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Diophantine approximations for translation surfaces
and planar resonant sets

Luca Marchese, Rodrigo Trevifio and Steffen Weil

Abstract. We consider Teichmiiller geodesics in strata of translation surfaces. We prove lower
and upper bounds for the Hausdorff dimension of the set of parameters generating a geodesic
bounded in some compact part of the stratum. Then we compute the dimension of those
parameters generating geodesics that make excursions to infinity at a prescribed rate. Finally
we compute the dimension of the set of directions in a rational billiard having fast recurrence,
which corresponds to a dynamical version of a classical result of Jarnik and Besicovich. Our
main tool are planar resonant sets arising from a given translation surface, that is the countable
set of directions of its saddle connections or of its closed geodesics, filtered according to length.
In an abstract setting, and assuming specific metric properties on a general planar resonant
set, we prove a dichotomy for the Hausdorff measure of the set of directions which are well
approximable by directions in the resonant set, and we give an estimate on the dimension of
the set of badly approximable directions. Then we prove that the resonant sets arising from a
translation surface satisfy the required metric properties.

Mathematics Subject Classification (2010). 37D40, 11J06.

Keywords. Resonant sets, excursions of geodesics, Khinchin—Jarnik theorem, Jarnik inequality.

1. Introduction

In this paper we consider a translation surface X and we measure the distortion of
its flat geometry when we apply the Teichmiiller geodesic flow g, to the surface X in
a given direction 6. In § 1.1 we give estimates on the Hausdorff dimension of the
set of directions & for which the geometry has uniformly bounded distortion, which
is equivalent to saying that (g,rg - X);=¢ is contained in some compact subset of the
parameter space with prescribed size. In § 1.2 we consider directions 6 for which
the the flat geometry has unbounded distortion, that is (g;rg + X );~o has unbounded
excursions to the non compact part of the parameter space, and we state a dichotomy
for the Hausdorff measure of the set of directions for which the rate of excursions
is prescribed, generalizing some classical results of Jarnik, Besicovich and Khin
chin. It’s well known that translation surfaces are closely related to rational billiards,
thus in § 1.3 we consider the billiard flow generated by a given direction 6 on a
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rational polygon Q, and we compute the Hausdorff' dimension of the set of those 6
for which the recurrence rate of the billiard flow has a given value in (0, 1). The
value of the recurrence rate represents somehow a phase-space counterpart of the rate
of excursions in parameter space. All the dynamical properties described above are
consequences of specific diophantine conditions. In § 1.4 we describe the relevant
diophaﬁtine conditions in the abstract setting of planar resonant sets, then in § 1.5
we state results on translation surfaces which ensures that the abstract diophantine
conditions are satisfied on a given surface X .

A translation surface is a genus g closed surface X with a flat metric and a
finite set X of conical singularities py, ..., p,, the angle at each p; being an integer
multiple of 2. An equivalent definition of translation surface X is the datum (S, w),
where § is a compact Riemann surface and w is a holomorphic 1-form on S having a
zero at each p;. The relation k; + --- + k, = 2g — 2 holds, where k, . .., k, are the
orders of the zeroes of w. In particular the total multiplicity at conical singularities
of X is the positive integer

m:=2g—2+ #(2).

Any translation surface can be obtained as quotient space X = P/ ~ of a suitable
polygon P in the complex plane C via an equivalence relation ~ on the boundary dP.
More precisely, we assume that boundary 0P is the union of 2d > 4 segments which
come in pairs and are denoted ({1,¢7),...,(£4,¢);), and that there exist complex
numbers zy,...,z4 in C such that for any i = 1,...,d the boundary segments ¢;
and ¢} have the same direction and length of z;, and the opposite orientation induced
by the interior of P (that is any ; touches the interior of P from the opposite side
as 7). The relation ~ is defined on the boundary 9P identifying foranyi = 1,...,d
the sides {; et ¢ by a translation. This induces identifications of the vertices of P,
which correspond to conical singularities. The initial polygon P is not necessarily
connected, but we assume that this is true for the quotient space X. The form dz
on C projects to the holomorphic 1-form w of X. Any surface arising from this
construction is a translation surface, the simplest examples being flat tori, which all
arise from euclidian parallelograms identifying opposite sides.

A stratum K = J(ky,...,k,) is the set of translation surfaces X whose
corresponding holomorphic one-form w has r zeros with orders kq, ..., k,, where
ki+---+k, = 2g — 2. It is an affine orbifold with complex dimension 2g +r — 1,
where affine coordinates around any element X € J€ are given by the complex
numbers zq, ..., z4 introduced above, possibly modulo some linear equations with
coefficients in Q. Any stratum admits an action of SL(2, R), indeed for any translation
surface X = (S,w) and any element G € SL(2,R) a new translation surface
G - X = (G«S, G4w) is defined, where the 1-form G,w is the composition of w
with G, and G.S is the complex atlas for which G,w is holomorphic. If X is
represented as a polygon P/ ~ with identified sides then G - X corresponds to the
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affine image G - P of P with sides pasted according to the same identifications as
in P. Indeed affine maps preserve parallelism and ratios between lengths. The
stabilizer SL(X) of a translation surface X under this action is known as the Veech
group of X, which is always a discrete subgroup of SL(2, R). Those surfaces X such
that SL(X) is a lattice in SL(2, R) are called Veech surfaces.

Any G € SL(2, R) preserves the euclidian area form dx A dy = i/2dz Adz on
the plane; therefore we have Area(G - X ) = Area(X), where for X = (S, w) we set

Area(X) := %f dw AN dw.
X

It follows that SL(2, R) acts on the real sub-orbifold # () of J, defined as the set
of those translation surfaces X with Area(X) = 1. It is well-known that X is a
Veech surface if and only if its orbit M := SL(2,R) - X is closed in #(, and in
this case M is isometric to SL(2, R)/SL(X). Relevant subgroups actions are the
diagonal group g;, the group of rotations rg and the horocyclic flow ug, which are
given respectively by

(¢ 0. I B cosf) —siné
E-=No ) "=\ \o 1) "7 \sin@ cosh |

The action of the diagonal group g, is also known as Teichmiiller flow, and
corresponds to the geodesic flow for the Teichmiiller metric, and we refer to g; orbits
as Teichmiiller geodesics. We refer the reader to [17] and [38] for an exhaustive
introduction to translation surfaces and Teichmiiller dynamics.

1.1. Bounded geodesics in moduli space. We identify the complex plane with R2.
Any segment y of a geodesic for the flat metric of X has a development in the complex
plane, also said holonomy vector, denoted by Hol(y, X) € R? and defined by

Hol(y, X) := / w,
¥
where w is the holomorphic one form of X. Any such segment y is a geodesic segment
also on the surface G - X for any G € SL(2, R), and we denote by Hol(y, G - X) its
holonomy vector with respect to the surface G - X. By definition we have

Hol(y, G - X) = G (Hol(y, X)).

The length of y on the surface G - X is |[Hol(y, G - X)|, where |- | denotes the euclidian
metric on R2.

A saddle connection of X is a segment y of a geodesic for the flat metric
connecting two conical singularities p; and p; and not containing other conical
singularities in its interior. The systole Sys*(X) of X is the length |Hol(y, X)| of
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the shortest saddle connection y of X. According to the Mumford criterion, for any
fixed € > 0 the set of those X € #() such that Sys*(X) > e is a compact subset of
the stratum.

Fix a translation surface X. Any 6 € [—n/2, 7/2[ corresponds to a directions
on X, more precisely the direction which makes a positive angle 6 with the vertical.
The directions 6 € [—7/2, /2| giving rise to positive geodesics whose limit set is
contained in K are the elements of the set

Bad™(X, ¢) := {9 : im(")SySSC(gzr—f)X) = 6}'
1>

One can consider also the set of all bounded directions

Bad®"(X) := | ] Bad™(X,¢).

€>0

Although it is a set with zero Lebesgue measure, Kleinbock and Weiss showed
it to be thick, that is its intersection with any subinterval of [—x/2, /2| has full
Hausdorft dimension (see [24]). Later, Cheung, Chaika, and Masur [10] improved
this result by showing that Bad™"(X) is an absolute winning set for the absolute
Schmidt game (see [31]), which implies thickness, among other qualitative properties.
We also refer to the work of Hubert, Marchese and Ulcigrai [19], who studied the
Lagrange spectrum over the set of bounded directions. Theorem 1.1 below develops a
quantitative version of the qualitative result in [24], that is thickness. More precisely
it establishes non-trivial upper and lower bound for the Hausdorff dimension of
Bad®"(X, €) in terms of the parameter €. Note that via the Dani correspondence, in
the case of flat tori we obtain similar inequalities as in the classical work of Jarnik on
the set of badly approximable numbers (see [20]). Further Jarnik-type inequalities
are established by Weil in [36], which is the main source for the techniques used in
the proof of Theorem 1.1.

Fix a translation surface X with Area(X) = 1 and let J be its stratum. Recall
that we denote by m the total multiplicity at conical singularities of a translation
surface X. If X is a Veech surface, let M := SL(2,R) - X be its closed orbit under
the action of SL(2, R). For any subset £ C [—x/2, /2] let dim(FE) be its Hausdorff
dimension.

Theorem 1.1. There exist positive constants €g, ¢y, ¢ and 0 < B < 1, depending
only on the integer m, such that for any with 0 < € < € - Sys**(X)? we have

B 2
1 — € L€ < dim (Baddy"(X, 6)) <l-cy- .
Sys<(X)? " loge]

|[loge|
In particular the explicit form of B is

1

T Am_1

B



Vol. 93 (2018) Translation surfaces and planar resonant sets 229

Moreover, if X is a Veech surface, the same inequality holds with B = 1 and with
some €y which can be chosen uniformly on M.

It is natural to ask whether one can get f = 2 in the lower bound in Theorem 1.1,
at least for any Veech surface. We refer to § 1.6.1 for some comments on this question.

1.2. Unbounded geodesics in moduli space. In this paper we also consider geo-
desics having excursions to the non-compact part of strata at a prescribed rate. The
estimates that we prove follow from Theorem 1.7 below, which establishes a rather
general dichotomy for the size of the set of directions satisfying a given diophantine
condition. Unfortunately, while Theorem 1.7 admits a very general statement, its
dynamical consequences cannot be explicitly stated in full generality. We have first
a result on the generic behavior in 6, namely Theorem 1.2 below, which generalizes
a previous result of one of the authors (see [27]). Most of the ideas in the proof of
Theorem 1.2 were introduced in [9].

Theorem 1.2. Let X be any translation surface and let p: RT — R be a decreasing
monotone function.

(N 1f fooc @(t)dt converges ast — 00, then for almost any 6 we have

SC
T Sys*(g:re X) _

t=oo ol(t)

2) If fooo @(t)dt diverges ast — +o00, then for almost any 6 we have

S SC r X
lim inf DYS 876 2) (8179 X) =0

e V(i)

In particular, considering the one parameter family of functions @ () := r—(1+€)
and applying both parts of the Theorem, it follows that for almost every 6 we have

400

. —log Sys™(girg - X) 1
lim sup = —. (1.1)

t—00 log ¢ 2
Equation (1.1) above gives the asymptotic maximal size of —log Sys**(g;rg - X)
along the geodesic in the generic direction 6, and it is inspired by logarithmic laws
for geodesics obtained by D. Sullivan and H. Masur, respectively for the case of
non-compact hyperbolic manifolds (see [34]) and of the moduli space of Riemann
surfaces (see [30]). In [11] one can find details on the comparison between the result
in [30] and other analogue logarithmic laws measuring the degeneration of the flat
geometry of g,rg - X. Subsets of directions 6 having asymptotic rate for the maximal
excursion bigger than in Equation (1.1) have zero Lebesgue measure, but they can
be measured by general Hausdorff measures H/ via Theorem 1.7 and parts (3)
and (4) of Theorem 1.9 below, plus an elementary observation corresponding to
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Equation (1.9). In particular, for a fixed real number @ with 0 < @ < 1 consider the
subset of [—7/2, 7 /2[ defined by
—log Sys*(gsrg - X) —at 1

g = A0 I = —%.
x (@) im sup log1 3

Inspired by the classical Jarnik—Besicovich theorem on the dimension of the set of real
numbers with given diophantine exponent, we develop Theorem 1.3 below, which is
a version of Jarnik—Besicovich result for the geodesic flow in moduli space. Actually,
a natural dynamical behavior corresponding to Jarnik—Besicovich theorem would be
—log Sys*(g:rg - X) o

lim sup
t—>00 t

The finer asymptotic that we consider is an adaptation to the geodesic flow on the
moduli space of translation surfaces of estimates developed in § 3.1 of [5].

Theorem 1.3. Let X be any translation surface. For any a € (0, 1) we have

dim (Sx(a)) =1l—-o and Hl_“(SX((x)) = 4o00.

1.3. Recurrence in a rational billiard. Let Q be a rational polygon, that is a poly-
gon in the plane whose angles are rational multiples of r. The linear part of reflections
at the sides of Q generate a finite group of linear isometries of the plane, so that any
direction 6 belongs to a finite equivalence class [#], which is the orbit of 6 under the
action of reflections at sides of Q0. For any class of directions [#], the billiard flow $[9]
is well defined. A classical unfolding construction of the rational polygon Q defines
a translation surface X = X(Q), and for any class [f] on Q we have a well defined
directional flow ¢y on X . Fix a class [6)] of directions on the rational polygon Q. The
diophantine conditions developed in this paper have a relation with the recurrence
rate function wig): Q — [0, +o0], defined on points p € Q by

log (Rey(p. 1))
—logr

wip)(p) := lim inf

where for any r > 0 the quantity Rjg)(p,r) := inf{t > r; |¢E‘9](p) —pl <r}
denotes the return time of p at scale r. It is possible to see that wyg(p) is defined
for all those p whose billiard trajectory never ends in a corner of Q, more details
can be found in § 7.1. The function p — wg)(p) is obviously invariant under the
billiard flow ¢g). Therefore, when ¢pg) is uniquely ergodic, wgj(p) is constant for
almost any p € Q. By a theorem of Masur (see [28]), the Hausdorff dimension
A = A(Q) of the set of directions & on Q such that ¢ is not uniquely ergodic
satisfies 0 < A < 1/2. Fix r > 2 and define the set

1
1 fora.e. p € Qy.

SI =10 : ¢[9] is uniquely ergodiC and CU[B](p) =
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In a related setting (see [23]), D. H. Kim and S. Marmi prove that for almost
any interval exchange transformation T the almost everywhere constant value of
the recurrence rate function is equal to one. Theorem 1.4 below is a counterpart of
Theorem 1.3 for the dynamics of the billiard flow on a rational polygon. Closely
related results appear in [22].

Theorem 1.4. Let Q be a rational billiard and let 0 < A < 1/2 be the dimension of
the set of non uniquely ergodic directions on Q. Then for any Tt with2 <t < 2/A

we have
2

dim (S;) = =.

T

The same result obviously holds for linear flows ¢ on a translation surface X.

In [12], Y. Cheung, P. Hubert and H. Masur find polygons Q for which A = 0, so
that Theorem 1.4 applies for any 7 > 2.

1.4. Diophantine approximations for planar resonant sets. We consider
diophantine conditions in terms of approximations of a given direction in R? by the
directions of a countable set of vectors. Such approach is naturally formalized in
polar coordinates, via the notion of planar resonant set. We parametrize the set of
lines in R? passing through the origin by the angle 8 € [—m/2, w/2[ that they form
with the vertical. Intuitively a planar resonant set corresponds to a countable family
of vectors v € R2, and for a given direction 6 one considers those directions 6, of
vectors v in the countable family such that the distance |6 — 6, is small, compared to
the length |v| of v. Formal definitions are given below. Denote by B(#, r) the open
subinterval of [—m/2, 7 /2[ with length 2r centered at 6. For any measurable subset
E C [—m/2, /2] denote by | E| its Lebesgue measure.

