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Random walks and boundaries of CAT(O) cubical complexes

Talia Fernos* Jean Lécureux** and Frédéric Mathéus

Abstract. We show under weak hypotheses that the pushforward {Zno} of a random-walk to
a CAT(O) cube complex converges to a point on the boundary. We introduce the notion of
squeezing points, which allows us to consider the convergence in either the Roller boundary
or the visual boundary, with the appropriate hypotheses. This study allows us to show that any
nonelementary action necessarily contains regular elements, that is, elements that act as rank-1

hyperbolic isometries in each irreducible factor of the essential core.

Mathematics Subject Classification (2010). 20F65, 20P05, 60J50, 20F67.

Keywords. CAT(O) cube complexes, Roller boundary, visual boundary, random walks,
stationary measure, drift.

1. Introduction

Let n be a probability measure on a group T. Pick elements gi independently and at

random according to the law /a. The random walk on F is defined as the sequence
Zn gig2 • • gn An important aspect of the study is to understand the asymptotic
behavior of the random walk Zn.

A typical way of understanding how elements of a given group behave is to make
the group act on a metric space X. Fixing a base point o e X, one can then study
the sequence of points {Zno}. If the space X is sufficiently nice, one can hope for
the convergence of this sequence of points in some geometric compactification of X.
The first example of this is due to Furstenberg, where the space in question is the

hyperbolic plane [21]. A powerful motivation for this kind of result is Oseledec'
Theorem for random walks on subgroups of SL„(K) [41]; it can be interpreted as a

form of convergence of the random walk to a point in the (visual) boundary of the

symmetric space SL„(M)/ SO„(M) [28],
These types of questions have been studied by many authors. Let us give a few

results in this direction. The typical setting in which these results will hold is in

*T. Fernos was partially supported by NSF Grant number DMS-1312928, and UNCG New Faculty
Summer Excellence Research Grant.

**J. Lécureux was partially supported by Projet ANR-14-CE25-0004 GAMME.
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the presence of negative curvature, or at least spaces with hyperbolic-like properties.
The fundamental paper of Kaimanovich [30] proves this convergence for hyperbolic
groups, and in many situations when X has some kind of negative curvature. Let us
also mention the work of Kaimanovich and Masur, treating the case of the mapping
class group of a surface acting on its Teichmüller space [321, and the work of Gautero
and Mathéus on groups acting on M-trees [23]. More recently, a nice result of Maher
and Tiozzo [37] proves the convergence to the boundary for groups acting on (not
necessarily proper) hyperbolic spaces. In the CAT(O) setting, there are also some

partial results. Ballman treats the case of groups acting on non-positively curved
rank-one manifolds [5], For general CAT(O) spaces, Karlsson and Margulis [34]

prove convergence to the visual boundary, but they assume that the random walk

goes to infinitiy at positive speed, which can be difficult to check in general.

In this paper, we are interested in the case when A is a CAT(O) cube complex.
These complexes attracted a lot of attention recently as they play an essential role in

Agol's proof of the virtual Haken conjecture for 3-manifolds (an outstanding problem
in the theory of 3-manifolds which relied essentially on the work of Wise) [1,43],
There are many examples of CAT(O) cube complexes and groups acting on them.

Apart from the fundamental groups of hyperbolic 3-manifolds, one can think of
right-angled Artin groups, Coxeter groups, and small cancellation groups, among
many others. Let us also emphasize that there are interesting examples of CAT(O)
cube complexes which are not proper. For example, the Higman group

(cii,i £ ïlnl, I aiüi+]a~l af+l)

(with n ^ 4) acts (non-properly) on a CAT(O) square complex [38]. Another example
is given by diagram groups [ 181 (the complex in this case may fail to be finite
dimensional).

CAT(O) cube complexes admit two natural metrics which in turn give rise to the

visual boundary and the Roller boundary. The boundary which will be the most

relevant for our study is the Roller boundary (see §3.1) though we will also consider
the visual boundary (see §10). We denote by Aut(A) the automorphism group of
a CAT(O) cube complex X and by Aut°(A) the finite index subgroup consisting of
automorphisms stabilizing each irreducible factor.

Theorem 1.1. Let X be afinite-dimensional CAT(O) cube complex. LetT < Aut°(A)
be an essential and nonelementary action of F. Then, far any admissible measure

p £ Prob(T) and every o £ X, almost surely Zno converges to some point in the

Roller boundary.

A question which is related to the convergence to the boundary is the speed at

which the random walk goes to infinity, called the drift. This drift is defined as the

limit A lim (see §9). The random walk on a non-amenable group T,
endowed with some word metric, always has positive drift [25]. For general actions
however the positivity is not clear at all. In some cases, establishing the positivity of
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the drift helps to prove convergence to the boundary, as in [34], In our case however,

we deduce the positivity of the drift from the convergence, and prove the following
(see Theorem 9.3):

Theorem 1.2. Let X be a finite-dimensional CAT(O) cube complex with a non-
elementary, essential action of the group T. Assume p e Prob(T) is admissible and
has finite first moment. Then almost surely we have lim«-^ >0.

While the Roller boundary is the most useful for us, a CAT(O) cube complex is also

a CAT(O) space, and therefore is endowed with another natural boundary: its visual

boundary 3<j A. From a measurable point of view, in many cases, there should be an

isomorphism between the two boundaries. Indeed, under suitable assumptions, the

Roller boundary as well as the visual boundary is the Furstenberg-Poisson boundary
of (F, p) by [19] and by [34]. However, there is in general no natural map which is

everywhere defined between the two boundaries. It is nevertheless possible to define

some partial maps: for example, to a point t] in the Roller boundary, one can associate

the set of possible limit points in the visual boundary of any sequence converging
to t] (see Section 6.1 for more details). It might happen that, for certain points of the

Roller boundary, this set is reduced to a point. It turns out that we are able to prove
that, for almost every limit point of the random walk, this is the case (see Section 10

and Proposition 10.2).
After proving the convergence of the random walk to the Roller boundary, it is

natural to wonder what happens with the visual boundary. As mentionned above,

Karlsson and Margulis proved convergence of the random walk to the visual boundary
for groups acting on CAT(O) spaces under the assumption of finite first moment and

positivity of the drift [34], By considering actions on CAT(O) cube complexes, we

are able to remove the moment condition and prove the following:
Theorem 1.3. Let X be a finite-dimensional, irreducible, CAT(O) cube complex.
Let T < Aut°( A be an essential and nonelementary action of F. Then, for any
admissible p Prob(r) and far every o X, almost surely the sequence (Zno)
converges to some point in the visual boundary.

Once we have proved the convergence to the boundary, we can better understand
the dynamics of the random walk Z„. Say that a geodesic I in X is contracting if
the projection on I of any ball disjoint from I has uniformly bounded diameter. An
isometry of X is called contracting if it is a hyperbolic isometry with a contracting
axis. The fundamental paper of Caprace and Sageev [14] proves that for irreducible
complexes, any non-elementary action has contracting elements. We are able to

prove that these elements occur with high probability in the random walk:

Theorem 1.4. Let X be a finite-dimensional irreducible CAT(O) cube complex with
an essential and non-elementary action of the group T. Let p e Prob(G) be an
admissible measure. Then almost surely

lim — I{k 5; n \ is contracting}\ 1.
n—-Too n
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As an application, we can generalize one of the main results of [14] in the case of
reducible complexes, where there cannot be any contracting isometries. The best that

one can hope is for elements which act as contracting isometries in each irreducible
factor (of the essential core). These are called regular elements. Caprace and Sageev

prove that such elements do exist, under the additional assumption that T is a lattice
in Aut(A 114, Theorem D] (see also [15] for the case of general, proper CAT(O)
spaces). Using the theorem above, we can get rid of this assumption:

Theorem 1.5. Let X be a finite-dimensional CAT(O) cube complex with an essential
and non-elementary action of the group T. Then there exists regular elements in T.

In fact, not only do regular elements exist, but they will occur in the random walk
with high probability (see Corollary 11.8). The existence of such elements has some

strong consequences about the asymptotic properties of the T-orbits in X [36],

Our strategy of proof for all these theorems is inspired by some classical results:
Kaimanovich [30] for the convergence to the boundary and Guivarc'h and Raugi [26]
for the positivity of the drift. However, to be able to apply these strategies, we

are forced to understand the dynamics on the boundary. An important tool for us

is the notion of regular points of the boundary (see §5.3). These special points
were introduced in the paper [19] and exhibit strong contracting properties very
useful to us.

Another distinctive feature of our proof is that, in opposition for example to [30],
we use the identification of the Furstenberg-Poisson boundary in order to prove
the convergence to the boundary. This identification was first noticed by A. Nevo
and M. Sageev [39] in the case of cocompact lattices, and generalized by the first
named author 119]. More precisely, we use that there is a boundary map from
the Furstenberg-Poisson boundary of F to the Roller boundary of X, and that the

essential image of this map is contained in the set of regular points. Then the

contracting properties of the regular points are sufficient to ensure the convergence.

Acknowledgements. The authors would like to thank Uri Bader, Ruth Charney,
Indira Chatterji, Amos Nevo, L'Institut Henri Poincaré, and the first and third named
authors would like to thank the Laboratoire de Mathématique d'Orsay.

2. Generalities about random walks

2.1. Generalities and notation. Let us start with setting up some notation. In what
follows, T is a discrete countable group. We fix an admissible probability measure

p G Prob(r), meaning that the semigroup generated by the support of p is T.
We define the random walk on F as follows. Let TN and IP be the probability

measure on £2 defined by P Se x ph> The space G is the space of increments.
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If co E £2, we denote by g, (&>) the Ith element of the sequence co. As is customary in

probability theory, we often omit the co and write only g,-.

Our main object of interest is the random walk on r, which is the sequence of
random variables Zn\Yl -> r defined by Zn(co) gi(co)g2(co).. .gn{co), or for
short Z„ g\...gn.

2.2. The Furstenberg-Poisson boundary. The proof of our results will use an

important tool: the Furstenberg-Poisson boundary of (Y,p,). This boundary is a

space designed to encode the asymptotic properties of the sequences (Zn). We

will briefly recall the definition of this space and the key results that we need. The
interested reader might consult [3,4,20,30], or [19] for more information.

One possible definition is as follows. We denote by S : £2 —> £2 the "shift" map
defined by S(coo,co\,..., con,...) (&>o(Wi, co2,

Definition 2.1. The Furstenberg-Poisson boundary is the space B of ergodic
components of the action of S on (£2, Haar<g>/xN It is equipped with the

pushforward v of the measure P by the projection £2 -> B.

So the Furstenberg-Poisson boundary is a measure space equipped with an action
of T and a probability measure v whose class is preserved by T.

We will need to understand the Furstenberg-Poisson boundary of finite index

subgroups. More precisely, we need the following result, which is proved in [22,
Lemma 4.2],

Lemma 2.2. Let (B, v) be the Furstenberg-Poisson boundary of (T, /i), and
let To < V be a subgroup of finite index. Then there exists an admissible

measure /xo 6 Prob(Fo) such that the Furstenberg-Poisson boundary of (To, ßo)
is T0-equivariantly isomorphic to (B, v).

The Furstenberg-Poisson boundary presents very strong ergodic properties. This
was first observed in [31] and more recently generalized and used in [3], In the

following, we denote by (5_, v_) the Furstenberg-Poisson boundary of (F, fi), where

fi E Prob(r) is defined by fi(g) /x(g_1).

