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Random walks and boundaries of CAT(0) cubical complexes

Talia Fernds” Jean Lécureux™* and Frédéric Mathéus

Abstract. We show under weak hypotheses that the pushforward {Z, 0} of a random-walk to
a CAT(0) cube complex converges to a point on the boundary. We introduce the notion of
squeezing points, which allows us to consider the convergence in either the Roller boundary
or the visual boundary, with the appropriate hypotheses. This study allows us to show that any
nonelementary action necessarily contains regular elements, that is, elements that act as rank-1
hyperbolic isometries in each irreducible factor of the essential core.

Mathematics Subject Classification (2010). 20F65, 20P05, 60J50, 20F67.

Keywords. CAT(0) cube complexes, Roller boundary, visual boundary, random walks,
stationary measure, drift.

1. Introduction

Let w be a probability measure on a group I'. Pick elements g; independently and at
random according to the law . The random walk on I' is defined as the sequence
Z, = g182 ... gn- An important aspect of the study is to understand the asymptotic
behavior of the random walk Z,,.

A typical way of understanding how elements of a given group behave is to make
the group act on a metric space X. Fixing a base point 0 € X, one can then study
the sequence of points {Z,0}. If the space X is sufficiently nice, one can hope for
the convergence of this sequence of points in some geometric compactification of X .
The first example of this is due to Furstenberg, where the space in question is the
hyperbolic plane [21]. A powerful motivation for this kind of result is Oseledec’
Theorem for random walks on subgroups of SL, (RR) [41]; it can be interpreted as a
form of convergence of the random walk to a point in the (visual) boundary of the
symmetric space SL, (R)/ SO, (R) [28].

These types of questions have been studied by many authors. Let us give a few
results in this direction. The typical setting in which these results will hold is in
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the presence of negative curvature, or at least spaces with hyperbolic-like properties.
The fundamental paper of Kaimanovich [30] proves this convergence for hyperbolic
groups, and in many situations when X has some kind of negative curvature. Let us
also mention the work of Kaimanovich and Masur, treating the case of the mapping
class group of a surface acting on its Teichmiiller space [32], and the work of Gautero
and Mathéus on groups acting on R-trees [23]. More recently, a nice result of Maher
and Tiozzo [37] proves the convergence to the boundary for groups acting on (not
necessarily proper) hyperbolic spaces. In the CAT(0) setting, there are also some
partial results. Ballman treats the case of groups acting on non-positively curved
rank-one manifolds [5]. For general CAT(0) spaces, Karlsson and Margulis [34]
prove convergence to the visual boundary, but they assume that the random walk
goes to infinitiy at positive speed, which can be difficult to check in general.

In this paper, we are interested in the case when X is a CAT(0) cube complex.
These complexes attracted a lot of attention recently as they play an essential role in
Agol’s proof of the virtual Haken conjecture for 3-manifolds (an outstanding problem
in the theory of 3-manifolds which relied essentially on the work of Wise) [1,43].
There are many examples of CAT(0) cube complexes and groups acting on them.
Apart from the fundamental groups of hyperbolic 3-manifolds, one can think of
right-angled Artin groups, Coxeter groups, and small cancellation groups, among
many others. Let us also emphasize that there are interesting examples of CAT(0)
cube complexes which are not proper. For example, the Higman group

(aj,i e Z/nZ | aiai+1a,-_1 = ai2+1)

(withn = 4) acts (non-properly) on a CAT(0) square complex [38]. Another example
is given by diagram groups [18] (the complex in this case may fail to be finite
dimensional).

CAT(0) cube complexes admit two natural metrics which in turn give rise to the
visual boundary and the Roller boundary. The boundary which will be the most
relevant for our study is the Roller boundary (see §3.1) though we will also consider
the visual boundary (see §10). We denote by Aut(X) the automorphism group of
a CAT(0) cube complex X and by Aut’(X) the finite index subgroup consisting of
automorphisms stabilizing each irreducible factor.

Theorem 1.1. Let X be afinite-dimensional CAT(0) cube complex. Let T < Aut’(X)
be an essential and nonelementary action of I'. Then, for any admissible measure
i € Prob(T") and every o € X, almost surely Z,0 converges to some point in the
Roller boundary.

A question which is related to the convergence to the boundary is the speed at
which the random walk goes to infinity, called the drift. This drift is defined as the
limit A = lim d(—Z;”—’O) (see §9). The random walk on a non-amenable group I,
endowed with some word metric, always has positive drift [25]. For general actions
however the positivity is not clear at all. In some cases, establishing the positivity of
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the drift helps to prove convergence to the boundary, as in [34]. In our case however,
we deduce the positivity of the drift from the convergence, and prove the following
(see Theorem 9.3):

Theorem 1.2. Let X be a finite-dimensional CAT(0) cube complex with a non-
elementary, essential action of the group I'. Assume . € Prob(I") is admissible and
has finite first moment. Then almost surely we have lim,_, @ > 1.

While the Roller boundary is the most useful for us, a CAT(0) cube complex is also
a CAT(0) space, and therefore is endowed with another natural boundary: its visual
boundary 0 X . From a measurable point of view, in many cases, there should be an
isomorphism between the two boundaries. Indeed, under suitable assumptions, the
Roller boundary as well as the visual boundary is the Furstenberg—Poisson boundary
of (I", w) by [19] and by [34]. However, there is in general no natural map which is
everywhere defined between the two boundaries. It is nevertheless possible to define
some partial maps: for example, to a point 7 in the Roller boundary, one can associate
the set of possible limit points in the visual boundary of any sequence converging
to 1 (see Section 6.1 for more details). It might happen that, for certain points of the
Roller boundary, this set is reduced to a point. It turns out that we are able to prove
that, for almost every limit point of the random walk, this is the case (see Section 10
and Proposition 10.2).

After proving the convergence of the random walk to the Roller boundary, it is
natural to wonder what happens with the visual boundary. As mentionned above,
Karlsson and Margulis proved convergence of the random walk to the visual boundary
for groups acting on CAT(0) spaces under the assumption of finite first moment and
positivity of the drift [34]. By considering actions on CAT(0) cube complexes, we
are able to remove the moment condition and prove the following:

Theorem 1.3. Let X be a finite-dimensional, irreducible, CAT(0) cube complex.
Let ' < Aut’(X) be an essential and nonelementary action of I'. Then, for any
admissible u € Prob(I") and for every o € X, almost surely the sequence (Z,0)
converges to some point in the visual boundary.

Once we have proved the convergence to the boundary, we can better understand
the dynamics of the random walk Z,. Say that a geodesic £ in X is contracting if
the projection on £ of any ball disjoint from £ has uniformly bounded diameter. An
isometry of X is called contracting if it is a hyperbolic isometry with a contracting
axis. The fundamental paper of Caprace and Sageev [14] proves that for irreducible
complexes, any non-elementary action has contracting elements. We are able to
prove that these elements occur with high probability in the random walk:

Theorem 1.4. Let X be a finite-dimensional irreducible CAT(0) cube complex with
an essential and non-elementary action of the group I'. Let u € Prob(G) be an
admissible measure. Then almost surely

1
lim —|{k < n | Zg is contracting}| = 1.
n—>+oo A
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As an application, we can generalize one of the main results of [14] in the case of
reducible complexes, where there cannot be any contracting isometries. The best that
one can hope is for elements which act as contracting isometries in each irreducible
factor (of the essential core). These are called regular elements. Caprace and Sageev
prove that such elements do exist, under the additional assumption that I" is a lattice
in Aut(X) [14, Theorem D] (see also [15] for the case of general, proper CAT(0)
spaces). Using the theorem above, we can get rid of this assumption:

Theorem 1.5. Let X be a finite-dimensional CAT(0) cube complex with an essential
and non-elementary action of the group . Then there exists regular elements in I.

In fact, not only do regular elements exist, but they will occur in the random walk
with high probability (see Corollary 11.8). The existence of such elements has some
strong consequences about the asymptotic properties of the I'-orbits in X [36].

Our strategy of proof for all these theorems is inspired by some classical results:
Kaimanovich [30] for the convergence to the boundary and Guivarc’h and Raugi [26]
for the positivity of the drift. However, to be able to apply these strategies, we
are forced to understand the dynamics on the boundary. An important tool for us
is the notion of regular points of the boundary (see §5.3). These special points
were introduced in the paper [19] and exhibit strong contracting properties very
useful to us.

Another distinctive feature of our proof is that, in opposition for example to [30],
we use the identification of the Furstenberg—Poisson boundary in order to prove
the convergence to the boundary. This identification was first noticed by A. Nevo
and M. Sageev [39] in the case of cocompact lattices, and generalized by the first
named author [19]. More precisely, we use that there is a boundary map from
the Furstenberg—Poisson boundary of I" to the Roller boundary of X, and that the
essential image of this map is contained in the set of regular points. Then the
contracting properties of the regular points are sufficient to ensure the convergence.

Acknowledgements. The authors would like to thank Uri Bader, Ruth Charney, In-
dira Chatterji, Amos Nevo, L’Institut Henri Poincaré, and the first and third named
authors would like to thank the Laboratoire de Mathématique d’Orsay.

2. Generalities about random walks

2.1. Generalities and notation. Let us start with setting up some notation. In what
follows, T" is a discrete countable group. We fix an admissible probability measure
i € Prob(I"), meaning that the semigroup generated by the support of w is I.

We define the random walk on I as follows. Let = I'N and IP be the probability
measure on 2 defined by P = §, x /LN*. The space €2 is the space of increments.
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If o € 2, we denote by g; (w) the ith element of the sequence w. As is customary in
probability theory, we often omit the @ and write only g;.

Our main object of interest is the random walk on I', which is the sequence of
random variables Z,,: 2 — I' defined by Z,(w) = g1(w)gz(®)... gn(w), or for
shoet Z, = 27 .. -8n-

2.2. The Furstenberg—Poisson boundary. The proof of our results will use an
important tool: the Furstenberg—Poisson boundary of (I", u). This boundary is a
space designed to encode the asymptotic properties of the sequences (Z,). We
will briefly recall the definition of this space and the key results that we need. The
interested reader might consult [3,4, 20, 30], or [19] for more information.

One possible definition is as follows. We denote by S: Q2 — Q the “shift” map
defined by S(wp, w1,...,®p,...) = (Wow1,®2,...,®n,...).

Definition 2.1. The Furstenberg—Poisson boundary is the space B of ergodic
components of the action of S on (,Haar®@uN"). 1t is equipped with the
pushforward v of the measure IP by the projection 2 — B.

So the Furstenberg—Poisson boundary is a measure space equipped with an action
of I and a probability measure v whose class is preserved by I'.

We will need to understand the Furstenberg—Poisson boundary of finite index
subgroups. More precisely, we need the following result, which is proved in [22,
Lemma 4.2].

Lemma 2.2. Let (B,v) be the Furstenberg—Poisson boundary of (I',p), and
let T9g < ' be a subgroup of finite index. Then there exists an admissible
measure iy € Prob(I'g) such that the Furstenberg—Poisson boundary of (I'y, (o)
is ['g-equivariantly isomorphic to (B, v).

The Furstenberg—Poisson boundary presents very strong ergodic properties. This
was first observed in [31] and more recently generalized and used in [3]. In the
following, we denote by (B_, v_) the Furstenberg—Poisson boundary of (T, ft), where
fi € Prob(T") is defined by ji(g) = u(g™h).

Theorem 2.3. Let Y be a separable metric space endowed with an action of T by
isometries. Then:

* Any I'-equivariant measurable map B — Y is essentially constant;

* Any I'-equivariant measurable map B_ x B — Y is essentially constant.