A planar resonant set is the datum (R, 1), where R is a countable subset R C
[-7/2,7/2[ and I: R — R is a positive function, such that for any L > 0 the set
{0 € R;I1(0) < L} is finite. Given a real number K > 1, we often consider the
partition of &R into subsets

R(K,n):={0eR; K" <1(0) < K" forn > 1,
R(K,0):={0 € R;1(0) <1}
An approximation function is a decreasing function ¥: R4 — R,. The set of

directions in [—7 /2, 7 /2[ which are well approximable by elements in R with respect
to Y is
wR.y) =) |J BO.v(®)).
L>01(8)>L
Given € > 0, the set of points in [—m/2, 7w /2[ which are e-badly approximable with
respect to R is
2

Bad(R, €) := [% %[\ U 3(9’1(697)'

feR
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In the following we consider subintervals I C [—x/2, w/2[ and we refer to them
simply as intervals. We introduce the following metric properties for planar resonant
sets.

Definition 1.5. Let (R, /) be a planar resonant set.

QG. The set (R, ) has quadratic growth if there exists a constant M > 0 such that
for any R > 0 we have

#0c R:1(0) < Ry <M - R, (1.2)

1QG. The set (R, 1) has isotropic quadratic growth if there exists a constant M > 0
such that for any interval / and any R > 0 with R?|I| > 1 we have

MOelINR;IO)<RY<M-|I|-R>. (1.3)

U. The set (R, /) satisfies ubiquity, if for any K > 1 which is big enough there exist
c1 > 0,cy > 0and a > 0 with C"—l = ()(KZ) such that for any »n and any interval /
with
1] > 2
Kn
we have

’Iﬂ U B(Q,}%)'zcﬂll. (1.4)
[(@)<K"n

DIR. The set (R, ) satisfies the (e, U, t)-Dirichlet property for € > 0, U > 0 and
1 < t < 0 if there exist some Ly > 0 such that for any L > L, and any interval /
with 1| > 2U/L? we have

’1 n U (e %)

(<L

> 1)1 (1.5)

DEC. Fix 0 <€ < land 0 < v < 1 and set K := 1/e. The set (R,/) is
(e, T)-decaying if for any n > 1 and any interval / with

1 n—1 62
/l=— ad In|) |J) B(6.———)=0 (16
K= j=00eR(K,)) ( [(9)'10)
we have 5
2¢€
'Iﬂ U B(@,W) <zl (1.7)

feR(K,n)

Moreover there exists an interval / satisfying Condition (1.6) forn = 1.
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Remark 1.6. The notion of ubiquity has already been deployed in several other works,
starting from [4]. Here condition a/c; = o(K?) is a technical assumption adapted to
our simplified proof of Theorem 1.7 in the setting of planar resonant sets. In related
settings, the upper bound of the Hausdorff dimension of badly approximable sets is
proved with a property which is derived from some version of Dirichlet theorem, that
was first called Dirichlet property in [36]. Dirichlet property and Ubiquity are quite
similar, indeed for translation surfaces they both follow from Proposition 4.1. We
give two separate abstract definitions because ubiquity is a qualitative property, stated
in terms of constants which do not appear in Theorem 1.7 below, while the constants
in Dirichlet property also appear in the upper bound in Theorem 1.8. Finally, the
name for (e, )-Decaying was chosen because it states a property which is similar
to that of absolutely decaying measures, which were introduced in [25] and proved
to be a valuable concept for establishing lower bounds on Hausdorff-dimension of
badly approximable sets (see also § 3.2 and § 6.5 in [32]).

A dimension function is a continuous increasing function f: R — R such that
either f(r)/r is decreasing with lim,_.¢ f(r)/r = oo, like for example f(r) = r*
with 0 < s < 1, or f is the identity f(r) = r. For a fixed subset £ C [—n /2, 71/2[
and for p > 0, a p-cover of E is a countable collection {B;} of intervals B; with
length | B;| < p for each i such that £ C | J; B;. Such a cover exists for every p > 0.
For a dimension function f define

HJ(E) := ian f(1B:)),

where the infimum is taken over all p-covers of E. The Hausdor{f f -measure H” (E)
of E with respect to the dimension function f is defined by

H'(E) = lim H] (E) = sup H] (E).
p—>() p>()

For the dimension function f(r) = r* with 0 < s < 1, the measure H/ is the usual
s-dimensional Hausdorff measure H*, which coincides with the Lebesgue measure
of [-m/2, /2[ for s = 1. The Hausdorff dimension dim E of a set E is defined by

dim E := inf{s : H*(E) = 0} = sup{s : H*(E) = oo}.
In terms of the metric properties introduced in Definition 1.5 we establish the

following two results on diophantine approximations for planar resonant sets.

Theorem 1.7 (Abstract Khinchin—Jarnik, after [3]). Consider a planar resonant
set (R, 1) with quadratic growth, an approximation function  and a dimension
function f such that the function ] — Lf oy (l) forl > 0 is decreasing monotone.

(D) If 302, nf(¥(n)) < oo then we have H' (W(R, y)) = 0.
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(2) If Y02 nf(¥(n)) = oo and if moreover (R, 1) is ubiquitous and has isotropic
quadratic growth, then we have HY (W(R,y)) = H' ([-n/2,7/2[).
Theorem 1.8. Consider a planar resonant set (R, 1).

(1) If (R, 1) satisfies the (e, U, t)-Dirichlet property fore > 0,U > 0and1 <1 <0
then we have
|log(1 — 7)|

~ [log(e2/@8U))|’

(2) If (R, 1) is (€, T)-decaying with T < 1 — €3, we have

dim (Bad(RR,¢)) < 1

|log(1 — 7 — )]

dim (Bad(R, €)) > 1 — — o o]

Note. Condition T < 1 — €*3 is a technical assumption. Later on it will be trivially
satisfied since for us 7 = O(e?) for some B > 0.

1.5. Planar resonant sets of translation surfaces. Let X be a translation surface
with Area(X) = 1 and let m be the total multiplicity at conical singularities of X,
that is

m=2g -2+ ().

If y is a saddle connection of X, denote by 6, its direction. It is well known that
for a given direction € there exist at most 4g — 4 saddle connections y; such that
6,, = 0 for any i. For a direction & = 6,, of a saddle connection y let y™"(6) be
the saddle connection parallel to y with minimal length. Define the planar resonant
set R and the length function /*°: R* — R by

R := {0 = 0, ; y saddle connection of X}
10) := |y (6)).

We consider also closed geodesics o of X, and we denote 6, the direction of any
such o. Given any closed geodesic o, there exists a family of closed geodesics which
are parallel to o with the same length and the same orientation. A cylinder for X
is a connected open set C, foliated by such a family of parallel closed geodesics
and maximal with this property. By maximality, it follows that the boundary of
a cylinder C, around a closed geodesic o is union of saddle connections parallel
to 0. Any cylinder C;, C X defines a holonomy vector Hol(Cy) = [ w, which
is also denoted by Hol(o). We need to restrict to cylinders whose euclidian area is
bounded from below by a positive constant. Let 6 be a direction such that there a
closed geodesic o in direction 6, = 6 whose cylinder satisfies Area(Cy) > 1/m.
Such o is not unique. If {oy,...,0;} is the family of all parallel geodesics in
direction 6 with Area(Cy ) > 1/m, we denote by 0™ (6) the shortest element in the
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family {o1,...,0,}. Finally, we define the planar resonant set R®' and the length
function [¥: R — R by

. 1
R = {9 = 0y ; 0 closed geodesic for X with Area(Cy) > —}
m
[9Y(9) := |c™™@(6)].

In this second case, in order to state results in the sharpest form, let us define the
quantity

Sys(X) = min{{?'(0) ; § € RV},

In the following, when there is not risk of ambiguity, we will denote both /5 and [Y!
simply by /.

For the sets R* and K%' we will obtain the diophantine condition stated in
Theorem 1.7 and Theorem 1.8, provided that the required assumptions are satisfied,
which is ensured by Theorem 1.9 below. In order to obtain all the consequences of
the three statements combined, consider a direction # € K and let 0 = o™"(0),
so that 8, = 6, then let Cy; be the corresponding cylinder. The boundary of Cy; is
union of saddle connections y in direction 6, with |y| < |o|. Therefore we have
R C R, moreover if 1: RY — R denotes the inclusion, then for any § € R
we have

I (u(®)) < I19'(8). (1.8)
It follows that for any approximation function ¥ and any € > 0 we have
W(RD ) C W(R*, %) and Bad(R*, €) C Bad(RY €). (1.9)

The quadratic growth for resonant sets arising from translation surfaces is
established by a well-known result of Masur (see [29]). In a refined version by
Eskin and Masur, namely Theorem 5.4 in [15], it is proved that for any translation
surface X with Area(X) = 1 there exists a constant M > 1 such that for any L > 1
we have

{0 € RN IV (6,) < L} < O, € R*;1%(0,) < L} <M
L2 8

Moreover, given any compact subset X C J(, the constant M = M(X) can be
chosen uniformly forall X € K. In this paper, using previous results of Vorobets [35],
Chaika [9] and Minsky—Weiss [32], we prove further properties of holonomy resonant
sets.
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Theorem 1.9. Let X be a translation surface with Area(X) = 1 and let m be the

total multiplicity at conical singularities of X .

(1) There are positive constants M > 1, ro > 0 and 0 < B < 1, depending
only on m, such that for any € with 0 < ¢ < min{ro, Sys*(X)} the set R* is
(e, t)-decaying witht = M - B In particular we have

N 1
C3m—1

B

Moreover, if X is a Veech surface, the same result holds with B = 1 and ry
depending only on the closed orbit M = SL(2,R) - X of X.

(2) For any € with 0 < € < 1 the set R satisfies (U, €, t)-Dirichlet property in
terms of the constants

» 12 7 me?
= Aan. T ==,
m2e? /48

(3) The set R has isotropic quadratic growth in terms of the constant

M :=m(@m+1).

(4) The set RY satisfies ubiquity. In particular, for any

K > ‘\/5 . 224m+l
~ SysY(X) '

Equation (1.4) is satisfied with constants

1 K
==, C=—,
LT T omSysei(X)

a := +/3K.

Remark 1.10. Point (4) in Theorem 1.9 and Equation (1.8) implies directly that R*
satisfies ubiquity with the same constants as R%'. On the other hand, according
to Lemma B.1 in Appendix § B of this paper, if X is a surface with SL(2, R)-
orbit dense in # (I, then the set R*(X) does not have isotropic quadratic growth.
Moreover, with constructions appearing in § 5.3 in [1], it is possible to see that for
such a surface isotropic quadratic growth fails also for the set of directions 6, of
all closed geodesics o, i.e. directions of closed geodesics around any cylinder Cy,
without any positive lower bound on Area(C,). After the preprint of this paper was
available online, closely related results on counting the number of saddle connections
in angular sectors where obtained in [14].

Theorem 5.3 and Theorem 6.1 respectively in § 5 and in § 6 give explicit statements
of some consequences of Theorem 1.9 above and of the abstract Theorems 1.7 and 1.8.
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1.6. Further comments and questions.

1.6.1. Sharpest lower bound in Theorem 1.1. Let T? := R?/Z? be the standard
torus and Bad(¢) be the set of those @ € R such that g|lga — p| > € for all but
finitely many p/g, one can see that

Bad® (T2, v/2 - ¢) = Bad(e).

In [20], Jarnik gave the first estimates on the dimension of Bad(¢). In [26], Kurzweil
proves that for any € > 0 small enough, we have

1 —2-62 < dim (Bad(¢)) < 1 — ! €2,
100 4

In [18], Hensley gives the asymptotic for dim (Bad(e)) up to the term of order €*.
In our case, at least for Veech surfaces, it would be interesting to determine if the
lower bound in Theorem 1.1 can be improved to get B = 2, as it happens for the
very special surface X = T?2. Nevertheless the gap between the exponent in lower
and upper bound does not seem to be removable with our techniques. Recently,
in [33], Simmons computed the first order asymptotic of the dimension of uniformly
badly approximable matrices, showing that in this case there is no gap between the
exponent in lower and upper bound. This was not evident in previous estimates
by Weil in [36] and by Broderick and Kleinbock in [8], even in the extremal case
of minimal dimension, where matrices (or vectors, in case of [36]) coincide with
real numbers. While the techniques used in [8] and in [36] have a counterpart for
translation surfaces, namely quantitative non-divergence and Schmidt games, it is not
evident that the same is true for the ideas introduced in [33].

1.6.2. Limits of the general approach. Theorem 1.2 and Theorem 1.3 are con-
sequences of the metric properties for the resonant sets R* and R stated in
Theorem 1.9 and of the general Theorem 1.7. Although these results can be applied to
any pair of approximation function ¥ and dimension function f such that f oy is not
increasing, a dynamical estimate for the excursions of — log Sys*(g,rg - X) requires
an explicit choice of ¢ and /. This is because a comparison between Sys*(g;rg - X)
and a given function of time ¥ () passes through a comparison between the length
of a saddle connection y on the surface X and the instant ¢ = ¢(0, y) when such y
becomes short on the deformed surface g;ry - X. See § 6.

1.6.3. Unique ergodicity and diophantine type. Let A := dim(NUE(X)) be the
dimension of the set of directions 6 on the surface X such that the flow ¢y is
not uniquely ergodic. For t > 2 let W(z) := W(RY, ¥r) \ Ups, WRS, o),
where ¥, denotes the approximation function ¥;(r) := r*. It is easy to see that
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dim('W(r)) = 2/7. In order to remove the assumption 7 < 2/A in Theorem 1.4
(see § 7.3) we ask if we have the strict inequality

2
dim ('W(r) N NUE(X)) < =?
T
For = = 2 the answer is affirmative and corresponds to the well known fact that
dim (NUE(X)) < 1/2 < 1 = dim (W(2)).

1.7. Contents of this paper. In § 2 we prove Theorem 1.7. The convergent case
follows from a very simple covering argument, which we give in § 2.2. In divergent
case, Lebesgue and general Hausdorff measure H/ are considered separately. The
first case in treated in § 2.3 using Lebesgue density points. The second case is
more involved: some general techniques are resumed in § 2.4, proofs are completed
in § 2.5.

In § 3 we prove Theorem 1.8. In § 3.1 we prove the lower bound using Decaying
property and the general tools from § 2.4. In § 3.2 we prove the upper bound via the
construction of a sequence of coverings based on Dirichlet property.

In § 4 we prove Theorem 1.9. The main tools are a Dirichlet theorem for translation
surfaces, namely Proposition 4.1, and a version of Margulis’ non-divergence of
horocycles adapted to translation surfaces, namely Theorem 4.10, which is due to
Minsky—Weiss.

In § 5 we prove Theorem 1.1. As an intermediate step, we state and prove a
version of the same result for Bad(:R*, €), that is Theorem 5.3.

In § 6 we prove Theorem 1.2 and Theorem 1.3. As an intermediate step we
state and prove a version of the abstract Theorem 1.7 for the sets W(R*, ¥) and
W(RY, yr), namely Theorem 6.1.

In § 7 we prove Theorem 1.4.

In Appendix § A we give the proof of Corollary 4.11, which is a sharper version
of Theorem 4.10 for the specific case of Veech surfaces.

