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On the asymptotic Fermat’s last theorem over number fields

Mehmet Haluk Sengiin and Samir Siksek

Abstract. Let K be a number field, S be the set of primes of K above 2 and T the subset of
primes above 2 having inertial degree 1. Suppose that 7 # @, and moreover, that for every
solution (A, ) to the S-unit equation

A+pu=1 A, pe0g,

there is some ‘B € T such that max{ugp(A), vp(rn)} < 4vup(2). Assuming two deep but
standard conjectures from the Langlands programme, we prove the asymptotic Fermat’s last
theorem over K: there is some B g such that for all prime exponents p > B the only solutions
to x? + y? + z? = 0 with x, y, z € K satisfy xyz = 0. We deduce that the asymptotic
Fermat’s last theorem holds for imaginary quadratic fields Q(v/—d) with —d = 2, 3 (mod 4)
squarefree.

Mathematics Subject Classification (2010). 11D41, 11F80.

Keywords. Fermat equation, Bianchi modular forms, Galois representations.

1. Introduction

Dickson, in his History of the theory of numbers |7, pp. 758 and 768], gives a survey
of early work on the Fermat equation over number fields, with the earliest reference
being to the work of Maillet (1897). Over a period of almost a century, number
theorists have intermittently sought extensions of Kummer’s cyclotomic approach to
the setting of number fields. Perhaps the most satisfying work in that direction is
that of Hao and Parry [12], who prove several results on the Fermat equation over
quadratic fields subject to a regularity condition on the prime exponent p (as for Q
one does not know how to prove that there are infinitely many regular primes).

In view of Wiles’ remarkable proof of Fermat’s last theorem, it is now more natural
to attack the Fermat equation over number fields via Frey curves and modularity.
Jarvis and Meekin [13] did just this, proving Fermat’s last theorem over Q(~/2).
They were followed by Freitas and Siksek [9] who proved Fermat’s last theorem
for various real quadratic fields of small discriminant. In another work, Freitas and
Siksek [8] proved the asymptotic version of Fermat’s last theorem (explained below)
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for totally real fields satisfying some auxiliary conditions. Key to these successes
is the extraordinary progress in modularity over totally real fields, due to the efforts
of Barnett-Lamb, Breuil, Diamond, Gee, Geraghty, Kisin, Skinner, Taylor, Wiles,
and others. Alas our understanding of modularity (or automorphy) in the setting of
general number fields is largely conjectural. One can ask if it is possible to replicate
the aforementioned successes for the Fermat equation over general number fields, by
assuming standard conjectures. The purpose of this paper is to address this question,
and to highlight additional challenges that arise in the general number field setting.

Let K be an algebraic number field. To keep this Introduction self-contained we
relegate the precise statements of the two conjectures we assume to later sections,
and now only briefly indicate what they are.

* Conjecture 3.1: this is a weak version of Serre’s modularity conjecture ([11]) for
odd, irreducible, continuous 2-dimensional mod p representations of Gal(Q/K)
that are finite flat at every prime over p.

* Conjecture 4.1: this is a conjecture in the Langlands Programme (see [27]) which
says that every weight 2 newform (for GL,) over K with integer Hecke eigenvalues
has an associated elliptic curve over K or a fake elliptic curve over K.

To state our main result, we need to set up some notation. Write Z g for the ring
of integers of K. Let S for the set of primes B of Z g above 2, and let T be the
subset of B € S with inertial degree 1 (or equivalently with residue class field I,).
We consider the Fermat equation

xP+yP 422 =0 (1.1)

with x, y, z € K and prime exponent p. We say thata solution (x, y, z) = (a, b,¢) € K?
is non-trivial if abc # 0.

Theorem 1.1. Let K be a number field for which Conjectures 3.1 and 4.1 hold. Let
S, T be as above and suppose T # 0. Write O for the set of S-units of K. Suppose
that for every solution (A, |) to the S-unit equation

At+p=1 A, pely. (1.2)

there is some *B € T that satisfies max{|vp (L), [vp(u)|} < 4vgp(2). Then the
asymptotic Fermat’s last theorem holds for K : there is some constant Bk such that
the Fermat equation (1.1) has no non-trivial solutions with prime exponent p > Bg.