2.3. Stationary measures. Let I" act continuously on some topological space K. A
measure A € Prob(K) is stationary if A = A, in other words if fr g:Adu(g) = A.
It is a general fact that if I' acts continuously on some compact space K then there
always exists some stationary measure on K [21, Lemma 1.2].
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We will use the following important consequence of the Martingale Convergence
Theorem [21, Lemma 1.3]:

Theorem 2.4. Let A be a stationary measure on the compact space K. For P-almost
every w € K2 there exists A, € Prob(K) such that Z,(w)A converges to A.
Furthermore we have A = fg Ao dP(w).

It is easy to check that the measure v on B is always pu-stationary. Furthermore,
if A is a pu-stationary measure on a compact space K, then by Theorem 2.4 we get a
map 2 — Prob(K) given by @ + lim Z, (w)A. This map is clearly S-invariant, so
it factors through a map B — Prob(K).

The above theorem can be generalized to Polish spaces. Let ¥ be a Polish space,
with a continuous action of I'. We endow Prob(Y) with the topology of weak-*
convergence, when seen as a dual of the space of bounded continuous functions.
It is again a Polish space with a continuous action of I". The following is proved
in [8, Lemma 3.2] :

Theorem 2.5. Let Y be a Polish space with a continuous T -action. Assume that A
is a stationary probability measure on Y. Then for P-almost every @ € 2 there
exists A, € Prob(Y) such that Z,(w)A converges to A,. Furthermore we have
A = fQ Ao dP(w).

Corollary 2.6. Let I" act continuously on some Polish space Y. Assume that there
is a unique T"-equivariant map ¢: B — Prob(Y). Then there is a unique stationary
measure on Y .

Proof. Let b + A, be a I'-equivariant map. Then it is easy to check that
A = [ Ap dv(b) is a stationary measure on Y .

Now let us turn to the uniqueness. Let A be a stationary measure on Y. By
Theorem 2.5 that Z, A converges to some measure A, and b +—> A is a G-equivariant
map from B to Prob(Y). Hence we have A, = ¢(b).

Since we have also A = fg Ap dv(b), we see that A is uniquely defined. L]

3. General facts about CAT(0) cube complexes

In this section we collect some general results about CAT(0) cube complexes. We
assume some familiarity with these basic concepts. We refer the interested reader
to [14,39] or [19] for more information.

Convention. In what follows all the complexes we consider will be finite-dimensional
and second countable.

Remark 3.1. The restriction to second countable complexes is needed for ergodic-
theoretic arguments, but is not essential to our purpose. Indeed, if a countable group I
acts on a complex X, then it is easy to check that there is a sub-complex ¥ C X
which is second countable and I"-invariant.
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3.1. Sageev—Roller duality and the Roller boundary. Let X be a finite-dimension-
al CAT(0) cube complex. In what follows, we will sometimes identify X with its set
of vertices, endowed with the combinatorial distance (also called the £!-distance):
the distance between any two vertices is defined as their distance in the 1-skeleton
of X. However, sometimes it will be convenient to also consider the full complex X
with its CAT(0) metric. The latter will arise in particular when we consider the visual
boundary of X.

Let [0, 1]" be an n-dimensional cube. The ith coordinate projection is denoted
by pr:[0,1]" — [0, 1]. A wall of the cube [0, 1]” is the set pr—!{1/2}. Observe that
the complement of each wall in a cube has two connected components.

More generally, a wall of a CAT(0) cube complex X is a nonempty CAT(0)-
convex subset whose intersection with each cube is either a wall of the cube or
empty. The complement of a wall in a CAT(0) cube complex has two connected
components [42, Theorem 4.10]. The intersection of one of these components with
the vertex set of X will be called a half-space. We will say that such a half-space
is associated to the corresponding wall. The collection of all half-spaces will be
denoted by ), or $(X) if we wish to specify the space X.

If h € §, we denote by ~™ the half-space which is the complement of 4. For /1, k € ),
we say that A is transverse to k and write & M k if the four intersections A Nk, h Nk*,
h* Nk and A* N k™ are nonempty.

Fix a vertex v € X and consider the collection U, = {h € ) : v € h}. The
Sageev—Roller Duality is then obtained via the following observation:

() h=1{v}.

heU,

This shows that every vertex v is uniquely defined by the set U,. Identifying X
with its vertex set, this immediately yields an embedding X < 2 obtained by
v +— U,. Thanks to this duality, it may at times be simpler to confuse v and U,,
though we will make an effort to make the distinction. The metric on X becomes
then d(x,y) = 3#(U AU,).

In the following definition, we identify X with its image in 2.

Definition 3.2. The Roller Compactification is denoted by X and is the closure of X
in 29. The Roller Boundary is then 0X = X \ X.

Let n € X. Then, n is the limit of some sequence (x,) of vertices of X, and
by definition, U, is the pointwise limit of Uy,. We say that 5 is in the half-space h
if h € U,. In this way we have a partition X = & L h*.

It is possible (and more common in the literature) to define the Roller boundary
as a subset of 2% satisfying some combinatorial conditions (fotality and consistency).
This turns out to be equivalent to the construction described above.

In the Roller boundary, the vertices of X correspondto U € X c29 satisfying the
descending chain condition: any decreasing sequence of elements of U is eventually
constant.
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On the opposite side, we find nonterminating elements. These special elements
were defined by Nevo and Sageev [39] as follows:

Definition 3.3. Anelement v € X is nonterminating if every finite descending chain

can be extended, i.e. given any & € U, there exists k € U, such that k C h.
The set of nonterminating elements is denoted by dy7 X .

3.2. Medians and intervals. The interval between two points x and y in X is
defined as d(x,y) = {z | d(x,z) + d(z,y) = d(x, y)}.
It is easy to see that

Jx,y)={zeX |UNU, CU;}

This definition extends easily to the Roller boundary: the interval between v, w € X
is defined as 4 (v, w) = {m € X | UyNUy C Uy}. This interval structure endows X
with the structure of a median space [17,40], which can be extended to the Roller
compactification as follows.
The median of three points u, v, w € X is the point m = m(u, v, w) defined by
the formula
Un = (Uu N Uv) U (Uv N Uw) U (Uw N Uu)~

Equivalently, the point m is the unique point
{m} = dJdu,v) Nd(v,w) Nd(w,u).
While CAT(0) cube complexes can be quite wild, the structure of intervals is some-

what tamable by the following (see [12, Theorem 1.16]).

Lemma 34. Lerv,w € X. Then the vertex interval 4 (v, w) isometrically embeds
into Z.P (with the standard cubulation) where D is the dimension of X .

3.3. Product structure. A CAT(0) cube complex is said to be reducible if it
can be expressed as a nontrivial product. Otherwise, it is said to be irreducible.
A CAT(0) cube complex X with half-spaces §), admits a product decomposition
X = Xy x---x X, if and only if there is a decomposition

H=HU---UHy

such that if i # j then h; th hj for every (hi, hj) € $i x $; and X; is the CAT(0)
cube complex on half-spaces ;.
Furthermore, we have the following [ 14, Proposition 2.6]:

Proposition 3.5. The decomposition
X =X; x---x X,

where each X; is irreducible, is unique (up to permutation of the factors). The group
Aut(X) contains Aut(X;) x --- x Aut(Xy,) as a finite index subgroup.
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Therefore, if I" acts on X by automorphisms, then there is a subgroup of finite
index which preserves the product decomposition.

We also note that the Roller compactification behaves quite well with respect to
products: indeed, if X = X; x --- x X,,, then we have X = )71 X o+ee X )_(_,,‘

4. Actions on CAT(0) cube complexes

We denote by d4 X the visual boundary of X.

Definition 4.1. An isometric action on a CAT(0) space is said to be elementary if
there is a finite orbit in either the space or the visual boundary.

Caprace and Sageev developed a theory of non-elementary actions on a CAT(0)
cube complex. They first prove that there is a nonempty “essential core” where the
action is well behaved. Let us now develop the necessary terminology and recall the
key facts.

Definition 4.2. Let I" < Aut(X). A half-space h € $) is called shallow if for some
(hence all) x € X, the set I'x N 4 is at bounded distance from /*.
The action of I" on X is essential if no half-space is shallow.

As mentioned above, it is always possible to reduce a non-elementary action to
an essential action [ 14, Proposition 3.5]:

Proposition 4.3. Let I" be a group with a non-elementary action on X. There exists
a non-empty subcomplex Y C X which is I'-invariant and on which the I"-action is
essential and nonelementary.

Suppose that T" is acting on X a CAT(0) cube complex. A simple but powerful
concept introduced by Caprace and Sageev is that of flipping a half-space. A half-
space h € § is said to be I'-flippable if there is a ¢ € I" such that h* C gh. The
following is due to Caprace and Sageev:

Lemma 4.4 (Flipping Lemma). Let T act non-elementarily on the CAT(0) cube
complex X. If h € $) is essential, then h is T -flippable.

Another very important operation on half-spaces studied by Caprace and Sageev
is the notion of double skewering. The following is again from [14]:

Lemma 4.5 (Double Skewering Lemma). Let I act non-elementarily on the CAT(0)
cube complex X. If h  k are two essential half spaces, then there existsa g € T’
such that

gk C hC k.

For the proof of the following lemma we refer to [16, Lemma 2.28].

Lemmad4.6. Let ' — Aut(X) be a non-elementary and essential action. Let 'y < T’
be the finite index subgroup which preserves every factor. Then the action of Ty on
each irreducible factor of X is again non-elementary and essential.
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5. Separation properties of walls and the regular boundary

5.1. Strongly separated walls. The following notion was introduced by Behrstock
and Charney [6], in their study of Right Angled Artin Groups. Caprace and Sageev
later used this to find a powerful criterion for irreducibility of CAT(0) cube complexes.

Recall that two half-spaces h and k are transverse if the four intersections 2 N k,
h k™, h* Nk and h* N k™ are all nonempty. Two walls are said to be transverse if
their associated half-spaces are. In this case, we write hnk # @.

Definition 5.1. Two half-spaces & and k are called strongly separated if there is no
half-space which is transverse to both 4 and k. Two walls are said to be strongly
separated if their half-spaces are so.

Clearly if a complex is not irreducible, then it is can not contain strongly separated
pairs. This turns out to be both necessary and sufficient:

Theorem 5.2 ([14]). Let X be a CAT(0) cube complex such that the action of Aut(X)
is essential and nonelementary. There exists a pair of strongly separated half-spaces
if and only if X is irreducible.

5.2. The combinatorial bridge. Behrstock and Charney showed that the CAT(0)
bridge connecting two strongly separated half-spaces is a finite geodesic segment [6].
In [16] this idea is translated to the “combinatorial”, i.e. median setting. For our
purposes, it suffices to consider strongly separated pairs. Most of what follows is
from or adapted from [16] and [19].

Let iy C h; be a nested pair of halfspaces. Consider the set of pairs of points in
hy x h3 minimizing the distance between h; and h3, that is

My, n, = {(x,y) € hy x h3 : if (a,b) € hy x h} thend(x, y) < d(a,b)}.
Observe that we immediately have that (x,y) € Mj, 4,, then x,y ¢ dX. The

following lemma is taken from [16, Section 2.G].

Lemma 5.3. If hy C hy are strongly separated nested half-spaces, then there exists
a unique pair of vertices (p1, p2) such that My, ., = {(p1, p2)}.

