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A transfer principle and applications
to eigenvalue estimates for graphs

Omid Amini and David Cohen-Steiner

Abstract. In this paper, we prove a variant of the Burger-Brooks transfer principle which,
combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the

eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a

universal constants C such that the kti\ eigenvalue X of the normalized Laplacian of a graph G

of (geometric) genus g on n vertices satisfies

A "r(G)<c'/max(g + /0,
K n

where dmm denotes the maximum valence of vertices of the graph. Our result is tight up to a

change in the value of the constant C, and improves recent results of Keiner, Lee, Price and

Teng on bounded genus graphs.
To show that the transfer theorem might be of independent interest, we relate eigenvalues

of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss

an application to the mesh partitioning problem, extending results of Miller-Teng-Thurston-
Vavasis and Spielman-Teng to arbitrary meshes.

Mathematics Subject Classification (2010). 05C10, 05C50, 35P15, 58J50, 65F99.
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1. Introduction

The spectrum of the Laplacian of a finite graph reflects information about the

structural properties of the graph and has been successfully used in a large variety
of applications to other domains. In particular, the eigenvalues of a bounded degree

graph provide information on the existence of good clusterings of that graph, see LI]
for clustering in two classes and [20,22] for k-way clusterings, whose optimal quality
is shown to relate to the kth eigenvalue.

In particular, upper bounds on the eigenvalues of a class of graphs directly translate

into efficient clustering algorithms with quality guarantees. This motivated a series

of work, starting with Spielman and Teng [27], who gave an 0(1/n) bound for
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the Fiedler value of a bounded degree planar graph on n vertices, using a suitably
centered circle packing representation of the graph. Keiner extended this result to
an 0((g + 1 )/n) bound for (geometric) genus g graphs [16], The argument uses

Riemann-Roch theorem to find a circle packing representation of the graph. Recently,
Keiner, Lee, Price and Teng proved an 0((g + 1) log(g + 1 )2k/n) upper bound for
the kth eigenvalue [17], using a multicommodity flow problem to suitably uniformize
the graph metric.

The study of the spectrum of a finite graph is in many ways related to the

spectral theory of Riemannian manifolds, and results in geometric analysis have

been a source of inspiration to state and prove corresponding results concerning
finite graphs. In particular, eigenvalue bounds for surfaces have a somewhat parallel
history. Hersch [13] first proved an 0(l/vol(M)) bound for the Neumann value of
the sphere §2 equipped with a Riemannian metric. Yang and Yau [28] then showed

that for genus g surfaces an 0((g + l)/vol(M)) bound holds, and Li and Yau

improved the latter result by replacing the genus with the finer conformai invariant
they defined [21], It is interesting to notice that these proofs are quite similar at

a high level to the ones later used in the graph setting. Conformai uniformization
was used in place of circle packing representations, but the very same topological
argument for centering the packing in the discrete case was used in the manifold case

as well. For higher eigenvalues, Korevaar [19] established an 0((g + l)k/vo\(M))
for genus g surfaces, and Hassannezhad [15] improved this to 0((g + k)/vol(M)),
by combining the two methods of constructing disjoint capacitors of Grigor'yan,
Netrusov and Yau [14], and Colbois and Maerten [8],

While traditionally bounds on graph eigenvalues are used to prove bounds for
Riemannian manifolds [3-6,9,10], it is intriguing to see that the spectral theory of
Riemannian manifolds has not been much used so far to provide information on the

spectral properties of general finite graphs.
Our aim in this paper is to show how eigenvalue bounds for surfaces combined

with basic spectral theory of (singular) surfaces, and a suitable transfer principle,
allows to obtain eigenvalue estimates for graphs in terms of their geometric genus.
In this way, we are able to extend the above mentioned result of [15,19, 28] for
surfaces to the graph setting using a suitable variant of the Burger-Brooks transfer

method, c.f. Theorem 1.2. Our results are tight and improve the recent results of
Keiner, Lee, Price and Teng [17] on bounded genus graphs. In addition to providing
a uniform arguably more conceptual proof of the results of [16,17,27], we hope that

our method makes the above mentioned existing similarities between the methods
used in the spectral theory of surfaces and graphs more transparent.

The transfer principle proved in this paper may be of independent interest. In
fact, we shall show it can be used to provide uniform upper and lower bounds on
the eigenvalues of metric graphs in terms of the eigenvalues of their simple graph
models. Furthermore, it allows to generalize to completely arbitrary meshes the mesh

partitioning results of Miller, Teng, Thurston, and Vavasis [24] and Spielman and

Teng [27].
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1.1. Statement of the main theorem on eigenvalues of bounded genus graphs.
Let G (V, E) be a finite simple graph, that we assume connected all through the

paper. For two vertices u,v e V, we write u ~ v if the two vertices u and v are

connected by an edge in G. The valence of a vertex v of G is denoted by d!f, or
simply dv if there is no risk of confusion and the graph G is understood from the

context. We denote by dmm the maximum degree of vertices of the graph, and by n

the number of vertices. The geometric genus of G is by definition the minimum

integer g such that G can be embedded with no crossing on the compact orientable
surface of genus g.

