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Just-infinite C *-algebras

Rostislav Grigorchuk} Magdalena Musat** and Mikael Rgrdam™**

Dedicated to Efim Zelmanov on the occasion of his 60th birthday

Abstract. By analogy with the well-established notions of just-infinite groups and just-infinite
(abstract) algebras, we initiate a systematic study of just-infinite C*-algebras, i.e. infinite
dimensional C *-algebras for which all proper quotients are finite dimensional. We give a
classification of such C™*-algebras in terms of their primitive ideal space, that leads to a
trichotomy. We show that just-infinite, residually finite dimensional C*-algebras do exist by
giving an explicit example of (the Bratteli diagram of) an AF-algebra with these properties.

Further, we discuss when C *-algebras and *-algebras associated with a discrete group are
just-infinite. If & is the Burnside-type group of intermediate growth discovered by the first-
named author, which is known to be just-infinite, then its group algebra C[#] and its group
C*-algebra C* (%) are not just-infinite. Furthermore, we show that the algebra B = 7(C[¢])
under the Koopman representation 7 of § associated with its canonical action on a binary
rooted tree is just-infinite. It remains an open problem whether the residually finite dimensional
C*-algebra C (%) is just-infinite.

Mathematics Subject Classification (2010). 46L05, 37A55, 20C07, 46L.36.

Keywords. Just-infinite, residually finite dimensional C *-algebras, AF-algebras, Bratteli
diagrams, Grigorchuk group.

1. Introduction

A group is said to be just-infinite if it is infinite and all its proper quotients are finite.
Just-infinite groups arise, e.g. as branch groups (including the Burnside-type group
of intermediate growth discovered by the first named author, see [19]). A trichotomy
describes the possible classes of just-infinite groups, see [22, Theorem 3]. Each
finitely generated infinite group has a just-infinite quotient. Therefore, if we are
interested in finitely generated infinite groups satisfying a certain exotic property

*The first named author was supported by NSF grant DMS-1207699 and NSA grant H98230-15-1-
0328.
**The second and third named authors were supported by the Danish National Research Foundation
(DNRF) through the Centre for Symmetry and Deformation at University of Copenhagen, and The Danish
Council for Independent Research, Natural Sciences.
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preserved by homomorphic images, if such a group exists, then one is also to be
found in the class of just-infinite groups.

The purpose of this paper is to investigate just-infinite dimensional C *-algebras,
defined to be infinite dimensional C *-algebras for which all proper quotients by closed
two-sided ideals are finite dimensional. (In the future, we shall omit “dimensional”
and refer to these C™*-algebras as just-infinite. The well-established notion of
infiniteness of a unital C *-algebra, that is, its unit is Murray—von Neumann equivalent
to a proper subprojection, is unrelated to our notion of just-infiniteness.) Analogous
to just-infiniteness in other categories, any infinite dimensional simple C *-algebra is
just-infinite for trivial reasons. It is also easy to see that if a C *-algebra A contains a
simple essential closed two-sided ideal / such that A// is finite dimensional, then A
is just-infinite. (A closed two-sided ideal in a C*-algebra is essential if it has non-
zero intersection with every other non-zero closed two-sided ideal.) Hence, e.g. any
essential extension of the compact operators on an infinite dimensional separable
Hilbert space by a finite dimensional C *-algebra is just-infinite.

We give in Theorem 3.10 a classification of just-infinite C *-algebras into three
types, depending on their primitive ideal space. In more detail, if A is a separable
just-infinite C *-algebra, then its primitive ideal space is homeomorphic to one of the
To-spaces ¥, 0 < n < oo, defined in Example 3.7. The case n = 0 corresponds to A
being simple, while the case 1 < n < oo occurs when A is an essential extension of
a simple C*-algebra by a finite dimensional C *-algebra with n simple summands. If
the primitive ideal space of a separable just-infinite C *-algebra A is infinite, then it is
homeomorphic to the 7y-space Y, and in this case A is residually finite dimensional
(i.e. there is a separating family of finite dimensional representations of A). The
C *-algebra A has an even stronger property, described in Section 2, that we call
strictly residually finite dimensional. We refer the reader to the survey paper [6]
for a more comprehensive treatment of residually finite groups and residually finite
dimensional group C *-algebras.

To our knowledge, residually finite dimensional, for short RFD, just-infinite
C*-algebras have not been previously considered in the literature. A priori it
is not even clear that they exist. This issue is settled in Section 4, where we
construct a RFD just-infinite unital AF-algebra, by giving an explicit description
of its Bratteli diagram. Residually finite dimensional C *-algebras have been studied
extensively, see for example [6, 13—15, 18]. They are always quasidiagonal (see,
e.g. [12] or [13, Chapter 7]). Interesting classes of C*-algebras, such as the full
group C*-algebras of the free groups and subhomogenous C *-algebras, are RFD.
Among RFD C™-algebras, the just-infinite ones are distinguished by having the
smallest possible ideal lattice.

In Section 5, we show that unital, separable, RFD just-infinite C *-algebras need
not be AF-algebras, nor nuclear, or even exact. Using a construction of Dadarlat
from [14], we show that the just-infinite, residually finite dimensional AF-algebra
constructed in Section 4 contains a RFD just-infinite, non-nuclear sub-C *-algebra.
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Moreover, this AF-algebra is contained in a non-exact C *-algebra, which, likewise,
is RFD and just-infinite.

Just-infiniteness for C *-algebras is less prevalent than the corresponding property
in the category of groups. Not every infinite dimensional C*-algebra has a
just-infinite quotient, since, for example, no abelian C *-algebra is just-infinite;
cf. Example 3.3. There seems to be no natural condition ensuring that a C *-algebra
has a just-infinite quotient.

We discuss in Section 6 when a group C*-algebra is just-infinite, depending
on properties of the group. We prove that the full group C*-algebra C*(G) of a
discrete group G is just-infinite if and only if its group algebra C[G] has a unique
(faithful) C*-norm and it is *-just-infinite, i.e. is just-infinite as a *-algebra. The
former property holds trivially for any locally finite group. We do not know of any
non-locally finite group for which C[G] has unique C*-norm. We show that there
are locally finite just-infinite groups G, for which the group C *-algebra C*(G) and
the group algebra C[G] are just-infinite. If the reduced group C*-algebra C;(G) is
just-infinite, then either C;"(G) must be simple, or G must be amenable, in which
case C;"(G) coincides with the full group C*-algebra C*(G). It seems plausible that
the group C *-algebra associated with unitary representations other than the universal
or the left-regular one might be just-infinite for a larger class of groups.

If the group algebra C[G] of a group G is *-just-infinite, then G must be just-
infinite, but the converse does not hold. Indeed, we show in Section 7 (Theorem 7.10)
that C[G] is not *-just-infinite whenever G is a branch group, while there are many
branch groups which are just-infinite, e.g. the group ¥ of intermediate growth
mentioned above. We show that the image B = n(C[&]) of C[€] under the
Koopman representation 7 of ¢, associated with the canonical action of ¥ on a
binary rooted tree, is just-infinite. We leave open the question whether or not the
C*-completion C7 (&) of B is just-infinite. In the affirmative case, this would provide
an example of a RFD just-infinite C *-algebra arising from a group.

2. Preliminaries

As we shall later describe just-infinite C *-algebras in terms of their primitive ideal
space, and as the interesting cases of just-infinite C *-algebras are those that are
residually finite dimensional, we review in this section the relevant background.

2.1. The primitive ideal space of a C*-algebra. A C*-algebra A is said to be
primitive if it admits a faithful irreducible representation on some Hilbert space. It
is said to be prime if, whenever I and J are closed two-sided ideals in A such that
I NJ =0, then either / = 0, or J = 0. It is easy to see that every primitive
C*-algebra is prime, and it is a non-trivial result that the converse holds for all
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separable C *-algebras; cf. [31, Proposition 4.3.6]. However, there are (complicated)
examples of non-separable C *-algebras that are prime, but not primitive, see [37].
A closed two-sided ideal / in a C*-algebra A is said to be primitive if I # A
and / is the kernel of an irreducible representation of A on some Hilbert space.
The primitive ideal space, Prim(A4), is the set of all primitive ideals in A. A closed
two-sided ideal I of A is primitive if and only if the quotient A// is a primitive
C™*-algebra. In particular, 0 € Prim(A) if and only if A is primitive. The primitive
ideal space is a Ty-space when equipped with the hull-kernel topology, which is
given as follows: the closure ¥ of a subset ¥ C Prim(A4) consists of all ideals
I € Prim(A) which contain ();c4 J. If A is primitive, so that 0 € Prim(A),
then {6} = Prim(A4). In the commutative case, the primitive ideal space is the usual
spectrum: Prim(Cy(X)) is homeomorphic to X, whenever X is a locally compact
Hausdorft space. The following fact will be used several times in the sequel:

Remark 2.1. Each finite dimensional C *-algebra A is (isomorphic to) a direct sum
of full matrix algebras,

A= Mk] (C) 2] Mkz(C) &b *#+ (B Mk” (C)*

for some positive integers n,ki, ko, ..., k. As each matrix algebra is simple,
Prim(A) can be naturally identified with the set {1,2,..., n}, equipped with the
discrete topology. The primitive ideal space is Hausdorfl in this case.

A closed subset F of a Ty-space X is said to be prime if, whenever F’" and F" are
closed subsets of X such that £ € F’U F”, then F is contained in one of F’ and F”.
The closure of any singleton is clearly prime. A spectral space is a Ty-space for which
the converse holds: each closed prime subset is the closure of a singleton. The results
listed in the proposition below can be found in [30, Sect. 5.4], or [31, Sect. 4.3]:

Proposition 2.2. Let A be a C*-algebra.
(i) If A is unital, then Prim(A) is a compact!® Ty-space.
(ii) Let I € Prim(A). Then {I} is closed in Prim(A) if and only if I is a maximal
proper ideal in A, i.e. if and only if the quotient A/ I is simple.
(iii) If A is separable, then Prim(A) is a second countable spectral space.

By Remark 2.1, the only finite dimensional C *-algebras which are primitive are
those which are isomorphic to full matrix algebras. Hence, the following holds:

Proposition 2.3. Let A be a separable C*-algebra, and let I € Prim(A) be such
that A/ is finite dimensional. Then A/I = My (C), for some k € N, and {1} is
closed in Prim(A).

'A (possibly non-Hausdorfl) topolotical space is said to be compact if it has the Heine—Borel property:
cach open cover can be refined to a finite open cover. Sometimes this property is referred to as quasi-
compactness.
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A Ty-space X is said to be rotally disconnected if there is a basis for its topology
consisting of compact-open sets. If the projections in a C *-algebra A separate its
ideals, then Prim(A) is totally disconnected. In this situation, we have the following
result, which will be discussed in more detail in Section 4:

Theorem 2.4 (Bratteli-Elliott [11]). Let X be a second countable, totally dis-
connected spectral space. Then X is homeomorphic to Prim(A), for some separable
AF-algebra A. If X is compact, then A can be taken to be unital.

Recall that an AF-algebra is a C *-algebra which is the completion of an increasing
union of finite dimensional sub-C *-algebras.

We end this section by recalling that there is a one-to-one correspondence between
open subsets U of Prim(A) and closed two-sided ideals /(U ) of A, given by

1wy = (. 2.1)

JePrim(A)\U

with the convention that /(@) = 0 and /(Prim(A4)) = A. Moreover,
Prim(A/I(U)) = Prim(A) \ U, (2:2)

for each open subset U of Prim(A). Consequently, each closed subset of Prim(A)
is the primitive ideal space of a quotient of A (see [31, Theorem 4.1.3]). Note
furthermore that if / € Prim(A), then J = I(U), where U is the complement of the
closure of {/}.

2.2. Residually finite dimensional C *-algebras. This section is devoted to discuss-
ing residually finite dimensional C *-algebras and their primitive ideal spaces. We
also introduce the class of so-called strictly residually finite dimensional C *-algebras,
and describe them in terms of their primitive ideal space.

A C*-algebra A is said to be residually finite dimensional (RFD), if it admits
a separating family of finite dimensional representations. The finite dimensional
representations can be taken to be irreducible and pairwise (unitarily) inequivalent.
(We note that two irreducible finite dimensional representations are equivalent if and
only if they are weakly equivalent, i.e. they have the same kernel.)

Assume that {m; };cy is a family of irreducible and pairwise inequivalent finite
dimensional representations of a C*-algebra A. Let k; be the dimension of the
representation 7r;, and identify the image of 7; with My, (C). We then get a *-homo-

morphism
Yy = @TL’,‘I A — 1_[ My (C).
i€l i€l
Note that Wy is injective if and only if (1), ; Ker(sr;) = {0}, which again happens if
and only if {Ker(m;) : i € I} is a dense subset of Prim(A). Therefore, the following
lemma holds; cf. Proposition 2.3:
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Lemma 2.5. A C*-algebra A is RFD if and only if Prim(A) contains a dense
subset P such that A/ I is a full matrix algebra, for each I € P.

Observe that {7} is closed in Prim(A), for each / € P, by Proposition 2.2 (ii).
If A is separable, then one can choose the set P in the lemma above to be countable.
Since the ideals Ker(sw;) are maximal and pairwise distinct (by the assumed
inequivalence of the finite dimensional representations sr;, which implies that they
are also weakly inequivalent), it follows from the Chinese Remainder Theorem that

the map
‘IJF = @Jﬁifl —> l_[ Mk,-(c)
ieF ieF

is surjective, for each finite subset F of I.

