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On p-adic absolute Hodge cohomology
and syntomic coefficients. I

Frédéric Déglise* and Wiesiawa Nizioî*

Abstract. We interpret syntomic cohomology defined in 1501 as a p-adic absolute Hodge
cohomology. This is analogous to the interpretation of Deligne-Beilinson cohomology as an

absolute Hodge cohomology by Beilinson [8] and generalizes the results of Bannai [6] and

Chiarellotto, Ciccioni, Mazzari 1151 in the good reduction case. This interpretation yields a

simple construction of the syntomic descent spectral sequence and its degeneration for projective
and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they
form a full triangulated subcategory of the derived category of potentially semistable Galois

representations.

Along the way, we obtain p-adic realizations of mixed motives including /t-adic comparison
isomorphisms. We apply this to the motivic fundamental group generalizing results of Olsson
and Vologodsky 156,71].

Mathematics Subject Classification (2010). llGxx, 14Fxx.

Keywords. Absolute Hodge cohomology, syntomic cohomology, syntomic coefficients.

1. Introduction

In [8], Beilinson gave an interpretation of Deligne-Beilinson cohomology as an

absolute Hodge cohomology, i.e. as derived Horn in the derived category of mixed

Hodge structures. This approach is advantageous: absolute Hodge cohomology
allows coefficients. It follows that Deligne-Beilinson cohomology can be interpreted
as derived Horn between Tate twists in the derived category of Saito's mixed Hodge
modules [38, A.2.7].

Syntomic cohomology is a /?-adic analog of Deligne-Beilinson cohomology.
The purpose of this paper is to give an analog of the above results for syntomic
cohomology. Namely, we will show that the syntomic cohomology introduced in [50]
is a /?-adic absolute Hodge cohomology, i.e. it can be expressed as derived Horn in the

derived category of p-adic Hodge structures, and we will begin the study of syntomic

*The authors' research was supported in part by the ANR (grants ANR-12-BS01-0002 and ANR-14-
CE25, respectively).
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coefficients — an approximation of p-adic Hodge modules. This generalizes the

results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction
case.

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k. Let Gk Gal(K/K) be the Galois group of K. For the

category of p-adic Hodge structures we take the abelian category DFk of (weakly)
admissible filtered {up, N, G^j-modules defined by Fontaine. For a variety X over K,
we construct a complex RTdfk(Xr) G Db{DFK), re Z. The absolute Hodge
cohomology of X is then by definition

RTx(X,r) RKaaLDHDFK)(K(p),*rDFK{XR,r)), r G Z.

For r > 0, it coincides with the syntomic cohomology Rrsyn(2f, r) defined in [50],
Recall that the latter was defined as the following mapping fiber

Rrsyn(*,r) [RrifK(2f)^=^'A'=0^%RrdR(Z)/F'-],

where RF^K(X) is the Beilinson-Hyodo-Kato cohomology from [10], RrdR(X) is

the Deligne de Rham cohomology, and the map idR is the Beilinson-Hyodo-Kato
map.

We present two approaches to the definition of the complex RTdfk(XK,r)- In
the first one, we follow Beilinson's construction of the complex of mixed Hodge
structures associated to a variety [8]. Thus, we build the dg category £>ph of p-
adic Hodge complexes (an analog of Beilinson's mixed Hodge complexes) which is

obtained by gluing two dg categories, one, corresponding morally to the special fiber,
whose objects are equipped with an action of a Frobenius and a monodromy operator,
and the other one, corresponding to the generic fiber, whose objects are equipped with
a filtration thought of as the Hodge filtration on de Rham cohomology. It contains
a dg subcategory of admissible p-adic Hodge complexes with cohomology groups
belonging to DFk• The category admits a natural f-structure whose heart is

the category DFk and 0*# is equivalent to the derived category of its heart. That

is, we have the following equivalences of categories

9: DFK ^ 9: Db(DFK) ^ $)%.

The interest of the category lies in the fact that, for r G Z, a variety X over K
gives rise to the admissible p-adic Hodge complex

RTpH(XR,r) := (Rr&(^,r), (RrdR(*), F'+r),idR) G £>%

We define RTDFfC (X^,r) := 9~lRrpH(XR, r).
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Since the category DFk is equivalent to that of potentially semistable

representations [20], i.e. we have a functor Fpst: DFk Reppst(G^), we can also

write

Rr>(X,r) Rrpst(A-^, r)),

for RFpst(A^,r) := FpstRF/)^(V^, r). Using Beilinson's comparison theorems

[10] we prove that Rrpst(V^,r) ~ RT^A^, Q^(r)) as Galois modules. It
follows that there is a functorial syntomic descent spectral sequence (constructed

originally by a different, more complicated, method in [50])

XE? := H^Gk, Hl(XE,Qp(r))) (X,r),

where H^(Gk, •) := ExtPep ^Gk^{Qp, •)• By a classical argument of Deligne [25],

it follows from Hard Lefschetz Theorem, thzft it degenerates at E2 for X projective
and smooth.

A more direct definition of the complex RF^^V^, r), or, equivalently, of
the complex RFpst(V^,r) of potentially semistable representations associated to

a variety was proposed by Beilinson [11] using Beilinson's Basic Lemma. This
lemma allows one to associate a potentially semistable analog of a cellular complex
(of a CW-complex) to an affine variety X over K : one stratifies the variety by
closed subvarieties such that consecutive relative geometric étale cohomology is

concentrated in the top degree (and is a potentially semistable representation). For a

general X one obtains Beilinson's potentially semistable complex by a Cech gluing
argument.

All the p-adic cohomologies mentioned above (de Rham, étale, Hyodo-Kato,
and syntomic) behave well, hence they lift to realizations of both Nori's abelian and

Voevodsky's triangulated category of mixed motives. We also lift the comparison

maps between them, thus obtaining comparison theorems for mixed motives. We
illustrate this construction by two applications. The first one is a p-adic realization
of the motivic fundamental group including a potentially semistable comparison
theorem. We rely on Cushman's motivic (in the sense of Nori) theory of the

fundamental group [22], This generalizes results obtained earlier for curves and

proper varieties with good reduction [1,37,56,71]. The second is a compatibility
result. We show that Beilinson's p-adic comparison theorems (with compact support
or not) are compatible with Gysin morphisms and (possibly mixed) products.

To define a well-behaved notion of syntomic coefficients (i.e. coefficients for
syntomic cohomology) we use Morel-Voevodsky motivic homotopy theory, and more
precisely the concept of modules over (motivic) ring spectra. Recall that objects of
motivic stable homotopy theory, called spectra, represent cohomology theories with
suitable properties. A multiplicative structure on the cohomology theory corresponds
to a monoid structure on the representing spectrum, which is then called a ring
spectrum. These objects should be be thought of as a generalization of (/z-sheaves1 of)

'An A-sheaf is a sheaf for the A-topology. The A-topology is the Grothendieck topology generated by
universal topological epimorphisms (see [69, 3.1.2]).
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differential graded algebras. In fact, as we will only consider ordinary cohomology
theories (as opposed to K-theory or algebraic cobordism with integral coefficients),
we will always restrict to this later concept. Therefore modules over ring spectra
should be understood as the more familiar concept of modules over differential
graded algebras.

One of the basic examples of a representable cohomology theory is de Rham

cohomology in characteristic 0. Denote the corresponding motivic ring spectrum
by SdR. By [18,28], working relatively to a fixed complex variety X, modules

over é?dR,x satisfying a suitable finiteness condition correspond naturally to (regular
holonomic) S)x-modules of geometric origin.

In [50] it is shown that syntomic cohomology can be represented by a motivic dg

algebra 8syn, i.e. we have

RTsyn(J,r) RHomDMh(K,Qp)(M(X), 8syn(r)), (1.1)

where M{X) is the Voevodsky's motive associated to X and DMh(K, Qp) is the

category of A-motives. So we have the companion notion of syntomic modules, that
is, modules over the motivic dg-algebra 8syn. The main advantage of this definition
is that the link with mixed motives is rightly given by the construction and, most of
all, the 6 functors formalism follows easily from the motivic one.

Now the crucial question is to understand how the category of syntomic modules
is related to the category of filtered (cp, N, G/^-modules, the existing candidates for
syntomic smooth sheaves [30,31,62,66], and the category of syntomic coefficients
introduced in [24] by a method analogous to the one we use but based on Gros-
Besser's version of syntomic cohomology. In this paper we study this question only
in dimension zero, i.e. for syntomic modules over the base field. With a suitable notion
of finiteness for syntomic modules, called constructibility, we prove the following
theorem.

Theorem (Theorem 5.13). The triangulated monoidal category of constructible
syntomic modules over a p-adic field K is equivalent to a full subcategory of the

derived category ofadmissible filtered (gp, N, G fc)-modules.

It implies, by adjunction from (1.1), that p-adic absolute Hodge cohomology
coincides with derived Horn in the (homotopy) category of syntomic modules, i.e. we
have

RHomgsyn.modA.(SSyn:x> SSyn;^(r)).

In the conclusion of the paper, we use syntomic modules to introduce new
notions of p-adic Galois representations (Definition 5.20). We define geometric
representations which correspond to the common intuition of representations
associated to (mixed) motives, and constructible representations, corresponding to

cohomology groups of Galois realizations of syntomic modules.
We expect that the categories of geometric, constructible, and potentially

semistable representations are not the same. This is at least what is predicted by
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the current general conjectures. Note that this is in contrast to the case of number
fields where the analogs of these notions are conjectured to coincide with the known
definition of "representations coming from geometry" [34],

1.0.1. Notation. Let Ok be a complete discrete valuation ring with fraction field K
of characteristic 0, with perfect residue field k of characteristic p. Let K be an

algebraic closure of K. Let W (/c) be the ring ofWitt vectors ofk with fraction field Kq
and denote by K the maximal unramified extension of Kq. Set Gk Gal(AT/ K)
and let Ik denote its inertia subgroup. Let <p be the absolute Frobenius on K. We

will denote by &k, 0%, and 0°K the scheme Spec(0/f) with the trivial, canonical

(i.e. associated to the closed point), and (N -> Ok 1 0) log-structure respectively.
For a scheme X over W{k), Xn will denote its reduction mod pn, Xq will denote

its special fiber. Let Vutk denote the category of varieties over K, i.e. reduced,

separated, M-schemes of finite type.
For a dg category G with a t-structure, we will denote by C® the heart of

the t-structure. We will use a shorthand for certain homotopy limits. Namely, if
/: C —> C is a map in the dg derived category of abelian groups we set

[ C C'} := holim(C -+C' *- 0).

