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On stable rationality of some conic bundles
and moduli spaces of Prym curves

Christian Böhning and Hans-Christian Graf von Bothmer

Abstract. We prove that a very general hypersurface of bidegree (2,n) in P2 x P2 for n

bigger than or equal to 2 is not stably rational, using Voisin's method of integral Chow-theoretic

decompositions of the diagonal and their preservation under mild degenerations. At the same

time, we also analyse possible ways to degenerate Prym curves, and the way how various loci
inside the moduli space of stable Prym curves are nested. No deformation theory of stacks or
sheaves of Azumaya algebras like in recent work of Hassett-Kresch-Tschinkel is used, rather

we employ a more elementary and explicit approach via Koszul complexes, which is enough to
treat this special case.

Mathematics Subject Classification (2010). 14E08, 14M20.

Keywords. Conic bundles, rationality, Prym curves.

1. Introduction, description of the problem, and prerequisites

In this article we work over the complex numbers C throughout. A hypersurface

ÏÏ2,n C X F(2u;v.w)

of bidegree (2, n) is given by an equation

(x, y, z)A(u, v, w)(x, y, z)' 0

where A (u, v, w) is a symmetric 3x3 matrix with entries homogeneous of degree n

in u, v, w, hence projection of a very general H2,n to realizes it as a conic
bundle over P2u

v
with discriminant curve Ah2k det A(u, v, w) of degree 3n.

This discriminant curve carries a natural Prym structure, i.e. a two-torsion line
bundle a, arising from the determinantal representation of Ah2 „ More precisely, a
has a minimal graded free resolution

0 ^0p2(-2«)3 ~^0P2(-n)3 ^0. (1.1)

It is more accurate to think of the pair (Ah2 „ > °0 °f the discriminant curve or
discriminant datum of the conic bundle. Note already at this point that if H2m is not
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very general, a need not necessarily be a bundle at all, but might, for example, be

just a symmetric torsion-free sheaf. Then our main result is

Theorem 1.1. For n > 2, the very general hypersurface H2,n C F^fx-y-z) x ^{u-vw)
of bidegree (2, n) is not stably rational.

We now describe the strategy of the proof and some subtle problems which arise

in its implementation, the resolution of which can be said to be one of the main
contributions of this article (the other one being the usage of a more explicit and

low-tech type of deformation theory based on the Koszul complex, which avoids the

arguments involving root stacks and sheaves of Azumaya algebras in [15] completely;
we will say more about this below). These problems are related to the fact that the

discriminant curves are not the generic plane Prym curves of degree 3n as soon

as n > 2.

In [23] Voisin introduced a very powerful new degeneration technique that
allows one to prove that very general members of certain families of "nearly
rational" (e.g. unirational) varieties are not stably rational; the idea is that stably
rational varieties have an integral Chow-theoretic decomposition of the diagonal

resp., universally trivial Chow group of zero cycles, and this property is preserved
under mild degenerations. The technique was developed further, generalised
substantially and cast in its natural theoretical framework in [13]. This made possible
a wealth of applications, some of them using degenerations in unequal characteristic
such as [22]; without any pretense to completeness we just mention as examples

[12,15,17,18,20,22] and [16]. In this last article the authors exhibit a family of
smooth varieties over a connected base some of whose fibers are rational whereas

others are irrational. The existence of an integral Chow-theoretic decomposition
of the diagonal is the only (stably) birational invariant so far that has been used to

distinguish birational types of smoothly deformation-equivalent smooth varieties.
We have taken the formulation of the following result that encapsulates the method

from [7], but the result is really a simplified version of [23] and [13, Thm. 1.14], and

the reader is referred to the latter source for a proof.

Theorem 1.2. Let B be a smooth variety and o e B a (closed) point. Suppose
that f : X —B is a flat projective morphism such that the generic fiber of f is

smooth and that the fiber X := Xo is integral. Suppose X admits a resolution of
singularities o: X —X with the following properties:

(1) The torsion subgroup of H 3 (X, Z) is nontrivial.

(2) The fiber ofa over any scheme-theoretic point £ e X is a smooth rational variety
over the residue field K(ij).

Then for a very general point b e B, the fiber X& is not stably rational.

Here condition 1 can be replaced by any other condition that ensures that the

Chow group of zero cycles is not universally trivial for X Xo; the condition means

that the unramified Brauer group of X is nonzero.
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To apply Theorem 1.2 to show that certain very general members of families
of conic bundles are not stably rational, one would like to construct a degeneration
as conic bundles (so X Xo should retain a conic bundle structure), and then

one needs a theorem that tells one when a conic bundle X has a desingularization
ct: X —*-X such that (1) and (2) in Theorem 1.2 are satisfied. Artin and Mumford
[1, Proposition 3], have given such a criterion.

Theorem 1.3. Suppose n: X—>- S is a conic bundle over a smooth rational
surface S, i.e. there exists a vector bundle S of rank 3 on S, an integer k and

a quadratic form q G H°(S, Sym2S(k)) such that X is the zero scheme of q in
the associated projective bundle P(S) over S, and q is generically nondegenerate.

Suppose moreover that q is of corank 1 everywhere above the curve À C S where

it is not nondegenerate (so the fibers over the discriminant curve are two distinct
lines everywhere), and that A consists of more than one smooth components, and
these components A ; meet transversally. Over A we have a natural double cover
A—^A, given by the subset in the Grassmannian of lines in the fibers of¥(S)
consisting of lines contained in X. Suppose that A gives a nontrivial étale double

cover when restricted to any component A; (equivalently, the two-torsion line bundle

a. determined on A by A restricts nontrivially to each component A ;

Then for a desingularization a: X —*-X, part (1) of Theorem 1.2 holds for X.
Moreover, X has only ordinary double point singularities lying infibers above points
of A where two components meet, hence there is a desingularization o: X —> X of
the type required in (2) of Theorem 1.2 above.