Definition 2.6. A unital C*-algebra A is said to be strictly residually finite
dimensional (strictly RFD) if there exists an infinite family {7;: A — M, (C)};ep of
irreducible, pairwise inequivalent, finite dimensional representations of A such that
the map
Vr =P A [ ] My, (C) (2.3)
ieT ieT
is injective, for each infinite subset 7" of T.

The following characterizes strictly RFD C™*-algebras in terms of their primitive
ideal space:

Proposition 2.7. A unital separable C*-algebra A is strictly RFD if and only if there
exists an infinite subset P of Prim(A) such that each of its infinite subsets is dense in
Prim(A), and such that A/ I is finite dimensional, for each I € P.

Note that if such a subset P of Prim(A) exists, then each infinite subset of P has
the same properties, and hence one can take P to be countably infinite.

Proof. Suppose first that A is a strictly RFD unital separable C *-algebra witnessed
by an infinite family {m;: A — My, (C)};er of irreducible, pairwise inequivalent,
finite dimensional representations. Set

P = {Ker(sm;) : i € I} C Prim(A).

If I = Ker(x;) € P,then A/I = m;(A) is finite dimensional. Let 7" be an infinite
subset of I, then 0 = Ker(Wr) = [,y Ker(mr;). Therefore {Ker(m;) : i € T} is
dense in Prim(A).

Suppose conversely that A is a unital separable C*-algebra for which there
exists an infinite subset P = {[;};er of Prim(A) satisfying the hypotheses. For
each i €I, find an irreducible representation m;: A — B(H;) with Ker(w;) = /;.
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Then m;(A) = A/I; is finite dimensional, so H; is finite dimensional and
mi(A) = B(H;) = My, (C), where k; = dim(H;). Let T be an infinite subset
of II. The associated map Wy then satisfies

Ker(Wr) = m Kertm; ) = ﬂ =10,

ieT ieT

by the assumption that {/;};er is dense in Prim(A). This shows that A is strictly
RFD. O

3. Just-infinite C *-algebras: A classification result

By analogy with the notion of just-infiniteness in the category of groups and of
abstract algebras, see [29], we define a C *-algebra to be just-infinite as follows:

Definition 3.1. A C™-algebra A is said to be just-infinite if it is infinite dimensional,
and for each non-zero closed two-sided ideal / in A, the quotient A/ is finite
dimensional.

Lemma 3.2. Every jusi-infinite C*-algebra is prime.

Proof. Let A be a just-infinite C*-algebra, and let / and J be two non-zero closed
two-sided ideals in A. Consider the natural homomorphism 7: A — A/l & A/J.
By the assumption that A is just-infinite, the image is finite dimensional. It follows
that v cannot be injective, so I N J = Ker(xw) # 0. Il

Example 3.3. The group Z is just-infinite, and it is the only abelian just-infinite
group. It is also known, see [22, Proposition 3(a)], that every finitely generated
infinite group has a just-infinite quotient.

The corresponding statements for C*-algebras are false: No commutative
C *-algebra is just-infinite, since no commuative C *-algebra other than C is prime.
This also shows that no commutative C *-algebra has a just-infinite quotient.

It is well-known that every unital C*-algebra has a maximal proper closed two-
sided ideal, and hence a quotient which is simple. If, moreover, such a simple quotient
is infinite dimensional, then it is just-infinite. There seems to be no satisfactory
description of unital C*-algebras having an infinite dimensional simple quotient.

Lemma 3.4. Each non-zero closed two-sided ideal in a just-infinite C*-algebra is
essential and infinite dimensional.

Proof. It is easy to see that a C *-algebra is prime if and only if each non-zero
closed two-sided ideal is essential, so the first statement of the lemma follows from
Lemma 3.2.

If a closed two-sided ideal / in a C*-algebra A has a unit e, then ¢ is a central
projection in A and I = Ae. Thus Ae and A(1 — ¢) are closed two-sided ideals in A
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with zero intersection. So if [ is essential, then A(1 —¢) = 0 and / = A. Now,
as each finite dimensional C *-algebra has a unit, we see that no non-zero closed
two-sided ideal in a just-infinite C *-algebra can be finite dimensional. L]

The class of just-infinite C *-algebras does not have good permanence properties.
In fact, almost all natural operations on C *-algebras (such as passing to sub-
C*-algebras, extensions, passing to ideals and quotients, taking inductive limits,
Morita equivalence, forming crossed products by suitable groups) fail to be consistent
with the class of just-infinite C *-algebras. However, the following permanence-type
properties of just-infinite C *-algebras do hold:

Proposition 3.5. (i) If B is an infinite dimensional hereditary? sub-C*-algebra of
a just-infinite C*-algebra A, then B is just-infinite. In particular, each non-zero
closed two-sided ideal in a just-infinite C *-algebra is again just-infinite.

(ii) Let 0 - I — A — Q — 0 be a short exact sequence of C*-algebras, where |
is an essential ideal in A. Then A is just-infinite if and only if Q is finite
dimensional and I is just-infinite.

Proof. (i) Let J be a non-zero closed two-sided ideal in B, and let / be the
(necessarily non-zero) closed two-sided ideal in A generated by J. ThenJ = BN/,
so B/J is isomorphic to a (hereditary) sub-C *-algebra of A/7. The latter is finite
dimensional, so B/J must also be finite dimensional.

The second part of (i) follows from the fact that each closed two-sided ideal in a
C *-algebra is a hereditary sub-C *-algebra, together with Lemma 3.4, which ensures
that each non-zero closed two-sided ideal in A must be infinite dimensional.

(ii) Suppose that 7 is just-infinite and Q is finite dimensional. Let J be a non-zero
ideal in A. Then we have a short exact sequence

0—=>1/(INJ)— A/ = Q/n(J) =0,

where 7: A — Q is the quotient mapping. Now, / M J is non-zero (since / is an
essential ideal), so //(/ N J) is finite dimensional. This implies that A/J is finite
dimensional, being an extension of two finite dimensional C *-algebras.

Conversely, if A is just-infinite, then Q, which is isomorphic to the quotient A/ 1,
is finite dimensional (because / is non-zero). The ideal / cannot be finite dimensional
(since otherwise A would be finite dimensional), so it follows from (i) that 7 is just-
infinite. L

The observation made above that the class of just-infinite C *-algebras is not
closed under Morita equivalence, can be justified as follows. If A is a just-infinite
C *-algebra and if K denotes the C™*-algebra of compact operators on a separable

2A sub-C *-algebra B of a C*-algebra A is hereditary if whenever b € B and a € A are such that
0<a<b, thena € B.
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Hilbert space, then A ® K is just-infinite if and only if 4 is simple (since all proper
non-zero quotients of A ® K are stable, and therefore infinite dimensional).

Remark 3.6 (Hereditary just-infiniteness). If G is a residually finite group and all its
normal subgroups of finite index, including G itself, are just-infinite, then G is said
to be hereditarily just-infinite. Just-infinite branch groups are residually finite, but
not hereditarily just-infinite; cf. [22, Section 6], so a finite index normal subgroup of
a just-infinite group need not be just-infinite. We shall say more about hereditarily
just-infinite groups and just-infinite branch groups in Examples 6.12 and 6.13 and in
Theorem 7.10.

It follows from Proposition 3.5 above that just-infinite C *-algebras automatically
have a property analogous to being hereditarily just-infinite for groups: Any non-zero
closed two-sided ideal in a just-infinite C*-algebra is itself just-infinite. Note also
that the following three conditions for a closed two-sided ideal / in a just-infinite
C*-algebra A are equivalent (cf. Lemma 3.4 and the definition of being just-infinite):
[ is non-zero, [/ is infinite dimensional, and / has finite co-dimension in A.

We proceed to describe the primitive ideal space of a just-infinite C *-algebra.
They turn out to be homeomorphic to one of the Ty-spaces in the following class:

Example 3.7. For eachn € {0,1,2,..., oo}, consider the Ty-space Y, defined to
be the disjoint union ¥, = {0} U Y,, where Y, is a set with n elements, if n is
finite, and Y, has countably infinitely many elements, if n = co. Equip Y, with the
topology for which the closed subsets of Y, are precisely the following sets: @, ¥,
and all finite subsets of Y.

We shall usually take ¥, tobe {1,2,..., ny,if 1 <n < oo, and Y/ to be N.

The spaces Y, have the following axiomatic properties:

Lemma 3.8. A (non-empty) second countable Ty-space X is homeomorphic to Y,
forsomen € {0,1,2,...,00}, ifand only if it the following conditions hold, for some
point xog € X:

(A) {xo} is densein X,

(B) {x} is closed, forall x € X \ {xo},

(C) each infinite subset of X is dense in X.

Moreover, if X is any Ty-space satisfying conditions (A), (B) and (C) above, then
(i) the closed subsets of X are the following sets: 9, X, and all finite subsets

of X'\ {xo},
(ii) X is second countable if and only if X is countable,
(iii) each subset of X is compact (in particular, X is totally disconnected),

(iv) X is a spectral space.?

3See definition above Proposition 2.2.
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Proof. The spaces Y, satisfy conditions (A), (B), and (C) with xo = 0. We show
below that (A), (B) and (C) imply (i)—(iv). Any second countable Ty-space X
satisfying (i) and (ii) is homeomorphic to Y,, where n is the cardinality of
X' = X\ {xo}. Indeed, X is countable by (ii), and any bijection f:X — V,,
with f(xg) = 0, is a homeomorphism by (i).

Let now X be a Tj-space satisfying (A), (B) and (C). We show that (i), (ii), (iii)
and (iv) hold. Set X' = X \ {x¢}. It follows from (B) that each finite subset of X" is
closed, and so are @ and X. Conversely, if F is a closed subset of X and if F # X,
then F must be a finite subset of X’ by (A) and (C). Hence (i) holds.

Suppose now that X is second countable and [ X | > 1. Let {U,}52 , be a basis for
the topology on X consisting of non-empty open sets. Forn > 1, set F,, = X \ Uy,
and observe that F, is finite (or empty) by (i). Let x € X’. Then X \ {x} is open
by (i), so U, € X \ {x} for some n, whence x € F,. Thus X’ is contained in the
countable set | J;2_; Fy, so (ii) holds.

Let K be an arbitrary subset of X and let {W; };c; be an open cover of K. Take
any ip € / such that W, is non-empty. Then the set F = X \ W, is finite. Hence
F N K is covered by finitely many open sets from the collection {W¥;};c; which,
together with W, gives a finite open cover of K. This proves (iii).

Finally, let ¥ # @ be a closed subset of X which is prime. If ¥ = X, then F
is the closure of {xq}. If F # X, then F is a finite subset of X', by (i). Write
F = |J,epix}, and note that each singleton {x}, x € F, is closed. Hence F can
have at most one element, so it is in particular the closure of a singleton. This proves
that X is a spectral space. [l

Lemma 3.9. Let A be a separable C™*-algebra. The following hold:

(i) Prim(A) is homeomorphic to Yy, for some n € {0,1,2,...,00}, if and only if

the following three conditions hold:

3

(a) A is primitive,
(b) A/I is simple, for each non-zero primitive ideal I in A,
(c) if Prim(A) is infinite, then (\;cp I = O, for each infinite subset P of
Prim(A).
(ii) IfPrim(A) is infinite and A satisfies (b) and (c), then it automatically satisfies (a).
If A/ is finite dimensional, for each non-zero I € Prim(A), then condition (b)
holds.

(iii) If A is just-infinite, then Prim(A) = Y, for somen € {0,1,2,...,0c0}.

Proof. (i) It follows from Proposition 2.2 (iii) that Prim(A4) is second countable. It
therefore suffices to show that the conditions (a), (b) and (c) are equivalent to items
(A), (B) and (C) of Lemma 3.8 (with X = Prim(A4) and xo = 0). By definition, A is
primitive if and only if 0 € Prim(A), so (a) is equivalent to (A). The equivalence
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of (b) and (B) follows from Proposition 2.2 (ii), while the equivalence of (c¢) and (C)
follows from the fact that a subset P of Prim(A) is dense if and only if ();cp I = 0.

(ii) Suppose that Prim(A) is infinite and that (b) and (c) are satisfied. We assert
that (a) holds, as well. By [31, Proposition 4.3.6] it suffices to check that Prim(A)
is prime, i.e. whenever Prim(A4) = F U G, where F and G are closed subsets of
Prim(A), then one of F and G is equal to Prim(A4). However, one of F and G
must be infinite, and hence dense in Prim(A4) by (c) (which is equivalent to (C)), and
therefore one of F and G must be equal to Prim(A4). The remaining assertion follows
from Proposition 2.3.

(iii) Suppose that A is just-infinite. To see that Prim(A) = Y,,, for some n, it suffices
by (i) and (ii) to check that (b) and (c) hold. Moreover, we conclude from (ii) that (b)
holds because A/ must be finite dimensional, for each non-zero ideal /. Suppose
that P is an infinite subset of Prim(A), and set J/ = ();¢p . Foreach finite subset ¥
of P\{0},let J& = (\;es I 2 J. Then A/Jg isisomorphicto @ ;.4 A/I, which
has dimension at least |F |, so A/J also has dimension at least |¥|. As this holds
for all finite subsets ¥ of P, we conclude that A/J must be infinite dimensional.
Hence J = 0, since A is just-infinite. This proves that P is dense in Prim(A4), so (c)
holds. [

Just-infinite C *-algebras are classified as follows (to be compared with [22,
Theorem 3]):

Theorem 3.10. Let A be a separable C*-algebra. Then A is just-infinite if and

only if Prim(A) is homeomorphic to Yy, for some n € {0,1,2,...,00}, and each

non-faithful irreducible representation of A is finite dimensional. (If n = 0, we must
also require that A is infinite dimensional; this is automatic when n > 1.) Moreover:

() Prim(A) = Yy if and only if A is simple. Every infinite dimensional simple
C*-algebra is just-infinite.