In Appendix § B we prove that isotropic quadratic growth of number of saddle
connections fails for a generic surface X.
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2. Hausdorff measure of W(R, ¥): proof of Theorem 1.7

In this section we prove Theorem 1.7. Some of the constructions developed here, that
is the content of § 2.4, will be used also in the next section in the proof of Theorem 1.8.
Statement (1) in Theorem 1.7, that is the case when the series Y o, nf (¥ (n))
converges, is proved in § 2.2. Statement (2), that is when the series Y o | nf (¥ (n))
diverges, requires a more specific analysis. The case of Lebesgue measure is rather
simple and is treated in § 2.3 using Lebesgue density points. The case of Hausdorft
measure is more involved: general tools are developed in § 2.4, then the proof is
completed in § 2.5. In all this section f:R; — Ry is a dimension function and
v:R4 — R is apositive function such that / +— [f oy (/) is decreasing monotone.
Recall that for us intervals are always considered as subintervals I C [—-n/2, 7/2].

2.1. Separation properties for planar resonant sets. In this subsection we develop
separation properties for a given planar resonant set (R, /) which satisfies ubiquity
and has isotropic quadratic growth as in Definition 1.5, that is such that there exist
a constant M > 1, and for any K > 1 big enough constants ¢c; = c;(K) > 0,
c2 = c2(K) > 0anda = a(K) > 0 with a/c; = o(K?) such that for any integer n
and any interval / we have

n
a . C2
l]ﬂU U B(Q,ﬁ)‘Zcﬂﬂ prov1dedthat|[|>ﬁ,
J=10eR(K,j)

1
HoeRNI;IO) <K"y<M-|I|-K* provided that || > T

Observe that since a/c; = o(K?) then, modulo increasing K > 1, we can choose
a constant » = b(K) with b > a such that

C1 M

m > X2 (2.1)

For example, one can choose a = b. We use different names to stress that the two
constants a and b play a different role. Once K > 1 and a = a(K), ¢, = ¢c2(K) are
fixed, observe that there exists ng = n¢(K) such that for any n > ny we have

4a
K" > —. 2.2)
Cc2
For any n and any interval / introduce the set of directions
a
R, T) = {9 e R(K,n); 3(9, Kzﬂ) e 1}. (2.3)

For a fixed ¢ > 0 we say that a subset T C [—n/2,7/2[ is e-separated if
|6 — 6’| > € for any pair of different points 6 and 8’ of 7. Such a set is necessarily
finite.
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Proposition 2.1. Let R be a planar resonant set satisfying ubiquity and isotropic
quadratic growth in terms of the constants above. Assume that Equation (2.1) is
satisfied. Assume that n is big enough so that Equation (2.2) is satisfied. Then for
any interval I such that

C2

|7 >2- ,
Kn

there exists a %-separated subset T (n,I) C R(n, I') with cardinality

Pl cl 2n
I P — Y
7 (0, 1) = g1

Proof. Let I’ C I be the subinterval of maximal size such that we have the
implication

B(G,%)ml’#@ = B(B,%) Cl.

The definition of 1’ implies |I’| > |I| — 4a - K=2". Since |I| > 2¢, - K" then
Equation (2.2) implies |/| > 8a - K~2" and thus

In particular we have |1'| > ¢, - K™", so that we can apply ubiquity to /’. Consider

the set

a /
ﬁ) NI # @}.
We show that U(n,I’) contains a hK 2"-separated subset U*P(n,I’) with
cardinality at least ¢ - |[/|K?"/4(a + b). Fix N € N and suppose that 61, ..., 0x
are bK ~2"_separated points of U(n, I’) and that N is maximal with such property.

It follows that for any 6 € U(n, I’) there exists some j with 1 < j < N such that
|0 — 6] < hK—2". Ubiquity of R implies the claim observing that

9 3(9,%) nr

feU(n,I’)

Un, 1) := {9 e R:1(0) < K"; 3(9

a+b
KZn

a1

<ci|l’] <
> <c |l

<2N

Moreover, since U(n, [") C I, then isotropic quadratic growth implies
H{H € U(n, 1’) 5 1(9) < K”_l} < M|[|K2(n—1)'

Set
Tn,I):={0 € UPMn,I1,; G 1(6) < K"}.

We have T(n,1) C R(n,I) and T (n,I) is hK~2"-separated by construction.
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Moreover the estimates above and Condition (2.1) imply

{7 (n, 1) = fUP(n, 1) —#4{0 € U(n, 1) ; 1(A) < K" 1}

ELMKZH—M-|]|K2(”_1)
4(a + b)
C1 2n C1 2n
=———) - |I|K" > ——— - || K“". ]
(4(a+b) KZ) K™ = s 1

Recall that a/c; = o(K?). Modulo taking K bigger, and arguing as for
Equation (2.1), assume that we have
C1 3IM
>
16(a +bh) K?

strictly. Then consider a constant § > 0 small enough compared to » in order to

satisfy the condition
C1 6 3IM

_— > — + :
16(@a+bh) — b K2
Observe that the condition above implies

(2.4)

C1
16(a + b)

and since ¢; < 1 then we must have also § < 1.

2
b

Corollary 2.2. Consider n € N which satisfies Equation (2.2) and an interval [
such that |I| > 2cp - K™™. Let J := va=1 1; be the union of N subintervals I; of 1
such that |d| < 8|1 and N < M |I|K*"~V. Then the b/k2n-separated set T (n, I)
in Proposition 2.1 contains at least (c1 - |1|/16(a + b)) K*" points 0 such that

JﬂB(Q,sz—n) — 9.

Proof. Setp := bK 2" and observe that any subinterval /; contains at most | I; |/ p+1
points which are p-separated, so that the union d contains at most |{|/p + N points
which are p-separated. Then the p-neighborhood of 4 contains at most

J 5 3M

LNV (

p
points which are p-separated. The corollary follows observing that Proposition 2.1
and Condition (2.4) imply

. 2n
b +F)|” K

817 (n, 1) —#4{6 € T(n,I); B(6, K"y N d # O}
C1 ) 3IM
=

-k =

e —— —_— I K,
8a+bh) b K2 — 16(a + b) 11K -
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2.2. Proof of convergent case in Theorem 1.7. The proof follows from a simple
covering argument, that we give below for the sake of completeness.

Fixe > 0and p > 0. Since ¥(/) — Oand/ > [f oyr(/) is decreasing monotone
for I — oo, for any N big enough we obtain a p-covering of W(R, ¥) by taking the

union -
U U BE.vE™).

The summability of

is equivalent to the summability of

>R F(W(K™)),
n=1

thus modulo increasing N one also has

YK f(Y(K") <e.
n=N

Hence
HY(W(R,¥)) < 2,

and since € is arbitrarily small we get H/ (W(R, ¥)) = 0.

2.3. Proof of divergent case in Theorem 1.7 for Lebesgue measure. We closely
follow the argument of [7], pages 7 and 8. In the proof, an interval [/ is fixed once and
for all, around some Lebesgue density point. It is possible to see that in such situation
the argument only uses ubiquity and quadratic growth for the resonant set R, but not
isotropic quadratic growth (see [7] for details). Our proof assumes isotropic quadratic
growth in order to stay in the setting developed in § 2.1. Isotropic quadratic growth
will be strictly necessary in the case of Hausdorfl measure, where the construction
of some Cantor set will require to consider intervals at smaller and smaller scale.
Let R be a planar resonant set satisfying ubiquity and isotropic quadratic growth.
Let M, K, a, c¢; and ¢, be constants as in Definition 1.5. Asin § 2.1, increase K if
necessary and introduce constants b and & such that Equation (2.4) is satisfied.
Observe that if /(l) < y([) for any [ > 0 then we have W (R, v') C W(R, V).
Hence it is enough to prove the statement for an approximating sequence satisfying

b
¥(l) = min {I/I(Kn ﬁ} for K"1 <[ < K"
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Fix an interval /. Let N be an integer such thatany n > N satisfies Equation (2.2)
and moreover we have also |/| > 2c, - K", so that Proposition 2.1 and Corollary 2.2
can be applied. Then fix any m > N and, recalling the sets R(n, [) defined in
Equation (2.3), consider the set

J(N, m) —mU | B(6.v(k™).

n=N 6€R(n,I)

Lemma 2.3. There exists m > N such that |d(N,m)| > 6|I|.

Proof. Fix m > N + 1 and set d := d(N,m — 1), which is the union of at most
M|IK 2(m=1) gubintervals of /, according to isotropic quadratic growth of R. If
|d| > 8|1| then we are done. If |J| < §|7| then Corollary 2.2 implies that R(m, )
contains at least (cy - |I]/16(a + b)) K*>™ points & which are bK ~>™-separated and
such that B(6,bK2™)) N4 = @. This implies B(#, ¢ (K™) N4 = @, since
Y (K™) < bK—2™_ It follows that

(N, m)| = [4(N,m —1)| + |11 K™y (K™).

16(a +b)

The lemma follows from the divergence assumption of Y K2™y (K™). 1

The divergent case in Theorem 1.7 for Lebesgue measure follows observing that,
according to the lemma above we have i Uney+1 4V, m)| > §|/| for any N big
enough, and thus

N U swv.m

NeNn=N+1

(W(R,y)NI| = > §|1].

The estimate above holds for any small interval 7, therefore the complement of
W (R, v) has no density points, that is W (R, ¥) has full measure.

2.4. Massdistribution x s on the Cantor Set K. We consider a dimension function
with f(r)/r — oo for r — 0. Given a Cantor set K C [—x/2, n/2[ we describe a
classical construction of a probability measure . ¢ supported on K which is somehow
natural with respect to the dimension function f. For convenience of notation we
write simply w instead of u .

For any positive integer n we define a family K (n) of subintervals of [-7 /2, 7 /2|
which are disjoint in their interior. The nth level of the Cantor set is given by

K := | | B.

BeX (n)
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The families K (n) are chosen so that K(n) C K(n — 1) for any n > 1, then the
Cantor set is defined by K = ()=, K(n). For any B € JK (1) we set

/(1B])
>wrexy f(IB])

For any n > 1, any By € K(n — 1) call K(n, By) the subfamily of those balls
B € K (n) with B C By, then for any B € K (n, By) set

£(181)
B) =
SR S— (772}

The construction of the measure p on K is completed by the following lemma, which
corresponds to Proposition 1.7 in [16].

u(B) =

p(Bo).

Lemma 2.4. The function u:\J, e K(n) — Ry extends to a Borel probability
measure supported on K setting

W(E) = w(E NK) = inf ) u(B),
B

where E is any Borel subset of R and the inf is taken over all coverings of E with
balls B in | J,cn K (n).

The following lemma gives a classical method to obtain lower bounds for H/ of
a set K. A version for the Hausdorff measures H*® corresponding to the dimension
function fg(x) = x* with 0 < s < 1 can be found in § 4.2 in [16].

Lemma 2.5. Let u be a probability measure supported on a subset K of R. Suppose
that there are constants n > 0 and po > 0 such that

pn(B) < @ (2.5)

for any ball with radius p < py. Then we have H' (E) > n - w(E) for any subset E
of K.

Proof. For any p-cover {B;} of E with p < po we have

piB) = n(U i) = s <7 2o s (181, .

Remark 2.6. Fix n > 1 and an interval By € K (n — 1), where By := [—n/2, /2]
for n = 1. Observe that any subinterval B € K (By, n) satisfies Condition (2.5) if
and only if

> f(1B']) > nu(Bo). (2.6)

B’eX(n,Bo)
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The following lemma follows by an easy computation, which is left to the reader,
and gives a criterion to get Condition (2.5) for the intervals in |, cp K (1).

Lemma 2.7. Let By be any interval and K be a finite family of subintervals B C By
which are pairwise disjoint. Fix constants 0 < § < 1 and C > 0. Assume that we
have

> 1Bl > 8|By|. 2.7)

BeX

and moreover that for any B € K we have also

f(B) ¢
1Bl 8[Bo|’

Then we have Y gy f(I1B) > C.

2.5. Proof of divergent case in Theorem 1.7 for Hausdorfl measure. We basically
follow [3]. Consider an approximation function ¥ such that

oo

D K f (Y (K™) = oo,

n=1

Let ({R,[) be a planar resonant set satisfying ubiquity and isotropic quadratic
growth, in terms of the constants M, K, a, c; and ¢, introduced in Definition 1.5.
Fix constants b > 0 and § > 0 as in § 2.1 and modulo increasing K assume that
Condition (2.4) is satisfied, so that Proposition 2.1 and Corollary 2.2 can be applied.
In order to simplify the notation, set

C = ot
T 16(a+ b))

Finally, recall from § 2.1 that for any subinterval By C [—n/2, /2|, Equation (2.3)
defines R (/, By) as the set of those 8 € R(K, ) such that

B(0, %) C Bo.
Proposition 2.8 (Local construction of measure p). Fix a subinterval By C
[—m/2, /2] and a constant C > 0.

There exist positive integers m(Bg) and ( By) and a finite family K (By) of disjoint
subintervals B C Bg of the form B = B(G, W(Kl)) for some m(By) <1 < I(By)
and some 0 € R(l, By) which are pairwise disjoint and such that

> f(1B]) > C. (2.8)

BGJC(B())
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Moreover, there exists an universal constant A > 1 not depending on By such that
Jfor any subinterval I C By, denoting X (By, 1) the family of those balls B € K (By)
with B N I # @, we have

3 f(|B|)<A% S /(18). 29)

BeX (Bg,I) Be X (Bg)

Proof. We give first a sketch of the proof. The first step in the proof is to define the
integer m(By). Once m(By) is defined, for | > m(By) we consider families X ( By, /)
made of disjoint intervals B of the form B = B(0, W(K[)) for 0 € R([, By), so that
the sum in Condition (2.8) takes the form

)

j=m(By)+1 BeX(By,j)
The Lebesgue measure of such families of intervals is big enough if we have

l

2 > |B| = 8| Bol.

Jj=m(By)+1 BeXK(By,J)

If the last condition is satisfied we set /(By) := [ and Condition (2.8) follows
from Lemma 2.7. Otherwise Corollary 2.2 tells us that there exists an extra family
K (B, + 1) containing at least ¢|Bo| K>¢*1 intervals which are disjoint from all
the previous ones. Adding this (/ + 1)th term the sum in Condition (2.8) increases
by

> S(IBl) = | Byl - K2+ Dy (KT,

Be X (By,l+1)

The latter is the (/ + 1)th term of a divergent series, thus Condition (2.8) is eventually
satisfied. Then we define /(By) as the last term in the finite sum. The second part of
the statement will follow easily. We now start the formal proof of the Proposition.

Definition of m(By). In order to apply Proposition 2.1 and Corollary 2.2, fix
m = m(By) such that for any [ > m(By) Condition (2.2) is satisfied and moreover

we have
2- Ca

K
Moreover recall that ¥ (K') — 0 for I — +oo and that f(r)/r — oo for r — 0.

Therefore, modulo increasing m(By) we can assume also that for any / > m(By) and
any interval of the form B = B(6, v (K")) with 8 € R(l, By) we have

r(8) _ c
B~ 8Bl

| Bo| >
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Definition of (By). The family K (By) is defined as union of subfamilies K ( By, /)
inductively defined for/ = m + 1,...,[(Byg). The integer [(By) is defined as the last
step of the construction, when the required properties of K (By) are satisfied. The
inductive procedure is described below.

Initial step. According to Proposition 2.1 there exists a subset
T(Bo,m + 1) C fR(m + 1, B()),

which is bK 20"+ 1 _gseparated and has cardinality (7 (B, m+1)) = 2c|Bo| K2™ 2.
Define K (Bo, m + 1) as the family of balls B(@, v (K™*1)) for & € T(By,m + 1)
and set

K(Bo.m+1):= | | B.
BeX(Bg,m+1)

Inductive step. Assume inductively that for / > m + 1 the families
K(Bo,m+1),...,K(By,!)

are defined, where forany j =m +1,...,[ any B € K (By, j) is an interval of the
form B = B(8, ¥ (K")) for some 6 € R(I, By), and assume inductively also that all
the intervals in Ui"=m+l K (By, j) are disjoint. Then set

/
K(Bo.1):= | | | | B.

j=m+1 BeX(Bo,j)

Since intervals in K (By, [) are balls centered at points 6 € U3=m+1 R(j, Bo), then
by isotropic quadratic growth these intervals are at most M |By| K 2

(1) If the family Ui —m+1 K (Bo, ) satisfies Condition (2.7) then we set [(By) := [
and

/
K (Bo) := | ) K(Bo. ).
j=m+1

Lemma 2.7 implies that Condition (2.8) is satisfied too, and the first part of the
proposition is proved.

