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Dedicated to Efim Zelmanov on the occasion of his 60th birthday

Abstract. By analogy with the well-established notions of just-infinite groups and just-infinite
(abstract) algebras, we initiate a systematic study of just-infinite C*-algebras, i.e. infinite
dimensional C*-algebras for which all proper quotients are finite dimensional. We give a

classification of such C*-algebras in terms of their primitive ideal space, that leads to a

trichotomy. We show that just-infinite, residually finite dimensional C*-algebras do exist by

giving an explicit example of (the Bratteli diagram of) an AF-algebra with these properties.
Further, we discuss when C*-algebras and *-algebras associated with a discrete group are

just-infinite. If S is the Burnside-type group of intermediate growth discovered by the first-
named author, which is known to be just-infinite, then its group algebra C\S\ and its group
C*-algebra C*(S) are not just-infinite. Furthermore, we show that the algebra B n(C[S])
under the Koopman representation n of S associated with its canonical action on a binary
rooted tree is just-infinite. It remains an open problem whether the residually finite dimensional
C*-algebra C*(S) is just-infinite.

Mathematics Subject Classification (2010). 46L05, 37A55, 20C07, 46L36.

Keywords. Just-infinite, residually finite dimensional C*-algebras, AF-algebras, Bratteli
diagrams, Grigorchuk group.

1. Introduction

A group is said to be just-infinite if it is infinite and all its proper quotients are finite.
Just-infinite groups arise, e.g. as branch groups (including the Burnside-type group
of intermediate growth discovered by the first named author, see [19]). A trichotomy
describes the possible classes of just-infinite groups, see [22, Theorem 3], Each

finitely generated infinite group has a just-infinite quotient. Therefore, if we are
interested in finitely generated infinite groups satisfying a certain exotic property

*The first named author was supported by NSF grant DMS-1207699 and NSA grant H98230-15-1-
0328.

**The second and third named authors were supported by the Danish National Research Foundation
(DNRF) through the Centre for Symmetry and Deformation at University of Copenhagen, and The Danish
Council for Independent Research, Natural Sciences.
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preserved by homomorphic images, if such a group exists, then one is also to be

found in the class of just-infinite groups.
The purpose of this paper is to investigate just-infinite dimensional C*-algebras,

defined to be infinite dimensional C * -algebras for which all proper quotients by closed

two-sided ideals are finite dimensional. (In the future, we shall omit "dimensional"
and refer to these C*-algebras as just-infinite. The well-established notion of
infiniteness of a unital C *-algebra, that is, its unit is Murray-von Neumann equivalent
to a proper subprojection, is unrelated to our notion of just-infiniteness.) Analogous
to just-infiniteness in other categories, any infinite dimensional simple C*-algebra is

just-infinite for trivial reasons. It is also easy to see that if a C*-algebra A contains a

simple essential closed two-sided ideal I such that A/1 is finite dimensional, then A

is just-infinite. (A closed two-sided ideal in a C*-algebra is essential if it has nonzero

intersection with every other non-zero closed two-sided ideal.) Hence, e.g. any
essential extension of the compact operators on an infinite dimensional separable
Hilbert space by a finite dimensional C*-algebra is just-infinite.

We give in Theorem 3.10 a classification of just-infinite C*-algebras into three

types, depending on their primitive ideal space. In more detail, if A is a separable

just-infinite C*-algebra, then its primitive ideal space is homeomorphic to one of the

7o-spaces Yn,0 < n < oo, defined in Example 3.7. The case n 0 corresponds to A

being simple, while the case 1 < n < oo occurs when A is an essential extension of
a simple C*-algebraby a finite dimensional C*-algebra with n simple summands. If
the primitive ideal space of a separable just-infinite C*-algebra A is infinite, then it is

homeomorphic to the 7o-space Too, and in this case A is residually finite dimensional

(i.e. there is a separating family of finite dimensional representations of A). The

C*-algebra A has an even stronger property, described in Section 2, that we call

strictly residually finite dimensional. We refer the reader to the survey paper [6]
for a more comprehensive treatment of residually finite groups and residually finite
dimensional group C*-algebras.

To our knowledge, residually finite dimensional, for short RFD, just-infinite
C*-algebras have not been previously considered in the literature. A priori it
is not even clear that they exist. This issue is settled in Section 4, where we

construct a RFD just-infinite unital AF-algebra, by giving an explicit description
of its Bratteli diagram. Residually finite dimensional C*-algebras have been studied

extensively, see for example [6,13-15, 18]. They are always quasidiagonal (see,

e.g. [12] or [13, Chapter 7]). Interesting classes of C*-algebras, such as the full
group C*-algebras of the free groups and subhomogenous C*-algebras, are RFD.

Among RFD C*-algebras, the just-infinite ones are distinguished by having the

smallest possible ideal lattice.
In Section 5, we show that unital, separable, RFD just-infinite C*-algebras need

not be AF-algebras, nor nuclear, or even exact. Using a construction of Dadarlat
from [14], we show that the just-infinite, residually finite dimensional AF-algebra
constructed in Section 4 contains a RFD just-infinite, non-nuclear sub-C*-algebra.
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Moreover, this AF-algebra is contained in a non-exact C*-algebra, which, likewise,
is RFD and just-infinite.

Just-infiniteness for C * -algebras is less prevalent than the corresponding property
in the category of groups. Not every infinite dimensional C*-algebra has a

just-infinite quotient, since, for example, no abelian C*-algebra is just-infinite;
cf. Example 3.3. There seems to be no natural condition ensuring that a C*-algebra
has a just-infinite quotient.

We discuss in Section 6 when a group C*-algebra is just-infinite, depending
on properties of the group. We prove that the full group C*-algebra C*(G) of a

discrete group G is just-infinite if and only if its group algebra C[G] has a unique
(faithful) C*-norm and it is *-just-infinite, i.e. is just-infinite as a *-algebra. The

former property holds trivially for any locally finite group. We do not know of any
non-locally finite group for which C[G] has unique C*-norm. We show that there

are locally finite just-infinite groups G, for which the group C*-algebra C*(G) and

the group algebra C[G] are just-infinite. If the reduced group C*-algebra C^(G) is

just-infinite, then either Cj* (G) must be simple, or G must be amenable, in which
case (G) coincides with the full group C*-algebra C*(G). It seems plausible that
the group C *-algebra associated with unitary representations other than the universal

or the left-regular one might be just-infinite for a larger class of groups.
If the group algebra C[G] of a group G is *-just-infinite, then G must be just-

infinite, but the converse does not hold. Indeed, we show in Section 7 (Theorem 7.10)
that C[G] is not *-just-infinite whenever G is a branch group, while there are many
branch groups which are just-infinite, e.g. the group ~§ of intermediate growth
mentioned above. We show that the image B tz(<C\§\) of <C[§\ under the

Koopman representation n of ~§, associated with the canonical action of ^ on a

binary rooted tree, is just-infinite. We leave open the question whether or not the

C *-completion C* (ß) of B is just-infinite. In the affirmative case, this would provide
an example of a RFD just-infinite C*-algebra arising from a group.

2. Preliminaries

As we shall later describe just-infinite C*-algebras in terms of their primitive ideal

space, and as the interesting cases of just-infinite C*-algebras are those that are

residually finite dimensional, we review in this section the relevant background.

2.1. The primitive ideal space of a C*-algebra. A C*-algebra A is said to be

primitive if it admits a faithful irreducible representation on some Hilbert space. It
is said to be prime if, whenever I and J are closed two-sided ideals in A such that

I Fl J 0, then either / 0, or J 0. It is easy to see that every primitive
C*-algebra is prime, and it is a non-trivial result that the converse holds for all
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separable C*-algebras; cf. [31, Proposition 4.3.6]. However, there are (complicated)
examples of non-separable C*-algebras that are prime, but not primitive, see [37].

A closed two-sided ideal / in a C*-algebra A is said to be primitive if I f1 A

and / is the kernel of an irreducible representation of A on some Hilbert space.
The primitive ideal space, Prim(A), is the set of all primitive ideals in A. A closed

two-sided ideal I of A is primitive if and only if the quotient A/1 is a primitive
C*-algebra. In particular, 0 6 Prim(4) if and only if A is primitive. The primitive
ideal space is a To-space when equipped with the hull-kernel topology, which is

given as follows: the closure 3* of a subset F ç Prim(A) consists of all ideals

/ G Prim(A) which contain f]/eF J • If ^ is primitive, so that 0 e Prim(^i),
then {0} Prim(A). In the commutative case, the primitive ideal space is the usual

spectrum: Prim(Co(3f)) is homeomorphic to X, whenever A is a locally compact
Hausdorff space. The following fact will be used several times in the sequel:

Remark 2.1. Each finite dimensional C*-algebra A is (isomorphic to) a direct sum
of full matrix algebras,

A SÉ A4, (<C)©A42()©••• ®Mkn(C),

for some positive integers n,k\,k2, ,kn. As each matrix algebra is simple,
Prim(A) can be naturally identified with the set {1,2,..., n}, equipped with the

discrete topology. The primitive ideal space is Hausdorff in this case.

A closed subset F of a 7o-space X is said to be prime if, whenever F' and F" are

closed subsets of X such that F c F' U F", then F is contained in one of F' and F".
The closure of any singleton is clearly prime. A spectral space is a 7"b-space for which
the converse holds: each closed prime subset is the closure of a singleton. The results

listed in the proposition below can be found in [30, Sect. 5.4], or [31, Sect. 4.3]:

Proposition 2.2. Let A he a C*-algebra.

(i) IfA is unital, then Prim(/4) is a compact1 T^-space.

(ii) Let I Prim(A). Then {/} is closed in Prim(A) ifand only if I is a maximal

proper ideal in A, i.e. ifand only if the quotient A/1 is simple.

(iii) If A is separable, then Prim(A) is a second countable spectral space.

By Remark 2.1, the only finite dimensional C*-algebras which are primitive are

those which are isomorphic to full matrix algebras. Hence, the following holds:

Proposition 2.3. Let A be a separable C*-algebra, and let I G Prim(/I) be such

that A/1 is finite dimensional. Then A/1' M^(C), for some k G N, and {/} is

closed in Prim(4).

'A (possibly non-Hausdorff) topolotical space is said to be compact if it has the Heine-Borel property:
each open cover can be refined to a finite open cover. Sometimes this property is referred to as quasi-

compactness.
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A To-space X is said to be totally disconnected if there is a basis for its topology
consisting of compact-open sets. If the projections in a C*-algebra A separate its

ideals, then Prim(A) is totally disconnected. In this situation, we have the following
result, which will be discussed in more detail in Section 4:

Theorem 2.4 (Bratteli—Elliott [ 11 ]). Let X be a second countable, totally
disconnected spectral space. Then X is homeomorphic to Prim(A), for some separable

AF-algebra A. If X is compact, then A can be taken to be unital.

Recall that an AF-algebra is a C *-algebra which is the completion of an increasing
union of finite dimensional sub-C*-algebras.

We end this section by recalling that there is a one-to-one correspondence between

open subsets U of Prim(T) and closed two-sided ideals I{U) of A, given by

7(77) J, (2.1)

/ePrim(/4)\t/

with the convention that 7(0) 0 and 7(Prim(/l)) A. Moreover,

Prim(/4/7(t/)) Prim(T) \ 77, (2.2)

for each open subset 77 of Prim(T). Consequently, each closed subset of Prim(/4)
is the primitive ideal space of a quotient of A (see [31, Theorem 4.1.3]). Note
furthermore that if J e Prim(T), then J 7(77), where 77 is the complement of the

closure of {J}.

2.2. Residually finite dimensional C * -algebras. This section is devoted to discussing

residually finite dimensional C*-algebras and their primitive ideal spaces. We
also introduce the class of so-called strictly residuallyfinite dimensional C *-algebras,
and describe them in terms of their primitive ideal space.

A C*-aIgebra A is said to be residually finite dimensional (RFD), if it admits

a separating family of finite dimensional representations. The finite dimensional

representations can be taken to be irreducible and pairwise (unitarily) inequivalent.
(We note that two irreducible finite dimensional representations are equivalent if and

only if they are weakly equivalent, i.e. they have the same kernel.)
Assume that {ni}iei is a family of irreducible and pairwise inequivalent finite

dimensional representations of a C*-algebra A. Let ki be the dimension of the

representation jt;, and identify the image of 7r;- with M&. (C). We then get a *-homo-

morphism

^ Q}7ti:A^Y\Mki{C).
isi i si

Note that is injective if and only if fj/ei Ker(jr;) {0}, which again happens if
and only if {Ker(jr;) : i e 1} is a dense subset of Prim(A). Therefore, the following
lemma holds; cf. Proposition 2.3:
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Lemma 2.5. A C*-algebra A is RFD if and. only if Prim(/4) contains a dense

subset P such that A/1 is a full matrix algebra, for each I £ P.

Observe that {/} is closed in Prim(/4), for each / G P, by Proposition 2.2 (ii).
If A is separable, then one can choose the set P in the lemma above to be countable.

Since the ideals Ker(jr;-) are maximal and pairwise distinct (by the assumed

inequivalence of the finite dimensional representations jr;-, which implies that they
are also weakly inequivalent), it follows from the Chinese Remainder Theorem that
the map

n*MC)
ieF ieF

is surjective, for each finite subset F of I.