(B) Prim(A) = Y, for some integer n > 1, and A is just-infinite, if and only if A
contains a simple non-zero essential infinite dimensional ideal Io such that A/ I
is finite dimensional. In this case, n is equal to the number of simple summands
of A/ I.

(v) The following conditions are equivalent:

(i) A is just-infinite and Prim(A) = Yo,
(i) A is just-infinite and RFD,
(iii) Prim(A) is an infinite set, all of its infinite subsets are dense, and A/l is
finite dimensional, for each non-zero I € Prim(A),

(iv) Prim(A) is an infinite set, the direct sum representation @;cp 7 is
faithful for each infinite family {m; };cT of pairwise inequivalent irreducible
representations of A, and each non-faithful irreducible representation of A
is finite dimensional.
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We shall occasionally refer to a just-infinite C*-algebra as being of type (),
(B) and (y), respectively, if it satisfies the corresponding condition in the theorem
above. In view of the theorem, we shall also, more frequently, refer to a just-infinite
C *-algebra of type (y) as a RFD just-infinite C *-algebra.

Proof. If A is just-infinite and separable, then Prim(A) = Y,, for some n €
{0,1,2...,00}, by Lemma 3.9, and each non-faithful irreducible representation
of A is finite dimensional (by the definition of being just-infinite).

Suppose conversely that Prim(A4) = Y,,, forsome n € {0,1,2,..., 00}, and that
each non-faithful irreducible representation of A is finite dimensional. We show
that A then must be just-infinite (if it is also infinite dimensional). This is clear
it n = 0, since A is simple in this case. This also shows that («) holds.

Suppose that 1 < n < oo. Since Y, is non-Hausdorff, when n > 0,
and the primitive ideal space of any finite dimensional C*-algebra is Hausdorff;
cf. Remark 2.1, A must be infinite dimensional. Write

Prim(4) = {0} U{/;}7 ;. 3.1

Any non-zero proper ideal J of A is the intersection of the primitive ideals in 4 that
contain it. By Lemma 3.9 (c), any intersection of infinitely many distinct primitive
ideals of A is zero. Hence J = [);cp I;, for some, necessarily finite, subset F
of N (or of {1,2,...,n}, if n < c0). Now, A/J is isomorphic to @J-EF Allj,
and each quotient A//; is finite dimensional by assumption, whence 4/J is finite
dimensional. This shows that A4 is just-infinite.

We proceed to verify the claims in (8) and (y).

(B) The “if” part follows from Proposition 3.5 (ii). Moreover, Prim(A4) consists of 0
(cf. Lemma 3.2) and the kernels of the maps onto the n simple summands of A4/ /,
so Prim(A) has cardinality n 4+ 1. Also, Prim(A) is homeomorphic to Yy, for some £,
by Lemma 3.9 (iii), and by cardinality considerations, we conclude that k = n.

Let us prove the “only if” part. Suppose that A4 is just-infinite and Prim(A) = Y,
for some n € N. Retain the notation set forth in (3.1), and let [y = ﬂ?:l [;. In
the notation from (2.1), we have Iy = /({0}) (observe that {0} is an open subset
of Prim(A), when n < co). We deduce that / is non-zero and simple. Each non-
zero ideal in a primitive C *-algebra is essential, so /g is an essential ideal in A, by
Lemma 3.2. Since A is just-infinite, A/ is finite dimensional. Finally, by (2.2),

Prim(A4/ 1) = Prim(A) \ {0} = {I1, I». ..., Iy},

and since A/ is finite dimensional, n is the number of direct summands of A/ /y;
cf. Remark 2.1.

(y) (i) = (iii). If A is just-infinite, then A// is finite dimensional, for each non-zero
ideal / in A; and if Prim(A) = Y. then each infinite subset of Prim(A) is dense (by
Lemma 3.9 (i)(c)), and Prim(A) is an infinite set.
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(iii) = (ii). The assumptions in (iii) imply that A is RFD; cf. Lemma 2.5. If &
is a non-faithful irreducible representation of A, then Ker(r) = [ is a non-zero
primitive ideal in A, so w(A) = A/I is finite dimensional. To conclude that A
is just-infinite we show that Prim(A4) is homeomorphic to Y. For this it suffices
to verify conditions (b) and (c¢) of Lemma 3.9 (i). Item (b) holds because A// is
finite dimensional, for each non-zero / € Prim(A4); cf. Lemma 3.9 (ii). Item (c) is
equivalent to condition (C) in Lemma 3.8, which holds by assumption.

(ii) = (i). If A is RFD, then A cannot be just-infinite of type (&) or (), so Prim(A)
must be homeomorphic to Y.

(iii) = (iv). We already saw that (iii) implies that A is just-infinite, and hence that
each non-faithful irreducible representation is finite dimensional. Let {x;};er be
an infinite family of pairwise inequivalent irreducible representations of A. Since
{Ker(m;) : i € T} is an infinite set, and hence by assumption a dense subset of
Prim(A), it follows that the kernel of €, ., 7;, which is equal to (), .y Ker(sx;),
must be zero.

(iv) = (iii). Let P be an infinite subset of Prim(A), and choose pairwise inequivalent
irreducible representations {7;};er of A such that P = {Ker(s;) : i € T}. The
assumptions in (iv) now yield

= Ker(@m) = ﬂ Ker(m:) = ﬂ s

ieT ieT IeP

which implies that P is dense in Prim(A4).
If 1 is a non-zero primitive ideal in A, then / = Ker(sr), for some (non-faithful)
irreducible representation of A, so A/ = w(A) is finite dimensional. [

The following result follows immediately from Proposition 2.7 and Theorem 3.10:
Corollary 3.11. Each separable RFD just-infinite C *-algebra is strictly RFD.

We note that not all strictly RFD C*-algebras are just-infinite; cf. Section 4.3
below.

Corollary 3.12. The primitive ideal space of a separable just-infinite C*-algebra
is countable. Moreover, any RFD just-infinite separable C*-algebra has countably
infinitely many equivalence classes of finite dimensional irreducible representations.

Proof. The first claim follows from Lemma 3.9 (iii). The second claim follows from
Theorem 3.10 (y), by the fact that there is a one-to-one correspondence between
weak equivalence classes of irreducible representations and the primitive ideal space
of a separable C™*-algebra (given by mapping an irreducible representation to its
kernel), and by the fact, observed earlier, that two finite dimensional irreducible
representations are unitarily equivalent if they are weakly equivalent. Ll
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Remark 3.13. It is shown in Theorem 3.10 that a separable C*-algebra A is
just-infinite if and only if the following two conditions hold: Prim(4) = Y, for
some n € {0,1,2,...,00} and each non-faithful irreducible representation is finite
dimensional. These two conditions are independent, i.e. none of them alone implies
that A is just-infinite, as shown below.

If X is a Hausdorff space and k is a positive integer, then all irreducible
representations of M (C (X)) have dimension &, and Prim(M, (C(X))) = X. If X is
not a point, then X is not homeomorphic to Y,,, for any n, because Y, is non-Hausdorff
for all n > 0. Therefore My (C (X)) is not just-infinite.

Foreachn € {0,1,2,..., oo}, there is a unital AF-algebra whose primitive ideal
space is Y,, by Theorem 2.4 and Lemma 3.8. The AF-algebras obtained in this way
may or may not have the property that each non-faithful irreducible representation
is finite dimensional. Tensoring such an AF-algebra by a UHF-algebra, we obtain
a unital separable C*-algebra whose primitive ideal space is Y,, and which has no
finite dimensional irreducible representations. Therefore, it is not just-infinite.

We show in the next example and in Section 4 below that each space Y, can be
realized as the primitive ideal space of a just-infinite AF-algebra.

Example 3.14 (Existence of just-infinite C *-algebras). Any simple infinite dimen-
sional C *-algebra is just-infinite of type («) (and there are many examples of such,
both in the unital and the non-unital case).

To exhibit examples of just-infinite C *-algebras of type (f), letn € N, and let F
be a finite dimensional C *-algebra with n simple summands,e.g. F =C&---d C
with n summands. Let // be an infinite dimensional separable Hilbert space, and
let 7: B(H) — B(H)/K be the quotient mapping onto the Calkin algebra, where
as before K denotes the compact operators on H. Let t: F — B(H)/K be a unital
injective *-homomorphism. Set

A =n"1(t(F)) € B(H). (3.2)

Then K is a simple essential ideal in A and A/K is isomorphic to F. Hence A is
just-infinite of type (), and Prim(A) = Y, cft. Theorem 3.10 (B). Since A4 is an
extension of two AF-algebras, it is itself an AF-algebra.

Each just-infinite C*-algebra A arising as in (3.2) above is of type I: for each
irreducible representation of A on a Hilbert space H, the image of A contains the
compact operators on H. Conversely, a separable C*-algebra A of type I is just-
infinite if and only if it is isomorphic to the compact operators K on a separable
Hilbert space, or it is of the form described in (3.2) above for some finite dimensional
C*-algebra F. Indeed, if A is separable, just-infinite and of type I, then A is prime
by Lemma 3.2, hence primitive (because it is separable), so it admits a faithful
irreducible representation p on some (separable) Hilbert space. Being of type I, p(A)
contains the compact operators K. If p(A) # K, then the quotient B := p(A)/K is
finite dimensional, because A is just-infinite, so A 2= p(A4) = 7~ 1(B) is as in (3.2).
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It requires more work to establish the existence of RFD just-infinite C *-algebras,
i.e. those of type (y). This will be done in Section 4.

Remark 3.15 (Characteristic sequences of just-infinite C *-algebras). Let A be a
unital separable just-infinite C *-algebra. If A is non-simple, then Prim(A) = Y,,, for
somen € {1,2,..., oo}. Let {/;}"_, be the non-zero primitive ideals of A. Then
A/l = My, (C), for some k; € N; cf. Proposition 2.3. The resulting n-tuple, or
sequence, {k;}"_; (as an unordered set) is an invariant of A, which we shall call the
characteristic sequence of A.

For each j, choose an irreducible representation 7;: 4 — M (C) with
kernel /;. We say that such a sequence {7} _, is an exhausting sequence of
pairwise inequivalent non-faithful irreducible representations of A. Equivalently,
{7} = is an exhausting sequence of pairwise inequivalent non-faithful irreducible
representations of A if

Prim(A4) \ {0} = {Ker(z;): j = 1,2,.... n},

and Ker(rrj) # Ker(sr;) wheni # j.
If n € N and if I is the (unique) simple essential ideal in A, then (as in the proof
of Theorem 3.10) we have the following isomorphisms

n n
Allo =@ A/1; = 5 My, (©). (3.3)
J=l j=1
It follows from Example 3.14 (and Remark 2.1) that for all positive integers
ki,ka, ..., ky, there exists a just-infinite C*-algebra A, which is necessarily an
AF-algebra, such that (3.3) holds with /o = K. This argument shows in particular
that each finite characteristic sequence {k;}"_;, where n € N, is realized by a

just-infinite AF-algebra (of type (B)).

We end this section by showing that the characteristic sequence {k; }3":1 of
a RFD just-infinite C *-algebra must tend to infinity. The proof of this fact involves
results about subhomogeneous C *-algebras. Recall that a C*-algebra is said to be
subhomogeneous if it is isomorphic to a sub-C *-algebra of My (C(X)), for some
compact Hausdorf space X, and some k € N. The next proposition is well-known,
but we include a brief proof for the sake of completeness.

Proposition 3.16. For a C*-algebra A, the following conditions are equivalent:
(i) A is subhomogeneous,

(ii) the bidual A** of A is isomorphic to @';:1 My ; (C(82;)), for some positive in-
tegersn, ky. ks, . ...k, and some (extremally disconnected) compact Hausdorff
spaces i, 83y 515 ps

(iii) there exists a positive integer k such that each irreducible representation of A

has dimension at most k,

(iv) there exist a positive integer k and a separating family {x;}ier of irreducible
representations of A such that each m; has dimension at most k.
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Proof. The implication (ii) = (i) holds because A is a sub-C *-algebra of A**. If (iii)
holds, then A**, which is a von Neumann algebra, cannot have central summands of
type I, forn > k, or of type Il or III. Therefore (ii) holds. The implication (i) = (iv)
follows easily from the definition of subhomogeneity. Suppose now that (iv) holds,
and that there exists an irreducible representation of A of dimension strictly greater
than k (possibly infinite dimensional). By (a version of) Glimm’s lemma, see, e.g. [33,
Proposition 3.10], there is a non-zero *-homomorphism p: Co((0,1]) @ My — A.
However, there is no non-zero *-homomorphism Co((0, 1]) ® My, — B(H) when
dim(H) < k, so it follows that 77; o p = 0, foreach i € T'. As the family {m; };e7 is
separating, we conclude that p = 0, a contradiction. L]

Lemma 3.17. No separable subhomogeneous C*-algebra is just-infinite.