Hence our strategy for proving Theorem 1.1 is clear: we have to find an

appropriate degeneration of the conic bundles given by our hypersurfaces H2,n to

apply Theorem 1.3. Usually, this task is broken up into two steps:

Step 1. Prove that there is a degeneration of Prym curves

{Ah2,„ ^ (A, a), teB.t^oeB
such that (A, a) is of the type required for application of Theorem 1.3.

Step 2. Prove that there is a family of conic bundles U —^ P2xB whose discriminant
data realize the degeneration of Prym curves of Step 1, and such that
Theorem 1.2 is applicable.

In [15] (with a slight generalization in [18]) Hassett, Kresch and Tschinkel give a

solution to Step 2 in the following way.
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Theorem 1.4. Let S a be a smooth projective rational surface, and let IP be an
irreducible variety parametrizing pairs (C, a) where

(1) the curves C belong to some linear system ofeffective divisors on S, are smooth

and irreducible for a generic point in IP and reduced nodal in general;

(2) a is a 2-torsion line bundle on C which is nontrivial over each irreducible

component of C.

If then IP contains a point po (Co.cto) with Co a reducible curve with smooth

irreducible components, then the very general conic bundle ~p —>- S constructed

from a point p (C, a) in IP is not stably rational.

Here Cp is defined up to birational isomorphism by the construction in [1,
Theorem 1],

This, however, does not achieve Step 1 above at all (finding the appropriate
degenerations of discriminant data tends to be the hardest part in many applications),
and moreover, to prove Theorem 1.4, the authors make use of deformation theory
of tame Deligne-Mumford stacks, root stacks and sheaves of Azumaya algebras on
them, which is very technically involved.

What this article accomplishes is the following:

(a) We find appropriate degenerations of Prym curves for Step 1 in for n 2m even,
and prove Theorem 1.1 for even n in this way. For the case of general n we use a result
due to Colliot-Thélène and Totaro [22, Lemma 2.4], The latter possibility and the

method of proof was kindly communicated to us by Zhiyu Tian after the first version

of this article appeared online; the method is also used by Zhi Jiang, Zhiyu Tian, and

Letao Zhang in a forthcoming work. The first version only proved Theorem 1.1 for
even n.

(b) We do not use the results of [15] at all, but rather replace the deformation theory
of stacks and sheaves of Azumaya algebras by a construction involving the Koszul

complex; this is much easier and more concrete in the particular case we are interested

in. It could also be used to investigate stratifications of the Prym moduli space and

degenerations of Prym curves more systematically in future.

(c) We construct several examples of reducible Prym curves such that Theorem 1.3

is applicable to imply that the associated conic bundles are not stably rational.

It should be said that in [18, p. 16 bottom], the authors point out, without addressing

the details, that the case n 2 of Theorem 1.1 can be obtained as a corollary to
their general theory of deformations of root stacks and sheaves of Azumaya algebras,
but to obtain the statement for any n, it is necessary to resort to the constructions in
the present article, and treat the case n 2 more explicitly as a starting point, too.

We add a few more words about compactifications of Prym moduli spaces to
make clear why Step 1 above is nontrivial. The moduli space IRg of pairs (C, a)
where C is a smooth projective genus g curve and a a two-torsion line bundle
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on C admits a compactification 3lg which is compatible with the Deligne-Mumford
compactification of the moduli space of curves of genus g under the forgetful map;
i.e. it extends to a morphism 3lg—^Mg. See [3,4] or [14] for this. Recall that a

curve of arithmetic genus g > 2 is called stable resp., semi-stable if it is a reduced

connected one-dimensional scheme with at most ordinary double points such that

every smooth rational component E meets the other components in > 3 resp., > 2

points. Then Mg contains stable curves and is compact. Every one-parameter family
of smooth curves has a limit in Mg, though one has to first perform a semi-stable
reduction to see this (e.g. a family of plane cubics specializing to a cuspidal curve
has a curve with an elliptic tail as limit, after several blow-ups in the central fiber and

finite covers of the base).

Now by [3], Definition 1, points in Slg parametrize the following objects.

Definition 1.5. A component E of a Deligne-Mumford semi-stable curve C is

called exceptional if it is smooth, rational and meets the other components in exactly
two points. One calls C quasi-stable if every two exceptional components are

disjoint. The stable model st(C) is the stable curve obtained from C by contracting
all exceptional components.

A (semi-stable) Prym curve C of genus g is a triple (C,rj,ß) where C is a

quasi-stable curve of genus g, q is a line bundle on C with a sheaf homomorphism
ß; ^ Qc t^at

(1) r) has total degree 0 on C and degree 1 on every exceptional component;

(2) ß is non-zero at the general point of every non-exceptional component.

Equivalently, this means that ß vanishes identically on all exceptional components

Ei of C, and denoting by C the union of the non-exceptional components

rl\c~ ~4i -<7r)

where C n £) {qj ,qf}. Moreover, q |Et öpi (1), and the map 31
g —^ Mg is

given by associating st(C) to the triple (C, q, ß).

Jarvis [19] has given an equivalent description of this compactification in terms
of (square) root sheaves of 0st(c) (certain rank one torsion free coherent sheaves

on st(C)).
We give a name to the types of Prym curves that we allow as our degenerations in

Step 1 above (they are those for which Theorem 1.3 ensures a nonvanishing Brauer
obstruction for the associated conic bundle).