And, if

Ci ~^C2

C3-^C4
is a commutative diagram in the dg derived category of abelian groups we set

Ci-^C2

"
g

"

_
c3 c4

Acknowledgements. We would like to thank Alexander Beilinson, Laurent Berger,
Bhargav Bhatt, François Brunault, Denis-Charles Cisinski, Pierre Colmez, Gabriel
Dospinescu, Bradley Drew, Veronika Ertl, Tony Scholl, and Peter Scholze for helpful
discussions related to the subject of this paper. We thank Madhav Nori for sending
us the thesis of Matthew Cushman. Special thanks go to Alexander Beilinson for

explaining to us his construction of syntomic cohomology, for allowing us to include
it in this paper, and for sending us Nori's notes on Nori's motives.

:= [[Ci U C2\ -> [C3 C4]].



76 F. Déglise and W. Nizioi CMH

2. A p-adic absolute Hodge cohomology. I

2.1. The derived category of admissible filtered (<p, N, G# )-modules.
2.1. For a field K, let Vk denote the category of Al-vector spaces. It is an abelian

category. We will denote by Db Vk) its bounded derived dg category and by D b Vk)
— its bounded derived category. Let denote the category of K-vector spaces with
a descending exhaustive separated filtration F*. The category (and the category
of bounded complexes Cè(Fd^)) is additive but not abelian. It is an exact category
in the sense of Quillen [57], where short exact sequences are exact sequences of
TWvector spaces with strict morphisms (recall that a morphism f: M ^ N is strict
if f(Fl M) F'iVn im(/)). It is also a quasi-abelian category in the sense of [61 ]

(see [60, 2] for a quick review). Thus its derived category can be studied as usual

(see [12]).
An object M e Cb{V^) is called a strict complex if its differentials are strict.

There are canonical truncation functors on Cb(V^)\

r<nM := » Mn~2 -> Mn~x -* ker(i") -* 0 • •

x>nM := » 0 » coim(J"_1) -> Mn -> Mn+1

with cohomology objects

r<nr>n(M) •••—> 0 —> coim(û?"_1) ker(dn) -> 0 —> • •

We will denote the bounded derived dg category of Vby S)b(V^). It is defined as

the dg quotient [29] of the dg category Ch(Vd^) by the full dg subcategory of strictly
exact complexes [48]. A map of complexes is a quasi-isomorphism if and only if it
is a quasi-isomorphism on the grading. The homotopy category of £)b( Vj^) is the

bounded filtered derived category Db(Vj^).
For n Z, let Db<n(V^) (resp., D>n(Kd^)) denote the full subcategory of

Db{Vjf) of complexes that are strictly exact in degrees k > n (resp., k < n)2. The
above truncation maps extend to truncations functors

DbSn(V*) and r>„: Db(Vg) - D|„(Kd*

The pair (D<n(V^), D>n{V^)) defines a t-structure on Db(Vj^) by [61]. The heart

Db{V^)^ is an abelian category LH(V^). We have an embedding

KiR ^ LH{V^)
that induces an equivalence

Db(V£)^>Db{LH(y£)).

This t-structure pulls back to a t-structure on the derived dg category £)b(Vj^).
e f2Recall [61, 1.1.4] that a sequence A —> B —> C such that fe 0 is called strictly exact if the

morphism e is strict and the natural map im e —> ker f is an isomorphism.
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2.2. Let the field K be again as at the beginning of this article. A ip-module
over K0 is a pair (D, cp), where D is a /f0-vector space and the Frobenius cp (pD

is a 9?-semilinear endomorphism of D. We will usually write D for (D,cp). The

category Mk0((P) of ^-modules over K0 is abelian and we will denote by &hK()(<p)

its bounded derived dg category.
For D\, D2 e Mk0(<p), let Homj^^Di, D2) denote the group of Frobenius

morphisms. We have the exact sequence

0 -> HomA-0j¥,(£>i, D2) Hom^0(Di, D2) -> llomKo(D1,<p*D2), (2.1)

where the last map is 8:x h> <pd2x ~ <P*(x)<PDi- Set Hom^ V(D\, D2) :

Cone(<5)[—1]. Beilinson proves the following lemma.

Lemma 2.3 ([10, 1.13, 1.14]). For Di, D2 e S)bK^{<p), the map

RHom^0)¥,(Di, D2) -> Hom^o ¥)(Di, D2)

is a quasi-isomorphism, i.e.

RHom^0^(Di, D2) Cone (Hornjf0(Di,Z)2) X Horn^Di, <p*D2))[-\\.

Proof. Note that, for D\,D2 e S)^Q((p), from the exact sequence (2.1), we get a

map

a:RHomjs:0j¥,(Di, D2)

-> Cone (RHom^0(Di, D2) X RHomjS:0(Di,R^D2))[-l]-

Since

RHom^0(Di, £>2) - HomÄ:0(D1, Df),
RHom^0(D], R(p*D2) ~ HornK0{Dx,(p*D2)

it suffices to show that the map a is a quasi-isomorphism.
The forgetful functor Mk0(<P) —> Vk0 has a right adjoint M -» Mv, where the

99-module Mv := rin>0 V* M with Frobenius (pMv'-(x (xi,x2,...).
The functor M —> Mv is left exact and preserves injectives. Since all AT0-modules

are injective, the map M -> Mv, m i-> (m, <p{m), cp2(m),...), embeds M into an

injective ^-module. It suffices thus to check that the map a is a quasi-isomorphism
for D\ any ^-module and D2 Gv. We calculate

RHomjp0iÇ)(fli, Gy) Hornk0,<p(Di, G^)
~ S

Cone (Homjf0(Di, Gç) -> Hom^0(Di, ^Gç,))[-1]

-> Cone (R Hom^(Dx, Gf) X R Hom^0(Dt, Rep*Gv))[-1].

This proves the lemma.
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2.4. A {cp, A)-moduleisatriple (D, cpp, N) (abbreviated often to D), where {D, (p£>)

is a finite rank <p-module over K0 and cp£, is an automorphism, and A is a Kq-linear
endomorphism of D such that Ncpr, peppN (hence A is nilpotent). The category
Mk0(<p,N) of {cp, A)-modules is naturally a Tannakian tensor Q^-category and

{M, (pM, A) M is a fiber functor over K0. Denote by S)b N(K0) and Db N{K0)
the corresponding bounded derived dg category and bounded derived category,
respectively.

For {cp, A)-modules M, T, let Hornv,n{M, T) be the group of {cp, A)-module

morphisms. Let Homjj, N{M, T) be the complex [10, 1.15]

Hom^0(M, T) Homjf0(M, cp*T) © Hom^fM, T) Hoiti.r:0(M, cp*T)

beginning in degree 0 and with the following differentials

do', x I—> {cp2x — xcpi, N2x — xNi);
di:{x,y) I ^ (A2x - pxNx - pcp2y + ycpx).

Clearly, we have Hornv,n{M,T) H° Homjj, N{M, T). Complexes Homjj, N
compose naturally and supply a dg category structure on the category of bounded

complexes of {cp, A)-modules.
Beilinson states the following fact.

Lemma 2.5 ([10, 1.15]). For D\, D2 e S)bK^{cp, A), the map

RHomViAr(Oi. D2) Hom*>Af(D1; D2)

is a quasi-isomorphism, i.e.

RHomftjv(Di, D2)

Hom^0(Di, D2) —^ Hornby{D\,cp*D2))

s2 S'2

Y ß/ v

Hom^0(Di, D2) —Hom/f0(Di, cp*D2))
_

Here

8\\x\-^-1p2x — xcp\, 8\: x i-> pcp2x — xcpx ;

82: x i-> N2x — xN\, 8'2: x N2x — pxN\.

Proof. By devissage we may assume that D\,D2 are just {cp, A)-modules placed in

degree 0. By devissage on m such that Nm Dx 0, we may assume that A 0

on Oi. Fix such a Z>i. Since, clearly, the map in the lemma induces an isomorphism
on H°, it suffices to show that, as a functor of D2, the cohomology groups Hl,
i 1,2, are effaceable in the category of {cp, A)-modules.
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We will start with H2. To kill H2 Homjj, N(D\, D2) by an injection D2 ^ ö3,
take m such that Nm 0 on D2 and define

L(m) := K0(0) ® K0(\) ® ® K0(m), N:(a0,.. .,am) h> (au ,am,0),

/: D2 —» D2 := D2 L(m), a i->- (a,0 ,0).

It is easy to check (by induction on m) that, for every x e D2 there exists a y e D3,

y (0, yi,..., ym) such that Ny x in Z)3. It follows that the same property
holds for the map

S'2: H.omKQ(Dx,<p*D2) -> HornKo(D,(p*D2),

killing H2 as wanted.

To treat H1, pass first to Z?3 as above so that, for every class

x Hl Hom^Ar(D1, D2),

f(x) can be represented by an element y Honi£0(Di, <p*£>:f=0). By Lemma 2.3,
there exists a finite ^-module M, where cp is an isomorphism, and an embedding
D^=0 M such that the image of

Homjç0(Di, <p*Z)^=0) -> HomKo(Di,(p*M)

isintheimageofHomx-0(Z)i, M by the map c>i. Note that S2 0 on Hom^0(Di, M).
It follows that the pushout D4 D3 IJdC=o M kills H1 HomJ;iV(Dx, D2), i.e. that

the image of the map

Hl HornlN(DuD2) -> Hx Horn\N(DX,D4)

is zero. This concludes our proof.