Definition 2.6. A unital C*-algebra A is said to be strictly residually finite
dimensional (strictly RFD) if there exists an infinite family {jt,- : A -> M/Cj (C)},6i of
irreducible, pairwise inequivalent, finite dimensional representations of A such that
the map

^©^-nK«C) (2.3)
ieT i eT

is injective, for each infinite subset T of I.

The following characterizes strictly RFD C*-algebras in terms of their primitive
ideal space:

Proposition 2.7. A unital separable C* -algebra A is strictly RFD ifand only if there

exists an infinite subset P of Prim(A) such that each of its infinite subsets is dense in
Prim(A), and such that A /1 is finite dimensional, for each I P.

Note that if such a subset P of Primf/l) exists, then each infinite subset of P has

the same properties, and hence one can take P to be countably infinite.

Proof. Suppose first that A is a strictly RFD unital separable C*-algebra witnessed

by an infinite family {np. A —> M/(. (<C)}, <= i of irreducible, pairwise inequivalent,
finite dimensional representations. Set

P {Ker(m) : i £ 1} ç Prim(A).

If I Ker(7ri) £ P, then A/1 s nL (A) is finite dimensional. Let T be an infinite
subset of I, then 0 Ker(fi'r) Hier Ker(;r,). Therefore {Ker(7T;) : i £ T} is

dense in Prim(zl).
Suppose conversely that A is a unital separable C*-algebra for which there

exists an infinite subset P {U}i&i of Prim(/4) satisfying the hypotheses. For
each i e I, find an irreducible representation np.A —> B(Hi) with Ker(7r,) /,.
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Then Jti(A) A/f is finite dimensional, so Hi is finite dimensional and

TTi (A) — B(Hi) ^ M/Ci (C), where ki dim(//,). Let T be an infinite subset

of I. The associated map fiV then satisfies

Ker(*r) f| Kerfa) f) /,• 0,

ieT ieT

by the assumption that {U}ieT is dense in Prim(/1). This shows that A is strictly
RFD.

3. Just-infinite C*-algebras: A classification result

By analogy with the notion of just-infiniteness in the category of groups and of
abstract algebras, see [29], we define a C*-algebra to be just-infinite as follows:

Definition 3.1. A C*-algebra A is said to be just-infinite if it is infinite dimensional,
and for each non-zero closed two-sided ideal I in A, the quotient A/1 is finite
dimensional.

Lemma 3.2. Every just-infinite C* -algebra is prime.

Proof. Let A be a just-infinite C*-algebra, and let I and J be two non-zero closed
two-sided ideals in A. Consider the natural homomorphism jz: A —> A/1 ® A/J.
By the assumption that A is just-infinite, the image is finite dimensional. It follows
that n cannot be injective, so I n J Ker(Tr) ^ 0.

Example 3.3. The group Z is just-infinite, and it is the only abelian just-infinite
group. It is also known, see [22, Proposition 3(a)], that every finitely generated
infinite group has a just-infinite quotient.

The corresponding statements for C*-algebras are false: No commutative
C*-algebra is just-infinite, since no commuative C*-algebra other than C is prime.
This also shows that no commutative C*-algebra has a just-infinite quotient.

It is well-known that every unital C*-algebra has a maximal proper closed two-
sided ideal, and hence a quotient which is simple. If, moreover, such a simple quotient
is infinite dimensional, then it is just-infinite. There seems to be no satisfactory
description of unital C*-algebras having an infinite dimensional simple quotient.

Lemma 3.4. Each non-zero closed two-sided ideal in a just-infinite C* -algebra is

essential and infinite dimensional.

Proof. It is easy to see that a C*-algebra is prime if and only if each non-zero
closed two-sided ideal is essential, so the first statement of the lemma follows from
Lemma 3.2.

If a closed two-sided ideal / in a C*-algebra A has a unit e, then e is a central

projection in A and / Ae. Thus Ae and A( 1 — e) are closed two-sided ideals in A
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with zero intersection. So if I is essential, then A(\ — e) 0 and I A. Now,
as each finite dimensional C*-algebra has a unit, we see that no non-zero closed
two-sided ideal in a just-infinite C*-algebra can be finite dimensional.

The class of just-infinite C*-algebras does not have good permanence properties.
In fact, almost all natural operations on C*-algebras (such as passing to sub-

C*-algebras, extensions, passing to ideals and quotients, taking inductive limits,
Morita equivalence, forming crossed products by suitable groups) fail to be consistent
with the class of just-infinite C*-algebras. However, the following permanence-type
properties of just-infinite C*-algebras do hold:

Proposition 3.5. (i) If B is an infinite dimensional hereditary2 sub-C*-algebra of
a just-infinite C*-algebra A, then B is just-infinite. In particular, each non-zero
closed two-sided ideal in a just-infinite C* -algebra is again just-infinite.

(ii) Let 0-^I^>A—>Q-^-0bea short exact sequence of C* -algebras, where I
is an essential ideal in A. Then A is just-infinite if and only if Q is finite
dimensional and I is just-infinite.

Proof, (i) Let J be a non-zero closed two-sided ideal in B, and let / be the

(necessarily non-zero) closed two-sided ideal in A generated by J. Then J B n I,
so B/J is isomorphic to a (hereditary) sub-C*-algebra of A/1. The latter is finite
dimensional, so B/ J must also be finite dimensional.

The second part of (i) follows from the fact that each closed two-sided ideal in a

C*-algebra is a hereditary sub-C*-algebra, together with Lemma 3.4, which ensures
that each non-zero closed two-sided ideal in A must be infinite dimensional.

(ii) Suppose that / is just-infinite and Q is finite dimensional. Let J be a non-zero
ideal in A. Then we have a short exact sequence

0 -> 1/(1 H J) -+ A/J -+ Q/n(J) -> 0,

where n: A —> Q is the quotient mapping. Now, I fl J is non-zero (since I is an

essential ideal), so I/(I D J) is finite dimensional. This implies that A/J is finite
dimensional, being an extension of two finite dimensional C*-algebras.

Conversely, if A is just-infinite, then Q, which is isomorphic to the quotient A/1,
is finite dimensional (because / is non-zero). The ideal I cannot be finite dimensional

(since otherwise A would be finite dimensional), so it follows from (i) that / is just-
infinite.

The observation made above that the class of just-infinite C*-algebras is not
closed under Morita equivalence, can be justified as follows. If H is a just-infinite
C*-algebra and if K denotes the C*-algebra of compact operators on a separable

2A sub-C*-algebra B of a C*-algebra A is hereditary if whenever b e B and a e A are such that
0 < a < b, then a e B.
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Hilbert space, then A <g> K is just-infinite if and only if A is simple (since all proper
non-zero quotients of A <g> K are stable, and therefore infinite dimensional).

Remark 3.6 (Hereditary just-infiniteness). If G is a residually finite group and all its

normal subgroups of finite index, including G itself, are just-infinite, then G is said

to be hereditarily just-infinite. Just-infinite branch groups are residually finite, but
not hereditarily just-infinite; cf. [22, Section 6], so a finite index normal subgroup of
a just-infinite group need not be just-infinite. We shall say more about hereditarily
just-infinite groups and just-infinite branch groups in Examples 6.12 and 6.13 and in
Theorem 7.10.

It follows from Proposition 3.5 above that just-infinite C*-algebras automatically
have a property analogous to being hereditarily just-infinite for groups: Any non-zero
closed two-sided ideal in a just-infinite C*-algebra is itself just-infinite. Note also

that the following three conditions for a closed two-sided ideal / in a just-infinite
C*-algebra A are equivalent (cf. Lemma 3.4 and the definition of being just-infinite):
I is non-zero, / is infinite dimensional, and I has finite co-dimension in A.

We proceed to describe the primitive ideal space of a just-infinite C*-algebra.
They turn out to be homeomorphic to one of the To-spaces in the following class:

Example 3.7. For each n e {0, 1,2,..., oo}, consider the T'o-space Yn defined to
be the disjoint union Yn {0} U Y„, where Y'n is a set with n elements, if n is

finite, and Y'n has countably infinitely many elements, if n — oo. Equip Yn with the

topology for which the closed subsets of Yn are precisely the following sets: 0, Yn,

and all finite subsets of Yfi
We shall usually take Y'n to be {1,2, n}, if 1 < n < oo, and Y^ to be N.

The spaces Yn have the following axiomatic properties:

Lemma 3.8. A (non-empty) second countable T^-space X is homeomorphic to Yn,

for some n {0,1,2,..., oo}, ifand only if it thefollowing conditions hold, for some

point Xo £ X:

(A) {xo} is dense in X,

(B) {x} is closed, for all x G X \ {xo},

(C) each infinite subset of X is dense in X.

Moreover, if X is any T^-space satisfying conditions (A), (B) and (C) above, then

(i) the closed subsets of X are the following sets: 0, X, and all finite subsets

of X \ {x0},

(ii) X is second countable ifand only if X is countable,

(iii) each subset of X is compact (in particular, X is totally disconnected),

(iv) X is a spectral space.3

3See definition above Proposition 2.2.
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Proof. The spaces Yn satisfy conditions (A), (B), and (C) with xo 0. We show
below that (A), (B) and (C) imply (i)-(iv). Any second countable F0-space A
satisfying (i) and (ii) is homeomorphic to Yn, where n is the cardinality of
X' X \ {x0}. Indeed, X is countable by (ii), and any bijection /: A -» Yn,

with /(x0) 0, is a homeomorphism by (i).
Let now A be a 7o-space satisfying (A), (B) and (C). We show that (i), (ii), (iii)

and (iv) hold. Set X' X \ {x0}. It follows from (B) that each finite subset of X' is

closed, and so are 0 and X. Conversely, if F is a closed subset of X and if F X,
then F must be a finite subset of X' by (A) and (C). Hence (i) holds.

Suppose now that A is second countable and |A| > 1. YeX{Un}f=l be a basis for
the topology on A consisting of non-empty open sets. For n > 1, set Fn A \ Un,
and observe that Fn is finite (or empty) by (i). Let x G A'. Then A \ {x} is open
by (i), so Un ç A \ {x} for some n, whence x G Fn. Thus X' is contained in the

countable set (J^Li so (ii) holds.
Let K be an arbitrary subset of A and let {WVhe/ be an open cover of K. Take

any i0 G / such that Wj0 is non-empty. Then the set F — X \ Wi0 is finite. Hence

F Fl K is covered by finitely many open sets from the collection which,
together with WiQ, gives a finite open cover of K. This proves (iii).

Finally, let F 0 be a closed subset of A which is prime. If F A, then F
is the closure of {x0}. If F ^ A, then F is a finite subset of A', by (i). Write
F UxsfW' and note that each singleton {x}, x G F, is closed. Hence F can
have at most one element, so it is in particular the closure of a singleton. This proves
that A is a spectral space.

Lemma 3.9. Let A be a separable C*-algebra. The following hold:

(i) Prim(A) is homeomorphic to Yn, for some n G {0,1,2,..., oo}, ifand only if
the following three conditions hold:

(a) A is primitive,

(b) A/1 is simple, for each non-zero primitive ideal I in A,

(c) if Prim(/1) is infinite, then H/eP 1=0, for each infinite subset P of
Prim (A).

(ii) //Trim(H) is infinite and A satisfies (b) and (c), then it automatically satisfies (a).

IfA/1 is finite dimensional, for each non-zero I G Prim(H), then condition (b)
holds.

(iii) If A is just-infinite, then Prim(H) - Yn,for some n G {0,1,2,..., oo}.

Proof, (i) It follows from Proposition 2.2 (iii) that Prim(H) is second countable. It
therefore suffices to show that the conditions (a), (b) and (c) are equivalent to items

(A), (B) and (C) of Lemma 3.8 (with A Prim(/1) and x0 0). By definition, A is

primitive if and only if 0 G Prim(A), so (a) is equivalent to (A). The equivalence
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of (b) and (B) follows from Proposition 2.2 (ii), while the equivalence of (c) and (C)
follows from the fact that a subset P of Prim(H) is dense if and only if H/gp 7=0.
(ii) Suppose that Prim(H) is infinite and that (b) and (c) are satisfied. We assert

that (a) holds, as well. By [31, Proposition 4.3.6] it suffices to check that Prim(A)
is prime, i.e. whenever Prim(A) F U G, where F and G are closed subsets of
Prim(H), then one of F and G is equal to PrimfH). However, one of F and G

must be infinite, and hence dense in Prim(H) by (c) (which is equivalent to (C)), and

therefore one of F and G must be equal to Prim(H). The remaining assertion follows
from Proposition 2.3.

(iii) Suppose that A is just-infinite. To see that Prim(4) T„, for some n, it suffices

by (i) and (ii) to check that (b) and (c) hold. Moreover, we conclude from (ii) that (b)
holds because A/1 must be finite dimensional, for each non-zero ideal 7. Suppose
that P is an infinite subset ofPrim(H), and set J H/gp 7 • F°r each finite subset f
of P\{0}, let jy Diep 7 2 J Then A/Jjr is isomorphic to ®/s,jr A/I, which
has dimension at least 13® so A/ J also has dimension at least |3® As this holds
for all finite subsets F of P, we conclude that A/ J must be infinite dimensional.
Hence J 0, since A is just-infinite. This proves that P is dense in Prim(H), so (c)
holds.