Definition 1.6. We will call a (stable) plane Prym curve (C, a) good if the following
hold:

(1) C is reducible, with smooth irreducible components Ci, i e /, and nodal.

(2) The torsion-free symmetric rank 1 root sheaf a on C is in fact a two torsion line
bundle, and restricts to a nontrivial two torsion line bundle on each component Q.
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Now we can say more precisely what the subtlety of Step 1 above consists in: if
we look at the closure of the locus of smooth plane Prym curves (C, a) such that the

two-torsion line bundle a has a minimal graded free resolution of type 1.1 inside the

respective !Rg, then this closure need not contain any good Prym curves at all!

The subsequent sections are organized as follows: in Section 2 we prove
Theorem 1.1 for n 2 using determinantal degenerations. For this it is necessary to
find a symmetric 3x3 matrix with quadratic forms on P2 as entries whose determinant
defines a union of two smooth cubic plane curves intersecting transversally, and such

that the corank of the matrix is precisely 1 in each point of the two curves. It is not
at all clear how to produce such a matrix "by hand" and ad hoc attempts to write one
down fail.

In Section 3 we prove Theorem 1.1 for any even n 2m then. We do not use

determinantal degenerations, but rather degenerate to certain Prym curves that have

minimal graded free resolutions of a type first studied in [1] where the entries of
the presentation matrix have different degrees and the matrix itself is 2 x 2 instead

of 3 x 3. Using a construction involving a bi-graded Koszul complex on P2 x P1

we solve the problems mentioned in Steps 1 and 2 above at the same time for the

case n 2, and then employ a combination of a trick first appearing in [6] and a

generalization of a geometric construction of good Prym curves in [1] to settle the

general case n 2m in Theorem 1.1. We believe that some of the techniques in this
section could also be of independent interest, e.g., to construct standard conic bundles
associated to Prym curves explicitly, or to study adjacency relations in compactified
moduli spaces of Prym curves.

In Section 4 we finally give the proof of Theorem 1.1 in full, for any n independent
of the parity; the proof was communicated to us by Zhiyu Tian (the method is also

used in forthcoming work of Zhi Jiang, Zhiyu Tian, and Letao Zhang) and reduces
the statement to the n 2 case by an induction, which in turn is based on a result
due to Colliot-Thélène and Totaro [22, Lemma 2.4],

Acknowledgements. We would like to thank Ivan Cheltsov for pointing out the

question to us in the first place, and Fedor Bogomolov, Fabrizio Catanese, Jean-Louis

Colliot-Thélène, Andrew Kresch, Kristian Ranestad, Miles Reid, and Yuri Tschinkel
for useful discussions and suggestions about part of the material in this article.

We are especially thankful to Zhi Jiang, Zhiyu Tian, and Letao Zhang for

communicating the material in Section 4 to us and letting us include it in a revised

version of this text.

2. Determinantal degenerations

In this Section we prove the case n 2 of Theorem 1.1 using determinantal

degenerations. Note that in this case, A(u, v, w) is a three by three symmetric matrix
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of quadratic forms on P2, which is general with this property for a very general

hypersurface H2,n, so to apply Theorem 1.2 in conjunction with Theorem 1.3, it
suffices to find a symmetric three by three matrix of quadratic forms with determinant
the union of two smooth cubic curves meeting transversely, and such that the two-
torsion line bundle a defined by this matrix restricts nontrivially to each of these two
cubics.

We will first accomplish this over a finite field, and then show that our example
lifts to characteristic 0.

We recall two results from [6]. They can also already be found in [11].

Theorem 2.1. Let (C,a) be a pair consisting of a smooth plane curve C of even

degree d 2e and a non-trivial line bundle a with a®2 (De-

Then for a general such pair (C, a) the line bundle a has a minimal resolution

0 ^ 0¥i(-e - 1Y 0p2(-c + 1Y >- a >- 0 (2.1)

with M symmetric with quadratic entries, and det M is a defining equation for C.

This is [6, Prop. 4.6].
In our present case of plane sextics, e 3, and we would like to understand

if we can find a reducible sextic, splitting as two cubics meeting transversely, with
an a that has a resolution of the form (2.1). Our first task is to describe two-torsion
line bundles a sitting in a resolution (2.1) concretely. Such an a must satisfy that

X := ct(2) has three sections. It is hence of the form X 0(D) for a certain
effective divisor D of degree 12 on C. We can assume that D consists of 12 points.
There is a quartic containing these 12 points, cutting out a divisor D' residual to D

on C where deg D' 12 as well, and \D\ |4H — D'|, thus the linear system

corresponding to D is cut out by the quartics through D'. Actually, since 2D 4H
as X®2 ~ 0c(4), one can choose D' D, too.

The equation 2D 4H means that there should be a quartic which cuts out the

points in D on C with a double structure on C, hence is tangent to C in those points.
This condition is equivalent to 2D 4H, hence to a being two-torsion.

Thus our construction of a pair (C, a) with C Cj U C2 splitting as two smooth

cubics meeting transversely and a nontrivial 2-torsion on C, h° (C, a (2)) 3, having
a resolution as in (2.1), proceeds via the following steps. We work over a finite field F
first, then discuss the lifting problem to characteristic 0.

(1) Pick a smooth cubic Cj and six points D\ := Pi U • • • U Pe on C\ at random.

(2) Compute the ideal of 2D\ (double on C!) and check whether the element of
smallest degree in it is a quartic. This is not always the case, so if not, go back to

Step 1. and wait till you get a quartic Q4. This works because the codimension

of the parameter space of the sought-for pairs (Ci, D1) is not too high.
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(3) Pick six points D2 := Q\ U • • • U <2 6 on Q4 at random (different from D\) and

search for a cubic C2 tangent to g 4 in D2 by the same random procedure as in 1.

and 2.