Theorem 2.3. Let Y be a separable metric space endowed with an action of Y by
isometries. Then:

• Any Y-equivariant measurable map B -* Y is essentially constant;

• Any Y-equivariant measurable map B- x B —> Y is essentially constant.

2.3. Stationary measures. Let T act continuously on some topological space K. A
measureA £ Prob(A') is stationary if /z* A A, in other words ifjr g*A dji{g) A.

It is a general fact that if Y acts continuously on some compact space K then there

always exists some stationary measure on K [21, Lemma 1.2].



296 T. Fernös, J. Lécureux and F. Mathéus CMH

We will use the following important consequence of the Martingale Convergence
Theorem [21, Lemma 1.3]:

Theorem 2.4. Let X be a stationary measure on the compact space K. For ¥-almost
every a> £2 there exists XbJ G Prob(K) such that Zn(co)X converges to X0).

Furthermore we have X — Xw d¥(co).

It is easy to check that the measure v on B is always //.-stationary. Furthermore,
if À is a //-stationary measure on a compact space K, then by Theorem 2.4 we get a

map £2 —>• Prob(AT) given by u> i-> lim Zn(a>)X. This map is clearly S-invariant, so

it factors through a map B —Prob(A').
The above theorem can be generalized to Polish spaces. Let Y be a Polish space,

with a continuous action of T. We endow Prob(T) with the topology of weak-*

convergence, when seen as a dual of the space of bounded continuous functions.
It is again a Polish space with a continuous action of T. The following is proved
in [8, Lemma 3.2] :

Theorem 2.5. Let Y be a Polish space with a continuous T -action. Assume that X

is a stationary probability measure on Y. Then for ¥-almost every co G £2 there

exists X0) G Prob(T) such that Zn(co)X converges to X(1). Furthermore we have

^ .ta XOJd¥{o)).

Corollary 2.6. Let T act continuously on some Polish space Y. Assume that there
is a unique V-equivariant map cp: B —> Prob(T). Then there is a unique stationary
measure on Y.

Proof. Let ft h> 1/ be a T-equivariant map. Then it is easy to check that
X J X), dv (b) is a stationary measure on Y.

Now let us turn to the uniqueness. Let A be a stationary measure on f. By
Theorem 2.5 that Z„ A converges to some measure A/,, and h A/, is a G-equivariant

map from B to Prob(K). Hence we have Ab <p{h).

Since we have also A dv(b), we see that A is uniquely defined.

3. General facts about CAT(O) cube complexes

In this section we collect some general results about CAT(O) cube complexes. We

assume some familiarity with these basic concepts. We refer the interested reader

to [14,39] or [ 19] for more information.

Convention. In what follows all the complexes we consider will be finite-dimensional
and second countable.

Remark 3.1. The restriction to second countable complexes is needed for ergodic-
theoretic arguments, but is not essential to our purpose. Indeed, if a countable group T

acts on a complex X, then it is easy to check that there is a sub-complex Y C X
which is second countable and T-invariant.
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3.1. Sageev-Roller duality and the Roller boundary. Let X be a finite-dimensional

CAT(O) cube complex. In what follows, we will sometimes identify X with its set

of vertices, endowed with the combinatorial distance (also called the I ^distance):
the distance between any two vertices is defined as their distance in the 1-skeleton

of X. However, sometimes it will be convenient to also consider the full complex X
with its CAT(O) metric. The latter will arise in particular when we consider the visual

boundary of X.
Let [0,1]" be an n-dimensional cube. The / th coordinate projection is denoted

by pr: [0,1]" -> [0,1], A wall of the cube [0,1]" is the set pr~l{\/2). Observe that
the complement of each wall in a cube has two connected components.

More generally, a wall of a CAT(0) cube complex X is a nonempty CAT(0)-
convex subset whose intersection with each cube is either a wall of the cube or
empty. The complement of a wall in a CAT(0) cube complex has two connected

components [42, Theorem 4.10]. The intersection of one of these components with
the vertex set of X will be called a half-space. We will say that such a half-space
is associated to the corresponding wall. The collection of all half-spaces will be

denoted by Sj, or $)(X) if we wish to specify the space X.
\ih ef), we denote by h* the half-space which is the complement of/?. For h. keS),

we say that h is transverse to k and write h rh k if the four intersections h Dk, h Ok*,
h* fi k and h* (Ik* are nonempty.

Fix a vertex v £ X and consider the collection Uv {h G S) : v h}. The

Sageev-Roller Duality is then obtained via the following observation:

0 h M-
heUv

This shows that every vertex v is uniquely defined by the set Uv. Identifying X
with its vertex set, this immediately yields an embedding X ^ 2^ obtained by
v Uv. Thanks to this duality, it may at times be simpler to confuse v and Uv,

though we will make an effort to make the distinction. The metric on X becomes
then d(x,y) ^#(UxAUy).

In the following definition, we identify X with its image in 2rL

Definition 3.2. The Roller Compactification is denoted by X and is the closure of X
in 2^. The Roller Boundary is then dX X \ X.

Let rj e X. Then, p is the limit of some sequence (x„) of vertices of X, and

by definition, Uv is the pointwise limit of UXn. We say that rj is in the half-space h

if h 6 Uv. In this way we have a partition X — huh*.
It is possible (and more common in the literature) to define the Roller boundary

as a subset of 2^ satisfying some combinatorial conditions (totality and consistency).
This turns out to be equivalent to the construction described above.

In the Roller boundary, the vertices of X correspond to U e X c 2fl satisfying the

descending chain condition: any decreasing sequence of elements of U is eventually
constant.
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On the opposite side, we find nonterminating elements. These special elements

were defined by Nevo and Sageev [391 as follows:

Definition 3.3. An element v e A is nonterminating if every finite descending chain

can be extended, i.e. given any h Uv there exists k Uv such that k C h.

The set of nonterminating elements is denoted by djvr A.

3.2. Medians and intervals. The interval between two points x and y in A is

defined as â(x,y) — {z \ d(x,z) + d(z,y) d(x,y)}.
It is easy to see that

,}(x, y) {z e X \ Ux n Uy C Uz}

This definition extends easily to the Roller boundary: the interval between v,weX
isdefinedas d(v, w) {m g X \ UvnUw C Um}. This interval structure endows A
with the structure of a median space [17,40], which can be extended to the Roller
compactification as follows.

The median of three points u,v,w e X is the point m m(u,v, w) defined by
the formula

um (uu n uv) u (uv n uw) u (uw n uu).

Equivalently, the point m is the unique point

{m} â(u, v) n d(v, w) n J(w, u).

While CAT(O) cube complexes can be quite wild, the structure of intervals is somewhat

tamable by the following (see [12, Theorem 1.16J).

Lemma 3.4. Let v, w £ X. Then the vertex interval d(v, w) isometrically embeds

into 7LD (with the standard tabulation) where D is the dimension of X.

3.3. Product structure. A CAT(O) cube complex is said to be reducible if it
can be expressed as a nontrivial product. Otherwise, it is said to be irreducible.
A CAT(O) cube complex X with half-spaces T), admits a product decomposition
X X\ x • • • x Xn if and only if there is a decomposition

f) S)i U •••

such that if i f j then hi rh h j for every (hi,hj) G f), x j and A,- is the CAT(O)
cube complex on half-spaces fj,.

Furthermore, we have the following [14, Proposition 2.6]:

Proposition 3.5. The decomposition

X Xi x • • • x Xn

where each A,- is irreducible, is unique (up to permutation of the factors). The group
Aut(A) contains Aut(Ai) x • • • x Aut(A„) as a finite index subgroup.
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Therefore, if F acts on A by automorphisms, then there is a subgroup of finite
index which preserves the product decomposition.

We also note that the Roller compactification behaves quite well with respect to
products: indeed, if X X\ x • • • x Xn, then we have X X\ x • • • x Xn.

4. Actions on CAT(O) cube complexes

We denote by 9<A the visual boundary of X.

Definition 4.1. An isometric action on a CAT(O) space is said to be elementary if
there is a finite orbit in either the space or the visual boundary.

Caprace and Sageev developed a theory of non-elementary actions on a CAT(O)
cube complex. They first prove that there is a nonempty "essential core" where the

action is well behaved. Let us now develop the necessary terminology and recall the

key facts.

Definition 4.2. Let T < Aut(A). A half-space ft f) is called shallow if for some
(hence all) x e X, the set Tx D h is at bounded distance from ft*.

The action of T on A is essential if no half-space is shallow.

As mentioned above, it is always possible to reduce a non-elementary action to
an essential action [14, Proposition 3.5]:

Proposition 4.3. Let T be a group with a non-elementary action on X. There exists

a non-empty suhcomplex Y C X which is T-invariant and on which the T-action is

essential and nonelementary.

Suppose that T is acting on A a CAT(O) cube complex. A simple but powerful
concept introduced by Caprace and Sageev is that of flipping a half-space. A half-

space ft e Tj is said to be T-flippable if there is a g F such that ft* C gh. The

following is due to Caprace and Sageev:

Lemma 4.4 (Flipping Lemma). Let T act non-elementarily on the CAT(O) cube

complex A. If h f) is essential, then ft is T -flippable.

Another very important operation on half-spaces studied by Caprace and Sageev
is the notion of double skewering. The following is again from [14]:

Lemma 4.5 (Double Skewering Lemma). Let F act non-elementarily on the CAT(O)
cube complex X. If ft c k are two essential half spaces, then there exists a g e T
such that

gkÇhÇ k.

For the proof of the following lemma we refer to [16, Lemma 2.28],

Lemma 4.6. Let F -* Aut(A) be a non-elementary and essential action. Let T0 < T
be the finite index subgroup which preserves every factor. Then the action of To on
each irreducible factor of X is again non-elementary and essential.
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5. Separation properties of walls and the regular boundary

5.1. Strongly separated walls. The following notion was introduced by Behrstock
and Charney [6], in their study of Right Angled Artin Groups. Caprace and Sageev
later used this to find a powerful criterion for irreducibility of CAT(O) cube complexes.

Recall that two half-spaces h and k are transverse if the four intersections hC\k,
h fl k*, h* fl k and h* D k* are all nonempty. Two walls are said to be transverse if
their associated half-spaces are. In this case, we write h <~) k / 0.

Definition 5.1. Two half-spaces h and k are called strongly separated if there is no
half-space which is transverse to both h and k. Two walls are said to be strongly
separated if their half-spaces are so.

Clearly if a complex is not irreducible, then it is can not contain strongly separated

pairs. This turns out to be both necessary and sufficient:

Theorem 5.2 ([141). Let X he a CAT(O) cube complex such that the action ofAut(X
is essential and nonelementary. There exists a pair ofstrongly separated half-spaces

ifand only ifX is irreducible.

5.2. The combinatorial bridge. Behrstock and Charney showed that the CAT(O)
bridge connecting two strongly separated half-spaces is a finite geodesic segment [6],
In [16] this idea is translated to the "combinatorial", i.e. median setting. For our
purposes, it suffices to consider strongly separated pairs. Most of what follows is
from or adapted from [16] and [19],

Let h i C A2 be a nested pair of halfspaces. Consider the set of pairs of points in

h\ xh* minimizing the distance between hi and h^, that is

Mhuh2 — {(x> y) e h\ x : if (a, b) e hi x h2 then d(x, y) ^ d(a,b)}.

Observe that we immediately have that (x,y) e then x,y f dX. The

following lemma is taken from 116, Section 2.G].