1.1. Differences from the totally real case. The reader comparing the statement
of our Theorem 1.1 with that of Theorem 3 of Freitas and Siksek [8] may incorrectly
(but understandably) presume that the proof is largely the same. In fact, in addition to
making use of ideas in [8] we need to deal with following two additional challenges
that do not arise in the totally real case.
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(i) For a general number field K, Serre’s modularity conjecture relates a represen-
tation Gk — GL,(IF,), subject to certain conditions, to a mod p eigenform of
weight 2 over K. If K is totally real, such a mod p eigenform lifts to a complex
eigenform over K; this is not generally the case for a number field K with complex
embeddings. We show that this difficulty is circumvented in our asymptotic Fermat
setting where the prime exponent p is assumed to be sufficiently large. This step
makes the constant Bg in Theorem 1.1 ineffective, in contrast to the totally real
case. To make this effective we would need effective bounds for the size of torsion
subgroups of integral cohomology groups associated to certain locally symmetric
spaces (see Section 2.1).

(ii) If K has a real embedding, then a weight 2 complex eigenform over K with
rational eigenvalues conjecturally corresponds to an elliptic curve over K. This is
not true if K is totally complex; the eigenform does sometimes correspond to a fake
elliptic curve. A careful study of images of inertia at primes *3 € T of the mod p
representation of the Frey curve shows that they are incompatible with images of
inertia for fake elliptic curves.

1.2. Anoctic example. We stress that .S'-unit equations have finitely many solutions
and that there is a practical algorithm for determining these solutions; see for
example [26]. Thus the criterion in Theorem 1.1 is algorithmically testable. To
illustrate this, take K = Q(;6) Where ;6 is a primitive 16th root of unity. Then K
is a totally complex number field of degree 8. Let B = (1 — {y¢) - Zg. Then
27k = P2 It follows that S = T = {*B}. Smart [25, Section 5] determines the
solutions to the S-unit equation (1.2) for this particular field and finds that there
are precisely 795 solutions (A, @). It turns out that the largest possible value of
max{|vg (A)], |ug(u)|} is 22, which is smaller than 4uy (2) = 32. By Theorem 1.1,
assuming Conjectures 3.1 and 4.1, the asymptotic Fermat’s last theorem holds for K.

1.3. Imaginary quadratic fields. Let K = Q(~/—d) be an imaginary quadratic
field, where d is a squarefree positive integer. If —d = 5 (mod 8) then 2 is inert
in K and so T = @ and Theorem 1.1 does not apply. If —d = 1 (mod 8) then 2
splits in K and if —d = 2 or 3 (mod 4) then it ramifies. Here we consider the
particularly simple case of —d = 2 or 3 (mod 4).

Theorem 1.2. Let K = Q(+/—d) be an imaginary quadratic field with where d is a
squarefree positive integer satisfying —d = 2 or3 (mod 4). Assume Conjectures 3.1
and 4.1. Then the asymptotic Fermat’s last theorem holds for K.

Proof. Note that S = T = {¥B} where B2 = 2Zg. Suppose first that d > 2. The
assumptions ensure that the only units in K are +1. If ' = (a + h~/—d) is principal
then a2 + dh? = 2 giving a contradiction. Thus ‘B is not principal. Hence if (A, u)
is any solution to the S-unit equation (1.2) then A = £2", u = +2% with r, s € Z.
We quickly deduce that (A, u) = (2,—1) or (—1,2) or (1/2,1/2). In particular,
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all solutions satisfy max{|vg(A)|, |[lup(p)|} < 4vp(2). The proof is complete by
Theorem 1.1 for d > 2. The cases d = 1, 2 are similar. ]

It is straightforward, though somewhat lengthy, to adapt the method of [8,
Sections 6-7] to deduce that the asymptotic Fermat’s last theorem holds for 5/6
of imaginary quadratic fields, assuming Conjectures 3.1 and 4.1.

We are indebted to the referee for suggesting several corrections.

2. Eigenforms for GL; over number fields

In this section, we discuss modular forms, both complex and mod p, from a
perspective that will be most useful for us. Let K be an algebraic number field
with ring of integers Z g and signature (r,s). Let Zk be the finite adeles of Z g

and let Ag, Aﬁ denote the rings of adeles and of finite adeles of K, respectively.
We let #5F denote the union of the upper and lower half planes and J¢3 denote the

hyperbolic 3-space. Then GL,(K) acts on X = (szi)r x J¢5 via the embedding
GL,(K) < GL,(K ® R) ~ GL,(R)” x GL,(C)".

Fix an ideal )1 C Z g and define the compact open subgroup
~ * Ok
Up(M) 1= {y € GLy(Zk) 1y = (o *) modm}.
Consider the adelic locally symmetric space

Yo(0) = GLa(K)\((GL2(A%)/ Us(M)) x X).