(4) Take C Ci U C2 and X := &c(4// — D\ — D2). Check whether now
h°(C,X) 3, i.e. whether there is a three-dimensional space of quartics
through D D\ U D2. This is not always the case (e.g. sometimes one

gets a 4-dimensional space), in which case one repeats the entire procedure until
one succeeds.

(5) Compute a resolution of the full module of sections of X on C. This gives you
a quadratic matrix N as in (2.1), but possibly not symmetric.

(6) We check if N is symmetrizable in the following way: if so, there will be scalar
base change matrices A and B such that ANB is symmetric; but then also

(A~1)ANB(A~l)t will be symmetric. In other words, there will be a matrix S

such that NS M is symmetric. These are linear equations for the entries of S

whose solvability is easy to check.

Carrying out Steps 1 to 6, we found the following:

Proposition 2.2. Consider the matrix

(-10x2
+ xy - 8y2 + 8xz + 5yz - 9z2 -4x2 - 5xy + 3y2 + 5xz - 11yz - 7z2 4xy - 8y2 + 6xz + yz - 8z2 \

-4x2 - 5xy + 3y2 + 5xz - 11yz - Iz1 -8x2 + 9xy - 2y2 - Ixz + yz - 9z2 8xy - 5y2 -6xz + 11yz + 9z2 1

4xy - 8y2 + 6xz + yz — 8z2 8xy - 5y2 — 6xz + 1 lyz + 9z2 xy - 6y2 + lOxz + 2yz + 2z2 J

over the finite field F23. Then:

(1) The determinant det M defines two smooth cubic curves C\ and C2 meeting
transversely, and M has corank 1 in every point ofC\ U C2.

(2) The two torsion line bundle a defined by M is nontrivial on both Cj and C2.

Proof. This is a Macaulay2 computation, see [8],

Now we have to address the lifting problem.

Lemma 2.3. Suppose that over a finite field ~¥p, p fz 2, there is a reducible reduced

curve C which splits as a union of two smooth cubics C C\ U C2 meeting
transversely, and a nontrivial two-torsion line bundle a on C which has a resolution

of theform (2.1 ); equivalently, this amounts to the existence ofa symmetric matrix M
with quadratic forms as entries such that det M 0 defines two smooth cubics

meeting transversely such that M has rank 2 in every point of C C\ U C2. Also

assume that a restricts nontrivially to both C1 and C2. Then there exists such an

example over C as well.

Proof. There exists an open subset

¥(¥P[X0, XuXih)0 C P(Fp[X0, *1, X2}3)
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such that the parameter space of the pairs Ci, C2 is given by

P := P(Fp[V0, X\, V2]3)° x P(Fp[V0, Aj, V2]3)°,

a product of two open subsets in projective spaces (already defined over Z). The
datum of an a on Cj U C2 amounts to the datum of a nontrivial two-torsion line
bundle oq on Cj, a nontrivial two-torsion line bundle on C2, and an isomorphism of
the vector bundle fibers (a\)x —>- (a2)x in each intersection point of x Cj D C2.

Now the space P is the special fiber, over the closed point corresponding to p, of a

family
IP —>- Spec(Z)

where J3 is an open in a product of two projective spaces defined over Z; and by [21]
the two-torsion points in the product of relative Jacobians over IP form a finite flat

group scheme since p ^ 2. Hence we can lift Cj U C2 as well as a \ and a2 to

characteristic zero, and we can also lift the linear isomorphisms {u\)x —>• (a2)x in
the intersection points along with this.

Hence we get a family defined over some ring of integers o in a number field.
Now note that [6, Thm. B] and [6, Prop. 3.5] also hold for reduced, possibly reducible

plane curves with the same proofs since also these curves have dualizing sheaves.

This implies that the property that a on C has a resolution of the required type (2.1)
is generic in this family, and it holds at a closed point of Spec(o) lying over p. Hence

it holds at the generic point, hence over C as well, thus for a lift to characteristic 0.

Also the lift of a will restrict nontrivially to each component since this is true at the

special point.

Theorem 2.4. The very general hypersurface of bidegree (2,2) in IP2 x P2 is not
stably rational (over C

Proof. This follows immediately from Theorems 1.2 and 1.3 now that we have

constructed the matrix M above and proven Lemma 2.3.

If one wants to proceed further, i.e. treat cases of hypersurfaces of bidegree (2, n),
n even, for n > 2, then the above brute-force computational approach does not work

anymore (the codimension of the sought-for Prym curves in their parameter space is

too high). Thus in the next section we use a different method to prove Theorem 1.1

for any even n.

3. Construction methods for good Prym curves and degenerations
to Artin-Mumford type examples via the Koszul complex

In this section we prove Theorem 1.1 for any n 2m even. We start with a

geometric method to construct good plane Prym curves in the sense of Definition 1.6,
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generalizing a geometric construction of Artin and Mumford in [1, p. 79 ff. and

p. 93/94],

Lemma 3.1. Let A be a smooth plane curve of even degree a, and let C\,... ,Cr be

smooth plane curves of degrees C\,... ,cr where all Ci > a, and every Ci is tangent
to A in Cia/2 distinct points. Let IP be this set ofpoints on C Ci U • • • U Cr,
and let ZP,- be the set of points lying on Cf. Then the line bundle a associated to
IP — (a/2)h (where h is the intersection of C with a general line in P2) is nontrivial
2-torsion on every component Ci.