Definition 5.4. For h; C h;, the combinatorial bridge connecting h and hJ is the
union of intervals between minimal distance pairs:

B(hi.h3) = | 4(x.»).
(x,)EMp| ny
Lemma 5.3 rewrites as follows:

Lemma 5.5. Let hy C hy be strongly separated nested halfspaces. Then there exists
p1 € hy and py € hy such that B(h],hz) = J(pl, P2).
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If 4y and h, are strongly separated, define the length of the bridge b(h1, hy) as
the distance from p; to p,. We also call this length the distance between the two
strongly separated half-spaces A and /5.

Definition 5.6. Two half-spaces & and k are super strongly separated (or iiber-
separated in [16]) if they are strongly separated and for any half-spaces h' and k’
transverse to / and k, respectively, we have A’ is not transverse to k’. Two walls are
super strongly separated if their half-spaces are so.

Note that if # C k C [ are pairwise strongly separated, then & and / are super
strongly separated. So if X is irreducible with a non-elementary and essential
automorphism group, there always exists a pair of super strongly separated half-
spaces.

Super strong separation has the following consequence on the bridge. If A4 is a
subset of X and r > 0, we denote by V. (A) the r-neighborhood of A (always in the
combinatorial distance).

Proposition 5.7. Let h C k be a pair of super strongly separated half-spaces, and £
be the length of the bridge. If x € hand y € k™ then I(x,y) C Vy(b(h,k)).

Proof. See [16, Lemma 3.5]. O

5.3. The regular boundary. Using strongly separated half-spaces, it is possible to
define a notion of a regular boundary. This notion was first defined in [19] (and
independently in [33], where it was called “strongly separated points™).

Definition 5.8. Assume X is irreducible. A point & € 9X is called regular if for
every hy, hy € Ug there is k € Ug such that k C hy N h, and k is strongly separated
both from /; and /4,. The set of regular points of X is denoted by 9, X .

This notion has a natural extension to products:

Definition 5.9. Let X = X; x --- X X, be the decomposition of X into irreducible
factors. The set of regular points of X is defined as

0, X =0, X1 XX 0, Xn

The regular boundary of X is the closure of 9, X in X. We denote the regular
boundary by R(X).

5.4. On descending chains of half-spaces. In the irreducible case, regular points
can be characterized as follows. Recall that a descending chain is a sequence (hy,)neN
of half-spaces such that 4,41 < hp. Vertices in X are characterized as the set
of points x € X satisfying the descending chain condition: there is no (infinite)
descending chain in U,.
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Proposition 5.10 ([ 19, Proposition 7.4]). Let X be an irreducible complex, anda € X .
The following are equivalent:

(i) xed X;

(ii) There exists an infinite descending chain (hy)neN of pairwise strongly separated
half-spaces such that o € hy,.

It is possible to analyze more precisely the descending chains containing «. We
first record the following.

Lemma 5.11. Let {h,} € $) be an infinite descending chain of half-spaces. If k € $
such that k N hy, # @ for all n then one of the following is true:

(a) Thereis an N such thatk M hy, foralln > N;
(b) There is an N such thatk O hy, foralln > N.

In particular if the sequence {h,} is composed of pairwise strongly separated half-
spaces then Case (b) holds.

Proof. Fix n. Our assumption that k N h, # @ implies that one of the following
cases hold:

(1) h* Ck;
(2) hn D k;
(3) hn M k;
4) h, Ck.

Now, observe that there are finitely many half-spaces in-between any two, and
hence the collection of all » which satisfy conditions (1) and (2) is finite. Next observe
that if there is an infinite subsequence which satisfies property (3) (respectively,
property (4)) then h, satisfies property (3) (respectively, property (4)) for all n
sufficiently large.

Of course, if the sequence {h,} is pairwise strongly separated, it follows that
condition (3) can hold for at most one n. []

We can now prove the following.

Lemma 5.12. Let (s,) be an infinite descending chain of pairwise strongly separated
half-spaces. Then (), cn Sn is a singleton.

If X is an irreducible complex and o € 0, X, then any infinite descending chain
(hn)nen of half-spaces containing « satisfies that (\,cn hn = {o}.

Proof. The fact that (),,cp S is a singleton is proved in [19, Corollary 7.5].

Now consider an arbitrary descending chain (A,) containing «. By the first part
of the lemma, it is sufficient to prove that for every m € N there exists n € N such
that h,, C sp,. Since h, and s, both contain «, we have i, N s,, # @ for every m, n.
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Fix m. By Lemma 5.11, we know that either for every n large enough we have
hn C sm (in which case we are done), or for every n large enough h, M s,,. In the
second case, apply now Lemma 5.11 to k = s,,+1. By strong separation, we know
that A, is not transverse to s,,+; for n large. So we must have i, C s,,+1, which
contradicts the fact that £,, h s,,.

Hence we have proved that for every m and every # large enough we have h,, C s,,.

So
m hy C ﬂ 5y = {0}
neN neN
and by assumption « is in (), cpy 72z, Which proves that we have equality. ]

The previous lemmas deal with one boundary point. For two points, we have the
following:

Proposition 5.13. Let X be an irreducible complex and o, € 9,X. Assume
that « # B. Then there exists a sequence (Sp)nez of pairwise strongly separated
half-spaces, with sy +1 C Sy, and such that s, € Uy \ Ug for all n.

Proof. Proposition 5.10 guarantees that we can find two sequences, each of pairwise
strongly separated half-spaces {s, (@) : n € N} C Uy and {s,(B) : n € N} C Ug.
Since « # p, there exists h € Uy \ Ug (and hence h* € Ug). By Lemma 5.11,
there exists an N such that for every n > N we have s,(¢) C & and s,(8) C h*.
Discarding finitely many half-spaces, we may and shall assume that these two
equalities hold for every n > 0. We define s, = s, () forn = 0 and s, = s—,(B)*
for n < 0. Then almost all the conditions on the chain (s,) are clear. The only thing
remaining to check is the strong separation of 59 and s_;. But a half-space k which
is transverse to both so and s_; must be transverse to so(f) which is in-between,
contradicting the strong separation of so(8) and s1 (). ([l

Lemma 5.14. Let X be an irreducible complex and «, B,y be pairwise distinct
points of X with o and B regular. Then the median point m(«, B, y) is a vertex in X .

Proof. Consider m = m(w, B,y). We claim that m € X and to this end we show
that U,, satisfies the descending chain condition. Recall that

Un = Uy NUB) U (Ug NU,) U (Uy NU,) C Uy U Up.

Assume by contradiction that U,, contains an infinite descending chain. Then, up
to discarding finitely many (and possibly relabeling @ and ), we may assume by
Lemma 5.12 that the chain belongs to U, and hence m = «. This means that
Uy C Ug UU,. By Proposition 5.13 there is an infinite descending chain of pairwise
strongly separated half-spaces in Uy \ Ug C U,. Once more by Lemma 5.12 we
deduce that @ = y, a contradiction. ]
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Lemma 5.15. Let X be an irreducible complex and o € 3, X and B € X with
B # a. Thend(a, ) N X # @.

Proof. Itsuffices to show that the set Uy N Uy satisfies the descending chain condition
(see for example [39, Lemma 2.3]). Assume that there exists a decreasing sequence
of half-spaces (h,) with h, € Uy N Ug. Then by Lemma 5.12 the intersection of
all the half-spaces 4, is reduced to {«}. Since we also have B € h, for all n, this
implies « = f, contradicting the assumption. O

6. Comparing various boundaries

So far, we have introduced two boundaries of CAT(0) cube complexes: the Roller
boundary and the regular boundary. There are also other interesting constructions.
In this section, we aim to compare these.

6.1. The Roller and visual boundaries. Let us start by the most common bound-
aries of CAT(0) cubical complexes: the Roller boundary dX and the visual boundary
d<X. Inorder to consider the (correct) visual boundary, we must pass back to the full
CAT(0) cube complex X (as opposed to just its vertex set) with the CAT(0) metric.

The following theorem, which is due to P. E. Caprace and A. Lytchak [13,
Theorem 1.1], is very useful in this situation.

Theorem 6.1. Let (X;)ier be a filtering family of closed convex subsets of a finite-
dimensional CAT(0) space X . Then either the intersection ();c; Xi is not empty, or
the intersection ();c; 0« Xi of their boundaries is not empty, and has intrinsic radius
less than 7 /2.

The intrinsic radius less than 77/2 gives the existence of a “canonical” center.

For the purpose of the following, we shall consider a half-space as the closure of
the CAT(0) convex hull of the vertices contained in the half-space. Consider a point «
in the Roller boundary dX and its collection of half-spaces U,. This is a filtering
family of closed convex spaces, so we can apply Theorem 6.1. Since « contains an
infinite descending chain, the intersection of all half-spaces in U, with X is empty.
So we get:

Corollary 6.2. Let o € 9X. Let Q(a) = ey, d<h- Then Q(a) is not empty.
Furthermore, the map associating to o the center of Q(a) is an Aut(X)-
equivariant map from 0X to d< X .

In general, there is more than one point in Q (), and it might also happen that
Q(a) = Q(P) for a # B. For example, take @ = (00,0), B = (00, 1) € ZZ, then
Q(a) = Q(B) corresponds to the geodesic of slope 0.

Now let us attempt to find some kind of inverse map. Let § € <X, let
2:]0,00) — X be a geodesic asymptotic to £&. We say that a half-space h € H
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is transverse to € if for every R > 0 there exists g = 0 such that the R-neighborhood
of the image of the geodesic ray g|(,00) is contained in #. We denote by T the set
of half-spaces transverse to £. This set does not depend on the particular choice of
the geodesic g in the class of £.

Lemma 6.3. Let X be a CAT(0) cube complex and let § € 04X. Then the set T is
not empty and Nper h # @. Furthermore, Tg contains an infinite descending chain.

Proof. See [16, Lemma 2.27], where it is proved that T is not empty, contains
an infinite descending chain, and that it satisfies the partial choice and consistency
condition (hence has a non-empty intersection in X). U

We denote the intersection by X; ¢ = Nperh. 1t is a subset of X (and by
Lemma 6.3 is disjoint from X). We will also denote by X the subset of @ € X; 3
such that U, \ T satisfies the descending chain condition (which is trivially satisfied
if Uy \ Te = @).

We have defined two maps: the map o + Q(«) from the Roller boundary
to (closed subsets of) the visual boundary, and the map § )?g from the visual
boundary to (closed subsets of) the Roller boundary. These two maps are somehow
inverse to one another.

Lemma 6.4. Let « € dX. Let Q(x) be as in Corollary 6.2, and let § € Q(a). Then
o€ XE'
Conversely, let £ € 94X and a € Xg. Then § € Q(a).

Proof. Let us prove the first part: let ¢ € 0X and § € Q(«). Let h € Tz. Assume
that 4 ¢ U,, which means that h* € Uy. Since £ € Q(«), this implies that £ is in
the visual boundary of h*. So there is a geodesic ray g converging to £ which is
contained in £*. Any other geodesic ray converging to £ will be at bounded distance
from go. This implies that 4 ¢ T, which is a contradiction. So we have h € Uy. It
follows that « is contained in the intersection of all half-spaces in U, which is X¢.
Now let £ € 04X and o € )?E. Let h € Uy, and let us prove that £ € d<h.
If h € T, then the result is clear. Since & € X, we cannot have h* € T;. Now
assume that neither 4 or 2* are in T¢. Pick a geodesic asymptotic to §. If this geodesic
is in A, then we are done. If not, since h* ¢ Ty, we see that this geodesic stays at
bounded distance from 4. This means that £ € d<h (in fact even £ € 84]”;). This
proves that every £ is in the boundary of every half-space in U,. So £ € Q(¢). [

We also record the following.