Denote by C(G the vector space of all real valued functions / defined on the set

of vertices of G. The (discrete) Laplacian A and the normalized Laplacian X of G

are defined as follows: the Laplacian A: C(G) —^ C(G) is the linear operator which
sends a function / G C(G) to A(/) G C(G) defined by

V „ G V(G), A(/)(„) J2 /(«) - /(")•

Let S be the linear operator on C(G) whose matrix in the standard basis of C(G)
is diagonal with entries the valences of the vertices of G, i.e. for any / G C(G)

VugL(G), S(f)(v) dvf(v).

The normalized Laplacian is the operator S-1/2 AS-1/2.

We denote by

Ao(G) 0 < Aj(G) < A2(G) < < A„_i(G)

the set of eigenvalues of A, which we call the standard spectrum of G, and by

Aor(G) 0 < A"r(G) < ••• < X_l(G)

the set of all eigenvalues of the normalized Laplacian X, which we call the normalized

spectrum. The standard and normalized spectrum of G are easily seen to satisfy the

inequalities dmin A"(G) < Ak(G) < dmàx A(G) for any k.

In this paper we prove the following theorem.

Theorem 1.1. There exists a universal constant C such that the eigenvalues of the

normalized Laplacian ofany graph G on n vertices satisfy:

Wk G N, An/(G) < C d(g + k\
n

where r/max and g are the maximum valence and the geometric genus of G,

respectively.
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The linear dépendance in the maximum degree is clearly optimal, as can be seen

by considering star graphs, which have lower bounded Fiedler value. The above

result also implies a similar bound for the eigenvalues of the standard Laplacian, at
the expense of an extra dmm factor. We note that Keiner, Lee, Price and Teng [17]
give a similar bound for the standard spectrum with a linear rather than quadratic
dependence in dmax. However, their bound has a gk log(g + l)2 dependence instead

of our (g + k) dependence. In addition to simplifying and improving the result
of [17] for bounded genus graphs, we note that the dependence in g and k of our
estimate is tight, at least when g is sufficiently high, see Remark 2.6.

Informally, the improvement over [17] means that the asymptotic behavior of
graphs' eigenvalues do not depend on the (geometric) genus of the graph. This
fact, which may be seen as a one-sided discrete form of Weyl's law for surfaces, is

consistent with the intuition that at a small scale, bounded genus graphs behave like
planar graphs. Finally, we note that the result in [17] also applies to graphs in any
fixed proper minor-closed family (where the genus g is replaced with a parameter h

depending on the family), while the stronger bounds of Theorem 1.1 cannot be

extended to minor-closed classes, as we show by explicit examples in Remark 2.7.

1.2. Two-fold covers and their associated discrete Laplacians. Let M be a measured

topological space, and denote by /z the measure on M. A 2-fold cover of M
is a finite collection V. (Uv)vey, for a finite index set V, of open subsets Uv

of non-zero measure such that almost every point in M is covered by exactly two
subsets. To any 2-fold cover of a measured space we associate a discrete Laplacian
as follows:

We first form a graph G (V, E) on the set of vertices V and with edges

{u, v} E for two vertices u, v such that fx(Uv n Uu) 0. We define a weight
function co: E -> M which to any edge e {u,v} of G, associates the weight
co(e) fi(Uu fl Uv). The weighted valence df of a vertex v of G is defined by

dv Y n U»)•
u:u~v

The discrete Laplacian associated to the 2-fold cover U denoted by £<u is the
normalized graph Laplacian associated to the weighted graph (G, co). This is defined
from the weighted Laplacian by normalizing using the weighted valence (as in the

previous section). Formally, define the weighted Laplacian Au- C(G) —» C(G) by

Vu V. Au(f)(v) Y (f(v) ~ /("))">({"- W)>

for any / 6 C(G). Let Su be the diagonal operator with entries the weighted
valence df of vertices v e V, i.e. for any / G C(G),

VueF, Su(f)(v) df f(v).
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Then we let Xu '= Su2 AuSu2 Denote by Ak(Xu) the kih smallest eigenvalue
Of £y_-

When (M, /z) carries a natural notion of Laplacian, it is possible to relate the

eigenvalues of the Laplacian on M to the eigenvalues of X<u for any 2-fold cover K.
More precisely, let the measured space (M, /z) belong to any of the following three

classes:

(£11) a smooth manifold with a smooth Riemannian metric g, and /z the measure
associated to the metric g;

(C2) a compact smooth surface with a conformai class of smooth Riemannian
metrics g, and \x a Radon measure absolutely continuous with respect to /xg,
c.f. Section 2.1 ;

ÇC 3) a metric graph with /x the Lebesgue measure.

In any of the above cases, we can define a Laplacian on c.f. Section 2.1

and Section 3, and we denote by Ak(M, /z), or simply Ak(M) if there is no risk of
confusion, the eigenvalues for the corresponding Laplacian.

Our transfer principle is stated as follows.

Theorem 1.2. Let (M, /z) be a measured space as in (£0), (£?2), or (£13) above.

Assume all the elements in a 2-fold cover Vl of M have Neumann value at least r).

Then for all positive integers k we have:

Ak(M)
AfcO^w) < 2—^—-.

rj

The main difference with the classical versions of the transfer principle [3,5,23] is

that we discretize the continuous Laplacian as a weighted normalized graph Laplacian
instead of a combinatorial one, which allows for a closer connection between the two.
Our variant here uses a different notion of graph approximation that involves particular
weights. In addition, the above mentioned results take as input a partition of M, while
our theorem is expressed in terms of two-fold covers, which adds more flexibility.

