a sequence exists from our assumption (2) on F.

One defines a topology on X. A (countable) basis is defined by considering all
the sequences (sn such that the closure of sn is contained in a given surface ,v for n

large enough. Note that X is separated. Moreover it is regular: any non-empty closed
set C and any point x in the complement can be separated. Indeed, since C is closed,

x has a neighborhood, defined by a surface s, disjoint from C. By definition of F,
one can build two surfaces s D .sq z> .sq D x. The surface .sq defines a neighborhood
of x. The complement of the closure of ,s'i defines a neighborhood of C. Both are

disjoint.

Lemma 5.1. X is a real tree.

Proof. The space X is metrizable, by Urysohn theorem (a separated, countable basis,

regular topological space is metrizable).

The space X is compact. Indeed, let (x^) be a sequence in X and consider the

collection (y„) of arcs of F. One can assume, for each n that the sequence (xq.)
is different from y„ for each k large, hence (up to take a subsequence) is contained
in a same component of the complement of y„. One defines in this way a minimal
decreasing sequence sn of surfaces and all the xq, k large, belong to sn. Thus the

sequence (xq) converges to the point defined by (sn).

One say that x separates y and z if for any small neighborhood of x (defined by a

surface .v), y and z are contained in different components of the complement of s. Fet
us index the elements of T and consider the subfamily (yn) of those that separate y
and z. They are ordered by the separation property. The maximum of the distance
between two consecutive y„, n ^ no, goes to zero as no goes to oo. Otherwise, one

gets two sequences y„k, yOTjfc, the first increasing, the second decreasing, for the order
between points that separate y and z. Moreover the distance d(ynk,ymk) does not

converge to 0. These sequences converge to two different points a, b that separate y
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to z. Since a, h are different, there should exist yn, n large, that separate a to b,

contradicting the construction of a and h. This proves that the union of {y, z} with
the set of points which separate y and z is homeomorphic to the interval [0,1]. Thus,
X is path connected. Note that any path joining y to z should contain this set of point
(since they separate). This shows that X is a real tree.

The maps ji,h. Any point y e T naturally projects to X. For each point x e
® \ U{y e r}, one can consider the component sn of D \ {yi U • • • U yn} which
contains x. One gets in this way a minimal decreasing sequence which defines a

point rr(x) e X. This map D -> X is obviously continuous.
The map / induces a continuous map h on V, defined as follow. Let (sn) be a

minimal decreasing sequence and consider the intersection C. Any two points y, z

in C have their image by / which are not separated by a curve y. Otherwise,
this curve y crosses /(D), the pre image f~1(y) has a connected component
separating y,z, which belongs to T from the assumption (3); this proves that the

family T separates y and z, a contradiction. The image of the point x n(C) by h

is jr(/(C)).
Note that points that are regular for different aperiodic ergodic measures belong to

different stable arcs, hence are mapped to different points in X by the assumption (4).
Thus different aperiodic ergodic measures project to different measures on X.

We now bound the topological entropy htop(f) of / and h. We fix a > 0. By the

variational principle, there exists an ergodic measure /x for / whose entropy satisfies

hß(h) > h{Qp(f) — a. If n is supported on a periodic measure, we have hu>p(f) < a,
otherwise, /x is aperiodic. Let v 7r*(/x). By [14], the entropies of /x and v can be

compared: for each x e X, one considers the topological entropy htop(f, Z) of the

preimage n~l (x); one then have:

hß(f) hv(h) + J htop(f 7T-1(x)) dv(x).

For v-almost every point x, the preimage it~1(x) is contained in the stable set

of x. In particular for any e > 0, the orbits of points in rc~l (x) do not e-separate
after some time: the topological entropy h{op( f 7r-1(x)) is equal to zero. We have

thus obtained htop(f < hß(f + a ^ hv(h) + a ^ hlop(h) + a and the topological
entropies of / and h coincide.

The proof of Theorem 3 is now complete.

6. Density of periodic points: proof of Theorem 4

One dimensional sketch. First we prove Theorem 4 in the context of one-dimensional

dynamics (our statement is slightly more general than [22, Theorem 1]).
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Proposition 6.1. For any continuous map f : [0,1] —> [0, 1], the set ofperiodic points
is dense in the set of recurrent points.

Proof. Let us consider a recurrent point x0 and a nearby iterate x\ fn(xo).
Without loss of generality, one can assume that xo < x\. We claim that there is a

periodic point for g := fn inside (xo, xi). Note that x0 is still recurrent for g. We

take the first positive integer k such that gk{x\) < x\ Such an integer exists since xo
is recurrent and x0 < x\. By the choice of k observe that gk (xo) gk~l (xi) ^ x\.
Therefore we have a continuous map gk: [x0,xi] -> [0,1] such that gk(xo) ^ x\
and £fc(xi) < xi. Hence the graph of gk crosses the diagonal in a point in (x<j, xi)
and so there is a fixed point in (xo, xi).

We recast the previous proof, avoiding an explicit use of the order, and in such a

way that it can easily be generalized for strongly dissipative diffeomorphisms in the

disk.
Under the same choices of xo and x\ as above, we define the intervals

D~ [0, xo] and D+ [xi, 1] and we take the first positive integer k such that

gk(x i) (f D+. Such an integer exists since x0 is recurrent and does not belong to D+.
By the choice of k observe that gk(xo) gk~1(xi) ^ x0 Let h: [0, 1] [x0,xi]
be a continuous map which coincides with the identity on [xo,xi] and such that

h([0,x0]) xo, h([xi, 1]) xi. Then the map h o gk\ [xo,xi] -> [xo,xi] has

a fixed point p G [xo,xi]. Note that h o gk(xo) xi (since gk(xo) G D+) and
h o gk(xi) xi (since gk(xi) D+). Therefore p belongs to (xo,xi). Since h is

the identity on (xo, xi), the point p is a fixed point of gk.