Lemma 5.3. Ifhi (1 h 2 are strongly separated nested half-spaces, then there exists

a unique pair of vertices (p\, P2) such that Mhi,h2 {(Pt > C2 r-

Definition 5.4. For hi C h2 the combinatorial bridge connecting hi and hf is the

union of intervals between minimal distance pairs:

B(hi,hl)= (J J(x,y).
(x,y)eMhl h2

Lemma 5.3 rewrites as follows:

Lemma 5.5. Let hi C h 2 be strongly separated nested halfspaces. Then there exists

Pi G hi and P2 £ ^2 such that B{hi,h2) <l(pi, pi)-
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If h\ and h2 are strongly separated, define the length of the bridge h(h \, h2) as

the distance from p\ to p2- We also call this length the distance between the two
strongly separated half-spaces h \ and h2.

Definition 5.6. Two half-spaces h and k are super strongly separated (or iiber-

separated in [16]) if they are strongly separated and for any half-spaces h' and k'
transverse to h and k, respectively, we have h' is not transverse to k'. Two walls are

super strongly separated if their half-spaces are so.

Note that if h C k C I are pairwise strongly separated, then h and I are super
strongly separated. So if X is irreducible with a non-elementary and essential

automorphism group, there always exists a pair of super strongly separated half-

spaces.

Super strong separation has the following consequence on the bridge. If A is a

subset of X and r > 0, we denote by Vr(A) the r-neighborhood of A (always in the

combinatorial distance).

Proposition 5.7. Let h C k be a pair ofsuper strongly separated half-spaces, and I
be the length of the bridge. Ifx e h and y G k* then I (x, y C Vi(b(h,k)).

Proof See [16, Lemma 3.5],

5.3. The regular boundary. Using strongly separated half-spaces, it is possible to
define a notion of a regular boundary. This notion was first defined in [19] (and

independently in [33], where it was called "strongly separated points").

Definition 5.8. Assume X is irreducible. A point £ G dX is called regular if for

every h\,h2 Uç there is k e Uç such that k c hi n h2 and k is strongly separated
both from hi and h2. The set of regular points of X is denoted by drX.

This notion has a natural extension to products:

Definition 5.9. Let X X\ x • • x Xn be the decomposition of X into irreducible
factors. The set of regular points of X is defined as

drX drXi x • • • x drXn

The regular boundary of X is the closure of 9,- X in A. We denote the regular
boundary by R(X).

5.4. On descending chains of half-spaces. In the irreducible case, regular points
can be characterized as follows. Recall that a descending chain is a sequence (hn)n&n
of half-spaces such that hn+\ $! hn. Vertices in X are characterized as the set

of points x e X satisfying the descending chain condition: there is no (infinite)
descending chain in Ux.
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Proposition 5.10 ([ 19, Proposition 7.4 ]). Let X be an irreducible complex, and a G X.
The following are equivalent:

(i) a G drX;

(ii) There exists an infinite descending chain (hn )„eN ofpairwise strongly separated
half-spaces such that a hn.

It is possible to analyze more precisely the descending chains containing a. We

first record the following.

Lemma 5.11. Let {hn} G if be an infinite descending chain ofhalf-spaces. Ifk G Sj

such that k C\ hn f 0 for all n then one of the following is true:

(a) There is an N such that k fh hn for all n > N;

(b) There is an N such that k D hnfor all n > N.

In particular if the sequence {hn} is composed ofpairwise strongly separated half-
spaces then Case (b) holds.

Proof. Fix n. Our assumption that k fl hn f 0 implies that one of the following
cases hold:

(1) h* C k\

(2) hn D k\

(3) hn fh k\

(4) hn C k.

Now, observe that there are finitely many half-spaces in-between any two, and

hence the collection of all « which satisfy conditions 1 and (2) is finite. Next observe

that if there is an infinite subsequence which satisfies property (3) (respectively,

property (4)) then hn satisfies property (3) (respectively, property (4)) for all n

sufficiently large.
Of course, if the sequence {hn} is pairwise strongly separated, it follows that

condition (3) can hold for at most one n.

We can now prove the following.

Lemma 5.12. Let (sn be an infinite descending chain ofpairwise strongly separated
half-spaces. Then f\eN sn's a singleton.

IfX is an irreducible complex and a dr X, then any infinite descending chain

(hn)nf>: ofhalf-spaces containing a satisfies that f\eN hn {a}.

Proof. The fact that P|«eN sn's a singleton is proved in [19, Corollary 7.5],
Now consider an arbitrary descending chain (hn) containing a. By the first part

of the lemma, it is sufficient to prove that for every m G N there exists n G N such

that hn C sm. Since hn and sm both contain a, we have hn fl sm f 0 for every m,n.
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Fix m. By Lemma 5.11, we know that either for every n large enough we have

hn C sm (in which case we are done), or for every n large enough hn fh sm. In the

second case, apply now Lemma 5.11 to k sm+1. By strong separation, we know
that hn is not transverse to sm+\ for n large. So we must have hn c sm+1, which
contradicts the fact that hn rh sm.

Hence we have proved that for every m and every n large enough we have h„ c sm.
So

P) hn C P) sn {a},
neN neN

and by assumption a is in f\eN hn, which proves that we have equality.

The previous lemmas deal with one boundary point. For two points, we have the

following:

Proposition 5.13. Let X be an irreducible complex and a,ß G drX. Assume

that a ^ ß. Then there exists a sequence (sn)ne% ofpairwise strongly separated
half-spaces, with sn+\ C sn, and such that s„ £ Ua\ Up for all n.

Proof Proposition 5.10 guarantees that we can find two sequences, each of pairwise
strongly separated half-spaces {sn(a) : n £ N} C Ua and {sn(ß) : n £ N} c Up.

Since a ^ ß, there exists h e Ua \ Up (and hence h* £ Up). By Lemma 5.11,
there exists an N such that for every n > N we have sn(a) c h and sn(ß) c h*.
Discarding finitely many half-spaces, we may and shall assume that these two
equalities hold for every n > 0. We define sn sn(a) for « ^ 0 and sn s-n{ß)*
for n < 0. Then almost all the conditions on the chain (sn are clear. The only thing
remaining to check is the strong separation of so and .v_i. But a half-space k which
is transverse to both x0 and must be transverse to s0(ß) which is in-between,

contradicting the strong separation of s0(ß) and .sq (ß).

Lemma 5.14. Let X be an irreducible complex and a,ß,y be pairwise distinct
points ofX with a and ß regular. Then the median point m(a, ß, y) is a vertex in X.

Proof Consider m m{a, ß, y). We claim that m e X and to this end we show
that Um satisfies the descending chain condition. Recall that

Um (Ua n Up) u (Up n ur) u (uY n ua) cuau uß.

Assume by contradiction that Um contains an infinite descending chain. Then, up
to discarding finitely many (and possibly relabeling a and ß), we may assume by
Lemma 5.12 that the chain belongs to Ua and hence m a. This means that
Ua C Up U Uy. By Proposition 5.13 there is an infinite descending chain of pairwise
strongly separated half-spaces in Ua \ Up C UY. Once more by Lemma 5.12 we
deduce that a y, a contradiction.
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Lemma 5.15. Let X be an irreducible complex and a £ drX and ß £ X with
ß / a. Then d(a,ß) Fl X ^ 0.

Proof. It suffices to show that the set Uar\Uß satisfies the descending chain condition
(see for example [39, Lemma 2.3]). Assume that there exists a decreasing sequence
of half-spaces (hn) with hn £ Ua n Uß. Then by Lemma 5.12 the intersection of
all the half-spaces hn is reduced to {a}. Since we also have ß £ hn for all n, this

implies a ß, contradicting the assumption.

6. Comparing various boundaries

So far, we have introduced two boundaries of CAT(O) cube complexes: the Roller
boundary and the regular boundary. There are also other interesting constructions.
In this section, we aim to compare these.

6.1. The Roller and visual boundaries. Let us start by the most common boundaries

of CAT(O) cubical complexes: the Roller boundary dX and the visual boundary
3<A\ In order to consider the (correct) visual boundary, we must pass back to the full
CAT(O) cube complex X (as opposed to just its vertex set) with the CAT(O) metric.

The following theorem, which is due to P. E. Caprace and A. Lytchak [13,
Theorem 1.1], is very useful in this situation.

Theorem 6.1. Let A, ),<=/ be a filtering family of closed convex subsets of a finite-
dimensional CAT(O) space X. Then either the intersection f),-6/ X, is not empty, or
the intersection f);e/ d<Xi of their boundaries is not empty, and has intrinsic radius
less than n/2.

The intrinsic radius less than n/2 gives the existence of a "canonical" center.

For the purpose of the following, we shall consider a half-space as the closure of
the CAT(O) convex hull of the vertices contained in the half-space. Consider a point a
in the Roller boundary dX and its collection of half-spaces Ua. This is a filtering
family of closed convex spaces, so we can apply Theorem 6.1. Since a contains an

infinite descending chain, the intersection of all half-spaces in Ua with X is empty.
So we get:

Corollary 6.2. Let a £ dX. Let Q(a) fj/jet/« d<h. Then Q(a) is not empty.
Furthermore, the map associating to a the center of Q(a) is an Aut(A)-

equivariant map from dX to 9<A.

In general, there is more than one point in Q(a), and it might also happen that

Q(a) Q(ß) fora ^ ß. For example, take a (oo,0),ß (oo, 1) £ 1?, then

Q (a) Q (ß) corresponds to the geodesic of slope 0.

Now let us attempt to find some kind of inverse map. Let £ £ d<X, let

g: [0, oo) —> X be a geodesic asymptotic to We say that a half-space h £ i)
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is transverse to £ if for every R > 0 there exists Ir ^ 0 such that the ^-neighborhood
of the image of the geodesic ray g|(rÄ;0o) is contained in h. We denote by Tg the set

of half-spaces transverse to £. This set does not depend on the particular choice of
the geodesic g in the class of £.

Lemma 6.3. Let X be a CAT(O) cube complex and let £ £ d<X. Then the set Tg is

not empty and CihzTçh 0- Furthermore, Tg contains an infinite descending chain.

Proof. See [16, Lemma 2.27], where it is proved that Tg is not empty, contains

an infinite descending chain, and that it satisfies the partial choice and consistency
condition (hence has a non-empty intersection in X).

We denote the intersection by Xg ITheTçh. It is a subset of X (and by

Lemma 6.3 is disjoint from X). We will also denote by Xg the subset of a é Xg
such that Ua \ Tg satisfies the descending chain condition (which is trivially satisfied

if Ua\Tg 0).
We have defined two maps: the map a i->- Q(a) from the Roller boundary

to (closed subsets of) the visual boundary, and the map £ h> Xg from the visual

boundary to (closed subsets of) the Roller boundary. These two maps are somehow

inverse to one another.

Lemma 6.4. Let a £ dX. Let Q(a) be as in Corollary 6.2, and let £ £ Q(a). Then

a £ Xg.

Conversely, let £ £ 3<jV and a £ Xg. Then £ £ Q(a).

Proof. Let us prove the first part: let a £ dX and £ £ Q(a). Let h £ Tg. Assume
that h fi Ua, which means that h* £ Ua. Since £ £ Q(a), this implies that £ is in
the visual boundary of h*. So there is a geodesic ray go converging to £ which is

contained in h*. Any other geodesic ray converging to £ will be at bounded distance

from go- This implies that h Tg, which is a contradiction. So we have h £ Ua. It
follows that a is contained in the intersection of all half-spaces in Ua, which is Xg.