Just-infinite C*-algebras are classified as follows (to be compared with [22,
Theorem 3]):

Theorem 3.10. Let A be a separable C* -algebra. Then A is just-infinite if and

only if Prim(H) is homeomorphic to Yn, for some n e {0, 1,2,..., oo}, and each

non-faithful irreducible representation of A is finite dimensional. (Ifn 0, we must
also require that A is infinite dimensional; this is automatic when n > \.) Moreover:

(a) Prim (A) To if and only if A is simple. Every infinite dimensional simple
C*-algebra is just-infinite.

(ß) Prim(A) Yn, for some integer n > 1, and A is just-infinite, if and only if A

contains a simple non-zero essential infinite dimensional ideal Iq such that A/Iq
is finite dimensional. In this case, n is equal to the number ofsimple summands

of Alio.
(y) The following conditions are equivalent:

(i) A is just-infinite and Prim(zl) Too,

(ii) A is just-infinite and RFD,

(iii) Prim(H) is an infinite set, all of its infinite subsets are dense, and A/1 is

finite dimensional, for each non-zero I G Prim(/1),

(iv) Prim(A) is an infinite set, the direct sum representation it; is

faithfulfor each infinitefamily {jr^er ofpairwise inequivalent irreducible
representations of A, and each non-faithful irreducible representation of A
is finite dimensional.
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We shall occasionally refer to a just-infinite C*-algebra as being of type (a),
(ß) and (y), respectively, if it satisfies the corresponding condition in the theorem
above. In view of the theorem, we shall also, more frequently, refer to a just-infinite
C*-algebra of type (y) as a RFD just-infinite C*-algebra.

Proof. If A is just-infinite and separable, then Prim(T) Yn, for some n e

{0,1,2..., oo}, by Lemma 3.9, and each non-faithful irreducible representation
of A is finite dimensional (by the definition of being just-infinite).

Suppose conversely that Prim(A) Yn, for some n e {0,1,2,..., oo}, and that
each non-faithful irreducible representation of A is finite dimensional. We show

that A then must be just-infinite (if it is also infinite dimensional). This is clear

if n 0, since A is simple in this case. This also shows that (a) holds.

Suppose that 1 < n < oo. Since Yn is non-Hausdorff, when n > 0,

and the primitive ideal space of any finite dimensional C*-algebra is Hausdorff;
cf. Remark 2.1, A must be infinite dimensional. Write

Prim(T) {0} U {//}"=1. (3.1)

Any non-zero proper ideal J of A is the intersection of the primitive ideals in A that

contain it. By Lemma 3.9 (c), any intersection of infinitely many distinct primitive
ideals of A is zero. Hence J — fjyeF A/> f°r some> necessarily finite, subset F
of N (or of (1,2,...,«}, if n < oo). Now, A/J is isomorphic to ®,/- A/Ij,
and each quotient A/1j is finite dimensional by assumption, whence A/J is finite
dimensional. This shows that A is just-infinite.

We proceed to verify the claims in (ß) and (y).

(ß) The "iff part follows from Proposition 3.5 (ii). Moreover, Prim(A) consists of 0

(cf. Lemma 3.2) and the kernels of the maps onto the n simple summands of A/Iq,
so Prim(H) has cardinality n + 1. Also, Prim(T) is homeomorphic to Yk, for some k,
by Lemma 3.9 (iii), and by cardinality considerations, we conclude that k n.

Let us prove the "only iff part. Suppose that A is just-infinite and Prim(ff) Yn,

for some n e N. Retain the notation set forth in (3.1), and let Iq fj^=i h-
the notation from (2.1), we have I0 /({0}) (observe that {0} is an open subset

of Prim(A), when n < oo). We deduce that Io is non-zero and simple. Each nonzero

ideal in a primitive C*-algebra is essential, so Iq is an essential ideal in A, by
Lemma 3.2. Since A is just-infinite, A/Iq is finite dimensional. Finally, by (2.2),

Prim(/4//0) Prim(H) \ {0} {h,I2, In},

and since A/10 is finite dimensional, n is the number of direct summands of A/Io',
cf. Remark 2.1.

(y) (i) =>• (iii). If A is just-infinite, then A/1 is finite dimensional, for each non-zero
ideal I in A; and if Prim(H) Too, then each infinite subset of Prim(ff) is dense (by
Lemma 3.9 (i)(c)), and Prim(A) is an infinite set.
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(iii) =>• (fi). The assumptions in (iii) imply that A is RFD; cf. Lemma 2.5. If j:
is a non-faithful irreducible representation of A, then Ker(rr) I is a non-zero

primitive ideal in A, so n{A) s A/1 is finite dimensional. To conclude that A

is just-infinite we show that Prim(A) is homeomorphic to Loo. For this it suffices

to verify conditions (b) and (c) of Lemma 3.9 (i). Item (b) holds because A/1 is

finite dimensional, for each non-zero I £ Prim(y4); cf. Lemma 3.9 (ii). Item (c) is

equivalent to condition (C) in Lemma 3.8, which holds by assumption.

(ii) =y (i). If A is RFD, then A cannot be just-infinite of type (a) or (ß), so Prim(/4)
must be homeomorphic to Loq.

(iii) =>• (iv). We already saw that (iii) implies that A is just-infinite, and hence that
each non-faithful irreducible representation is finite dimensional. Let {jti}ieT be

an infinite family of pairwise inequivalent irreducible representations of A. Since

{Ker(7Ti) : i e 7} is an infinite set, and hence by assumption a dense subset of
Prim(zl), it follows that the kernel of 7T;, which is equal to fjier Ker(jr/),
must be zero.

(iv) => (iii). Let P be an infinite subset ofPrim(zl), and choose pairwise inequivalent
irreducible representations {rr;}/er of A such that P {Ker(jr,) : i £ T}. The

assumptions in (iv) now yield

0 Ker( 0 jTj) P) Ker(7r!) Q /,
/er /er /er

which implies that P is dense in Prim(y4).
If I is a non-zero primitive ideal in A, then I Ker(jr), for some (non-faithful)

irreducible representation of A, so A/1 s n{Ä) is finite dimensional.

The following result follows immediately from Proposition 2.7 and Theorem 3.10:

Corollary 3.11. Each separable RFD just-infinite C * -algebra is strictly RFD.

We note that not all strictly RFD C*-algebras are just-infinite; cf. Section 4.3

below.

Corollary 3.12. The primitive ideal space of a separable just-infinite C*-algebra
is countable. Moreover, any RFD just-infinite separable C* -algebra has countably
infinitely many equivalence classes offinite dimensional irreducible representations.

Proof. The first claim follows from Lemma 3.9 (iii). The second claim follows from
Theorem 3.10 (y), by the fact that there is a one-to-one correspondence between
weak equivalence classes of irreducible representations and the primitive ideal space
of a separable C*-algebra (given by mapping an irreducible representation to its

kernel), and by the fact, observed earlier, that two finite dimensional irreducible
representations are unitarily equivalent if they are weakly equivalent.
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Remark 3.13. It is shown in Theorem 3.10 that a separable C*-algebra A is

just-infinite if and only if the following two conditions hold: Prim(A) Y„, for
some n e {0,1,2,, oo} and each non-faithful irreducible representation is finite
dimensional. These two conditions are independent, i.e. none of them alone implies
that A is just-infinite, as shown below.

If I is a Hausdorff space and k is a positive integer, then all irreducible
representations of Mn(C(X)) have dimension/:, and Prim(M/c(C(X))) X. If X is

not a point, then X is not homeomorphic to Yn, for any n, because Yn is non-Hausdorff
for all n > 0. Therefore M/c(C(X)) is not just-infinite.

For each n G {0,1,2,..., oo}, there is a unital AF-algebra whose primitive ideal

space is Yn, by Theorem 2.4 and Lemma 3.8. The AF-algebras obtained in this way

may or may not have the property that each non-faithful irreducible representation
is finite dimensional. Tensoring such an AF-algebra by a UHF-algebra, we obtain

a unital separable C*-algebra whose primitive ideal space is Yn, and which has no
finite dimensional irreducible representations. Therefore, it is not just-infinite.

We show in the next example and in Section 4 below that each space Yn can be

realized as the primitive ideal space of a just-infinite AF-algebra.

Example 3.14 (Existence of just-infinite C*-algebras). Any simple infinite dimensional

C*-algebra is just-infinite of type (a) (and there are many examples of such,

both in the unital and the non-unital case).

To exhibit examples of just-infinite C*-algebras of type (ß), let n e N, and let F
be a finite dimensional C*-algebra with n simple summands, e.g. F C © • • • © C
with n summands. Let H be an infinite dimensional separable Hilbert space, and

let n\ B(H) — B(H)/K be the quotient mapping onto the Calkin algebra, where

as before K denotes the compact operators on H. Let r: F —> B(H)/K be a unital

injective *-homomorphism. Set

A 7r_1(r(F)) ç B(H). (3.2)

Then K is a simple essential ideal in A and A/K is isomorphic to F. Hence A is

just-infinite of type (ß), and Prim(A) Yn\ cf. Theorem 3.10 (ß). Since A is an

extension of two AF-algebras, it is itself an AF-algebra.
Each just-infinite C*-algebra A arising as in (3.2) above is of type I: for each

irreducible representation of A on a Hilbert space H, the image of A contains the

compact operators on H. Conversely, a separable C*-algebra A of type I is just-
infinite if and only if it is isomorphic to the compact operators K on a separable
Hilbert space, or it is of the form described in (3.2) above for some finite dimensional

C*-algebra F. Indeed, if A is separable, just-infinite and of type I, then A is prime
by Lemma 3.2, hence primitive (because it is separable), so it admits a faithful
irreducible representation p on some (separable) Hilbert space. Being of type I, p(A)
contains the compact operators K. If p(A) ^ K, then the quotient B := p(A)/K is

finite dimensional, because A is just-infinite, so A p(A) n~l{B) is as in (3.2).
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It requires more work to establish the existence of RFD just-infinite C*-algebras,
i.e. those of type (y). This will be done in Section 4.

Remark 3.15 (Characteristic sequences of just-infinite C*-algebras). Let A be a

unital separable just-infinite C*-algebra. If A is non-simple, then Prim(zl) Yn, for
some n G {1,2,..., oo}. Let {Ij}"=1 be the non-zero primitive ideals of A. Then

A/Ij ^ (C), for some kj G N; cf. Proposition 2.3. The resulting «-tuple, or

sequence, {/cy }"=1 (as an unordered set) is an invariant of A, which we shall call the

characteristic sequence of A.

For each j, choose an irreducible representation itj : A -> C) with
kernel Ij. We say that such a sequence {«y}y i is an exhausting sequence of
pairwise inequivalent non-faithful irreducible representations of A. Equivalently,

{jTy}y=i is an exhausting sequence of pairwise inequivalent non-faithful irreducible

representations of A if
Prim(/4) \ {0} {Ker(jry) : j 1,2,...,«},

andKer(7Ty) 7^ Ker(^) when / 7^ j.
If« G N and if Iq is the (unique) simple essential ideal in A, then (as in the proof

of Theorem 3.10) we have the following isomorphisms

It follows from Example 3.14 (and Remark 2.1) that for all positive integers

k\,k2,... ,kn, there exists a just-infinite C*-algebra A, which is necessarily an

AF-algebra, such that (3.3) holds with /0 K. This argument shows in particular
that each finite characteristic sequence {kj}"=1, where n G N, is realized by a

just-infinite AF-algebra (of type (ß)).
We end this section by showing that the characteristic sequence {kj}'jL1 of

a RFD just-infinite C*-algebra must tend to infinity. The proof of this fact involves
results about subhomogeneous C*-algebras. Recall that a C*-algebra is said to be

subhomogeneous if it is isomorphic to a sub-C*-algebra of Mjç{C{Xf), for some

compact Hausdorff space X, and some k G N. The next proposition is well-known,
but we include a brief proof for the sake of completeness.

Proposition 3.16. For a C* -algebra A, the following conditions are equivalent:

(i) A is subhomogeneous,

(ii) the bidual A** ofA is isomorphic to @"=1 (C (£2 j)), for some positive in¬

tegers n, k 1, k2,.. •, kn, and some (extremally disconnected) compact Hausdorff
spaces £2i, £^2, • • • >

(iii) there exists a positive integer k such that each irreducible representation of A
has dimension at most k,

(iv) there exist a positive integer k and a separating family {jti}ier of irreducible
representations of A such that each ni has dimension at most k.

n n

(3.3)
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Proof. The implication (ii) =>• (i) holds because A is a sub-C*-algebra of A**. If(iii)
holds, then A**, which is a von Neumann algebra, cannot have central summands of
type /„, for n > k, or of type II or III. Therefore (ii) holds. The implication (i) =>• (iv)
follows easily from the definition of subhomogeneity. Suppose now that (iv) holds,
and that there exists an irreducible representation of A of dimension strictly greater
than k (possibly infinite dimensional). By (a version of) Glimm's lemma, see, e.g. [33,

Proposition 3.10], there is a non-zero *-homomorphism p: Co((0,1]) <8> M/(+j —» A.