In order to prove Theorem 1.1, we apply the above theorem in the case where

{M, /z) is a measured surface equipped with a conformai class of smooth Riemannian
metrics g. This version seems to be required to get our Theorem 1.1 on eigenvalues
of bounded (geometric) genus graphs.

1.3. Organization of the paper. The necessarily background on Laplacian
eigenvalues in measured surfaces is recalled in Section 2. The proof of Theorem 1.2 for
measured surfaces (Case (£12) among the above three cases) is given in Section 2.

The proof in the two other cases is similar and is thus omitted. Section 2 contains
also the proof of Theorem 1.1. In Section 3, we apply Theorem 1.2 in the case

of metric graphs with Lebesgue measure (£?3)), to obtain a uniform quantitative
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complement to a theorem of X. Faber [ 11 ] on the spectral convergence of finite graphs
to metric graphs. Moreover, we give in Section 4 an algorithmic application of the

above theorem to mesh partitioning in numerical analysis, generalizing the results of
Miller-Teng-Thurston-Vavasis [24] and Spielman-Teng [27] to anisotropic meshes.

2. Eigenvalues of bounded genus graphs

In this section we give the proofs of Theorem 1.2 and Theorem 1.1. We start by

recalling the variational approach to study eigenvalue problems for surfaces with
measures [18], which provides a setting to study eigenvalue problems for singular
surfaces. This makes the statement of Theorem 1.2 precise in the case of a measured

metric surface.

2.1. Eigenvalues on measured surfaces. Let M be a smooth compact surface,

possibly with boundary, which we suppose equipped with a smooth Riemannian
metric g. Denote by /xg the induced volume form on M. Let /x be a Radon measure

on M which we suppose absolutely continuous with respect to the measure /z0. For a

C°°-smooth function / e L2(M, fx), the Rayleigh quotient Rms (/, /-0 is defined by

M f2d/x

The eigenvalues of the measured metric surface (M0,/z) are defined by the

variational formula:

Xk(Mg,p) := inf sup RMs(fp), (2.1)
A*+' /6A*+1

where A^+1 c L2(M, fx) varies over subspaces of dimension k + 1 which consist

only of smooth functions on M, and A|+1 A^+i \ {0}. Note that in the case

Ii — g, we recover the usual variational characterization of the eigenvalues of the

Laplacian A0 associated to the Riemannian surface Mg.
To see the point of introducing this formalism, assume that the two metrics g

and f) on M are conformally equivalent. From the conformai invariance of the

Dirichlet integral, we see that Äm9(/.^) ^M,, (f, R)- In particular, letting

fx /Xf,, we see that the spectra of the metric \) within the conformai class of MQ

coincides with the spectra of measured surface (M0,/x) for an appropriate Radon

measure /x. Now, if t) is a metric with conical singularities, it is a classical fact
that M is conformally equivalent to a constant curvature metric g, the conformai
factor being square integrable with respect to the corresponding area form /z0. Thus
the framework of measured metric surfaces allows in particular to define spectra
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of surfaces with conical singularities as the spectra of the measured metric surface

(Mg,/x„)[ 18].

Let U be an open subset of M, and denote by U the topological closure of U

in M. The Neumann value X(U) of U is defined as the infimum of the Rayleigh
ratio frj |Vg/|2t//i0/ Jv f2dpi over all smooth functions f on U which extend

continuously to U and satisfy fd[i 0,

i(t,):=inf SM^..f:fufdß=0 Ju fzdll

2.2. Proof of Theorem 1.2. We suppose M, /jl, g, and /xg as above, and consider a

2-fold cover K (Uv)vev of M. Denote by rj the minimum of X(UV) for v e V.
Let G be the associated weighted graph with vertex set V and weight matrix Wu
[oj({w, u})]M,«, where co({u, v}) ii{Uu n Uv) for u yX v. Let be the matrix of

1/2 1/2
the associated normalized graph Laplacian. We have £<u I — Su WuSu
where the matrix Sy_ is diagonal with entries given by the weighted valences of the

vertices d® J2u:u^vu{{u,v}).

Proofof Theorem 1.2. Letu V and / any smooth function on M. By restricting /
to Uv and substracting the mean over Uv, we get:

f I I Vg /" I [2 Z//X g > X(UV) f (/-—f fdtfdll
Juv Juv pyUv) Juv

>v\ f
>uv

Summing the last inequalities over v e V yields:

- [ \\ygf\\2d)X0 > 211 /111 — ~7)Tt( [ fdtf' (2-2)
h JM y

P-{UV) JUv

where the L2 norm ||.||2 is with respect to the measure ji. Denote by ljy„ the

characteristic function of the open set Uv, and let <pv ix(JJv)~x^2\uv- Define
O: L2{M) -> C(G), by

<*>(/)(«) := f f<Pv,
JM

on any vertex v of G. We see that the quadratic form in / in the right hand side of
Equation (2.2) is given by 211 /111 — 11 $/Ill-

Let e > 0, and denote by A|+1 a (k + l)-dimensional space of smooth functions

on M such that for any / e A^+i \ {0}, we have

L HVfl f\\2dßB

Jm fd>1
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Note that by the variational characterization of the eigenvalues (see e.g. (2.1)
and (3.1)), such a space exists. For any / e A|+1, by inequality (2.2), we have:

2(1 + e)Ajt(M) n ri|2 ^
2 r

Ja
1,/ill > - / iiv0/ii2^0 > 211/ni - mwi

v n Jm

That is:

l|f/lll>2(l-('+^tW)||/|ll.
Let denote the adjoint of the operator <$>:L2(M) -» C(G). From the

variational characterization of the eigenvalues, this implies that the compact self-

adjoint operator <h*cf> on L2(M) has at least k + 1 eigenvalues greater than or equal
to 2(1 — (1 +e)Ak(M)/r]). We can assume that this latter quantity is positive,
otherwise there is nothing to prove since all the eigenvalues of the normalized

Laplacian are at most 2. Since the non zero eigenvalues of are the same

as the non zero eigenvalues of $<!>*, we thus deduce that

Xk(21 - $<&*) < + ^Xk^. (2.3)

To conclude the proof, it suffices to notice that

fi(Uu n Uv)
Vv [Ja

/ (pu(j)v
JM (ii{uu)ii(yv))W

Because U is a 2-fold cover, the nth entry of the diagonal matrix is equal to
We thus easily check that 21 — Xu- Therefore, inequality (2.3)

gives

w,)W('+f)W.
Since this holds for any e > 0, the theorem follows.

2.3. Proof of Theorem 1.1. We first give some background about graphs embedded

in a surface, and refer to [25] for more details. We assume that all surfaces are

compact, orientable and without boundary. An embedding of a graph G in a

surface M is a drawing of G on M so that all vertices of G are distinct on M,
and every edge of G form a simple arc on M connecting its two endpoint vertices.
Interior of edges and vertices are assumed to be pairwise disjoint. A face of and

embedding, or simply a face of G if the embedding is clear from the context, is a

connected component of the complementary of G in M.
An embedding is called cellular if every face is homeomorphic to an open disk

in R2.

The genus g(G) is the minimum integer g such that G has an embedding in a

surface M of genus g. The following result will allow us to suppose that a graph G

with a given genus g(G) is embedded in a cellular way.
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Proposition 2.1 ([25, Proposition 3.4.1]). Every embedding ofa connected graph G

in a surface ofgenus g(G) is cellular.

Suppose from now on that the connected graph G is embedded in a cellular way
in a surface M of genus g, so that every face F is homeomorphic to an open disk D p
in M2. The boundary of the face F in M is the image of the boundary 3Dp ~ Sl
under a continuous map, which is locally a homeomorphism away from the preimage
of the vertices. We denote by !F the set of all faces of G. For any face F e !F, we
define a boundary walk of F to be any walk in the graph G consisting of vertices
and edges as they are encountered when walking along the whole boundary of F,
following the circle 3Dp, and starting at some vertex. Note that some edges may

appear more than once in a boundary walk. The degree of a face F fF, denoted

deg(F), is the number of edges on any boundary walk of F.

We define a new multigraph S (V, S) embedded in M, and containing G as

an induced subgraph, by coning over boundary walks of faces as follows. The vertex
set V of S consists of the vertices in G and a new vertex vp for each face F of IF,
i.e. "V V U {^f}Fep- For each face F of !F, let vi,..., Udeg(F) be the vertices
of G which appear in this order in a boundary walk of F. Note that a vertex might
appear more than once. The edge set S of S consists of the edges in E, and new
edges {vp, u;}, for i 1,..., deg(F). The embedding of S in M is obtained in the

following natural way: each face F G !F is homeomorphic to a disk Dp in M2, and

under this homeomorphism, the vertices V\,..., t>deg(.F) in the boundary walk of F,
appear in this cyclic order on the boundary of Dp. Choose the center of Dp as the

image of vp and the rays from vp to ias the image of the edges {vf Vi}. We refer
to all the new edges {vf Vi} added in the process as cone edges of S.

Call an embedding of a graph in M a weak triangulation if the degree of any
face of the embedding is three. We use this terminology since it can happen that two
different faces of the embedding share more than one edge, in which case we do not
have a triangulation.

The embedded (multi)graph S constructed above has the following properties.

Proposition 2.2. The embedding of'S in M is a weak triangulation, and each face
of S is incident to exactly one edge of G. Moreover, for any vertex v of G, we have

dy — 2dy, where d„ and d„ denote the valence ofv in S and G, respectively.

Proof. By definition of the embedding, each face of S consists of two cone edges
and an edge of G, which proves the first assertion. To prove the second statement,
let Fi,..., Ffe 6 E be all the faces of G which are incident to the vertex v e V. For
each i 1 the number of edges {uFrv) in 8 is half the number of edges
of G in a boundary walk of F,. Each edge e e E incident to v appears precisely
twice in the union of the edges of the boundary walks of Fi,..., F&. This shows that
the total number of edges of 8 of the form {v/r., v}, for i 1,..., k, is equal to dff,
which proves the claim.
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Definition 2.3 (Open star). For each vertex v of G, we define the open star of v in M
with respect to the embedding of ü, or simply the open star of v, denoted by Sv, as

the interior of the union of all the faces of ~§ which contain v in their boundaries.

Let now (M, 53, p) be any surface as in Section 2.1, so the measure p is absolutely
continuous with respect to the volume form pg of the smooth Riemannian metric g.

