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On the asymptotic Fermat's last theorem over number fields

Mehmet Haluk §engiin and Samir Siksek

Abstract. Let A be a number held, S be the set of primes of K above 2 and T the subset of
primes above 2 having inertial degree 1. Suppose that T f 0, and moreover, that for every
solution (A, fi) to the S-unit equation

A-f/i — 1, A, /x (9^,

there is some 1)3 G T such that max{ixp(A), up(/r)} < 4up(2). Assuming two deep but
standard conjectures from the Langlands programme, we prove the asymptotic Fermat's last
theorem over K: there is some Bk such that for all prime exponents p > Bk the only solutions
to xp + yp + zp =0 with x, y, z e K satisfy xyz 0. We deduce that the asymptotic
Fermat's last theorem holds for imaginary quadratic fields Q(V—<7) with —d 2, 3 (mod 4)
squarefree.

Mathematics Subject Classification (2010). 11D41, 11F80.

Keywords. Fermât equation, Bianchi modular forms, Galois representations.

1. Introduction

Dickson, in his History of the theory ofnumbers [7, pp. 758 and 768], gives a survey
of early work on the Fermât equation over number fields, with the earliest reference

being to the work of Maillet (1897). Over a period of almost a century, number
theorists have intermittently sought extensions of Kummer's cyclotomic approach to
the setting of number fields. Perhaps the most satisfying work in that direction is
that of Hao and Parry [12], who prove several results on the Fermât equation over
quadratic fields subject to a regularity condition on the prime exponent p (as for Q
one does not know how to prove that there are infinitely many regular primes).

In view ofWiles' remarkable proofof Fermat's last theorem, it is now more natural

to attack the Fermât equation over number fields via Frey curves and modularity.
Jarvis and Meekin [13] did just this, proving Fermat's last theorem over Q(v^).
They were followed by Freitas and Siksek [9] who proved Fermat's last theorem
for various real quadratic fields of small discriminant. In another work, Freitas and

Siksek [8] proved the asymptotic version of Fermat's last theorem (explained below)
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for totally real fields satisfying some auxiliary conditions. Key to these successes
is the extraordinary progress in modularity over totally real fields, due to the efforts
of Barnett-Lamb, Breuil, Diamond, Gee, Geraghty, Kisin, Skinner, Taylor, Wiles,
and others. Alas our understanding of modularity (or automorphy) in the setting of
general number fields is largely conjectural. One can ask if it is possible to replicate
the aforementioned successes for the Fermât equation over general number fields, by

assuming standard conjectures. The purpose of this paper is to address this question,
and to highlight additional challenges that arise in the general number field setting.

Let K be an algebraic number field. To keep this Introduction self-contained we
relegate the precise statements of the two conjectures we assume to later sections,
and now only briefly indicate what they are.

• Conjecture 3.1: this is a weak version of Serre's modularity conjecture ([11]) for
odd, irreducible, continuous 2-dimensional mod p representations of GaljQ/K)
that are finite flat at every prime over p.

• Conjecture 4.1 : this is a conjecture in the Langlands Programme (see [27]) which

says that every weight 2 newform (for GL2) over K with integer Hecke eigenvalues
has an associated elliptic curve over K or a fake elliptic curve over K.

To state our main result, we need to set up some notation. Write Zk for the ring
of integers of K. Let S for the set of primes of VLk above 2, and let T be the
subset of<]3 S with inertial degree 1 (or equivalently with residue class field F2).
We consider the Fermât equation

withx, y,z K and prime exponent p. We say that a solution (x, y, z) — {a, h, c) e K3

is non-trivial if abc / 0.

Theorem 1.1. Let K be a numberfieldfor which Conjectures 3.1 and 4.1 hold. Let
S, T be as above and suppose T f 0. Write for the set ofS-units of K. Suppose
that for every solution (A, //) to the S -unit equation

there is some ?ß e T that satisfies max{|u<p(A)|, |u<p(/x)|} < 4up(2). Then the

asymptotic Fermat's last theorem holds for K: there is some constant B k such that
the Fermât equation (1.1) has no non-trivial solutions with prime exponent p > Bk-

1.1. Differences from the totally real case. The reader comparing the statement

of our Theorem 1.1 with that of Theorem 3 of Freitas and Siksek [8] may incorrectly
(but understandably) presume that the proof is largely the same. In fact, in addition to

making use of ideas in [8] we need to deal with following two additional challenges
that do not arise in the totally real case.

xp + yp + zp 0 (1.1)