Now let £ £ d<cX and a £ Xg. Let h £ Ua, and let us prove that £ 3<h.
If h £ Tg, then the result is clear. Since a £ Xg, we cannot have h* £ Tg. Now
assume that neither h or h* are in Tg. Pick a geodesic asymptotic to £. If this geodesic
is in h, then we are done. If not, since h* <£ Tg, we see that this geodesic stays at

bounded distance from h. This means that £ £ 3</z (in fact even £ £ 3</z). This

proves that every £ is in the boundary of every half-space in Ua. So £ G Q(oe).

We also record the following.

Lemma 6.5. Let a £ dX and £ £ Q(a). Let o £ X. Then the CAT(0)-geodesic ray
from o to £ is contained in the interval I(o, a).
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Proof. Let I(o,a) be the closure of I(o,a) CI X in X U d<X. Since I(o,a)
fW0ni/„ h> we have

I(o,a)= |^| ((/z Fl X) U 9</z).
heU0r\Ua

So £ g Q(d) implies that £ G / (o, a). As /(o, a) n X is a convex subset of X (for
the 11 metric and hence also for the £2 metric), it follows that the geodesic from o
to £ is contained in 7(o, a) Fl X.

6.2. Squeezing points. The notion of a squeezing point will be indispensable in Section

10 where we connect the behavior of the random walk with the visual boundary.
We begin by establishing the notion for points in the Roller boundary, and then discuss
the notion for points in the visual boundary.

Definition 6.6. Assume that X is irreducible. We say that a point rç e dX is squeezing

if there exists an x X and an r > 0 such that there exist infinitely many pairs of
super strongly separated h C k at distance r, with rj G h D k and x 6 h* fl k*.

If X is not irreducible, a squeezing point is one that is squeezing in each factor.

Remark 6.7. For an irreducible complex X a point r) e <)X is contracting if there
is a bi-infinite decreasing sequence of pairwise strongly separated half-spaces in Uv
which are at consecutive distance r. The reader may then note the similarity between a

squeezing point and a contracting point. Contracting points are necessarily squeezing,
but the converse does not hold in general. Both squeezing and contracting points are

necessarily regular.

Recall the definition of Q{q) from Corollary 6.2. The properties of squeezing

points are summarized in the following lemma.

Lemma 6.8. Let rj G 'êX be a squeezing point. Then there exists £ G 9<X such

that Q(q) {£}. Furthermore, any sequence of vertices (xn) converging to t] in the

Roller boundary also converges to £ in the visual boundary.

Proof. Let x G X and r > 0 be such that there exists an infinite sequence of super
strongly separated half-spaces hi C kt at distance r, with rj g A, r)kt and x G h* Pik*.

Let us prove first that Q(q) is a singleton. Assume that there exist £, £' G Q(rj).
Let g and g' be the geodesic rays from x to £ and £', respectively. Then for every i,
both the rays g and g' cross both walls /?,• and kl. By Lemma 5.7, they have to be in the

r-neighborhood of the bridge b(hi,ki). Furthermore, the bridge h(h,, kt) crosses

exactly the r walls separating A, from k,. So its diameter (for the combinatorial
distance d) is at most r. Hence its diameter for the distance d' is at most C, for
some C > 0 (depending only on r). It follows that the two geodesic rays g and g'
are at distance C' for some (fixed) C' > 0 when they travel in A,- D k*.

Since /q and kt can be arbitrarily far from x, it follows that g and g' are at

distance C' from each other at arbitrarily large distance from x. By convexity of the
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distance in a CAT(O) space, it follows that they are always at distance at most C from
each other. Hence £

Now let (xn) be a sequence of vertices of X converging to q. Let gn be the

geodesic ray from x to xn. We have to prove that gn converges to g uniformly on

every compact set. Let R > 0 and let (hi, ki) be half-spaces in the sequence defined
above which are at distance > R from x. For n large enough, we see that xn belongs
to hi n ki, so that gn crosses hi and /t,-. So using the same argument as above, for

every R > 0 and every t < R, we have d'(gn(t), g(t)) < C'.
To avoid cumbersome notation for the remainder of the proof only we shall

denote both the CAT(O) metric on X and on Euclidean space by d. Fix e > 0 small.
Consider the comparison triangle x, yn(R), and y(R) in the Euclidean plane M2.

Let t < Rs/C', p yn(t), and q y(t), and consider again the points p and q
in M2 on the segments [xyn(R)\ and [x^(f?)], respectively, and both at distance t
from x. Since we know that d(yn(R), y(R)) d(yn(R), y(R)) C', using the

«-T /
Law of Similar Triangles we see that d(p,q) < s. By definition of CAT(O)

spaces, it follows that d(p,q) < s. In other words, we have, for all t < Rs/C',
d(yn(t),y(t)) < e. The result follows.

Lemma 6.8 justifies the following:

Definition 6.9. Assume that X is irreducible. An element £ e 9<A is said to be

squeezing if for some (and hence all) x X there is an r > 0 and infinitely many
pairs of super strongly separated h C k at distance r, with x e h* IT k* such that

geodesic ray from x asympotic to £ crosses the walls h and k.

Recall from Corollary 6.2 that there is an Aut(A)-equivariant map dX —> ()<X.
This together with Lemma 6.8 yields:

Lemma 6.10. There is an Aut(X)-equivariant hijection between the squeezing points
in r)X and the squeezing points in 9< A.

This justifies the following definition:

Definition 6.11. The interval between two visual squeezing points £-,£+ G 3<A
is defined as <!(£_, £+) := S(Q~X(%-), Q~x(%+)) which is a subset of the Roller
compactification X.

6.3. A quotient of the Roller boundary. The set of boundary points has a natural

partition into cubical subcomplexes, which is especially interesting for points that are
not nonterminating). The following definition is due to Guralnik [27],

Definition 6.12. Let a, ß G dX. We say that a is equivalent to ß, denoted by a ~ ß,
if the symmetric difference between Ua and Uß is finite. The equivalence class of a
is denoted [a].
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Definition 6.13. The extended metric on X is the function d: X x X —> M U {+00}
defined by the same formula as on X :

d(a,ß)=l-#(UaAUß)

The extended distance between two points a and ß is finite if and only if we have

a e [ß]. For every a, this endows [a] with a distance. In fact, [a] is a CAT(O) cubical

complex in its own right, the half-spaces of [a] being the half-spaces of X which

separate two points in [a].

Lemma 6.14. For every a G dX, there exists f G 9<Z such that [a] C Xç.
Furthermore, there exists a descending chain (hn)ns^ of half-spaces such that
[er] C aeN ^n

Proof Let Q Q(ot) be defined as in Corollary 6.2, and fix £ G Q. Then a G Xç
by Lemma 6.4. It follows that [a] C Xç. Finally, Ft contains an infinite descending
chain by Lemma 6.3.

6.4. Subcomplexes as decreasing intersections. We defined in the previous section

an extended distance d:X x X -» M U {+00}, which partitions X into cubical

subcomplexes. We aim to write these subcomplexes as intersections of half-spaces
in X.

Lemma 6.15. Let (hn)n^i he a descending chain ofhalf-spaces, and Z f\>i hn-

Then Z is the Roller compactification ofsome suhcomplex Y C X.

Proof. Indeed, consider the set of half-spaces Sj' c T) such that hnZ and h* (~)Z are

both nonempty. Then by [16, Lemma 2.6] (see also [19, Proposition 2.10]) there is

an isometric embedding of the CAT(O) cube complex associated to f/ into X, whose

closure is exactly Z.
We note that Sj' is given by all half-spaces which are transverse to infinitely

many hn.

Lemma6.16. LetY C X he a suhcomplex disjointfrom X. Thenû\m(Y) < dim(Z).

Proof Let £) be a maximal collection of pairwise transverse half-spaces in X. Let
us denote by Hy the set of half-spaces containing Y. We aim to prove that there is

a kef) such that k or k* e Fly and so k does not participate in any maximal cube

of Y.
We begin by observing that if h, k G Sj are such that k D h 0 and k* n h 0

then one of the following hold:

(1) k C h\

(2) k* c A;

(3) h rh k.
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Consider hn+1 Ç hn an infinite descending chain in Hy, which exists by
Lemma 6.14 (since F [y] for any y e Y). We now show that Ä) fl Hy LI Hy ^ 0.

By contradiction, assume this is not the case, i.e. that if k e £> then k D Y and

k* n Y are both nonempty, and in particular, k n hn,k* fi hn f 0 for each n.
Therefore, for each tel) and n e N, we are in one of the situations (1)—(3) above.

Since in between any two half-spaces there are finitely many, and £) is finite, there

must be an N such that if n > N then hn rh k for every k e 1). It follows that
for every k e <£) and for every n large enough we have hn fh k. This of course
contradicts the maximality of £>.

This shows that any maximal family of pairwise transverse half-spaces must
have non-trivial intersection with Hy U ll*Y and hence the dimension of Y is less

than D.

Lemma 6.17. Let £o e dX. There exists k dim(X) and a family
• • ofdescending chain ofhalf-spaces such that

k

ia=nnc
1 0

Proof We argue by induction on the dimension. If dim(X) 1, then the result is

clear.

Assume the lemma holds for every complex of dimension < dim(A). By
Lemma 6.14, there exists a descending chain (,hm) whose intersection contains [£o]

(and since half-spaces are closed, it also contains [£0]). Let Z f]hm. By
Lemma 6.15, Z is isomorphic to the Roller compactification of some complex Y.

By Lemma 6.16 we have dim(T) < dim(X). We also know that [£0] C Y.

If £ Y then go] Z and there is nothing left to prove. If not, then by induction
there exists finitely many chains of half-spaces in Y such that [f0] is the intersection
of all these half-spaces. These half-spaces lift to half-spaces of X. To conclude the

proof we observe that the lift of these half-spaces in X form again a descending chain

(indeed, any non-empty intersection of half-spaces in X projects to a non-empty
intersection in Y).

6.5. Horofunction boundary. Let (X, d) be a metric space. Let us recall the
construction of the horoboundary of X. Fix an origin o e X. For x e X, consider
the function hx: X ->• R defined by hx(y) d{y,x) — d{o,x). This defines an

embedding t from X to the set "C(X) of continuous function on X.

Definition 6.18. The horocompactification Xh is the closure of i(X) in L(X). The

horoboundary of X is 3^ro(Z) Xh \ X.
A function in 3^ro(A) (and sometimes even in Xh) is called a horofunction.

Because every function hx is actually 1-Lipschitz and satisfies hx(o) 0, it
follows from the Arzelà-Ascoli theorem that the horocompactification is indeed a
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compact space (regardless of the topology of X). Furthermore, the horoboundary, as

a topological space, does not depend on the choice of the origin o (a different choice
would just translate the horofunctions by a constant).

It is well-known that for a proper CAT(O) space X (with its CAT(O) metric), the

horoboundary is the same as the visual boundary, denoted 3<A.

Remark 6.19. This notion of horoboundary is not the usual one because we consider
the topology ofconvergence on compact subsets, and not on bounded ones. For proper
spaces, the two notions are of course equivalent. The main advantage of our definition
is that it produces a compact space. However, there are two possible inconveniences:
the first one is that the space is no longer open in its compactification, and the second

one is that for general spaces this construction might produced more points than
desired. To avoid the confusion, these limit points are called metric junctionals
instead of horofunctions in [24]. However, when considering the horoboundary with
the £' as we do above, there are no additional points and so we stick to the more
standard terminology.

Now let us go back to our situation when X is a CAT(O) cube complex. Recall
from §3.1 that the distance on X can be calculated as d(x, y) ^#(UxAUy).

The following is an unpublished result of Bader and Guralnik, and seems to be

well known to experts. We include a proof for completeness.