2.6. A filtered (cp, AO-module is a tuple (Do,tp, N, F'), where (Do,(p,N) is

a (ip, AO-module and F' is a decreasing finite filtration of Dk '= Do ®Ko K
by iWvector spaces. There is a notion of a (weakly) admissible filtered
(yp, AO-module [20]. Denote by

MF'x((p, N) C MFK(<p, N) c MKo(<p, N)

the categories of admissible filtered (<p, AO-modules, filtered (cp, AO-modules, and

(yp, AO-modules, respectively. We know [20] that the pair of functors

Dst(V) (Bst ®Q„ V)°K, DK(V) (BdR ®Qp VfK-,

VAD) (Bst ®*n Dor=w'N=0 n F°(BdR Dk)
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defines an equivalence of categories MF^iyp, N) ~ Repst(Gßr) C Rep(Gj^),
where the last two categories denote the subcategory of semistable Galois representations

[32] of the category of finite dimensional Qp-linear representations of the

Galois group Gk The rings Bst and BdR are the semistable and de Rham period
rings of Fontaine [32]. The category MF'^((p, N) is naturally a Tannakian tensor

Qp-category and (Do,cp, N, F') Do is a fiber functor over Ko.
A filtered (çp, N, G^-module is a tuple (Do,(p, N, p, F'), where

(1) D0 is a finite dimensional i^-vector space;

(2) (p: D0 -» D0 is a Frobenius map;

(3) N: Do —> Do is a /^-linear monodromy map such that N<p p<pN\

(4) p is a À^-semilinear G^-action on D (hence p\Ik is linear) that is smooth,
i.e. all vectors have open stabilizers, and that commutes with cp and A;

(5) F' is a decreasing finite filtration of Dk '= (D K)Gk by A-vector spaces.

Morphisms between filtered (q>, N, G^-modules are AT^-linear maps preserving all
structures. There is a notion of a (weakly) admissible filtered (cp, N, Gß:)-module
[20,33]. Denote by

DFK := MFf(cp, N, GK) c MFK(cp, N, GK) C MK(<P, N, GK)

the categories of admissible filtered ((p, N, G^)-modules DF stands for Dieudonné-
Fontaine), filtered (cp, N, G^;)-modules, and (up, N, G^)-modules, respectively. The
last category is built from tuples (D0, (p, N, p) having properties 1, 2, 3,4 above. We

know [20] that the pair of functors

Dp&(V) — inj lim(Bst V) H C Gk ~ an open subgroup,
H

Dk{V) := (1/®Q„ BdR)G*;

fpst(D) (Bst D0)^=ld'N=0 n F°(BdR Dk)

define an equivalence of categories MF'^iyp, N, Gk) — Reppst(G^), where the last

category denotes the category of potentially semistable Galois representations [32],
We have the abstract period isomorphisms

Ppsd Dpst(F) Bst ~ V ®qp Bst, pdR: DK(V) BdR — V ®qp bjr* (2.2)

where the first one is compatible with the action of <p,N, and Gk, and the second

one is compatible with filtration. The category MF^1 is naturally a Tannakian tensor

Qp-category and (D0, <p, N, p, F') i-> D0 is a fiber functor over A. We will denote

by (Db(DFK) and Db(DFK) its bounded derived dg category and bounded derived

category, respectively.
The category Mk(<P, N, Gk) is abelian. We will denote by S)bK(np, N, Gk)

and DbK((p, N, Gk) its bounded derived dg category and bounded derived category,
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respectively. For (cp, N, Gjf)-modules M, T, let Horn<p,n,gk(M, T) be the group of
(cp, N, G#)-module morphisms and let Horngk(M, T) be the group of /Kg1-linear

and Gk- equivariant morphisms. Let Homjj, N Gk (M, T) be the complex

Homc^(M, T) —> Hoirie^(M, cp*T) © Horngk(M, T) -> HorncK(M,<p*T).

This complex is supported in degrees 0,1,2 and the differentials are as above for
(cp, lV)-modules. Clearly, we have Hom^^^ArC^- T) H° Homjj, N Gk (M, T).

Complexes Hom^ N Gk compose naturally. Arguing as in the proof of Lemma 2.5,

we can show that, for M,T e £)bK{<p, N, Gk),

RHomv,n,gk(M, T) ~ Horn\,NtGK{M, T). (2.3)

Let M, T be two complexes in Cb(MFfc((p, N, Gk))- Define the complex
Homb(M, T) as the following homotopy fiber

Horn\M, T) := Cone (Horn*tNtGK(M0, 7b) © HomdR(M*, TK)

^Z^nomGK(MR,TR))[-\l
where HomdR(M£:, Tg) is the group of filtered iGlinear morphisms and Home^ (Mk-> Tk)
is the group of G^-equivariant, ÄT-linear morphisms. Complexes Horn1* compose
naturally.

Proposition 2.7. We have R HornDFk(M, T) ~ Hornb(M. T).

Proof. We follow the method of proof of Beilinson and Bannai [8, Lemma 1.7],
[6, Prop. 1.7]. Denote by /m,t the morphism in the cone defining Horn (M, T). We
have the distinguished triangle

ker(./m,t) Hornb(M, T) -> coker(/M,r)[-l]

We also have the functorial isomorphism

HornKh(DFK) (M> T[i]) Hl(ker(fM,T))

Hence a long exact sequence

-> //i_2(coker(/M>T)) Hom^(D^} (M, T[i])

-» Hi(Uom\M.T)) -> //i'-1(coker(/Mir)) ->

Let It be the category whose objects are quasi-isomorphisms s: T —> L in
Kb(DFK) and whose morphisms are morphisms L -> L' in Kb(DFfc) compatible
with ,v. Since

inj IimHomA:/J(DF } (M, L[i]) UomDiDF/() (M, T[i]),
It
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it suffices to show that

inj lim //' (Homb(A/, L)) H1 (Homb(M, T))
iT

and that

inj lim H1 (coker(/M,z,)) 0.

It
The first fact follows from Lemma 2.5 and the second one from the Lemma 2.8

below.

Lemma 2.8. Let u G HornTp?). There exists a complex E G Cb(DFfc)
and a quasi-isomorphism T —» E such that the image of u in the cokernel of the

map f is zero.

Proof. We will construct an extension

O^T ^ E ^ Cone (M ^ M)[-j - 1] 0

in the category of filtered {up, N, Gjf)-modules. Since the category of admissible
modules is closed under extension, E will be admissible. The underlying complex
of Al^-vector spaces is

E0 := Cone (M0[-j - 1] T0 © M0[-j - 1]).

The Frobenius, monodromy operator, and Galois action are defined on

Eo+j T'0+i © M'"1 © M[

coordinatewise. The filtration on

El£J := El0+j <S>K«' K

is defined as

FnEi£i FnT]K © {(w'(x),0,x)|x G FnMiK}

©{(Jr(ui-1W),-r,-rfMW)|jc G F"MjT1}.

Now take

£ (0,0, Id) + (w', 0, Id) G Horn» ^(M<, El()+J) © HomdR(M^, El+J).

We have /(£) (u1,0,0), as wanted.
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2.2. The category of p-adic Hodge complexes.

2.9. Let be the category of AT-vector spaces with a smooth ALsemilinear action
of Gk It is a Grothendieck abelian category. We will consider the following functors:

* Ajr• which to a filtered Al-vector space (E,F') associates the

AT-vector space E ®k K with its natural action of Gk-

• F0: Mjc(<p, N,Gk) -> V$, which to a (co, At, Gjf)-module M associates the
_K

if-vector space M K whose Gk-action is induced by the given G^-action
on M.

Both functors are exact and monoidal. Note in particular that they induces functors

on the respective categories of complexes which are dg-functors.

2.10. Let £)b(Vß) and Db(V(?) denote the bounded derived dg category and the
K K

bounded derived category of Vß, respectively. We define the dg category £>ph of
p-adic Hodge complexes as the homotopy limit

£>pH := holim (£>b(MK(cp, N, GK)) £>Vf ^-R <Dè(Kdf)).

We denote by Dph the homotopy category of Dph- By [63, Def. 3.1], [13,4.1], an

object of IDpH consists of objects M0 e Db(MK{(p, N, Gk)), Mk £ tDb(V^), and

a quasi-isomorphism

Fo(Mo) ^ FdR(MK)

inJD(Fjf). We will denote the object above by M (M0, Mk,um)- Themorphisms
are given by the complex Wom3ipH ((M0, MK, aM), {No, NK, aN)):

Hornls>pH ((Mo, MK,aM), (N0, NK,aN))

Hom^, (M0, N0) © Hom^ f {MK, NK)
(2 4)

0 Hom^1(KG) (Fo(Mo), FdR(NK))-

The differential is given by

d(a, b, c) (da, db, dc + F0(a) — (—l)1 FdR(b)aM)

and the composition

H°m£»p// ((N0, NK,aff),(To,TK,aT))^îioms)pH ((M0, MK, um), {No, Nk, aN))

((M0, Mk, a«), (?o, Tk, «r)) (2.5)

is given by

{a', b',c'){a, b,c) (a'a, b'b, c'Fo(a) + FtiR(//)c).
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It now follows easily that a (closed) morphism

(a,b,c) e Homjop// ((M0, Mk,um), (No, Nk,"n))
is a quasi-isomorphism if and only so are the morphisms a and b (see [13,
Lemma 4.2]).

By definition, we get a commutative square of dg categories over Qp:

£>pH Tj^S)b(V,l) (2.6)

To j I FdR

3}b(MK(tp,N,GK))^£b(Vp.

Given a p-adic Hodge complex M, we will call 7jr(M) (resp., T0(M)) the generic
fiber (resp., special fiber) of M. As pointed out above, a morphism / of //-adic
Hodge complexes is a quasi-isomorphism if and only if T^(f) and 7o(/) are quasi-
isomorphisms.