A + /x — 1, A, jx ç 0^ (1.2)
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(i) For a general number field K, Serre's modularity conjecture relates a representation

Gk -» GL2(F/>), subject to certain conditions, to a mod p eigenform of
weight 2 over K. If AT is totally real, such a mod p eigenform lifts to a complex
eigenform over K; this is not generally the case for a number field K with complex
embeddings. We show that this difficulty is circumvented in our asymptotic Fermât

setting where the prime exponent p is assumed to be sufficiently large. This step
makes the constant Bk in Theorem 1.1 ineffective, in contrast to the totally real

case. To make this effective we would need effective bounds for the size of torsion

subgroups of integral cohomology groups associated to certain locally symmetric
spaces (see Section 2.1

(ii) If K has a real embedding, then a weight 2 complex eigenform over K with
rational eigenvalues conjecturally corresponds to an elliptic curve over K. This is

not true if K is totally complex; the eigenform does sometimes correspond to a fake

elliptic curve. A careful study of images of inertia at primes iß e T of the mod p
representation of the Frey curve shows that they are incompatible with images of
inertia for fake elliptic curves.

1.2. An octic example. We stress that S-unit equations have finitely many solutions
and that there is a practical algorithm for determining these solutions; see for
example [26], Thus the criterion in Theorem 1.1 is algorithmically testable. To

illustrate this, take K Q(£i6) where £i6 is a primitive 16th root of unity. Then K
is a totally complex number field of degree 8. Let iß (1 — (je) • 7Lk- Then

TLk iß8- It follows that S T {iß}. Smart [25, Section 5] determines the

solutions to the S-unit equation (1.2) for this particular field and finds that there

are precisely 795 solutions (A,/i). It turns out that the largest possible value of
max{|up(A)|, |u<p(/F)|} is 22, which is smaller than 4u<p(2) 32. By Theorem 1.1,

assuming Conjectures 3.1 and 4.1, the asymptotic Fermat's last theorem holds for K.

1.3. Imaginary quadratic fields. Let K Q(V—d) be an imaginary quadratic
field, where d is a squarefree positive integer. If —d 5 (mod 8) then 2 is inert
in K and so T 0 and Theorem 1.1 does not apply. If —d 1 (mod 8) then 2

splits in K and if —d s 2 or 3 (mod 4) then it ramifies. Here we consider the

particularly simple case of — d s 2 or 3 (mod 4).

Theorem 1.2. Let K Q(V—d) be an imaginary quadratic field with where d is a
squarefree positive integer satisfying —d 2 or 3 (mod 4). Assume Conjectures 3.1

and 4.1. Then the asymptotic Fermat's last theorem holds for K.

Proof. Note that S T — {iß} where iß2 2Jjk Suppose first that d > 2. The

assumptions ensure that the only units in K are ± 1. If iß {a + b y/—d) is principal
then a2 + db2 2 giving a contradiction. Thus iß is not principal. Hence if (A, /x)
is any solution to the S-unit equation (1.2) then A ±2r, p, ±2S with r, s e Z.
We quickly deduce that (A,/x) (2,-1) or (—1,2) or (1/2,1/2). In particular,
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ail solutions satisfy max{|up(A)|, |up(/r.)|} < 4u>p(2). The proof is complete by
Theorem 1.1 for d > 2. The cases d 1, 2 are similar.

It is straightforward, though somewhat lengthy, to adapt the method of [8,
Sections 6-7] to deduce that the asymptotic Fermat's last theorem holds for 5/6
of imaginary quadratic fields, assuming Conjectures 3.1 and 4.1.

We are indebted to the referee for suggesting several corrections.

2. Eigenforms for GL2 over number fields

In this section, we discuss modular forms, both complex and mod p, from a

perspective that will be most useful for us. Let K be an algebraic number field
with ring of integers Ik and signature (r,s). Let Zk be the finite adèles of Zk
and let Ak,Ak denote the rings of adèles and of finite adèles of K, respectively.
We let denote the union of the upper and lower half planes and denote the

hyperbolic 3-space. Then GL2(K) acts on X x dff via the embedding

GL2{K) ^ GL2(K 0 R) ~ GL2(M)r x GL2(C)L

Fix an ideal 94 ç ïK and define the compact open subgroup

t/0(94) := {y e GL2(ZK) : y (j *J mod 94}.

Consider the adelic locally symmetric space

T0(94) GL2(/Q\((GL2(A£)/t/0(94)) x X).