(2) If Condition (2.7) is not satisfied, observe that K(By,/) is a union of at
most M |By|K?! disjoint intervals with [K(By,!)| < §|Bo|. Then according to
Corollary 2.2 there exists a hK ~2(+ 1 _separated subset 7 (By, [ + 1) of R(I + 1, By)
with cardinality

#(T (Bo,! + 1)) > c|Bo| K*¢*V

such that for any 6 € 7 (By,! + 1) we have

B(6, KUY By \ K(Bo.1).
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Then define K (B, [ + 1) as the family of balls B(6, v (K'*1)) for& € T(Boy,l + 1)

and observe that Ui'ilm+1 K (By, j) is a family of disjoint balls.

The inductive procedure eventually stops. Repeat the analysis in the inductive step
replacing / by / + 1. Eventually at least one of the following two conditions is
satisfied.

(1) The family Ui‘=m+1 K (By, j) eventually satisfies Condition (2.7) and thus also
Condition (2.8), as in point (1) of the inductive step. The construction of K (By) is
therefore complete.

(2) Otherwise the family Uﬂ-zm 11 K (Bo, j) eventually satisfies directly Condi-
tion (2.8). Indeed, reasoning as in point (2) of the inductive step, we add an
extra subfamily K (By,! + 1). Since each K (By, j) contains at least c|By| K%/
subintervals of size ¥ (K7), and since all the intervals in all the families X (B, j)
are mutually disjoint, we have

l )
Yoo D S(UBD =clBol- Y K f(Y(K)),

j=m+1 BeX(Bgy,l) Jj=m+1

and Condition (2.8) follows from the divergence of > oo | K" f(¥(K™)).

In both cases we obtain a family K (By) satisfying Equation (2.8). We define /(By)
as the first / > m + 1 such that this is true. The first part of the Proposition is proved.

Second part of the statement. In order to finish the proof, fix any subinterval / C B,.
Since (7 (Bo, 1)) > c|Bo|K? for any integer | with m(By) < [ < [(By), then we
have

S(Bo,):= Y f(IBI) = cf (w(K")) - |Bo| - K*.

BeX (Bo.l)

On the other hand, the points € in 7 (B, [) are hK ~2! -separated and thus, denoting
K (By, I,1) the set of those balls B € K (By,[) with B N I # @, we have

SU =3 f(IBI) < 2/ (w(KD) 111 K.

BeX(Bg,l,l)

Equation (2.9) follows with A := (hc)™! observing that

1(Bo)
Y r(Bl)y= D SUD
BeX(Bgy,I) l=m(Bp)+1
< 5o Bl > (o,l)—— Zf|B| O

I=m(Bg)+1 BGJC(B ))
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2.5.1. Construction of the Cantor set K with probability measure u. Fix any
n > 0. Recall the notation of § 2.4, where for any n we consider a family X (n) of
disjoint subintervals of [—m /2, 7 /2[, which defines the nth level K (n) of a Cantor
set K, so that K(n + 1) C K(n) for any n and that K = (2, K(n). The inductive
construction of the levels K (n) of K is given below.

Firstlevel. Set By := [-n/2,7/2[and C := 7. Let K(1) := | |peg (1) B, where
K1) :=K(Bo = [-n/2,7/2[,C = n)

is the family of disjoint interval corresponding to the interval By = [—7/2, /2]
and to the constant C = 7 which is constructed in Proposition 2.8. Observe that
any interval B € K (1) satisfies Condition (2.5), according to Equation (2.8) and
Equation (2.6).

General level. suppose inductively that the levels K(1),...,K(n — 1) are defined,
or equivalently the families K (1),..., K (n — 1). Fix any By € K(n — 1), where
By = B(0,¥(K™)) for some m > n and some 6 € R(K,m). Set C := nu(By).
Let

K (n, By) := K (Bo, C = ni(By))

be the family of disjoint intervals provided by Proposition 2.8 corresponding to the
interval By € K (n—1) and to the constant C = nu(By). According to Equation (2.8)
and Equation (2.6), any interval B € K (n, By) satisfies Condition (2.5). Finally
define the nth level and family of intervals by

X(n) = ) K(Bo.n),

BoeK(n—1)

Kn) := | | | | B

BoeX(n—1) BeXK(Bg,n)

Observe that for any n, the intervals in K (n) are pairwise disjoint and any
B € X(n) is of the form B = B(6, ¥/ (K")) for some / > n and some 6 € R(K, ).
In particular we have

Kcﬂ(u | B Gw(K))CW(R,W).

I>n BeR(K,])

Moreover, for any # any interval B € K (n) satisfies Condition (2.5), that is

f(1B1)
—

p(B) <
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2.5.2. End of the proof. For any n, any B € K (n) and any subinterval / C B,
denote by K (n + 1, I') the set of those balls B’ € K (n + 1, B) suchthat B'N 1 # @.
Define

po:=min{|t —¢'| ;t € Be K(1);:t' € B € X(1); B # B'},

which is positive since K(1) is a finite union of disjoint intervals. Let A be the
constant appearing in Equation (2.9) in Proposition 2.8.

Lemma 2.9. For any interval with |I| < py we have
A
w1 < 27010,

Proof. By definition of pg, if |/| < pg then there exists n such that / intersects at
most one B € K (n). Moreover we can assume that / C B, since u does not give
positive measure to subsets E with £ N K(n) = @. We have

ZB’EJC(!H-I I) f(

.U«(I)SE p(B)

)
rexm+1,8) . (1B'])
)

A AL
Mat® = A"

where the first inequality follows from to the definition of pu (see Lemma 2.4),
the second follows from Equation (2.9) in Proposition 2.8, the third holds because
f(r)/r is decreasing monotone (for increasing r) and the fourth because any interval
B € |, en K (n) satisfies Condition (2.5). O

(B) < nf(lll)

According to Lemma 2.5 we have H/ (K) > Z. For any n > 0 we can define a
Cantorset K = K, with K C W(R, ¥) which satisfies the estimate above. Therefore
we have

H” (W(R,V¥)) = +o0.

The divergent case of Theorem 1.7 for Hausdorfl measure is proved. This completes
the proof of Theorem 1.7.

3. Hausdorff dimension of Bad(R, €): proof of Theorem 1.8

In this section we prove Theorem 1.8. For any real number s with 0 < s < 1,
consider the function f;: R4 — R defined by f;(x) = x*. The lower bound for
the Hausdorff dimension of Bad(R, €) is proved in § 3.1. The upper bound is proved
in § 3.2.



Vol. 93 (2018) Translation surfaces and planar resonant sets 251

3.1. Proof of lower bound. Fix constants ¢ > 0 and ¢ > 0 with ¢ < 1 and
7 < 1—€2, and set

Let (R,]) be a planar resonant set, and assume that it is (e, r)-decaying. For
convenience of notation, for any » € N and any § > 0 set

§
AK.n,8) = | ) B(6. ).
geg(’n)( Z(G)K)

According to Definition 1.5, the (e, 7)-decaying assumption on (R, /) means that for
any interval / and any integer n > 1 satisfying Condition (1.6), that is

1 n—1
1= 45, and In A j.e)=0
j=1

the estimate in Equation (1.7) is satisfied too, that is
|1 N A(K,n,2¢%)| < T|1,

and moreover there exists an interval [ satisfying Condition (1.6) forn = 1.

3.1.1. Construction of a probability measure on a Cantor set. We apply the
constructions of § 2.4. Let [y be an interval satisfying Condition (1.6) forn = 1.
Such interval exist by assumption in the definition of (e, t)-decaying resonant set.
We set K (1) := {ly}, then for any n > 1 we define inductively a family X (n) of
intervals /; mutually disjoint in their interior and satisfying Condition (1.6). Assume
that the first n families K (1), ..., K (n) are defined and consider any interval / in
the family X (n), recalling in particular that |[/| = K~2". Let [K?] be the integer
part of K2. Consider a family (1i)i=1,..[x2) of subintervals [; C I, all of length
|I;] = |I|€? for any i and any two of them disjoint in their interior. Such family
of subintervals covers I modulo a subset of measure at most |/ |e2. Define the
sub-family K (n + 1|1) of (1;);—1,. k2 by

Km+1I):=1{Li;1<i <[K’land I; N A(K,n,€*) = 0}, (3.1)
then define the family K (n + 1) by
Kan+1):= ) K@ +11D).
TeX(n)

Define a Cantor set by K = ﬂf; ~ K(n), where any level is defined by K(n) :=
Ulex(n) I, so that K(n + 1) C K(n) for any n. For any 6 € R(K,n) we have
K"~ < [(#) < K", therefore, recalling that ¢ = 1/K, we have

3 2

5(017) < 501
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Hence

€3

, 1(9)2) = Bad(R, %) N Iy,

o0
Ko\ | JAK.ne) o\ 3(9
n=1 feRr

Finally, as in § 2.4, a Borel probability measure u is defined and supported on K. We
recall that for the intervals in the construction above such measure is defined setting
w(lp) := 1 and, assuming that p(/) is defined for any 7 in K (n), setting

fs(14:])
1,‘ =
#(l l) Zl_,~e.7€(n+1,1) fs(“j|

for any /; € K(n + 1|I). Actually, other than for /¢, we will define p(7) only
for intervals / in K(n) with n > N, where N is a positive integer given by
Proposition 3.1 below. The estimate on the lower bound in Theorem 1.8 follows
from a lower bound for dim(IK), which follows itself from the next Proposition.

)M(|1|) (3.2)

Proposition 3.1. For any n > 1 and any interval 1 € X(n) satisfying
Condition (1.6), the family K (n + 1|1) defined in Equation (3.1) has cardinality

8K (n +1|1) > (1 — 7 — €2) K2,

In particular, whenever
|log(1 — 7 — €2)]

s <1
2| log €|

(3.3)

foranyn > 1 and any I € K (n) we have

P AAENAUE (34)

IieXn+1|1)

Finally, there exists N > 2 such that for any s as above, for any n > N and any
interval I € K (n) Equation (2.5) is satisfied with n = 1, that is

w(1) = £(1171)-

Proof. Observe that every subinterval /; of I has length €?|I| = 2@+ and
any interval in A(K,n,€?) has length at least 2¢2**+1_ Therefore any /; such
that 7; N A(K,n,€?) # @ must be contained in A(K,n,2¢2). Since R is an
(e, T)-decaying resonant set and by assumption / satisfies Condition (1.6), we have

(I_TJUC(YHLIU))I”S L Ii""'l[;_zl

K2
IiNA(K ,n,e2)#0
7]

K2

< [ INAK, 1,29+ = < (z + )|
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and hence 1K (n + 1|I) > (1 — t — €2)K?2. According to this last estimate,
Equation (3.4) follows directly from Condition (3.3) with a simple computation,
recalling that f;(]/|) = |7|* and observing that

(L) =a-1 —eZ)KZ('Lz')S = (1—71—€) VI,

K
LieX(n+1|I)

Finally, fix s satisfying Condition (3.3) and observe that such condition is
equivalent to (1 — 7 — €2) K275 > 1. Therefore there exists N > 2 such that

(1— 7 — N1 g2N-D0-9) 5 b

[ol*
We proved yet that the family J((N) contains at least (1 — v — 2)V 1 K2(N-1)
intervals I; C Iy, each of size |I;| = |Io| K2V ~1 = K—2N hence
> L = 8|Io| where § := (1 —7— )N
L eX(N)

According to our choice of N, for any /; € K (N) we have
SULD (el YT ! _ o)

7] K2(-1) T (I—t =N L[ §|Lo|

Let p be the mass distribution defined by Equation (3.2). Equation (2.6) and
Lemma 2.7 imply p(I;) < f5(|1;]), thatis Equation (2.5) is satisfied by any interval /;
in K (N). We prove by induction that the same is true for any n > N, and this will
complete the proof of the proposition. Consider any » > N and any interval / in the
family KX (n), and assume that (/) < fs(|/|). Forany I; € X (n + 1, I') we have

fs(11:1)
;) =
M(l l) Zl,-eJC(nH,I)ff(l[ji)
- Fs(11:])
B ZIjEJC(n+1,I)fS(|1j|)

where the equality corresponds to the definition of w, the first inequality corresponds
to the inductive assumption and the last inequality follows from Condition (3.4). [l

n(11)

Ss(11) < £5(111),

3.1.2. End of the proof. Here we finish the proof of the lower bound in Theorem 1.8.
Consider s satisfying Condition (3.3). According to Proposition 3.1, Equation (2.5)
is satisfied with n = 1 for any » > N and any interval / € K (n), where N is the
integer in the last part of the Proposition. We will deduce here that Equation (2.5) is
satisfied for any interval J with length |J| < K2V with

1
2K2s'

n =
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Consider any such interval J with J NK # @, thatis J NK(n) # @ foranyn > N.
Let m > N be the unique integer such that K—2"+1 < |J| < K~2"_ Since
|J| < K—2™, then there are at most two intervals /1 and I in the family X (m) such
that J N 1; #£ @fori = 1,2. We have (/) < pu(Iy) + u(l2), because u does not
charge sets disjoint to K (). Therefore

p(J) < pu(h) + p(lz) < f(1L1) + f5(112])

2K2s fs(171)

= g =< 2KPL(T) == =

where the second inequality follows from the last part of Proposition 3.1. According to
Lemma 2.5 the last inequality implies H* (KK) > n for any s satistying Condition (3.3),
therefore
|log(1 — 7 — €2)|
2| log(€)|

The lower bound in Theorem 1.8 follows recalling that K C Bad(R,e”?) by
replacing € by €2 in the last estimate.

dim(K) > 1 —

3.2. Proof of upper bound. Fix constants €, U, 7 with0 <e < 1,0 <7 <1 and
U > 1 and let (R, ) be a resonant set satisfying (e, U, t)-Dirichlet property. Set

4U
K = 6—2.

Up to choosing a slightly bigger U > 0, assume that K € N. Recall from
Definition 1.5 that (e, U, t)-Dirichlet property for (R,/) means that there exists
some Ly > 0 such that for any L > Lg and any interval / C [—n/2, /2] with
|I| > 2U/L? Equation (1.5) is satisfied, that is we have

0 U 8(05)] =

1(8)<L

3.2.1. A sequence of coverings. In order to prove the upper bound in Theorem 1.8,
we fix some positive integer N and define a sequence of coverings (€ (n)),>n for
Bad(R, €) satisfying the properties below.

(1) Forany n > N we have

Bad(R, ¢) C U I.
I€€(n)

(2) Any interval / in €(n) has length |/| = & - K™".