However, there is no non-zero *-homomorphism Co((0,1]) ® M^+i —> B(H) when

dim(//) < k, so it follows that m ° p 0, for each i G T. As the family {jii}ieT is

separating, we conclude that p 0, a contradiction.

Lemma 3.17. No separable subhomogeneous C*-algebra is just-infinite.

Proof. Let H be a separable just-infinite C *-algebra. Then A is prime; cf. Lemma 3.2,
hence primitive, and so A admits a faithful irreducible representation. Such a

representation cannot be finite dimensional, because A is infinite dimensional. Hence,
A cannot be subhomogeneous; cf. Proposition 3.16.

Proposition 3.18. Let A be a separable RFD just-infinite C* -algebra with
characteristic sequence {kj}p=l. Then Umjkj oo.

Proof. Let I\, 12, be the non-zero primitive ideals of A, and for each j, let itj be

an irreducible representation of A whose kernel is Ij, such that the dimension of :Xj
is kj. We must show that for each k, T^ := {/ e N : kj < k) is finite. Suppose that
the set T 7\ is infinite. Then the *-homomorphism ty? ©ygy Kj is injective,
which implies that {nj}jer is a separating family of irreducible representations
of A, each of which having dimension less than or equal to k. Then Proposition 3.16

implies that A is subhomogeneous, but this is impossible by Lemma 3.17.

4. Examples of RFD just-infinite AF-algebras

We construct an example of a RFD just-infinite AF-algebra. By Theorem 3.10,
its primitive ideal space must be Y00. The existence of a unital AF-algebra whose

primitive ideal space is homeomorphic to Too follows from Theorem 2.4 (Bratteli-
Elliott). To conclude that such an AF-algebra is just-infinite, we must also ensure that

its non-faithful irreducible representations are finite dimensional; cf. Theorem 3.10.

This is accomplished by taking a closer look at the construction by Bratteli and Elliott,
done in Proposition 4.1 below.

4.1. Construction of a RFD just-infinite AF-algebra. Recall that a Bratteli
diagram is a graph (V, E), where V U^Li and E U^=i En (disjoint unions),
all Vn and all En are finite sets, and where each edge e G En connects a vertex v G Vn



Vol.93 (2018) Just-infinite C *-algebras 173

to a vertex in w e Vn+\. In this case, we write s{e) v and r(e) w, thus giving
rise to the source and the range maps s,r: E —> V. It was shown by Bratteli, [10],
that there is a bijective correspondence between Bratteli diagrams (modulo a natural

equivalence class of these) and AF-algebras (modulo Morita equivalence).
An ideal in a Bratteli diagram (V, E) is a subset U ç V with the following

properties:

• for all e in E, if s(e) belongs to U, then so does r (e),

• for all v in V, if (r(e) | e e 5_1(u)} is contained in U, then v belongs to U.

The ideal lattice of an AF-algebra associated with a given Bratteli diagram is

isomorphic to the ideal lattice of the Bratteli diagram, see [17] or [16], The following
proposition is contained in [11]:

Proposition 4.1 (Bratteli-Elliott). Let X be a second countable, compact, totally
disconnected T^-space. Let ~§\,~§2i - be finite families of compact-open subsets

of X such that:

(i) X (Joe*?,, G, far each n > 1,

(ii) far each n > 1, fin+i Is a refinement offin, i.e. each set in ~§n+\ Is contained in

a set in fin, and each set in ~§n is the union of sets from fin+i<

(iii) U«t=i E a basis for the topology on X.

Consider the Bratteli diagram for which the vertices at level n are the sets in ~§n, and
where there is one edge from G ~§n to G' e ~§n+\ if G' f G, and none otherwise.
Then there is a one-to-one correspondence between open subsets of X and ideals of
the Bratteli diagram, given as follows: the ideal in the Bratteli diagram associated
with an open subset U of X consists ofall vertices G Un^i ^nfar which G ç U.

If in addition, X is a spectral space, and if A is an AF-algebra associated with
the Bratteli diagram constructed above, then Prim( A) is homeomorphic to X.

In the following, we construct a sequence §\, §2> ^3 >... of finite families of
compact-open subsets of X satisfying the conditions of Proposition 4.1 in the case

where X Too- Recall that T^ {0} U N, that the open subsets of Yœ are 0, Too,

and all co-finite subsets of N, and that every subset of Too is compact. For all n > 1,

set

Fn>k {1,2,\ {k}, G„,fc Too \ Fn^k,

for 1 < k < n, and let

*n ={Gn,l,Gn,2,...,Gn,n}.

Observe that each Gn<k is open and (automatically) compact. Moreover, the sets

satisfy conditions (i), (ii) and (iii) in Proposition 4.1. Furthermore, for
1 < k < n,

Gn+l,k — Gn k, Gn-C Gn if
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No other inclusions between sets in ~§n+\ and sets in ~§„ hold. Therefore, the

Bratteli diagram associated with this sequence of compact-open subsets of Too as in

Proposition 4.1 is:

The sequence of finite dimensional C*-algebras on the right-hand side, equipped
with unital connecting mappings given by the Bratteli diagram, defines a unital AF-
algebra A, associated with the Bratteli diagram. The one-to-one correspondence
between (non-empty) open subsets G ç Too {0} U N and ideals U(G) of the

Bratteli diagram above is given as follows:

U(G) {Gn,k I Gn,k ç G} {Gn,k I /c e G, « > max Too \ G}.

e.g. C/(Too \ {1,3}) {Gn,k I n > 3, k + 1,3}
and [/(Too \ {j}) {Gn,k \ n> j,k =£ j}, j > 1.

The quotient of the AF-algebra A by the ideal in A corresponding to [/(G) is given
by the Bratteli diagram that arises by removing U{G) from the original diagram. The

two pictures below show the ideal U(G) (dotted lines and open vertices) and the

Bratteli diagram of the quotient (bold lines and filled vertices) in the cases where
G Too \ {2}, respectively, G Too \ {1, 3}:
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The quotient of A by the ideal in A corresponding to U(G), with G Too \ {2}, is

the AF-algebra associated to the red part of the Bratteli diagram, which is The

quotient of A in the case where G Too \ {1, 3} is similarly seen to be C © M2(C).

By construction, and by Proposition 4.1, we have Prim(/4) Too- In more
detail, we have Prim(A) {0} U {I\, I2, h,... }, where Ij is the primitive ideal

in A corresponding to the ideal t/(Too \ {j}) of the Bratteli diagram. Arguing as in
the two examples above, we see that A/Ij Mt(j)(C), where k( 1) k(2) 1

and k(j) 2J~l, for j > 2. Hence A/1 is finite dimensional, for each non-zero

primitive ideal / of A. It now follows from Theorem 3.10 that A is just-infinite
and RFD, as desired. The characteristic sequence of A is precisely the sequence

i defined above.

One can modify the Bratteli diagram in various ways to construct new RFD

just-infinite AF-algebras with other characteristic sequences. For example, one can

delete the first n — 1 rows and let row n correspond to an arbitrary finite dimensional

C*-algebra with n summands. (The remaining finite dimensional C*-algebras are

then determined by the one chosen and by the Bratteli diagram.) One is also allowed

to change the multiplicity of the edges connecting the vertex at position (n,k),
1 < k < n, to the vertex at position (n + \,n + 1). In these examples, the

characteristic sequences all grow exponentially. By Proposition 3.18, we know that

they must tend to infinity. This leaves open the following:

Question 4.2. What are the possible characteristic sequences {kj}JLj of RFD just-
infinite C*-algebras?

4.2. The dimension group. We compute the dimension group (Kq (A), K0(A)+, [1])
of the just-infinite AF-algebra A constructed above (associated with the Bratteli
diagram (4.1)).

Recall that the dimension group, (H, H + ,v), associated with the Bratteli

diagram (4.1) is the inductive limit of the ordered abelian groups

Z Z2 Z3 • • •

an(xi,x2—,xn) (xltx2,... ,xn,xi +x2 4 h xn), (xi,...,x„) e Z",

where v £ H+ is the image of 1 in the first copy of Z. It follows from standard

theory of AF-algebras that (K0(A), K0(A)+, [1]) is isomorphic to (//, H +, v). We

proceed to identify the latter more explicitly.
Let EIjeN ^ denote the (uncountable) group of all sequences x {xj}JLl of

integers, equipped with the usual order: x > 0 if and only if xj > 0, for all / > I.
Let G be the countable subgroup of üyeN ^ consisting of those sequences {xj jjij
for which the identity xy+i x\ + x2 + + Xj holds eventually, and equip G
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with the order inherited from fl/eN Set m (1,1,2,4,8,...)- We show below

that (H, H + ,v) (G, G + u). In conclusion,

(A0(/l), K0(A)+, [1]) (H, H + v) ^ (G, G + u).

For this, define pn: Z" -> G by

Pn(x l,X2,...,Xn) (x1,X2,...,X„,X„+ 1,X„+2,...),

wherexy+i xi+x2-| fxy,forall j > n. Then pn+\oan pn, for all«, and

each pn is positive. It follows that the pn's extend to a positive group homomorphism
p: H —> G. Each pn is injective, so p is injective.

To complete the proof that p is an order isomorphism, we show that p(H+) G+.
Take x {xy}yLj e G+, and let n > 1 be such that xy+i — x\ + X2 + + xy,
for all j > n. Then

x pn(xj,x2,... ,x„)

XlPn (e^) + X2pn{e(2]) H h xnpn{e^})

Xip(fl(n)) + X2p(/2(n)) + • • • + Xnp(f(n)),

where e
' is the standard basis for (Z" )+ ç Z", and /2^,...,

are the corresponding images in H+ ç H. This shows that x e p(H+). Finally,
p(v) pi(l) u, as wanted.

Unital AF-algebras are completely classified by their ordered Ao-group, together
with the position of the class of the unit. It is therefore an interesting question to

classify, or characterize, those dimension groups which are the A0-group of a RFD

just-infinite AF-algebra.
In the light of the computation above, one may first wish to consider those

dimension groups G which are (ordered) subgroups of Fly^i 1° addition,

one should assume that G is a subdirect product of fly^i in the sense that

<PF{G) FlygjrZ, for each finite subset f of N, where cpp is the canonical

projection of ri/^=i ^ ont° ûysF The dimension group considered above has

this property.

4.3. A strictly RFD C * -algebra which is not just-infinite. It was shown in Corollary

3.11 that all RFD just-infinite C*-algebras are strictly RFD. We show here that
the converse does not hold, by constructing an example of a unital AF-algebra which
is strictly RFD and not just-infinite.

Let us first describe the example at the level of its primitive ideal space. Let A be

the disjoint union of two copies of Too, i.e. X X\ II X2, where X\ — X2 Loo-

Equip X with the following topology: A non-empty subset G of A is open if and

only if G H A] is non-empty and open, and G n A2 is open. That this indeed defines
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a topology on X follows from the fact that the intersection of any two non-empty

open subsets of X\ is non-empty, or, equivalently, that the set X\ is prime.
Observe that X2 is an infinite closed subset of X. Hence X2 is a non-dense

infinite subset of X. This shows that X cannot be the primitive ideal space of a

just-infinite C*-algebra; cf. Lemma 3.9. The set X\, on the other hand, is an open
and dense subset of X, and each infinite subset of X\ is dense in X\, and therefore

also dense in X.
The space X is the primitive ideal space of the unital AF-algebra B whose Bratteli

diagram is given as follows (ignoring at first the shading of the edges and vertices):

The left-hand half of this Bratteli diagram is an essential ideal in the Bratteli
diagram4 and therefore corresponds to an essential ideal / of the AF-algebra B. The

right-hand half is the Bratteli diagram of the quotient B/1. Hence B/1 is equal
to the RFD just-infinite AF-algebra A described in Section 4.1, and I is Morita
equivalent to A. Hence B cannot be just-infinite. For each k > 1, let be largest
ideal of the Bratteli diagram which does not contain any vertex from the /cth column
of the left-hand half of the Bratteli diagram. Furthermore, let be the ideal of B

corresponding to the ideal U
To illustrate this definition, in the diagram above, the ideal U2 is marked with

dotted lines and open vertices and the Bratteli diagram of the quotient B/12 is marked
with bold lines and filled vertices. The quotient B/13 is seen to be isomorphic
to M4(C).

In general, for each k > 1, we see that B/1^ is a full matrix algebra, and (hence)
that each is a primitive ideal. Moreover, fitter Ik 0> f°r each infinite subset T
of N. (To see this, observe that U,t contains no vertices from the top k — 1 rows of
the left-hand half of the Bratteli diagram, or from the top k — 2 rows of the right-hand
half. Hence ffer Uk for each infinite subset T of N.)

This shows that B is a strictly RFD AF-algebra which is not just-infinite.