2.11. Let us recall that, since the category 3Dph is obtained by gluing, it has a

canonical /-structure [36, Prop. 4.1.12], We will denote by £>ph,<o (resp., S)ph,>o)
the full dg subcategory of £)ph made of non-positive (resp., non negative) p-adic
Hodge complexes. Let M be a p-adic Hodge complex. We define its non positive
truncation r<o(A/) according to the following formula:

r<o(M) := (r<0Mo,r<oMK,T<oaM)-

The functors Fijr and Fq being exact, this is indeed a p-adic Hodge module. The non

negative truncation is obtained using the same formula. According to this definition,
we get a canonical morphism of p-adic Hodge complexes:

r<o (M -> M

whose cone is positive. This is all we need to get that the pair (£>ph,<o> &pH,>o)
forms a ?-structure on S)ph-

Definition 2.12. The /-structure (S)ph,<o> £)pH,>o) defined above will be called the

canonical /-structure on 3)ph-
2.13. Let M e Cb(MFk((P, N, Gk))• Define 0(M) e S)ph to be the object

6(M) := (Mo,MK,ldM-.Mp ~ MR)

Through this functor we can regard MFk(<P, N, Gk) as a subcategory of the heart

of the /-structure on $)ph-

Lemma 2.14. The natural functor

9: MFK(cp, N, Gk)-^£>Vh

is fullyfaithful.
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Proof. Analogous to [36, Prop. 4.1.12], [61, 1.2.27].

Definition 2.15. We will say that a strict p-adic Hodge complex M is admissible if its

cohomology filtered (cp, N, G^)-modules Hn(M) are (weakly) admissible. Denote

by S)pdH the full dg subcategory of T)ph of admissible p-adic Hodge complexes. It
carries the induced t-structure.

Since 9 preserves quasi-isomorphisms, it induces a canonical functor:

e-.$db(DFK) - S)fH.

This is a functor between dg categories compatible with the t-structures.

Lemma 2.16. The natural functor

9: DFk^
is an equivalence ofabelian categories.

Proof. By Lemma 2.14, it suffices to prove essential subjectivity. Note that a strict
/?-adic Hodge complex M is in the heart of the t-structure if and only if M is

isomorphic to x<qx>o{M). According to the formula for this truncation, we get
that M is isomorphic to an object M such that M0 is a (<p, N, G#)-module, M% is a

filtered TWvector space, and one has a G^-equivariant isomorphism

Mo K ~ Mk K.

In particular, Mq has the structure of a filtered {up, N, G^)-module, as wanted.

Theorem 2.17. The functor 9 induces an equivalence ofdg categories

9:£h(DFK)^ I)fH.

Proof. Since, by Lemma 2.16, we have the equivalence of abelian categories

9: DFk Sdb{DFKf ^ Sfjjg

and we work with bounded complexes, it suffices to show that, given two complexes
M, M' of Cb(MF^1), the functor 6 induces a quasi-isomorphism:

9: HorndHdFk)(M, M') -> Horn*),,, (9(M), 9(M')).

By (2.3) and Proposition 2.7, since

Fo(M0) FaR(MK) MR, Fo(M'o) FdR(M'K) M'R,
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we have the following sequence of quasi-isomorphisms

Hom^„ (9(M),9(M'))
Hom,0p// ((M0, Mk, Mm), (Mq, M'k, Mm'))

Fq
— {^om£>b(MK(<p,N,GK))(^0, ^o) *" Hom^ô(FG)(M^, AT-)

K
F ip

— (HomJ>iViGAr(Mo, Mq) HomG„(A^, M^) ^ HomdR(M^, A/^))

— HomiDft(ö^A.)(M, M').

This concludes our proof.

2.3. The absolute p-adic Hodge cohomology.

2.18. Any potentially semistable p-adic representation is a p-adic Hodge complex.
Therefore, we can define the Tate twist in S)ph as follows: given any integer re Z,
we let K(r) be the p-adic Hodge complex

K(-r) (K^,KAdK:K^ K)

that is equal to K and K concentrated in degree 0; the Frobenius is (pK(-r)(a)
prcp(a), the Galois action is canonical and the monodromy operator is zero; the

filtration is Fl — K for i < r and zero otherwise.
As usual, given any p-adic Hodge complex M, we put M(r) := M ® K(r). In

other words, twisting a p-adic Hodge complex r-times divides the Frobenius by pr,
leaves unchanged the monodromy operator, and shifts the filtration r-times.

Example 2.19. Given any p-adic Hodge complex AT, by formula (2.5) and by (2.3),
we have the quasi-isomorphism of complexes of Q^-vector spaces

Hom£>/;// (K(0), AT(r)) ~ Cone (AT0# © FrMK Far(Mk)Gk)[-^

where Mq is defined as the following homotopy limit (we set <pt := p/pl)

Ar#^

2.20. Let A be a variety over K. Consider the following complex in D'dA

mgk mgk

N N

MGK 1_fr_, mGK

RrpH(XE,0) := (Rr^(A^). (RTdR(A), f), Rr*K(XE) ^ RTdR(Ap)).
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Here RT^K(V^)>s the (geometric) Beilinson-Hyodo-Kato cohomology [10], [50,

3.4]; by definition it is a bounded complex of Qp, N, Gk)-modules. The filtered

complex RTdR (V) is the Deligne de Rham cohomology. The map piR is the Beilinson-
Hyodo-Kato map [10] that induces a quasi-isomorphism

tdR: RrHK(v^) <s>Kg k RrdR(v^).

The comparison theorems of p-adic Hodge theory (proved in [10,14,31,53,65])
imply that the p-adic Hodge complex RFp# (Vg, 0) is admissible.

We will denote by

RTpH(Xg,r) := RT^(V^,0)(r) £) ad

pH

the rth Tate twist of RF^,# (X^,0). We will call it the geometric p-adic Hodge

cohomology ofX. Since the Beilinson-Hyodo-Kato map is a map of dg K^-algebras,
the assignment X i-> RTph (Xg, *) is a presheaf of dg algebras on Varx • Moreover,
we also have the external product Rr^(Vg,r) <g> RFP# (Yg, s) in <£>*#.

Lemma 2.21 (Künneth formula). The natural map

RVpH{Xg, r) <g> RT/)/y(T^, s) ^ RVpH(Xg xYg.r + s)

is a quasi-isomorphism.

Proof. This follows easily from the Künneth formulas in the filtered de Rham

cohomology and the Hyodo-Kato cohomology (use the Hyodo-Kato map to pass
to de Rham cohomology).

Set

Rr^(V^,r) := 6-lKTpH{Xg,r) e £>b(DFK),

Rrpst(V^,r) := Kpst0_1RrpH(Xg, r) e Db(RePpJGK)).

Lemma 2.22. There exists a canonical quasi-isomorphism in c£)è(Rep(G,K;))

Rrpst(Xg,r) ~Rrét(Xg,Qp(r)).

Proof. To start, we note that we have the following commutative diagram of dg

categories.

£>è(RePpst(G*)) — £)b(Rep(Gk))

Vpst Dpst can

£b(DFK) —e- ^ S)fH £>(Spec(K)proét)
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Here the functor

rk-S)pH •®(Spec(A^)proét)

associates to a p-adic Hodge complex (M0, Mk,clm'- Fq{Mq) -> F^r(Mk)) the

complex

[[Mo Bsr=Id^=° © F\Mk ®k BdR) FdR(MK) ®E BdR]

[[M0 ®k% Bst]'i!,=Id'A'=0 (FdR(MK) ®R BdR)/F°]

where i: Bst ^ BdR is the canonical map of period rings3. To see that the diagram
commutes, recall that we have the fundamental exact sequence

0 -> QP(r) -> Bl=pr-N=0 0 FrBdR -4 BdR 0, r 6 N. (2.7)

It follows that, for V e Dè(Reppst(G^-)), we have a canonical morphism

V ~ [V ®Qp K=U'N=0 © v ®Qp F°BdR
M

V ®Qp BdR]

- [[V 0Q/) Bst]«5=ld'yv=0 © V ®Qp F°BdR lci®'~Can®'> V ®Qp BdR]

(PpS'ffiPJR'AlR^ [[öpst(H) ®K% Bst]^=Id^=° © F\DK{V) ®K BdR)

^DrdOSiB»]
- rk6Dpst(V).

Since the abstract period morphisms ppst, pdR from (2.2) are isomorphisms, the above

morphism is a quasi-isomorphism and we have the commutativity we wanted.
The above diagram gives us the first quasi-isomorphism in the formula

RTpsiCYjf, r) ~ rkRrpH(XR, r) ~ RTk(XR, Qp(r)). (2.8)

It suffices now to prove the second quasi-isomorphism. But, we have

RTph(Xe, r) (Rr^K(^,r),(RrdR(X),F-+r),

Rr&fe r) ®Kor K ^ RTdR(^)),

where we twisted the Beilinson-Hyodo-Kato cohomology to remember the Frobenius
twist. Recall that Beilinson has constructed period morphisms (of dg-algebras) [9,

3.6], [10, 3.2]4

ppst:RrHK(^) ®Xq Bst — RTft^.Qp) ®qp Bst,

PdR- RTdR(7f^) ®E BdR ~ RTg^Tf^, Qp) ®)qp BdR.

3For an explanation why we work with the pro-étale site as well as the technicalities involved in the

passage between continuous Galois cohomology and pro-étale cohomology see [50, proofof Theorem 4.81.
4We will be using consistently Beilinson's definition of the period maps. It is likely that the uniqueness

critérium stated in [54] can be used to show that these maps coincide with the other existing ones.
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The first morphism is compatible with Frobenius, monodromy, and G^-action; the

second one with filtration. These morphisms allow us to define a quasi-isomorphism

ß: rkRrpH(XR, r) ~ Rrk(XR,Qp(r))

in 5)(Spec(/^)pr(1ét) as the composition

ß: rkRrpH(XE, /) [[Rr^(X^KSBstf=Pr'N=0^ (RrdR(XR)®RBdR)/Fr]
(PHK.AIR) r v=pr N 0

> [Rrk(xË, Qp) ®Qp Bjt
—> Rr'et(A'^, Qp) ®qp (BdR)/F ]

*— RTét(V^, Qp(r

Here the last quasi-isomorphism follows from the fundamental exact sequence (2.7).
To finish we note that the quasi-isomorphism in (2.8) come from quasi-

isomorphisms between complexes of continuous representations of Gk on (locally
convex) -vector spaces.