(3) The covering € (n) contains at most (1 — )"~ K" intervals.
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The upper bound follows from the construction of such sequence of coverings,
indeed we have

H*(Bad(R, €)) = lim H (Bad(e)) < liminf € (n) - (%)S

where € (n) denotes the number of intervals in the covering €(n). According to
property (3) above we have

TN sy 1=N/n_ gr1—s\1
F) —-]Tsl}ll’glolgf((l—f) "KT)

Therefore H*(Bad(R, €)) < +oo whenever

log(l—7) |log(1 — 7)]
log(K) ~ log(4U/€?)"

s s n—N pn
H*(Bad(R, €)) Slknlgéf(l—r) K (

1-1)- K" <les>1+

3.2.2. End of the proof. Here we give the definition of the coverings € (n) satisfying
the properties (1), (2) and (3) as above. For any n € N let L, > 0 be the real number
satisfying the relation

T g2

K" 202
Consider the parameter L in the definition of Dirichlet property, then let N be the

positive integer such that L, > Lg for any n > N. Observe that with this choice
of L,, and recalling that K = 4U /€2, we have

r 22U
g1 12

For n = N subdivide the interval [—x/2,7/2[ into KV intervals of length
7 - K~V and define €(N) as the family of all these intervals. Such cover obviously
satisfies the properties (1), (2) and (3) above. Consider n > N and assume that the
families € (i) are defined fori = N,...,n — 1. Fix any interval / in €(n — 1) of
length |/| = 7/ K™, Subdivide 7 into K intervals I, ..., Ix mutually disjoint in
their interior and all of equal length |/;| = |I|/K for any i. Define K (n|/) as the
family of those intervals /; which are disjoint to all intervals B(6, €?/21(6)?) with
[(0) < Ly, that is

xon =dr:nnl 1 B(6tY—g
o= 1in | (6,575 ) =9}

1(@)<Ly

Then set

€)= | ) K@lD.

I€€(n—1)
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Proposition 3.2. For any interval I in the cover €(n — 1) the family X (n|l) has
cardinality
gKn|l) < (1—-1)K.
Moreover,
Bad(R.e) N1 C () I
iI; eX(n|l)
Proof. Consider any 6 € R with /(f) < L,. The second claim follows observing

that for every interval /; in K (n|I') we have

62

K" = 200)2

Hence, every I; intersecting some interval B(8,¢€2/21(6)?) with § € R and
[(8) < Ly is contained in B(0, €2/1(0)?). Therefore K (n|I) is a covering of the set

€2
B(le):=1\ |J 3(9,1(—9)_2)

l@)<Ln

|t|_

and it is evident that / N Bad(R, €) C B(/, €). Moreover, / satisfies the assumption
in the definition of Dirichlet Property for L = L,, indeed we have
b4 2U

[]| = K"_l — L—%

Therefore Dirichlet property for (R, ) implies

BK@IDY R
(1—7)-u|—|l| NIE

I;eX(n|I)

n(J B( 21(9)2)‘ > 1|1,

1@)<L,
showing that K (n|I) < (1 — 7)K and finishing the proof. O

Property (1) holds for € (n) because it holds for € (n — 1) by inductive assumption
and moreover according to the second part of Proposition 3.2 we have

Bad(R.¢) C | J 7 NBad(R.¢) C | J Un=Ur
I€e€, I€€, | I;eX(n|lI) I€€(n)

Property (2) holds for € (n) because it holds for €(n — 1) by inductive assumption
and moreover for any / € €(n — 1) and any I; € K(n|l) we have |I;| = |I|/K.
Property (3) holds for € (n) because it holds for €(n — 1) by inductive assumption
and moreover, according to the first part of Proposition 3.2, we have

fem) = fKm|) <femn—1)-(1-1)K
I1€€(n—1)
<=1 ¥gr-l.(l—-k=0-0)" Yk~

The upper bound in Theorem 1.8 is proved.
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4. Planar resonant sets of a translation surface: proof of Theorem 1.9

Fix a translation surface X in some stratum J¢ and let X be the set of its conical
singularities pi,..., pr. Let m be the sum of the orders at all conical singularities,
that is

m:=2g -2+ §(%).

In this section we consider the resonant sets R and R defined in § 1.5 and we
prove Theorem 1.9. Statements (1) and (2) in the Theorem concern the set R*.
Statement (1) corresponds to Propositions 4.8 and 4.9, Statement (2) corresponds to
Proposition 4.2. Statements (3) and (4) in the Theorem concern the set R and they
correspond respectively to Proposition 4.4 and to Proposition 4.5.

4.1. Upper bound for systole and shortest cylinder. Most of the constants appear-
ing in the metric properties in Theorem 1.9 are expressed in terms of the positive
integer m, which depends only on the stratum J of the translation surface X . It will
be useful to introduce the following constants

2
Sg i= V2 and Ty := 224m.

Vm/3

For us a flat triangulation of a translation surface X is a triangulation of X whose
vertices are the conical points in 3, whose edges are saddle connections and whose
triangles do not contain other points of X. The number v, ¢ and ¢ respectively of
vertices, edges and triangles in such triangulation are topological invariants, and are
given by v = {(¥), e = 3m and t = 2m (see [21]). In [6] it is proved that for any
stratum J¢ the surface X for which Sys*“(X) is maximal admits a flat triangulation
whose triangles are all equilateral triangles with side’s length Sys**(Xy). It follows
that for any X in # we have

Sys*(X) < Sys*(Xo) = So.

Moreover, in Theorem 1.3 in [35] it is proved that any surface in # has closed
geodesic o with length |o| < Ty and whose cylinder C, satisfies Area(Cy) > 1/m.
Therefore for any X in Jf we have

Sys¥(X) < Tp.

Finally, the constant S, has a second geometrical interpretation, related to
Theorem 6.3 in [32]. Indeed 3m is the maximal number of saddle connections
Y1, ---,Y3m on asurface X which are mutually disjoint in their interior, because such
a set of saddle connections necessarily gives a flat triangulation of X. Therefore,
So is also the smallest bound such that any saddle connection yy, ..., y3, in a flat
triangulation of X has length |y;| < Sy forany i = 1,...,3m. Equivalently, on a
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translation surface X there are at most 3m — 1 saddle connections which are mutually
disjoint in their interior and all strictly shorter than Sy. This motivates the form of the
constant B appearing in Theorem 6.3 in [32], which is the same as in Proposition 4.8
and is given by
1
b= 3m—1

On the other hand, when X is a Veech surface, we can find a bound ry > 0 depending
only on the orbit SL(2,R) - X such that we never have two non-parallel saddle
connections shorter than ro (see Lemma A.1). This explains heuristically why for
Veech surfaces we have the better version of decaying, namely Proposition 4.9,
where 8 = 1.

4.2. Dirichlet theorem. According to classical Dirichlet’s theorem, for any real
number « and for any Q > 1 there exists a rational number p/q with ¢ < Q such
that

We develop a version of Dirichlet’s theorem for the resonant sets R and R, In
particular, for R we use a nontrivial result due to Vorobets, namely Theorem 1.3
in [35].

Proposition 4.1. Let X be any translation surface and 6 be any direction on X .

282
(1) For any L> SyT(.(;() there exists 0, € R* with 1(0,) < L such that
2853 8 1
19—9y|5f0:‘/_. .
16)L w3 16,)L
iy
(2) Forany L > —L— there exists 085 € RV with 1(0,) < L such that
Sys(X)
iy
0 — 05| < V2T :
1(60)L

Proof. In order to prove the first statement, set

, L V2o
ol -

=— > a/2,
So — Sys*(X) —

There is a saddle connection y on the surface X whose length on the surface g,rg X
satisfies
|HOI()/, gtrGX)I = SO-
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Let 6, be the direction of such y on the surface X and let |y| be its length on X. We
have

[(By) < |y| = [Hol(y, rg X)| < e'[Hol(y, giroX)| < e'So = L.

Set (H, V) := Hol(y, g:rg X). We have obviously | H| < |Hol(y, g;,rg X)| < Sp and
thus, since L > \/ES(% /Sys*(X) by assumption, we get

H2e™2t < S_& & S_gf 2z Sys*(X)?
— 2t — |2 — 0 '

On the other hand
H?¢ > 4 Ve = [Hol(y, roX)|* = [Hol(y, X)|* = Sys*(X).

The last two estimates imply V2e? > HZe¢~?! and therefore |V |e! > |y|/+/2 >
1(8,)/~/2, so that we get finally

H _ 28 _ V25
Ve2t " 10! 1(6y)L

60— 06, | <|tan(0 — 6,)| =

The second statement follows with the same argument. Replace Sy by T, and set
e’ := L/Ty. Recall that, according to Vorobets Theorem 1.3 in [35], any translation
surface in the same stratum as X has a closed geodesic o with length |o| < Tj and a
corresponding cylinder C, with Area(C,) > 1/m. Thus let o be such geodesic for
the surface g;rg - X and repeat the same argument as above replacing y by o. L

4.3. Dirichlet property. Statement (2)in Theorem 1.9 follows from Proposition 4.2
below.

Proposition 4.2. For any € > 0 the resonant set (R*°, 1) satisfies (€, U, t)-Dirichlet
property with

U 12 J me?
= an = —
m?e? EV7T
- Sa . : 2U
that is for any L. > ————— and any interval I with |I| > — we have
Syss(X) IL*
6,
N BlO,—— || = |I]|.
10 U B(o.55)| =1

I(B)<L

Proof. Fix L asinthe statement, and forany 6,, € R* define the rescaling factor r(6,)
by

2
0.) = ﬂ]‘_
") = e vz
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Observe that r(6,) > me?/+/12 for any 6, with [(f,) < L, and moreover we can
have r(6),) > 1 when /(6,) is much smaller than L. Let / be an interval as in the
statement. According to Proposition 4.1 we have

V3
reUn(n )
16 <L ml(6,)L
Let R*(L, I') be the set of directions 6, € R* with 6, € [ and [(6,) < L, then

define
V3
U8 (o o)

0, eR<(L,I)

v(l,L):=

If v(1, L) > |I|/2 then we have

P”UBbmw»

'”UB(”m®V)

[(By)<L 0, eRsc(L,I)
r(0y)
=|rnlJB (ey,——y—)'
8y eR(L,T) )L
2 2
—=v(l, L) = —|I|.
f‘ f‘

Otherwise, if v(/, L) < |I|/2, there must be some 6, € R* with [(6,) < L and
6, & I such that
3 Il
INAB Qy» ___\/__ u
ml(6,)L 4

We finish the proof showing that such 6, must have rescaling factor r(6,) > 1.
Observe first that since 6, ¢ I, we must have /3 - (mI(0,)L)~! > |I|/4. Moreover
we have |/| > 2U/L? by assumption, thus it follows

V3 é€miL U ée2m?L
r(6y) = . B g e Ll
ml(6y) V1243 2L 6

4.4. Isotropic quadratic growth. Statement (3) in Theorem 1.9 follows from Prop-
osition 4.4 below.

Lemma 4.3. Let o be a closed geodesics in X and let Cy be the corresponding
cylinder. For any other closed geodesic o’ intersecting Cy we have

Area(Cy)

lo|-1o’]

IQO —Byr| >
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Proof. The width of C, is Area(Cy)/|o|. Since o and ¢’ are not parallel, than ¢’ is
not contained in C,, therefore

Area(C,
67| - | sin (85 — Bp7)| > Area(Co)
o]
and the lemma follows since |90 — O > | sin (6’0 — 9(,/)|. O

Proposition 4.4. For any subinterval I C [—n /2,7 /2] and any L. > O such that
L?|I| > 1 we have

#0 € I N RYNX, L)} < m(m + 1)|I|L>.

Proof. Consider 8; = 6(o1) and 8; = 8(01) in RY'(X, L) be any two directions
of closed geodesics o and o3, and let C; and C; be the corresponding cylinders, so
that in particular Area(C;) > 1/m fori = 1,2. Assume that #; and 6, belong to the
same interval J of length |J| < 1/(mL?). According to Lemma 4.3 the cylinders
C; and C; are disjoint, indeed the directions 6; and 6, satisfy

1 1
61 — 02| < |J]| < ml.2 = ml(01)1(62)

Since Area(X) = 1 then X contains at most m disjoint cylinders with area greater
that 1/m, therefore any interval J with length |J| < 1/(mL?) contains at most m
directions 8; in RY(X, L). The Proposition follows covering I with

N :=[mL>I|]+1 <mL?|I|+ 1< (m+ 1)L*|I|

intervals Jq, ..., Jy with length |J;| < 1/(mL?) forany j =1,...,N. 0O

4.5. Ubiquity. Statement (4) in Theorem 1.9 follows from Proposition 4.5 below.
Fix a translation surface X and fix a positive real number K > 1 such that

\/iTg‘ \/5 p4m+1
> — - 2 .
~ Sys¥(X)  Sys¥(X)

According to such assumption, for any positive integer n > 1 we can apply the second
statement in Proposition 4.1 for those 8, € R such that /(6,) < K™. Observe also
that, since Sys®¥'(X) < Ty for any X, we have

K > 2Ty = v/2-22'" > m+/48.

This second property will be used in the end of the proof of Proposition 4.5 below.
The proposition is due to J. Chaika, and we follow the argument from [9].
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Proposition 4.5 (Chaika). Let X be a translation surface and consider
V212
> . 8 e e
~ SysY(X)
For any positive integer n > 1 and any interval I C [—n/2, n/2[ such that
1

1| > 4.1
1= 2mSysY(X)Kn~1 hd)
we have /3
3K |1]
‘1 nl|JB (9(,, — )’ = o (4.2)

[(65)<K"

The dependence on K of the radius of the balls in Equation (4.2) can be reduced
to the simplified expression V3 K21 We keep the redundant K in the numerator
in order make clear the relation with Point (4) in Theorem 1.9. The assumption
in Equation (4.1) is not explicitly stated in Chaika’s statement of Ubiquity, namely
Proposition 2 in [9]. It seems to us that the same assumption is implicitly used in the
proof of Corollary 3 (at line 3) in [9]. Anyhow a lower bound on the length |/ | of the
interval in Proposition 4.5 is obviously necessary, indeed the Proposition fails for any
interval / which is contained in the complement of [ ) 10,)<kn B(0s, V3K/K?™).

4.5.1. Preliminary lemmas.
Lemma 4.6. Fixr > 0and 0 < € < 1. Let I be any interval in [—m /2,7 /2[ with
|| >r. Forany 0 € [—n/2, /2] we have

[I N B(@,e-r)| <2-|1NBWO,r).
Proof. 1f 6 € I then we have |1 N B(@,e-r)| <2 -rand |I N B(B,r)| = r, thus
the statement follows. If 6 ¢ I then r > |I N B(6,r)| thus, since 0 < € < 1, we

have
e(r — |1 N BO,r)) <r—|InNB@,r),

which is equivalent to

|IﬂB(9,e-r)|:e-r—(l‘—|lﬂB(9,r)|) <e-|[INB@O,r). 0

1
Lemma 4.7. Consider € with ) < € < m a positive integer n and a subinterval
I C |—n/2,7/2[ such that
]
1] = : -
2mSysY(X) K"

€
l’ & (9’ z(eo)K")

l(05)<K™"

We have

<2m?e-|I|.
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Proof. Fix any direction 8y € I. Fix n. Consider #; and 6, in R be any two
directions of closed geodesics o7 and o, with [(6;) < K" fori = 1,2, and let
C1 and C, be the corresponding cylinders, so that in particular Area(C;) > 1/m
fori = 1,2. Assume that we have

1
O — 6| < ————— fori =1,2.
160 — 6i 2mK"1(6) or i
According to Lemma 4.3 the cylinders C; and C, are disjoint, indeed the directions

6, and 60, satisfy
1

mK" min{l(6),1(62)}
There exist at most m disjoint cylinders with area greater that 1/m, therefore there
exist at most m directions @; of closed geodesics o; such that

|61 — 6,] <

1
— 6| < ————= fori=1,...,m.
|60 — ;] < Im K6 ori m

We get

2.

[(0s)<K"

m-|I|.