This space is a disjoint union of Riemannian (2r + 3.v)-folds

h

To(94) Tj\X
j=1

where Ty are arithmetic subgroups of GL2(A'), with T1 being the usual congruence
subgroup T0(91) of the modular group GL2(Zk), and h is the class number of K.

For i e {0 2r + 3.v}, consider the ith cohomology group H1 (T0(94), C). For

every prime q coprime to the level 91, we can construct a linear endomorphism 7q

of Hl (T0(94), C) (called a Hecke operator) and these operators commute with each

other. We let T^(94) denote the commutative Z-algebra generated by these Hecke

operators inside the endomorphism algebra of Hl (T0(94), C).
For the purposes of this paper, a (weight 2) complex eigenform f over K of

degree i and level 94 is a ring homomorphism f: T^(94) -> C. Note that the values
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of f are algebraic integers and they generate a number field which we shall denote Oy.
We shall call a complex eigenform trivial if we have f(Tq) ±(Nq + 1) for all

primes q coprime to the level1. We call two complex eigenforms f, g with possibly
different degrees and levels equivalent if f(7"q) g(7q) for almost all prime ideals q

(notice that the two Hecke operators Tq may live in different Hecke algebras). A
complex eigenfbrm, say of level 92, is called new if it is not equivalent to one whose

level is a proper divisor of 92.

Now let p be a rational prime unramified in K and coprime to the level. The

cohomology group Hl (To(92), Fp) also comes equipped with Hecke operators, still
denoted 7q (we only consider these for primes q coprime to /?92). We shall denote

the corresponding algebra by t4'^(92). A (weight 2) mod p eigenform 9 over K of
ftp

degree i and level 92 is a ring homomorphism

0:T|')(92)^F/>.
ifp

2.1. Lifting mod p eigenforms. We say that a mod p eigenform 9, say of level 92,

lifts to a complex eigenform if there is a complex eigenform f of the same degree
and level and a prime idealof Qy over p such that for every prime q of K coprime
to /?92 we have 9(Tq) f(Tq) (mod p).

A very intriguing aspect of the theory is that in general mod p eigenforms do

not lift to complex ones. The obstruction to lifting is given by /7-torsion in the

integral cohomology as we now explain. The long exact sequence associated to the

multiplication-by-p short exact sequence

0—>-Z^*Z—»-F^—>0

gives rise to the following short exact sequences

0 -» //;(T0(92).Z) 0 F, //*'(70(92)^) //!'+1(70(92), Z)[p] -> 0,

where //,+1(7o(92), Z)[p] denotes the /^-torsion subgroup of H'+1 (7o(92), Z).
Hence we see that /r-torsion of Hl + X( T(l (92), Z) vanishes if and only if the reduction

map from Hl (To(92), Z) to Hl (To(92), Fp) is surjective. Now, the existence of
an eigenform (complex or mod p) is equivalent to the existence of a class in the

corresponding cohomology group that is a simultaneous eigenvector for the Hecke

operators such that its eigenvalues match the values of the eigenform. With this

interpretation, we can utilize the lifting lemmas of Ash and Stevens [1, Section 1.2]
and deduce that every mod p eigenform of degree i lifts to a complex one when
H7 70(92). Z) for j i, i + 1 have no /t-torsion.

The integral cohomology groups H1 (T0(92), Z) are well known to be finitely
generated. Thus for a given level 92, there are only finitely many primes p for which

'In the setting of GL2, non-triviality amounts to cuspidality.



364 M. H. §engün and S. Siksek CMH

there is an i such that //' (fo(94), Z)[p\ is non-trivial. We obtain the following easy

corollary which is crucial for our paper.

Proposition 2.1. There is a constant B, depending only on 94, such that for any
prime p > B, every mod p eigenform of level 94 lifts to a complex one.

3. Mod p Galois representations

We will be using the following very special case of Serre's modularity conjecture over
number fields. This conjecture concerns the modularity of 2-dimensional mod p
Galois representations. While it is easy to predict the level and the Nebentypus of
the sought after mod p eigenfbrm (Serre's original recipe [22] is still applicable),
predicting all the possible weights (which actually is a completely local issue) is a

very difficult task. A general weight recipe for GL2 over number fields was given2

by Buzzard, Diamond and Jarvis [3] (see also [2, Section 6] and [11]). However we

shall not need the full strength of their conjecture; the mod p Galois representations
that we shall encounter in this paper are of a very special type, namely finite flat at

every prime over p, and for such representations it is well-known that (again going
back to Serre's original work) we should expect the trivial Serre weight (which we
called "weight 2" in this paper) among the possible weights. This is sufficient for our
purposes.