4An ideal Î7 in a Bratteli diagram is said to be essential, if U D V 0, for all non-empty ideals V.
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5. Subalgebras and superalgebras

In this section, which is addressed to specialists in C*-algebras, we investigate when

subalgebras and superalgebras of just-infinite C*-algebras are again just-infinite, and

we also show that not all RFD just-infinite C*-algebras are nuclear, or even exact.
The third named author thanks Jose Carrion for his suggestion to use Theorem 5.3

below of Dadarlat to conclude that there are non-nuclear, and even non-exact, RFD

just-infinite C*-algebras.
Recall that a C*-algebra A has real rank zero if each self-adjoint element in A

is the norm limit of self-adjoint elements in A with finite spectra. A commutative
C*-algebra C(X) has real rank zero if and only if X is totally disconnected (or,

equivalently, dim(X) 0). Real rank zero is therefore viewed as a non-commutative
analog of being zero-dimensional. A C*-algebra has real rank zero if it has

"sufficiently many projections". Each closed two-sided ideal of a C*-algebra of
real rank zero again has real rank zero and, as a consequence, is generated by its

projections.
We denote by Ideal(A) the lattice of closed two-sided ideals in A. If S is a

sub-C*-algebra of A, then there is a natural map <£: Ideal(T) -> Ideal(ß), given by
4>(/) — I (1 B. The map fi> is, in general, neither injective nor surjective, but it
is both in the special situation of the lemma below. We use the symbol p ~a q to
denote that p and q are Murray-von Neumann equivalent projections, relatively to
the C*-algebra A.

Lemma 5.1. Let B ç A be unital C* -algebras of real rank zero, and suppose that
there is a *-homomorphism k: A B such that k(p) p, for all projections
p G A, and tc{q) for all projections q G B. Then the map <E>: Ideal(^4) —

Ideal(7?) is a lattice isomorphism.

Proof We first show that <î> is injective. Let 7 ^ 7' G Ideal(^4) be given. Since A

has real rank zero, and ideals in A are generated by their projections, there exists

a projection pel such that p f I' (or vice versa). Set q x(p) ~ p. Then

q G / n B <&(/), but q £ /' n B 0(7'). Hence <&(/) + 0(7').
Let now J e Ideal (I?) be given, and let 7 A JA be the closed two-sided ideal

in A generated by J. Then, clearly, J ç / n B 0(7). To see that 0(7) ç J, it
suffices to show that each projection q in 0(7) belongs to ./. Being a projection in 7,

q belongs to the algebraic two-sided ideal in A generated by J, so q — YTj=l ajxjbj
for some aj,bj e A and xj e J. The conditions on k, together with the fact that B
is a C*-algebra of real rank zero, imply that k maps J into itself, so

n

q K{q) ^K(aJ)K(xj)ic(bj) G J.

7=1

This shows that q belongs to /, as desired.



Vol. 93 (2018) Just-infinite C*-algebras 179

Lemma 5.2. Let Abe a imitai separable RFD just-infinite C* -algebra of real rank

zero, and let {rtn}(fi=l be an exhausting5 sequence of pairwise inequivalent non-

faithful irreducible representations of A.

(i) Suppose that B is a unital sub-C*-algebra ofA such that the map <t>:ldea\(A) —>

Ideal(ß) is an isomorphism, and such that each projection in A is equivalent to a

projection in B. It follows that B is just-infinite and RFD, that {nn\ b}//Li
is an exhausting sequence of pairwise inequivalent non-faithful irreducible

representations of B, and that Jtn(B) nn{A), for all n. In particular, A

and B have the same characteristic sequence.

(ii) Suppose that C is a unital C* -algebra of real rank zero which contains A and
is asymptotically homotopy equivalent6 to A. Suppose also that 0: Ideal(C) —

Ideal(zl) is an isomorphism.7 It follows that C is just-infinite and RFD with an

exhausting sequence {vn}f=l of pairwise inequivalent non-faithful irreducible

representations for which Ker(v„|,4) Ker(jr„) and vn{C) nn(A), for all n.

In particular, A and C have the same characteristic sequence.

Proof, (i) The lattice isomorphism <3>: Ideal(A) —Ideal(ß) restricts to a home-

omorphism Prim(A) —* Prim(Z?), and so Prim(5) is homeomorphic to Prim(14),
which again is homeomorphic to Too- Moreover,

Prim(ß) \ {0} {Ker(7r„) fl B \ n G N} {Ker(7r„|ß) | n e N}.

Let / be a non-zero primitive ideal of B. Then I Ker(7T„|s), for some n,
and B/I is isomorphic to nn(B), which is a subalgebra of the finite dimensional

C*-algebra Jtn(A), so B/I is finite dimensional. It now follows from Theorem 3.10
that B is just-infinite.

Let us also show that rtn(B) 7tn(A), for all n. Since nn(B) Çl jtn(A) and

both C*-algebras are full matrix algebras, it suffices to show that Jtn(B) contains a

minimal projection in nn(A). Let e e nn{A) be such a projection and lift it to a

projection p e A (which is possible because A is assumed to have real rank zero).
Find a projection q G B which is equivalent to p. Then Jtn(q) is equivalent to e,
which implies that 7tn(q) itself is a minimal projection in nn(A).

(ii) As in (i), the given lattice isomorphism <ï>:Ideal(C) Ideal(A) restricts to a

homeomorphism Prim(C) -» Prim(A), so Prim(C) is homeomorphic to Too.

sSee Remark 3.15.
6This means that there exists an asymptotic morphism C —y A, so that the asympotic morphism

C —> C (obtained by composing it with the inclusion mapping A —C) is homotopic to the identity
on C in the category of asymptotic morphism. See also [141.

7In fact, the assumptions on A and C imply that $ is an isomorphism. This can be shown along the

same lines as the proof of Lemma 5.1.
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Given n > 1, let Jn G Prim(C) be such that <!>(/„) Ker(jr„). Since <î> is an

isomorphism, each non-zero primitive ideal in C is of this form. Identify nn{A)
with Mk(C), for some positive integer k. Find an irreducible representation
vn: C -> B(H) on some Hilbert space H, with Ker(v„) Jn. Then

Ker(jr„) $(/„) Jn n A Ker(v„U).

Let t: Mfc(C) B(H) be the inclusion mapping making the following diagram
commutative:

A<

Tin

Mk{C)<—^ B{H)

We show that dim (H) k, which by Theorem 3.10, will imply that C is just-infinite.
It will also imply that t is an isomorphism, and that

nn(A)^vn(A) vn(C) B(H).

It is clear that dim(//) > k. Suppose that dim(//) > k. Then we can
find pairwise orthogonal non-zero projections f\, /2,..., fk+\ in v„(C). (Indeed,

v„(C) acts irreducibly on H, so if dim(//) is finite, then v„(C) B(H). If
dim(//) is infinite, then vn(C) is infinite dimensional and of real rank zero. In
either case, one can find the desired projections.) Since C has real rank zero,
we can lift the projections f\, /2,..., fk+\ to mutually orthogonal projections

pi, p2,..., Pk+1 in C. Applying the asymptotic homomorphism C -» A to the

projections p\, p2,..., pk+i, and using that <Ck+l is semiprojective (see [8]), we
obtain mutually orthogonal projections q\, q2, qk+\ in A. Since the asymptotic
homomorphism C —> A composed with the inclusion mapping A -> C is homotopic
to the identity mapping on C, we further get that qj is equivalent to pj, for each j. In
particular, (ionn)(qj) vn(qj) ~ vn{Pj) — /y, for each j, so nn(qj) is non-zero.
But Mjfc(C) does not contain k + 1 mutually orthogonal non-zero projections. This

proves that dim(//) k.

We shall combine Lemma 5.2 with the following results due to Dadarlat:

Theorem 5.3 (Dadarlat [14, Theorem 11 and Proposition 9]). Let A be a unital
AF-algebra not of type /. Then:

(i) A contains a unital non-nuclear sub-C* -algebra B of real rank zero and stable
rank one, for which there exists a unital *-monomorphism i<: A B such that

l o k is homotopic to \&a and k o l is asymptotically homotopic to id#, where i
is the inclusion mapping B —>• A. Moreover, 4>:Ideal(/4) -> Ideal(ß) is an

isomorphism of lattices.
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(ii) A is contained in a unital separable non-exact C* -algebra C of real rank zero
and stable rank one, which is asymptotically homotopy equivalent to A, andfor
which <$>: Ideal(C) —> Ideal {A) is an isomorphism of lattices.

The statements (i) and (ii) that <J> is an isomorphism between the ideal lattices

of A and B, respectively, of C and A, are included in the quoted results of Dadarlat,
and it also follows from Lemma 5.1 in the situation considered in (i).

To apply Theorem 5.3, we need the following:

Lemma 5.4. A separable just-infinite C* -algebra is of type I ifand only if either it is

isomorphic to K, the compact operators on a separable infinite dimensional Hilbert
space, or it is an essential extension of K by a finite dimensional C* -algebra. In the

former case, A is just-infinite of type (a), and in the latter case A is just-infinite of
type (ß); cf. Theorem 3.10.

In particular, no just-infinite C* -algebra of type (y), i.e. RFD, is of type I.

Proof. Let A be a separable just-infinite C*-algebra of type I. By Lemma 3.2, A is

prime, and hence primitive, so we can find a faithful irreducible representation 7r

of A on a separable, necessarily infinite dimensional, Hilbert space H. Since A is

a C* -algebra of type I, the algebra K of compact operators on H is contained in
the image of n. Hence I tc~1(K) is a non-zero closed two-sided ideal in A,
which is isomorphic to K. As A is just-infinite, either / A, or A/1 is finite
dimensional.

Corollary 5.5. Let A be a unital separable RFD just-infinite AF-algebra, and let

{ttn be an exhausting sequence ofpairwise inequivalent non-faithful irreducible
representations of A. It follows that A contains a unital non-nuclear RFD just-
infinite sub-C* -algebra B of real rank zero such that is an exhausting

sequence ofpairwise inequivalent non-faithful irreducible representations of B, and

nn(B) nn(A), for all n.

Proof. By Lemma 5.4, we can now apply Theorem 5.3 (i) to find a sub-C *-algebra B

of A with the properties listed therein. Each projection p e A is equivalent to a

projection in B. Indeed, set q k(p) e B. Then q (t o tc){p) is homotopic (and
hence equivalent) to p. The desired conclusion now follows from Lemma 5.2 (i).

Corollary 5.6. Let A be a unital separable RFD just-infinite AF-algebra. Then A

is contained in a separable non-exact unital RFD just-infinite C* -algebra C of
real rank zero, equipped with an exhausting sequence ofpairwise inequivalent non-
faithful irreducible representations such that their restrictions to A form an
exhausting sequence ofpairwise inequivalent non-faithful irreducible representations
for A, and vn(A) vn(C), for all n.

Proof. The proof immediately from Lemma 5.4, Theorem 5.3 (ii) and Lemma 5.2 (ii).
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The two above corollaries, in combination with the existence of a RFD just-infinite
AF-algebra (see Section 4), now yield the following:

Corollary 5.7. There exist non-nuclear exact RFD just-infinite C*-algebras, and
there also exist non-exact RFD just-infinite C* -algebras.

It is shown in [32, Theorem 4.3] that each unital C*-algebra A of real rank zero
contains a unital AF-algebra B such that each projection in A is equivalent to a

projection in B, and such that Ideal(T) -> Ideal(B) is an isomorphism. Together
with Lemma 5.2 (i), this proves the following:

Proposition 5.8. Let A be a unital separable RFD just-infinite C* -algebra of real
rank zero, and let {nrt}fL1 be an exhausting sequence ofpairwise inequivalent non-
faithful irreducible representations of A. It follows that A contains a unital RFD

just-infinite AF-sub-C*-algebra B such that {ttn\B}'%Li is an exhausting sequence
ofpairwise inequivalent non-faithful irreducible representations of B, and nn(B)
nn(A),fbr all n.

By combining Corollary 5.5 with Proposition 5.8, one obtains the following
fact: Suppose that A is a unital separable RFD just-infinite C*-algebra of real

rank zero, and {nn}^Ll is an exhausting sequence of pairwise inequivalent non-
faithful irreducible representations. Then there is a strictly decreasing sequence
A D A\ d A2 D A3 d of unital sub-C*-algebras Ak of A such that each Ak
is a RFD just-infinite C*-algebra, and nn(Ak) nn(A), for all k and n. (In fact,

every other C*-algebra in the sequence {Ak} can be taken to be an AF-algebra and

the remaining ones to be non-nuclear.)
In particular, a unital separable RFD just-infinite C*-algebra of real rank zero

can never be minimal in the sense that it contains no proper RFD just-infinite sub-

C*-algebras.

6. Just-infiniteness of group C* -algebras

We discuss in this section when C*-algebras associated with groups are just-infinite.
The group algebra C [G] of a group G is in a natural way a *-algebra in such a way

that each group element g e G becomes a unitary in C[G], and it can be completed
to become a C*-algebra, usually in many ways. The universal C*-algebra of G,
denoted by C*(G), is the completion of C[G] with respect to the maximal C*-norm
on C[G]. Each unitary representation jx of the group G on a Hilbert space gives rise
to unital *-representations (again denoted by tc) of the *-algebras C[G] and C*(G)
on the same Hilbert space. Respectively, each unital *-representation it of C*(G)
restricts to a *-representation of C [G], and if this restriction is faithful, then it creates

a C*-norm || • \\n on this algebra. Each C*-norm on C[G] arises in this way, where

by a C*-norm on C [G] we mean a (faithful) norm such that the completion of C [G]
with respect to this norm is a C*-algebra.