1
INB e
(9’ 2ml(90)K”)

According to our assumption we have 2me < 1 and |I| > 1/(2ml(6,)K") for
any 6, € RY, thus the statement follows from the previous estimate and from
Lemma 4.6, observing that

‘m g B(Q’T(cf)_;)ﬁ)

[(0s)<K™"

< 2,

[(65)<K"

€
n B(Q’ l(ea)K")‘

1
< 2me - Z IﬂB(é),—)
e 2ml(6,) K™
<2m?e-|I|. ]

4.5.2. Proof of Proposition 4.5. Fix any n > 1. Recall that according to the second
statement in Proposition 4.1 we have

V3
reUn (L)
1O, <K ml(65)K"

3 1
Moreover, recalling that K > m+/48 and applying Lemma 4.7 withe := i < —

mK 2m
we get
"]
I Blo,, —°
e ( mKﬂl(eo))

1(05)<Kn—!

?

ma/12

<2m%e|l| = T|1|.
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Therefore, recalling that R%'(K, n) is the set of those 8, € RV such that K"~ 1 <
[(65) < K", we have

o oy s )

" 1(0s)<K" 05 RV (K ,n)

ZmUB( K;/lg(e))‘

05 ERYY(K,n)

'”UB( Kf(e))‘

1(85)<Kn—1

mViZ 1l
> 11 - "2 =

v

1] -

Proposition 4.5 is proved.

4.6. Decaying. Statement (1) in Theorem 1.9 corresponds to Proposition 4.8 and
Proposition 4.9 below, whose proof is the subject of this section. Let X be a
translation surface with Area(X) = 1. Recall that we set

1

P=gm 1

Proposition 4.8. There are positive constants M = M(m) and ro = ro(m)
depending only on m such that for any € with 0 < € < min{ro, Sys*(X)} the
resonant set R is (€, t)-decaying with

T=M-€P,

In other words, setting K := 1/e, the following holds. For any n > 1 and any
interval I satisfying Condition (1.6), that is

1 2
= 5 and mU |J B (y,m):ﬂ
Jj=0 by eR%(K,])

we have

<M-€éf-|I|.

P2
IN U B (ay,——l(gy)_ Kn)

0, eRs(K,n)

Moreover there exist at least (1 — MePYK? intervals I; C [—n/2, /2] which are
mutually disjoint in their interior and satisfy Condition (1.6) forn = 1.
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4.6.1. Decaying for a Veech surface.

Proposition 4.9. Let X be a Veech surface. Then the result in Proposition 4.8

holds with B = 1 and with ry that can be chosen uniformly on the closed orbit
M :=SL(2,R)- X of X.

The proof of Proposition 4.9 follows exactly the same lines as Proposition 4.8.
The only difference is that the Minsky—Weiss estimate in Theorem 4.10 below will
be replaced by the stronger one in Corollary 4.11, which says that when X is a Veech
surface the same estimate holds as in Theorem 4.10 with 8 = 1. For completeness,
in § A we give a proof of Corollary 4.11, adapting the argument of [32]. All other
details of the proof of Proposition 4.9 will be omitted.

4.6.2. Non-divergence of horocycle. We report the statement of Theorem 6.3 in [32],
which is the main tool in the proof of Decaying property. Fix a stratum J¢ and let
C > 1,8 > 0and py > 0 be the constants explicated above.

Theorem 4.10 (Minsky—Weiss). For any translation surface X € J the following
holds. Assume J is an interval and p is a real number with 0 < p < Sg such that for
any saddle connection y we have

sup ]Hol(y, U_g - X)| = .

aeJ

Then for any p’ with 0 < p’ < p we have

B
e e ;Sys*uy-X)<p}|=C- (p_) -]
p
Corollary 4.11. Let X be a Veech surface and let M := SL(2,R) - X be its closed
orbit. There exist constants C > 0 depending only on the stratum of X and ro > 0
depending only on M such that the following holds. Assume that J is an interval and

0 < p < rg is a positive real number such that for any saddle connection y we have

sup |Hol(y,u_u -X)‘ > p.

aeJ

Then for any p’ with 0 < p’ < p we have
o
fae s Sytua- Xy <) <210
i)

4.6.3. Notation and basic facts for the horocycle. For any saddle connection y on
the translation surface X we write Hol(y, X)) = (Re(y, X), Im(y, X)). When there is
no ambiguity on the surface X we simply write (Re(y ), Im(y)). Moreover we denote

the slope of y by
._ Re(y)

T ()
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The action of u, does not change the vertical part of the planar development of any
geodesic segment, that is Im(y, uy - X) = Im(y, X) for any geodesic segment y on X .
According to the previous remark, we write

Hol(y, u—y - X) = (Re(y, a), Im(y)).

Recall that for any « and ¢ we have g;uy = u,2:,8;. Recall also that € with
0 < € < Sys*(X) is fixed, and that we set K = 1/¢. In this paragraph, in order to
simplify the notation, for any real number A we set

K* 0
Gk = g/llngK = 0 K_;L .

Lemma 4.12. Let y be a saddle connection for the surface X and let o € R. Then
for any A > 0 we have

IIm(y)I)Z_

Hol(y. G - u_ - X)| = \/<Kﬂ-um<y>|—|a—ay|>2+( L

Proof. Let (x,y) := Hol(y,u—y - X) and observe that

ly| = [Im(y, u_q - X)| = |Im(y)|
lx| = [Re(y, u—q - X)| = |y] - o —ay|.

(IgL KO“*) ' (;)

In order to avoid ambiguity, in this section we denote by J C R intervals in the
horocycle variable u,, whereas we denote by [ intervals in the circle variable, which
is parametrized by rg. The next lemma gives an estimate on the distortion in the
change of variable. The proof is immediate and thus omitted.

The lemma follows from
2

‘Ho](y,G,{-u_a-X)iz— = K*xP+ Ky O

Lemma 4.13. For any a1, a3 in [—1, 1] we have

oty — aa|

> < |arctan(a;) — arctan(az)| < oy — ora].

4.6.4. Conditional probability along horocycle segments. Recall that we fix a
translation surface X and € > 0 such that € < Sys*(X), and that we set K = 1/e.

Lemma 4.14. There exist at least (1 — MeP) - K2 intervals J; C [—1,1] such that
any two of them are disjoint in their interior and any of them satisfies

2
1=z 50 U 8 (e in) =0

[Im(y)|<1

where M > 0 is a constant depending only on the stratum of X .
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Proof. The first step in the proof is to show that for any saddle connection y for the
surface X we have

1
su Hol(y, Gy - u—g - X)| > —.
_15351 | (v, Gy o )l NG

For any saddle connection y we have either |[Im(y)| > Sys*(X)/~/2 or [Re(y)| >
Sys*(X)/+/2. Moreover, according to Lemma 4.12, for any « € [—1, 1] we have

)Hol(y,Gl gy b X)| > K - |Im(y)| - Io: —a,,‘.

If [Im(y)| > Sys*(X)/~/2, choose a € [—1,1] with |& — a, | > 1. For such a we

have i
KSys*(X) 1

V2 V2
Otherwise we have |[Re(y)| = |Im(y)| - |ety| > Sys*(X)/~/2, thus for @ = 0 one
gets

Y

[Hol(y, G1 - u—y - X)| > K|Im(y)| =

KSys*(X) - 1
V2 T2
Once the first step is proved, observe that for any saddle connection y with

[Im(y)| < 1 and any a € [—1, 1] such that Ioz —ay| < 2¢€2/|Im(y)|, according to
Lemma 4.12 we have

[Hol(y, G1 - X)| = K[Re(y)| =

Sys*(G1 - U—g - X) < [Hol(y, G1 - u—y - X)| < +/8e.

According to Minsky—Weiss estimate in Theorem 4.10 we have

2 B
110 | ) B (ayﬁ)' <C-(%) |=1,1]).

lIm(y)|<1

In the union above, any interval B(,,2¢”/|Im(y)|) has length at least 4¢2. Divide
[—1, 1] into [K?] intervals J; of equal size |J;| = 2¢? and a remaining set of measure
less than 2€2. Any J; has length less than half the length of any interval in the union,
then the union of those J; which do not satisfy the required property has measure at
most 2(~/8¢/pg)? - -1, 1] ’ The good ones are therefore at least

(-5 ) e (- () )

For convenience of notation, for any j > 1 let I'(X, j) be the set of saddle
connections y for the surface X such that K/71/v/2 < |Im(y)| < K’ /2.
Moreover let I'(X,0) be the set of saddle connections y with [Im(y)| < 1/+/2.
Set

1
S(’) := min {SO’ =y
NE
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Lemma 4.15. Ler J be an interval such that

1 = e
1= % 49, UB(ay’ﬁ-|1m(y)|-Kf)_@

Jj=0 yel'(X,j)

Then we have

2e? NG
‘m U 8 (“V’ |Im(y)|-1<")‘<c'( s; ) -

lIm(y)|<K"

Proof. As in the previous lemma, the first step in the proof is to show that for any
saddle connection y we have

1
1 |Hol(y, Gn1 - ti—g - X)| > min ;So, ﬁ%

Let y be any saddle connection for X. According to Lemma 4.12, for any ¢ € J we
have
[Hol(y., Gp1 - u—g - X)| = K"*1 - |Im(y)| - |& — e |-
Suppose that y € I'(X, j) for some j with0 < j <n — 1. For any « € J we have
1

- > :
7 Im(y)| - K7+2

|

and thus
' dad 1
> — > 8.

N2 EH2 T B T
Otherwise, if [Im(y)| > K"~'/+/2, choose « € J such that |@ — a, | > |J|/2. For
such « we have

|H01(V’ Gnt1-U—g- X)‘ =

|Hol(y, G - X)| > K"+ Im( )|-ﬂ>|1 ( Kn+1>_
OlY,Upt1 - U—¢ = Y m y)l : 2K2” = \/g

2
Once the first step is completed, observe that for any saddle connection y such
that [Im(y)| < K" and for any real number « such that

2
o —ay| < ——
K" [Im(y)|

according to Lemma 4.12 we have

Sys*(Gn41 - t—a - X) < [HOI(y, Gpt1 -t X)|

2
- \/(7](n+1 - |[Im(y)]| - ‘a —a,,l)2 + (%) < V3e.

Then the lemma follows according to Theorem 4.10. L]
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4.6.5. Proof of Proposition 4.8. Let J; C [—1, 1] be the intervals given by
Lemma 4.14, which are at least (1 — MeP) - K2, and for any such J; let
I; C [—m/4, /4] be its image under the function o +> arctan(a). Observe that
if 0 is a direction of a saddle connection y with [Im(y)| < 1 then we have [(0) < 1.
According to the properties of the intervals J; and to Lemma 4.13, any /; satisfies
Condition (1.6) forn = 1.

Consider any interval [ satisfying the same Condition for some n > 1, that is

1 2
|[|:ﬁ”— and IﬂU U (y,m)

J=0 0,eR*(K,j)

Let J be the image of / under the function § > tan(#) and observe that |J| > K—2",
since the function tan(-) has derivative bigger than 1. Consider any 6 € [ and let
= tan(6). If there exist some j with0 < j <n — 1 and some y € I'(X, j) such

that
2

€
a—ay| <
= i
then the direction 6, = arctan(a, ) of y satisfies /(6,) < |y| < V2|Im(y)| < K7,
so that 8, € R*(K,i7) for some i < j, and moreover we have

2 2

€ €
-0, <|log—a,| <
v 14

= JAm() K - KGR

which is absurd by the assumption on /. According to Lemma 4.15 we have

Be? /Se
}‘m U 5 ("‘”’ |Im(y>|-1<")‘<c (S' ) Ll

[Im(y)|<K"

Observe that the set of directions R*(K, j) is contained into the set of all the
directions 0, = arctan(c, ) of saddle connections with [Im(y)| < K". According to

Lemma 4.13 we have
B
<2C- (‘/5,6) |1
So

2
i & (V’l(e) K”)

0, eR*(K,n)

Proposition 4.8 is proved.

5. Bounded geodesics in moduli space

5.1. Proof of Theorem 1.1. Fix a translation surface X and let (R%,/) be the
resonant set corresponding to saddle connections of X as in § 1.5. In this section we
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prove Theorem 1.1. Anintermediate step in the proof is an analogous statement for the
set Bad(R*°, €), namely Theorem 5.3 below, which is itself an immediate application
of Theorem 1.9 and Theorem 1.8. The second step in the proof is Lemma 5.1 below,
which is an adaptation of Proposition 1.1 in [19] to the setting of this paper and gives
a relation between the sets Bad™" (X, €) and Bad(R*, €). Let X be a translation
surface and 6 be a direction on X . For convenience of notation, let us introduce the
quantities

D(0) := inf |0 —0,|-1(8,)*> and S(O) := inf Sys*(g;r_g - X).
0y R3¢ t>0

It is clear that for any 6 we have
S(0) < Sys™(X). (5.1)
Moreover Proposition 4.1 implies that for any 6 we have

po) < V% (52)

m+/3

Finally, it is also practical to introduce the constant

NG
m+/3- (SySSC(X))2 ’

M(X) =

where we observe that M(X) > /2 according to the discussion on the constants Sg
and m at the beginning of § 4. For any direction 6 and any saddle connection y on
the surface X we write

Hol(y,r—g - X) = (Re(6, y),Im(8, y)),

that is we call Re(6, y) and Im(6, y) the coordinates of the holonomy vector of y
in the rotated surface, where the direction 6 coincides with the vertical. We also
introduce the instant 1 = ¢(6, y) € R as the unique real number such that the saddle
connection y has unitary slope on the surface g,r_g - X, that is

'@V - Re(8.y)| = eV - [Im(8, y)].

It is clear that the direction 6, of the saddle connection y satisfies |6 — 6, | < w /4 if
and only if £(6, y) > 0.

Lemma 5.1. For any direction 6 on X we have

D(9)
S2(0)

=

< M(X).

NI =
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Proof. Since |[Re(8,y)| = |y| - |sin(6 — 6,)| and |Im(6, y)| = |y|- | cos(8 — 6,)|
for any direction 6 and saddle connection y on the surface X, then we get
Re(8, )| - [m(6, y)| _ [sin2(0 - 6y)
[y1?+16 — 6y 2(60 — 6y)
Moreover2 /m < |(sinx)/x| < 1for0 < |x| < /2, thus for any saddle connection y
whose direction 0, satisfies |6 — 6,,| < /4 we have also
[Re(0, y)| - Im(8, )| _ 2
lyP?-10 -0,  ~

<1. (5.3)

= (5.4)
T

Consider D’ > D(6) and let y be a saddle connection with |y|?- |0 — 6,| < D',
If |6 — 6, | > m/4 then the definition of the systole and Equation (5.1) imply

/ sC 2 .
D (Sys*“(X))" - /4 _
S2(0) — S2(0) -
Otherwise, if |6 — 6,| < 7/4 then £(6, y) > 0 and Equation (5.3) implies

T
4

S%(6) < [Hol(y, grg.yyr—6 - X)I?
= 2-|Re(@,y)|- [Im(6, y)|
<2-ly*-16-6,|<2-D".

Since the two inequalities above hold for any D’ > D(6) then it follows
4
52(0) < max{z, —} . D(0) = 2- D(6).
s

On the other hand consider S” > S(6) and let ¢ > 0 be a positive instant and y
be a saddle connection such that [Hol(y, g;7—g - X)| < S’. If |@ — 6,,| > /4 then
we have

(S mv3 ., m3 ]
D@y > g5 O > g Mol g X
. 3 e
- % - [Hol(y.r—¢ - X)* = % - (Sys*(x))?,

where the first inequality follows from Equation (5.2) and the third holds because
(6, y) < 0implies |Hol(y, g;r_g - X)| > |Hol(y,r_g- X)| for any ¢ > 0. Otherwise,
if |0 — 6, < m/4 then ¢(0,y) > 0. Observe that in this case we can assume
t =t(6,y), indeed |Hol(y, g;r—g - X)| is minimal for such value of ¢. Thus we get

T
D(0) <|y|>-160 — 6| < 5 * [Re(6, )| - [Im(0, )|

(S")2
- [Hol(y, g1a.)7—0 - X)I* < #

&9
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where the second inequality follows from Equation (5.4) and the equality holds by
definition of t = ¢(0, y). Since the two inequalities above hold for any S’ > S(6)
then it follows

V8
m~/3 - (Sysk“'C(X))2

The lemma is proved. L]

5%(0) = ‘/g'Sz_(‘Q) -
m~/3 - (Sys*(X))

T
D —
(f) < max 1

Theorem 1.1 follows immediately from Theorem 5.3 in the next subsection and
from Corollary 5.2 below (modulo replacing the constants €y, ¢,, c; by new ones,
which still depend only on m).