Recall that for every real embedding a: K M and every extension r: K —> C

ofa, we obtain a complex conjugation r-1 oc o r e G k, where (c) Gal(C/M). We

say that p: Gk -* GL2(F^) is odd if the determinant of every complex conjugation
is —1. If K is totally complex, we will regard p automatically as odd.

Conjecture 3.1. Let p: Gk —> GL2(F;?) he an odd, irreducible, continuous

representation with Serre conductor 94 (prime-to-p part of its Artin conductor)
and trivial character (prime-to-p part o/'det(p)). Assume that p is unramified in K
and that p\gKv arises from a finite-flat group scheme over Z kp for every prime p\p.
Then there is a (weight 2) mod p eigenform 9 over K of level 94 such that for all
primes q coprime to p94, we have

Tr(p(Frobq)) 6 (If).

4. Motives attached to complex eigenforms

Recall that a simple abelian surface A over K whose algebra End*:(A) <g>z Q of
AT-endomorphisms is an indefinite division quaternion algebra D over Q is commonly

^Originally given for totally real fields but as the problem of weights is a local issue, their recipe
applies to any number field.
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called afake elliptic curve. The field of definition of a fake elliptic curve is necessarily

totally complex.
Let A/K be a fake elliptic curve and let p be a prime of good reduction for A.

Consider the representation oa,p'- Gk —-> GL^(ZP) coming from the p-adic Tate

module TP(A) of A. Let 0 denote End^(A) viewed as an order in D. Assume that p
splits D and denote 0 ®'//,p by 0p. Then 0 acts on TP(A) via endomorphisms and

moreover TP(A) ~ 0P as a left 0 module. Consequently Aut0/,(Tp(A)) ^ 0*,
giving us a 2-dimensional representation.

Pa,p:Gk -^0* ~GL2(Z/)). (4.1)

By a theorem of Ohta [21], we have oa,p — pA,P © Pa,p It is the 2-dimensional

representation pa.p that will be of interest to us.

The following is a very special case of a fundamental conjecture of the Langlands
Programme [5,27] which asserts the existence of motives associated to cohomological
automorphic representations.

Conjecture 4.1. Let f be a (weight 2) complex eigenform over K of level 91 that is

non-trivial and new. If K has some real place, then there exists an elliptic curve
E-J K, ofconductor 91, such that

#Ef (ZK/q) 1 + Nq - f(Tq) for all q \ 91. (4.2)

If K is totally complex, then there exists either an elliptic curve of conductor 91

satisfying (4.2) or a fake elliptic curve A^/K, ofconductor 912, such that

#Af(ZK/q) (1 + Nq - f(7q))2 for all q \ 91. (4.3)

Finally, we record a standard fact about fake elliptic curves that we shall crucially
use later, see [14, Section 3],

Theorem 4.2. Let A/K be afake elliptic curve. Then A has potential good reduction

everywhere. More precisely, let q be a prime of K and consider A/Kq. There is

totally ramified extension K'/Kq of degree dividing 24 such that A/K' has good
reduction.

5. The Frey curve and the associated mod p Galois representation

For an elliptic curve E over a number field K and a rational prime p we write

Pe,p: Gk Aut(£[/?]) S GL2(F/>)

for the representation induced by the action of Gk on the /Morsion E[p], We make

repeated use of the following lemma.



366 M. H. Çengûn and S. Siksek CMH

Lemma 5.1. Let E be an elliptic curve over K with j -invariant j. Let p > 5 be a
rational prime and write p pE,p Let q \ p be a prime of K.

(0 If vq (./ > 0 (i.e. E has potentially good reduction at q) then #p(/q) | 24.

(ii) Suppose vq(j) < 0 (i.e. E has potentially multiplicative reduction at q).

' If P \ Vq(J) then #p(/q) p or2p.
' If P I vq (./ then #p(/q) 1 or 2.

Proof For (i) see [16, Introduction]. For (ii) we suppose first that E has split
multiplicative reduction at q. As q \ p and E is semistable at q, inertia at q acts

unipotently on E[p], and thus #p(/q) | p. From the theory of the Tate curve [24,
Proposition V.6.1], we know that p | #p(/q) if and only if p \ vq(j). This

proves (ii) if E has split multiplicative reduction. Suppose now that E has potentially
multiplicative reduction. Then E is a quadratic twist of an elliptic curve E' with split
multiplicative reduction. Thus p f <g> p', where p' — pe\p and 0 is a quadratic
character. Part (ii) follows.