Lemma 6.5. Let o € 0X and & € Q(«a). Let o € X. Then the CAT(0)-geodesic ray
Jfrom o to & is contained in the interval I (o, o).
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Proof. Let I(o,a) be the closure of I(0,@) N X in X U d<X. Since [(0,a) =
(Nhev,nu, - we have

Io.0) = () ((hNX)Udgh).
heU,NUyg,

So & € Q(«) implies that £ € I (0, ). As I(0,) N X is a convex subset of X (for
the £! metric and hence also for the £ metric), it follows that the geodesic from o
to & is contained in /(0, ) N X. O]

6.2. Squeezing points. The notion of a squeezing point will be indispensable in Sec-
tion 10 where we connect the behavior of the random walk with the visual boundary.
We begin by establishing the notion for points in the Roller boundary, and then discuss
the notion for points in the visual boundary.

Definition 6.6. Assume that X is irreducible. We say that a point € 90X is squeezing
if there exists an x € X and an r > 0 such that there exist infinitely many pairs of
super strongly separated 2 C k at distance r, withn € h Nk and x € h* Nk*.

If X is not irreducible, a squeezing point is one that is squeezing in each factor.

Remark 6.7. For an irreducible complex X a point n € 0X is contracting if there
is a bi-infinite decreasing sequence of pairwise strongly separated half-spaces in Uy
which are at consecutive distance r. The reader may then note the similarity between a
squeezing point and a contracting point. Contracting points are necessarily squeezing,
but the converse does not hold in general. Both squeezing and contracting points are
necessarily regular.

Recall the definition of Q(n) from Corollary 6.2. The properties of squeezing
points are summarized in the following lemma.

Lemma 6.8. Let n € 0X be a squeezing point. Then there exists § € 04X such
that Q(n) = {€}. Furthermore, any sequence of vertices (x,) converging to n in the
Roller boundary also converges to & in the visual boundary.

Proof. Let x € X and r > 0 be such that there exists an infinite sequence of super
strongly separated half-spaces h; C k; atdistance r, withn € h; Nk; and x € hf Nk .

Let us prove first that Q(n) is a singleton. Assume that there exist £, £’ € Q(n).
Let g and g’ be the geodesic rays from x to § and &', respectively. Then for every i,
both the rays g and g’ cross both walls #; and k;. By Lemma 5.7, they have to be in the
r-neighborhood of the bridge h(h;, k;). Furthermore, the bridge b(h;, k;) crosses
exactly the r walls separating h; from k;. So its diameter (for the combinatorial
distance d) is at most r. Hence its diameter for the distance d’ is at most C, for
some C > 0 (depending only on r). It follows that the two geodesic rays g and g’
are at distance C’ for some (fixed) C’ > 0 when they travel in A; N k.

Since h; and k; can be arbitrarily far from x, it follows that g and g’ are at
distance C’ from each other at arbitrarily large distance from x. By convexity of the
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distance in a CAT(0) space, it follows that they are always at distance at most C’ from
each other. Hence £ = £’.

Now let (x,) be a sequence of vertices of X converging to 1. Let g, be the
geodesic ray from x to x,. We have to prove that g, converges to g uniformly on
every compact set. Let R > 0 and let (h;, k;) be half-spaces in the sequence defined
above which are at distance > R from x. For n large enough, we see that x, belongs
to h; N k;, so that g, crosses h; and k;. So using the same argument as above, for
every R > 0 and every t < R, we have d'(g, (1), g(t)) < C".

To avoid cumbersome notation for the remainder of the proof only we shall
denote both the CAT(0) metric on X and on Euclidean space by d. Fix ¢ > 0 small.
Consider the comparison triangle X, ¥, (R), and y(R) in the Euclidean plane R2.
Lettz < Re/C’, p = yn(t), and ¢ = yp(¢), and consider again the points p and g
in R? on the segments [Xy,(R)] and [XZ(R)], respectively, and both at distance ¢
from x. Since we know that d(¥,(R),Y(R)) = d(yn(R),y(R)) < C’, using the
Law of Similar Triangles we see that d(p,q) < g < €. By definition of CAT(0)
spaces, it follows that d(p,q) < €. In other words, we have, for all t < Re/C’,
d(yn(t),y(t)) < &. The result follows. O

Lemma 6.8 justifies the following:

Definition 6.9. Assume that X is irreducible. An element § € d«X is said to be
squeezing if for some (and hence all) x € X there is an r > 0 and infinitely many
pairs of super strongly separated h C k at distance r, with x € A* N k™ such that
geodesic ray from x asympotic to £ crosses the walls hand k.

Recall from Corollary 6.2 that there is an Aut(X )-equivariant map 0X — 0 X.
This together with Lemma 6.8 yields:

Lemma 6.10. There is an Aut(X )-equivariant bijection between the squeezing points
in 0X and the squeezing points in 0 X.

This justifies the following definition:

Definition 6.11. The interval between two visual squeezing points £_, £y € X

is defined as J(§—,£,) := J(Q 7' (), Q7' (€4)) which is a subset of the Roller
compactification X .

6.3. A quotient of the Roller boundary. The set of boundary points has a natural
partition into cubical subcomplexes, which is especially interesting for points that are
not nonterminating). The following definition is due to Guralnik [27].

Definition 6.12. Let«, § € X . We say that « is equivalent to 8, denoted by & ~ f3,
if the symmetric difference between U, and Uy is finite. The equivalence class of o
is denoted [«].
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Definition 6.13. The extended metric on X is the functiond: X x X — R U {400}
defined by the same formula as on X:

1
d(a. p) = S#(UaAUp)

The extended distance between two points « and g is finite if and only if we have
« € [B]. Forevery «, this endows [«r] with a distance. In fact, [«] is a CAT(0) cubical
complex in its own right, the half-spaces of [«] being the half-spaces of X which
separate two points in [«].
Lemma 6.14. For every o € 0X, there exists £ € 04X such that [0] C Xk.
Furthermore, there exists a descending chain (hy)nen of half-spaces such that

[e] C Npen Bin-

Proof. Let Q = Q(a) be defined as in Corollary 6.2, and fix § € Q. Then« € Xe
by Lemma 6.4. It follows that [«] C X¢. Finally, T¢ contains an infinite descending
chain by Lemma 6.3. [

6.4. Subcomplexes as decreasing intersections. We defined in the previous section
an extended distance d: X x X — R U {4occ}, which partitions X into cubical
subcomplexes. We aim to write these subcomplexes as intersections of half-spaces
in X.

Lemma 6.15. Let (hy)n>1 be a descending chain of half-spaces, and Z = ()5 hy.
Then Z is the Roller compactification of some subcomplex Y C X.

Proof. Indeed, consider the set of half-spaces £’ C ) suchthathNZ and h* N Z are
both nonempty. Then by [16, Lemma 2.6] (see also [19, Proposition 2.10]) there is
an isometric embedding of the CAT(0) cube complex associated to £’ into X, whose
closure is exactly Z.

We note that $)’ is given by all half-spaces which are transverse to infinitely
many h,. |

Lemma 6.16. Let Y C X be a subcomplex disjoint from X . Thendim(Y) < dim(X).

Proof. Let O be a maximal collection of pairwise transverse half-spaces in X. Let
us denote by Hy the set of half-spaces containing ¥'. We aim to prove that there is
ak € D such that k or k* € Hy and so k does not participate in any maximal cube
of Y.

We begin by observing thatif &,k € $are suchthatk Nh # Fandk*Nh # &
then one of the following hold:

(1) kK Ch;
2) k* C h;
3) hhk.
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Consider h,4+1 < h, an infinite descending chain in Hy, which exists by
Lemma6.14 (since Y = [y]forany y € Y'). We now show that DN(Hy UHy) # @.

By contradiction, assume this is not the case, i.e. that if k € O then k N Y and
k* N'Y are both nonempty, and in particular, k N h,,k* N h, # @ for each n.
Therefore, for each k € O and n € N, we are in one of the situations (1)—(3) above.
Since in between any two half-spaces there are finitely many, and D is finite, there
must be an N such that if n > N then h, M k for every k € D. It follows that
for every k € D and for every n large enough we have h, M k. This of course
contradicts the maximality of D.

This shows that any maximal family of pairwise transverse half-spaces must

have non-trivial intersection with Hy L H ;,‘ and hence the dimension of Y is less

than D. O
Lemma 6.17. Let & € 0X. There exists k < dim(X) and a family (h))m>o,
(h2)m>0, - - - » (h’,;) m=0 of descending chain of half-spaces such that
Bol=() )"
i=1 m=0

Proof. We argue by induction on the dimension. If dim(X) = 1, then the result is
clear.

Assume the lemma holds for every complex of dimension < dim(X). By
Lemma 6.14, there exists a descending chain (4,,) whose intersection contains [§g]
(and since half-spaces are closed, it also contains [5—0]). Let Z = (hm- By
Lemma 6.15, Z is isomorphic to the Roller compactification of some complex Y .

By Lemma 6.16 we have dim(Y) < dim(X). We also know that [§] C Y.
If § € Y then Eo_] = Z and there is nothing left to prove. If not, then by induction
there exists finitely many chains of half-spaces in ¥ such that [£,] is the intersection
of all these half-spaces. These half-spaces lift to half-spaces of X. To conclude the
proof we observe that the lift of these half-spaces in X form again a descending chain
(indeed, any non-empty intersection of half-spaces in X projects to a non-empty
intersection in Y'). O

6.5. Horofunction boundary. Let (X, d) be a metric space. Let us recall the con-
struction of the horoboundary of X. Fix an origin 0 € X. For x € X, consider
the function #,: X — R defined by hx(y) = d(y,x) — d(o,x). This defines an
embedding ¢ from X to the set €(X) of continuous function on X.

Definition 6.18. The horocompactification X" is the closure of «(X) in €(X). The
horoboundary of X is 3"°(X) = X" \ X. B
A function in 9"9°(X) (and sometimes even in X " is called a horofunction.

Because every function hy is actually 1-Lipschitz and satisfies /(o) = 0, it
follows from the Arzela—Ascoli theorem that the horocompactification is indeed a
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compact space (regardless of the topology of X'). Furthermore, the horoboundary, as
a topological space, does not depend on the choice of the origin o (a different choice
would just translate the horofunctions by a constant).

It is well-known that for a proper CAT(0) space X (with its CAT(0) metric), the
horoboundary is the same as the visual boundary, denoted 0 X .

Remark 6.19. This notion of horoboundary is not the usual one because we consider
the topology of convergence on compact subsets, and not on bounded ones. For proper
spaces, the two notions are of course equivalent. The main advantage of our definition
is that it produces a compact space. However, there are two possible inconveniences:
the first one is that the space is no longer open in its compactification, and the second
one is that for general spaces this construction might produced more points than
desired. To avoid the confusion, these limit points are called metric functionals
instead of horofunctions in [24]. However, when considering the horoboundary with
the ¢! as we do above, there are no additional points and so we stick to the more
standard terminology.

Now let us go back to our situation when X is a CAT(0) cube complex. Recall
from §3.1 that the distance on X can be calculated as d(x, y) = %#(UXAUy).

The following is an unpublished result of Bader and Guralnik, and seems to be
well known to experts. We include a proof for completeness.

Proposition 6.20. The horocompactification (respectively, the horoboundary) of the
set of vertices of X is equivariantly homeomorphic to the Roller compactification
(respectively, the Roller boundary) of X. Furthermore, for every § € X, if m is the
median point of £, x and o, then the horofunction associated to § is defined by

he(x) = d(m, x) —d(m, o).