Corollary 5.2. Let X be any translation surface. For any € > 0 we have

Bad(,ﬂsc, v M(X) . E) C Baddy"(X, 6) - B&d(eﬂsc, ?;_5)

5.2. Hausdorff dimension of Bad(R*, ¢) for a translation surface X. Considera
translation surface X with Area(X ) =1 and total multiplicity at conical singularities m
and let J¢ be its stratum. If X is a Veech surface, let M := SL(2,R) - X be
the its closed orbit under the action of SL(2,R). Let (R*, /) be the resonant set
corresponding to saddle connections of X asin § 1.5.

Theorem 5.3. There exist constants €9 > 0,0 < B <1, ¢, > 0 and c; > 0 which
depend only on the integer m, such that for any € with 0 < € < min{eg, Sys*(X)}

we have

P - £?
< dim (Bad(R*,¢)) < 1 — ¢y, -
|log €|

In general we have B = (3m — 1)1, Moreover, if X is a Veech surface the same
estimate holds with B = 1 and with some €y depending only on M.

1—¢ - .
o | log €|

Proof. Fix any ¢ as in the statement. The statement follows combining Theorem 1.9
and Theorem 1.8. In order to prove the upper bound, observe that T < |log(1 — 7)|
for any t > 0 by convexity of the logarithm function. Therefore, since the
resonant set R satisfies (e, K, t)-Decaying with constants U = 12/(m?€?) and
T = me2/+/48, we have

_|log(1 —1)|
| log(e2/(5U))|
me?/ /48 q_m &t
|log(m?e*/60)] —  4./48 |log(e)|’

In order to prove the lower bound, observe that there is some universal 7y > 0 such
that | In(1 — 7)| > /2 for 0 < v < 7. Since the resonant set (R, /) also satisfies

dim (Bad(RR*,¢)) < 1
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(€, T)-decaying with t = MeP, for € small enough (in terms of 7y and of the constants
in the explicit form of 7) we have

~ |log(1 —a s 1)) ., M e
4/3log(e)]  —  2-4/3]log(e)|’

The proof of the last inequality in case of Veech surfaces, where f = 1, is similar. [

dim (Bad(R*, €)) > 1

6. Unbounded geodesics in moduli space

Fix a translation surface X and a direction 6 on X. Recall that for any saddle
connection/closed geodesic y on the surface X we write

Hol(y, r—g - X) = (Re(8, y),Im(6, y)).
In this section we often consider the positive instant (6, y) € R such that
'OV Re(y. )] = e O Im(y. ).
The length |Hol(y, g;7—g - X)| is minimal for t = ¢(6, y), and the minimal value is

IHol(y, g:(0,y)7—6 - X)| = v2IRe(8, y)| - [Im(6, y)|.

6.1. Khinchin—Jarnik theorem for cylinders and saddle connections.

Theorem 6.1. Let X be any translation surface and consider an approximation
function ¥ and a dimension function f such that t — tf o y(t) is decreasing
monotone for t > 0. Let R denote indifferently R of R

(1) Iff0+°° tf(y(t))dt converges ast — 400, then
HT (W(R,y)) = 0.

Consequently, for any 0 & W(R,¥) and for all saddle connections/closed
geodesic y long enough we have

Re(0, v)| > Iy[y(Iv])-
() If f0+°° tf((t))dt diverges ast — +o0, then
HY (W(R, ) = H! ([-7/2,7/2]).

Consequently, for any 0 € W(R,¥) there exist infinitely many saddle
connections/closed geodesic y such that

IRe(8, y)| < yl¥(Iy])-



274 L. Marchese, R. Trevifio and S. Weil CMH

Proof. Both R* and R satisfy quadratic growth, thus in the first part of the
statement we have H/ (W(R,y)) = 0 both for R = R* and R = RV, according
to Theorem 1.7. For any 6 ¢ W(R, ¥) and any saddle connection/closed geodesic y
long enough we have

[Re(y, 0)| = |y -sin (|0 — 0y )
> 0.5 [y|-[0 — 6y
>0.5-[y]- ¥ (1(6y) = 0.5y y(lv]),
where the first inequality holds because | sin(x)| > 0.5-|x| whenever |x| < /2, and
the last one holds because v (-) is decreasing monotone and /(6,) < |y| for any y.
The first part of the statement follows replacing the approximation function ¥ (-)
by 2y (-), which satisfies the same convergence assumption.

In order to prove the second part of the statement, observe that Theorem 1.7
and Theorem 1.9 imply H/ (W(R,v)) = H/ ([—n/2,7/2[). Then according
to Equation (1.9) we have also H/ (W(R*,v¥)) = H/([-n/2,7/2[). Both
for R = R* and R = R, and for any § € W(R, ¥) there exist infinitely many
saddle connections/closed geodesics y in direction 6, € R such that

Re(y, 0)| = |y|-sin (|6 — 6y]) < Iy|-10 — 6] < Iy|- ¥ (1(6y)) = Iyl - ¥ (ly])-

Here the last equality holds because we can assume |y| = (6, for all y. The second
part of the statement is proved. Ol

6.2. Proof of Theorem 1.2. In this subsection we use the following elementary
lemma, whose proof is left to the reader.

Lemma 6.2. Consider a decreasing function ¢: R4 — Ry and a > 0, then define
a function ¥: (1, +00) — Ry by

1 Ins
V(s) := 32 99(7)

Then the function s > s>y (s) is decreasing monotone and for any t > 0 we have

o(t) = > yr(e™).
Moreover f0+°° @(t)dt diverges att = +oo if and only if |, 1+°° sy (s)ds diverges at
§ = +o00.

6.2.1. Proof of convergent case.
Lemma 6.3. Let ¢: R4 — Ry be a decreasing function such that f0+°° (t)dt
converges att = +o0. Then for almost any 6 we have
Sys*“(girg - X
liminf 22> 878 X)

=00 V()
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Proof. Consider the function i associated to ¢ and to the parameter a = 1 by
Lemma 6.2. Since f0+°° @(t) dt convergesatt = +oothen || 1+°° sy (s) ds converges
at s = +oo. Let W be the set of directions @ such that there exist arbitrarily big
instants ¢ > 0 with

Sys*(gcrg - X)* < 0(2).

Fix any & € ‘W. For any ¢ as above, let y be the saddle connection for the surface X
such that

Sys*(gerg - X) = [Hol(y. gerg - X)|.

For t > 0 big enough we have ¢(¢) < 1, thus it follows that ¢/ > |y/|, indeed we have

1> V() = |Hol(y, girg - X)| = |yle™.

Fix ¢ and y as above. Recalling the minimality property of the instant 7(6,y), we
have

|Re(@, y)| - |y| < 2|Re(B, y)| - [Im(O, y)|
= |Hol(y, g:(6.)70 - X)|?
< |Hol(y, girg - X)I?

< (t) = e*y(e’) < lyPPy(yl),

where the last inequality holds because e’ > |y| and the function s +— s@(s)
is decreasing monotone. Observe finally that for any 6 and y as above we have
|Re(B, y)| < ¢(t)/]y|. Thus, since ¢ is arbitrarily big, the saddle connection y must
be arbitrarily long, by discreteness of the set of values Hol(y,rg - X). It follows
that for any 6 as above there exists infinitely many saddle connections y,, such that
IRe(@, ¥n)| < |¥nl - ¥(|¥n|). Theorem 6.1 implies Leb(W) = 0. The lemma is
proved. ]

Here we finish the proof of the convergent case of Theorem 1.2. Let ¢ be a
function as in Lemma 6.3 and for any integer n > 1 consider the function ¢, := n- ¢,
which also satisfies the assumption of the lemma. It follows that for any n there exists
a full measure set of directions € such that

1 Sys*(girg - X Sys*(g:7g - X
D tim g SIS E0 XD i Y Gere XD

N B N0

The convergent case of Theorem 1.2 follows because the countable intersection of
full measure sets has full measure.
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6.2.2. Proof of divergent case.

Lemma 6.4. Let o: Ry — Ry be a decreasing function such that f0+°° (t)dt
diverges att = +o00. Then for almost any 6 we have

lim sup Sys™ (879 - X) <
100 Ve

Proof. Observe first that according to the convergent case of Theorem 6.1, for almost
any 6 and for any saddle connection y long enough we have |Re(6, y)| > |y|~1°2.
Fix any such 6, let y be a saddle connection long enough and consider the instant
t(6,y). We have

V2.

p200y) _ Mm@ )|

[Re(6, )

Consider the function v associated to ¢ and to the parameter a := 1.02~1 ~ 0.98 by
Lemma 6.2. Since f0+°° @(t)dt diverges at t = +oo then f1+°° sy (s)ds diverges

at s = +o00. According to Theorem 6.1, for almost any 6 there exist infinitely many
saddle connections y such that

[Re(@. )| < ly|-v(lvl).

According to the discussion at the beginning of the proof, we can also assume that
for any such 6 and y, at the instant (6, y) we have

< [m(8,y)| - [y|"*2 < (ly|“*)*.

] = @,

For any such 6 and y, recalling that the function s — s2v(s) is decreasing monotone,
we have

Sys* (g 0.pyre - X)* < [Hol(y. gro.pyre - X)|*
= 2[Re(8, y)| - [Im(8, y)| < 2|y|*¥ (I¥])
< 262461 5 (3O — 25(1(8, y)).

Finally, observe that since y is arbitrarily long, then |Re(#, y)| is arbitrarily small,
thus (6, y) is arbitrarily big. The lemma is proved. |

Here we finish the proof of the divergent case of Theorem 1.2. Let ¢ be a function
as in Lemma 6.4 and for any integer n > 1 consider the function ¢, := n~!-¢, which
also satisfies the assumption of the lemma. It follows that for any » there exists a full
measure set of directions € such that

Sys*(girg - X Sys<(g,rg - X
Jn - liminf ys*(8:76 ):liminf ys™ (876 )<\/§.

4508 V() = Veat)

The divergent case of Theorem 1.2 follows because the countable intersection of full
measure sets has full measure.
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6.3. Proof of Theorem 1.3. In this section we follow § 3.1 of [5]. Fix a translation
surface X. Fix T > 2 and € > 0 and consider the set of directions W(z, €) defined by

W(Ta E) = W(e‘(RSC, l:[/'l’,é)
for the approximation function

1
t‘[(lnt)(l“i“é)t/z ’

WT,G (t) =

In particular denote W(t) := W(r,e = 0). Consider also the dimension function
f@r) := r¥*, so that H/ = H?", that is the standard Hausdorff measure of
parameter 2 /7, and moreover

1
r(Inr)lte’

F e f o lp'c,«s(r) =
so that

+o00
] refoyre(rydr diverges at r = +oo for any € > 0,
0

+o0
/ r-f oyre=o(r)dr convergesatr = +o0.
0
Lemma 6.5. If 0 & W(z, €) then for any saddle connection y long enough we have
T
2t(0,y) <tlnly| + (1 + e)iln(ln 71).

Proof. According to the definition of W(z,¢€) and to Theorem 6.1, for any saddle
connection y long enough we have

1
ly|*=1(In |y|)(A+e)T/2”

therefore the lemma follows observing that for such y we have

[Re(y, 0)| >

216.7) _ [Im(6, y)| iy ly|
|Re(6,y)|  [Re(8,y)|

Corollary 6.6. If 6 & W(z, €) then for any y long enough we have
t(6,y)

In|y| > .
T

< ly|"(n |yt 92, O

Proof. We have In |y| > (14 ¢€)/2In(In|y|) for any saddle connection y. According
to Lemma 6.5, for any saddle connection y long enough we have

ln(lnlyl))
1(0,y)

1 T
:E(rlnlyl%—(l+e)§1n(ln[y|))> - |

+ €

1 1
In|y| > E(Inlyl +
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6.3.1. End of the proof. Recall that according to Theorem 6.1 we have H =% (W (7))
= 400 and H'7*(W(z,€)) = 0 for any € > 0, where we introduce the parameter

2
o:=1—--.
T
Theorem 1.3 follows from Proposition 6.7 and Proposition 6.8 below.

Proposition 6.7. Consider 8 € W(t) \ .., W(8,€). We have

€>0
_ —In (Sys*(gerg - X)) — (1 =2/7)t _ 1
lim sup > _,
t—00 Int 2

Proof. Since 8 € W(t) then, according to Theorem 6.1, there exists an arbitrarily
long saddle connection y such that

|Re(y, 0)| <

= (Inly|)”*

Since y is arbitrarily long, then #(6,y) is also arbitrarily big. Moreover the
minimizing property of the instant t = #(0, y) gives

1
=2 ly)”

Fix € > 0 and recall that 8 & W(z, €). Without loss of generality y can be assumed
to be long enough to satisfy part (2) of Theorem 6.1. Then, according to the previous
inequality and to Lemma 6.5, fort = ¢(6, y) we get

1
5 [Hol(y. g7 - X)[2 = [Re(6, y)| - [Im(6. )| <

—21In (|Hol(y, g7 - X)|)
> (t—2)In|y| + %ln(ln lyl) —In2

T—2

(m(e, ) — (1 + e)% ln(ln|y|)) n %ln (In|y|) —1n2

— (1 - %)ZI(O,)/) + (1 +e€— %) In(In|y|) —In2.

Finally, according to Corollary 6.6, for ¢ = (6, y) we obtain

In (|Hol( 0> (1= 2) e+ (€42 e+
0 y’ gtrO T 2 2 4 n Ca
where c is a constant depending only on 6 and t. Since t = ¢(6, y) is arbitrarily big
we have
—In (Sys*(g¢7g - X)) —(1-2/1)t - 1 € 1€

I S g
. Int “27 27 %

The proposition follows because the last estimate holds for all € > 0. [
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Proposition 6.8. Fix t > 2 and € > 0. Let 0 be a direction such that

_ —In (Sys*(gerg - X)) — (1 —2/7)t  1+e¢
lim sup > .
t—00 Int 2

6.1)

Then we have
6 € W(r,e).

Proof. Consider a direction 6 such that Equation (6.1) holds. According to the
assumption, there exists ¢ arbitrarily big such that

T

- 2 14+€
—1In (Sys“(g,rg . X)) > (1 — —)t + 42— Int. (6.2)
Consider a saddle connection y = y(¢) such that Sys**(g;rg- X) = |Hol(y, g:rg-X)|.
Observe that for such saddle connection y we have
[Hol(y, giro - X)| = "Iyl
that is In(|Hol(y, g;rg - X)|) > In|y| — ¢, therefore we get

2t 1+ €
— —In|y| >
T

Int.

In particular we have e’ > |y|, since |[Hol(y, g:rg - X)| < 1. It follows that

2t
(t —2)(— —lnlyl) +(1+¢€)lnt—(1+ e)%lnlnlyl
T

>(r—2)(1—i—e) T+ €T

> Int 4+ (14 €)Ins — Inln|y|
T+er
=— (Int —Inln|y[) > 0.
Resuming we have
2
(l — ;)Zt +(14+¢e)lnt > (r—2)In|y|+ (1 —|—6)%lnln|y|. (6.3)

Therefore, for a direction # and an instant ¢ as in Equation (6.2) and for a
saddle connection y such that |Hol(y, g;rg - X)| = Sys*(g:rg + X), according to
Equation (6.3) above, we have

T
—21In|Hol(y, g;rg - X)| > (z —2)In|y| + (1 + 6)Elnln|y|

which implies

[Hol(y. girg - X2 _ !