This space is a disjoint union of Riemannian (2r + 3s)-folds
h
Yo = | | rj\x
=1

where I'; are arithmetic subgroups of GL;(K), with I"; being the usual congruence
subgroup 'y (M) of the modular group GL,(Z k), and 4 is the class number of K.

Fori € {0, ...,2r 4+ 3s}, consider the i th cohomology group H*(Yy(N), C). For
every prime q coprime to the level 91, we can construct a linear endomorphism T
of H' (Yy(), C) (called a Hecke operator) and these operators commute with each
other. We let T(g )(‘)‘t) denote the commutative Z-algebra generated by these Hecke
operators inside the endomorphism algebra of H' (Y, (), C).

For the purposes of this paper, a (weight 2) complex eigenform [ over K of
degree i and level I is a ring homomorphism f: ']T (9’1) — C. Note that the values
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of f are algebraic integers and they generate a number field which we shall denote Qj.
We shall call a complex eigenform trivial if we have f(T;) = £(Ng + 1) for all
primes q coprime to the level!. We call two complex eigenforms f, g with possibly
different degrees and levels equivalent if §(Ty) = g(T) for almost all prime ideals q
(notice that the two Hecke operators T; may live in different Hecke algebras). A
complex eigenform, say of level 1, is called new if it is not equivalent to one whose
level is a proper divisor of 1.

Now let p be a rational prime unramified in K and coprime to the level. The
cohomology group H' (Yp(91), Fp) also comes equipped with Hecke operators, still
denoted T;; (we only consider these for primes q coprime to p91). We shall denote

%i )(‘ﬁ). A (weight 2) mod p eigenform 60 over K of
p
degree i and level D is a ring homomorphism

the corresponding algebra by T

@) =
6: T () — F,.

2.1. Lifting mod p eigenforms. We say thata mod p eigenform 6, say of level 91,
lifts to a complex eigenform if there is a complex eigenform f of the same degree
and level and a prime ideal p of Q@ over p such that for every prime q of K coprime
to p9t we have 0(T,) = f(Tq) (mod p).

A very intriguing aspect of the theory is that in general mod p eigenforms do
not lift to complex ones. The obstruction to lifting is given by p-torsion in the
integral cohomology as we now explain. The long exact sequence associated to the
multiplication-by- p short exact sequence

02572~ F, =0
gives rise to the following short exact sequences
0— H (Yo(M),Z) T, — H' (Yo(N),F,) - H T (Yo(MN),Z)[p] — 0,

where H'T1(Yo(M), Z)[p] denotes the p-torsion subgroup of H't1(Yy(N),Z).
Hence we see that p-torsion of H'T1(Y,(), Z) vanishes if and only if the reduction
map from H'(Yo(M),Z) to H 1(Yo(M),F,) is surjective. Now, the existence of
an eigenform (complex or mod p) is equivalent to the existence of a class in the
corresponding cohomology group that is a simultaneous eigenvector for the Hecke
operators such that its eigenvalues match the values of the eigenform. With this
interpretation, we can utilize the lifting lemmas of Ash and Stevens [1, Section 1.2]
and deduce that every mod p eigenform of degree i lifts to a complex one when
HI (Yy(N),Z) for j =i,i + 1 have no p-torsion.

The integral cohomology groups H'(Yy(M),Z) are well known to be finitely
generated. Thus for a given level 91, there are only finitely many primes p for which

'In the setting of GL2, non-triviality amounts to cuspidality.
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there is an i such that H'(Yy(91), Z)[p] is non-trivial. We obtain the following easy
corollary which is crucial for our paper.

Propeosition 2.1. There is a constant B, depending only on ‘R, such that for any
prime p > B, every mod p eigenform of level N lifts to a complex one.

3. Mod p Galois representations

We will be using the following very special case of Serre’s modularity conjecture over
number fields. This conjecture concerns the modularity of 2-dimensional mod p
Galois representations. While it is easy to predict the level and the Nebentypus of
the sought after mod p eigenform (Serre’s original recipe [22] is still applicable),
predicting all the possible weights (which actually is a completely local issue) is a
very difficult task. A general weight recipe for GL, over number fields was given?
by Buzzard, Diamond and Jarvis [3] (see also [2, Section 6] and [11]). However we
shall not need the full strength of their conjecture; the mod p Galois representations
that we shall encounter in this paper are of a very special type, namely finite flat at
every prime over p, and for such representations it is well-known that (again going
back to Serre’s original work) we should expect the trivial Serre weight (which we
called “weight 2" in this paper) among the possible weights. This is sufficient for our
purposes.