Let S and T be as in the Introduction. We suppose once and for all that T / 0.

Let p be an odd prime, and let (a, b, c) A-3 be a non-trivial solution to the Fermât

equation (1.1). We scale the solution (a.h.c) so that it is integral. As the class

number might not be 1, we cannot suppose that a, b, c are coprime. However,

following [8], we may suppose that the ideal generated by a, h, c belongs to a finite
set as we now explain. For a non-zero ideal o of Z^, we denote by [a] the class of a

in the class group Cl(AT). Let

^a,b,c a^K + bZx + cZk (5.1)

and let [a. h, c] denote the class of ^a,b,c in Cl(AT). We exploit the well-known fact

(e.g. [4, Theorem VIII.4]) that every ideal class contains infinitely many prime ideals.

Let ci,..., c/j be the ideal classes of K. For each class c,-, we choose (and fix) a

prime ideal m, \ 2 of smallest possible norm representing c,. The set 3i denotes our
fixed choice of odd prime ideals representing the class group: JC {mi,..., m/,}.
By [8, Lemma 3.2], we may scale (a,b, c) so that it remains integral, but ^a,b,c e M-
We shall henceforth suppose §a,b,c m G Jf. Associated to (a,b,c) is the Frey
curve

E EaAc : Y2 X(X - UP)(X + bP). (5.2)

We write p pE,p-
The following is Lemma 3.7 of [8], but as it is crucial to everything that follows

we include a proof here.

Lemma 5.2. Let Sfi e T and suppose p > 4u<p (2). Then

(i) E has potentially multiplicative reduction at fß;

(ii) p I #p(Ap) where h denotes the inertia subgroup of G k at
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Proof. Since tn \ 2, we know f$3 divides at most one of a, b, c. By
definition of T, the residue field of *}3 is F2. If ^3 j abc then

0 ap + bp + cp 1 + 1 + 1 (mod ^3),

giving a contradiction. We see that divides precisely one of a, b, c. We permute
a, b, c so that ^3 | b; such a permutation corresponds to twisting £ by ±1, and so

does not affect j. Now the expression for j in terms of a, b, c is

(hip _ apcpf
i 28 • — (5 3)J

a2Pb2PC2P
' ^ ' '

It follows that Usp(y) 8uçp(2)—2pv<$(b). As p > 4u<p (2) we have that up(/' < 0

and so E has potentially multiplicative reduction at f}3. Moreover, p \ up / The
lemma follows from Lemma 5.1.

Lemma 5.3. Suppose p > 5 and m \ p. Then #p(/m) | 24.

Proof As ~§a,b,c tn we know that vm(a), vm(b), vm(c) are all positive. Moreover,
as ap + bp + cp 0, we have that at least two of um(a), vm(b), um(c) are equal.

Permuting a, b, c (which twists E by ± 1 and so does not affect the image of inertia
at m \ 2) we may suppose

um(a) um(c) k, vm(b) k + t,

where k > 1 and I > 0. If t 0 then from (5.3) we have um(/') > 0 and so the

lemma follows from Lemma 5.1. Thus suppose that t > 1. Then vm(j) —2pt
and so by Lemma 5.1 we have p(/m) 1 or 2, completing the proof.

Lemma 5.4. The Frey curve E is semistable awayfrom S U {m}, where m ~§a,b,c-

Suppose p > 5 and not divisible by any q G S U {m}. The determinant of p is the

mod p cyclotomic character. Its Serre conductor 91 is supported on S U {m} and

belongs to a finite set that depends only on the field K. The representation p is odd

(in the sense ofSection 3) and is finite flat at every q over p.

Proof. The statement about the determinant is a well-known consequence of the

theory of the Weil pairing on E[p\. This immediately implies oddness. Let
q ^ S U {m} be a prime of K. Let C4 and A denote the usual invariants of the
model E given in (5.2). These are given by the formulae

c4 2\b2p - apcp), A 24a2pb2pc2p.