Proof. This is an easy extension of [1, Lemma, p. 93]: by construction, 2 J3 is cut out
by A on C, so a is 2-torsion; it is nontrivial on every C, by the following reasoning:

suppose by contradiction that it was trivial on C;. Let q be the rational function
on P2 whose divisor is A — aH, H some fixed line in P2 so that h HCC. Then
the restriction q of q to C, would be a square q =~s2 for some T e C (Q) if a was

trivial on Q. Then

Te H\C,GCi((a/2)H.Ci)

and since //°(P2, &F2((a/2)H))—^ H°(Ci, Gci((a/2)H.Ci) is surjective, there

would be a function 5 in C(P2) that lifts T. Moreover, (s) R — (a/2)// where R
is another curve of degree a/2 in P2. But then, set-theoretically, A n Q would be

equal to R D Q, hence A fi Q c A fl R, and the latter consists of at most a2/2
points, which is strictly smaller than ac,/2, contradiction.

Remark 3.2. In particular, if the curve C Ci U • • • U Cr in Lemma 3.1 has only
ordinary double points, the pair (C, a) is a good Prym curve and by Theorem 1.3, the

associated conic bundle is not stably rational. Here is one geometric way to produce
an arrangement of curves A, C\,..., Cr as in Lemma 3.1: in fact, it suffices to show

how to produce smooth plane curves C, A, degC > deg A with degH a 2a'
even, and C tangent to A in a'c distinct points. For this, we can use Theorem 2.1 (1)
and Bertini's theorem. Start with a smooth A of degree a 2a' > 2 with a nontrivial
square-root a of Ga with a resolution of type 2.1. Suppose the linear system \ot(m)\
is of dimension > 1 and base-point free. By Theorem 2.1 (1) this will be the case

as soon as m > a' — 1. Hence, by Bertini's base-point free pencil theorem, there

will be an effective divisor in \a(m)\, D say, consisting of m a distinct points.
Then \2D\ |0(2m)|, hence there is a curve C0 of degree c 2m intersecting A

tangentially in the points in D. Suppose now we choose m such that c > a. Consider
the linear system X of plane curves of degree c intersecting A tangentially in the

points in D. X contains curves which are smooth in the points in D, e.g. A + C'
for a general curve C" of degree c — a. This also shows that the linear system X
has no basepoints outside of D (since C0 intersects A only in D and belongs to X,
but a curve of type A + C' can avoid any given point outside A). Hence the general

curve in X will be smooth (by Bertini's theorem again, and this will also hold in the
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points D since there are curves in X that are smooth in D) and cut out precisely 2D
on A as desired.

This method produces many examples of good Prym curves and hence of conic
bundles which are not stably rational.

We would like to thank Kristian Ranestad for suggesting this geometric approach.

For our immediate purpose of proving Theorem 1.1 for n even, we will, however,

construct good Prym curves of degree deg C d even and divisible by 3, hence

d — 6m, fox m > 1, by a "dirty trick" different from the construction method in
Remark 3.2. Note that n 2m then in the notation of Theorem 1.1. These curves
will have minimal graded free resolutions

0 —»- 0P2 {—5m) © 0P2 {—4m) 0P2 {—m) © 0P2 {—2m) —a —^ 0 (3.1)

where M is a two by two matrix with entries homogeneous polynomials in C [u, v, w]
of degrees

4m 3m\
3m 2m J

'

The construction method will allow us to conclude that we can degenerate our
discriminant Prym curves with resolution type 1.1 to these good Prym curves once
we have proven that fact for n 2.

Proposition 3.3. There are good Prym curves (C, a') with resolution type 3.1 which

are pull-backs ofgood plane sextic Prym curves with resolution type 3.1 (for the case

m 1) under a (degree m2 ramified) covering map

y: P2—s-P2, (u : v : w)\—*-(:um : vm : wm).

Proof. It is easy to construct good Prym curves of degree 6 using Lemma 3.1 with A

a conic and C C\ U C2 with Q cubics: this is what Artin and Mumford do on

page 79 ff.; it just amounts to the existence of smooth cubics tangent to a given conic
in some set of three points (which we are free to choose a priori). Now if we choose

coordinates u, v, w such that A, Ci, C2 and the cubic cutting out the six tangency
points on A are all transverse to u 0, v 0 and w 0 in smooth points, and

contain none of the intersection points of two of the coordinate axes, then we can

apply Lemma 3.1 to the curves A' y*{A), y*(Cj), y*{C2) (all of these are smooth,
hence irreducible, under the above assumptions) to conclude that a' — y*(a) is still
nontrivial on every component of C' y*{C) (this is the main usage of Lemma 3.1)
and (C, a') has resolution type 3.1 with a presentation matrix

where a' has degree 2m, c' degree 4m, b' degree 3m, and this matrix is obtained
from a matrix
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where a has degree 2, c degree 4, b degree 3, by the substitution

u I—* um, v\—^vm, w^wm.
To prove Theorem 1.1 for n even we now start with a solution of the case n 2

(where the discriminant curve is a plane sextic) that is different from the one in the

previous section, and involves degeneration to Artin-Mumfbrd type Prym sextics. A
few more pieces of terminology are useful.

Definition 3.4. Henceforth in this section a plane sextic Prym curve (C, a) will mean

an at most nodal reduced plane curve C with smooth irreducible components where

a is a two torsion line bundle on it.
We call (C, a) of general type if C is smooth, and a is nontrivial with minimal

graded free resolution

0—^0p2(-4)3^0p2(-2)3—a—^0 (3.2)

where A is a symmetric three by three matrix with quadratic entries.
We call a plane sextic Prym curve (C,a) of Artin-Mumford type if there is a

minimal graded free resolution

0 —^ 0p2(—5) © 0p2(—4) 0p2(-l) © 0p2(—2) —^a —0 (3.3)

where B is symmetric and the degrees of the entries in B are

We call a plane Prym sextic curve of Artin-Mumford type good if moreover it is

good in the sense of Definition 1.6.