Recall that for every real embedding o: K <> R and every extension 7: K — C
of o, we obtain a complex conjugation t ' ocot € G, where (¢} = Gal(C/R). We
say that p: Gg — GL, (IE,) is odd if the determinant of every complex conjugation
is —1. If K is totally complex, we will regard p automatically as odd.

Conjecture 3.1. Let p:Gg — GL;, (Fp) be an odd, irreducible, continuous
representation with Serre conductor R (prime-to-p part of its Artin conductor)
and trivial character (prime-to-p part of det(p)). Assume that p is unramified in K
and that p|g K, arises from a finite-flat group scheme over Z g, for every prime p| p.
Then there is a (weight 2) mod p eigenform 0 over K of level M such that for all
primes q coprime to pRR, we have

Tr(p(Frobg)) = 6(T,).

4. Motives attached to complex eigenforms

Recall that a simple abelian surface A over K whose algebra Endg (A4) ®z Q of
K -endomorphisms is an indefinite division quaternion algebra D over QQ is commonly

2Qriginally given for totally real fields but as the problem of weights is a local issue, their recipe
applies to any number field.
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called a fake elliptic curve. The field of definition of a fake elliptic curve is necessarily
totally complex.

Let A/K be a fake elliptic curve and let p be a prime of good reduction for A.
Consider the representation 04,,: Gg —> GL4(Z ) coming from the p-adic Tate
module 7, (A) of A. Let @ denote Endg (A) viewed as an order in D. Assume that p
splits D and denote @ ® Z , by @ p. Then @ acts on Tp(A) via endomorphisms and
moreover Tp(A) = @) as a left @ module. Consequently Autg,(T,(4)) = O,
giving us a 2-dimensional representation.

pap. Gx —> OF ~ GLy(Z,). @.1)

By a theorem of Ohta [21], we have 04,, = pa,p @ pa,p. It is the 2-dimensional
representation p 4, , that will be of interest to us.

The following is a very special case of a fundamental conjecture of the Langlands
Programme [5,27] which asserts the existence of motives associated to cohomological
automorphic representations.

Conjecture 4.1. Let | be a (weight 2) complex eigenform over K of level ) that is

non-trivial and new. If K has some real place, then there exists an elliptic curve
Es/ K, of conductor N, such that

#E;(Zg/q) =1+ Nq—f(T,) forallq} . (4.2)

If K is totally complex, then there exists either an elliptic curve E; of conductor N
satisfying (4.2) or a fake elliptic curve A;/ K, of conductor M2, such that

#A45(Zx /q) = (1+ Nq— §(T))°  forallq } . 4.3)

Finally, we record a standard fact about fake elliptic curves that we shall crucially
use later, see [14, Section 3].

Theorem 4.2. Let A/ K be a fake elliptic curve. Then A has potential good reduction
everywhere. More precisely, let q be a prime of K and consider A/K,. There is
totally ramified extension K'/ K, of degree dividing 24 such that A/K' has good
reduction.

5. The Frey curve and the associated mod p Galois representation
For an elliptic curve E over a number field K and a rational prime p we write
PE,p: Gk — Aut(E[p]) = GL,(F))

for the representation induced by the action of Gk on the p-torsion E[p]. We make
repeated use of the following lemma.
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Lemma 5.1. Let E be an elliptic curve over K with j-invariant j. Let p > 5 be a
rational prime and write p = pg p. Let q t p be a prime of K.

(i) Ifvq(j) = 0 (i.e. E has potentially good reduction at q) then #p(1,) | 24.
(ii) Suppose vq(j) < 0 (i.e. E has potentially multiplicative reduction at q).

* If p t vq(J) then#p(lq) = p or2p.
o If plvg(j) then#p(ly) = 1o0r2.