Proposition 6.20. The horocompactification (respectively, the horoboundary) of the

set of vertices of X is equivariantly homeomorphic to the Roller compactification
(respectively, the Roller boundary) of X. Furthermore, for every f X, if m is the

median point off, x and o, then the horofunction associated to £ is defined by

hç(x) d(m,x) — d(m,o).

Let us start with a lemma which is of independent interest. Recall (from §3.2)
that the median point of x, y, z is the unique point contained in the intersection

I(x, y) n I(y, z) D I(z, x).

Lemma 6.21. The map m: X x X x X —> X which associates to a triple ofpoints
their median is continuous.

Proof. Let x,y,z e X, and m m(x, y, z). The definition of the median translates

easily to get that

um (ux n Uy) u (Uy n uz) u (Uz n ux).

It is straightforward to verify that this is in fact defines a continuous map

2fl x 2fl x 2fl -* 2*.
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ProofofProposition 6.20. Fix an origin o £ X. Let £ £ X and xn £ X a sequence
with xn -> £. For x £ X, set m m(o,x, f) and observe that m £ X. Also set

mn m(o, x, xn). By definition of the median, we have:

hXn(x) := d(x,xn) - d{o,xn)
d{x,mn) + d(mn,xn) - d(o,mn) - d{mn,xn)
d{x, mn) — d(o, mn).

Taking limits and utilizing Lemma 6.21 which guarantees the continuity of the

median, we deduce

hç(x) d{m,x) — d(m,o).

Next observe that, since x £ X, we have m £ I(o, x) C X, and hence /j§(x) < +oo,
that is hç is a function from X to M. It is continuous as the metric is continuous.
We denote by H.X -> 'C(X) the map which associates hç to £. We have

shown that hXn hç and from this it is straightforward to conclude that the map
H:X ^ X U 9^roV is continuous.

Let us prove that H is injective. Assume that I are such that hç hp.
Let x be a vertex adjacent to o and k be the half-space containing x but not o. We
have hç(x) 1 if £ £ k and hç(x) —1 otherwise. It follows that £ £ k if and

only if £' £ k. The same argument works starting from any vertex (by induction on
the distance to o). Hence we have Uç Up and therefore £ £'.

Now, let / be a horofunction. Hence / is a limit of functions of the form (hXn

for some sequence (xn) of vertices. Let (x^(„) be a subsequence converging to some
t; £ X. Then it follows that (hX(pM) converges to hç, hence that / hç. So the

map PI is surjective, hence bijective. Since X is compact it is a homeomorphism.
Finally, the above arguments show that H\gx is a homeomorphism from <)X

to 9^roA.

We also note, for future use, the following cocycle relation:

Lemma 6.22. Let gi,g2 & Aut(A), (eI Then

h(g2lS\l°) hg2l(gi1()) +

Proof. Let x„ be a sequence converging to £. Then

hg2^g\l°) + hçigflo)
lim d(g2xn,gf1o)-d(g2xn,o) + d(xn,g21o)-d(xn,o)

n—t+oo

lim d(xn,g2lgf1o)~d(xn,o)
«—>+00

h(g2xgflo).
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The equality of Lemma 6.22 is better understood and remembered in the following
form: if <7(g, f) hç(g~lo), then we have

<r(gig2,Ç) <r(gug2%) + o(g2,Ç).

In other words a is an additive cocycle.

6.6. Remarks on B(X) and R(X). In [39], Nevo and Sageev introduce another

boundary which they call B(X) and define as follows:

Definition 6.23. A point £ G dX is called non-terminating if for every h G t/ç there
exists k e Uç with k C h.

The set of non-terminating points is denoted by d^rX. The non-terminating
boundary B(X) is the closure of d^rX

It is clear that any regular point is non-terminating. Hence, we always have

R(X) C B(X). Furthermore, one of the main results of [39] is:

Theorem 6.24. Let T be a group acting properly and cocompactly on the complex X.
Then the action of F on B( X is minimal and strongly proximal.

The set R(X) is clearly a T-invariant closed subset of B(X). Thus, the minimality
of the action on B(X) implies the following.

Corollary 6.25. Assume that Isom(2f) contains a discrete subgroup acting
cocompactly. Then B(X) R(X).

For concrete examples, such as the Salvetti complex associated to a Right Angled
Artin Group, it is straightforward to check the equality B{X) R(X). Let us do so

in a particular case. It is of interest to us as we will modify it in Proposition 6.27 to

give an example of a complex where B(X) R(X).

Example 6.26. Let X X(Z2 * Z) be the universal cover of the Salvetti complex
associated to Z2 * Z, where Z2 (a, b) and Z (c) are the generators of the free
factors. It is straightforward to check that there are unique points xn,Xoo G B(X)
such that ckanbn —> xn as k —> oo, and anbn —> as n —> oo. Furthermore,
xn e drX and Xoo e \ drX. On the other hand, as n —> oo we have

xn Xqq. Finally, observe that a similar construction can be applied to any element
of dfi/rX \ drX and so we have that B{X) R{X).

Proposition 6.27. There exists a complex X, with Isom(A') acting essentially and

non-elementarily, but with R(X) f B(X). In particular, the action o/Isom(A')
on B(X) is not minimal.

Proof. We retain the notation of Example 6.26. We will construct a subcomplex of
X' c X(Z2 * Z) and it will have an action of Z * Z {ab) * (c) which is essential
and non-elementary. First observe that the action of ab on the plane associated

to Z2 is essential and we have an embedding (which is a similarity) of Z Z2 by
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mapping a generator of Z to ah. This embedding extends to an embedding of the

tree associated to F2 Z * Z into X. We define X' as the (I 1

-) convex hull of the

image of this tree in X. In particular, X' contains every plane of X containing an

axis of a conjugate of ab. It is straightforward to check that since the action of {ah)
is essential on the plane, the action of Z * Z is essential as well.

Now, the non-terminating points corresponding to (—00, 00) and (00, —00) in the

plane containing the axis of ab are isolated in B{X). Since these are not regular, we
deduce that B(X) ^ R(X).

7. Uniqueness of the stationary measure

Let X be a finite dimensional CAT(O) cube complex, T a group acting on X and [i
an admissible measure on T. We denote by B the Furstenberg-Poisson boundary of
(T, /x). Our goal in this section is to prove that there is a unique stationary measure

on dX.
The main tool is the following:

Theorem 7.1. Assume that the action of Y on X is non-elementary and essential.
There is a T-equivariant map t]\ B —> dX. Furthermore, for every such equivariant
map and almost every b 6 B, q(h e drX.

Proof. The existence of the map is [ 16, Theorem 4.1 ] in the symmetric case and f 19,

Theorem 7.1] in the general case. The fact that q(b) is almost surely regular is [19,
Theorem 7.7],

Proposition 7.2. If the action of T on X is non-elementary and essential then there
is a unique T-equivariant measurable map (p\ B -» Prob(A) and far almost every
b e B, cp{b) is the Dirac mass at rj(h).

Proof. We first prove the result for X irreducible and then use this to prove the result
in general.

Assume that X is irreducible. Let B- be the Poisson boundary for the inverse

measure p.. Recall from Theorem 2.3 that B-X B is isometrically ergodic. By [19,
Theorem 7.1 & 7.7], there is another equivariant map ?y_: B- X with essential

image in 3r X. Furthermore it follows from the proof of [19, Theorem 7.1] that we
have, for almost every (b-,b) e B- x B, q~(b-) 7^ q(b).

We claim first that there is a unique measurable and T-equivariant map??: B X.
Indeed, if there is another such map rj, then by ergodicity we have almost surely
r](b) f rj'(h), and the same argument as in [19, Theorem 7.1] also proves that

q-{b-) f rj'(b) almost surely. Now consider the map p\ B- x B —> X defined

by p{b-,b) m(r]-(b-), q(b), rj'(b)). By Lemma 5.14 it follows that p(b-,b) is

almost surely in X. Obviously p is T-equivariant, and measurable by Lemma 6.21.
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By metric ergodicity, it is constant. Hence T fixes a point in X, contradicting the

assumption that the T-action is non-elementary and proving the claim.
Now let <p: B -> Prob(2f) be a measurable T-equivariant map and let us show

that for almost every b e B, (p(b) is the Dirac mass at rj(b). We start with some

notation, borrowed from [16] (see also [19|). To a measure m e Prob(äA'), we

can associate three subsets of the set of half-spaces: the heavy half-spaces H* (of
measure > 1/2), the light ones H~ (of measure < 1 /2), and the balanced ones Hm

(of measure 1/2). It is easy to see that for any measure m, the set HnJ" is a consistent
set of half-spaces and hence if there are no balanced half-spaces then there exists an

element x e X such that Ux H+, that is {x} Fl, 6iy+/z.
Assume that cp(b) is not the Dirac mass at r](b). Recall that the map which

associates to b the intersection of all heavy half-spaces of (p{b), denoted by
is again measurable and equivariant. By [16, Proof of Theorem 4.1], it is always
true that — 0 and hence Uri(b)- Since t](b) is a regular point,
by Proposition 5.10, we can find an infinite descending chain of pairwise strongly
separated heavy half-spaces whose intersection is r](b). This proves that the measure

of {q(b)} is at least 1/2.
Hence we can write, for almost every b, q>(b) a8v(b) + (1 — a)(p'(b), with

1/2 ^ a < 1, and <p' (b)({rj(b)}) 0. Note that a: B -» [1 /2,1) is a T-invariant
function, so that by ergodicity, it is constant. By assumption we have a < 1.

The map (pB -> Prob (A is still equivariant. Now, applying the same argument
to (p' instead of cp, we conclude that cp'(b)({rj(h)}) ^ 1/2. This is a contradiction.

Therefore <p(h) is almost surely a Dirac mass. As was shown above, there is a

unique map from B —>• X and hence cp(b) r](b) almost surely.

Now assume that X is a product X X\ x ••• x Xn, where each AT,- is

irreducible. Then there exists a finite index subgroup T0 < T which preserves
each factor. By [16, Lemma 2.13], the induced action of T0 on each factor is again
essential and non-elementary. We note also that by Lemma 2.2, the Furstenberg-
Poisson boundary of (T, fi) is r0-equivariantly isomorphic to the Poisson boundary
of (T0, pio), where /xo is the first return probability.

Applying Theorem 7.1 to each irreducible factor, we find rç, : B —> <)X,, which in

turn gives rj: B -> dX, all of which are T0-equivariant maps. Let itp. X -> Xi be

the projection. Let (p: B -> Prob(A) be a T (and hence T0)-equivariant map. As
was shown above in the irreducible case, the r0-equivariant map (jii)*(p(b) is equal
to the Dirac mass at rp (b). This means that

<p(b)(Xi x ••• x Xi-1 x {rji(b)} x Xt x • • • x Xn) 1.

Since this holds for each i, we see that indeed (p(b)({r](b)}) 1, meaning that <p(b)

is the Dirac mass at r](h).

Corollary 7.3. Assume that the action of T on X is essential and non-elementary.
Then there is a unique stationary measure on X.
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Proof. Apply Proposition 7.2 and Corollary 2.6.

Remark 7.4. The assumption that the action is essential cannot be removed. Indeed,
take the example of the free group F2 acting on the product T x L, where T is

the Cayley tree of F2, and L is a line (with trivial action). Let v be the stationary
measure on 37". Then for every x £ L, the measure v x 8X is a stationary measure

on 37" x jc c 3(7" x L).