It follows from q ^ S U {tn} (together with the relation ap + bp + cp 0) that q

cannot divide both C4 and A. Thus the given model is minimal, and E is semistable

at q. Moreover, p \ uq(A). It follows (c.f. [22]) that pis unramified at q if q { p and

finite flat at q if q | p. It remains to show that the set of possible Serre conductors 91
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is finite. These can only be divisible by primes q e S U {m}. Moreover, 91

divides the conductor N of E, thus uq(9l) < vq(N) < 2 + 3uq(3) + 6uq(2)
by [24, Theorem IV.10.4], It follows that the list of possible Serre conductors is

finite. Moreover as m M and the set M depends only on K, this list of Serre

6. Surjectivity of p

To apply Conjecture 3.1 to the mod p representation p of the Frey curve E, we need

to show that p is absolutely irreducible. We have been unable to find a theorem

in the literature that immediately implies this. However, guided by the work of
Momose [20], Kraus [18] and David [6] (all relying on Merel's uniform boundedness

theorem [19]), we prove the following result which is sufficient for our purpose.

Proposition 6.1. Let L he a Galois numberfield and let q he a prime ofL. There is

a constant /i / q such that the following is true. Let p > Bpq he a rational prime.
Let E/L he an elliptic curve that is semistahle at all p | p and having potentially
multiplicative reduction at q. Then pE.p is irreducible.

Before proving Proposition 6.1 we apply it to the Frey curve.

Corollary 6.2. Let K he a number field, and suppose (in the notation of the

Introduction) that T f 0. There is a constant Ck such that if p > Ck and

{a, h, c) J?K is a non-trivial solution to the Fermât equation with exponent p, and
scaled so that ha,b,c •= -j'C then Pe,p is surjective, where E is the Frey curve given
in (5.2).

Proof. We know from Lemma 5.2 that E has potentially multiplicative reduction

at fp e T. Moreover, from the proof of Lemma 5.4, we know that E is semistable

away from the primes above 2 and those contained in M. Let L be the Galois closure

of K, and let q be a prime of L above Applying Proposition 6.1 we see that there

is a constant BLa such that for p > BLq we have that Pe,p(Gl) is irreducible.
Now q I I 2 and so BpA depends only on K and we denote it by Ck- We

enlarge Ck if needed so that for Ck > 4u<p(2). It follows from Lemma 5.2 that

the image of ps,p contains an element of order p. Any subgroup of GL2(FP) that

contains an element of order p is either reducible or contains SL2(FP). It follows
for p > Ck that the image in fact contains SL2(F/)). Moreover, again enlarging Ck if
necessary, we may suppose that K FI Q(ÇP) Q for p > Ck- Thus Xp det(pe,p)
is surjective, completing the proof.

6.1. Proof of Proposition 6.1. Suppose ~Pe,p is reducible. Thus,

conductors depends only on K.

(6.1)
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where A, A': Gl -> F* are characters, and AA' det(p£^) Xp is the mod p
cyclotomic character. We suppose from now on that p is unramified in L and that E
is semistable at all p | p.

Lemma 6.3. Write rxq G Gl for a Frobenius element at q. Then A2(rrq), A'2(erq) are

(up to reordering) congruent to 1, Norm(q)2 modulo p.

Proof. Write Dq for the decomposition subgroup at q. As E has potentially
multiplicative reduction at q, we know that Pe.p\dl] is up to semisimplification
equal to 4> ® (f> • Xp> where f is at worst a quadratic character. The lemma follows
since Xp(aq) Norm(q) (mod p).

From (6.1), there is a non-zero P e E[p] such that cr(P) A(cr)P for a G Gk-
Replacing E by p-isogenous E/(P) results in swapping the two characters A, A'

in (6.1). This allows us to suppose from now on that A2(aq) 1 (mod p).

Lemma 6.4. The character A12 is unramified away from the primes above p. Let

p | p be a prime of K. Then

Al2|/P (XP\I,YV>

where jp G {0,12}.

Proof. The first part of the lemma is Proposition 1.4 and 1.5 of [6]. The second part
is derived in [10, Proposition 2.1] from results found in [6].

Now let G Gal(L/Q). As L/Q is Galois, G acts transitively on the primes
p I p. Write po | p. For r G G we write sT G {0,12} for the integer .vp associated to

p T-1 (po) in Lemma 6.4.

Lemma 6.5 (David [6, Proposition 2.6]). Let a G L be non-zero. Suppose vp(a) 0

for all p I p. Then

]~[ r(a)Sr ]~[ (A12(o-t))"t(a° (mod p0),
rsG

where the product on the right-hand side is taken over all prime r in the support ofa.