Proposition 2.4. The open stars of vertices of G form a 2-fold cover of M.

Proof. By Proposition 2.2, the boundary walk of each face of ~§ is a triangle which
has exactly two vertices in G. It follows that every point of M \ ~§ appears in exactly
two open stars, which proves the claim by absolute continuity of p with respect
to pg.

We now introduce a metric fj on M with conical singularities (and will later
assume p pf). For reasons that will soon become clearer, we set the length of
each edge of E c S to be equal to one, and the length of each cone edge in 8 to be

cos(jr/(2(imax))_1/2- We equip M with the natural metric t) such the triangles have

the Euclidean metric induced by their edge lengths. Note that for any triangle T of ~§,

the angle of T at any of its vertices that belongs to the graph G is equal to n/(2dmm).
The metric tj has only conical singularities, and we denote by Ak(M)
the eigenvalues of the surface M as defined in Section 2.1. Thus, A^(M) is the kth
eigenvalue of the measured metric surface (Mg,p pf), where g is a metric of
constant curvature in the conformai class of 1).

Using Theorem 1.2 we can relate the eigenvalues of M to those of G. Denote by K
the 2-fold cover of M given by the open stars Sv of vertices of V, c.f. Proposition 2.4.

The intersection of two distinct open stars Su and Sv, for two vertices u and v of G,
has non zero measure if and only if u and v are neighbors in G. Moreover, all

non-empty intersections have the same measure, equal to the area of two triangles
in M. Therefore, the normalized Laplacian equals the normalized Laplacian
of G. Hence, in order to apply the transfer result Theorem 1.2, we only need to lower
bound the Neumann value of the open stars Sv of the vertices of G.

We do so by again applying the transfer result to a specific 2-fold cover of each

open star Sv, for v £ V. Thanks to the choice of edge lengths, the vertices of G

in (M, 1}) have non negative curvature. It follows that by cutting Sv along an arbitrary
cone edge, we can unfold Sv to the plane without overlap. Denote by S'v the unfolded
star of v as isometrically embedded in K2. The cutting operation can only decrease

the Neumann value so it is sufficient to bound from below the Neumann value of the

unfolded open subset S'v of M2.

We call a kite in S'v the union of two triangles in S'v which share an edge of G.
So for any edge e {v, u} £ E, there is a kite Ke, and the union of the kites Ke
for e incident to v is equal to the planar set S'v. For any edge e £ E incident to v, the

kite Ke has two diagonals composed of the edge e and the diagonal opposite to e, that

we denote by diaggP. Cut S'v along all the opposite diagonals diaggP for e £ E incident
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to v. This cuts S'v into an open region Pv with polygonal boundary containing the

vertex v, together with one triangle Te for each kite Ke for e E E incident to v.
Define

V-v \Ke}e={vu}eE U {Te}e={v u]eE
U {Pv}.

The cover Vlv of S'v is a 2-fold cover.

Proposition 2.5. Any X e Uv is a convex set ofdiameter at most two.

Proof. The triangle Te, for e {u, v} e E, is obviously convex of diameter one,
and so is the kite Ke. As for the region Pv, to prove the convexity of P, it will be

enough to show that the angle of P at v is at most n. As we previously observed,

by the choice of the edge lengths, all the triangles of ~§ has angle n/2dmm at any
of their vertices which belong to G. The number of triangles of S'v is at most 2dff,
since d!f < dmax, it follows that the angle at v of P is at most it, and the convexity
follows. The claim on the diameter follows from the fact that all the edges of G have

length equal to one.

Since any element of Uv is a planar convex sets of diameter at most two, there

exists a universal constant Cj > 0 such that for any X e Uv, we have X{X) > C\
for X(X) the Neumann value of X [26]. For the 2-fold cover of S'v, the non-zero
element ^^{X n Y) for X Y Uv have the same value, equal to the area of
a triangle in M. Therefore, the normalized Laplacian Xuv equals the normalized

Laplacian of the graph whose edges are the pairs X ^ Y e Uv whose intersection
has positive measure. This graph Sld is obtained from the star graph with d edges by

inserting a new vertex in the middle of each edge. (Recall that a star graph with d

edges has a central vertex connected to d other vertices.) The Neumann value of Sld

is lower bounded by an absolute constant C2 > 0 independent of d. Hence, applying
the transfer theorem 1.2 to the 2-fold cover 1iv, it follows that there exists a universal

constant C3 Ci.C2/2 > 0 such that the Neumann value of S'v is bounded from
below by C3, i.e. X(8'v) > C3. This gives X(SV) > C3.

We get from these observations, and Theorem 1.2 applied to the 2-fold cover
of K, that

X Xk{£u) E 2^1. (2.4)
C3

A result of Hassannezhad [15] states now that there is a universal constant A such

that for each k :

Xk(M)/i(M) < A(g + k). (2.5)

Note that this result is not explicitly stated in the framework of measured metric
surfaces in [15], however the proof given in [15] works also in this setting and

gives the above statement. Putting Equations (2.4) and (2.5) together, and observing
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that fi(M) > C^n/dmm for some constant C4, we conclude that for C 2^4/(C3C4),
we have

r{G)<cdmm{8 + k\
n

which is the statement of Theorem 1.1.