Remark 2.23. The geometric p-adic Hodge cohomology \<Vpu(XR,r) we work
with here is not the same as the geometric syntomic cohomology Rrsyn(V^Ä,r)
defined in [50]. While the first one, by the above lemma, represents the étale

cohomology RT^t(VR, Qp(r)), the second one represents only its piece, i.e. we have

r<rRrsyn(A'^^, r) ~ r<rRFgt(V^, Q^(r)).
2.24. The p-adic absolute Hodge cohomology ofX (also called syntomic cohomology
of X if this does not cause confusion) is defined as

RFjf (V, r) RTsyn(V, r) := Hom^ (K(0), RTpH(XR, r)). (2.9)

By Theorem 2.17, we have

RIX*, r) ~ HomrT)h(DFK) (K{G), RTDFk (Xr, r))

— Hom»A(RePpsl(G/:)) (Qp, Rrpst(*f->"))•

The assignment X i-> RF^(V, r) Rrsyn(V, *) is a presheaf of dg Q^-algebras
on V-arK-

Set H*yn(X, r) := //'Rrsyn(X, r).
Theorem 2.25. (1) There is afunctorial syntomic descent spectral sequence

"ynElJ := H'JGk, hI{Xr, Qp(r))) H>y+J(X, r), (2.10)

where H'fGx, •) is the group of(potentially semislable extensions Ext'Rep ^,)(Qp.O
as defined in [35, 1.19].
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(2) There is afunctorial syntomic period morphism

ftyn:Rrsyn(*,r)^Rrà(^Q„(r)).

(3) The syntomic descent spectral sequence is compatible with the Hochschild-Serre

spectral sequence

kElfj H' (Gk, H[(XR,Qp(r))) =y Hlk+J(X, Qp(r)). (2.11)

More specifically, there is a natural map syn E2] —> &tElfJ that is compatible
with the syntomic period map psyn.

Proof. From the definition (2.9) of Rrp//(2fr) we obtain the following spectral

sequence

=Ex4Ppsi(G^(Qp.//yRrpst(^,r)) //i+'Rrsyn(*,r).

Since, by Lemma 2.22, we have Rrpst(A'^, r)) — RTk(X^,Qp(r)), the first
statement of our theorem follows.

We define the syntomic period map psyn: RFsyn(J^, r) -> RF^t(2f, Qp(r)) as the

composition

psyn:Rrsyn(2f,r) Horrig (K(0), Rr^(^, r)))
Homx)(speC(A-)pro6t) (Qp, rkRrpH(XR, r) j)

4 Hom,£)(spec(^:)proit) (Qp, Rrét(X^, Qp(r)))

RFét(2f, Qp(r

The second statement of the theorem follows.

Finally, since the Hochschild-Serre spectral sequence

kE'2J := H1 (GK, Hi(X£,Qp(r))) => Hi+J (X,Qp(r))

can be identified with the spectral sequence

kE? := //' (Spec(ÂT)proét, HJ'(Xg, Qp(r))) =* Hi+J(X,Qp(r))

we get that the syntomic descent spectral sequence is compatible with the Hochschild-
Serre spectral sequence via the map psyn, as wanted.

Theorem 2.26. Let RFsyn(^, r) be the syntomic cohomology defined in [50, 3.3].
There exists a natural quasi-isomorphism (in the classical derived category)

RFsyn(^, r) RFsyn(A\ r), r > 0.

It is compatible with syntomic period morphisms and the syntomic as well as the étale

descent spectral sequences.
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>RrdR(x))[-i],

Proof. Let r > 0. Recall that we have a natural quasi-isomorphism [50, Prop. 3.20]

Rrsyn(VÄ,r) ~ ConefRr&C*)*'" ® F'RrdR(V)-'dR~Can

where
1_M-

Rr-K(V)

N\ir^(Xhf'N :=

Kr£K(X)»2-?L-1>rBHIO

N

RrHK (*)' rfhkW
and the complex RT^K(V) is the (arithmetic) Beilinson-Hyodo-Kato cohomology

[10] that comes equipped with the Beilinson-Hyodo-Kato map [50, 3.3]

tdR:Rr,fK(V) -* RTdR(V).

Since Rr|K(V) ~ Rr,?K(%)G* and RrdR(V)
Prop. 3.22], Example 2.19 and Theorem 2.17 yield

RTdR(%)G* by [50,

Rrsyn(Xh,r) ~HomSpH (K(0), RrpH(X^, r)))

- Hom^(DFj<) (K(0), RT0^(J^, r») ~ Rrsyn(V, r),

as wanted. The last claim of the theorem is now clear.

Remark 2.27. The above theorems gives an alternative construction of the syntomic
descent spectral sequence from [50, 4.2] (that construction used the geometric
syntomic cohomology mentioned in Remark 2.23) and an alternative proof of its

compatibility with the Hochschild-Serre spectral sequence [50, Theorem 4.8]. In
the present approach the syntomic descent spectral sequence is a genuine descent

spectral sequence: from geometric étale cohomology to syntomic cohomology. In
the approach of [50] this sequence appears as a piece of a larger descent spectral

sequence that remains to be understood.

Remark 2.28. In everything above, the variety X can be replaced by a finite
simplicial scheme or a finite diagram of schemes. In particular, we obtain statements
about cohomology with compact support: use resolutions of singularities to get a

compactification of the variety with a divisor with normal crossing at infinity and then

represent cohomology with compact support as a cohomology of a finite simplicial
scheme built from the closed strata. In particular, we get the syntomic descent spectral

sequence with compact support:

syn,c El2J K\{GK, HUxR,Qp(r))) => H^c(X.r)

that is compatible with the Hochschild-Serre spectral sequence for étale cohomology
with compact support.
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Corollary 2.29. For X smooth and projective over K, the syntomic descent spectral

sequence (2.10)

syn4J(r) H!t(GK,H/t(X£,Qp(r))) =y H'+J(X,r)

degenerates at

EzProof. The argument proceeds along standard lines [25, Thm 1.5]. Let X be a

smooth and projective variety over K, of equal dimension d. Recall that we have the

Hard Lefschetz Theorem [26, Thm 4.1.1]: if L e Fl2(XR,QP(\)) is the class of a

hyperplane, then for i < d, the map

Li:H^~i(XR, Qp) -> H*+i(XR, Qp(i)), flH-aUL',
is an isomorphism. This gives us the Lefschetz primitive decomposition

HL{Xz,QP(r)) ®k>0LkH^k{XR,Qp(r-k)), (2.12)

where

"pnmfeQpW) := Ker Ld~a+i C H£{Xr, Qp(b)).

Moreover, we get a morphism of spectral sequences

L:sy"E'jJ(r) -> synE'jJ+2(r + 1).

Take s >2. Assume that the differentials of our spectral sequence dz —

ds-1 0. We want to show that d? 0. This assumption is trivially true for s 2.

By the inductive assumption synEl'J syn EljJ. We note that Hard Lefschetz gives
us that the differentials

ds: HI (Gk, H^(XR,Qp(r-k))) -> hI+s(Gk, H^2k~s+HXR.Qp(r-k)))
(2.13)

are trivial. Indeed, we have the following commutative diagram (we set q i — 2k,
t r — k, a d — q + 1)

Hi(GK, H«nm(XR,Qp(t))) Hl+S(GK, H?~s+\xR,Qp(t)))

La=0

Hl(GK,H?t+2a(XR,Qp(t +0))) hI+s(Gk. H?-s+1+2a(XR,Qp(t+a)))

Ls~2

Hl+S(GK, H?t+2a+s~\xR, Qp(t +a+s- 2)))

which implies that the top map ds is zero. Applying Lk to the differentials in (2.13)
we obtain that the differentials

ds:Hl(GK,LkH;T2k(XR,Qp(r-k))) h£+s{Gk, H^s+1 (Xr, Qp(r)))

are trivial as well. By (2.12), this gives that ds 0, as wanted.
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Remark 2.30. In fact, we have the Decomposition Theorem, i.e. there is a natural

quasi-isomorphism in £>è(Reppst(GA:))

© Q/0H1 ^ RTpst(XR,Qp).
i

Our corollary follows immediately from that.

3. A p-adic absolute Hodge cohomology. II: Beilinson's definition

In this section we will describe the definition of p-adic absolute Hodge cohomology
due to Beilinson [11]. Beilinson associates to any variety over K a canonical complex
of potentially semistable representations of Gk representing the geometric étale

cohomology of the variety as a Galois module. Then he defines p-adic absolute

Hodge cohomology of this variety as the derived Horn in the category of potentially
semistable representations from the trivial representation to this complex.

3.1. Potentially semistable complex of a variety.

3.1.1. Potentially semistable cellular complexes. The Basic Lemma of Beilinson
[7, Lemma 3.3] allows one, in analogy with the cellular complex for C W-complexes,
to associate a canonical complex of potentially semistable representations of Gk
to any affine variety over K. Recall that the cellular complex associated to a

C W-complex X is a complex of singular homology groups

» H^(X2, X1) % H?(X\X°) d-X
Hq (X°, 0) ^ 0 (3.1)

where Xy denotes the j -skeleton ofX. The homology of the above complex computes
the singular homology of X: we have H? {Xj /Xi~l) ~ G'Z,

/ being the index set of /-cells in X.
We will briefly sketch the construction of potentially semistable (cohomological)

cellular complexes and we refer interested reader for details to [39,43,55],

Definition 3.1. (1) A pair is a triple (Z, Y, n), for a closed X-subvariety Y c X of
a X-variety X and an integer n.

(2) Pair (Z, Y, n) is called a good pair if the relative geometric étale cohomology

Hj (Xjf, Y%, Qp) 0, unless/^«.

(3) A good pair is called very good if Z is affine and Z \ Y is smooth and either Z is

of dimension n and Y of dimension n — 1 or Z Y is of dimension less than n.
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Lemma 3.2 (Basic Lemma). Let X be an affine variety over K and let Z c X be

a closed subvariety such that dim(Z) < dim(Z). Then there is a closed subvariety
Y D Z such that dim(T) < dim(Z) and (X, Y, n), n := dim(Z), is a good pair; i.e.

Hj(XR,YR, Qp) 0, j^n.
Moreover, X \ Y can be chosen to be smooth.

Proof. See [7, Lemma 3.3] (a result in any characteristic) ([55]; [40, 7]; [43]).

Corollary 3.3. (1) Every affine variety X over K has a cellular stratification

F.X:0 F-iX C F0X C ••• C Fd-XX C FdX Z

That is, a stratification by closed subvarieties suchthat the triple (Fj X, Fj-\X, j)
is very good.