The proof of Theorem 1.1 for n even will be an immediate consequence of
Theorem 1.2 and Theorem 1.3 together with Theorem 3.5 below and Proposition 3.3

above.

Theorem 3.5. (i) There is a Zariski-open neighborhood B ofthe origin 0 6 A1 C P1,

and a (flat) family ofsextic plane Prym curves

(3.4)

71

B

such that for t £ B, t 0, the fiber ÇCt, (Afi) is a Prym sextic ofgeneral type,
and (ï?o> (fL)o) A a plane sextic Prym curve ofArtin-Mumford type.

(ii) Any general sextic plane Prym curve of Artin-Mumford type occurs as the

centralfiber (Ifo, (çr)o) m a family as in (i).
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(iii) The families ofPrym curves in (i) and (ii) can be chosen to arise as the family
ofdiscriminant Prym curves ofa family ofconic bundles over P2

» IP (g)
(3.5)

where:

(a) 8 is a rank 3 vector bundle over P2 x B with 8, — 0(—2)3 for t f 0 and

8o — 1) ® 0(—1).

(b) For t ^ 0 general, the total space ofQ.t —^P2 x {;} ~ P2 is smooth and
this conic bundle has discriminant Prym curve Çt, (a)t)-

(c) For t 0, the total space of Q.o—^P2 x {0} ~ P2 has at worst double

points as singularities and this conic bundle has discriminant Prym curve
(Co, (fL)o)- Double points occur if (Uo, (fL)o) D good, hence does have

nodes.

(iv) There exists a family of conic bundles as in (iii) such that (ï?o> (fL)o) is o good
sextic plane Prym curve ofArtin-Mumford type.

Before embarking on the proof of Theorem 3.5, let us show how Theorem 1.1

for n even follows from it.

Proofof Theorem 1.1 for n even. Using Theorem 1.3, Theorem 1.2 is applicable to a

family of conic bundles as in Theorem 3.5 if the central fiber is a good Artin-Mumford
plane sextic Prym curve, which we may assume by part (iv) of Theorem 3.5. This
shows the case n 2 of Theorem 1.1.

If n 2m > 2, we start with a family as for the proof of the case n 2 we just
gave, and pull it back via the covering map of Proposition 3.3:

y:P2—^P2, (u : v : w)i—f(um : vm : wm).

If we choose the projective coordinate system generic, we will get a family of conic
bundles with generic discriminant Prym curves of type 1.1, and special fiber with
discriminant Prym curve of type 3.1 and moreover good in the sense of Definition 1.6

by Proposition 3.3. Hence Theorem 1.1 for « even follows from Theorem 1.2

again.

Our method to prove Theorem 3.5 is closely related to the Koszul complex and

replaces the deformation theory of Azumaya algebras and tame Deligne-Mumford
stacks in [15] by something a lot more concrete in this special situation.

Description of the family of vector bundles in Theorem 3.5 (iii)(a): By the Euler

sequence

0 ^0p2 ^0p2(l)3 >-TP2 >-0 (3.6)
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we see that we can take 8q (—6) := 0(—5) © T (—5) as a bundle that deforms to
&(—4)3 (and is not graded free) because generically we have a non split extension

giving G(—4)3, and the split extension is Sq(—6). Hence, 80 — £2'(— 1) © 0(— 1).

Also note the duality

T~£Z\3) (3.7)

obtained from the nondegenerate pairing 7 <8> 7 —K~\.
In principle, this describes a family 8, but it is convenient to give a more explicit

construction of 8 via the Koszul complex: take P2 with homogeneous coordinates

u,v,w and P1 with homogeneous coordinates s, t and look at the bi-graded Koszul

complex for the regular sequence (u,v,w,t):

0 ^0P2xPi ——30(1,0) © 0(0, 1) —30(2,0) © 30(1,1) (3.8)

where

S (u, v, w, t)', A

t 0 0 w 0 V

0 t 0 0 w —u

0 0 I —u —v 0

\—u —V —w 0 0 0

and we write 0 (i, j pr*20p2(/) © pr* 0P, (j
We twist this complex by (—5,0):

gv(-6,0)

0 0(—5,0) 30(—4,0) © 0(—5,1) 30(—3,0) 0 30(-4,1)
(3.9)

Note that for ^ 0, 8V(—6, k) restricts to 30P2(—4) on P2 x {(s : t)}, and for
t 0, it restricts to 8$ (—6) by the Euler sequence.

Deformation theory of symmetric maps 4>o-®o'(—6)—^8q to symmetric maps
0:gv(—6, —2)—ï-8: We will prove parts (ii), (iii), (iv) of Theorem 3.5 in one

stroke; we need a few preliminary observations. We start with a method to produce

symmetric such maps Oq-
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Consider a diagram

147

0 > d(-5)(^^30(-4) © 0(-5) 30 (-3) © 0(—5) © 0(-4)

t

N0

0(—1)("'"'")'°)30(—2) © 0(-l)
M

30(—3) © 0(—1) © 0(—2)

(3.10)
where

(3.11)

/0 0 u v w\
0 f Cu cv cw

M u cu 1 0 0

v cv 0 1 0

\u; cw 0 0 1 /
with cu,cv,cw and f homogeneous polynomials of degrees 2,2,2 and 4 in

K[u, v, ut], and

A

with

-r 0 S\
V» 1 oj

' 0 w —V

—w 0 u
V —u 0

Every such

N0 A MA'

defines a symmetric map <E>o: S^ (—6) —> So via

0 — 0(_5)(^'30(-4) ® 0(_5)

0

No

0(_1)(toio)30(_2)©(9(_i)

S0V(-6) 0 (3.12)

Now we look for a deformation O of <fi0

0 ^ 0(—5, -2)("'"'"''^30(-4, -2) © 0(-5, -1) •

N

0(-l,O) iu-v-w-t) 30(—2,0) 0 0(—1,—1)

gv(-6, -2) ^0
<ï>

S^

with Nu=o} A'o and Op=0} $o-

0

(3.13)
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Proposition 3.6. Every symmetric map 4>(P @o 16) —defined via a matrix M
as in 3.11 via diagrams 3.10 and 3.12 can be deformed to a symmetric map
<E>: 8V (—6. —2) —>- 8 as in diagram 3.13.