1
Im(8. )] - [Re(®. 7)] < : ST

inly ) ¥
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that is, observing that [Im(@, y)| > |y|/2, we have

1 1
IRe(0, )| < — e
_ )t/2
Hy =1 (1n [y]) O

The last condition holds for a saddle connection y which can be chosen arbitrarily
long, therefore we have 8 € W(z, ¢€). ]

7. Fast recurrence in rational billiard: proof of Theorem 1.4

7.1. The recurrence rate function. Let X be a translation surface and X be the set
of its conical singularities. Let 6 be a direction on the surface X such that there are
not saddle connections in direction 6, and thus nor closed geodesics. The recurrence
rate function wg: X — [0, +00] is defined for any p € X by

log (Re(p, 1))
—logr

wy(p) := liEn_)i(r)lf

where Rg(p) := min{t > r ; |¢4(p) — p| < r}. More precisely, the function wy is
defined on points which are recurrent for ¢g with ¢ > 0, and the set of such points is
equal to the set of points such that ¢é(p) is defined for all t > 0 (see § 3 in [37]). In
particular wg ( p) is defined on an open subset of X with full Lebesgue measure, which
is invariant under the flow qbg. Moreover, fix ¢ > 0 and consider a point p € X such
that wg(p) is defined. Since the domain of wy is open, then there exists r > 0 such
that d)g, acts as a translation on the ball B(p, r), that is ¢p(B(p, r)) does not contain
any conical singularity for 0 < s < t. Therefore we have Ry (¢g (p).r) = Ro(p,r)

and thus
log (Ra(¢4(p).r))
—logr

log (Rg(p,
= liminf g( o(p r)) = wy(p).
r—0 —logr

g ($(p)) = lim inf
(7.1)

7.2. Recurrence rate and diophantine approximations. Let R and R be the
resonant sets defined in § 1.5 for the translation surface X. For ¢ > 2 consider the
function ¥;(r) := r~* and define the sets of directions

W) = W(R, ¥;) and WE(x) = W(R¥, ).

Lemma 7.1. Fix a direction 0 on the surface X. Consider a point p € X \ X and an
instant T > 0 such that q’)g (p) is connected to p by an horizontal segment H with
length |H| < Sys*(X). Then there exists a saddle connection y such that

[Re(8,y)| < |H| and [Im(0,y)| <T.
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Moreover, if T,, — 400 is a sequence of instants as above and y, is the sequence of
the corresponding saddle connections, we have

[Tm (8, yn)| — +o0.

Proof. Let H be an horizontal segment as in the first part of the statement and assume
without loss of generality that ¢9T (p) is its left endpoint and p is its right endpoint.
Then let H' be the horizontal segment with length | H’| = |H | and left endpoint p.
Assume that for any point p’ € H and any ¢t with0 <t < T -|p’ — p|/|H| we have
¢~ (p') € X, where |p’ — p| denotes the distance on H from p’ to p. In this case p
belongs to a closed geodesic o whose direction 6, satisfies |0 —6,| = arcsin(|H |/ T),
thus the boundary of the cylinder C,; is union of saddle connection satisfying the
required property. Similarly, if ¢*(p’) ¢ X for any point p’ € H’ and for any ¢
with0 <t < T -|p’ — p|/|H|, where | p’ — p| denotes the distance in H' from p’
to p, then again p belongs to a closed geodesic o in direction 6, as above, and
the same argument gives a saddle connection with the required properties. In the
only remaining case we have two conical singularities p; and p; of X and instants
0 <s <Tand0 <t < T such that ¢/ (p;) € H and ¢;*(p;) € H'. Then p;
and p; can be connected by a saddle connection satisfying the required property.
The first part of the Lemma is proved. The second part just holds because the set of
vectors Hol(y) for y saddle connection is a discrete subset of R2. O

Lemma 7.2. Let 6 be any direction without saddle connections on the surface X.
Fix n > 2 and suppose that there exists a point p € X such that
1
wp(p) < —.
n—1
Then we have 8 € 'W*(n).

Proof. According to the definition of wg(p) there exists r arbitrarily small with
Ro(p,r)"! < 1/r. Set T := Rg(p,r), so that we have |<;[>0T(p) —p| < r, and
assume without loss of generality that qﬁg (p) is connected to p by an horizontal
segment of length less than r. According to Lemma 7.1 there exists a saddle
connection y such that |[Re(0, y)| < r and |Im(6, y)| < T, that is

1 1 1
Re(0,y)| <r < = < ;
N v T N P
The lemma follows observing that, since r is arbitrarily small, y is arbitrarily long, that
is there exist infinitely many saddle connections satisfying the condition above. [

Lemma 7.3. Let 0 be a direction without saddle connections on the surface X.
Assume that 0 is uniquely ergodic and that 0 € WY (). Then for almost every

p € X we have

1

we(p) < —.
n—1
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Proof. 1t is not a loss of generality to assume that Area(X) = 1. According
to the definition of W%!(n) there exists an arbitrarily long closed geodesic o,
whose corresponding cylinder C, satisfies Area(Cy) > a, such that |[Re(8,0)| <
[Im(@,0)| =D, Set T := |Im(@, 0)| and let Rec(C,) be the set of points p € Cy
such that'¢tgw (p) € Cy4. Since Area(Cy) > a then the horizontal transversal Hy to Cy
has length |Hy| > a/T. Without loss of generality we can assume that a7"72 > 2,
thus we have

Leb(Rec(Cy)) > (1 - ‘Re(“)l) -Leb(C,) > (1 —

1 a
- n_z) Leb(Cy) > &

aT

Moreover, setting r := T~@~1 and observing that for any p € Rec(C,) we have
167 (p) — p| = [Re(8,0)| < [Im(8,0)| "V = 770" =

we get Rg(p,r)"~! = T"1 = r~1 and thus

log (Ry(p,r 1
g (Re(p.1) _ for any p € Rec(Cy). (7.2)
—logr n—1

Since # € W% (n), repeat the construction for a sequence of closed geodesics oy,
whose corresponding cylinder Cg, satisfies Area(Cy,) > a and such that
IRe(0,0,)| < [Im(8,0,)|~@D. Equation (7.2) is satisfied for any p € Rec(Cy,)
and for r,, := |[Im(6, 0,,)| "~ D. If follows that

' log (Re(p,r 1
lim inf g( o(p )) <
r—0 —logr —

forany p € ﬂ U Rec(Cy, )-

NeN n>N

Finally observe that

(NS J RN

Leb( ﬂ U Rec(an)) > lim sup Leb(Rec(Cy,,)) >
NeN n>N oo

The lemma follows because wg: X — R is constant almost everywhere, since
it is a invariant under ¢}, and there is a set of positive measure where wg(p) <

1/(n—1). ]

7.3. End of the proof. Here we finish the proof of Theorem 1.4. Of course it is
enough to prove the analogous statement for the flow ¢y on a translation surface X.

Let NUE(X) be the set of non-uniquely ergodic directions € on the translation
surface X and let A := dim(NUE(X)). Recall that we have 0 < A < 1/2 and
consider T with2 < 7 < 2/A, thatis I > 2/t > A. Set

S, 1= W () \ (NUE(X) v W“(n’))

n'>t
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According to Theorem 6.1 we have H 7™ (W9'(t)) = 400 and for any 7 with n > ©
we have H " (‘W (n)) = 0. Moreover, for any n; and 7, with n; > 75 > © we have
W(n1) C W(n,), and thus HZ/T(U,,>r W(n)) = 0. Since 2/t > A we have
H?*(NUE(X)) = 0. It follows that H%*(S;) = +o00. Applying again Theorem 6.1,
one gets H* (W% (7)) = 0 for any s > 2/z, therefore dim(S;) = 2/7. Lemma 7.3
implies

1
wy(p) < —3 for any 6 € S; and for almost any p € X.
‘L’ —

Finally, if there exists p € X and some 1’ > 7 such that wg(p) < 1/(n — 1) then
Lemma 7.2 implies 6 € W (') and thus 6 ¢ S;. Theorem 1.4 is proved.

A. Proof of Corollary 4.11

Let X be any translation surface and let I'(X) be the set of its saddle connections.
For any y € I'(X) consider the function

Ly:R —- Ry o= Ly(a) := ||[Hol(y, u— - X)|l 00>

where |(x, y)|loo := max{|x|,|y|} for any (x,y) € R?. Let (X) be the family
of functions §(X) := {L,(-);y € I'(X)}. Consider any y € I'(X), any interval
J C R and any A > 0, then let J(y, A) be the subinterval of J defined by

J(y, M) :={a el ; Ly(x) <A}.

Define also J(X, 1) := U, er(x) /(. A), that is the set of those « € J such that
there exists some y € I'(X) with L, (o) < A. For any interval J and any y € I'(X)
set also

[ Lylls == sup Ly ().

ae
For any Borel set £ C R denote by |E]| its Lebesgue measure. According to

Proposition 4.5 in [32], for any translation surface X the family of functions §(X) is
(2, 1)-good, that is for any A > 0, any interval / C R and any y € I"(X) we have

oM, A

<2 )
/] 1Lyl

where 1 in (2, 1)-good refers to the exponent of the term A/||L, | s, which in the
general definition of (C, 8)-good families of functions is allowed to be smaller. The
general Proposition 3.2 in [32], adapted in our setting to the family of functions § (X),
says that if there exists constants p > 0 and M > 0 such that for any interval / C R
we have:
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(1) [ILylly = pforany y € T'(X);
2) Hly e I'(X); Ly(a) < p} < M forany @ € J.

Then for any 0 < € < p we have

J(X,
et (IJle)l §2M-%. (A.1)

For completeness, we give a proof of Equation (A.1). Observe first that Condition (2)
implies

1i= [ 8y € TOOILy@) < p}da < ML
¥
On the other hand, since the family ¥ (X)) is (2, 1)-good, Condition (1) implies that
forany y € I'(X) we have
€
|/ (v, )] =21J(, p)l;-

Therefore Equation (A.1) follows observing that

—1 —1
1= LWl = (25) X voal= (2) el

yelr(X) yel(X)

In general, Condition (2) is not satisfied for any translation surface X. When X
is a Veech surface Condition (2) is satisfied according to Lemma A.1 below. In order
to prove Corollary 4.11, let X be a Veech surface. Fix any interval J C R and some
p > 0. Assume that for any y € I'(X) we have

sup |Hol(y, U_g X)‘ > p.
aed

It follows that || L, | ; > p/~/2, according to the comparison between the norm || - [| oo
and the euclidian norm | - | on R2. For any 0 < € < p Equation (A.1) implies

M<2ﬁM.f
I~ p

Finally the comparison between the norms || - ||« and | - | gives
" €
[{e e J; Sys®(u—o-X) <e}| <4M - —-|J|.
0

We complete the proof of Corollary 4.11 stating and proving Lemma A.1 below.

Lemma A.1. Let X be a Veech surface and let M := SL(2,R)- X be its closed orbit
under the action of SL(2, R). Then there exists some ry > 0, depending only on M,
such that for any G € SL(2, R) we have

fi{y € T(X): [Hol(y,G - X) < ro|} < 4g — 4.
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Proof. Let 0, be the direction of any saddle connection. It is well known (see [17])
that there exists a decomposition of X into cylinders Cy, ..., C, in direction 0,
where n = n(6),). Moreover there exists a finite number of saddle connection
directions 61, ...,0y, where N is the number of cusps of M, such that the cylinder
decomposition in any saddle connection direction 6, is the affine image of the cylinder
decomposition in one of the saddle connection directions 0y, ..., 0y under some
element of the Veech group of X. It follows that there exists some ¢ = a(M) > 0
such for any G € SL(2, R), any cylinder C, for G - X has area

Area(Cy) > a°.

Moreover there exists some M = M (M) > 1 such that is o is a closed geodesic and
y is a saddle connection parallel to o, then we have

o] < M -|y|,

where the last condition obviously holds for any affine deformation G - X of the
surface X, where G € SL(2, R). We will prove the statement with
a

Fg := FJ—

Let y be a saddle connection with [Hol(y, G - X)| < 47. Let o be a closed geodesic
parallel to y and let C, be the corresponding cylinder. Since |o| < a then C; must
have transversal component W, > a. Therefore any saddle connection y’ which
crosses C, must have length |Hol(y’, G - X)| = a. The lemma follows observing
that for any saddle connection y there are at most 4g — 4 saddle connections parallel
to y, and all the other must cross at least one of the cylinders parallel to y. ]

B. Isotropic quadratic growth fails for saddle connections

In this appendix we show that isotropic quadratic growth fails for saddle connections
directions.

Lemma B.1. Let X be a translation surface whose orbit under SL(2,R) is dense
in the connected component of its stratum J. Then the set R(X) does not satisfy
isotropic quadratic growth.

Proof. Consider a translation surface X and let Hol(X) be the discrete set of all
holonomy vectors v = Hol(y, X), where y varies among the set of all saddle
connections of X. If A C R? is a bounded open subset set N(X,A4) :=
(A N Hol(X)). More generally, if /:R? — R is a bounded function with compact
support its Siegel-Veech transform is the map f\ J — R defined by

fX) =" f@).

veHol(X)
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In particular we have N(X,A) = ,}"‘,\4 (X), where f4 denotes the indicatrix
function of A, that is f4(v) = 1 if v € A and f4(v) = O otherwise. Let
B := {v € R?; |v| < 1} be the unit euclidian ball and let /3 its indicatrix function.
According to Corollary 5.11 in [1], the Siegel-Veech transform ﬁ; isnotin L3(H#, ),
where p is the absolutely continuous SL(2, R)-invariant measure on J (see also
Line 4, page 3 in [2]). In particular _)?;g is not bounded. Now let A = A be the
equilateral triangle with vertices at (0, 0), (37"/*,3"4) and (—37"/4,3"4) and let fa
be its characteristic function. Observe that Area(A) = 1. Let also Aq,..., As
the rotated copies of A, so that the union gives an hexagon containing B. Fix any
N € N. Since .];;2 is not bounded, modulo a rotation, the pigeonhole principle
implies that there exists some X, € J¢ such that m(X 0) > N. Considering a
smooth approximation g of fa and using the continuity of g, one can see that there
exists an open set V C J¢ with X¢ € 'V such that

N
N(X,BNA)=> 5 forany X € V.

Now let X € J be surface as in the statement, so that SL(2, R) - X is dense in J.
Then by [13] there exists a direction € and ¢ > 1 such that g,r_g X € V; so that

N
N(gir—gX,BNA) > Eh
The isosceles triangle
A= (gir-)" (A) = rpg—A

has shortest side with length e~ - 2 - 37"/4_ while the altitude with respect to such
shortest side is e - 3. Let I C S! be the angular sector spanned by A’ and set
R :=¢'-3"4 Ift > 1is big enough we have

1 = Area(A) = Area(A’) < |I|- R? <2,

but on the other hand

1
H{BGIH,RSC(X);I(Q)SR}Zﬂn{veHol(X);|v|<R;9vel}
1
= gN(X, reg—(B N A))
1 N |I]|-R?
:—N Yo __ X BﬂA —
3m (8075 X. )>6m> 12m

where the first inequality holds because on any translation surface X € # there are at
most 3m parallel saddle connections, the second holds because for # >> 1 big enough
we have g_, (BN A) C {v € R?;|v| < R;6, € I}, and the last holds because
|7|- R? < 2. The statement follows because N is arbitrarily big. O]
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