Vol. 93 (2018) Just-infinite C*-algebras 183

Given a unitary representation n of G, we let C*(G) denote the completion
of7r(C[G]). This is equal to the completion of C[G] with respect to the norm || • ||w,

if n is faithful on C[G]. The reduced group C*-algebra of G, denoted by C£(G),
arises in this way from the left-regular representation X of G on l2(G). It
is well-known that the maximal and the reduced C*-norms on C[G] are equal,
i.e. C*(G) C£(G), if and only if G is amenable (see [13, Theorem 2.6.8]).
It is also well-known (see, e.g. [13, Exercise 6.3.3]) that if the reduced group
C *-algebra Cf (G) has a finite-dimensional representation, then G must be amenable.

Hence the following holds:

Proposition 6.1. Let G be a group and suppose that C£(G) is just-infinite. Then

either (G) is simple, or G is amenable.

Whereas C[G] always has one maximal C*-norm, there may or may not be

a minimal C*-norm on C[G], depending on the group G. If G is C*-simple,
i.e. if C^(G) is a simple C*-algebra, then the norm || • m on C[G] is minimal.

Proposition 6.2. Let G be a group, and let Jt be a representation of G which gives
a faithful representation o/C[G]. IfC*(G) is just-infinite, then || • \\n is a minimal
C*-norm on C[G].

Proof. Any C*-norm on C[G] which is smaller than || • ||w arises from a unitary
representation v of G on a Hilbert space, which factors through C*(G). Since v

is injective on C[G], the image v(C*(G)) cannot be finite dimensional, so v is

injective, and hence isometric, on C*(G). (Recall that each injective *-homomor-

phism between C*-algebras automatically is isometric.) The norm arising from v is

therefore equal to the norm arising from n.

If G is infinite and if C*(G) is simple, for some unitary representation n of
the group G, then C*(G) is just-infinite and || • ||K is a minimal norm on C[G];
cf. Proposition 6.2.

The group algebra C[G] is said to be * -just-infinite if each *-representation
of C[G] either is injective, or has finite dimensional image. Note that *-just-infinite
is a formally weaker condition than "just-infinite", as C [G] can have non-self-adjoint
two-sided ideals.

Proposition 6.3. Let G be an infinite group. Then C*(G) is just-infinite ifand only
ifC[G] is * -just-infinite and C[G] has a unique C*-norm.

Proof. Suppose first that C*(G) is just-infinite. Let n be a unital *-representation
of C[G], and extend it to a *-representation of C*(G). Then it is either injective
on C*(G), or n(C*(G)) is finite dimensional. If n is injective on C*(G), then it is

also injective on C[G], while if n(C*(G)) is finite dimensional, then so is tt(C[G]).
Hence C[G] is *-just-infinite. Each C*-norm on C[G] arises as || • ||^, for some
^-representation n of C*(G) which is faithful on C[G]. Thus 7t(C*(G)) is infinite
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dimensional, so n must be injective on C*(G). This entails that || • \\n is the maximal
norm on C[G], and thus the only C*-norm on C[G].

Suppose now that C[G] has a unique C*-norm, and that C[G] is *-just-infinite.
Let 7T be a non-faithful unital *-representation of C*(G). If the restriction of n
to C [G] were faithful, then it would induce a C*-norm on C [G], which by uniqueness
would be equal to the maximal C*-norm on C[G], This contradicts that n is non-
faithful on C*(G). Hence n is not faithful on C[G], whence jt(C[G]) is finite
dimensional. In this case, 7r(C*(G)) is equal to jr(C[G]). This proves that C*(G)
is just-infinite.

Corollary 6.4. Let G be a group for which C*(G) is just-infinite. Then G is

amenable, and hence C*(G) C/ (G) is nuclear.

Proof. It follows from Proposition 6.3 that the reduced and the maximal norm
on C[G] coincide, so G is amenable.

Corollary 6.5. For each group G, if C*(G) is just-infinite, then <C[G] is * -just-
infinite, which in turn implies that G is just-infinite.

Proof. The first implication follows from Proposition 6.3. To see that the second

implication holds, suppose that C[G] is *-just-infinite, and let N be a non-trivial
normal subgroup of G. The quotient map G -> G/N lifts to a necessarily non-
injective *-homomorphism C[G] -> C[G/A]. Hence C[G/./V] must be finite
dimensional, whence G/N is finite.

None of the reverse implications above hold; cf. Examples 6.6 and 7.3.

Example 6.6. The group algebra C[Z] is *-just-infinite, and the group Z is just-
infinite; but C*(Z) is not just-infinite, and C[G] has no minimal C*-norm.

Proof. Each unital *-representation n of C [Z] on a Hilbert space H admits a natural
factorization C[Z] —> C(K) —> B(H), where K ç T is the spectrum of the unitary
operator u 7r(l), and where C(K) —»• B(H) is injective. It is easy to see that n
is faithful on C[Z] if and only if K is an infinite set. If n is not faithful, then K
is finite, which entails that jt(C[Z]) is finite dimensional. This shows that C[Z]
is *-just-infinite.

As there is no minimal closed infinite subset of T, there is no minimal C*-norm
on C[Z], and we conclude from Proposition 6.3 that C*(Z) is not just-infinite. This
conclusion also follows from Example 3.3.

Proposition 6.7. If G is a locally finite group, then C[G] has a unique C*-norm.

Proof. Each element x e C[G] is a linear combination of finitely many elements

from G, and each finitely generated subgroup of G is finite, by assumption. Hence
there is a finite subgroup H of G such that x G C[H] ç C[G]. Now, C[H]
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is a (finite dimensional) C*-algebra, so it has a unique C*-norm. Thus any two
C*-norms on C[G] must agree on x. As x was arbitrarily chosen, we conclude
that C [G] has a unique C *-norm.

Question 6.8. Let G be a group and suppose that C [G] has a unique C *-norm. Does

it follow that G is locally finite?

The augmentation ideal of the full group C*-algebra C*(G) of a group G is

the kernel of the trivial representation C*(G) —> C. If G is infinite and if the

augmentation ideal is simple, or, more generally, just-infinite, then C*(G) is just-
infinite by Proposition 3.5 (ii), since the augmentation ideal always is essential

when G is infinite.
There are locally finite groups whose augmentation ideal is simple, such as Hall's

universal groups, see [9] and [27]. It follows from Theorem 3.10 that C*(G) is just-
infinite of type (ß), for any such group G. It is easy to see that if an amenable group G

has simple augmentation ideal, then it must be simple; however, simple groups (even

locally finite ones) need not have simple augmentation ideal: the infinite alternating

group Aoo is a counterexample.

Lemma 6.9. Let G be a residually finite group for which C*(G) is just-infinite.
Then C*(G) is RFD (and hence of type y ); cf. Theorem 3.10).

Proof. Let {(V,-}/ei be a decreasing net of finite index normal subgroups of G with
H,-ei M {e}, and consider the *-homomorphism

0:C*(G) -* Y\C*(G/Ni).
i el

It suffices to show that <I> is injective; and by the assumption that C*(G) is just-
infinite, it further suffices to show that the image of <t> is infinite dimensional. The
latter follows from the fact that G is infinite (as C*(G) is just-infinite) and (hence)
that supiSl |G : V;| oo.

Question 6.10. Does there exist an infinite, residually finite group G such that C * (G)
is just-infinite?

If such a group G exists, then C*(G) will be a RFD just-infinite C*-algebra by
Lemma 6.9. If the answer to Question 6.8 is affirmative, then G must be locally
finite. This leads to the following:

Question 6.11. Does there exist an infinite, residually finite, locally finite (necessarily
just-infinite) group G such that C[G] is *-just-infinite?

If such a group G exists, then C*(G) will be a RFD just-infinite C*-algebra by
Lemma 6.9, Proposition 6.7 and Proposition 6.3. After the first version of this paper
was made public, Question 6.11 has been answered in the affirmative in [7].
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Just-infinite groups are divided into three disjoint subclasses (the trichotomy
for just-infinite groups), see [22, Section 6]: The non-residually finite ones (which
contain a finite index normal subgroup N which is the product of finitely many copies
of a simple group), branch groups (see more about those in Theorem 7.10 below), and

the hereditarilyjust-infinite groups, i.e. the residually finite groups for which all finite
index normal subgroups are just-infinite. It is shown in Theorem 7.10 below that if G

is a just-infinite branch group, then C[G] is not *-just-infinite, whence C*(G) is not
just-infinite. Hence, if there exists a residually finite group G for which C*(G) is

just-infinite (and hence also RFD), then G must be hereditarily just-infinite.
Consider the following three (classes of) examples of hereditarily just-infinite

groups: the integers Z, the infinite dihedral group Dc0, and PSL„(Z), for n > 3. As
shown below, if G is any of these groups, then C*(G) is not just-infinite. Moreover,
there is no unitary representation jt of G such that C*(G) is RFD and just-infinite.
If G Z, then this claim follows immediately from Example 3.3. In the two
examples below we discuss the situation for the two other (classes of) groups.

Example 6.12 (PSL„(Z), n > 3). The groups PSL„(Z), n > 3, are renowned for
being the first examples of infinite groups with Kazdan's property (T), as first shown

by Kazdan. For a different and nice proof by Shalom, see [34]. They are residually
finite, as witnessed by the finite quotient groups PSL„ (Z/NZ), N G N; and they are

hereditarily just-infinite by Margulis' normal subgroup theorem. Bekka-Cowling-
de la Harpe proved in [4] that PSL„(Z) is C*-simple, for all n > 2. In particular,
PSL„(Z) is an ICC group (all its non-trivial conjugacy classes are infinite).

We conclude from these facts that the C*-algebra (PSL„(Z)) is just-infinite
(being simple) for all n > 2, while the full group C*-algebra C*(PSL„(Z)) is not

just-infinite, because PSL„(Z) is non-amenable, for n >2.
Bekka proved in [3] that the set of extremal characters on PSL„ (Z), for n > 3, is a

countably infinite set consisting of the trivial character 8e and a sequence {8k}=l of
characters, each ofwhich factors through a finite quotient, PSL„ (Z/NZ), ofPSL„ (Z)
for a suitable integer N (depending on k). Recall that each (extremal) character on

a group corresponds to an extremal trace on its full group C* -algebra. The trivial
character 8e on PSL„(Z) corresponds to the canonical trace ro on C*(PSL„(Z));
while for k > 1, the character 8£ corresponds to a trace, denoted by r^, whose

GNS-representation nXk is finite dimensional. Bekka also shows that -> r0 in the

weak* topology.
Furthermore, observe that C*(PSL„(Z)) has a just-infinite quotient, namely the

simple C*-algebra Cj*(PSL„(Z)). However, as shown below, there is no unitary
representation tz of PSL„(Z) such that C*(PSL„(Z)) is RFD and just-infinite.

Indeed, assume that tz is such a unitary representation of PSL„(Z). As in
Remark 3.15, let {nj}JL1 be an exhausting sequence of pairwise inequivalent
non-faithful irreducible representations of C*(PSL„(Z)). Then pj Ttj o n,

j > 1, is a sequence of pairwise inequivalent non-faithful irreducible representations
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ofC*(PSL„(Z)). Hence pj is equivalent to for some k(j) > 1, by the above

mentioned result of Bekka. Suppose now that x e C*(PSL„(Z)) belongs to the

kernel of n. Then, for all j > 1, itXkij)(x) 0, so rk(j)(x*x) 0- It follows that

ro(x*x) limy-^oo tk(j){x*x) 0, so A(x) 0. This shows that A is weakly
contained in ji. We conclude that the left-regular representation À factors through n,
so the simple C*-algebra C^(PSL„(Z)) is a quotient of C* (PSL„(Z)). Each simple
quotient of a RFD just-infinite C*-algebra is finite dimensional, so C*(PSL„(Z))
cannot both be RFD and just-infinite.

Example 6.13 (The infinite dihedral group Dœ). The infinite dihedral group
is an example of a hereditarily residually finite just-infinite group, see [22], and it is

isomorphic to the free product Z2 *Z2, which is an amenable group (of linear growth).
The group C*-algebraC*(Z2*Z2) is known to be a sub-C*-algebra of A/2(C([0,1]))
(being the universal unital C*-algebra generated by two projections), and is hence

subhomogeneous (cf. Proposition 3.16). Clearly, any quotient of a subhomogeneous
C*-algebra is again subhomogeneous, so we conclude from Lemma 3.17 that

C*(Z2 * Z2) is not just-infinite, and neither is any of its quotients.

7. Algebras associated with groups of intermediate growth

In this section we present some results concerning algebras associated with the

3-generated infinite torsion group constructed in [19], which we here will denote

by H. This group is a simple example of a group of Burnside-type, and it is

investigated more deeply in [20] and many other papers (see the surveys [23,24],
and the references therein). Among its unusual properties, most notably ~§ is of
intermediate growth (between polynomial and exponential), and, as a consequence,
it is amenable, but not elementary amenable, thus answering questions by Milnor
and Day, respectively; cf. [20]. Furthermore, ~§ is a just-infinite group of branch type
(and hence residually finite), and moreover, it is a self-similar group (i.e. a group
generated by states of a Mealy-type automaton).

There are indications that various C*-algebras associated with H (including C*(j§)
and some of its quotients, discussed below) may be new types of C*-algebras with
properties unseen yet in the theory of operator algebras. Our main conjecture in this
direction is the following:

Conjecture 7.1. The (self-similar RFD) C*-algebra C*(ß) generated by the

Koopman representation Tt of~§ is just-infinite.