Remark 2.6. It is shown in [7] that for large g, there are area one and genus g
Riemannian surfaces S with

h(S) > -y(£- \) + 8n(k- 1) — e

for any e > 0. Now, the classical Brooks-Burger method implies the existence of
a bounded degree genus g graph G with n vertices such that A&(G) > C\k(S)/n.
Hence, at least for large enough n and g, there are graphs whose eigenvalues match

the behaviour of the estimate in Theorem 1.1.

Remark 2.7. The following example shows that the strong estimates as in
Theorem 1.1 cannot hold for more general classes of graphs closed under taking
minor.

Recall that the Cartesian product G\ CIG2 of two graphs G\ (V\, E\) and G2

(Vi, E2) has vertex set V\ x Vi and there is an edge between (tq, V2) and (u\, ui)
in V\ x Vi if either u\ v\ and {ui, V2} E2, or ui v2 and {u\, iq} E\. The

Laplacian eigenvalues of G \ G2 are of the form A; (G1 )+Ay (G2) for i 1,..., | V\ \

and j 1,..., IV21.

Let d be a fixed large enough integer, and for any l e N, consider the Cartesian

product C2/DG of a cycle C2i of length 21 with a d-regular graph G on t vertices,
for an integer t e N.

For any fixed t e N, we get in this way a family of graphs by varying i and G.

All these graph are of treewidth bounded by some f(t) for a (linear) function /
of t. Bounded treewidth graphs form a minor-closed family, so all these graphs

belong to a fixed proper minor-closed family 3~t. For G a random d -regular graph
on t vertices, and for the /th eigenvalue of C2/DG e for / E N, we have

A,(C2/nG) ^(ic-Jdgi) wit'1 probability as t tends to infinity. This shows

that there do not exist in general constants h h(3*t) and C C((Ft) associated

to !Ft ensuring that the inequality Afc(G) < C (gt + k)/?i hold for any graph
G E î) on n vertices, and for any k N (unlike what happens for the class of
bounded genus graphs). In particular, the strong estimates as in Theorem 1.1 cannot
hold for general minor-closed classes of graphs.

3. Eigenvalues of the Laplacian on metric graphs

We briefly review the basic definitions concerning the spectral theory of metric

graphs, and refer e.g. to [2,29] for more details.
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Let G (V, E) be a finite connected graph and let I: E -»• R>o be a (length)
function on the edges of G. The length of e is denoted by ie. We define the metric
realization of (G, I) as follows: for each edge e uv of G take a closed interval
Ie C M of length le, and a surjection Tte\ 3Ie {u, v} (which identifies the two
extremities of Ie with the vertices of G in e). Define the topological space (with the

quotient topology)

F:= (Ku| I Ie)/{ x 7re(x) Ve G E & x G dle }.
e

The space F has a natural metric, the shortest path metric induced by piecewise
isometric paths between points, see e.g. [2]. We call a metric graph any metric

space T isometric to a metric realization of a pair (G, i), as above. The pair (G, I)
is called a model of F ; when G is a simple graph, the model is called simple. Note
that there are plenty of models for a metric graph F, e.g. any finite subset of points
of T can be part of a simple model of F.

For any point p G F, we denote by Tp F the set of unit tangent vectors to F at p.
For an interval I [a, h], in R, we define Tp I {1}, with 1 the unit vector in R.
For a metric graph T and a point p G T, let (G, I) be a simple model of F with

p G V(G), and let e\,..., be the edges of G incident to v. Define Tp F as the

set of all unit tangent vectors at p of the intervals Iej, as above. Let 5 G fjrbea
unit tangent vector, and let I Ie be the corresponding interval (corresponding to
the edge e of a simple graph model (G, £)). For e > 0 sufficiently small, we denote

by p + gm the unique point in I at distance e from p on /. A function / : F —M
is piecewise smooth if there exists a simple graph model G (V, E) of F such that
the restriction of / to the intervals Ie, for e g E, are of class C2. The space of
piecewise smooth function on F is denoted by 5(F). Let /: F -> R be a piecewise
smooth function on a metric graph T. Let p e T and ü e T\ Y a unit tangent vector
to at x. The (outgoing) slope of / along ü denoted by d^(f) is defined by

f(P + eü) - f(p)dü(f) bm
e-m+

For a point p G F, we define op as the sum of the slopes of / along unit tangents:

Gp - düf(p),
üaT^T

Note that for all but at most a finite number of points p G T, we have op 0. A
metric graph F has a natural Lebesgue measure denoted by dx. The Laplacian of F
is the (measure valued) operator À on F which to a function / G V(F) associates

the measure

A(/) :=-f"dx-YaP8P-
per
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Define the Zhang space Zh(F) as the space of all functions f G 5(r) such that

f" G L1 (T, dx). The inner product and the Dirichlet pairing )Dir on Zh(F)
are defined by

V/, g G Zh(r), (/, g) := j fg dx, and

(/,g)Dir := J /Ate) J gA(/) j fg' dx

A function / inZh(r)isaneigenfunction oftheLaplacian onT with eigenvalue A

if for any function g G Zh(r), we have {.f,g)m A(f, g). The eigenvalues
of A are all nonnegative and, assuming T is connected, they form a discrete subset

0 Ao(T) < Ai(T) < A2(r) < ••• < A„(T) < ••• ofR. In addition, A^(T) has

the following (usual) variational characterization:

Afe(F) inf sup ({'/^ir. (3.1)
A*+1czh(r) /6a*+, (/./)

dim(A^ + i)=fe-l-l

Definition 3.1 (Dilation of a metric graph). Let T be a metric graph with a simple
graph model (G, •£), and ß G M>o- The metric graph ßT is defined as the metric
realization of the pair (G, ßl).