Remark 7.5. During the writing of this paper, it has been proved in the paper [33]
that, in the irreducible case, the action on R(X) is minimal and strongly proximal.
For irreducible spaces, the uniqueness of the stationary measure follows, as explained
in [39],

8. Convergence to the Roller boundary

Now that we understand better the stationary measure on the boundary, we can
attack the problem of the convergence of the random walk. Recall that Theorem 7.1

guarantees the existence of a measurable and T-equivariant map ip. B -> dX. As B

is a factor of £2, we can also consider the composition £2 -> B dX, which we still
denote by q. Our goal is to prove:

Theorem 8.1. Assume that the action of T on X is non-elementary, essential, and

preserves each irreducible factor of X. Then for almost every a> £ £2 the sequence
(Z„(co)o)n converges to rj(co).

Our strategy is inspired by a proof of Kaimanovich in the case of hyperbolic

groups [30, Theorem 2.4], although we have to face some technical difficulties,
these are overcome thanks to the fact that regular points are well-behaved. This is

exemplified by the following:

Proposition 8.2. Assume X is irreducible, and let X be a non-atomic measure on X,
such that X(3rX) 1. If gn £ T is such that gno —* £0 £ X, and (gnX) weakly

converges to v, then v ([£0]) 1
•

The proof of Proposition 8.2 will rely on some more lemmas.

Lemma 8.3. Let G be a group acting by homeomorphisms on some metrizable

compact space C, (gn) be a sequence in G, X a probability measure on C and
A C C be a Borel subset such that for almost all x £ C, any limit point of (gnx)
belongs to A. If (gnX) weakly converges to v then \>{A) 1.

Proof As we may replace A with its closure without affecting the hypotheses or
conclusion, let us assume that A is closed. Fixing a metric compatible with the

topology, denote by AE the s-neighborhood of A. The assumption implies that for
almost every x £ C and every n large enough, we have gnx £ AE\ if not, there is
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a subsequence which avoids Ae completely, and any limit point of this subsequence
does not belong to A.

We note that, since A A1/", it is sufficient to prove that v(Ae) 1 for
all e > 0.

Fix s > 0. Denote by Ae the closure of the s neighborhood of A. By Urysohn's
Lemma, there is a continuous f:C -> [0,1] bounded above and below by the
characteristic functions

IjP'M ^ /(*) ^ 1^2®(•*:)•

By assumption, for each jc there is an n sufficiently large such that gnx AE and

hence fn(x) := f{gnx) —>• 1. It follows from the Dominated Convergence Theorem
that v{f) 1. Hence v(AE) 1, which concludes the proof of the lemma.

Lemma 8.4. Let £o G X and gn G F be such that gno —> £o- Then for every x G X
all limit points of the sequence (gnx)n belong to [Ço]-

Proof We have for all n, \Ugn0 AUgnX\ \U0AUX\. Let a be a limit point of (gnx).
If h\, hp, are half-spaces in Ua AUç0 then we see that for n large enough we have

hi G Ugn0AUgnX for all 1 ^ i ^ k. Hence we have k ^ \U0AUX\. In other words,
there are at most \U0AUX\ half-spaces in UaAUç0. This means that a [£0]-

The previous lemma can be extended to the convergence of points in the Roller
boundary, up to passing to a subsequence and excluding finitely many points:

Lemma 8.5. Let gn T. If there is £o G X and o e X such that gno —> £0 then

there is a subsequence <p(n) and £i,..., £jt such that iff G drX \ {fi,..., £&} then

all limit points of{gv(nf) belong to [Ço|.

Proof Observe that if £o G X then the result follows as [£o] X. Therefore, assume

£o £ dX.
Let {hi : m e N{hkm : m G N} be the descending chains provided by

Lemma 6.17, i.e. such that
k

is!=n n
1 OT6N

Then, the following dichotomy holds: either for every £ g dr X we have that all
limit points of the sequence (gn$) belong to C\mhl or there is an £i G dr X and a

subsequence <pi(n) for which ^i(«)(^i) -»• £i In case all limit points
belong to Pimhl we set cp\(n) n, and define £i arbitrarily.

By the same process, we construct inductively, for each 1 < i ^ k, a subsequence^,-
of (pi-i, and £,• G drX, such that, for every j ^ i, we have

(a) either the limit points of (gVi (nf)n are in nm^0hJm (and we define £/ arbitrarily),

(b) or we find G drX and £y f r\mhJm with gVi(nfj £/.
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Fix i V k and for simplicity let <p(n) <Pk(n). Let us now show that for every
£ G drX \ {£,} we have that the limit points of gv(„)k belong to nmhlm. If was
chosen arbitrarily as in case (a) above then there is nothing to prove. Therefore, up
to passing to a subsequence, assume that —> ç; fi L\mh'm.

Consider £(£,£;) J(Ç, £,-) n X (which is not empty by Lemma 5.15). Let
x G S(£, £,•). Since x is at finite distance from o, it follows from Lemma 8.4 that

every limit point of (£>(«) (x)) belongs to go]- So, for each me N there is an Ni
so that if n > Ni then g<p(n)(x) e h'm. On the other hand, since £,• fi flmhlm, there

exists Mi such that £,• fi h'm for all m > Mi. Since gv(n)^i converges to there is an

N( > Ni so that if n > Nj and m > Mi then gv(n)(G) fi h'm.

Fix m > Mi. If we had g«,(„)% fi h'm, then by convexity of the interval
£ (s<p(n)% > 8<p(n)%i we would have g(p(n)X fi Kr Soforw > V/ we have gv{nfa e h'm.

Now redefine £ G drX \ {£i,..., and let £ be a limit point of the sequence
(gy(n)£)- The above argument shows that £ G nmh'm, for each i 1,..., k, i.e.

k
£ £ 0; 1 go]. n

ProofofProposition 8.2. We first replace as we may (gn by a subsequence satisfying
the conclusion of Lemma 8.5. Since A is non atomic, we have that for A-almost

every f, every limit point of {gn%) is in go]- By Lemma 8.3, this implies that

KIM) L

Lemma 8.6. Assume X is irreducible. Let A be a non-atomic measure on drX. Let

gn e G be such that gn A weakly converges to a Dirac mass 8b, far some b G i)rX.
Then gno converges to b.

Proof. Let b' be a limit point of (gno). By Lemma 8.2 we have that 8b is supported
on [b']. Hence b e [b']. By Lemma 6.14, there exists a sequence of half-spaces (hn)
such that [//] C fl«eN K- Since every half-space is closed by definition, we have

[b'] C C\nmhn. Hence b e DneN^"- Since b e drX, by Proposition 5.12, it
follows that n„6N hn {b}. So b' b.

Proofof Theorem 8.1. Let A be the unique stationary measure on X. As we assume
the action is non-elementary, the measure A is not atomic. Assume first that X is
irreducible. We know that Z„ A converges to the Dirac mass 8^^, where r](co) e drX
almost surely. By Lemma 8.6, it follows that Zno converges to rj(a)).

Now if X is not irreducible, but T preserves each factor A) of X, then the action
of T on Xi is still non-elementary and essential, and the previous argument proves
that the projection of Zno to Xi converges to some point in 3X,. Hence Zno also

converges to a point in the boundary of X.
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9. Positivity of the drift

9.1. The drift. Before getting into the specifics of our situation, we recall some
basic general facts about the drift of an action. Assume that F acts on a metric

space X. Choose a vertex o in X. This gives rise to a seminorm on T defined by
|g| d(go, o). The drift relative to | • | is defined as follows.

Definition 9.1. The drift of the /r-random walk with respect to a seminorm | • | is:

A inf- f |Z„(a>)| df{u>).
n n J

Q.

The following is a standard application of Kingman's Subbaditive Ergodic
Theorem:

Theorem 9.2. For almost every m G £2 we have

A lim — \Z„(a>)\.
«->oo n

Furthermore, A is finite whenever p has finite first moment (with respect to | • |),
i-e- HgerF-ig)kl < oo.

9.2. Proof of the positivity of the drift. Our goal in this section is to prove that
the speed at which the random walk goes to infinity is always linear. Our proof
follows a classical strategy which was initiated by Guivarc'h and Raugi for linear

groups 126]. Ledrappier extended it to free nonabelian groups [35], and Benoist and

Quint to Gromov hyperbolic groups [9].
The main aim of this section is to prove the following:

Theorem 9.3. Let T -> Aut(Af) he an essential and nonelementary action, p, a

probability measure on T, o G X such that p, has finite first moment with respect
to I • |. Then A > 0.

Recall from section 6.5 that dX is isomorphic to the horofunction boundary
of X with the combinatorial distance. If a G dX, we denote ha the corresponding
horofunction.

We denote by v the unique stationary measure on dX. By Theorem 7.1, we have

v(3rX) 1.

The positivity of the drift will follow easily once we prove the following:

Proposition 9.4. Assume that T stabilizes each factor of X. Then for every £ <E dX
and IP-almost every (o G G, there exists C > 0 such thatfar all n >0 we have

Id(Zn(œ)o,o) - h^(Zn(co)o)\ < C.
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Proof. First, we claim that the conclusion of the proposition does not depend on the

choice of the basepoint o. Indeed, assume that

\d(Zn(co)o,o) -hç(Zn(co)o)| < C.

If o' is another basepoint then

d(Zno',o') ^ d(Zno', Zno) + d{Zno,o) + d(o,o'),

and hence d(Zno', o') — d(Zno, o) ^ 2d(o, o'). By symmetry

Id(Zno',o') - d(Zno,o)I $ 2d(o,o').

Similarly \hç{Zno) — hç(Zno')\ ^ 2d(o,o'). Hence

\d(Zn(co)o',o') - hç(Zn(co)o')\ ^ 4d(o,o') + C,

which proves the claim.
Let £ G dX. By Theorem 8.1, for P-a.e. w e ß, there is r](w) £ drX such that

Zn(co)o —r i](a>) for every o £ X. As the action is non-elementary, we know that

rj(co) ^ £ almost surely. Fix such a generic m and set r] rj(a>) and Zn Zn(a>).

By the claim above and Lemma 5.15, we may and shall assume that o £ I(rj, f) n X.
Recall from Proposition 6.20 that, the median m(£, x, o) £ J(x, o) is such that

hç(x) d(m(Ç, x, o). x) — d(m(f, x, o), o).

Let mn /n(£, Zno, o), so that hç(Zno) d(mn, Zno) — d(mn,o). Then:

d{Zno,o) - h^(Zno) d(Zno,mn) + d{mn,o) - (d(mn, Zno) - d(mn,o))
2d(mn,o)

Again, by continuity of the median map, we have that mn —> m(f, r](a>), o). Recall
that we have chosen o m(f,r],o) £ I(j/, £) Fl X, which is locally compact.
Therefore, for n sufficiently large,

d(Zno,o) — hç(Zno) 2d (m(f, r)(a>), o), o) 0.

We immediately deduce that:

Corollary 9.5. For every o £ X, P-a.e. (Zn) G ß and every Ç £ dX we have that

A= lim —ht(Zno).
tt— OO fl

Our aim now is to apply results about additive cocycles to our situation. To this
end, let T: ß x X —> Œ x X be defined by

T(co,Ç) {Sco.coq1!),

where to (co0, eo\,... and S: to {co\ co2, is the usual shift.
The following lemma is borrowed from [7, Proposition 1.14]. We include a proof

for completeness.
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Lemma 9.6. The transformation T preserves the measure Pxv and acts ergodically.