Proof. For (i) see [16, Introduction]. For (ii) we suppose first that £ has split
multiplicative reduction at q. As q 4 p and E is semistable at ¢, inertia at q acts
unipotently on E[p], and thus #p(/,) | p. From the theory of the Tate curve [24,
Proposition V.6.1], we know that p | #p(/q) if and only if p } vq(j). This
proves (ii) if £ has split multiplicative reduction. Suppose now that £ has potentially
multiplicative reduction. Then E is a quadratic twist of an elliptic curve E with split
multiplicative reduction. Thus p = ¢ ® p/, where o’ = pg-, p and ¢ is a quadratic
character. Part (ii) follows. ]

Let S and T be as in the Introduction. We suppose once and for all that 7" # 0.
Let p be an odd prime, and let (a, b, ¢) € K3 be a non-trivial solution to the Fermat
equation (1.1). We scale the solution (a, b, ¢) so that it is integral. As the class
number might not be 1, we cannot suppose that a, b, ¢ are coprime. However,
following [8], we may suppose that the ideal generated by a, b, ¢ belongs to a finite
set as we now explain. For a non-zero ideal a of Z g, we denote by [a] the class of a
in the class group CI(K). Let

Gape =alg +bZk + cZk (5.1)

and let [a, b, c] denote the class of §, 5 . in CI(K). We exploit the well-known fact
(e.g. [4, Theorem VIIL.4]) that every ideal class contains infinitely many prime ideals.

Let cq,...,c, be the ideal classes of K. For each class ¢;, we choose (and fix) a
prime ideal m; } 2 of smallest possible norm representing ¢;. The set # denotes our
fixed choice of odd prime ideals representing the class group: # = {my,...,my}.

By [8, Lemma 3.2], we may scale (a, b, ¢) so that it remains integral, but §, 5 . € #.
We shall henceforth suppose 9,5, = m € H. Associated to (a, b, ¢) is the Frey
curve
E=E,pc:Y?=X(X—aP)(X +bP). (5.2)

We write p = pg p.

The following is Lemma 3.7 of [8], but as it is crucial to everything that follows
we include a proof here.
Lemma 5.2. Let P € T and suppose p > 4vp(2). Then
(i) E has potentially multiplicative reduction at *B;

(ii) p | #p(Ip) where Iz denotes the inertia subgroup of Gk at *B.
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Proof. Since 9, ., = m } 2, we know ‘P divides at most one of a, b, c. By
definition of T, the residue field of B is F5. If P + abc then

0=a?+bh?+c?=1+1+1 (mod*P),

giving a contradiction. We see that 3 divides precisely one of a, b, ¢c. We permute
a, b, ¢ so that 3 | b; such a permutation corresponds to twisting £ by *1, and so
does not affect j. Now the expression for j in terms of a, b, ¢ is

g (b2 — gPel)?
a’Pp?pc?p

J=2 (5.3)
It follows that v (7)) = 8up(2)—2pup(h). As p > 4up(2) we have that ug(j) < 0
and so E has potentially multiplicative reduction at 3. Moreover, p { vy (j). The
lemma follows from Lemma 5.1. (|

Lemma 5.3. Suppose p > 5and m } p. Then #p(I,) | 24.

Proof. As§,p . = mweknow that vy (@), Um(b), um(c) are all positive. Moreover,
as a? + b? + ¢? = 0, we have that at least two of vy, (@), U (h), v (c) are equal.
Permuting a, b, ¢ (which twists E by 4-1 and so does not affect the image of inertia
at m t 2) we may suppose

Um(a) = vn(c) =k, va() =k+t,

where k > 1 and ¢ > 0. If t = 0 then from (5.3) we have v, (j) > 0 and so the
lemma follows from Lemma 5.1. Thus suppose that + > 1. Then v, (j) = —2pt
and so by Lemma 5.1 we have p(/,) = 1 or 2, completing the proof. L

Lemma 5.4. The Frey curve E is semistable away from S U {m}, wherem = 8, p ..
Suppose p > 5 and not divisible by any q € S U {m}. The determinant of p is the
mod p cyclotomic character. Its Serre conductor N is supported on S U {m} and
belongs to a finite set that depends only on the field K. The representation p is odd
(in the sense of Section 3) and is finite flat at every q over p.

Proof. The statement about the determinant is a well-known consequence of the
theory of the Weil pairing on E[p]. This immediately implies oddness. Let
q¢ S U{m} be a prime of K. Let ¢4 and A denote the usual invariants of the
model E given in (5.2). These are given by the formulae

ca = 24(h?P —aPc?), A =2a?Pp2Pcp,

It follows from q ¢ S U {m} (together with the relation a? + b? + ¢? = 0) that q
cannot divide both ¢4 and A. Thus the given model is minimal, and E is semistable
at q. Moreover, p | vg(A). It follows (c.f. [22]) that p is unramified at q if q 4 p and
finite flat at q if q | p. It remains to show that the set of possible Serre conductors 21
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is finite. These can only be divisible by primes ¢ € S U {m}. Moreover, 9t
divides the conductor N of E, thus vg(M) < vq(N) < 2 + 3v4(3) + 6v4(2)
by [24, Theorem IV.10.4]. It follows that the list of possible Serre conductors is
finite. Moreover as m € J and the set # depends only on K, this list of Serre
conductors depends only on K. Ol

6. Surjectivity of p

To apply Conjecture 3.1 to the mod p representation p of the Frey curve E, we need
to show that p is absolutely irreducible. We have been unable to find a theorem
in the literature that immediately implies this. However, guided by the work of
Momose [20], Kraus [ 18] and David [6] (all relying on Merel’s uniform boundedness
theorem [19]), we prove the following result which is sufficient for our purpose.