Proof. For this observe that N0 can be written as

N - (~S2 «'
N° - U /

with g (gu, gv, gw) a vector of degree 3 polynomials and g(u, v, wf 0.

We look for a symmetric N over K[u,v,w]® K[s, t] such that

N(u, v. w.t)' 0

and

/V{/=o} N0.

For this we write

(-S2 0\ fO g'\ [0 0

N°-( o o) + (8 o) + (o /
The first matrix already satisfies our conditions. We now show that there are

symmetric matrices G and F, correctly bi-graded, that reduce to the second and

third matrix for t 0 and also satisfy

G(u, v, u>, t)' F(u, v, w, t)' 0.

We then set

N *2tf o) + sG + K

Thus the proof of Proposition 3.6 is concluded by Lemmata 3.7 and 3.8 below.

Lemma 3.7. Let g (gu, gv, gw) be a vector of homogeneous polynomials of
degree 3 in K[u, v, w\ such that

ugu + vgv + wgw 0.

Then there exists a symmetric 4x4 matrix G over K[u, v, w, t] such that

G(,-.> ("
0 g'

0

and
u\

G
V

— 0.
w

\t /
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Moreover, the entries of s G in the upper left 3x3 suhmatrix have bi-degree (2,2)
in (u, v,w;s, t), the bottom right entry has bi-degree (4,0), the remaining entries

bi-degree (3, 1).

Proof Let

/ (gu)u (gu)v (gu)l
J I (gv)u (gv)v (gv)w

\(gw)u (gw)v (gw)w

be the Jacobian matrix of g. Observe that

Differentiating the equation

ugu + vgv + wgw 0

we obtain

gu + U(gu)u + v(gv)u + w(gw)u 0 u{gu)u + v(gv)u + w(gw)u -gu.

as well as similar equations for —gv and —gw. It follows that

(u, v, w)J -g.

Setting

G
g 0

the above calculations show

G

(u\
V

w

VJ

0.

Lemma 3.8. Let f G K [u, v, w\ be as above a homogeneous polynomial ofdegree 4.

Then there exists a symmetric 4x4 matrix F over K[u,v,vu,t] such that

F{t=o}

and

F

u\
v
w

\t

0 0

0 /

0.
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Moreover, the entries of F in the upper left 3x3 submatrix have bi-degree (2,2)
in (u,v,w\s,t), the bottom right entry has bi-degree (4,0), the remaining entries

bi-degree (3,1).

Proof Consider the Jacobian matrix

and the Hessian matrix

In this situation we have

and

J (fu fw)

full fuv fuw
H fuv fvv fvw

\fuw fvw .fww

j(u, v, wy 4/

H(u, v, w)' — 3 J'.

We now consider the matrix

U j f
F is symmetric with

'0 0

Fi'=o}-y0 fj-
The above calculations show

F(u, v, w, t)' =0.

Relation of the above construction of symmetric ©o's to the Prym curves of
Artin-Mumford type

Lemma 3.9. Performing an appropriate base change in 30 (—3) © &(—5) © 0(—4)
and symmetrically in 30 (—3) © &(— 1) © 0(—2) any matrix M as in 3.11 can be

brought into the "Artin-Mumford" form

la b 0 0 °\
b c 0 0 °\
0 0 1 0 °
0 0 0 1 0

\0 0 0 0 1/
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with

2 2 2
a —u — v — w

h —ucu — vcv — wcw

c — —c'' — (P" — P + f
Choosing f, cu,cv, cw in M appropriately, we can, up to a projective transformation,
obtain any smooth conic a and cubic b, quartic c in this way.

Proof. The first part is an explicit computation, the second part is obvious from the

formulas for a, b, c.

Proposition 3.10. Suppose that M is as in 3.11 and a — b c 0 with the

notation in Lemma 3.9 has no solution; then the cokernels of o in diagram 3.12

and M in diagram 3.10 are isomorphic; in particular, by Lemma 3.9, we get any
good sextic Prym curve ofArtin-Mumford type via the construction above.

Proof. A computer algebra computation [8] shows that any M as in 3.11 has rank 5

generically, rank 4 on a curve C of degree 6 (depending ofcourse on the parameters M
depends on), and rank 3 only for a b c 0. Similarly, No has rank 3 generically,
rank 2 on the same curve C, and rank 1 only if a b c 0. This shows that
the cokernels of M and $0 are line bundles ß and ß' on the same sextic curve C

under the assumption that a b — c 0 has no solution. It remains to check

whether these line bundles are isomorphic. For this we compare the divisors of zeros

of certain canonically given sections of ß(\) and ß'fl).
First consider the diagram:

0

&(-1) =0(~1)

0 30(—3) © 0(—5) © 0(—4) 4- 30(—3) © 0(-l) © 0(-2) ^ ß ^ 0

30(-3) © 0(—5) © 0(—4) —30 (-3) © 0(—2) ^ 0D —^0

0 0

where M is the matrix obtained by erasing the second row of M and D is the locus
where M drops rank. By the diagram it is clear that D is the divisor associated to
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the section s in H°(ß(\)) on C. A direct calculation shows that D is defined by

u2 + v2 + w2 cuu + cvv + cww 0 (i.e. a b 0).