(2) Celullar stratifications of X form a filtered system.

(3) Let f : X -> Y be a morphism ofaffine varieties over K. Let F.X be a cellular
stratification on X. Then there exists a cellular stratification F.Y such that

f Fi X c FY.

Proof. See Corollary D. 11, Corollary D. 12 in [39].

Having the above facts it is easy to associate a potentially semistable analog of
the cellular complex (3.1) to an affine variety X over K [39, Appendix D]. We just
pick a cellular stratification

F.X : 0 F-XX c F0X c ••• C Fd_xX c FdX X

and take the complex

RY^(XR,F.X) :=0^ H°(F0Xr,Qp)^---^ Hj(FjXR,Fj-1XR,Qp)

X Hi+1 (Fj+lXR, FjXR, Qp) ...^H\Xr, Fd.xXR, Q,) 0.

This is a complex of Galois modules that, by p-adic comparison theorems, are

potentially semistable. To get rid of the choice we take the homotopy colimit over all
cellular stratifications, i.e. we set

RFpaU» := hocolimf.z RTpst(Z^, F.X).

It is acomplex in <£)(Ind — Reppst(G^)) whose cohomology groups are in Reppst(GA-)
hence we can think of it as being in 5)(Reppst(Gif

The complex Rr^t(Z^) computes the étale cohomology groups H*(XR, Qp)
as Galois modules. More precisely, we have the following proposition.
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Proposition 3.4 ([43, Prop. 2.1]). (1) Let F.X be a cellular stratification of X.
There is a natural quasi-isomorphism

Hx,F.xy- RFps,(^, F.X) ~ Rrét(V^,Qp)
that is compatible with the action of Gk-

(2) Let f:Y —> X be a map ofaffine schemes and let F.Y be a cellular stratification
of Y such that, for all i, F,F C FjX. Then the following diagram commutes (in
the dg derived category)

Rrpst(r^, F.Y)'^^ R\f(YR. Qp)

f* f*
RFpst(Vjç,

(3) There exists a natural quasi-isomorphism

kx: RTTfXR)~Rrk(XR,Qp)
that is compatible with the action of G k-

Proof We have the following commutative diagram of Galois equivariant morphisms

H°(F0Xr, Qp)^ Hk(FkXR, Fk.tXR, Q„) » W(XR, Fj^Xg, Q„)

F F F
Rr^foX*, Qp) -» »- [Rrk(FkXR,Qp) Rrh(Fk^XR,Qp)][i] ^•^[Rr;,(^,Qp)-> Rr6l(^_,XR, Qp)][d]

0 0 Rrà(%, Qp)[j]

The first vertical maps are the truncations r<^ r>^. We obtain the map K(X,f.x) from
the first statement of the proposition by taking homotopy fibers of the rows of the

diagram. Second statement is now clear. The third one is an immediate corollary of
the first statement and Corollary 3.3.

3.1.2. Potentially semistable complex of a variety. For a general variety X over K,
one (Zariski) covers it with (rigidified) affine varieties defined over K, takes the

associated Cech covering, and applies the above construction to each level of the

covering [39, D.5-D.10]. Then, to make everything canonical, one goes to limit over
such coverings.

Proposition 3.4 implies now the following result [39, Prop. D.3].

Theorem 3.5. Let X be a variety over K. There is a canonical complexRY^fX%) £

<£>è(Reppst) which represents the étale cohomology RFét(V^,Qp) of X^ together
with the action of Gk, i-e. there is a natural quasi-isomorphism

KX:Rr»t(XR)~RrkXR,Qp),
that is compatible with the action of Gk-
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3.2. Beilinson's /j-adic absolute Hodge cohomology. Beilinson [11] uses the

above construction of the potentially semistable complexes to define his syntomic
complexes.

Definition 3.6 ([11]). Let X be a variety over K, r e Z. Set RF^t(3f^, Qp(r)) :

Rr* (*r)(r) and

r) Rr^(X,r) : (Qp, Rr^t(9f^, Q/7(r))),

Hlyn(X,r):= H'Rr^n(X,r

Immediately from this definition we obtain that

(1) For ^ Spec(A"), we have Rr^n(3T, r) Hom5)A(Reppst(Gir))(Qp, Qp(r)).

(2) There is a natural syntomic descent spectral sequence

%y" E'2J := WJGk, HHXr, Qp(r))) =4 Hl+J{X, r). (3.2)

(3) We have a natural period map

Psyn- ^yn(X. r) -> Rrk(X, Qp(r))

defined as the composition

Rrfyn(X,r) Homs4(Reppsi(Grf) (Qp,Rr&(Xf,Qp(r)))

(QP,Rr^(X£,Qp(r)))

^ Homjo^spec(K)proél) (Qp,Rf*XQP(r))

Rrét(X,Qp(r)).

It follows that the syntomic descent spectral sequence is compatible with the

Hochschild-Serre spectral sequence via the map p^yn.

3.3. Comparison of the two constructions ofsyntomic cohomology. We will show

now that the syntomic complexes defined in 2.24 and by Beilinson are naturally quasi-

isomorphic.

Corollary 3.7. (1) There is a canonical quasi-isomorphism in D0(Reppst(Gß:))

Rrm(XR,r)^Rr*t(XE,Qp(r)).

(2) There is a canonical quasi-isomorphism

Psyn-Rrs7n(^' r) - Rr.syn(*, r), r Z.

It is compatible with period maps to étale cohomology and the syntomic as well

as the étale descent spectral sequences.
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Proof. The second statement follows immediately from the first one. To prove
the first statement, consider the complex RT^. (Àq^, r) in £)b(DFfc) defined

by a procedure analogous to the one we used in Proposition 3.4 to define

RT^t(V^,Qp(r))(but starting with cohomology RTph{Yr,r) of good pairs Y

instead of pst-representations RT^T^, Qp(r)) of such pairs). This is possible since,
for a good pair (X, Y,j), we have

RrpH(XR, YR, r) ~ {H^k(Xr, Yr, r), (H^(X, Y), F'+r),

HL(XR,YR)^HjR(XR,YR)),
and, by p-adic comparison theorems, this is an element of DFk. Proceeding as in
the proof of Proposition 3.4, we get a functorial quasi-isomorphism in S)b{DFK)'-

Kx ' RTDFk (^K> — RRof/r (XR, r).

For good pairs (X, Y,j), the Beilinson period maps Phk> PdR [9, 3.6], [10, 3.2]
induce the period isomorphism

VpstRIX^. YR<r) ^ Hj(XR, YR,Qp(r)).

This period map lifts to a period map

KpstRTBDFK{XR.r) ^ RT^(XR,Qp(r)).

We define the map Rrpst(VR,r) —> RT^t(2fR, Qp (r)) as the following composition

RRpst(XR,r) KpstRVBDFK{XR,r) ~ Rr»st(XR,Qp(r)).

3.4. The Bloch-Kato exponential and the syntomic descent spectral sequence.
Let V be a potentially semistable representation. Let D öpstCL) e DFk- The

Bloch-Kato exponential

expbk:Dk/F° ^ Hl(GK,V)

is defined as the composition [50, 2.14]

Dk/F° -* C{GK, CpSt(D)[l]) -> C(Gk, C(D)[1]) ^ C(Gk, V[\]),

where C(Gk, •) denotes the continuous cochains cohomology of G%. The complexes
CpSt(Z)), C(D) are defined as follows

(N,\—(p,l) n (1—p(p)—N
Cpst(D): Dsl %;Dst © Dst © DK/F° > Dst,

(JV,1—nC(D): D Bst > D <8>k Bst © D ©K Bst © {DR ®R BdR)/F
(1 -Ptp)-N

> D Bst.

We have Cpst(D) C{D)gk.
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The following compatibility result is used in the study of special values of
L-functions. Its /-analog was proved in [52, Theorem 5.2]5.

Proposition 3.8. Let i > 0,r> 0. The composition

H£\X)/Fr X H>yn(Xh,r) ^ H!t(X,Qp(r)) -> HifXR. Qp(r))

is the zero map. The induced (from the syntomic descent spectral sequnce) map

Hff\X)/Fr H\GK, H!-l{X^Qp(r)))

is equal to the Bloch-Kato exponential associated with the Galois representation

Hi~\XR,Qp(r)).

Proof. By the compatibility of the syntomic descent spectral sequence and the

Hochschild-Serre spectral sequence [50, Theorem 4.8], we have the commutative
diagram

H'RTsyn(Xh, r)o — Hit(X, Qp(r))0

Si Si

HX(Gk, H!f\XE.Qp(r))) H\Gk, H£\XR,Qp{r))),

where

WRTsyniXh. j)0 := ker(//'Rrsyn(^,r) H°{GK, Hlk(XR, Q„(r)))),

Hlk(X,Qp(r))0 := ker (HlfX, Qp(r)) -> Hlk(XE,Qp(r))).

It suffices thus to show that the dotted arrow in the following diagram

//''Rrsyn(*A, r) ^ HiRrsyn(Xh,r)0

3 «1

H£\X)/F' HI{Gk, HFfl(XR,Qp(r))))

exists and that this diagram commutes.
To do that, we will use freely the notation from the proof of Corollary 3.7. Set

RT*n(*,r) Homjoi^j (/f(0),RT^(^,r))
holimCpst(Rr^(A'^,r)).

5There the exponential expsl is called I.
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Arguing as in the proof of Proposition 3.4, we get the following commutative diagram
(we denoted by r), H£R(X, r)) the rth twist of the canonical Dieudonné-
Fontaine modules associated to X)

WRY»n{X,r)0 KX

». H\C^{W-AX,r)))
l (PHK.PdR)

H^GK,W-AXR,Qp(r)))

//!'Rrsyn(vA,r)0

Moreover the comparison map Kx is compatible with the boundary maps 3 from the
de Rham cohomology complexes RT^X) and RF^(X). It suffices thus to show

that the dotted arrow in the following diagram

//!Rrsyn(X,r) //fRrsyn(X.r)0

H^\X)/Fr HACpJH>A(X,r)))

exists and that this diagram commutes.