Proposition 6.1. Let L be a Galois number field and let q be a prime of L. There is
a constant By o such that the following is true. Let p > By o be a rational prime.
Let E/L be an elliptic curve that is semistable at all p | p and having potentially
multiplicative reduction at q. Then pg.,p is irreducible.

Before proving Proposition 6.1 we apply it to the Frey curve.

Corollary 6.2. Let K be a number field, and suppose (in the notation of the
Introduction) that T # @. There is a constant Cg such that if p > Cg and
(a,b,c) € Z% is a non-trivial solution to the Fermat equation with exponent p, and
scaled 5o that G, p, . € JH, then pg p is surjective, where E is the Frey curve given
in (5.2).

Proof. We know from Lemma 5.2 that E has potentially multiplicative reduction
at B € T. Moreover, from the proof of Lemma 5.4, we know that E is semistable
away from the primes above 2 and those contained in J€. Let L be the Galois closure
of K, and let q be a prime of L above *B. Applying Proposition 6.1 we see that there
is a constant By 4 such that for p > By 4 we have that pg ,(G_) is irreducible.
Now ¢ | B | 2 and so B 4 depends only on K and we denote it by Cgx. We
enlarge Ck if needed so that for Cx > 4up(2). It follows from Lemma 5.2 that
the image of pg,, contains an element of order p. Any subgroup of GL;(IF,) that
contains an element of order p is either reducible or contains SL,(IF ). It follows
for p > Ck that the image in fact contains SL, (IF,). Moreover, again enlarging C if
necessary, we may suppose that K NQ({p) = Q for p > Cg. Thus y, = det(pkg,p)
is surjective, completing the proof. L]

6.1. Proof of Propesition 6.1. Suppose pg_ , is reducible. Thus,

_ A
pEap ~ (O :}) ’ (6.])
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where A, 1: Gy, — F7 are characters, and A" = det(pg,p) = xp is the mod p
cyclotomic character. We suppose from now on that p is unramified in L and that £
is semistable at all p | p.

Lemma 6.3. Write 04 € G, for a Frobenius element at q. Then )Lz(oq), A2 (0q) are
(up to reordering) congruent to 1, Norm(q)? modulo p.

Proof. Write D, for the decomposition subgroup at q. As E has potentially
multiplicative reduction at g, we know that pg p|p, is up to semisimplification
equal to ¢ @ ¢ - xp, where ¢ is at worst a quadratic character. The lemma follows
since yp(0q) = Norm(q) (mod p). O

From (6.1), there is a non-zero P € E[p] such that 6(P) = A(0) P foro € Gg.
Replacing E by p-isogenous E/(P) results in swapping the two characters A, A’
in (6.1). This allows us to suppose from now on that A%(c4) = 1 (mod p).

Lemma 6.4. The character A'? is unramified away from the primes above p. Let
p | p be a prime of K. Then

l]Z'Ip — (XP|IP)SP,
where s, € {0, 12}.

Proof. The first part of the lemma is Proposition 1.4 and 1.5 of [6]. The second part
is derived in [10, Proposition 2.1] from results found in [6]. L]

Now let G = Gal(L/Q). As L/Q is Galois, G acts transitively on the primes
p | p. Write po | p. For t € G we write s; € {0, 12} for the integer s, associated to
p = v (pg) in Lemma 6.4.

Lemma 6.5 (David [6, Proposition 2.6]). Leta € L be non-zero. Suppose v,(a) = 0
forallp | p. Then

[] vt@ =T (A"@)"*  (mod po).

teG

where the product on the right-hand side is taken over all prime ¢ in the support of a.