Proof. Let Abe aseparable just-infinite C *-algebra. Then A is prime; cf. Lemma 3.2,
hence primitive, and so A admits a faithful irreducible representation. Such a
representation cannot be finite dimensional, because A is infinite dimensional. Hence,
A cannot be subhomogeneous; cf. Proposition 3.16. []

Proposition 3.18. Let A be a separable RFD just-infinite C*-algebra with
characteristic sequence {k ji5=y- Thenlimj oo kj = o0.

Proof. Let I, I, ... be the non-zero primitive ideals of A, and for each j, let r; be
an irreducible representation of A whose kernel is /;, such that the dimension of 7 ;
is k ;. We must show that for each k, Ty := {j € N : k; < k} is finite. Suppose that
the set 7" = T is infinite. Then the *-homomorphism V7 = EBjeT 7, is injective,
which implies that {;};e7 is a separating family of irreducible representations
of A, each of which having dimension less than or equal to k. Then Proposition 3.16
implies that A is subhomogeneous, but this is impossible by Lemma 3.17. ]

4. Examples of RFD just-infinite AF-algebras

We construct an example of a RFD just-infinite AF-algebra. By Theorem 3.10,
its primitive ideal space must be Y. The existence of a unital AF-algebra whose
primitive ideal space is homeomorphic to Y follows from Theorem 2.4 (Bratteli—
Elliott). To conclude that such an AF-algebra is just-infinite, we must also ensure that
its non-faithful irreducible representations are finite dimensional; cf. Theorem 3.10.
This is accomplished by taking a closer look at the construction by Bratteli and Elliott,
done in Proposition 4.1 below.

4.1. Construction of a RFD just-infinite AF-algebra. Recall that a Bratteli dia-
gram is a graph (V, E), where V = | J72 | V, and E = |J;, E, (disjoint unions),

n=1
all V,, and all E,, are finite sets, and where each edge e € E,, connects a vertex v € V),
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to a vertex in w € V. In this case, we write s(¢) = v and r(e) = w, thus giving
rise to the source and the range maps s, r: E — V. It was shown by Bratteli, [10],
that there is a bijective correspondence between Bratteli diagrams (modulo a natural
equivalence class of these) and AF-algebras (modulo Morita equivalence).

An ideal in a Bratteli diagram (V, E) is a subset U C V with the following
properties:

e forall e in £, if s(e) belongs to U, then so does r(e),
e forallvin V,if {r(e) | e € s~1(v)} is contained in U, then v belongs to U .

The ideal lattice of an AF-algebra associated with a given Bratteli diagram is
isomorphic to the ideal lattice of the Bratteli diagram, see [17] or [16]. The following
proposition is contained in [11]:

Proposition 4.1 (Bratteli-Elliott). Let X be a second countable, compact, totally
disconnected Ty-space. Let 1,5, ... be finite families of compact-open subsets
of X such that:

(i) X = Ugeg, G foreachn > 1,

(ii) foreachn > 1, G, is a refinement of '§,, i.e. each set in G, is contained in
a set in G,, and each set in ‘G, is the union of sets from G, 41,

(iii) U;:O:I Gy Is a basis for the topology on X.

Consider the Bratteli diagram for which the vertices at level n are the sets in G, and
where there is one edge from G € G, to G' € §,,,1 if G' C G, and none otherwise.
Then there is a one-to-one correspondence between open subsets of X and ideals of
the Bratteli diagram, given as follows: the ideal in the Bratteli diagram associated
with an open subset U of X consists of all vertices G € | Jy— | Gy for which G C U.

If, in addition, X is a spectral space, and if A is an AF-algebra associated with
the Bratteli diagram constructed above, then Prim(A) is homeomorphic to X .

In the following, we construct a sequence 9, 9,, 53,... of finite families of
compact-open subsets of X satisfying the conditions of Proposition 4.1 in the case
where X = Y. Recall that Yoo = {0} U N, that the open subsets of Y, are @, Y,

and all co-finite subsets of N, and that every subset of Y, is compact. Foralln > 1,
set

Fn,k:{l,Z,---v”}\{k}v Gn,k:Yoo\Fn,k‘

for 1 <k <n, and let
5 =4{Gn,1,Gn2s--» Gupn}

Observe that each G, x is open and (automatically) compact. Moreover, the sets
V6,2 satisfy conditions (i), (ii) and (iii) in Proposition 4.1. Furthermore, for
1 <k <n,

Gn+1.k = Gn.ks Gn+1.n+1 - Gn.k-
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No other inclusions between sets in §,+q and sets in §, hold. Therefore, the
Bratteli diagram associated with this sequence of compact-open subsets of Y, as in
Proposition 4.1 is:

° C

AN

™ ° CeC
\

NN CoC @ M(C)
\

S\
4.1)
s\.’s. C e C d M(C) d MuC)

s,

C o C o M(C) & My(C) & M3(C)

The sequence of finite dimensional C*-algebras on the right-hand side, equipped
with unital connecting mappings given by the Bratteli diagram, defines a unital AF-
algebra A, associated with the Bratteli diagram. The one-to-one correspondence
between (non-empty) open subsets G € Yo = {0} U N and ideals U(G) of the
Bratteli diagram above is given as follows:

U(G)={Gu | CGunp EG; ={Gpr | kEG,n 2max Y \ G}

e.g. U(Yoo \{1.3) = {Gpx | n =3,k #1,3}
and UYoo \{/}) ={Guni Inz=j k#j} Jj=1

The quotient of the AF-algebra A by the ideal in A corresponding to U(G) is given
by the Bratteli diagram that arises by removing U((G) from the original diagram. The
two pictures below show the ideal U(G) (dotted lines and open vertices) and the
Bratteli diagram of the quotient (bold lines and filled vertices) in the cases where
G = Y \ {2}, respectively, G = Yoo \ {1, 3}
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The quotient of A by the ideal in A corresponding to U(G), with G = Y \ {2}, is
the AF-algebra associated to the red part of the Bratteli diagram, which is C. The
quotient of A in the case where G = Y, \ {1, 3} is similarly seen to be C & M, (C).

By construction, and by Proposition 4.1, we have Prim(4) = Y. In more
detail, we have Prim(A) = {0} U {1, [, I3,...}, where [; is the primitive ideal
in A corresponding to the ideal U(Y \ {j}) of the Bratteli diagram. Arguing as in
the two examples above, we see that A/1; = My ;(C), where k(1) = k(2) = 1
and k(j) = 2/7!, for j > 2. Hence A/I is finite dimensional, for each non-zero
primitive ideal / of A. It now follows from Theorem 3.10 that A is just-infinite
and RFD, as desired. The characteristic sequence of A is precisely the sequence
{,’c(j)};’.o=1 defined above.

One can modify the Bratteli diagram in various ways to construct new REFD
just-infinite AF-algebras with other characteristic sequences. For example, one can
delete the first n — 1 rows and let row n correspond to an arbitrary finite dimensional
C *-algebra with n summands. (The remaining finite dimensional C *-algebras are
then determined by the one chosen and by the Bratteli diagram.) One is also allowed
to change the multiplicity of the edges connecting the vertex at position (n,k),
1 < k < n, to the vertex at position (n + 1,n + 1). In these examples, the
characteristic sequences all grow exponentially. By Proposition 3.18, we know that
they must tend to infinity. This leaves open the following:

Question 4.2. What are the possible characteristic sequences {k ; }?":1 of RFD just-
infinite C*-algebras?

4.2. Thedimension group. We compute the dimension group (Ko (A4), Ko(A)™T, [1])
of the just-infinite AF-algebra A constructed above (associated with the Bratteli
diagram (4.1)).

Recall that the dimension group, (H,H+,U), associated with the Bratteli
diagram (4.1) is the inductive limit of the ordered abelian groups

o [049)

7} ——= 77

a3

Z

(X1, X0, .. X)) = (X1, X2,....2 X, X1+ X2+ + X)), (X1,...,x,) €Z",

where v € H™ is the image of 1 in the first copy of Z. It follows from standard
theory of AF-algebras that (K(A4). Ko(A)™,[1]) is isomorphic to (H, H,v). We
proceed to identify the latter more explicitly.

Let [];en Z denote the (uncountable) group of all sequences x = {x;}52, of
integers, equipped with the usual order: x > 0 if and only if x; > 0, for all j > 1.
Let G be the countable subgroup of ]—[jeN Z consisting of those sequences {x; }3?‘;1
for which the identity x;4; = x; + x2 + --- + x; holds eventually, and equip G
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with the order inherited from ]—[JEN Z. Setu = (1,1,2,4,8,...). We show below
that (H, H",v) = (G, G, u). In conclusion,

(Ko(A), Ko(A)T,[1]) = (H, HT,v) = (G,G*,u).
For this, define p,: Z" — G by

Pn(X1,X2,...,%X) = (X1, Xx2,..., s Xts Xpi 1 s Xk By <=« )

where x; 11 = xy +xp+-+-+x;,forall j > n. Then p, 40, = p,, forall n, and
each p, is positive. It follows that the p,’s extend to a positive group homomorphism
p: H — G. Each p, is injective, so p is injective.

To complete the proof that p is an order isomorphism, we show that p(H ) = G .
Take x = {x;}32, € G, and let n > 1 be such that x; 41 = x1 + x2 +--- + x;,
forall j = n. Then

x = palx1, X2, ..., Xz)
= x1Pn(el )) + szn(g(”) B xnpn(e,g”))
= le(fl( )) + xzp(fzn)) e an(fn(n)),

whereel™ el .. e{ is the standard basis for (Z")* € Z", and fl(”), FAL
are the corresponding images in ™ C H. This shows that x € p(H ™). Finally,
p(v) = p1(1) = u, as wanted.

Unital AF-algebras are completely classified by their ordered Ky-group, together
with the position of the class of the unit. It is therefore an interesting question to
classify, or characterize, those dimension groups which are the Kgy-group of a RFD
just-infinite AF-algebra.

In the light of the computation above, one may first wish to consider those
dimension groups G which are (ordered) subgroups of ]—[]_1 In addition,
one should assume that G is a subdirect product of ]_[j:1 7, in the sense that
er(G) = HjeF 7, for each finite subset F of N, where ¢F is the canonical
projection of H?O:l 7, onto HjeF Z. The dimension group considered above has
this property.

4.3. A strictly RFD C *-algebra which is not just-infinite. It was shown in Corol-
lary 3.11 that all RFD just-infinite C *-algebras are strictly RFD. We show here that
the converse does not hold, by constructing an example of a unital AF-algebra which
is strictly RFD and not just-infinite.

Let us first describe the example at the level of its primitive ideal space. Let X be
the disjoint union of two copies of Y, i.e. X = X| II X5, where X; = X, = Y.
Equip X with the following topology: A non-empty subset U of X is open if and
only if U N X is non-empty and open, and U N X5 is open. That this indeed defines
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a topology on X follows from the fact that the intersection of any two non-empty
open subsets of X is non-empty, or, equivalently, that the set X is prime.

Observe that X, is an infinite closed subset of X. Hence X, is a non-dense
infinite subset of X. This shows that X cannot be the primitive ideal space of a
just-infinite C *-algebra; cf. Lemma 3.9. The set X, on the other hand, is an open
and dense subset of X, and each infinite subset of X is dense in X, and therefore
also dense in X.

The space X is the primitive ideal space of the unital AF-algebra B whose Bratteli
diagram is given as follows (ignoring at first the shading of the edges and vertices):

The left-hand half of this Bratteli diagram is an essential ideal in the Bratteli
diagram# and therefore corresponds to an essential ideal / of the AF-algebra B. The
right-hand half is the Bratteli diagram of the quotient B//. Hence B/I is equal
to the RFD just-infinite AF-algebra A described in Section 4.1, and [ is Morita
equivalent to A. Hence B cannot be just-infinite. For each k > 1, let Uy be largest
ideal of the Bratteli diagram which does not contain any vertex from the kth column
of the left-hand half of the Bratteli diagram. Furthermore, let /; be the ideal of B
corresponding to the ideal Uy.

To illustrate this definition, in the diagram above, the ideal Uj is marked with
dotted lines and open vertices and the Bratteli diagram of the quotient B/ I3 is marked
with bold lines and filled vertices. The quotient B//5 is seen to be isomorphic
to M4(C).

In general, for each k& > 1, we see that B/ [}, is a full matrix algebra, and (hence)
that each Iy is a primitive ideal. Moreover, ()< [k = 0O, for each infinite subset 7
of N. (To see this, observe that Uy contains no vertices from the top k — 1 rows of
the left-hand half of the Bratteli diagram, or from the top k — 2 rows of the right-hand
half. Hence (< Ur = @, for each infinite subset 7" of N.)

This shows that B is a strictly RFD AF-algebra which is not just-infinite.

4An ideal U in a Bratteli diagram is said to be essential, it U NV £ @, for all non-empty ideals V.
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5. Subalgebras and superalgebras

In this section, which is addressed to specialists in C *-algebras, we investigate when
subalgebras and superalgebras of just-infinite C *-algebras are again just-infinite, and
we also show that not all RFD just-infinite C *-algebras are nuclear, or even exact.
The third named author thanks Jose Carrion for his suggestion to use Theorem 5.3
below of Dadarlat to conclude that there are non-nuclear, and even non-exact, RFD
just-infinite C *-algebras.