We now choose a positive integer r so that qr is principal and write aZl qr.
Since A12(aq) 1 we see that

"[ r(a)ST 1 (mod p0).

x eG

The left-hand side belongs to a finite set A that depends only on L and q, since sT 0

or 12 for any r G G. Moreover, if we denote the left-hand side by ß then p divides

Norm(po) which in turn divides Norm (/J — 1). We choose Bl,c\ > Norm(/( — 1) for
all ß G A with ß 1. Then for p > ßi q we deduce that ß 1. Thus sT 0
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for all r G. It follows from Lemma 6.4 that the eharacter A12 is unramified at all
places of L. Hence there is an extension M/ L of degree 12 -ht where hp is the class

number of L such that A | qm 1. It follows from (6.1 that E has a point of order p
over M. Finally applying Merel's uniform boundedness theorem [19], shows that p
is bounded by a constant that depends only on the degree [M : Q] 12 -hp-[L : Q]
completing the proof.

7. Applying the conjectures

This section is devoted to the proof of the following proposition.

Proposition 7.1. Let K be a numberfield. Assume Conjectures 3.1 and 4.1. Suppose,
in the notation ofSection 5, that T f V). Then there is a constant Rk depending only
on K such that the following holds. Let (a,b, c) being a non-trivial solution
to the Fermât equation with exponent p > Bk, and we suppose that it is scaled so

that ~§a,b,c m G Let E/K be the associated Frey curve defined in (5.2). Then

there is an elliptic curve E'/K such that the following hold:

(i) E' has good reduction awayfrom S U {m}, and potentially good reduction away
from S.

(ii) E' has full 2-torsion.

(hi) PE,p ~ PE',p-

(iv) for e T we have up /') < 0 where j' is the j -invariant of E'.

Assume the hypotheses of the proposition. We suppose that p is suitably large,
and so by Corollary 6.2, the representation pe,p is surjective. We now apply

Conjecture 3.1 and deduce the existence of a weight 2 mod p eigenform 9 over K of
level 91, with 91 as in Lemma 5.4, such that for all primes q coprime to /?9t, we have

Tr(p£,„(Frobq)) 9(Tq).

Since there are only finitely many possible levels 91, see Lemma 5.4, we can take p
large enough to guarantee that, see Proposition 2.1, for any level 91, there will be a

weight 2 complex eigenform f with level 9t that is a lift of 9. Observe that the list
of such eigenforms f is finite and depends only on K (and not on p or the solution
(a, b, c)). Thus every constant that depends later of these eigenforms depends only
on K.

Next we show that if p is sufficiently large then Qf Q. The idea here is due to

Mazur, though apparently unpublished. It can be found in [23, Section 9],

Lemma 7.2. Suppose Qf f Q. There is a constant Cj- depending only on f such that

p < Cf.
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Proof. Choose and fix a prime q of K such that q ^ SU {m} and f (Tq) fi Q. If q | p
then p I Norm(q) and so p is bounded. Thus we may suppose that q \ p. Now E
has either good or multiplicative reduction at q (since E is semistable away from the

primes in S U {m}). Note that

±(Norm(q) + l) if E has multiplicative reduction at q,

aq(E) if E has good reduction at q.

In particular, this trace belongs to a finite list of rational integers that depends only
on q. However, there is prime ideal p of Qf over p such that

Tr (p£,p(Frobq)) f(7*q) (mod p).

As f(7q) ^ Q, the difference between the two sides is non-zero and belongs to a

finite set. As p | p, the norm of the difference is divisible by p. This gives an upper
bound on p that depends only on f.

Note that if Qj Q then the above argument fails as the difference might be

zero.

By supposing that p is sufficiently large, we may henceforth suppose that Qf Q.
The fact that pe,p is irreducible implies that f is non-trivial. If f is not new, we replace
it with an equivalent new eigenform that is of smaller level. Thus we can assume that f
is new and has level 91' dividing 91. By Conjecture 4.1, f either has an associated

elliptic curve Ef/K of conductor 91', or has an associated fake elliptic curve Aj/K
of conductor 91'2.

Lemma 7.3. If p > 24 then f has an associated elliptic curve Ef.

Proof. This is another point where we make use of our assumption T / 0. Let
fs e T. We know from Lemma 5.2 that p | #pE,p(Iy)- If f corresponds to a fake

elliptic curve Af, then itfollows from Theorem 4.2 that#p,4f ,p(/<p) < 24 where PAf,p
is the 2-dimensional representation defined in (4.1). As Pe.p ~ PAf,p we have a

contradiction.

We may henceforth suppose that ~Pe,p ~ pE',p where E' Ef is an elliptic
curve of conductor 91' dividing 91.

Lemma 7.4. If E' does not have full 2-torsion, and is not 2-isogenous to an elliptic
curve with full 2-torsion, then p < Ce'.