We now choose a positive integer r so that q” is principal and write «Z; = q".
Since A1?(0;) = 1 we see that

1_[ 7(@)’* =1 (mod py).

eG

The left-hand side belongs to a finite set «# that depends only on L and q, since s; = 0
or 12 for any © € G. Moreover, if we denote the left-hand side by g then p divides
Norm(po) which in turn divides Norm(f — 1). We choose Br ; > Norm(f — 1) for
all B € A with § # 1. Then for p > By, , we deduce that § = 1. Thus s; = 0
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for all T € G. It follows from Lemma 6.4 that the character A'? is unramified at all
places of L. Hence there is an extension M/ L of degree 12-h; where h is the class
number of L such that A|g,, = 1. It follows from (6.1) that £ has a point of order p
over M. Finally applying Merel’s uniform boundedness theorem [19], shows that p
is bounded by a constant that depends only on the degree [M : Q] = 12-hp -[L : Q]
completing the proof.

7. Applying the conjectures

This section is devoted to the proof of the following proposition.

Proposition 7.1. Let K be a number field. Assume Conjectures 3.1 and4.1. Suppose,
in the notation of Section 5, that T # . Then there is a constant Bk depending only
on K such that the following holds. Let (a,b,c) € Z?( being a non-trivial solution
to the Fermat equation with exponent p > Bk, and we suppose that it is scaled so
that §,p . = m € K. Let E/K be the associated Frey curve defined in (5.2). Then
there is an elliptic curve E'/ K such that the following hold:

(i) E’ has good reduction away from S U{m}, and potentially good reduction away
from S.

(ii) E’ has full 2-torsion.
(iii) ﬁE,p ~ IBE’,p-
(iv) for B € T we have vys(j') < 0 where j' is the j-invariant of E'.

Assume the hypotheses of the proposition. We suppose that p is suitably large,
and so by Corollary 6.2, the representation pg, , is surjective. We now apply
Conjecture 3.1 and deduce the existence of a weight 2 mod p eigenform 6 over K of
level 91, with 91 as in Lemma 5.4, such that for all primes q coprime to p91, we have

Tr (pE,p(Frobg)) = 6(Ty).

Since there are only finitely many possible levels 91, see Lemma 5.4, we can take p
large enough to guarantee that, see Proposition 2.1, for any level 91, there will be a
weight 2 complex eigenform f with level 91 that is a lift of 6. Observe that the list
of such eigenforms f is finite and depends only on K (and not on p or the solution
(a, b, c)). Thus every constant that depends later of these eigenforms depends only
on K.

Next we show that if p is sufficiently large then Q; = Q. The idea here is due to
Mazur, though apparently unpublished. It can be found in [23, Section 9].

Lemma 7.2. Suppose Q; # Q. There is a constant C; depending only on | such that
p < Cf.
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Proof. Choose and fix a prime q of K such thatq ¢ S U{m} and f(T,) ¢ Q. If q | p
then p | Norm(q) and so p is bounded. Thus we may suppose that q 4 p. Now E
has either good or multiplicative reduction at q (since E is semistable away from the
primes in S U {m}). Note that

Tr (. (Froby)) — +(Norm(q) + 1) if E has multiplicative reduction at g,
HE2 o aq(E) if E has good reduction at q.

In particular, this trace belongs to a finite list of rational integers that depends only
on q. However, there is prime ideal p of Q5 over p such that

Tr (,EE,p(Frobq)) = f(Ty) (mod p).

As f(T;) ¢ Q, the difference between the two sides is non-zero and belongs to a
finite set. As p | p, the norm of the difference is divisible by p. This gives an upper
bound on p that depends only on §. O]

Note that if Q; = Q then the above argument fails as the difference might be
Zero.

By supposing that p is sufficiently large, we may henceforth suppose that Q; = Q.
The fact that pg , is irreducible implies that j is non-trivial. If f is not new, we replace
it with an equivalent new eigenform that is of smaller level. Thus we can assume that |
is new and has level 2V dividing 91. By Conjecture 4.1, f either has an associated
elliptic curve E;/K of conductor 9, or has an associated fake elliptic curve A;/ K
of conductor 912,

Lemma 7.3. If p > 24 then | has an associated elliptic curve Ej.

Proof. This is another point where we make use of our assumption 77 # @. Let
‘B € T. We know from Lemma 5.2 that p | #pg_,(Ip). If § corresponds to a fake
elliptic curve Ay, then it follows from Theorem 4.2 that#p 4, p ({5p) < 24 where p4;,p
is the 2-dimensional representation defined in (4.1). As pg,p ~ pa;,p We have a
contradiction. L]

We may henceforth suppose that pg,, ~ pg’,p, where E’ = Ej is an elliptic
curve of conductor 0V dividing .