Let

Rr|^(x^,r) D' D°-^D1^UD2-^,

-•BThen holim Cpst(RF(XF, r)) is the total complex of the double complex below.

d2

CPst(ö2) :

dl

CpstiD1) :

d°

Cpst(D°) :

d2

D2<*D2, D D\/F

D i (vi-^4 nl

0 n2
st

dl

st Dl ® Ds't ®DlK/Fi / Fo ('-pD~n di
d°

D

d°

o Oo œ D0 œ ß»/Fo <lz£ïhi D»
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We note that D'{ R r^K(X, r), JJ'K Rr^,(A). The following facts are easy to
check.

(1) The map 3: RrJ,(X)//rr -> RFSyn(X, r)[l] is given by the canonical morphism

D'k/F° -> [D'st >D't © D- © D'k/F° >D-J[ 1],

Similarly, the map Fr —> H1(Cpst(H^1(X,r))) is given by the

canonical morphism

H^\X)/Fr -> [H^(X,r) -> H^(X,r) © H&(X,r)
®H^l(X,r)/F° ^ H^l(X,r)][1],

(2) The map //!Rr®n(A, r) —> //°(Cpst(//jR(A, r))) is induced by (a, b, c) i-» a.

(3) Themap^ji //!RF®n(A', r)0 —» Hl {CpSl{HliP r))) isinducedby (a, b, c)
h — d0a', where a' is such that dla' a.

(4) As a corollary of the above, we get that the composition

8'

H^\X)/Fr -» H' RT»n{X,r)0 -I Hl(CPst(H^l(X, r)))

is induced by the map b i-> (0, b, 0) i-> b.

This proves our proposition.

4. p-adic realizations of motives

4.1. p-adic realizatons of Nori's motives. We start with a quick review of Nori's
motives. We follow [5,39,44], and [2, 2].

Take an embedding K C and a field F d Q. A diagram À is a directed

graph. A representation T: A -» bp assigns to every vertex in À an object in Fp
and to every edge e from v to v' a homomorphism T(e):T(v) -> T(v'). Let £(A, 7)
be its associated diagram category ([44, Thm. 41], [2, 2.1]): the category of finite
dimentional right Endv(7)-comodules. It is the universal 7-linear abelian category
together with a unique representation T: A -» L? A, T) and a faithful, exact, 7-linear
functor T: If (A, T) —> bp extending the original representation T. If A is an abelian

category then we have an equivalence A ~ IS (A, T).
More specifically we have the following result of Nori.

Proposition 4.1 (Nori [2, Cor. 2.2.10, 2.2.11]). (1) Let IR be an F-linear abelian

category with afaithful exactfunctor p: 31 —> bp. Assume that the representation
T: A —> bp factors, up to natural equivalence, as T\p. Let A be an F-linear
abelian category equipped with a faithful exactfunctor U:A^tR. IfG:A^A
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is a morphism of directed graphs such that T\ is equivalent to UG, then there

exist functors G (A ,T)-+tR, G:G(A,T) —A such that the following diagram

commutes up to natural equivalence.

(2) For a commutative (up to natural equivalence) diagram

A —A

VF

A': A'
G'

we have a commutative (up to natural equivalence) diagram

G
G(A,T)

G(A ',T') G'

A

A-'

Example 4.2. The following diagrams appear in the construction of Nori's motives.

(1) The diagram Ae" of effective pairs consists of pairs (X, Y, i) and two types of
edges:

(a) (functoriality) for every morphism f:X-> X', with /(F) C Y', an edge

f*:(X',Y',i) -* (X, Y,i).
(b) (coboundary) for every chain X D Y D Z of closed AT-subvarieties of X,

an edge 3: (F, Z, i) -> (X. Y, i + 1).

(2) The diagram A|ff (resp., A^) of effective good (resp., of effective very good)

pairs is the full subdiagram of Aeff with vertices good (resp., very good) pairs
(X, Y, i).

(3) The diagrams A of pairs, Ag of good pairs, and Avg of very good pairs are
obtained by localization with respect to the pair (Gm, {1},1) [39, B.18],
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Let H*: Ag -> VF be the representation which assigns to (A, Y, i) the relative

singular cohomology Hl(X(C), F(C), F).
Definition 4.3. The category of (resp., effective) Nori motives (resp.,

MM(M)f) is defined as the diagram category "(Ag,H*) (resp., G (A®", H*)).
For a good pair (.X,Y,i), we denote by Hlmo{(X,Y) the object of EMM(K)jr
(resp., MM(Af)p) corresponding to it and we define the Tate object as

1(-1) := H^ot(Gm,K, {1}) EMM(K)F, 1 (-«) := l(-l)®".
We have [39, Thm. 1.6, Cor. 1.7]

• EMM(A> ~ EMM(L)q ®q F and MM(L)p - MM(A)q ®q F.

• As an abelian category EMM(^)f is generated by Nori motives of the form

H^ol(X, Y) for good pairs (X, Y, i)\ every object of EMM(A)F is a subquotient
of a finite direct sum of objects of the form H^ol(X, Y).

• EMM(A')f c MM(AT)p are commutative tensor categories [44, p. 466],

• MM(A)/? is obtained from EMM(A)^- by ®-inverting 1(—1).

• The diagram categories of Aeff and of APg with respect to singular cohomology
with coefficients in F are equivalent to EMM(A)p as abelian categories. The

diagram categories of A and of Avg are equivalent to MM(ÄT)f.6 In particular,

any pair (A, Y, i) defines a Nori motive H^ot(X, Y).

• Nori shows that these categories are independent of the embedding K C.

From the universal property of the category EMM(A)p it is easy to construct
realizations. We will describe the ones coming from p-adic Hodge Theory.

Construction 4.4 (Galois realization). Consider the map Aeft —> Rep(G^):

(A, Y,i)» Hi(XE,YR,Qp).

We have Hl (Xg, Y%, Qp) — H1 (X(C),Y(C),QP). Thus, by Proposition 4.1, we
obtain an extension which is the exact étale realization functor

Rét: EMM(A)Q/, —> Rep(G^).

Note that Rét(l(—1)) H1 (<Gm g, {1}, Qp) — Qp(—\). Hence the functor R^t lifts

toMM(%.
In analogous way we obtain the exact potentially semistable realization

R,st:MM(% ^ RePpst(GJf).

It factors Rét via the natural functor Reppst(G,&:) —> Rep(Gjf).
6This is shown by an argument analogous to the one we have used in the construction of Beilinson's

potentially semistable complex of a variety in Section 3.1.2: via cellular complexes and Cech coverings
one lifts the representation H* from very good pairs to all pairs to a representation that canonically
computes relative singular cohomology.
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Construction 4.5 (Filtered (cp, N, Gk) realization). Consider the map Aeff -> DFk'-

(V, Y, i) H'df(X, Y) := YR), (HldR(X, Y), F'),

idR: //<K(XR, Yr) K ^ H^(XR, Yr)).

By p-adic comparison theorems, we have

Dpst(H'DF(X, Y)) ~ Hl(XR,YR,Qp) ~ H'(X(C), Y(C),Q^).

Thus, by Proposition 4.1, we obtain an extension which is the exact filtered (cp, N, Gk)
realization functor

Rdfk:^MM(K)Qp -* DFK.

Since Rdf(1(— 1)) AT(—1), the functor Rj^ lifts to MM(K)q/;.
Projections yield faithful exact functors from DFk to the categories MF{(p, N, Gk)

and V^. Composing them with the realization R^j? we get

• the exact Hyodo-Kato realization

Rhk:MM(K)Qp -> MK((p, N, Gk),

• the exact de Rham realization

RdR:MM(% -> Vdf.

Composing Rdfk with the projection on the third factor of the filtered (cp, N, Gk)~
module, we obtain the Hyodo-Kato natural equivalence

Hr^Rhk K A RdR (g)k K\MM(K)qp VR, (4.1)

where the tensor product is taken pointwise.

Construction 4.6 (Realization of period isomorphism). To realize period
isomorphisms, we define the category of realizations IR(K). An object of IR{K) is a tuple
M := (Mdf, MpSt,pPst) consisting of MDF e DFK, Mpst Reppst(G^), and a

comparison isomorphism ppst: VpstM ~ Mpst of Galois modules. It is a abelian

category (it is naturally equivalent to the category Reppst(G^)). Projections yield
faithful exact functors from IR(K) to the categories DFk and Reppst(Gx-).

Consider the following map Aeff —» IR(K):

(X, Y,i) » {HijF(X, Y), W(XR, Yr, Qp),

ppst: VpstH'DF(X, Y) ~ W{XR, Yr, Qp)).

Since the functor IR(K) -> Reppst(Gjç:) —> Vqp is faithful and exact, Proposition 4.1

gives us an extension EMM(ä')q/, —> 3l(K) that is compatible with the étale
realization. Since

(Gm, {1}, 1) (AT(—1),Qp(—1), Rpst^(-l) A Q„(-l)),
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again by Proposition 4.1, we obtain the exact realization

RÄ:MM(%->Ä(4
Projecting on the first two factors we get back the realizations Rdfk and Rpst and

projecting on the third factor we get that the above two realizations are related via a

period morphism, i.e. we have a natural equivalence

Ppsd kpstRof^ — Rpst: MM(A1)Qp Reppst(GA:).

To sum up, we have a potentially semistable comparison theorem for Nori's
motives.

Corollary 4.7. For M MM(ÀT)qp, there is afunctorial isomorphism

Ppsd Rhk(M) ®^nr Bst ~ Rét(W) ®>Qp Bst

that is compatible with Galois action, Frobenius, and the monodromy operator.
Moreover; after passing to Bjr via the Hyodo-Kato map (4.1), it yields afunctorial
isomorphism

PdR' RIIR(^0 ®k BUR — RétC^O ®QP BJR

that is compatible with filtration.

We can illustrate the above constructions by the following, essentially commutative,

diagram of exact functors

Here M%sl((p, N, Gk) is the exact category of free finite rank Bsrmodules equipped
with an action of cp, N, Gk (<p is an isomorphism, N is nilpotent, and G^-action
is continuous — everything being compatible in the usual way and compatible with
the same structures on Bst). MF^AR is the exact category of filtered finite rank

BdR-modules equipped with a continuous action of Gk compatible with its action

on Bjr; Mbs1 -> Mb(,r is the natural functor.
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4.2. /7-adic realizations of Voevodsky's motives.