Similarly consider the diagram

0

0(-l) =0(-l)
s'

0 >- £2(-2) © 0(-5) —^ S2(-l) © 0(-l) ß' 0

ß(-2) © G(—5) —- fi(-l) ^ Gd> »- 0

Y

0 0

where $0 is induced by the matrix N0 which is obtained by erasing the last row
of No- A direct calculation shows that D' is also defined by the equations above.

This proves D — D' and therefore ß{\) ß'{\).

Proofof Theorem 3.5. Since (i) is a special case of (ii), which in turn is implied
by (iii), it suffices to prove (iii) and (iv). For (iv) choose M as 3.11 in such a way that

we get a good sextic plane Prym curve of Artin-Mumford type (in particular, it splits
as a union of two cubics tangent to a conic). Write down the deformation of the

corresponding <£>0 as constructed in the proof of Proposition 3.6 (using Lemmata 3.7

and 3.8), and verify by Macaulay2 that the general fiber of the family of conic bundles
defined by is smooth [8], Then (iv) of Theorem 3.5 holds by Proposition 3.10.

Then also (iii) holds by Lemma 3.9, Proposition 3.6 and Proposition 3.10. Note
that generically, the conditions necessary for the validity of Proposition 3.10 (that
a — b — c — 0 has no solutions) will continue to hold, and the general fiber of
the resulting family of conic bundles associated to <ï> will still be smooth since we
verified this in a particular case above by explicit computation.

4. A lemma of Colliot-Thélène and Totaro and the general case of Theorem 1.1

Notice that in Sections 2 and 3 we have proved in two different ways that a very
general hypersurface H2,2 C IPfx-rz) x ^(u-vw) not stably rational, and, in fact,

we have proved a little more by [13, Thm. 1.14]: we know that such a H2,2 does
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not have universally trivial Chow group of zero cycles. Recall: a smooth projective
variety X over k C (k could be a different field in another set-up, though) has

universally trivial Chow zero if for any field L containing k

CH0(Vl) ZxL

where x is a /c-point of X; in other words, for any base change Xl to an overfield
L d k, the degree map induces an isomorphism between the Chow group and Z. In
fact, as explained in [2, §1.2], X has universally trivial Chow zero if and only if for
L k{X), the diagonal point Sl is rationally equivalent over L to some constant

point xl for x X(k). So it suffices to check the condition for L the function field
of X. Having universally trivial Chow zero is also equivalent to having an integral
Chow theoretic decomposition of the diagonal in the sense of Voisin [23]; i.e., one

can write
Ax Zi + Z2 in CHdim*(X x X)

where Z2 Ix {x} for x e X(k) and Z\ is supported onDxï for some proper
closed algebraic subset D ex.

One can inductively prove the (2 ,ri) case, n > 2, of Theorem 1.1 starting from
the (2,2) case. This possibility as well as the proof was kindly communicated to us

by Zhiyu Tian as it arises out of a method used by him, Zhi Jiang and Letao Zhang
in forthcoming work and we give this proof here with their permission. We thank
them very much for this. The main ingredient is a Lemma due to Colliot-Thélène
and Totaro [22, Lemma 2.4] which says the following:

Lemma 4.1. Let A be a discrete valuation ring withfractionfield K and algebraically
closed residue field k. Let X be aflat proper scheme over A. Let X be the general
fiber X x a K and Y the special fiber X x^k. Suppose that X is geometrically
integral and there is a proper birational morphism X' —»- X with X' smooth over K.
Suppose that there is an algebraically closed field F containing K such that CHo

of X'F is universally trivial. Then, for every extension field I ofk, every zero-cycle
ofdegree zero in the smooth locus ofYi is zero in CHo(T/).

This can thus be viewed as in extension of the degeneration method in [13,
Thm. 1.14] to the case where the central fiber may be reducible: in the form made

precise in Lemma 4.1, the triviality of Chow zero is preserved also in this set-up.
Now we can apply this in our set-up as follows: suppose, inductively, that we have

already proven that a very general hypersurface H2,n of bidegree (2, n) does not have

universally trivial Chow zero, the case n 2 being settled. We want to prove the
assertion for n + 1. Now arguing by contradiction, assume a very general H2,n+i
had universally trivial Chow zero. Then we could find a family X as in Lemma 4.1

with X a smooth hypersurface of bidegree (2, n +1) and Y the union H U Z where Z
is a hypersurface of bidegree (2,n), still general in the sense that it has Chow zero
universally nontrivial, and H is of bidegree (0,1), i.e., is of the form Pfx.y.z) x h for
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a line h in P? Now we can use an argument in [22] (after Lemma 2.4) to get a

contradiction: to conclude the proof, by Lemma 4.1, it suffices to find a zero cycle
of degree 0 on

Zyfc(Z) ~(ZD H)k(Z)

that is not zero in CH0((Z U This follows if we can show that

CH0((Zn//)fc(z))^CH0(Zfc(z)) (4.1)

is not surjective (use the Mayer-Vietoris sequence for Chow groups to see this). Now
the left hand side of 4.1 is just Z since Z fl H is a conic bundle over the line h

in hence a rational surface, and rational varieties have universally trivial
Chow zero. But the right hand side of 4.1 is precisely not equal to Z (there is some
nontrivial torsion group) since Z does not have universally trivial Chow zero by the

inductive assumption. This concludes the proof.
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