Proof. Let ß F x v. We begin by checking the invariance of ß. Let f be a

bounded Borel function on £2 x X. Let <p(x) J x)dP(o)). By definition we
have ß(f) — v((p). On the other hand we get

ß(%f o T) — j \f(So),(i>ö1x)dP(co)dv(x) v((p)

by stationarity of v. The invariance of ß follows.
Now let us turn to the proof of ergodicity of ß. Let P be the averaging operator

relative to /x: if / is a bounded Borel function on X, then Pf (x) J /0'x)dp(g).
A measure is /x-stationary if and only if it is P-invariant. By Corollary 7.3, the

measure v is the unique /x-stationary measure on X. It follows that v is P-ergodic.
Let \jr be a bounded Borel function on £2 x X which is T-invariant. We have

to prove it is constant. Let again (p denote the function defined on X by cp(x)

f ty(co, x)dP{co).
We first see that

P(p{x) J ij/ (co, g~l x)df (co)dp,(g) o T){co, x)dP(m) <p(x)

so that cp is P-invariant. By the above remark it is constant, say equal to c.
Let Xn be the sigma algebra generated by the first n coordinates co0,..., con-i

on £2 and by the variable x X. Let <pn Ffcp \ Xn). Then we have

(pn(û)0,..., con-i, x) J con-u co),x)dP(co)

j x/z o Tn((coo,...,con-i,co),x)dP(co)

J j ü)qX x)dP (w)

<p(co~ll.. .,(Oq1x)

— c

Since the sequence ((pn) converges to i//, it follows that f is also constant, equal
to c.

Proofof Theorem 9.3. Assume first that the group stabilizes each factor. Define the

function F: £2 x X -» M as

F((co„)„,Ç) hç(cooo)

and observe that its value only depends on the first coordinate of (&>„)„. For every

f 9<3f, the function hç is 1-Lipschitz on X, so that \F((con)n, f)| ^ d(o,u>oo). It
follows that

j |F(xu,£)| < +oo.
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Recall from Lemma 6.22 horofunctions satisfy the following relation:

hg2^(gï1x) + hçig^x).

Inductively, this shows that if Zk cc>i • • a)k (and Zo e) then

n

hç(Zno) Y^b-z^^ko)
k=1

Therefore, we have the following calculation:

1 1
n

—hç(Zno) ~Yhz-iAcoko)
n n ' k-\s

k=1

1 F(Tk((con)n,Ç)
n

k 1

Now, assume that pt has finite first moment. By Proposition 9.4, we have that

i/zç(Z„o) -» A. Thanks to Lemma 9.6, we know that T preserves P x v and is

ergodic and so we may apply the Birkhoff Ergodic Theorem and conclude:

^YF(Tk((a>n)H,&) J>(û>,É)P(û>)dv(É).
k=0

Recall that by Proposition 9.4, we know that \d(Zn(co)o, o) — hç(Zn(œ)o)\ is almost

surely uniformly bounded. This together with Theorem 8.1 which guarantees the

almost sure convergence of the random walk to the boundary, implies that hç(Zno)
tends to +oo almost surely. This means that YTk=o F(Tk{(a)n)n,%)) is a transient

cocycle in the sense of [2] and hence by Atkinson's Lemma J F(a>, £) \?(oj)d u(£) is

strictly positive [2], (See also [26, Lemma 3.6].)
If the group T does not stabilize each factor, let T0 <1 T be the finite index

subgroup which does. Let (Zv^n)) be the subsequence of the random walk formed by
the elements which are in T0. This is a random walk on To, which still has finite first
moment by [29, Lemma 2.3]. Then by the previous result we have Z<^<") —> Ao > 0.

Since we already know that znjn converges, the result follows from the fact
that «?(«)/« has a positive limit, which is Lemma 9.7 below.

Lemma 9.7. Let To <1 T be a finite index normal subgroup. Let (Z<p(n-)) be the

subsequence formed by all elements of the random walk which are in To. Then there
is C > 0 such that —> C almost surely.

Proof. Note first that To is of finite index so it is a recurrent set. Consider the induced
random walk on the finite group V/ T0. It is an irreducible Markov chain. Let ir be

the stationary measure on T/ T0.
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For n>- 0, let r„ <p(n + 1) — cp(n). Then rn is a random variable whose law is

the law of the first return time to IV The expectation of xn is equal to C :=
Furthermore, the xn are independent. By the Law of Large Numbers, we have almost

surely lim„^+00 ~ J2k=o zn — C. In other words, -> C.

Remark 9.8. Let d' be the CAT(O) metric on X and fix a T-action that is essential
and non-elementary. Recall that d and d' are quasi-isometric. So /x has finite first
moment with respect to d if and only if it has finite first moment with respect to d'.
Theorem 9.3 then also shows that if /x has finite first moment then the drift with
respect to either metric is positive.

10. Random walks and the visual boundary

10.1. Convergence to the visual boundary. In this section, we are interested in the

almost sure convergence to the visual boundary. Karlsson and Margulis showed that

if /x has finite first moment and if the drift is positive, then almost surely there is

an f e 3<A_ such that Zno converges to £ [34], We aim to improve on this by

getting rid of these conditions. An important tool in our proof will be the notion of
a squeezing point which was developed in Section 6.2.

Theorem 10.1. There exists a map £: B —>• 3<A such that, for all o e X, almost

surely Zn(a>)o converges to £(<u). Furthermore f (co) is almost surely a squeezing

point.

We will require:

Proposition 10.2. Almost surely, the point rj lim„ Zno is a squeezing point of the

Roller boundary.

The proof will use the following useful facts, from [16] and [19].

Lemma 10.3. Let X be irreducible with an essential and nonelementary action of F.

Let v (resp., v) be the stationary measure on X for the measure p. (resp., jl).
Let S C S)N be a non-empty, F-invariant set, with h\ C ••• C h^j for every

(h\,... ,hfif) S. Thenfor v®v-almost every (r]-,r)+), the set of(h\ hn) £ S
with {h i,..., h st} C Ut]+ \ Uv _

is infinite.

Definition 10.4. Fix a subset H C Tj. An element h G H is said to be minimal if
for every k e H either k is transverse to h, h C k, or h C k*. An element h G H
is maximal if for every k H either k is transverse to h, h D k, or h Z> k*. Finally,
h £ FI is said to be terminal if it is either minimal or maximal.

The map r:2^ 2^ that assigns to a set its terminal elements is measurable

(see [16, Corollary A.2]). If H C S)N, by abuse of notation, we shall use t(H) to
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denote the terminal elements in the projections of H to the first factor. Namely, if
the projection to the first factor is denoted by p\: S)N -> $j and H C S)N then

r(H) := x(pl(H)).

Recall Lemma 3.4 guarantees that the interval between any two points embeds

into IRd where D is the dimension of the complex. Each dimension then corresponds
to a possible maximal chain so that any subset of Uv+ \ Uv_ must have finitely many
terminal elements. If this finite number were to be almost surely strictly positive,
Theorem 2.3 would yield the existence of a finite T-invariant collection of half-spaces,
which is inconsistent with the assumption of an essential action. We deduce:

Corollary 10.5. Fix N, and let S be the set of N-tuples of nested, increasing, and

pairwise super strongly separated half-spaces. For v (g) v-a.e. (rj-, i]+) £ l)X x 3X
we have

#r (s n (uv+ \ uv_)N) o.

ProofofProposition 10.2. It suffices to treat the case of an irreducible complex, so

we assume that X is irreducible. Then we know that there exists some pair of super
strongly separated half-spaces, and by double skewering, we may find a pair in the

same orbit. Fix such a pair, and let r be the distance between these two half-spaces.
Let S be the nonempty set of triples (a,b,c) where a c b c c are pairwise

super strongly separated half-spaces at consecutive distance r. (We note that the

distance between two super strongly separated half-spaces is bounded below by the

maximal number of nested chain between them.) Then S is a non-empty, T-invariant
collection of half-spaces. By Lemma 10.3, for v <g) v-almost every (:rj', rj), there

are infinitely many triples (a, b,c) £ -8 such that a, b, and c contain rj and not if.
Let X(:r), rj') be the set of all such triples, i.e. -8(rj, rj') -8 n (Uv \ Uv')3.

To prove the proposition, we will find in Uv \ Un> a bi-infinite chain of pairwise
super strongly separated half-spaces hm+\ C km+1 C h,„ C km so that each pair
(hm,km) has distance r.

To this end, observe that by Lemma 10.3 and Corollary 10.5 we may find in
Uv \ Un> a bi-infinite chain am+\ c am such that for each m £ Z there exists

bm,cm e Uv\ such that am c bm c cm are pairwise super strongly separated
in Tj at consecutive distane r. We claim that hm := amr is a bi-infinite descending
chain of pairwise super strongly separated half-spaces in fj.

Fix m. Observe that the distance between am and is strictly larger than r.
Since am C cm at distance r it must be that am-r £ cm i.e. c^ fl am-r / 0. Also,
as am-r fl cm and a*n_r n c*n contain rf and rj, respectively, we deduce that either

cm C am-r or cm rh am-r. Either way, bm C am-r and hence am and am-r are

super strongly separated. We therefore have that

tt(m+t)r C ^(m-l-l)r C Umr C bmr,

so, setting km bmr we see that (hm,km) have the desired properties.
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ProofofTheorem 10.1. We know by Proposition 10.2 that Zno converges to a

squeezing point of the Roller boundary. So by Lemma 6.8 we deduce that there
is some f 3<2f such that Zno converges to £.

If X X\ x • • • x Xn is reducible, the situation is different. In that case there is

no point t] -e dX such that the set Q(rj) is reduced to a singleton. Indeed, if t], e dr
Althen Q((rp ijn)) is a sector in the sphere Sn~1. A point in this sector can be

represented by a half-line generated by some vector (Aj,..., A„), where A,- > 0.

Theorem 10.6. Let V act on X Xj x • • x Xn non-elementarily, essentially, and

preserving each irreducible factor A7, Assume also that p has finite first moment.
Let Ai be the drift for the action of F on Aand let rjj be the limit of Zno in the

factor Xj.
Then almost surely the limit of Zno in X is the point of t]„)

corresponding to the vector (Ai,..., A„).

Proof. Let dt be the CAT(O) metric on the factor A7, We have

d'=

Note that the measure /z still has finite first moment for the action on each factor. Let

-<lP:
be the drift on X. Using [34], we get "sublinear tracking": almost surely, there exists

a geodesic ray (for the CAT(O) metric) gi in A7, such that

d(g(Xjn),ZnOi)
n

tends to 0.

Now consider the quadrant defined by the geodesic rays gi,..., gn. A point in
this quadrant is of the form (gi (t\),..., gn(tn)) with {t\ tn) (R+)". Let

git) (gt(Aif),..., gn(Xnt)).

Then we have that
n 1/2

d'igit),gis)) (j^diigiiXitfigiihs))2)
i 1

(±xH>-s)f
i 1

A|f — s|.
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In other words, g is a geodesic ray, travelled at speed A (J] A?). Its endpoint
is exactly the point of Q{rj\,..., rjn) corresponding to the vector (Ai,...,A„).
Furthermore we see easily that

]im
d\g(t),Zno)

o
«->•+oo n

It follows that Zno converges to the point of 3<Af corresponding to g-

10.2. Uniqueness of the stationary measure. We first note that, under our assumptions,

the visual boundary is a Polish space. Indeed the visual boundary is obtained

as an inductive limit of balls centered at a fixed origin o [11, II.8.5], A complete
metric can be described as follows: the distance between two fixed geodesic rays p
and p' starting from o is 8(p, p') 2~nd(p(n), p'(n)). This allows us to use

Corollary 2.6 to reduce the problem of uniqueness of the stationary measure on d<X
to the uniqueness of a T-equivariant measurable B Prob(3<Af).