Recall that a C*-algebra A has real rank zero if each self-adjoint element in A
is the norm limit of self-adjoint elements in A with finite spectra. A commutative
C*-algebra C(X) has real rank zero if and only if X is totally disconnected (or,
equivalently, dim(X) = 0). Real rank zero is therefore viewed as a non-commutative
analog of being zero-dimensional. A C™*-algebra has real rank zero if it has
“sufficiently many projections”. Each closed two-sided ideal of a C*-algebra of
real rank zero again has real rank zero and, as a consequence, is generated by its
projections.

We denote by Ideal(A) the lattice of closed two-sided ideals in A. If B is a
sub-C *-algebra of A, then there is a natural map ®:Ideal(A) — Ideal(B), given by
@®(/) = I N B. The map & is, in general, neither injective nor surjective, but it
is both in the special situation of the lemma below. We use the symbol p ~4 ¢ to

denote that p and g are Murray—von Neumann equivalent projections, relatively to
the C*-algebra A.

Lemma 5.1. Let B C A be unital C*-algebras of real rank zero, and suppose that
there is a *-homomorphism k: A — B such that k(p) ~4 p, for all projections
p € A, and k(q) ~p q, for all projections g € B. Then the map ®:1deal(A) —
Ideal(B) is a lattice isomorphism.

Proof. We first show that ® is injective. Let / # [’ € Ideal(A) be given. Since A
has real rank zero, and ideals in A are generated by their projections, there exists
a projection p € [ such that p ¢ I’ (or vice versa). Set ¢ = x(p) ~ p. Then
gelNB=®),butg¢1'N B =®(I"). Hence ®(1) # d(I').

Let now J € Ideal(B) be given, and let / = AJA be the closed two-sided ideal
in A generated by J. Then, clearly, / € I N B = ®(/). To see that $(/) < J, it
suffices to show that each projection g in ®(/) belongs to J. Being a projection in /,
q belongs to the algebraic two-sided ideal in A generated by J,sog = Z)}':I a;jxjbj
forsome aj,b; € Aand x; € J. The conditions on «, together with the fact that B
is a C *-algebra of real rank zero, imply that k maps J into itself, so

n

g ~pK(q) =Y Kajk(x;)(b;) € J.

j=1

This shows that ¢ belongs to J, as desired. Il



Vol. 93 (2018) Just-infinite C*-algebras 179

Lemma 5.2. Let A be a unital separable RFD just-infinite C*-algebra of real rank
zero, and let {m,}52 | be an exhausting” sequence of pairwise inequivalent non-
faithful irreducible representations of A.

(i) Suppose that B is a unital sub-C *-algebra of A such that the map ®:1deal(A) —
Ideal( B) is an isomorphism, and such that each projection in A is equivalent to a
projection in B. It follows that B is just-infinite and RFD, that {m,|p}>>,
is an exhausting sequence of pairwise inequivalent non-faithful irreducible
representations of B, and that 7, (B) = mw,(A), for all n. In particular, A
and B have the same characteristic sequence.

(ii) Suppose that C is a unital C™*-algebra of real rank zero which contains A and
is asymptotically homotopy equivalent®to A. Suppose also that ®:1deal(C) —
Ideal(A) is an isomorphism.” It follows that C is just-infinite and RFD with an
exhausting sequence {v, |, of pairwise inequivalent non-faithful irreducible
representations for which Ker(vy,|4) = Ker(mr,) and v, (C) = m,(A), for all n.
In particular, A and C have the same characteristic sequence.

Proof. (i) The lattice isomorphism @:Ideal(A) — Ideal(B) restricts to a home-
omorphism Prim(A4) — Prim(B), and so Prim(B) is homeomorphic to Prim(4),
which again is homeomorphic to Y,. Moreover,

Prim(B) \ {0} = {Ker(w,) N B | n € N} = {Ker(mw,|p) | n € N}.

Let / be a non-zero primitive ideal of B. Then [ = Ker(m,|p), for some n,
and B/I is isomorphic to m,(B), which is a subalgebra of the finite dimensional
C*-algebra 7, (A), so B/ is finite dimensional. It now follows from Theorem 3.10
that B is just-infinite.

Let us also show that 7,(B) = m,(A), for all n. Since m,(B) € n,(A) and
both C*-algebras are full matrix algebras, it suffices to show that ,,(B) contains a
minimal projection in m,(A). Let e € m,(A) be such a projection and lift it to a
projection p € A (which is possible because A is assumed to have real rank zero).
Find a projection ¢ € B which is equivalent to p. Then x,(q) is equivalent to e,
which implies that 7, (¢) itself is a minimal projection in 5, (A).

(ii) As in (i), the given lattice isomorphism ®:Ideal(C) — Ideal(A) restricts to a
homeomorphism Prim(C) — Prim(A), so Prim(C) is homeomorphic to Y.

>See Remark 3.15.

¢This means that there exists an asymptotic morphism C — A, so that the asympotic morphism
C — C (obtained by composing it with the inclusion mapping A — C) is homotopic to the identity
on C in the category of asymptotic morphism. See also [14].

7In fact, the assumptions on A and C imply that @ is an isomorphism. This can be shown along the
same lines as the proof of Lemma 5.1.
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Given n > 1, let J,, € Prim(C) be such that ®(J,) = Ker(s,). Since ® is an
isomorphism, each non-zero primitive ideal in C is of this form. Identify 7, (A)
with My (C), for some positive integer k. Find an irreducible representation
v,: C — B(H) on some Hilbert space H, with Ker(v,) = J,. Then

Ker(my) = ®lJg) =y N A = Ke(vg 1)

Let i: M (C) — B(H) be the inclusion mapping making the following diagram
commutative:
AQ——=C

M (C)—— B(H)

We show that dim(H') = k, which by Theorem 3.10, will imply that C is just-infinite.
It will also imply that ¢ is an isomorphism, and that

7tn(A) = vp(A) = vy (C) = B(H).

It is clear that dim(H) > k. Suppose that dim(/H) > k. Then we can
find pairwise orthogonal non-zero projections fi, fa,..., Jr+1 in v, (C). (Indeed,
v (C) acts irreducibly on H, so if dim(H) is finite, then v,(C) = B(H). If
dim(H) is infinite, then v, (C) is infinite dimensional and of real rank zero. In
either case, one can find the desired projections.) Since C has real rank zero,
we can lift the projections fi, f2,..., Jfr+1 to mutually orthogonal projections
P1.P2...., Pk+1 in C. Applying the asymptotic homomorphism C — A to the
projections pi, pa,.... Pk+1. and using that C*F1 s semiprojective (see [8]), we
obtain mutually orthogonal projections ¢gi,¢», ..., qrk+1 in A. Since the asymptotic
homomorphism C — A composed with the inclusion mapping A — C is homotopic
to the identity mapping on C, we further get that ¢ ; is equivalent to p;, foreach ;. In
particular, (tom,)(q;) = va(q;) ~ va(p;) = fj,foreach j, so m,(g;) is non-zero.
But My (C) does not contain k + 1 mutually orthogonal non-zero projections. This
proves that dim(H ) = k. [l

We shall combine Lemma 5.2 with the following results due to Dadarlat:

Theorem 5.3 (Dadarlat [14, Theorem 11 and Proposition 9]). Let A be a unital
AF-algebra not of type I. Then:

(i) A contains a unital non-nuclear sub-C*-algebra B of real rank zero and stable
rank one, for which there exists a unital *-monomorphism «: A — B such that
L o k is homotopic to id4 and k o is asymptotically homotopic to idg, where t
is the inclusion mapping B — A. Moreover, ®:1deal(A) — Ideal(B) is an
isomorphism of lattices.
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(ii) A is contained in a unital separable non-exact C*-algebra C of real rank zero
and stable rank one, which is asymptotically homotopy equivalent to A, and for
which ®:1deal(C) — Ideal(A) is an isomorphism of lattices.

The statements (i) and (ii) that @ is an isomorphism between the ideal lattices
of A and B, respectively, of C and A, are included in the quoted results of Dadarlat,
and it also follows from Lemma 5.1 in the situation considered in (i).

To apply Theorem 5.3, we need the following:

Lemma 5.4. A separable just-infinite C*-algebra is of type I if and only if either it is
isomorphic to K, the compact operators on a separable infinite dimensional Hilbert
space, or it is an essential extension of K by a finite dimensional C*-algebra. In the
former case, A is just-infinite of type («), and in the latter case A is just-infinite of
type (B); cf. Theorem 3.10.

In particular, no just-infinite C*-algebra of type (y), i.e. RED, is of type I.

Proof. Let A be a separable just-infinite C*-algebra of type I. By Lemma 3.2, A is
prime, and hence primitive, so we can find a faithful irreducible representation 7
of A on a separable, necessarily infinite dimensional, Hilbert space /. Since A is
a C*-algebra of type I, the algebra K of compact operators on f is contained in
the image of w. Hence /I = 7 !'(K) is a non-zero closed two-sided ideal in A,
which is isomorphic to K. As A is just-infinite, either / = A, or A/I is finite
dimensional. L]

Corollary 5.5. Let A be a unital separable RFD just-infinite AF-algebra, and let
{mn )22 be an exhausting sequence of pairwise inequivalent non-faithful irreducible
representations of A. It follows that A contains a unital non-nuclear RFD just-
infinite sub-C*-algebra B of real rank zero such that {m,|p}5 | is an exhausting
sequence of pairwise inequivalent non-faithful irreducible representations of B, and
n(B) = my(A), for all n.

Proof. By Lemma 5.4, we can now apply Theorem 5.3 (i) to find a sub-C *-algebra B
of A with the properties listed therein. Each projection p € A is equivalent to a
projection in B. Indeed, setg = k(p) € B. Then g = (¢ o k)(p) is homotopic (and
hence equivalent) to p. The desired conclusion now follows from Lemma 5.2 (i). [

Corollary 5.6. Let A be a unital separable RFD just-infinite AF-algebra. Then A
is contained in a separable non-exact unital RFD just-infinite C*-algebra C of
real rank zero, equipped with an exhausting sequence of pairwise inequivalent non-
Jaithful irreducible representations {v, },—, such that their restrictions to A form an

exhausting sequence of pairwise inequivalent non-faithful irreducible representations
for A, and v, (A) = v, (C), for all n.

Proof. The proof immediately from Lemma 5.4, Theorem 5.3 (ii) and Lemma 5.2 (ii).
[
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The two above corollaries, in combination with the existence of a RFD just-infinite
AF-algebra (see Section 4), now yield the following:

Corollary 5.7. There exist non-nuclear exact RFD just-infinite C*-algebras, and
there also exist non-exact RFD just-infinite C *-algebras.

It is shown in [32, Theorem 4.3] that each unital C *-algebra A of real rank zero
contains a unital AF-algebra B such that each projection in A is equivalent to a
projection in B, and such that ®: Ideal(A) — Ideal(B) is an isomorphism. Together
with Lemma 5.2 (i), this proves the following:

Proposition 5.8. Let A be a unital separable RFD just-infinite C*-algebra of real
rank zero, and let {m, }° | be an exhausting sequence of pairwise inequivalent non-
Jaithful irreducible representations of A. It follows that A contains a unital RFD
Just-infinite AF-sub-C™*-algebra B such that {m,|p},2, is an exhausting sequence
of pairwise inequivalent non-faithful irreducible representations of B, and m,(B) =
1, (A), for all n.

By combining Corollary 5.5 with Proposition 5.8, one obtains the following
fact: Suppose that A is a unital separable RFD just-infinite C *-algebra of real
rank zero, and {m, ;2 , is an exhausting sequence of pairwise inequivalent non-
faithful irreducible representations. Then there is a strictly decreasing sequence
AD A} D Az D Az D --- of unital sub-C *-algebras A, of A such that each Ay
is a RFD just-infinite C *-algebra, and 7, (A;) = m,(A), for all k and n. (In fact,
every other C*-algebra in the sequence { Ay} can be taken to be an AF-algebra and
the remaining ones to be non-nuclear.)

In particular, a unital separable RFD just-infinite C*-algebra of real rank zero
can never be minimal in the sense that it contains no proper RFD just-infinite sub-
C *-algebras.

6. Just-infiniteness of group C *-algebras

We discuss in this section when C *-algebras associated with groups are just-infinite.

The group algebra C[G] of a group G is in a natural way a *-algebra in such a way
that each group element g € G becomes a unitary in C[G], and it can be completed
to become a C*-algebra, usually in many ways. The universal C*-algebra of G,
denoted by C*(G), is the completion of C[G] with respect to the maximal C *-norm
on C[G]. Each unitary representation s of the group G on a Hilbert space gives rise
to unital *-representations (again denoted by ) of the *-algebras C[G] and C*(G)
on the same Hilbert space. Respectively, each unital *-representation & of C*(G)
restricts to a *-representation of C[G], and if this restriction is faithful, then it creates
a C™-norm || - || on this algebra. Each C*-norm on C[G] arises in this way, where
by a C*-norm on C[G] we mean a (faithful) norm such that the completion of C[G]
with respect to this norm is a C *-algebra.
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Given a unitary representation w of G, we let C7(G) denote the completion
of w(C[G]). This is equal to the completion of C[G] with respect to the norm || - ||,
if 7 is faithful on C[G]. The reduced group C*-algebra of G, denoted by C;(G),
arises in this way from the left-regular representation A of G on ¢*(G). It
is well-known that the maximal and the reduced C*-norms on C[G] are equal,
ie. C*(G) = CJ(G), if and only if G is amenable (see [13, Theorem 2.6.8]).
It is also well-known (see, e.g. [13, Exercise 6.3.3]) that if the reduced group
C*-algebra C;"(G) has a finite-dimensional representation, then G must be amenable.
Hence the following holds:

Proposition 6.1. Let G be a group and suppose that C(G) is just-infinite. Then
either C;(G) is simple, or G is amenable.