The following proposition is straightforward, see e.g. [2],

Proposition 3.2. Let T be a metric graph and ß > 0 a real. For any integer k > 0,

we have Xkiß^) ^2^(0-
By & metric star S we mean the metric realization of a pair (Sd,l) with Sj — K\^

a star graph of arbitrary valence d, and i a length function on E(Sd). For such a

metric star, define := maxgg^s^) I(e).
Lemma 3.3. For any metric star -8, we have:

Proof Assume that 8 is the metric realization of a pair (5^, t) with d G N. We

adapt the argument in [12, Example 3] to the case where the branches of 8 have

non-necessary equal lengths. Let us parametrize each each edge e of Sj with
the interval [0, le\ starting from the leaf vertex towards the central vertex of Sj.
In this parametrization, an eigenfunction f of the Laplacian, with corresponding
eigenvalue A, must be of the form ae cos(\/Axe), where xe is the length parameter
of the edge e in 8, for e G E(Sj). This follows in particular from the fact that
the slope of an eigenfunction must be zero at leaves. Now let a be the value of the

eigenfunction cp at the center of 8. If a 0, we get that -J\le G 7t/2 + N, for

any edge e, which implies the claim. If a is non zero, then we use the fact that at
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the center of S, the sum of the (out-going) slopes of <p along the branches must be

zero [2, Proposition 15.1], which gives

ae sin(VXfe) 0.

eeE(Sd)

Since ae cos(VX£e) « for any edge e of Sd, this implies

Y. tan(VXfe) 0,

eeE(Sd)

and so, again, at least one of the arguments in the tangents must be at least ir/2, and

the lemma follows.

For a simple graph G and a vertex v G F(G), we denote by £g(u) the star

subgraph of G with central vertex v and with the edge set all the incident edges to v.
Let (G, I) be a simple graph model of a metric graph F. For any v G V(G we define
the metric star with center v (with respect to G) of T denoted by Sg («), or simply Sv

if there is no risk of confusion, as the subset of T isometric to the metric realization
of Eg(v) with length function given by i. Denote by fmax,G the maximum length of
edges in G, and note that fmax,G tnaxveVçG){imdX(Sv)}.

Given a simple graph model (G,f) of a metric graph T, the family of all the

metric stars Sv, for v G F(G), forms a 2-fold cover -8 of T. Denote by A£r(G, t) the

kt\v eigenvalue of £#
Lemma 3.3 together with Theorem 1.2 yields the following bound:

Theorem 3.4. Let T be a metric graph with a simple graph model (G, I). For any
k G N, we have

max, G

We now show that under certain natural conditions, it is possible to achieve

eigenvalue upper bounds closely matching the lower bounds of the above corollary.
For a simple graph model (G, i) of F denote by £mm,G the minimum length of edges e

in E(G).

Definition 3.5. A simple graph model of a metric graph T is called length-balanced
if for any edge e G E(G we have ie < 2fmin,G-

We have the following theorem.

Theorem 3.6. There are absolute constants C\,C2 > 0 such that for any length-
balanced simple graph model (G,f) of F on n vertices, and for any non-negative
integer k < n — 1, we have

*k(r) < ^r(G, I) < ai^G Ajfc(r).
"max
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Before giving the proof, we state an interesting corollary of the above theorem.
We first need the following definition.

Definition 3.7. Let F be a metric graph. Define Imin as the supremum of tmm,G over
all length-balanced simple graph models (G, I) of F.

It is easy to see that there is a length-balanced simple graph model G of F such

that fmin fmin,g- For such a simple graph model (G, I), define the model (Gk,l)
as the kth subdivision of G where each edge e is subdivided into k edges of equal
lengths te/k. Note that Gk is length-balanced, has at least k + 1 vertices, and has

minimum edge length equal to tmin/k. Thus as a consequence of Theorem 3.6, we

get

Corollary 3.8. With the notations as above, there are absolute constants c\ and c2

such thatfor any metric graph T, we have

-p-0*(r) < k2\y(Gk,l) < ClOfc(F).
"max

Our results, especially corollary 3.8 above, should be viewed as a quantitative
complement to a theorem of X. Faber [11] on the spectral convergence of finite
graphs to metric graphs, in the sense that they provide uniform upper and lower
bounds on the eigenvalues of T in terms of eigenvalues of simple graph models of F.

Proofof Theorem 3.6. First note that since

AfcOSH ^Afe(r)
p

and since

Xk(G,ßl) X(G,t),
by the very definition, it will be enough to prove the theorem for tmin 1.

The right hand side inequality follows from Theorem 3.4, and the well-balanced

property of the simple graph model G of F. We now prove the other inequality,
namely the existence of c2 such that for any k < n — 1, c2 Afc(T) < dmmXf(G, I)
(still under the assumption that fmin 1 and the length-balanced property of the

model (G, £)). Since the lengths of all edges are between 1 and 2, we get A£r(G, t) >
^4—Ayfc(G). Indeed, letting g D]!2 f, we have the following expression for the

Rayleigh quotient

(g,£*g) Ee={»,v}eg IQX/O) - /(t))2
(g'g) Hvdvf(v)2

>
1 Ee={u,v}£E(f(U) ~ f(V))2

~ 2dmax f(v)2
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(where d% Y2u-u~v ^(iu> ul))> which using the variational characterization of
the eigenvalues proves the claim. So it will be enough to show the existence of a

constant c'2 such that

c'2Xk(T)<Xk(G).