Let us start with a lemma which is of independent interest. Recall (from §3.2)
that the median point of x, y, z is the unique point contained in the intersection

I(x,y)NI(y,z) N I(z,x).

Lemma 6.21. The map m: X x X x X — X which associates to a triple of points
their median is continuous.

Proof. Letx,y,z € X,andm = m(x, y, z). The definition of the median translates
easily to get that

Un = (UxNU,) U U, NU;) U (U NUY).
It is straightforward to verify that this is in fact defines a continuous map

29 %29 % 29 5 29 |
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Proof of Proposition 6.20. Fix an origino € X. Let £ € X and x,, € X a sequence
with x, — &. For x € X, set m = m(o, x, ) and observe that m € X. Also set
my = m(o, x, x,). By definition of the median, we have:

hx,(x) :=d(x,x,) — d(0, xp)
=d(x,mp) + d(my, x,) —d(o,myp) —d(my, xp)
=d(x,mp) —d(o,my).

Taking limits and utilizing Lemma 6.21 which guarantees the continuity of the
median, we deduce

hg(x) = d(m,x) —d(m,o).

Next observe that, since x € X, we have m € I(0, x) C X, and hence h¢(x) < +00,
that is s¢ is a function from X to R. It is continuous as the metric is continuous.
We denote by H: X — €(X) the map which associates he to £, We have
shown that Ay, — hg and from this it is straightforward to conclude that the map
H:X — X U "X is continuous.

Let us prove that / is injective. Assume that £, £’ € X are such that he = hgr.
Let x be a vertex adjacent to o and k be the half-space containing x but not 0. We
have hg(x) = 1if § ¢ k and hg(x) = —1 otherwise. It follows that £ € k if and
only if £ € k. The same argument works starting from any vertex (by induction on
the distance to 0). Hence we have Uz = Uy and therefore § = £'.

Now, let f be a horofunction. Hence f is a limit of functions of the form (A, ),
for some sequence (x,) of vertices. Let (x4 (,)) be a subsequence converging to some
£ € X. Then it follows that (hx, ) converges to hg, hence that /' = hg. So the
map H is surjective, hence bijective. Since X is compact it is a homeomorphism.

Finally, the above arguments show that H|px is a homeomorphism from 90X
to 9 X | 0

We also note, for future use, the following cocycle relation:

Lemma 6.22. Let g1, g> € Aut(X), £ € X. Then
he (g5 81" 0) = he,e(g7'0) + he(g5 o).

Proof. Let x, be a sequence converging to £. Then

he,e(g7"0) + he(g5 " 0)
= —lir—il:loo d(g2xn’g1_10) - d(gzxn,()) + d(xn’ g2_10) - d(x,,,o)

n

= lim d(xn,gEIgTIO)—d(xna())
n—+o0

= he(g; ' g1 o). O



312 T. Fernés, J. Lécureux and F. Mathéus CMH

The equality of Lemma 6.22 is better understood and remembered in the following
form: if 0(g, &) = hg(g'0), then we have

0(g182,§) = 0(g1,828) + (g2, ).

In other words o is an additive cocycle.

6.6. Remarks on B(X) and R(X). In [39], Nevo and Sageev introduce another
boundary which they call B(X) and define as follows:

Definition 6.23. A point § € dX is called non-terminating if for every h € U there
exists k € Ug withk C h.

The set of non-terminating points is denoted by dy7 X. The non-terminating
boundary B(X) is the closure of dy7 X .

It is clear that any regular point is non-terminating. Hence, we always have
R(X) C B(X). Furthermore, one of the main results of [39] is:

Theorem 6.24. Let I be a group acting properly and cocompactly on the complex X .
Then the action of I" on B(X) is minimal and strongly proximal.

The set R(X) is clearly a I'-invariant closed subset of B(X'). Thus, the minimality
of the action on B(X) implies the following.

Corollary 6.25. Assume that Isom(X) contains a discrete subgroup acting co-
compactly. Then B(X) = R(X).

For concrete examples, such as the Salvetti complex associated to a Right Angled
Artin Group, it is straightforward to check the equality B(X) = R(X). Let us do so
in a particular case. It is of interest to us as we will modify it in Proposition 6.27 to
give an example of a complex where B(X) # R(X).

Example 6.26. Let X = X(Z? * Z) be the universal cover of the Salvetti complex
associated to Z2 * Z, where Z? = (a,b) and Z = (c) are the generators of the free
factors. It is straightforward to check that there are unique points x,, xo € B(X)
such that cka"bh® — x, as k — oo, and a"b™ — xo, as n — oo. Furthermore,
Xn € 0,X and xoo € dny7X \ 0,X. On the other hand, as n — oo we have
Xn — Xoo. Finally, observe that a similar construction can be applied to any element
of dy7 X \ 9, X and so we have that B(X) = R(X).

Proposition 6.27. There exists a complex X, with Isom(X) acting essentially and
non-elementarily, but with R(X) # B(X). In particular, the action of Isom(X)
on B(X) is not minimal.

Proof. We retain the notation of Example 6.26. We will construct a subcomplex of
X' C X(Z? x Z) and it will have an action of 7Z x 7 = {(ab) * (c) which is essential
and non-elementary. First observe that the action of ab on the plane associated
to Z? is essential and we have an embedding (which is a similarity) of Z < Z? by
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mapping a generator of Z to ab. This embedding extends to an embedding of the
tree associated to F, == Z * 7 into X. We define X’ as the (£!-) convex hull of the
image of this tree in X. In particular, X’ contains every plane of X containing an
axis of a conjugate of ab. It is straightforward to check that since the action of (ab)
is essential on the plane, the action of Z * Z is essential as well.

Now, the non-terminating points corresponding to (—oo, 00) and (00, —o0) in the
plane containing the axis of ab are isolated in B(X). Since these are not regular, we
deduce that B(X) # R(X). ]

7. Uniqueness of the stationary measure

Let X be a finite dimensional CAT(0) cube complex, I" a group acting on X and u
an admissible measure on I". We denote by B the Furstenberg—Poisson boundary of
(I', ). Our goal in this section is to prove that there is a unique stationary measure
on 0X.

The main tool is the following:

Theorem 7.1. Assume that the action of I on X is non-elementary and essential.
There is a I"-equivariant map n: B — 0X. Furthermore, for every such equivariant
map and almost every b € B, n(b) € 9, X.

Proof. The existence of the map is [16, Theorem 4.1] in the symmetric case and [19,
Theorem 7.1] in the general case. The fact that n(b) is almost surely regular is [19,
Theorem 7.7]. O

Proposition 7.2. If the action of I on X is non-elementary and essential then there
is a unique I'-equivariant measurable map ¢: B — Prob(X) and for almost every
b € B, ¢(b) is the Dirac mass at n(b).

Proof. We first prove the result for X irreducible and then use this to prove the result
in general.

Assume that X is irreducible. Let B_ be the Poisson boundary for the inverse
measure (t. Recall from Theorem 2.3 that B_ x B is isometrically ergodic. By [19,
Theorem 7.1 & 7.7], there is another equivariant map n_: B_ — X with essential
image in d, X. Furthermore it follows from the proof of [19, Theorem 7.1] that we
have, for almost every (b—,b) € B_ x B, n—(b-) # n(b).

We claim first that there is a unique measurable and I"-equivariant map n: B — X.
Indeed, if there is another such map 7', then by ergodicity we have almost surely
n(b) # n'(b), and the same argument as in [19, Theorem 7.1] also proves that
n—(b—) # n'(b) almost surely. Now consider the map p: B_ x B — X defined
by p(b—,b) = m(n—(b-),n(b),n’(b)). By Lemma 5.14 it follows that p(h_, b) is
almost surely in X. Obviously p is I'-equivariant, and measurable by Lemma 6.21.
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By metric ergodicity, it is constant. Hence I" fixes a point in X, contradicting the
assumption that the I"-action is non-elementary and proving the claim.

Now let ¢: B — Prob(X) be a measurable I'-equivariant map and let us show
that for almost every b € B, ¢(b) is the Dirac mass at n(bh). We start with some
notation, borrowed from [16] (see also [19]). To a measure m € Prob(dX), we
can associate three subsets of the set of half-spaces: the heavy half-spaces Ht (of
measure > 1/2), the light ones H_ (of measure < 1/2), and the balanced ones H,
(of measure 1/2). It is easy to see that for any measure m, the set H | is a consistent
set of half-spaces and hence if there are no balanced half-spaces then there exists an
element x € X such that U, = HT, thatis {x} = Npenth-

Assume that ¢(b) is not the Dirac mass at n(h). Recall that the map which
associates to b the intersection of all heavy half-spaces of ¢(b), denoted by H‘;L(b)
is again measurable and equivariant. By [16, Proof of Theorem 4.1], it is always
true that H,py = & and hence H(;L(b) = Uym). Since n(b) is a regular point,
by Proposition 5.10, we can find an infinite descending chain of pairwise strongly
separated heavy half-spaces whose intersection is n(b). This proves that the measure
of {n(bh)} is at least 1/2.

Hence we can write, for almost every b, ¢(b) = adyp) + (1 — a)¢’(h), with
1/2 <a < 1,and ¢'(b)({n(h)}) = 0. Note that «: B — [1/2,1) is a I'-invariant
function, so that by ergodicity, it is constant. By assumption we have a < 1.

The map ¢’: B — Prob(X) is still equivariant. Now, applying the same argument
to ¢’ instead of ¢, we conclude that ¢’(b)({n(h)}) = 1/2. This is a contradiction.

Therefore ¢(b) is almost surely a Dirac mass. As was shown above, there is a
unique map from B — X and hence ¢(b) = n(h) almost surely.

Now assume that X is a product X = X; x --- x X,,, where each X; is
irreducible. Then there exists a finite index subgroup I'y < I' which preserves
each factor. By [16, Lemma 2.13], the induced action of I'y on each factor is again
essential and non-elementary. We note also that by Lemma 2.2, the Furstenberg—
Poisson boundary of (T, i) is I'g-equivariantly isomorphic to the Poisson boundary
of (T'y, o), where pig is the first return probability.

Applying Theorem 7.1 to each irreducible factor, we find n;: B — dX;, which in
turn gives n: B — 09X, all of which are ['g-equivariant maps. Let m;: X — X; be
the projection. Let ¢: B — Prob(X) be a I (and hence I'y)-equivariant map. As
was shown above in the irreducible case, the ['g-equivariant map (i7;)«¢@(b) is equal
to the Dirac mass at n; (h). This means that

@(B)(X7 x -+ x Ximt x (i)} x Xi x - x Xp) = 1.

Since this holds for each i, we see that indeed ¢(h)({n(h)}) = 1, meaning that ¢(h)
is the Dirac mass at n(b). O]

Corollary 7.3. Assume that the action of I on X is essential and non-elementary.
Then there is a unique stationary measure on X .
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Proof. Apply Proposition 7.2 and Corollary 2.6. L]

Remark 7.4. The assumption that the action is essential cannot be removed. Indeed,
take the example of the free group F, acting on the product 7' x L, where T is
the Cayley tree of F>, and L is a line (with trivial action). Let v be the stationary
measure on d7. Then for every x € L, the measure v x §y is a stationary measure
on dT x x C o(T x L).

Remark 7.5. During the writing of this paper, it has been proved in the paper [33]
that, in the irreducible case, the action on R(X) is minimal and strongly proximal.
For irreducible spaces, the uniqueness of the stationary measure follows, as explained
in [39].