Whereas C[G] always has one maximal C*-norm, there may or may not be
a minimal C*-norm on C[G], depending on the group G. If G is C*-simple,
i.e. if C;(G) is a simple C*-algebra, then the norm || - |[; on C[G] is minimal.

Proposition 6.2. Let G be a group, and let w be a representation of G which gives
a faithful representation of C[G). If CZ(G) is just-infinite, then || - || is a minimal
C™*-norm on C[G].

Proof. Any C*-norm on C[G] which is smaller than || - ||, arises from a unitary
representation v of G on a Hilbert space, which factors through C(G). Since v
is injective on C[G], the image v(C;(G)) cannot be finite dimensional, so v is
injective, and hence isometric, on C;(G). (Recall that each injective *-homomor-
phism between C *-algebras automatically is isometric.) The norm arising from v is
therefore equal to the norm arising from 7. L

If G is infinite and if C;(G) is simple, for some unitary representation 7 of
the group G, then C}(G) is just-infinite and || - || is a minimal norm on C[G];
cf. Proposition 6.2.

The group algebra C[G] is said to be *-just-infinite if each *-representation
of C[G] either is injective, or has finite dimensional image. Note that *-just-infinite
is a formally weaker condition than “just-infinite”, as C[G] can have non-self-adjoint
two-sided ideals.

Proposition 6.3. Let G be an infinite group. Then C*(G) is just-infinite if and only
if C[G] is *-just-infinite and C[G] has a unique C*-norm.

Proof. Suppose first that C*(G) is just-infinite. Let 7 be a unital *-representation
of C[G], and extend it to a *-representation of C*(G). Then 7 is either injective
on C*(G), or m(C*(G)) is finite dimensional. If 7 is injective on C*(G), then it is
also injective on C[G], while if 7 (C *(G)) is finite dimensional, then so is 7 (C[G]).
Hence C[G] is *-just-infinite. Each C*-norm on C[G] arises as || - ||, for some
*-representation 7 of C*(G) which is faithful on C[G]. Thus 7z (C *(G)) is infinite
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dimensional, so 7 must be injective on C *(G ). This entails that || - ||, is the maximal
norm on C[G], and thus the only C*-norm on C[G].

Suppose now that C[G] has a unique C *-norm, and that C[G] is *-just-infinite.
Let & be a non-faithful unital *-representation of C*(G). If the restriction of 7
to C[G] were faithful, then it would induce a C *-norm on C[G], which by uniqueness
would be equal to the maximal C*-norm on C[G]. This contradicts that = is non-
faithful on C*(G). Hence m is not faithful on C[G], whence 7(C[G]) is finite
dimensional. In this case, 7(C*(G)) is equal to 7(C[G]). This proves that C*(G)
is just-infinite. O

Corollary 6.4. Let G be a group for which C*(G) is just-infinite. Then G is
amenable, and hence C*(G) = C;(G) is nuclear.

Proof. It follows from Proposition 6.3 that the reduced and the maximal norm
on C[G] coincide, so G is amenable. O]

Corollary 6.5. For each group G, if C*(G) is just-infinite, then C[G] is *-just-
infinite, which in turn implies that G is just-infinite.

Proof. The first implication follows from Proposition 6.3. To see that the second
implication holds, suppose that C[G] is *-just-infinite, and let N be a non-trivial
normal subgroup of G. The quotient map G — G/N lifts to a necessarily non-
injective *-homomorphism C[G] — C[G/N]. Hence C[G/N] must be finite
dimensional, whence G/ N is finite. O]

None of the reverse implications above hold; cf. Examples 6.6 and 7.3.

Example 6.6. The group algebra C[Z] is *-just-infinite, and the group Z is just-
infinite; but C *(7Z) is not just-infinite, and C[G] has no minimal C*-norm.

Proof. Each unital *-representation 7r of C[Z] on a Hilbert space H admits a natural
factorization C[Z] — C(K) — B(H), where K € T is the spectrum of the unitary
operator u = m(1), and where C(K) — B(H) is injective. It is easy to see that
is faithful on C[Z] if and only if K is an infinite set. If & is not faithful, then K
is finite, which entails that 7w (C[Z]) is finite dimensional. This shows that C[Z]
is *-just-infinite.

As there is no minimal closed infinite subset of T', there is no minimal C *-norm
on C[Z], and we conclude from Proposition 6.3 that C *(Z) is not just-infinite. This
conclusion also follows from Example 3.3. L]

Proposition 6.7. If G is a locally finite group, then C[G] has a unigue C*-norm.

Proof. Each element x € C[G] is a linear combination of finitely many elements
from G, and each finitely generated subgroup of G is finite, by assumption. Hence
there is a finite subgroup H of G such that x € C[H] € C[G]. Now, C[H]
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is a (finite dimensional) C *-algebra, so it has a unique C*-norm. Thus any two
C*-norms on C[G] must agree on x. As x was arbitrarily chosen, we conclude
that C[G] has a unique C *-norm. O

Question 6.8. Let G be a group and suppose that C[G] has a unique C *-norm. Does
it follow that G is locally finite?

The augmentation ideal of the full group C *-algebra C*(G) of a group G is
the kernel of the trivial representation C*(G) — C. If G is infinite and if the
augmentation ideal is simple, or, more generally, just-infinite, then C*(G) is just-
infinite by Proposition 3.5 (ii), since the augmentation ideal always is essential
when G is infinite.

There are locally finite groups whose augmentation ideal is simple, such as Hall’s
universal groups, see [9] and [27]. It follows from Theorem 3.10 that C*(G) is just-
infinite of type (), for any such group G. Itis easy to see that if an amenable group G
has simple augmentation ideal, then it must be simple; however, simple groups (even
locally finite ones) need not have simple augmentation ideal: the infinite alternating
group A is @ counterexample.

Lemma 6.9. Let G be a residually finite group for which C*(G) is just-infinite.
Then C*(G) is RFD (and hence of type (y); cf- Theorem 3.10).

Proof. Let {N;};e1 be a decreasing net of finite index normal subgroups of G with
(Nier Ni = {e}, and consider the *-homomorphism

®:C*(G) — [ [ C*(G/Ny).

iel

It suffices to show that @ is injective; and by the assumption that C*(G) is just-
infinite, it further suffices to show that the image of ® is infinite dimensional. The
latter follows from the fact that G is infinite (as C *(G) is just-infinite) and (hence)
that sup; ¢y |G : N;| = oc. O

Question 6.10. Does there exist an infinite, residually finite group G such that C*(G)
is just-infinite?
If such a group G exists, then C*(G) will be a RFD just-infinite C *-algebra by

Lemma 6.9. If the answer to Question 6.8 is affirmative, then G must be locally
finite. This leads to the following:

Question 6.11. Does there exist an infinite, residually finite, locally finite (necessarily
just-infinite) group G such that C[G] is *-just-infinite?

If such a group G exists, then C*(G) will be a RFD just-infinite C *-algebra by
Lemma 6.9, Proposition 6.7 and Proposition 6.3. After the first version of this paper
was made public, Question 6.11 has been answered in the affirmative in [7].
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Just-infinite groups are divided into three disjoint subclasses (the trichotomy
for just-infinite groups), see [22, Section 6]: The non-residually finite ones (which
contain a finite index normal subgroup N which is the product of finitely many copies
of a simple group), branch groups (see more about those in Theorem 7.10 below), and
the hereditarily just-infinite groups, i.e. the residually finite groups for which all finite
index normal subgroups are just-infinite. It is shown in Theorem 7.10 below thatif G
is a just-infinite branch group, then C[G] is not *-just-infinite, whence C*(G) is not
just-infinite. Hence, if there exists a residually finite group G for which C*(G) is
just-infinite (and hence also RFD), then G must be hereditarily just-infinite.

Consider the following three (classes of) examples of hereditarily just-infinite
groups: the integers Z, the infinite dihedral group D, and PSL,(Z), forn > 3. As
shown below, if G is any of these groups, then C*(G) is not just-infinite. Moreover,
there is no unitary representation = of G such that C7(G) is RFD and just-infinite.
If G = Z, then this claim follows immediately from Example 3.3. In the two
examples below we discuss the situation for the two other (classes of) groups.

Example 6.12 (PSL,,(Z), n > 3). The groups PSL, (Z), n > 3, are renowned for
being the first examples of infinite groups with Kazdan’s property (T), as first shown
by Kazdan. For a different and nice proof by Shalom, see [34]. They are residually
finite, as witnessed by the finite quotient groups PSL,,(Z/NZ), N € N; and they are
hereditarily just-infinite by Margulis’ normal subgroup theorem. Bekka—Cowling—
de la Harpe proved in [4] that PSL,(Z) is C*-simple, for all n > 2. In particular,
PSL,,(Z) is an ICC group (all its non-trivial conjugacy classes are infinite).

We conclude from these facts that the C*-algebra C;(PSL,(Z)) is just-infinite
(being simple) for all n > 2, while the full group C*-algebra C*(PSL,(Z)) is not
just-infinite, because PSL, (Z) is non-amenable, forn > 2.

Bekka proved in [3] that the set of extremal characters on PSL,(Z), forn > 3,isa
countably infinite set consisting of the trivial character &, and a sequence {x }72 ; of
characters, each of which factors through a finite quotient, PSL,, (Z /N Z), of PSL,, (Z)
for a suitable integer N (depending on k). Recall that each (extremal) character on
a group corresponds to an extremal trace on its full group C *-algebra. The trivial
character 8, on PSL, (Z) corresponds to the canonical trace tp on C*(PSL,(Z));
while for k > 1, the character é; corresponds to a trace, denoted by tx, whose
GNS-representation s, is finite dimensional. Bekka also shows that 7, — 7 in the
weak™ topology.

Furthermore, observe that C*(PSL, (7)) has a just-infinite quotient, namely the
simple C*-algebra C;(PSL,(Z)). However, as shown below, there is no unitary
representation 7 of PSL, (Z) such that C} (PSL,(Z)) is RFD and just-infinite.

Indeed, assume that & is such a unitary representation of PSL,(Z). As in
Remark 3.15, let {m;}%2, be an exhausting sequence of pairwise inequivalent
non-faithful irreducible representations of C*(PSL,(Z)). Then p; = m; o m,
J > 1, is a sequence of pairwise inequivalent non-faithful irreducible representations
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of C*(PSL,(Z)). Hence p; is equivalent to 7, for some k() > 1, by the above
mentioned result of Bekka. Suppose now that x € C*(PSL,(Z)) belongs to the
kernel of 7. Then, forall j > 1, 7, (x) = 0, 50 T¢(j)(x*x) = 0. It follows that
To(x*x) = lim; oo Tg(j)(x*x) = 0, so A(x) = 0. This shows that A is weakly
contained in 7r. We conclude that the left-regular representation A factors through
so the simple C*-algebra C(PSL, (%)) is a quotient of C;(PSL,(Z)). Each simple
quotient of a RFD just-infinite C *-algebra is finite dimensional, so C(PSL,(Z))
cannot both be RFD and just-infinite.

Example 6.13 (The infinite dihedral group D). The infinite dihedral group D
is an example of a hereditarily residually finite just-infinite group, see [22], and it is
isomorphic to the free product Z, % Z, which is an amenable group (of linear growth).
The group C *-algebra C*(Z,*/Z,) is known to be a sub-C *-algebra of M, (C ([0, 1]))
(being the universal unital C™*-algebra generated by two projections), and is hence
subhomogeneous (cf. Proposition 3.16). Clearly, any quotient of a subhomogeneous
C™*-algebra is again subhomogeneous, so we conclude from Lemma 3.17 that
C*(7Z, * 75) is not just-infinite, and neither is any of its quotients.

7. Algebras associated with groups of intermediate growth

In this section we present some results concerning algebras associated with the
3-generated infinite torsion group constructed in [19], which we here will denote
by §. This group is a simple example of a group of Burnside-type, and it is
investigated more deeply in [20] and many other papers (see the surveys [23, 24],
and the references therein). Among its unusual properties, most notably § is of
intermediate growth (between polynomial and exponential), and, as a consequence,
it is amenable, but not elementary amenable, thus answering questions by Milnor
and Day, respectively; cf. [20]. Furthermore, § is a just-infinite group of branch type
(and hence residually finite), and moreover, it is a self-similar group (i.e. a group
generated by states of a Mealy-type automaton).

There are indications that various C *-algebras associated with ¢ (including C * (%)
and some of its quotients, discussed below) may be new types of C *-algebras with
properties unseen yet in the theory of operator algebras. Our main conjecture in this
direction is the following:

Conjecture 7.1. The (self-similar RFD) C™-algebra C;(§) generated by the
Koopman representation w of '§ is just-infinite.

The Koopman representation 7 of § will be described below, along with the
notion of self-similarity. If the conjecture above is correct, then C; (%) is a just-
infinite C *-algebra of type (y) as described in Theorem 3.10; cf. Lemma 6.9, and it
is the first example of such a C*-algebra associated with a group.
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Recall that the group ¥ is generated by four elements a, b, ¢, d satisfying the
relations

l=a?>=b>=c2=d?* =bcd = (rk((ad)4) — (rk((adacac)4), (el )
fork =0,1,2,..., where the permutation ¢ is given by the substitutions:
a—aca, b—d, ¢c—b, d-—c.