Proof. By Lemma 7.5 (below) there infinitely many primes q such that #E'(¥q) f 0

(mod 4). Fix such a prime q S U {m}. Now if q is a prime of good reduction for E,
then #E(Fq) s £'(Fq) (mod p). Note that #£'(Fq) is divisible by 4 as the Frey
curve E has full 2-torsion. Thus the difference #Z?(Fq) — #.E'(Fq), which is divisible
by p, is non-zero. Moreover, this difference belongs to a finite set depending on q,

Tr (p£,p(Frobq))
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and so p is bounded. We may therefore suppose that E has multiplicative reduction
at q. In this case, comparing traces of Frobenius at q we have

±(Norm(q) + l) aq(E') (mod p).

Again the difference is non-zero and depends only on q, giving a bound for p.

If E' is 2-isogenous to an elliptic curve E" then (as p yP 2) then the isogeny
induces an isomorphism E'[p] E"[p] of Galois modules. Thus,

Pe,p ~ PE',p ~ PE",p-

Hence we may, after possibly replacing E' by E", suppose that E' has full 2-torsion.
To complete the proof the proposition, we need to show that E' has potentially good
reduction at m, and that u<p(_/') < 0 for e T. Recall by Lemmas 5.2 and 5.3 that

P I #pE,P(I<v) for *PeT, and that #pE,p(Im) < 24. As #pE,P(h) #pE',P(I<p)
we deduce from Lemma 5.1 that u<p( /') < 0 for ^3 G T. Finally if E' has potentially
multiplicative reduction at m then for every p > |um(y')| we have, by Lemma 5.1,
that p I #pE',p(fm), giving a contradiction for large p.

7.1. 2-torsion of elliptic curves. To complete the proof Lemma 7.4 we need the

following result which is stated as a fact in [ 17, Section 3], We are grateful to Nicolas

Billerey for pointing out that this is a special case of a theorem of Katz [15].

Lemma 7.5. Let E be an elliptic curve over a number field K. Suppose that
4 I #E(Fq) for all primes q of sufficiently large norm. Then either E has full
2-torsion, or it is 2-isogenous to some elliptic curve E' having full 2-torsion.

Proof. By [ 15, Theorem 2| there is an elliptic curve E'/K isogenous to E such

that 4 I #E'(K)tors. If E' has full 2-torsion then we are finished. Otherwise E'
has some ÄT-point P of order 4. The points of order 2 on E' are 2P, Q, R (say)
where Q and R are Galois conjugates, related by R — Q + 2P. The points of
order 2 on the 2-isogenous curve E'/(2P) are P + (2P), Q + (2P) R + (2P)
and P + Q + (21'). These are clearly individually fixed by the action of Gk-

8. Proof of Theorem 1.1

We apply Proposition 7.1 which yields an elliptic curve E'/ K with full 2-torsion and

potentially good reduction outside S whose /'-invariant j' satisfies Up(y') < 0 for
all 93 T. Write

E'\ Y2 X(X - ei)(X - e2)

with e\, e2 G Zk- Let A ei/e^. Let A' be any of the following six expressions
(which are known as the A-invariants of E')\

A, 1/A, 1 — A, 1/(1-A), A/(A — 1), (A — 1)/A.
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Then
o (A,2-A' + l)3j =2 • -—~ -. (8.1)

A/2(I-ao2
Let q fi S be a prime of K. As E' has potentially good reduction at q, we know that

vq j') > 0. Thus A' is the root of a degree six monic polynomial with coefficients that

are q-integral. It immediately follows that uq(A') > 0. This is true for both A' A

and A' 1/A, thus A G Moreover, letting /t 1 - A we see that fi G

hence (A, pt) is a solution to the the S-unit equation 1.2). Suppose, as in the statement

of the theorem, that for every such solution (A, fi) there some T such that

t := max {|up(A)|, |up(/r)|} < up(2).

If t 0 then it follows from (8.1) with A' A that usp / ') > 0 giving a contradiction.
Thus t > 0. Now the relation A + ji 1 forces either

Up (A) Uq3 (/t) —t,

or o$p(A) 0 and fsp(/t) t,

or tkp (A) t and v<$(ß) 0.

Thus

But

ixp(A/r) —21 <0 or u<p(Afi) t > 0.

/ 28 • (1 - A/r)3 • (A/r)"2

which shows, either way, that v^(j') 8u<p(2) — 2t > 0 giving a contradiction.
This completes the proof.
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