Lemma 7.4. If E' does not have full 2-torsion, and is not 2-isogenous to an elliptic
curve with full 2-torsion, then p < Cgr.

Proof. By Lemma 7.5 (below) there infinitely many primes g such that #£’(IF;) # 0
(mod 4). Fix such a prime q ¢ S U{m}. Now if q is a prime of good reduction for E,
then #E(F,) = E’(F,) (mod p). Note that #E(IF;) is divisible by 4 as the Frey
curve E has full 2-torsion. Thus the difference #E (Fq) —#E’(IF4), which is divisible
by p, is non-zero. Moreover, this difference belongs to a finite set depending on g,
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and so p is bounded. We may therefore suppose that £ has multiplicative reduction
at g. In this case, comparing traces of Frobenius at q we have

+(Norm(q) + 1) = aq(E’) (mod p).
Again the difference is non-zero and depends only on q, giving a bound for p. [

If E" is 2-isogenous to an elliptic curve E” then (as p # 2) then the isogeny
induces an isomorphism E’[p] == E"[p] of Galois modules. Thus,

PE.p ~ PE’.p ~ PE",p-
Hence we may, after possibly replacing E’ by E”, suppose that E’ has full 2-torsion.
To complete the proof the proposition, we need to show that E’ has potentially good
reduction at m, and that vz (j') < O for B € 7. Recall by Lemmas 5.2 and 5.3 that
p | #pE,p(Isp) for B € T, and that #pg (1) < 24. As #pg p,(Ip) = #pE’, p(Ip)
we deduce from Lemma 5.1 that vy (/') < 0 for P € T'. Finally if E” has potentially

multiplicative reduction at m then for every p > |v, (/)| we have, by Lemma 5.1,
that p | #pg/ ,(I), giving a contradiction for large p.

7.1. 2-torsion of elliptic curves. To complete the proof Lemma 7.4 we need the
following result which is stated as a fact in [17, Section 3]. We are grateful to Nicolas
Billerey for pointing out that this is a special case of a theorem of Katz [15].

Lemma 7.5. Let E be an elliptic curve over a number field K. Suppose that
4 | #E(Fy) for all primes q of sufficiently large norm. Then either E has full
2-torsion, or it is 2-isogenous to some elliptic curve E' having full 2-torsion.

Proof. By [15, Theorem 2] there is an elliptic curve E’/K isogenous to E such
that 4 | #E'(K)rs. If E’ has full 2-torsion then we are finished. Otherwise £’
has some K-point P of order 4. The points of order 2 on E’ are 2P, Q, R (say)
where Q and R are Galois conjugates, related by R = Q + 2P. The points of
order 2 on the 2-isogenous curve E’'/(2P) are P + (2P), Q + (2P) = R+ (2P)
and P + O + (2P). These are clearly individually fixed by the action of Gg. [

8. Proof of Theorem 1.1

We apply Proposition 7.1 which yields an elliptic curve E’/ K with full 2-torsion and
potentially good reduction outside S whose j-invariant j’ satisfies vy (j’) < 0 for
all B € T. Write

E:Y?2=X(X-e)(X —e)
with e, e; € Zg. Let A = e1/e2. Let A’ be any of the following six expressions
(which are known as the A-invariants of E’):

A, /A, 1—A, 1/(1—=4), A/(A-1), (A—-1)/A.
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Then 5

AE—A+1)3

jr=28.1 - Y (8.1)

A1 — )2
Let g ¢ S be a prime of K. As E’ has potentially good reduction at q, we know that
Uq(J") = 0. Thus A’ is the root of a degree six monic polynomial with coefficients that
are g-integral. It immediately follows that vq(A’) > 0. This is true for both A’ = A
and A’ = 1/A, thus A € @g. Moreover, letting u = 1 — A we see that u € Og,
hence (A, ) is a solution to the the S-unit equation (1.2). Suppose, as in the statement
of the theorem, that for every such solution (A, i) there some P € T such that

t 1= max {|us (D], [op (W} < v (2).

Ift = Othen it follows from (8.1) with A’ = A that vz (j) > 0 giving a contradiction.
Thus ¢ > 0. Now the relation A + u = 1 forces either

up(A) = vp(u) = -,

or up(A) =0 and wvgp(p) =1,
or vp(A) =t and vp(u) =0.
Thus

vp(Ap) = =2t <0 or vp(Au)=1>0.
But
Jr=28 (= Ap)’ - (A2,
which shows, either way, that vy (j’) = 8ugp(2) — 2¢ > 0 giving a contradiction.
This completes the proof.
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