8. Convergence to the Roller boundary

Now that we understand better the stationary measure on the boundary, we can
attack the problem of the convergence of the random walk. Recall that Theorem 7.1
guarantees the existence of a measurable and I'-equivariant map n: B — 0X. As B
is a factor of 2, we can also consider the composition 2 — B — 90X, which we still
denote by 7. Our goal is to prove:

Theorem 8.1. Assume that the action of I on X is non-elementary, essential, and
preserves each irreducible factor of X. Then for almost every w € 2 the sequence
(Zn(w)o),, converges to n(w).

Our strategy is inspired by a proof of Kaimanovich in the case of hyperbolic
groups [30, Theorem 2.4], although we have to face some technical difficulties,
these are overcome thanks to the fact that regular points are well-behaved. This is
exemplified by the following:

Proposition 8.2. Assume X is irreducible, and let A be a non-aﬁ)mic measure on X,
such that A(0,X) = 1. If gn € T is such that gno — & € X, and (gnA) weakly
converges to v, then v([&]) = 1.

The proof of Proposition 8.2 will rely on some more lemmas.

Lemma 8.3. Let G be a group acting by homeomorphisms on some metrizable
compact space C, (g,) be a sequence in G, A a probability measure on C and
A C C be a Borel subset such that for almost all x € C, any limit point of (gnx)
belongs to A. If (gnA) weakly converges to v then v(A) = 1.

Proof. As we may replace A with its closure without affecting the hypotheses or
conclusion, let us assume that A is closed. Fixing a metric compatible with the
topology, denote by A the e-neighborhood of A. The assumption implies that for
almost every x € C and every n large enough, we have g,x € A°: if not, there is
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a subsequence which avoids A¢ completely, and any limit point of this subsequence
does not belong to A.

We note that, since A = ﬂ,,eNA”", it is sufficient to prove that v(A%) = 1 for
all e > 0.

Fix ¢ > 0. Denote by A¢ the closure of the ¢ neighborhood of A. By Urysohn’s
Lemma, there is a continuous f:C — [0, 1] bounded above and below by the
characteristic functions

1z(x) < f(x) <1 42:(x).

By assumption, for each x there is an n sufficiently large such that g,x € A% and
hence f,(x) := f(gnx) — 1. It follows from the Dominated Convergence Theorem
that v( /) = 1. Hence v(A?) = 1, which concludes the proof of the lemma. O]

Lemma 8.4. Let £ € X and g, € T be such that gno — &. Then for every x € X
all limit points of the sequence (g, x)n belong to [&y].

Proof. We have forall n, |Ug, o AUg, x| = |Us AUx|. Leta be a limit point of (g, x).
If hy, ..., hi are half-spaces in U, AUg, then we see that for n large enough we have
hi € Ug, 0 AU, x forall 1 <i < k. Hence we have k < |U, AUy|. In other words,
there are at most |U, AU, | half-spaces in U, AUg,. This means that a € [£]. ]

The previous lemma can be extended to the convergence of points in the Roller
boundary, up to passing to a subsequence and excluding finitely many points:

Lemma 8.5. Let g, € I'. If there is & € X and 0 € X such that gno — & then
there is a subsequence ¢(n) and &1, . .., & such that if € € 0, X \ {&1,...,& )} then
all limit points of (gym)&) belong to [§o).

Proof. Observe thatif &, € X then the result follows as [§g] = X . Therefore, assume
c‘:"() € 0X.
Let {h) :m e N}, ..., {h’,j1 : m € N} be the descending chains provided by

Lemma 6.17, i.e. such that
k

Eol=1{) () hin-
i=1meN

Then, the following dichotomy holds: either for every £ € 9, X we have that all
limit points of the sequence (g,&) belong to th,ln or there is an £ € d,X and a
subsequence ¢;(n) for which gy, (m)(§1) — &1 ¢ Nmh,,. In case all limit points
belong to Ny, k)l we set ¢;(n) = n, and define &, arbitrarily.

By the same process, we construct inductively, for each 1 <i <k, asubsequence ¢;
of g;—1, and & € 9, X, such that, for every j < i, we have

(a) either the limit points of (g4, (n)§)n arein ﬁngh,{l (and we define §; arbitrarily),

(b) orwefind&; € 9, X and §; ¢ Nmhiy with LoimEj — &)
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Fix i < k and for simplicity let ¢(n) = @g(n). Let us now show that for every
£ € 9,X \ {&} we have that the limit points of g, & belong to Ny AL, If & was
chosen arbitrarily as in case (a) above then there is nothing to prove. Therefore, up
to passing to a subsequence, assume that g,,)§ — & ¢ Ny,

Consider S(§,&) = 4(§,&) N X (which is not empty by Lemma 5.15). Let
x € S(§,&). Since x is at finite distance from o, it follows from Lemma 8.4 that
every limit point of (g,(,)(x)) belongs to [Eo]. So, for each m € N there is an N;
so that if n > N; then gy, (x) € h!.. On the other hand, since £ ¢ Nmh’,, there
exists M; such that &; ¢ h' forallm > M;. Since Zo(m)&i converges to £ there is an
N/ > N; sothatif n > N/ and m > M; then g, (&) ¢ hl,.

Fix m > M;. If we had gym& ¢ K., then by convexity of the interval

d(Zom)&: om)€i) we would have gy x & hy,. Soforn > N/ we have g,n)§ € hi .
Now redefine £ € 9, X \ {§1,...,&} and let £ be a limit point of the sequence
(&o(n)&)- The above argument shows that £ € ﬂmhfn, foreachi =1,...,k,ie.

— k . _
£ € Ni=1Nmenh,, = [So]. L

Proof of Proposition 8.2. We firstreplace as we may (g, ) by asubsequence satisfying
the conclusion of Lemma 8.5. Since A is non atomic, we have that for A-almost

every &, every limit point of (gn§) is in [§o]. By Lemma 8.3, this implies that

v([%o]) = 1. O

Lemma 8.6. Assume X is irreducible. Let A be a non-atomic measure on 0, X. Let
gn € G be such that g, A weakly converges to a Dirac mass 8, for some b € 9, X.
Then gno converges to b.

Proof. Let b’ be a limit point of (g,0). By Lemma 8.2 we have that & is supported
on [']. Hence b € [b’]. By Lemma 6.14, there exists a sequence of half-spaces (/,,)
such that [b'] C (), e n- Since every half-space is closed by definition, we have
[P'] C Mpen hn- Hence b € (N, hn- Since b € 9, X, by Proposition 5.12, it

follows that ("), ey in = {b}. S0 b’ = b. O

Proof of Theorem 8.1. Let A be the unique stationary measure on X. As we assume
the action is non-elementary, the measure A is not atomic. Assume first that X is
irreducible. We know that Z, A converges to the Dirac mass 6, (), where n(w) € 9, X
almost surely. By Lemma 8.6, it follows that Z, 0 converges to n(w).

Now if X is not irreducible, but I" preserves each factor X; of X, then the action
of I on Xj is still non-elementary and essential, and the previous argument proves
that the projection of Z,0 to X; converges to some point in dX;. Hence Z,0 also
converges to a point in the boundary of X 0
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9. Positivity of the drift

9.1. The drift. Before getting into the specifics of our situation, we recall some
basic general facts about the drift of an action. Assume that [ acts on a metric
space X. Choose a vertex o in X. This gives rise to a seminorm on I'" defined by
|g| = d(go, 0). The drift relative to | - | is defined as follows.

Definition 9.1. The drift of the x-random walk with respect to a seminorm | - | is:
1
A = inf — J | Zn(@)| dP ().
n n Q

The following is a standard application of Kingman’s Subbaditive Ergodic
Theorem:

Theorem 9.2. For almost every w € 2 we have
1
A= lim —|Z,(w)|.
n—>o0o n

Furthermore, A is finite whenever u has finite first moment (with respect to | - |),
i.e. del" p(g)lg| < oo.

9.2. Proof of the positivity of the drift. Our goal in this section is to prove that
the speed at which the random walk goes to infinity is always linear. Our proof
follows a classical strategy which was initiated by Guivarc’h and Raugi for linear
groups [26]. Ledrappier extended it to free nonabelian groups [35], and Benoist and
Quint to Gromov hyperbolic groups [9].

The main aim of this section is to prove the following:

Theorem 9.3. Let I' — Aut(X) be an essential and nonelementary action, | a
probability measure on ', 0 € X such that p has finite first moment with respect
to|-|. Then A > 0.

Recall from section 6.5 that X is isomorphic to the horofunction boundary
of X with the combinatorial distance. If « € dX, we denote h, the corresponding
horofunction.

We denote by v the unique stationary measure on dX . By Theorem 7.1, we have
v(d,X) = 1.

The positivity of the drift will follow easily once we prove the following:

Proposition 9.4. Assume that I stabilizes each factor of X. Then for every £ € 0X
and P-almost every o € 2, there exists C > 0 such that for all n > 0 we have

|d(Zn(w)o,0) — he(Z,(w)o)] < C.
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Proof. First, we claim that the conclusion of the proposition does not depend on the
choice of the basepoint 0. Indeed, assume that

1d(Zn(@)0.0) — hg (Za(@)o)| < C.
If o’ is another basepoint then
d(Z,0',0") <d(Z,o', Zn0) + d(Zy,0,0) + d(0,0),
and hence d(Z,0',0") — d(Z,0,0) < 2d(0,0’). By symmetry
|d(Z,0',0") —d(Zpo0,0)| < 2d(0,0").
Similarly |hg(Z,0) — he(Z,0")| < 2d(0,0"). Hence
|d(Zn(@)0',0") — he(Z,(w)0")| < 4d(0,0") + C,

which proves the claim.

Let £ € 0X. By Theorem 8.1, for P-a.e. @ € Q, there is (@) € 0, X such that
Zy(w)o — n(w) for every o € X. As the action is non-elementary, we know that
n(w) # & almost surely. Fix such a generic w and set n = n(w) and Z, = Z,(w).
By the claim above and Lemma 5.15, we may and shall assume thato € 1(n,§) N X.

Recall from Proposition 6.20 that, the median m (&, x, 0) € d(x, 0) is such that

he(x) = dm(§, x,0),x) —d(m(, x,0),0).
Let m, = m(§, Zn0,0), so that hg(Z,0) = d(my, Z,0) — d(my, 0). Then:
d(Zy0,0) — hg(Z,0) = d(Zno,my) + d(my,0) — (d(my, Z,0) — d(my, 0))
= 2d(my,0)

Again, by continuity of the median map, we have that m,, — m(§, n(®), o). Recall
that we have chosen o = m(§,n,0) € I(n,§) N X, which is locally compact.
Therefore, for n sufficiently large,

d(Zno0,0) — hg(Zn0) = 2d (m(’g', n(w),0),0) = 0. O

We immediately deduce that:
Corollary 9.5. Foreveryo € X, P-a.e. (Z,) € Q and every § € 0X we have that

1
A= lim — he(Z,0).
n—oo n

Our aim now is to apply results about additive cocycles to our situation. To this
end, let 7: 2 x X — Q x X be defined by

T(@,£) = (S0, 0y '£),

where ® = (wg, w;,...) and S:w > (w1, w,, .. .) is the usual shift.
The following lemma is borrowed from [7, Proposition 1.14]. We include a proof
for completeness.
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Lemma 9.6. The transformation T preserves the measure P x V and acts ergodically.

Proof. Let B = PP x v. We begin by checking the invariance of f. Let ¢ be a
bounded Borel function on 2 x X. Let p(x) = fl/f(a), x)dP(w). By definition we
have B(¥) = V(g). On the other hand we get

By oT) = [ Y(So, 05" \)dP@)d(x) = i(g)

by stationarity of v. The invariance of 8 follows.