The Koopman representation jz of ~§ will be described below, along with the
notion of self-similarity. If the conjecture above is correct, then C*(~§) is a just-
infinite C*-algebra of type (y) as described in Theorem 3.10; cf. Lemma 6.9, and it
is the first example of such a C*-algebra associated with a group.
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Recall that the group
relations

is generated by four elements a,b,c,d satisfying the

1 a2 b2 c2 d2 bed ak ((ad)4) ak ((adacac)4), (7.1)

for k 0,1,2,..., where the permutation a is given by the substitutions:

a aca, b -* d, c -> b, d -> c.

This presentation was found by I. Lysenok in [28], and it is a minimal presentation (in
the sense that no relator in (7.1) can be deleted without changing the group, see [21]).
In fact, ~§ is generated by 3 elements, as d — be. The set {\,b,c,d} is the Klein

group Z/2Z © TLITL.
For our purposes it will be most important to know that ~§ has a faithful self-

similar action by automorphisms on an infinite binary rooted tree T, as shown, in

part, here:

(7.2)

The generators a, b, c, d act on T as follows: The root of the tree (marked in white)
is a common fixed point. The generator a just permutes the two vertices Vq and v\
at the first level and acts trivially inside the subtrees Tq and 7j with roots vo and v\,
respectively. The generators b,c,d fix the vertices vo and ui (and hence leave the

subtrees To and 7j invariant), and they are defined recursively by:

b\To a, b\rl c, c\Tq a, c\T[=d, d\T() 1, d\Ti b,

(7.3)
when identifying the subtrees T0 and 7j with T in the natural way, and where 1

stands for the identity automorphism. For more details on this definition, and other

definitions of ~§, we refer to [19,20,23,24]. The relations (7.3) imply that T) is a

self-similar group in the sense that it has a natural embedding

->~§ ï (L/2L) ^ (iï xi/) (Z/2Z), (7.4)

where Z/2Z {e, e} acts on ~§ x ~§ by permuting the two copies of ~§ (e is the

identity element and £ is a transposition). The embedding ifr is given as follows:

iff (a) (1,1) • £ £,

ir(c) (a, d) e (a, d).

i/f(b) (a, c) e (a, c),

f(d) (1 ,b)-e - (1 ,b).
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To further illlustrate this action of ~§ on the tree T it is convenient to label the

vertices of the «th level, Vn, of T by the set {0,1}" and equip each Vn with the

lexicographic ordering:

(7.5)

000

The action of the group ~§ on T yields an action of ~§ by homeomorphisms on the

boundary 3T of T, which consists of geodesic rays joining the root 0 with infinity.
The boundary 3 T can in a natural way be identified with the Cantor set {0,1}N of
infinite binary sequences equipped with the Tychonoff topology.

Let fx be the uniform Bernoulli measure on dT. It is invariant
with respect to the action of the entire group Aut(7") of automorphisms on T, and

hence with respect to the action of ~§ on T. The topological dynamical system

ß, 3T) can be converted into a metric dynamical system ß, dT, p) which is ergodic
(while (G, dT) is minimal), because the action of ü on each level Vn is transitive,
see [25, Proposition 6.5].

Let 7t be the (unitary) Koopman representation of "§ on the Hilbert space

L2(dT,/x) given by (n(g)f)(x) f{g~xx), where / G L2(dT,p), g e ~§,

and x dT. We denote the image of the group algebra C[§] under the

representation n by B, and we let as usual C*(ß) denote the completion of Cß]
with respect to the norm induced by n.

The following theorem carries some evidence in support of Conjecture 7.1.

Theorem 7.2. Let ~§ (a,b,c,d} be the infinite torsion group of intermediate

growth from above, let n be the Koopman representation of~§, and let B n(C \§]).
Then:

(i) B is self-similar, infinite dimensional and RFD.

(ii) C*ß) is self-similar, infinite dimensional, RFD, and it posseses a faithful trace.

(iii) The natural surjection tt: C ß] —> B is not injective, whence C ß] is not *-just-
infinite.

(iv) B is just-infinite.

The notions of self-similarity of the algebras B and C*(ß) will be explained
below. Theorem 7.2 above is proved at the end of this section.
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The type of just-infinite algebras (also called "thin algebras") considered above

were studied for the first time by Sidki in [35]. The group used by Sidki was the Gupta-
Sidki 3-group H, and the algebra was defined over a field F3 in a rather involved way
as a certain inductive limit. If one considers the "Koopman" representation of H
over the field F3, then the image of the group algebra F3[//] will be isomorphic to

Sidki's thin algebra.
The C*-algebra generated by the Koopman representation of the group ~§

(considered in this section) was considered in [2], and so was the algebra B, even

though it was not explicitly defined there. Vieira, [36], used Sidki's approach to define

a "thin algebra" of the group ~§ over the field F2, and proved that it is just-infinite.
Thin algebras under the name "Tree enveloping algebras" were considered by

Bartholdi in [1]. He defines algebras, similar to the algebra B in Theorem 7.2,

however, over arbitrary fields. He considers a vector space with a basis consisting of
all points of the boundary of the rooted tree, and then defines an algebra as the image
of the group algebra in the algebra of endomorphisms of this huge vector space. One

can show that if the field is complex numbers and the group is the group ~§, then

Bartholdi's algebra is isomorphic to the algebra B we are considering here.

In [1, Theorem 3.9], a sufficient condition is given for the tree enveloping algebra
to be just-infinite. This condition is satisfied in the case of the group ~§.

Example 7.3. As mentioned above, the group H is just-infinite. We can therefore
deduce from Theorem 7.2(iii) that just-infiniteness of a group ~§ does not imply that
its complex group algebra C{§] is *-just-infinite.

Self-similarity of graphs, Hilbert spaces, representations and algebras. Let
X =3 {x\,X2, ,Xd) be an alphabet on d > 2 letters, let X* [_I^L0 Xn be the

set of words over X, and let T — Tx be the J-arnery rooted tree whose vertices

are in bijection with the elements of X* (so that the rath level Vn of T corresponds
to Xn). The action of an arbitrary group G on T by automorphisms induces an action
G r> X*. This action is said to be self-similar if for all g G and all x X, there

are h G G and y e X such that g(xw) yh(w), for all w G X*. If this holds, then

for every v & X*, there exists a unique h e G satisfying, for all u; G X*,

g(vw) g(v)h(w). (7.6)

The element h is called the section (or restriction) of g in v, and is denoted by h g \ v.
For example, for the group ~§ (a, b, c, d) under examination, we have; cf. (7.3),
that

a\VQ=a\Vl=\, b\V0=a, b\Vl c,

c\Vo=a, c\Vi=d, d\Vo 1, d\Vl - b.

Let H be a separable infinite dimensional Hilbert space, and fix an integer d > 2.

A unitary operator u: H -> Hd — H ® H @ ••• ® H is called a d-similarity
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of H. Each d-similarity arises from d isometries s\,...,sd on H, satisfying
5Zf=i sjs1 E as follows:

U(l) stf), «*(?!, ...,&) £ Sji-j,
j=1

for £, £ H. Observe that s\,...,sd define a representation of the Cuntz

algebra Od, and that every representation of Od is obtained in this way. For each x
(xi,, Xi2,..., Xin) £ X* consider the isometry on H given by Sx — sils/2 Sin,
and observe that Sx Sy Sxy. A unitary representation p of a group G on a Hilbert

space H is said to be self-similar with respect to the J-similarity f considered

in (7.4) above, if
p(g)Sx Syp(h), (7.7)

for all g,h £ G and all x, y £ X* satisfying g(xw) yh(w), for all w £ X*. In
other words, p(g)Sx 5gWp(g|x), for all g e G and x e X*.

The image Bp — p(C[G]), where p is a self-similar representation, is called a

self-similar (abstract) algebra. The C*-algebra C*(G) associated with a self-similar

representation p is called a self-similar C* -algebra. One of the features of the

self-similar algebra Bp (or of the C*-algebra C*(G)) is the existence of the unital

embedding

/s*bsx ••• s*bs(A

TAp: Bp -» Md(Bp), b» : : (7.8)

\s*bs 1 ••• s*bsd)

for b £ Bp. It follows from (7.7) that s* BpSi ç Bp, for all i, j. The embedding x/rp is

typically not surjective. Nonetheless, it has many interesting and non-trivial features,

see, for example, Lemma 7.6 below.

In the case of our main example 'S (a,b,c,d) and of the Koopman
representation n of S on H L2(dT, /x), we have an explicit self-similarity
H —> H © H arising from the two isometries .sp, .Vi on H defined by

(Slf)(x) /(fx), (7.9)

for i 1,2, where / £ L2(dT, p.) and x £ dT, and where fx £ dT {0,1 is the
word obtained by putting the letter f in front of the word x. The resulting embedding

/v: B -> M2(B) is given as follows on the generators:

m> (° à).f,m(g

fc(0=(° j). MO=(g g
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(as can be deduced from (7.7) and (7.8)), where we have introduced the notation

g 7t(g), for g e H. (The Koopman representation is faithful on ~§, so the

map g m>- g is injective, but the Koopman representation is not faithful on C\S\,
cf. Theorem 7.2, so it is pertinent to distinguish between g and n(g).)

More on the Koopman representation. What we are going to present here is known
in the more general situation of groups acting on rooted trees, [2,5,23]. Consider
the binary rooted tree T (as described in (7.2) and (7.3)), and the Koopman
representation n of the group 7/ (a, b, c, d) on L2(dT, /x).

For each ra > 1, let v„}\, vn,2, vn,2n be the order preserving enumeration of
the set Vn {0, \ }n (equipped with the lexicographic ordering); cf. (7.5), and write
dT |_|f=1 £n,i, where Enj is the set of infinite words in dT {0, 1}N that start
with vnj. Set

which is a subspace of dimension 2". Since Enj £«+i,2/-i U £^+1,2/> we see

that Hn ç Hn+\. Moreover, as the cylinder sets Enj, n > 1, 1 < i < 2", form a

basis for the topology on 97", it follows that Unt=i H« is dense in 77.

The subspaces Hn are rr-invariant. Let nn be the restriction of 7r to Hn, for n > 1.

Observe that nn is unitarily equivalent to the representation of ~§ on l2(Vn) arising
from its action on the rath level Vn of the tree T. More specifically, identify Hn
with l2(Vn) via the isomorphism that identifies xe„ ,•

with 8Vn r Write Hn+x
Hn © and let 7r^ denote the restriction of n to H^. Note that 77^- has

dimension 2". It is shown in the appendix of [5] that the representation of ~§ is

irreducible, for each n > 1. Thus we have decompositions

of the Hilbert space H and of the representation ra* into irreducible representations,
where we identify Ho with C, and no with the trivial representation 1.

The proof of Theorem 7.2.

Proofof Theorem 7.2 (i). Recall from (7.9) that we have isometries so>^i on the

Hilbert space 77 L2(dT, /x) satisfying the Cuntz relation + H5* 1-

The range of the isometry si is L2(97),yU;), where T0 and T\ are the subtrees

of T with roots r>o and v\, respectively; cf. (7.2), and where ji0 and /x\ are the

normalized restrictions of /x to the subsets 97o and dT\, respectively, (making them

probability measures). The Koopman representation n is self-similar with respect to
the 2-similarity of H given by the isometries .vq, s\, so B tt(C[^]) is self-similar.

Hn span{XEnJ I z 1,2 ,2"} ç 77 L2(9T,/x),

OO OO

(7.11)
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By (7.11) and irreducibility of the representations n„, we see that B is a

subalgebra of
CO

M := C ® Y\ M2"(C), (7.12)
«=0

with the property that the projection of B onto each summand in (7.12) is surjective.
Hence B is infinite dimensional and RED. This completes the proof of (i).

ProofofTheorem 7.2 (ii). It follows from (7.11) that the inclusion of B into M
is isometric, when B is equipped with the norm arising from the Koopman
representation n. Thus Cf(~§), which is the completion of B with respect to this

norm, embeds into M. Hence C*(ß) is RFD. Moreover, it is infinite dimensional
because it contains the infinite dimensional algebra B, and it is self-similar because

the Koopman representation n is self-similar. Finally, M has a faithful trace, for
example the one given by

OO

t(X) y aJTj(xJ^
j=-1

where x (jcj, xo, xi,... e M, xn is the normalized trace on M2« (C), for each

n > 1 (and r_i and r0 are the normalized traces on C), and {otj }yL_1 is any sequence
of strictly positive numbers summing up to 1. Hence C * has a faithful trace, being
a sub-C*-algebra of M.

Proofof Theorem 7.2 (iii). The first claim of (iii) is proved in the lemma below, and

the second claim follows from the first claim and the fact, proved in (i), that B is

infinite dimensional.

The result below can be found in [26]. We include its proof for completeness of
the exposition.

Lemma 7.4. (1 — <i)a(l — d) is a non-zero element in the kernel ofn:C[§] —» B.

Proof. We observe first that z := a — da — ad + dad is non-zero in <C\§}. Indeed,

if z 0, then a + dad da + ad, which can happen only if either a da and

dad — ad, or a ad and dad da. Both are impossible, because d ^ e. (It
is also easy to see, for example using the action of ~§ of the tree T, that the four
elements a, da, ad, dad are pairwise distinct.)