This presentation was found by I. Lysenok in [28], and it is a minimal presentation (in
the sense that no relator in (7.1) can be deleted without changing the group, see [21]).
In fact, § is generated by 3 elements, as d = bc. The set {1,h,c,d} is the Klein
group Z. /27 & 7./ 27.

For our purposes it will be most important to know that § has a faithful self-
similar action by automorphisms on an infinite binary rooted tree 7', as shown, in

/\.
N0 N .
AANANAN

The generators a, b, ¢, d acton T as follows: The root of the tree (marked in white)
is a common fixed point. The generator a just permutes the two vertices vy and v;
at the first level and acts trivially inside the subtrees 7 and 77 with roots vy and vy,
respectively. The generators b, ¢, d fix the vertices vg and v; (and hence leave the
subtrees Ty and T} invariant), and they are defined recursively by:

bliy =a, blp =g cls =a;  clry = 4, dlm =1 dlr =&
(7.3)
when identifying the subtrees 7y and 77 with 7" in the natural way, and where 1
stands for the identity automorphism. For more details on this definition, and other
definitions of &, we refer to [19,20,23,24]. The relations (7.3) imply that § is a
self-similar group in the sense that it has a natural embedding

Y8 > §U7ZL[2L) = (§ x8§)x(Z/2Z), (7.4)
where 7 /27, = {e,e} acts on ¥ x § by permuting the two copies of § (e is the
identity element and ¢ is a transposition). The embedding ¥ is given as follows:

Yla) =(1,1)-e =¢, Y(b) =(a.c)-e=(a.c),
Y(c)=(a.d)-e=(a.d). ¥(d)=(1.b)-e=(LD).
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To further illlustrate this action of ¥ on the tree 7 it is convenient to label the
vertices of the nth level, V,, of T by the set {0, 1}" and equip each V},, with the
lexicographic ordering:

/g\
NN e
ANV ANEVANIVA\

000 001 010 011 100 101 110 111

The action of the group § on T yields an action of ¥ by homeomorphisms on the
boundary d7 of T', which consists of geodesic rays joining the root @ with infinity.
The boundary 37 can in a natural way be identified with the Cantor set {0, 1} of
infinite binary sequences equipped with the Tychonoff topology.

Let p = X322, {%. %} be the uniform Bernoulli measure on d7". It is invariant
with respect to the action of the entire group Aut(7") of automorphisms on 7', and
hence with respect to the action of § on 7. The topological dynamical system
(&, dT) can be converted into a metric dynamical system (&, 97, ) which is ergodic
(while (G, dT) is minimal), because the action of ¥ on each level V,, is transitive,
see [25, Proposition 6.5].

Let m be the (unitary) Koopman representation of ¥ on the Hilbert space
L>(T, ) given by (w(g)f)(x) = f(g7'x), where [ € L*(dT,p), g € 9,
and x € d7T. We denote the image of the group algebra C[F] under the
representation 77 by B, and we let as usual C} (%) denote the completion of C[§]
with respect to the norm induced by 7.

The following theorem carries some evidence in support of Conjecture 7.1.

Theorem 7.2. Let § = (a,b,c,d) be the infinite torsion group of intermediate
growth from above, let w be the Koopman representation of §, and let B = w(C[§]).
Then:

(i) B is self-similar, infinite dimensional and RFD.
(ii) C1(9) is self-similar, infinite dimensional, RFD, and it posseses a faithful trace.
(iii) The natural surjection w: C[§] — B is not injective, whence C[§] is not *-just-
infinite.
(iv) B is just-infinite.

The notions of self-similarity of the algebras B and C;(¥) will be explained
below. Theorem 7.2 above is proved at the end of this section.
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The type of just-infinite algebras (also called “thin algebras™) considered above
were studied for the first time by Sidki in [35]. The group used by Sidki was the Gupta—
Sidki 3-group H, and the algebra was defined over a field IF3 in a rather involved way
as a certain inductive limit. If one considers the “Koopman™ representation of H
over the field [F3, then the image of the group algebra IF3[H ] will be isomorphic to
Sidki’s thin algebra.

The C*-algebra generated by the Koopman representation of the group §
(considered in this section) was considered in [2], and so was the algebra B, even
though it was not explicitly defined there. Vieira, [36], used Sidki’s approach to define
a “thin algebra” of the group ¥ over the field F,, and proved that it is just-infinite.

Thin algebras under the name “Tree enveloping algebras™ were considered by
Bartholdi in [1]. He defines algebras, similar to the algebra B in Theorem 7.2,
however, over arbitrary fields. He considers a vector space with a basis consisting of
all points of the boundary of the rooted tree, and then defines an algebra as the image
of the group algebra in the algebra of endomorphisms of this huge vector space. One
can show that if the field is complex numbers and the group is the group &, then
Bartholdi’s algebra is isomorphic to the algebra B we are considering here.

In [1, Theorem 3.9], a sufficient condition is given for the tree enveloping algebra
to be just-infinite. This condition is satisfied in the case of the group 5.

Example 7.3. As mentioned above, the group ¢ is just-infinite. We can therefore
deduce from Theorem 7.2(iii) that just-infiniteness of a group ¥ does not imply that
its complex group algebra C[€] is *-just-infinite.

Self-similarity of graphs, Hilbert spaces, representations and algebras. Let
X = {x1,%2,..., x4} be an alphabet on d > 2 letters, let X* = | |72, X" be the
set of words over X, and let 7 = Tx be the d-arnery rooted tree whose vertices
are in bijection with the elements of X * (so that the nth level V,, of T corresponds
to X™). The action of an arbitrary group G on 7" by automorphisms induces an action
G ~ X*. This action is said to be self-similar if for all g € G and all x € X, there
are h € G and y € X such that g(xw) = yh(w), for all w € X*. If this holds, then
for every v € X™, there exists a unique /1 € G satisfying, for all w € X*,

gvw) = g(v)h(w). (7.6)

The element £ is called the section (or restriction) of ¢ in v, and is denoted by & = g|.
For example, for the group ¥ = (a, b, ¢, d) under examination, we have; cf. (7.3),
that

a|v() = a‘Ul = 1, blv() =d, blul =c,
C|U() == av CIU] = d; d|v() = 1, d’vl = b

Let H be a separable infinite dimensional Hilbert space, and fix an integer d > 2.
A unitary operator u: H — HY = H® H® - @& H is called a d-similarity
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of H. Each d-similarity arises from d isometries sy,...,5; on H, satisfying
Z?:i sjs7 =1, as follows:

d
u() = (576,558, wEn....E) =) sk,
j=1
for £,&1,....&; € H. Observe that sy, ..., ss define a representation of the Cuntz
algebra O ;, and that every representation of O is obtained in this way. For each x =
(Xi,, Xip, ..., Xi,) € X* consider the isometry on H given by Sy = s;,5i, - .- i,

and observe that S, Sy, = Sy,. A unitary representation p of a group G on a Hilbert
space H is said to be self-similar with respect to the d-similarity iy considered
in (7.4) above, if

p(g)Sx = Syp(h), (7.7)

forall g,h € G and all x, y € X* satistying g(xw) = yh(w), forall w € X*. In
other words, p(g)Sx = Sgx)p(glx), forall g € G and x € X*.

The image B, = p(C[G]), where p is a self-similar representation, is called a
self-similar (abstract) algebra. The C*-algebra C;(G) associated with a self-similar
representation p is called a self-similar C*-algebra. One of the features of the
self-similar algebra B, (or of the C*-algebra CJ(G)) is the existence of the unital
embedding

sthsy --- 57bsq
Vo By = My(B),), b+ : : , (7.8)
sybsy -+ s3bsg

forb € B,. It follows from (7.7) that s;‘ B,si € By, foralli, j. The embedding v, is
typically not surjective. Nonetheless, it has many interesting and non-trivial features,
see, for example, Lemma 7.6 below.

In the case of our main example § = (a,b,c,d) and of the Koopman
representation 7 of § on H = L?*(3T, ), we have an explicit self-similarity
H — H & H arising from the two isometries s, s; on / defined by

(si f)(x) = f(ix), (7.9)

fori = 1,2, where f € L?(3T, 1) and x € 9T, and where ix € a7 = {0, 1} is the
word obtained by putting the letter i in front of the word x. The resulting embedding
Yr: B — M>(B) is given as follows on the generators:

Vr(a) = ((1) (1)) ) WJT(B) = (g (C_)) ,

o- (1) o= () 7.10)
w':rc)—()d: Y ( =\o »)°
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(as can be deduced from (7.7) and (7.8)), where we have introduced the notation
g = n(g), for g € §. (The Koopman representation is faithful on &, so the
map g +> g is injective, but the Koopman representation is not faithful on C[§];
cf. Theorem 7.2, so it is pertinent to distinguish between g and 7 (g).)

More on the Koopman representation. What we are going to present here is known
in the more general situation of groups acting on rooted trees, [2,5,23]. Consider
the binary rooted tree 7 (as described in (7.2) and (7.3)), and the Koopman
representation 7 of the group € = {a,b,c,d) on L?(0T, ).

Foreachn > 1, let v, 1,Vp.2,....Vs 2n be the order preserving enumeration of
the set V,, = {0, 1}" (equipped with the lexicographic ordering); cf. (7.5), and write
8 = |_|lzl1 E, i, where E, ; is the set of infinite words in 07" = {0, I}N that start
with v, ;. Set

Hy =span{¥e, ; | i = 1. 200 s 2"y H = L*@T, ).

which is a subspace of dimension 2". Since E,; = Epqy12i—1 U Eyq41,2i, we see
that H, € H,y1. Moreover, as the cylinder sets £, ;,n > 1,1 <i < 2" forma
basis for the topology on 97, it follows that | J;; H, is dense in F.

The subspaces H,, are w-invariant. Let 7, be the restriction of 7 to H,,, forn > 1.
Observe that 77, is unitarily equivalent to the representation of § on £2(V,,) arising
from its action on the nth level V, of the tree 7. More specifically, identify H,
with £2(V,) via the isomorphism that identifies yg, , with 8, .. Write H,4; =
H, @& H;, and let 7 denote the restriction of 7 to H;-. Note that H;- has
dimension 2”. It is shown in the appendix of [5] that the representation nnL of & is
irreducible, for each n > 1. Thus we have decompositions

[e.@)

oo
H=CePH r=10Pm, . (7.11)
n=0

n=0

of the Hilbert space / and of the representation 7 into irreducible representations,
where we identify H, with C, and my with the trivial representation 1.

The proof of Theorem 7.2.

Proof of Theorem 7.2 (i). Recall from (7.9) that we have isometries sg,s; on the
Hilbert space H = L?(dT, ) satisfying the Cuntz relation sosg + s157 = 1.
The range of the isometry s; is L2(d7;, u;), where Ty and T are the subtrees
of T with roots vy and vy, respectively; cf. (7.2), and where py and p; are the
normalized restrictions of j to the subsets d7, and 077, respectively, (making them
probability measures). The Koopman representation 7 is self-similar with respect to
the 2-similarity of H given by the isometries s, 51, S0 B = 7 (C[§]) is self-similar.
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i

o> we see that B is a

By (7.11) and irreducibility of the representations
subalgebra of

(o]
M:=Ce& [] Mx(C), (7.12)
n=0
with the property that the projection of B onto each summand in (7.12) is surjective.
Hence B is infinite dimensional and RFD. This completes the proof of (i).

Proof of Theorem 7.2 (ii). It follows from (7.11) that the inclusion of B into M
is isometric, when B is equipped with the norm arising from the Koopman
representation 7. Thus C (&), which is the completion of B with respect to this
norm, embeds into M. Hence C}(¥) is RFD. Moreover, it is infinite dimensional
because it contains the infinite dimensional algebra B, and it is self-similar because
the Koopman representation 7 is self-similar. Finally, M has a faithful trace, for
example the one given by

Tilx) = Z o ;T (x;),

j=—1

where x = (x1.Xx9,X1,...) € M, 1, is the normalized trace on M, (C), for each
n > 1 (and 7_y and 7o are the normalized traces on C), and {a; } 5L _, is any sequence
of strictly positive numbers summing up to 1. Hence C (%) has a faithful trace, being
a sub-C *-algebra of M.

Proof of Theorem 7.2 (iii). The first claim of (iii) is proved in the lemma below, and
the second claim follows from the first claim and the fact, proved in (i), that B is
infinite dimensional.

The result below can be found in [26]. We include its proof for completeness of
the exposition.

Lemma 74. (1 —d)a(l —d) is a non-zero element in the kernel of w: C[§] — B.

Proof. We observe first that z := ¢ — da — ad + dad is non-zero in C[§]. Indeed,
if z = 0, then a + dad = da + ad, which can happen only if either ¢ = da and
dad = ad, ora = ad and dad = da. Both are impossible, because d # e. (It
is also easy to see, for example using the action of § of the tree 7, that the four
elements a, da, ad, dad are pairwise distinct.)