Now let us turn to the proof of ergodicity of . Let P be the averaging operator
relative to ji: if f is a bounded Borel function on X, then P f(x) = [ f(gx)dji(g).
A measure is ji-stationary if and only if it is P-invariant. By Corollary 7.3, the
measure ¥ is the unique ji-stationary measure on X . It follows that v is P-ergodic.

Let ¥ be a bounded Borel function on € x X which is T-invariant. We have
to prove it is constant. Let again ¢ denote the function defined on X by ¢(x) =

[ ¥ (o, x)dP(w).

We first see that
Po(x) = [ ¥(0,87 )dP@)du(g) = [(¥ 0 T)(@, x)dP (@) = p(x)

so that ¢ is P-invariant. By the above remark it is constant, say equal to c.
Let X, be the sigma algebra generated by the first n coordinates wy, . .., wy—1
on 2 and by the variable x € X. Let ¢, = E(¢ | X,). Then we have

D (s » » + 5:0Dp—15%) = fy/((a)o,,..,a)n_l,w),x)dIP’(a))
= Jw o T"((a)o, - ,wn_l,a)),x)dP(a))
- f¢(w,w;11 0y ' X)d P ()

-1 —1
=p(w,—; ...,y Xx)

=

Since the sequence (¢, ) converges to v, it follows that v is also constant, equal
to c. L]

Proof of Theorem 9.3. Assume first that the group stabilizes each factor. Define the
function F: 2 x X — R as

F((wn)n,§) = hg(wo0)

and observe that its value only depends on the first coordinate of (w,),. For every
£ € 04X, the function hg is 1-Lipschitz on X, so that | F((wn)n, £)| < d(0, wg0). It
follows that

[ 1F@.9)| P@)d¥) < +oo.
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Recall from Lemma 6.22 horofunctions satisfy the following relation:

he(gy ' g7'x) = hge(gy ' x) + he(g5 ' %).

Inductively, this shows that if Zy = w1 ---w (and Zy = e) then

n
he(Zno) = ) hy-1 ¢(wgo)
k=1

Therefore, we have the following calculation:

1 1 ¢
—he(Zno) = — kZ hz-1 ¢(@ko)
=1

= % > F(T*((@n)n £)
k=1

Now, assume that w has finite first moment. By Proposition 9.4, we have that
%hg (Z,0) — A. Thanks to Lemma 9.6, we know that T preserves P x v and is
ergodic and so we may apply the Birkhoff Ergodic Theorem and conclude:

%ZF(Tk((wn)n,g)) > | Flo.§) P@)di®).
k=0

Recall that by Proposition 9.4, we know that |d(Z, (w)0, 0) — hg(Z, (w)o)| is almost
surely uniformly bounded. This together with Theorem 8.1 which guarantees the
almost sure convergence of the random walk to the boundary, implies that z¢(Z,0)
tends to +oo almost surely. This means that ) ;_, F (T*((wp)n, £)) is a transient
cocycle in the sense of [2] and hence by Atkinson’s Lemma | F(w, §) P(w)dV(§) is
strictly positive [2]. (See also [26, Lemma 3.6].)

If the group I' does not stabilize each factor, let I'g << I" be the finite index
subgroup which does. Let (Z,,)) be the subsequence of the random walk formed by
the elements which are in I'y. This is a random walk on I'y, which still has finite first
moment by [29, Lemma 2.3]. Then by the previous result we have @ — Ao > 0.

Since we already know that Z»/n converges, the result follows from the fact
that ¢()/n has a positive limit, which is Lemma 9.7 below. Cl

Lemma 9.7. Let 'y < I" be a finite index normal subgroup. Let (Zyn) be the
subsequence formed by all elements of the random walk which are in T'y. Then there
is C > 0 such that 9%’—) — C almost surely.

Proof. Note first that Iy is of finite index so it is a recurrent set. Consider the induced
random walk on the finite group I'/ I'y. It is an irreducible Markov chain. Let 7 be
the stationary measure on I'/ I'g.



322 T. Fernos, J. Lécureux and F. Mathéus CMH

Forn = 0,let t, = ¢(n + 1) — ¢(n). Then 1, is a random variable whose law is
the law of the first return time to I'g. The expectation of 7, is equal to C := ?rm
Furthermore, the 7, are independent. By the Law of Large Numbers, we have almost
surely limy,—, 4 oo % ZZ;}) 7, = C. In other words, @ — C. O

Remark 9.8. Let d’ be the CAT(0) metric on X and fix a I"-action that is essential
and non-elementary. Recall that d and d’ are quasi-isometric. So w has finite first
moment with respect to d if and only if it has finite first moment with respect to d’.
Theorem 9.3 then also shows that if p has finite first moment then the drift with
respect to either metric is positive.

10. Random walks and the visual boundary

10.1. Convergence to the visual boundary. In this section, we are interested in the
almost sure convergence to the visual boundary. Karlsson and Margulis showed that
if 1 has finite first moment and if the drift is positive, then almost surely there is
an § € d4X such that Z,0 converges to £ [34]. We aim to improve on this by
getting rid of these conditions. An important tool in our proof will be the notion of
a squeezing point which was developed in Section 6.2.

Theorem 10.1. There exists a map £: B — 04X such that, for all o € X, almost
surely Z,(w)o converges to & (w). Furthermore &(w) is almost surely a squeezing
point.

We will require:

Proposition 10.2. Almost surely, the point n = lim, Z,0 is a squeezing point of the
Roller boundary.

The proof will use the following useful facts, from [16] and [19].

Lemma 10.3. Let X be irreducible with an essential and nonelementary action of T'.
Let v (resp., V) be the stationary measure on X for the measure . (resp., [i).

Let 8 C SV be a non-empty, T-invariant set, with hy C --- C hy for every
(hi,...,hy) € 8. Thenfor v ®v-almost every (n—, n4), the setof (hy,...,hy) € 8
with{hy,...,hy} C Uy, \ U,_ is infinite.

Definition 10.4. Fix a subset i/ C $. Anelement 2 € H is said to be minimal if
for every k € H either k is transverse to h, h C k,or h C k*. Anelementh € H
is maximal if for every k € H either k is transverse to A, h O k, or h D k*. Finally,
h € H is said to be rerminal if it is either minimal or maximal.

The map 7:2° — 29 that assigns to a set its terminal elements is measurable
(see [16, Corollary A.2]). If H C $N, by abuse of notation, we shall use 7(H) to
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denote the terminal elements in the projections of H to the first factor. Namely, if
the projection to the first factor is denoted by p1: "V — $and H C $HV then

(H) = r(pl(H)).

Recall Lemma 3.4 guarantees that the interval between any two points embeds
into R? where D is the dimension of the complex. Each dimension then corresponds
to a possible maximal chain so that any subset of Uy, \ U,_ must have finitely many
terminal elements. If this finite number were to be almost surely strictly positive,
Theorem 2.3 would yield the existence of a finite I"-invariant collection of half-spaces,
which is inconsistent with the assumption of an essential action. We deduce:

Corollary 10.5. Fix N, and let 8 be the set of N -tuples of nested, increasing, and
pairwise super strongly separated half-spaces. For v ® v-a.e. (n—,n+) € 0X x 0X
we have

#7(8 N Uy, \Uy)Y) =0.

Proof of Proposition 10.2. 1t suffices to treat the case of an irreducible complex, so
we assume that X is irreducible. Then we know that there exists some pair of super
strongly separated half-spaces, and by double skewering, we may find a pair in the
same orbit. Fix such a pair, and let r be the distance between these two half-spaces.

Let § be the nonempty set of triples (a,b,c) where a € b C ¢ are pairwise
super strongly separated half-spaces at consecutive distance r. (We note that the
distance between two super strongly separated half-spaces is bounded below by the
maximal number of nested chain between them.) Then & is a non-empty, I"-invariant
collection of half-spaces. By Lemma 10.3, for v ® v-almost every (1, 7), there
are infinitely many triples (a, b, ¢) € § such that a, b, and ¢ contain 7 and not n’.
Let 8(n, ') be the set of all such triples, i.e. $(n,7) = 8 N (U, \ Uy)3.

To prove the proposition, we will find in U, \ U,y a bi-infinite chain of pairwise
super strongly separated half-spaces s, +1 C kmy1 C hm C ky SO that each pair
(hm, km) has distance r.

To this end, observe that by Lemma 10.3 and Corollary 10.5 we may find in
U, \ Uy a bi-infinite chain ap,4+1 & am such that for each m € Z there exists
bm,cm € Uy \ Uy such that a,, & by & cm are pairwise super strongly separated
in § at consecutive distane r. We claim that 4,, := a,,, is a bi-infinite descending
chain of pairwise super strongly separated half-spaces in $).

Fix m. Observe that the distance between a,, and a,,—, is strictly larger than r.
Since a,, C ¢y, at distance r it must be that a,,—r € ¢ ie. ¢y, N am—r # 3. Also,
as dm—r N ¢y and aj,_, N ¢y, contain 1’ and 7, respectively, we deduce that either
¢m C dm—y OF ¢y N ap,_,. Either way, b,, C am—, and hence a,, and a,,_, are
super strongly separated. We therefore have that

am+1)r C Pm+1yr C amr C by,

so, setting k,,, = b,,,, we see that (h,,, k,,) have the desired properties. ]
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Proof of Theorem 10.1. We know by Proposition 10.2 that Z,o0 converges to a
squeezing point of the Roller boundary. So by Lemma 6.8 we deduce that there
is some & € d« X such that Z,0 converges to £. O

If X = X; x--- x X, is reducible, the situation is different. In that case there is
no point n-€ dX such that the set Q () is reduced to a singleton. Indeed, if n; € 9, X;
then Q((n1,...,n,)) is a sector in the sphere S”~!. A point in this sector can be
represented by a half-line generated by some vector (11,...,4,), where ; > 0.

Theorem 10.6. Let I acton X = X; X --- X X, non-elementarily, essentially, and
preserving each irreducible factor X;. Assume also that p has finite first moment.
Let A; be the drift for the action of I" on X;, and let n; be the limit of Z,o0 in the
factor X;.

Then almost surely the limit of Z,0 in X is the point of Q(M1,...,Nn)
corresponding to the vector (A1, ..., A,).

Proof. Let d; be the CAT(0) metric on the factor X;. We have

be the drift on X. Using [34], we get “sublinear tracking™: almost surely, there exists
a geodesic ray (for the CAT(0) metric) g; in X; such that

d(g(l,-n), Zn(),-)

n

tends to 0.
Now consider the quadrant defined by the geodesic rays gy,...,g,. A point in
this quadrant is of the form (g1(f1), ..., gn(tn)) with (¢1,...,1,) € (RT)". Let

g() = (g1(0), ..., gn(Ant)).

Then we have that

“ /
450,86 = (3 dilsihan). giis))?)

=1

= (i At - Jr)z)l/2
i=1

= Al|t —s|.
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In other words, g is a geodesic ray, travelled at speed A = (}_ A?). Its endpoint
is exactly the point of Q(n1,...,n,) corresponding to the vector (41,...,A,).
Furthermore we see easily that

d'(8(1), Zn0) _

lim 0.
n—>—+00 n
It follows that Z, 0 converges to the point of dX corresponding to g. [

10.2. Uniqueness of the stationary measure. We first note that, under our assump-
tions, the visual boundary is a Polish space. Indeed the visual boundary is obtained
as an inductive limit of balls centered at a fixed origin o [11, I[.8.5]. A complete
metric can be described as follows: the distance between two fixed geodesic rays p
and p’ starting from o is §(p, p’) = :f‘i 27d(p(n), p’(n)). This allows us to use
Corollary 2.6 to reduce the problem of uniqueness of the stationary measure on 94X

to the uniqueness of a ["-equivariant measurable B — Prob(d«X).