By (7.10) (and retaining the notation g — n(g), for g e ~§), we have

!«*«)> MO-w-<*)) („ ,!j) o.

where is the embedding of B into M2(B) arising from self-similarity. As fx is

injective, this implies that n(z) 0.
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The proof of part (iv) of Theorem 7.2 is somewhat lengthy and is divided into
several lemmas. The proof mimics the proof of the fact that ~§ is a just-infinite group,
as well as the idea from the proof of [22, Theorem 4] showing that a proper quotient
of an arbitrary branch group is virtually abelian. In our situation, the following
statement from [22, Proposition 8] is useful:

Proposition 7.5. The normal subgroup K {(ab)2)^ has finite index 16 in ~§, and
it is ofself-replicating type, written K x K < K, i.e. K x K C xfr(K), where xf is

given by (7.4).

Leti/r:~§ —> x^) xiZ/2Z be as defined in (7.4). For each;?? > 1, the stabilizer
subgroup St-g(m) of with respect to the action of fi on the tree T, is the set of
elements g G that fix all vertices at level m, i.e. all vertices in Vm. In particular,
if g G St^(l), then f (g) e fi x fi. The group Ai is a subgroup of Stg(l).

It is also shown in [ 19] that itself is self-replicating (or recurrent), in the sense

that St^(l) <s fi x il, where <s is subdirect product. This means that the group
homomorphisms

St*(l) xfi
where tcj, j 0,1, are the coordinate homomorphisms, are surjective.

Let A be the ideal in B generated by the set {k — 1 | k G K} ç B, where K
is as in Proposition 7.5 above. Then B/A has dimension at most 16. To see this,
let {t\, t2,. tie] be representatives of the cosets of K in For each g e ~§, there

exist i in {1,2,..., 16} and k\nK such that g t{k ti + ti(k — 1), so g ti + A.
This shows that B/A is the linear span of the elements t\ + A, t2 + A,..., t\^ + A.

Let B —> M2(B) be as defined in (7.8), and let f": B —> M2n(B)
B (8) M2n (C) denote the "nth iterate of \ in the sense that

n (VOr ® idM2„_!()) o • • • o (iidm2()) ° fin-

The homomorphisms are not surjective, but the following holds:

Lemma 7.6. For each n > 1, M2«(A) ç t/?"(A).

Proof. The lemma follows easily by induction on n, once the base step n 1 has

been verified. So let us show that M2{A) ç fn{A).
It follows from Proposition 7.5 that for each k e K we can find k' G K such that

xjf(k') (k, 1). Hence

fn(k') (f} fiAk< - 1) ^ 1

(7.13)

Let x,x' G A be such that

(o o) (7.14)
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Since S is self-replicating; cf. the comments below Proposition 7.5, we can for each

/ G S find g 6 St^(l) and h e S, such that fig) (/, h). Then

fn(gx') fn(x'g) xf 0

0 0

Together with (7.13), this shows that

A 0
0 0 ç A). (7.15)

If x, x' e A are such that (7.14) holds, then

f„(x'a) ^ tn(ax') ^ *j fn(ax'a) ^ °

Together with (7.15), this completes the proof.

Lemma 7.7. dim(ß/A2) < \S : [K, A(]| < oo.

Proof. Let A' be the ideal in B generated by the set {k — 1 | k e [K, A']}. Exactly as

in the argument above, showing that the dimension of B/ A is at most \§ : K\ 16,

we see that the dimension of B/A' is at most |G : [AT, AT]|. Now, K is finitely
generated, and so is the quotient K/[K, K], which, moreover, is an abelian torsion

group. Hence K/[K, K] is finite, so \§ : [K, Al]] \§ : K\\K : [K, A']| is finite.
For all k\,k2 & K,

[kuk2] - 1 kfxkfl({k\ - 1 )(k2 - 1) - (k2 - \){kx - 1» 6 A2,

which shows that A' ç A2. This proves the lemma.

One more property of S, that we are going to exploit, is the so-called contracting
property, already used in [19]. Let [g-| denote the length of g S with respect to
the canonical generating set {a, b, c, d}. With xfr: S -> (S x S) x Z/2Z as defined
in (7.4), and g e S, we have f (g) (go,gi)?l, where gi,g2 e S and r] e {e,e}.
By [19], see also [23, Lemma 3.1],

(7.16)

for i 0, 1. In particular, | gi \ < |g| if |g| > 2. The set of elements g e S for which
|g"[ A 1 is equal to N {I, a, b, c, d}, which is called the nucleus of S.

We can repeat this process and obtain for each g S and u 6 {0, 1}" a section

Sv ^ (defined underneath (7.6)), such that f(gv) (gov giv)t]v^ where

r]v e {e, e} and |giV \ < (|gt, | + l)/2, for i 0,1. It follows that, for each g e S,
there exists n > 1 such that g\v N, for all v in {0, 1}". By the construction of the

self-similarity map B -> M2(B), this leads to the following:
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Lemma 7.8. For each x in B, there exists n > 1 such that the 2" x 2n matrix
ijf"{x) £ M2n(B) has entries in the linear span of the element in the nucleus

N {1 ,ä,b,c,d}.
Next we will prove:

Lemma 7.9. Let J be a non-zero ideal in B. There is m > 1 so that M2m (A2) ç
K(J)-
Proof Let x be a non-zero element in J. Suppose that there exists m > 1 such that

one of the 2m x 2m entries, say the (s, t)th entry, of f(x) is a non-zero scalar A.

Denote by ejf, L j 1,2,..., 2m, the standard matrix units of M2m (C). Then,

upon identifying M2m(B) with B <g> M2m, we have

(P ® ® elf) Xpq <g> ef\ (7.17)

for all p,q £ B and all i,j 1,2, It follows from (7.17) and from

Lemma 7.6 that pq <8> e\f belongs to for all p,q e A. We conclude that

z <g> e\f belongs to for all z £ A2 and all i, j 1,2,..., 2m, and hence

thatM2m(À2) ç f(J).
To complete the proof, we show below that one of the entries of ^(x) is a

non-zero scalar, for some m > 1.

Let n > 1 be as in Lemma 7.8 (associated with our given x e B). Write
i/s"(x) (x5;t)2"=1 with xs,t £ B. By the choice of n, we deduce that xiSV belongs

to the span of N {1 ,ä,b,c,d}, for all s,t. Since V" is injective, V^(x) is

non-zero, so we can find s, t such that xsj is non-zero. Write

xs,t P 1 + + ßk + yc + 8d,

for suitable p,%,ß,y,8 £ C. Observe that, by (7.10),

4+"
ßi + J+si+p)- ai®

The proof is now divided into three cases:

(1) Assume that £ 0. In this case both off diagonal entries of (xsj) are nonzero

scalars, and since ir„(xSit) is a sub-matrix of the 2"+1 x 2"+1 matrix (x),
at least one of the entries of (x) >s a non-zero scalar.

(2) Assume that either ß + y 0, or 8 + p 0. Use (7.10) to compute the 2 x 2

matrix

M(ß + y)ä + s + p) ^py 5 +
By assumption, one of the scalar entries in this matrix is non-zero. Further, it is a

sub-matrix of the 4 x 4 matrix f2 (x.sV) and hence a sub-matrix of the 2"+2 x 2"+2
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matrix x//"+2(x). Thus at least one of the matrix entries of i/r"+2(x) is a non-zero
scalar.

(3) Assume that %=ß+y=8+p= 0. Then

fn(ßc + yd + 8b + p)
(ß + y)a + 8 + p _0

0 ßc + yd + 8b + p

and

^irißc — ßd + 8b — 8)

0 0

0 ßc - ßd + 8b - 8

(ß + 8)ä + ß + 8 0

0 ßd - ßb + 8c - 8

If ß + 8 0, then, as in step (2), xfrn((ß + 8)ä + ß + 8) is a non-zero scalar 2x2
matrix, which is a sub-matrix of the 16x16 matrix f4 (xs^t), whence at least one of
the entries of i/rjj+4(x) is a non-zero scalar.

If ß + 8 0, then ß 0 (because xsj ^ 0), so ßc — ßd + 8b — 8

ß(c — d — b + 1), and

fn{c - d - h + 1)

\frn(d -b -c + 1)

0 0

0 d — b — c + 1

2-2a 0

0 b — c — d + 1

Arguing as in step (2), we see that (2 — 2ä) is a non-zero scalar 2x2 matrix,
which is a sub-matrix of the 32 x 32 matrix ijr%.(xStt), so at least one of the entries

of \ß"+5(x) is a non-zero scalar.

We are now ready to complete the proof of Theorem 7.2.

Proofof Theorem 7.2 (iv). Let J be a non-zero ideal in B. Use Lemma 7.9 to find

n > 1 such that M2«(A2) ç Since xf" is injective, it follows that

dim(ß/7) dim(x/r"(B)/xj/^(J)) < dim(M2« (B/A2)) 22n dim(ß/A2) < oo,

by Lemma 7.7. This completes the proof.

We end our paper by showing that if G is a residually finite group for which

C[G] is *-just-infinite, then G is hereditarily just-infinite (see also the discussion at

the end of Section 6). Indeed, if C[G] is *-just-infinite, then G is just-infinite, by

Corollary 6.5. By the trichotomy for just-infinite groups, [22, Section 6], G must be

either a branch group or hereditarily just-infinite, and the theorem below rules out
the former possibility.
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We remind the reader about some facts concerning branch groups (see also [22]).
Consider a spherically homogeneous rooted tree T T„, where m {mn}^L0,
is the branching index of the tree (each mn > 2 is an integer). For each vertex v

in the k th level of the tree T, let Tv be the sub-tree of T consisting of all vertices
"below" v, so that Tv is a rooted tree with root v and branching index {m'n}=0,
where m'n mn+k.

Suppose that G is a group that acts on such a spherically homogeneous rooted
tree T. Then G fixes the root of the tree and hence leaves each level of the tree
invariant. The rigid stabilizer of a vertex v T, denoted by ristc (v), is the subgroup
of G consisting of all g G which act trivially outside Tv (and fix v). The rigid
stabilizer, risto(n), at level n G N is the subgroup of G generated by the rigid
stabilizers ristG (v) of all vertices v at level n. It is easy to see that ristG (n) is, in fact,
the direct product of the groups ristG 00 >

where v is a vertex at level n.

A group G is said to be a branch group if it admits a faithful action on such a

spherically homogeneous rooted tree T T^,, such that the index |G : ristG («)| is

finite, for all « G N, and such that T acts transitively on each level of the tree.

Theorem 7.10. If G is a branch group, then C[G] is not *-just-infinite, whence

C*(G is not just-infinite.

Proof. Fix an action of G on a spherically homogeneous rooted tree T Tm

satisfying the above mentioned conditions. Let ir be the Koopman representation of G

into the unitary group of the Hilbert space H L2(dT, pf), where p X^0 B",
and pn is the uniform probability measure on the set {1,2,...,mn}. Denote also

by n the associated *-representation C[G] -> B(H).
We show that jt:C[G] -> B(H) is not injective, and that 7r(C[G]) is infinite

dimensional. This will imply that C[G] is not *-just-infinite, and hence (by
Corollary 6.5) that C*(G) is not just-infinite. Since G acts level transitively on T,
we conclude that G is infinite and that tt(C[G]) is infinite dimensional.

Let m miff) and let v\,v2, ,vm be the vertices at the first level of the

tree T (below the root of the tree). The condition that |G : ristc? (1) | is finite
implies that ristG(l), which is isomorphic to X7=i ristG Of/)> is infinite. Moreover,
by level transitivity of the action of G on T, the rigid stabilizers ristG Of/) are

pairwise conjugate, so they are, in particular, non-trivial. We can therefore choose

gj G ristG Of/), for j 1,2, such that gj 1. Observe that (1 — gi)(l — g2)
1 — gi — gi + gig2 is non-zero in C[G], because g\ ^ 1 and g2 f 1.

For i 1,2,... ,m, let Xi be the subset of dT consisting of words that start
with vi, i.e. Xi dTVj, so that 3 T is the disjoint union of the sets X\, X2,... Xm. Set

Hi L2(Xi, p). Then H ©7=i ^0- Let ^ be the projection from H onto
Since gj acts trivially on the sub-trees TVj, for i f j, we conclude that Pi commutes
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with n(gj) for i 1,2,... m and j 1,2, and Piit(gj) P,, when j ^ i.
Hence n{ 1 — gj)Pi 0, for i ^ j. It follows that

m

^(0 - Si)0 - S2)) =n((l- gi)(l - g2)) Y pi
i 1

Jt((l — g"i)(l -gi))P2 1 -gi)F2jr(l - g2) 0,

so n: C[G] B(H) is not injective, as wanted.

The theorem above (and its proof) contains item (iii) of Theorem 7.2, since ü
is a branch group. As in the conclusion of Theorem 7.2, it can happen, at least for
some just-infinite branch groups G (for example, when G ~§), that jr(C[G]) is

just-infinite. It may also happen, for some just-infinite branch groups G, that C* (G)
is a RFD just-infinite C*-algebra, where jr as above is the Koopman representation
of G arising from its action on a tree. We conjecture that C* (ß) is a RFD just-infinite
C*-algebra.
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