By (7.10) (and retaining the notation g = n(g), for ¢ € §), we have

@) = vl -daa-0) = (g ") (T o) (o 1 05) =

where ¥/, is the embedding of B into M, (B) arising from self-similarity. As V5 is
injective, this implies that 7(z) = 0. ]
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The proof of part (iv) of Theorem 7.2 is somewhat lengthy and is divided into
several lemmas. The proof mimics the proof of the fact that ¢ is a just-infinite group,
as well as the idea from the proof of [22, Theorem 4] showing that a proper quotient
of an arbitrary branch group is virtually abelian. In our situation, the following
statement from [22, Proposition 8] is useful:

Proposition 7.5. The normal subgroup K = ((ab)?)¥ has finite index 16 in &, and
it is of self-replicating type, written K x K < K, i.e. K x K € Y(K), where ¥ is
given by (7.4).

Lety:§ — (9 x§)xZ/27 be as defined in (7.4). For each m > 1, the stabilizer
subgroup Stg(m) of &, with respect to the action of § on the tree T, is the set of
elements g € ¢ that fix all vertices at level m, i.e. all vertices in V},. In particular,
if g € Stg(1), then ¥ (g) € § x &. The group K is a subgroup of Stg(1).

It is also shown in [19] that ¥ itself is self-replicating (or recurrent), in the sense
that Stg(1) <5 ¥ x &, where <g is subdirect product. This means that the group
homomorphisms

Stg(l) > ¢ x g > g,

where r;, j = 0, 1, are the coordinate homomorphisms, are surjective.

Let A be the ideal in B generated by the set {k — 1 | k € K} € B, where K
is as in Proposition 7.5 above. Then B/A has dimension at most 16. To see this,
let {t1,12,...,t16} be representatives of the cosets of K in §. For each g € G, there
existi in{1,2,...,16}and k in K suchthat g = t;k = t; +t;(k—1),s0 g € t; + A.
This shows that B/ A is the linear span of the elements 11 + A, 1> + A, ..., 116 + A.

Let ¥,: B — M3(B) be as defined in (7.8), and let ¥: B — Myn(B) =
B ® M5 (C) denote the “nth iterate of ¥, ”, in the sense that

Y = Wz ®idp,,_,(©) 00 (Yx ®@idu,(c)) © Y-

The homomorphisms ¥/ are not surjective, but the following holds:

Lemma 7.6. Foreachn > 1, Man(A) C y2(A).

Proof. The lemma follows easily by induction on 7, once the base step n = 1 has
been verified. So let us show that M, (A) C ¥, (A).

It follows from Proposition 7.5 that for each k € K we can find k¥’ € K such that
¥ (k') = (k, 1). Hence

wn(k")=(’5 ?) wn(k"—l)—(kgl 8) (7.13)

Let x, x’ € A be such that

n__[(x O
w(X)—(O 0). (7.14)
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Since 9 is self-replicating; cf. the comments below Proposition 7.5, we can for each
f €¥findg e Stg(l) and h € §, such that Y (g) = (f. h). Then

wn(grx’):(fox 8) wn(x’gr):(xof 8)

Together with (7.13), this shows that

A0
(5 o) < vate (715

If x, x" € A are such that (7.14) holds, then

bt = (7 o). wataxs = (g ). vmexa = (g 7).

Together with (7.15), this completes the proof. L]
Lemma 7.7. dim(B/A?%) < |§ : [K, K]| < .

Proof. Let A’ be the ideal in B generated by the set {k — 1 | k € [K, K]}. Exactly as
in the argument above, showing that the dimension of B/A is at most [§ : K| = 16,
we see that the dimension of B/A’ is at most |G : [K, K]|. Now, K is finitely
generated, and so is the quotient K /[K, K], which, moreover, is an abelian torsion
group. Hence K/[K, K] is finite, so |9 : [K, K]| = |§ : K||K : [K, K]| is finite.
Forall k1,k, € K,

ey ko] =1 = k7 Uy (k1 = D(ka — 1) — (ka — D (k1 — 1) € A,
which shows that A’ € A2, This proves the lemma. O

One more property of &, that we are going to exploit, is the so-called contracting
property, already used in [19]. Let |g| denote the length of ¢ € § with respect to
the canonical generating set {a,b,c,d}. With .9 — (§ x §) x Z/2Z as defined
in (7.4), and g € G, we have ¥ (g) = (g9, £1)n, where g1, g, € § and n € {e, €}.
By [19], see also [23, Lemma 3.1],

gl +1

,
fori =0, 1. In particular, |g;| < |g|if |g| = 2. The set of elements g € § for which
lg] < lisequalto N = {l,a,b,c,d}, which is called the nucleus of §.

We can repeat this process and obtain for each ¢ € ¥ and v € {0, 1}" a section
gy = glv € F (defined underneath (7.6)), such that ¥ (g,) = (gov, 1v) v, Where
Ny € {e,e} and |giy| < (Jgu| + 1)/2, fori = 0, 1. It follows that, for each g € &,
there exists n > 1 such that g|, € N, for all v in {0, 1}"*. By the construction of the
self-similarity map ¥: B — M5 (B), this leads to the following:

lgi| < (7.16)
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Lemma 7.8. For each x in B, there exists n > 1 such that the 2" x 2" matrix
Vi (x) € Myn(B) has entries in the linear span of the element in the nucleus
N ={l,a.b,¢.d}.

Next we will prove:

Lemma 7.9. Let J be a non-zero ideal in B. There is m > 1 so that Mam (A%) C

Y (J).

Proof. Let x be a non-zero element in J. Suppose that there exists m > 1 such that
one of the 2™ x 2™ entries, say the (s, 7)th entry, of ¥ (x) is a non-zero scalar A.
Denote by efjr."), i,j =1,2,...,2™, the standard matrix units of M,m(C). Then,
upon identifying Mm (B) with B @ M,m, we have

(P ® eI ()G ®ef”) = Apg ® e (7.17)
for all p,g € B and all i,j = 1,2,...,2™. It follows from (7.17) and from
Lemma 7.6 that pg ® el.(j'.") belongs to ¥'(J), for all p,g € A. We conclude that

z® ei(;") belongs to ¥'(J), for all z € A% and all i, F =12 e dx and hoice
that Mom (Az) - WJT(J)

To complete the proof, we show below that one of the entries of ¥ (x) is a
non-zero scalar, for some m > 1.

Let n > 1 be as in Lemma 7.8 (associated with our given x € B). Write
Yl(x) = (xs,t)f,';:] with x;; € B. By the choice of n, we deduce that x; ; belongs
to the span of N = {1,&,5,5,0’_}, for all s,7. Since ¥ is injective, Y2 (x) is
non-zero, so we can find s, f such that x;; is non-zero. Write

Xs0=p-1+Ed+Bb+yé+3d,
for suitable p, &, B, y,§ € C. Observe that, by (7.10),

B+y)a+s+p £ )

. = 7.18
£ Bé +yd +8b + p (7.18)

Y (xs,t) — (

The proof is now divided into three cases:

(1) Assume that £ # 0. In this case both off diagonal entries of ¥ (xs,) are non-
zero scalars, and since V¥ (x5 /) is a sub-matrix of the 2"+ x 2"+! matrix y*+!(x),

at least one of the entries of w;*l (x) is a non-zero scalar.

(2) Assume that either f + y # 0, 0or 6 + p # 0. Use (7.10) to compute the 2 x 2
matrix

wn((ﬁ+y)&+8+p)=(gj_ﬁ ?1;’)

By assumption, one of the scalar entries in this matrix is non-zero. Further, it is a
sub-matrix of the 4 x 4 matrix V2 (x;,) and hence a sub-matrix of the 22 x 2712
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matrix ¥ *2(x). Thus at least one of the matrix entries of ¥ *2(x) is a non-zero
scalar.

(3) Assumethat{ = +y =6 + p = 0. Then

B+y)a+s+p 0 )

z(pc l b_ - - 7 I
Yx(Be +yd +0b+p) ( 0 pc+yd +8b+p

/(0 0
B (o ﬁE—ﬁa?qLSi;fb’)’

and

%(ﬁc__ﬁmgg_(s):((ﬂ+5)a+ﬁ+5 0 )

0 Bd — Bb + 8¢ — &

If p + 6 # 0, then, as in step (2), ¥, ((B + d)a + B + &) is a non-zero scalar 2 x 2
matrix, which is a sub-matrix of the 16 x 16 matrix y/fi (xs5.1), whence at least one of
the entries of ¥+ (x) is a non-zero scalar.

If B+8 = 0, then B # 0 (because x5, # 0), so B¢ — fd + b — 6§ =
B —d —b+1),and

- T 0 0
Wc_d"’“)*(o J—E—E+1)’

= g 2—2a 0
w”(d_b%“)_( 0 /5—5—5+1)'

Arguing as in step (2), we see that ¥, (2 — 2a) is a non-zero scalar 2 x 2 matrix,
which is a sub-matrix of the 32 x 32 matrix %5; (x5.¢). so at least one of the entries
of Y3 (x) is a non-zero scalar. O

We are now ready to complete the proof of Theorem 7.2.

Proof of Theorem 7.2 (iv). Let J be a non-zero ideal in B. Use Lemma 7.9 to find
n > 1 such that Man (A%) € ™ (J). Since ¥ is injective, it follows that

dim(B/J) = dim(y"(B)/¢¥"(J)) < dim(My:(B/A?%)) = 2*" dim(B/A?) < oo,
by Lemma 7.7. This completes the proof. L]

We end our paper by showing that if G is a residually finite group for which
C[G] is *-just-infinite, then G is hereditarily just-infinite (see also the discussion at
the end of Section 6). Indeed, if C[G] is *-just-infinite, then G is just-infinite, by
Corollary 6.5. By the trichotomy for just-infinite groups, [22, Section 6], G must be
either a branch group or hereditarily just-infinite, and the theorem below rules out
the former possibility.
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We remind the reader about some facts concerning branch groups (see also [22]).
Consider a spherically homogeneous rooted tree T = T, where m = {m,}>2,,
is the branching index of the tree (each m, > 2 is an integer). For each vertex v
in the kth level of the tree T, let 7, be the sub-tree of 7" consisting of all vertices
“below” v, so that T, is a rooted tree with root v and branching index {m) }>2 .
where m}, = my .

Suppose that G is a group that acts on such a spherically homogeneous rooted
tree 7. Then G fixes the root of the tree and hence leaves each level of the tree
invariant. The rigid stabilizer of a vertex v € T', denoted by ristg (v), is the subgroup
of G consisting of all g € G which act trivially outside 7} (and fix v). The rigid
stabilizer, ristg(n), at level n € N is the subgroup of G generated by the rigid
stabilizers ristg (v) of all vertices v at level n. It is easy to see that ristg (n) is, in fact,
the direct product of the groups ristg (v), where v is a vertex at level n.

A group G is said to be a branch group if it admits a faithful action on such a
spherically homogeneous rooted tree 7" = T}, such that the index |G : ristg (n)] is
finite, for all n € N, and such that 7" acts transitively on each level of the tree.

Theorem 7.10. If G is a branch group, then C[G] is not *-just-infinite, whence
C*(G) is not just-infinite.

Proof. Fix an action of G on a spherically homogeneous rooted tree 77 = Ty
satisfying the above mentioned conditions. Let 7 be the Koopman representation of G
into the unitary group of the Hilbert space H = L*(37, p), where p = X5 fin,
and g, is the uniform probability measure on the set {1,2,...,m,}. Denote also
by 7 the associated *-representation C[G] — B(H).

We show that 7: C[G] — B(H) is not injective, and that 7 (C[G]) is infinite
dimensional. This will imply that C[G] is not *-just-infinite, and hence (by
Corollary 6.5) that C*(G) is not just-infinite. Since G acts level transitively on 7',
we conclude that G is infinite and that 7(C[G]) is infinite dimensional.

Let m = m(0) and let vy, vs...., v, be the vertices at the first level of the
tree 7" (below the root of the tree). The condition that |G : ristg(1)| is finite
implies that ristg (1), which is isomorphic to X', ristg (v;), is infinite. Moreover,
by level transitivity of the action of G on 7', the rigid stabilizers ristg(v;) are
pairwise conjugate, so they are, in particular, non-trivial. We can therefore choose
g; €ristg(v;), for j = 1,2, such that g; # 1. Observe that (1 — g1)(1 — g2) =
1 — g1 — g2+ g1g2 is non-zero in C[G], because g1 # 1 and g, # 1.

Fori = 1,2,...,m, let X; be the subset of d7 consisting of words that start
withv;,i.e. X; = dTy,;, sothat 97 is the disjoint union of the sets X1, X5, ... X,,. Set
H; = L*(X;, ). Then H = B7L, H;. Let P; be the projection from H onto H;.
Since g ; acts trivially on the sub-trees 75, , fori # j, we conclude that P; commutes
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with w(g;) fori = 1,2,...,mand j = 1,2, and P;n(g;) = P;, when j # i.
Hence (1 — g;)P; = 0, fori # j. It follows that

m

7((1—g)(1—g2) = (1 —g0)(1 —2)) D P

i=1
=n((1—g1)(1—g2))P2 =7(1 — g1) Parr(1 — g2) =0,

so w: C[G] — B(H) is not injective, as wanted. [

The theorem above (and its proof) contains item (iii) of Theorem 7.2, since §
is a branch group. As in the conclusion of Theorem 7.2, it can happen, at least for
some just-infinite branch groups G (for example, when G = §), that n(C[G]) is
just-infinite. It may also happen, for some just-infinite branch groups G, that C7(G)
is a RFD just-infinite C *-algebra, where 7 as above is the Koopman representation
of G arising from its action on a tree. We conjecture that C (%) is a RFD just-infinite
C *-algebra.
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