Theorem 10.7. Assume that 1" is a group with a non-elementary, essential action on
an irreducible complex X . Then there is a unique stationary measure on d<X.

Theorem 10.7 then follows from Corollary 2.6 together with Lemma 10.9. To
this end, we will need:

Lemma 10.8. Let §_, &, € 0 X be distinct squeezing points. Then there is a map
Pr_ g 0<X \{§-. 64} > X,

such that for every g € T', we have gps_ ¢, (§+) = @0ge_ g¢, (g5).

Proof. Fix distinct squeezing points £, £ € d4X. By Lemmas 6.8 and 6.10, there
is a bi-infinite decreasing sequence of pairwise strongly separated half-spaces such
that (),cz 0<Sn = -} and [,z 0<s, = {&+). Letn € 0 X \ {§_.6+}. Tt
follows that there exists some n such that n € ds,; N d«s5—,. Up to deleting finitely
many elements of the sequence, we may and shall assume that 7 is in 0.qs5 N 0gS—1.
Let us fix a base vertex 0 € s5 Ns—1 NJ(§-,£4) N X and vertices x, € sgNs—1 NX
so that the £2-geodesics between o and x,, converge to 1.

Recall that one can associate to € d4 X a horofunction relative to the £? metric,
which we denote by b,(TZ). Our goal is to show that b,(,z) la(¢_ £, )nx attains a minimum,
and the set of points on which this function is minimal is a bounded convex set. The
image @¢_ ¢, () is then defined to be the center of this set.

Let

Yk € 5g Nsg—1 NAE-E4) N X,

We claim that if D is the dimension of X then

b (ye) = VD - [kl
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Assume k > 0. Observing that 0 = m(yy, 0, x,) we see:

bx, (Yi) = d(yk. xn) — d(0,xn) = d(yk.0) = k.

Recalling the factthatd’ < d < ' Dd’ (where d and d’ are the £! and £2-metrics,
respectively) we deduce that hg) (yx) = /D - k. Taking the limit as n — oo we get
that

bP (k) = VD -k > 0.

Observing that b,(TZ) (0) = 0 this shows that the inverse image of (—oo, 0] by the
function b,(,Z) lg(¢_ &) is non-empty and contained in the bounded convex set

st NsoyNAE—,E4) N X.

Hence it has a unique center.
Finally, the I"-equivariance of these projections follows from the equivariance of
the horofunctions and the construction of the center. L]

Recall that Theorem 10.1 gives the existence of a measurable I"-equivariant map
3’::}:: Bi — 3<X

Lemma 10.9. Assume that T is a group with a non-elementary, essential action on
an irreducible complex X . There is a unique I -equivariant map B4 — Prob(d«X),
which is the map @ + 8¢, (o).

Proof. Consider the £_ and £ -pushforward of the measures on B_ and By to dX.
We will call them v_ and v, respectively. Recall that they are fi and ju-stationary,
respectively.

Let wy > v,, be some I'-equivariant map from By to Prob(d<X). By
ergodicity, if vy, # J¢, (v, ) Ona positive measure set, then this set has full measure.

So assume that we have almost surely v, # 8¢+, ). The function w4 —
Vo, ({§+(w+)}) is [-invariant and hence constant. If vy, ({§+(w+)}) = @ > 0
then we can define v/ = v — av4. After renormalization this is a new stationary
probability measure such that v/, N ({é+(w+)}) = 0. So we may and shall assume
that v, , ({§4+(@+)}) = O for almost every w4 € B.

We claim next that v, , ({£—(@-)}) = 0 for almost every (w—,wy) € By x B_.
Indeed, for a fixed w, the measure v, has countably many atoms, so that for
v_-a.e. w— € B_ we have that v,, ({§-(w-)}) = 0. By Fubini it follows that
Vo, ({§—(w-)}) = 0 almost surely.

Theorem 10.1 assures us that £, and £_ are squeezing points almost surely.
Now, apply the projection from Lemma 10.8 to obtain for almost every (w—, w4)
a measurable map ¢z, :d<X — X (defined v,  -everywhere). Hence we can
pushforward the measure v, by ¢ ¢, to getamap B— X By — Prob(X). Now
Prob(X) has a I'-invariant metric (for example the Prokhorov metric). Hence by
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Double Isometric Ergodicity we get that I' fixes a probability measure on X. By
countability of X, this implies that there is a finite set in X which is I'-invariant (the
set of points with maximal measure), contradicting the assumption that the action is
non-elementary. O

11. Regular elements

Regular elements are hyperbolic elements with strong contracting properties. In the
irreducible case, they are exactly contracting isometries in the sense of [10], and their
existence is the main theorem of [14]. For products, Caprace and Sageev [14] show
that such elements exist provided the group is a lattice. In this section, we prove
that such elements always exist for non-elementary actions, and moreover have some
genericity property.

We first recall the definition of contracting and regular isometries.

Definition 11.1. ¢ A geodesic line £ is called contracting if there is C > 0 such that
any ball B disjoint from £ projects to £ to a set of diameter less than C.

e If X is irreducible, an element g € Aut(X) is said to be contracting if it is
hyperbolic and one of its axis is contracting.

e If X is a product, an element g € Aut(X) is said to be regular if it preserves each
factor and if it acts as a contracting element on each irreducible factor.

Our main tool in order to find regular elements is the following lemma of Caprace
and Sageev [14, Lemma 6.2]:

Lemma 11.2. Assume that g € Aut(X) is such that g.h C h' for some pair of
strongly separated half-spaces h C h'. Then g is a contracting isometry.

Lemma 11.3. Assume that X is irreducible with a non-elementary and essential
[-action. Let Z,, be a generic sequence for the random walk, £ € 0X be the limit
of Z,0, and s be a half-space containing £.

Then there exists an N and s, C s1 C § pairwise strongly separated such that
foreveryn > N

e cither Z,s C s,,

* orZus D s;.

Proof. For notational simplicity, let k, = Z,s. Fix a vertex x € s that is adjacent to
the wall of s, i.e. so that there is another vertex in s* at distance 1 from x. Let () m=0
be an infinite descending chain of strongly separated half-spaces containing &, with
s = §9. For each m and n large enough we have Z,x € s,. Hence k, N s, # @.
Furthermore, since x is adjacent to the wall of s, we see that for n large enough
kn Nsym # @. By strong separation, if we fix m > 1, we have that k,, C s,, for any n
large enough.
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This means that we either have k, C s, or k, D s,,. If m = 2, this gives the
conclusion of the lemma. [l

In the first case, we say that Z, is s-skewering, in the second case that it is
s-flipping. By Lemma 11.2, if Z,, is s-skewering, then it is a contracting isometry.
In the following lemma, we use the stationary measure v for the random walk /.

Lemma 11.4. For almost every w € 2, for every half-space s such that n(w) € s,
we have:

limninf%|{k <n | Zy is s-skewering}| = v(s™). (11.1)
Proof. We begin by observing that if Z, = g1g2...gn. then Z;;! = g, ' ... g7,
where g; follows the law u and all of them are independent.
Recall that by Corollary 7.3, there is a unique stationary measure on X. This
allows us to apply Corollary 2.7 of [7] and therefore, for every continuous function ¢
on X. , for every x, we have almost surely

B 1 <
7 297 = o) *

If s is any half-space, define ¢, as the characteristic function of s*. Observe that
it is continuous on X, and that V(gs) = v(s). Therefore, for every half-space s, and
every vertex x € X there exists a full measure set £25 y C €2 such that for every
w € 25 x we have lim,—, 4 % k=1 9(Z; ' x) = D(s). Set Q¢ = (") Qs,x, Where
the intersection is taken over s € $) and x € X, which is countable and as such €2
has full measure.

Now let Q' C © be the full measure set provided by Theorem 8.1, namely, such
that (Z,(w)0) converges to n(w) for every w € Q. Finally, let 21 = Q¢ N ’. The
set 21 is an intersection of full measure subsets of €2, therefore it is again of full
measure.

Now, let w € Q; and Z, = Z,(w). Let s € Uy). By Lemma 11.3, there
is an N such that for every n > N either Z, is s-skewering or s-flipping. Fix k
with N < k < n. If Z; is s-flipping, then for x € s*, we have x € Z;s (because
s* C Zis), hence Z,:lx € s. It follows that @y (Z,:lx) = (. Therefore

n
Z os(Z'x) < |{k < n | Zy is s-skewering}| + N,
k=1

and Equation (11.1) follows. Ll

Theorem 11.5. Let X be irreducible, and T" act on X essentially and non-
elementarily. Then almost surely

1
lim —|{k < n| Zg is contracting}| = 1.
n—>—+o00 N



Vol. 93 (2018) Random walks and boundaries of CAT(0) cubical complexes 329

Proof. Fix a generic sequence (Z,) as provided by Lemma 11.4, with limit Z,0 — n.
Then since X is irreducible and 7 is regular, we have that {n} = ("),,~¢ Sm, for some
descending chain (sp). It follows that X \ {n} = Umz0 5m» and since (s;,) is
ascending, we have that

supv(s,) = 1.
m

Now, Lemma 11.4 assures us that for every m
o ) . . v
liminf —|{k < n | Zj is contracting}| = v(s,,)
n o n

for every m. Since this proportion is at most 1, the sequence is in fact convergent and
we get the result. L]

Remark 11.6. The proof above gives slightly more: namely, for every half-space s,
there is a positive measure set of (Z,) such that Z, is s-skewering with frequency at
least V(s). Indeed, the probability that this occurs is at least v(s).

Theorem 11.7. Assume that the action of " is non-elementary, essential and
stabilizes each irreducible factor of X. Then almost surely

lim l|{k < n | Zy is regular}| = 1.
n—>+oo N
Proof. Let X = Xy x -+ x X be the decomposition of X into irreducible factors.
Applying Theorem 11.5 to the action of T" on each factor, we find N such that
for n > N we have for every factor X; of X, the set of k < n such that Zj is
contracting on X; is of cardinality at least n(1 — ¢). It follows that there are at least
n(1 —de) elements Z; which are contracting simultaneously on each factor. O

In terms of the probability that a given element is regular, we deduce the following:

Corollary 11.8. Under the same assumptions as Theorem 11.7, we have

1 n
- Z P(Zy, is regular) = 1.
n

k=1

Proof. Let f:T" — {0, 1} be the characteristic function of the set of regular elements.
By Theorem 11.7, we have % > k-1 f(Zr) — 1 almost surely.
Taking the expectation, we get

) 1
lim —
n—>+oo N

Y E(f(Zo) =1,
k=1

which is the desired result since E( f(Z})) = P(Zy is regular). Cl
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When the group does not stabilize each factor, the limit might be smaller, due to
the fact that there is a positive proportion of elements which do not stabilize each
factor, hence cannot be regular. However, we can say the following.

Corollary 11.9. We have almost surely

lim infll{k < n | Zy is regular }| > 0.

n—+oo n
Proof. Let I'y < I be the finite index normal subgroup which stabilizes each factor.
Let ¢(n) be the subsequences formed by indices such that Z,,) belong to I'y.
Then Z,,) is a random walk on I'y of law 11 (the first return probability), so that
Theorem 11.7 apply and proves that almost surely

lim
n=>-+oo (n)

|tk < n | Zy) is regulary| = 1.

By Lemma 9.7, we know that ¢(n)/n almost surely has a positive limit. The result
follows. .
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