As a minor detail, observe that in the previous proof it is enough to choose k such

thatg^(xi) < xi màgk~l{x\) > x\.
The key factor in the proof of Proposition 6.1 is a simple one: a point disconnect

an interval. The last observation does not have an immediate two-dimensional

counterpart (points does not separate a two dimensional domain). However, local
stable manifolds, under the assumption of strong dissipativeness, do separate a two
dimensional domain.

ProofofTheorem 4. Let us recall first some classical result and definitions about

invariant measure and Pesin theory.

Lemma 6.2. Let f he C -dijfeomorphism, r > 1 of a surface S. Let p. he an
ergodic invariant measure with compact support having two Lyapunov exponents
A~ < 0 ^ A+.

Then there exist C, X > 0, a compact set B with positive /i-measure (called Pesin

block) and a continuous family of C1 -emheddings (<px)xeB of[— 1,1] into S such

thatfor x G B,

- (px (0) x and the stähle manifold Ws(x) contains the image of(px,

- for any n ^ 0, the length of fn((px({— \, 1])) is smaller than Ce~k n.
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Proof. From [18], there exists a measurable set X c S with positive measure and a

measurable family of C1 -embeddings (tpx)xsx such that the image of <px is a local
manifold of x. Lusin's theorem allows to find a compact set B c X as required.

To prove the theorem, since any regular point has an iterate in a hyperbolic block,
it is enough to show that arbitrary close to any point x e B there is a periodic point.
By Poincaré recurrence theorem, one can assume that any point in B is positively
recurrent.

Since / is strongly dissipative, both branches of Ws(xo) \ {x0} meets S \f (S).
For any 8 > 0, it is thus possible to find a forward iterate fn(S) which intersect
both branches at two points 5/2-close to x in Ws(x). Moreover one can modify the

boundary of fn (5) in order to get a C1 -loop y transverse to Ws (x). The disc D C S

bounded by y still satisfies f{D) C Interior( D).
Let n ^ 1 be a large integer such that fn(x) belongs to B and is close to x.

Then by Lemma 6.2, the local manifold of /"(x) is C1-close to the local manifold
of x, and in particular is also transverse to y. One deduces that the connected

components of IVs (x) IT D and Ws(fn{x)) D D containing respectively x, /"(x),
together with small arcs in y enclose a region R diffeomorphic to the square. If m
has been chosen large enough, the diameter of R is smaller than 8. Moreover,
D \ R has two connected components, whose closure are two topological discs,
denoted by D+, D~: for instance one can choose x e D~ and /"(x) G D+. By
construction D~ n R (resp. D+ D R) is contained in the local stable manifold of
xq := x (resp. x\ := fn(x)). See the figure.

Figure 5.
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Let g fk and let k be the smallest positive integer such that gk{xf) D+ and

gk+t(Xo) ^ D+. Such an integer exists since xo is recurrent for g and since x\ —

g(xo) e D +. Similarly as in the one dimensional case, we consider a continuous

map h.D-^R such that the restriction of/? to R is the identity, h(D~) D~ fl R

h(D+) D+ n R. In particular, h o gk sends R into itself and therefore has a fixed

point p in R.

Since fk{xo) e D+ and since D~D R is the local stable manifold of xo, its image
meets D+ (and is contained in D); since D+ fl R is also a stable manifold, either
it contains or it is disjoint from fk{D~ n R). Consequently fk{D~ fl R) C D +

Similarly, fk(xr) £ D+, hence fk{D~ n R) n D+ 0.

One deduces that p does not belong to R Pi (D+ U D~): by definition of h it
has a unique pre image and h~x{p) p. This implies gk(p) p. Hence / has a

periodic point arbitrarily close to x, as required.

ProofofCorollary 1.2. Let us fix a (1,2) and define

S {(x, y) : IxI < 1/2 + Va, \y\ < - ah}
and C := {(x, y), |x| > |y| and |x| > 3}.

Note that the following properties hold:

- f(C) cC and any forward orbit (xn,yn) := HnAx,y) in C satisfies |x„ | —> oo.a'° n—>—hoo

- Any point (x, y) has a positive iterate in S or in C.

- The quadratic map xh-1- ax2 has a unique fixed point in (—3, —1/2 — l/a) and

any other orbit escapes this interval. Consequently, ifone fixes s > 0 small enough,
for any b close to 0, the map Ha j, has a unique fixed point p in (—3, —l/2 — 1/a) x
(—e, s). Moreover if b is close enough to 0, any point in (—3, —x/2 — l/a) x (—A s)
has a forward iterate in S or in C.

- If h is chosen close to 0, the region {|x| < 3, |_y| < 3} is mapped by Haj, in the

union of C with (—3, —1/2 — l/a) x (—e, e).

One deduces:

Lemma 6.3. For any a (1,2), if\b\ > 0 is close enough to 0, the Hénon map has

a unique fixed point p in (—3, — 1/2 ~ Va) x (— V 1) an(l any forward orbit satisfies

one of the following properties:

- it escape to infinity (the orbit has no accumulation point in the plane),

- it converges to p,

- it is attracted by the trapping region S {(x,y) : |x| < V2+ '/"• |j| < 1/2—"/4 [.

Since the dynamics of Ha h is strongly dissipative in S (Theorem 2), the

Theorem 4 may be applied in this region and concludes the proof.
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