Consider Wk+1 the vector space of dimension k + 1 generated by the first k + 1

eigenfunctions g0,... ,gk e C(G) associated to Xi(G), for i 0,..., k. Note that

in particular
(g(u) - g(v))2

Xk(G) > J]
u^V(ß)

for any g e Wk+1 \ {0}. We construct an injective linear map hh C(G) -> Zh(r)
such that for any g G C(G) \ {0}, we have

Çb(g), h/(g))Dir
<

(g(u) - g(v))2
~

u
Jj(G) Evg(v)2
u~v

Applying the variational characterization of Afc(F), given in Equation (3.1), to the

test space *!>(Wk), for A: < n — 1, will then give the result.

Consider an edge e {u, u} of G, and denote by ue and ve the two points at

distance and from u and v on e, respectively, where du and dv denote the
valence of the vertices u and u in G, respectively. Note that the length of each

segment [ue, ve] in T is at least

For any vertex u of G, denote by Bv the union of all segments [v,ve] on the

edges e adjacent to v in G (i.e. Bv is the ball of radius around v in F). For any
function g e C(G), defined on the set of vertices of G, let ^(g) be the function
on r which takes value equal to g"(w) on each ball Bv, and which is affine linear of
slope (g"(u) — g(u))/t([ue, ve]) on each segment [ue, ve], for any edge e G E(G).
Obviously, is an injective linear map from C(G) to Zh(F).

Let now g e C(G) \ {0} and denote / ^(g). We have

if /)oir f f'2dx — ^2 J77~—aC?(m) -£<V))2
Jr e={uMeE(G)^[Ue'Ve])

-2Y1 (s(u)-g(v))2.
{u,V}eE(G)

Denote by B the union Uve.v{G)Ev- Since each ball Bv has total length equal
to 1/4, we have

f f2dx > f f2dx ~ 22 Siv)2
*» r J B tr(s~,\l)K(G)
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It thus follows from the two above estimates that for any g e C(G) \ {0}, we have

4. Anisotropic mesh partitioning

In this final section we discuss a practical application of our transfer theorem to
the mesh partitioning problem in scientific computing. Parallelizing finite elements

computations requires to split the base mesh in such a way that communication
between different pieces is minimized. This is naturally formalized as a (possibly
multi-way) sparsest cut problem, which we may want to solve using spectral
clustering. Guarantees for such methods in this setting were proved by Miller-Teng-
Thurston-Vavasis and Spielman-Teng [24,27]. More precisely, these papers show

that spectral partitioning provides good cuts for meshes in d-dimensional Euclidean

space provided that all c/-simplices in the mesh are well-shaped, i.e. not too far from
being equilateral.

It is not hard to design a 2-fold cover of a general mesh such that our transfer
result provides guarantees for spectral clustering applied to anisotropic meshes.

Specifically, let T be a triangulation of a domain D C M.d. Performing a barycentric
subdivision of all <i-simplices gives a triangulation T'. For a cZ-simplex a of T, let

now Ua be the interior of the union of o with the d + 1 tf-simplices of T' that share

a facet with a. The collection of Ua forms a 2-fold cover V, of the domain, and the

corresponding Laplacian £,%/ is defined using weights u>CT, )ff2 that are proportional to
the sum of the volumes of <7i and a2. Hence, assuming that neighboring d-simplices
in T have volumes within a ratio of k > 1, we see that the eigenvalues of £<u and

those of the normalized Laplacian of the dual graph of T are also within a ratio of k.

Proposition 4.1. The Neumann value ofUa is at least C-1 K~1e~2for some universal
constant C > 0, where e is the maximum diameter ofsimplices in T.

Proof. Let t;, i 1 d + 1, be the <i-simplices in T' that share a facet with a,
and at be the d-simplex in T' that is included in o and shares a facet with r
The interiors of a, rand of t, U o,- form a 2-fold cover of Ua. The entries of
the corresponding Laplacian are within a factor k of the those of the normalized

Laplacian of the intersection graph of the elements of the cover, which is a once
subdivided star graph. Such a star graph has Fiedler value lower bounded by a

constant. Now each element in the cover is a convex set with diameter at most 2e, so

by [26] their Neumann value is lower bounded by a constant times e~2. The claim
then follows from Theorem 1.2.

and the theorem follows.
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Therefore, Theorem 1.2 applied to the cover K yields that the Fiedler value of
the dual graph of T is at most 2Ctc2Xi(D)e2. By Cheeger's inequality, a suitable

spectral partitioning algorithm gives a balanced cut of size at most kC' (D)/e,
for some constant C'. We note that if t/-simplices in T are nearly equilateral, then

~ (vol(D)/«)1^, where n is the number of simplices in T. Hence in this case

we recover the nx^d behaviour proved in [24,27] for the size of the cut, since the

assumption that simplices are well-shaped implies an upper bound on k. However, the

methods used in those works do not seem to apply to the case of general anisotropic
meshes.
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