Theorem 10.7. Assume that T is a group with a non-elementary, essential action on

an irreducible complex X. Then there is a unique stationary measure on 3<Af.

Theorem 10.7 then follows from Corollary 2.6 together with Lemma 10.9. To

this end, we will need:

Lemma 10.8. Let £_, £+ £ 3<A be distinct squeezing points. Then there is a map

Pf_>t+:3<*\

such that far every g £ T, we have g<Pf_,f+(£+) <Pg£_,gf+(g£)-

Proof. Fix distinct squeezing points £+ £ d<X. By Lemmas 6.8 and 6.10, there
is a bi-infinite decreasing sequence of pairwise strongly separated half-spaces such

that (Inez d<sn {£-} and f]neZ 3<s* {Ç+}. Let rj £ 3<A \ {£-,£+}. It
follows that there exists some n such that q £ 3<1v* (T 3<x-,;. Up to deleting finitely
many elements of the sequence, we may and shall assume that q is in 3<.v(* IT 3<.v_i.
Let us fix a base vertex o £ ,v(* n ,v_i fl â (Ç_, Ç+) n X and vertices xn £ ,v* fi i (T X
so that the f2-geodesics between o and xn converge to q.

Recall that one can associate to q £ 3<X a horofunction relative to the I2 metric,
which we denote by bf\ Our goal is to show that h(2) |,pç_ ,ç+)nv attains a minimum,
and the set of points on which this function is minimal is a bounded convex set. The

image (pç_,ç+ (q) is then defined to be the center of this set.

Let

w e n sic-i n <!(£-, £+) n x.
We claim that if D is the dimension of X then

^2)(Lt) ^ s/~D-\k\.
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Assume k > 0. Observing that o — m(yk, o, xn) we see:

bXn(yk) d(yic, xn) - d(o,xn) d(yk,o) ^ k.

Recalling the fact that J' ^ d ^ \[Dd' (where d and d' are the t1 and £2-metrics,

respectively) we deduce that b^(yk) \[D • k. Taking the limit as n -* oo we get
that

h<?Hyk) Z </D k > 0.

Observing that b^ (o) 0 this shows that the inverse image of (—oo, 0] by the
(2)function hv |j(ç_^+) is non-empty and contained in the bounded convex set

s* n s-i n J(Ç §•+) n x.

Hence it has a unique center.

Finally, the T-equivariance of these projections follows from the equivariance of
the horofunctions and the construction of the center.

Recall that Theorem 10.1 gives the existence of a measurable T-equivariant map

l±:B±^d<X.
Lemma 10.9. Assume that T is a group with a non-elementary, essential action on
an irreducible complex X. There is a unique T-equivariant map B+ —» Prob(9<A'),
which is the map a> h-> (<u).

Proof. Consider the £_ and f+-pushtorward of the measures on B- and B+ to 3<X.
We will call them u_ and v+, respectively. Recall that they are p, and /z-stationary,
respectively.

Let a>+ vM+ be some T-equivariant map from B+ to Prob(9<A). By
ergodicity, if vm+ f %, (<«+) on a positive measure set, then this set has full measure.

So assume that we have almost surely vw+ ^+(to+)- The function &>+ h*
f©+({t-t-(ûN-)}) is T-invariant and hence constant. If vw( ({£+(&)+)}) a > 0

then we can define v' v — av+. After renormalization this is a new stationary
probability measure such that ({£+ (&>+)}) 0. So we may and shall assume
that vM+ ({£+(<«+)}) 0 for almost every a>+ B+.

We claim next that vw+ ({£_(cu_)}) 0 for almost every (cu_,ru+) e B+ x B-.
Indeed, for a fixed m+, the measure vM+ has countably many atoms, so that for
y_-a.e. <x>_ G B_ we have that vw+ ({£_(<«_)}) 0. By Fubini it follows that

v<0+({£-(&>-)}) 0 almost surely.
Theorem 10.1 assures us that £+ and £_ are squeezing points almost surely.

Now, apply the projection from Lemma 10.8 to obtain for almost every (co-,co+)
a measurable map (pç_^+:d<X —> X (defined p(U+-everywhere). Hence we can

pushtorward the measure vm+ by <pf_,§+ to get a map B- x B+ —> Prob(A'). Now
Prob(A) has a T-invariant metric (for example the Prokhorov metric). Hence by
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Double Isometric Ergodicity we get that T fixes a probability measure on X. By
countability of X, this implies that there is a finite set in X which is T-invariant (the
set of points with maximal measure), contradicting the assumption that the action is

non-elementary.

11. Regular elements

Regular elements are hyperbolic elements with strong contracting properties. In the

irreducible case, they are exactly contracting isometries in the sense of [10], and their
existence is the main theorem of [14]. For products, Caprace and Sageev [14] show
that such elements exist provided the group is a lattice. In this section, we prove
that such elements always exist for non-elementary actions, and moreover have some

genericity property.
We first recall the definition of contracting and regular isometries.

Definition 11.1. • A geodesic line I is called contracting if there is C > 0 such that

any ball B disjoint from I projects to I to a set of diameter less than C.

• If X is irreducible, an element g G Aut(V) is said to be contracting if it is

hyperbolic and one of its axis is contracting.

• If X is a product, an element g G Aut(X) is said to be regular if it preserves each

factor and if it acts as a contracting element on each irreducible factor.

Our main tool in order to find regular elements is the following lemma of Caprace
and Sageev [14, Lemma 6.2]:

Lemma 11.2. Assume that g Aut(V) is such that g.h c h' for some pair of
strongly separated half-spaces h C h'. Then g is a contracting isometry.

Lemma 11.3. Assume that X is irreducible with a non-elementary and essential
T-action. Let Zn be a generic sequence for the random walk, 3X be the limit
of Zno, and s be a half-space containing £.

Then there exists an N and s2 C .Vi C s pairwise strongly separated such that

for every n > N

• either Zns C «2.

• or Zns D a2-

Proof. For notational simplicity, let kn Zns. Fix a vertex x G s that is adjacent to
the wall ofs, i.e. so that there is another vertex in .v* at distance 1 from x. Let (sm)m=>o

be an infinite descending chain of strongly separated half-spaces containing £, with
s so- For each m and n large enough we have Znx G sm. Hence kn D sm / 0.
Furthermore, since x is adjacent to the wall of s, we see that for n large enough
kn n sm / 0. By strong separation, if we fix m ^ 1, we have that kn c sm for any n

large enough.
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This means that we either have kn C sm or kn D s*t. If m ^ 2, this gives the

conclusion of the lemma.

In the first case, we say that Z„ is s-skewering, in the second case that it is

s-flipping. By Lemma 11.2, if Z„ is .v-skewering, then it is a contracting isometry.
In the following lemma, we use the stationary measure v for the random walk /x.

Lemma 11.4. For almost every co G £2, far every half-space s such that r](aj) G s,

we have:

lim inf — | {/: ^ n \ is s-skewering) | ^ u(.v*). (H-l)
« n

Proof. We begin by observing that if Zn gig2 • • • gn, then Z~x g~x gj-1,
where gi follows the law /x and all of them are independent.

Recall that by Corollary 7.3, there is a unique stationary measure on X. This
allows us to apply Corollary 2.7 of [7] and therefore, for every continuous function cp

on X, for every x, we have almost surely

1
"

lim v(<p). (*)
n-»+oo It —'

k= 1

If s is any half-space, define cps as the characteristic function of ,v*. Observe that
it is continuous on X, and that v(cps) u(.v). Therefore, for every half-space s, and

every vertex x X there exists a full measure set Qs,x C £2 such that for every
co e £2^ we have lim„^+00 £ J2k=i <P(Zklx) v(s)- Set D ^s,x, where
the intersection is taken over s G Sj and x e X, which is countable and as such £20

has full measure.
Now let £2' C £2 be the full measure set provided by Theorem 8.1, namely, such

that (Zn{m)o) converges to rj(co) for every co G £2'. Finally, let £2j £20 0 £2'. The

set £21 is an intersection of full measure subsets of £2, therefore it is again of full
measure.

Now, let co G £2i and Z„ Zn{co). Let s G Un(M). By Lemma 11.3, there

is an N such that for every n > N either Z„ is .v-skewering or .v-flipping. Fix k
with N < k ^ n. If Z^ is .v-flipping, then for x G s*, we have x G Z^.v (because
.v* C Zfc.v), hence Zf'x G s. It follows that cps(Zfx x) 0. Therefore

n

y: cps(Z^lx) ^ \{k =< n I Zfc is .v-skewering}| + N,
k=1

and Equation (11.1) follows.

Theorem 11.5. Let X he irreducible, and T act on X essentially and non-
elementarily. Then almost surely

lim —\{k^n\Zk is contracting}] 1.

n-*+oo n
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Proof. Fix a generic sequence (Z„) as provided by Lemma 11.4, with limit Zno rj.
Then since Z is irreducible and rj is regular, we have that [r]} p|m3.() sm, for some

descending chain (sm). It follows that X \ {rj} Umso-çm' an^ since (+) *s

ascending, we have that

supv(4) 1.
m

Now, Lemma 11.4 assures us that for every m

liminf — \{k ^ n \ Zk is contracting}| ^ v(s*
n n

for every m. Since this proportion is at most 1, the sequence is in fact convergent and

we get the result.

Remark 11.6. The proof above gives slightly more: namely, for every half-space s,
there is a positive measure set of (Z„) such that Z„ is .v-skewering with frequency at

least v(.v). Indeed, the probability that this occurs is at least v(s).

Theorem 11.7. Assume that the action of T is non-elementary, essential and
stabilizes each irreduciblefactor of X. Then almost surely

lim -|{k ^ n \ Z^ is regular}[ 1.
n—>+oo n

Proof Let X X\ x • • • x X^ be the decomposition of X into irreducible factors.

Applying Theorem 11.5 to the action of T on each factor, we find N such that
for n > N we have for every factor Z; of X, the set of k ^ n such that Z^ is

contracting on Z; is of cardinality at least n(\ — e). It follows that there are at least

n( 1 - de) elements Z^ which are contracting simultaneously on each factor.

In terms of the probability that a given element is regular, we deduce the following:

Corollary 11.8. Under the same assumptions as Theorem 11.7, we have

1 "
EP (Z/ç is regular) 1.

n
k=1

Proof. Let /: T —> {(), 1 j be the characteristic function of the set of regular elements.

By Theorem 11.7, we have ^ J2k=l fi^k) • almost surely.

Taking the expectation, we get

1 "
lim -X>(/(Z*)) 1,

«->-+00 n —
k=1

which is the desired result since E(/(Z^)) P(Z^ is regular).
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When the group does not stabilize each factor, the limit might be smaller, due to
the fact that there is a positive proportion of elements which do not stabilize each

factor, hence cannot be regular. However, we can say the following.

Corollary 11.9. We have almost surely

lim inf — \{k^n\Z/<: is regular }| > 0.
n->+oo n

Proof. Let F0 <l F be the finite index normal subgroup which stabilizes each factor.
Let (p(n) be the subsequences formed by indices such that Z(p(n-) belong to r0.
Then Zv(n) is a random walk on F0 of law /x0 (the first return probability), so that
Theorem 11.7 apply and proves that almost surely

lim —i—| {k =< n \ Zvrk) is regular} | 1.
n->+oo (p(n)

By Lemma 9.7, we know that tp{n)/n almost surely has a positive limit. The result
follows.
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