Recall 4.8. The category of Voevodsky's motives DM(K, Qp) with rational
coefficients admits several equivalent constructions, each interesting in its own. In
this section, we will be using the one of Morel (see [47]) for a review of which we
refer the reader to [24, §1],

By construction, the triangulated category DM(K, Qp) is stable under taking
arbitrary coproducts. In this category, each smooth AT-scheme X admits a

homological motive M(X), covariant with respect to morphism of A'-schemes

(and even finite correspondences). Each motive can be twisted by an arbitrary
integer power of the Tate object Qp(l), and as a triangulated category stable under

taking coproducts, DM(K, Qp) is generated by motives of the form M(X)(n), X/K
smooth, and ne Z.

The category of constructible motives (see also 5.4) is the thick7 triangulated
subcategory of DM(K,QP) generated by the motives M(X)(n), X/K smooth,
and ne Z, without requiring stability by infinite coproducts. It is equivalent to

Voevodsky's category of geometric motives DMgm(K, Qp) [70, Chap. 5] and can also

be described in an elementary way as follows. Let Qp [Sm^] be the Qp-linearization
of the category of smooth affine AT-varieties, ATè(Q/)[Sm^]) its bounded homotopy
category. This is a triangulated monoidal category, the tensor structure being induced

by cartesian products of ATschemes. First we get the geometric A^derived category
Dai gm(A, Qp) out of ATè(Qp[Sm^]) by the following operations:

(1) Take the Verdier quotient with respect to the triangulated subcategory generated

by complexes of the form:

• (homotopy) •••->• 0 A^- X —> for X e Sm|T, p canonical

projection;

q—k j+P
• (excision) • • • -» 0 -» W > U © V > X for any cartesian square

W -4- V
q\ \p1/il

in Sm^ such that j is an open immersion, p is étale and an isomorphism
above the complement of j.

(2) Formally invert the Tate object Qp(l), which is the cokernel of {1} Gm

placed in cohomological degree +1.

(3) Take the pseudo-abelian envelope.

7i.e. stable by direct factors [49, Definition 2.1.6].
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Let r be the automorphism of Qp(l)[l] <8> Qp(l)[l] in DAigm(K,Qp) which

permutes the factors. Because Qp(l) is invertible, it induces an automorphism s

of Qp in DAi gm(K,Qp) such that s2 1. Then we can define complementary
projectors: p+ (1 — e)/2, p- {e — l)/2, which cut the objects, and therefore
the category, into two pieces:

DAYgm(K< Q/0+ Im(/?+), DA\gm(K> QP)-

Then, according to a theorem of Morel (cf. [18, 16.2.13]),

DMgm(K,Qp) — DAigm(K, Qp)+.

Example 4.9. Let F be an extension field of Qp and A be a Tannakian F-linear
category with a fiber functor œ: A -» Vf- Consider a contravariant functor:

R:{Smf)op -> Cb{A).

It automatically extends to a contravariant functor R'\ ^è(Q^[Sm^])op Db(A).
The conditions for R' to induce a contravariant functor defined on DMgm(K, Qp) are

easy to state given the description of DMgm given above. We will use the following
simpler criterion:

We now suppose that the functor R takes its values in the bigger category
Cè(Ind —A) but we assume that there exists a functorial isomorphism

Hia>R{X) ~ H'(X(C), F)

and that the product map H1 (X(C), F) <g> Hi (F(C), F) -* Hi+j (X(C) x T(C), F)
can be lifted to a map R(X) <g> R(Y) -> R(X xA Y) in Cb(A).

Then the functor R' uniquely extends to a realization functor

i?v: DMgm(K,Qp)op —> Db(A)

which is monoidal and such that Fll (Rv(M(X))) Hl (R(X)).S After composing
this functor with the canonical duality endofunctor of the (rigid) triangulated
monoidal category Db(A), we get a covariant realization:

R: DMgm(K, Qp) -* Db{A)

such that Hl R(M(X)) Hl (R(X))V. Note also that, by construction, the

preceding identification can be extended to closed pairs. Also, because DMgm(K, Qp)
satisfies A-descent (see section 5.5), it can be extended to singular A'-varieties and

pairs of such.

8Note in particular that the permutation s acts by —1 on singular cohomology.
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Using this example we can easily build realizations:

Proposition 4.10. Let F be an extension field ofQp and Abe a Tannakian F-linear
category with a fiberfunctor co: A —> Vf. Consider a representation A*: Ag —> A
such that coA* is isomorphic to the singular representation (see Definition 4.3).

Then there exists a canonical covariant monoidal realization:

Ra: DMgm(K, Qp) -» Db(A)

such thatfor any good pair (X, Y, i), H1 RA(M(X, L)) Al(X, F)v and this

identification is functorial in (X, Y, i — including with respect to boundaries.

Moreover, this construction is funtorial with respect to exact morphisms of
representations.

Proof. Let X be a smooth affine Äl-scheme. To any cellular stratification of X
(cf. Corollary 3.3) F.X, we can associate the complex

R'a(F.X) := 0 -> A°(F0X) -» Al(FlX, F0X) Ad(X, Fd^X) -> 0.

We put: R'a(X) := colim/r.x ^(.F.V). This defines a contravariant functor:

R'a: (Smf)op -> Cè(Ind —<A),

which satisfies the assumptions of the previous example. Hence we get the proposition
by applying the construction of this example.

Remark 4.11. Consider again a fiber functor œ: A —> Vf and a contravariant functor

R: (Sc1ia:)<>p -> Cè(Ind-,A)

such that for any AT-variety X, one has a functorial isomorphism HlcoR(X) —

Hl(X(C), F). Then we can apply the preceding example to RL ajr and also the

preceding proposition to the unique representation A* induced by R such that

A'(X, Y) H1 (Cone(A(V) R(Y)[— 1]). By applying the construction of
the preceding proof, we get for any smooth affine ÄLscheme a canonical map of
complexes

R(X) -> RA(X),

which is a quasi-isomorphism. By the functoriality of the construction of the previous
example, we thus get a canonical isomorphism between the two realizations of any
Voevodsky's motive M\

R(M) ^ RA(M).

Remark 4.12. Voevodsky's motives M(X) are homological: they are covariant
in X. In fact, the monoidal category DMgm(K, Qp) is rigid: any object has a strong
dual; this follows from [58] and from the existence of the monoidal triangulated
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functor SH(K) -> DM(K,QP) [18, 5.3.35] (here SH(K) denotes the stable

homotopy category ofMorel-Voyevodsky over K). Then for any smooth ÄLvariety X,
M(X)V is the cohomological motive of X/K. Using the notations of the previous
proposition, because RA is monoidal and therefore commutes with strong duals, we

get: W Ra(M(X)v) A*(X).
Recall that the category DMgm(K, Qp) can be extended to any base and satisfies

the 6 functors formalism (cf. [18], in particular 16.1.6). According to loc. cit., 15.2.4,

M(X)W /*(lz) where f:X —> Spec(AT) is the structural morphism. The

preceding relation can be rewritten:

HiRA(Mlx)) A*(X).

Note finally that /* exists for any ^-variety X. One can extend the above

identification to this general case using De Jong resolution of singularities and

/z-descent, which is true for Voevodsky's rational motives [18, 14.3.4] and for Betti
cohomology.

There is fully faithful monoidal functor

CHM(AT)qPp -> DMgm(K, Qp), h(X) » M(X)

from the category of Chow motives (A is smooth projective over K) [70, Chapter 5,

Prop. 2.1.4, Cor. 2.4.6.]. Applying duality on the right hand side, we get a covariant

fully faithful monoidal functor:

CHM(JnQ/> -* DMgm(K. Qp), h(X) ^ M(X)V MU).

In view of this embedding, it is convenient to identify the Chow motive h(X) with
the Voevodsky's (cohomological) motive M(X)W.

Let us also state the following corollary which follows from the preceding
proposition and [27]:

Corollary 4.13. In the assumptions of the previous proposition, for any smooth

projective K-scheme X of dimension d, the complex RA(h{Xj) RA(M(X)V) is

split: there exists a canonical isomorphism:

2d 2d

RA(h(X)) ®ff'(fi«))H] =®4'(I)[-i].
1=0 i—0

This decomposition statement follows simply from loc. cit. as the derived category
Db(A) satisfies the assumptions of loc. cit. and the object RA(h(X)) satisfies the

assumption (L.V.) for the map h(X) —> h(X)( 1 [2] given by multiplication by the

(motivic) first Chern class of an ample invertible bundle on X.
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Example 4.14. In particular, applying the preceding proposition to the functor Ag ->
MM(H)qp coming from the singular representation, we get the classical realization,9
due to Nori, of (cohomological) Nori's motives:

F: DM%m(K, Qp) -> Dè(MM(A0Qp).

By definition, and applying the preceding remark, we get for any smooth projective
(resp., smooth, any) A'-variety /: X -> Spec(A'):

WTih^X)) WmJX), resp., //!r(M(V)) Hlot(X)v,

WTiUilx)) Hlot(X).

When X is smooth projective of dimension d, we also get by the above corollary the

decomposition:
2d

F (A(*)) ©ffL(*)H].
i=0

Moreover, because of the functorialility statement of the proposition, this realization
of Voevodsky's motives is the universal (initial) one.

4.15. More interestingly, using either Example 4.9 or Proposition 4.10, we can

get various p-adic realizations of Voevodsky's motives, and extend the de Rham

p-adic comparison theorem to the derived situation as summarized in the following
essentially commutative diagram of triangulated monoidal functors:

where t is the canonical functor.10 The functors Rr^t, Rrpst and Rrofk are obtained
either from 4.9 or equivalently from 4.10 (according to Remark 4.11) by considering
respectively the following functors:

• V Smf, f-.X ^ Spec(K) R MQp) and (V, Y, i) Hit(XË, YË, Qp)-

• V Smf h> Rrpst(V^, r) ~ Rrp^t(V^, Qp(r))
and (V, Y, i) Wk{XR, YR, Qp) e RePpst(G^);

• (X, Y,i) HlDF(X, Y) (see Construction 4.5).

9Conjecturally, this is more than a realization: it is thought to be an equivalence of categories!
10One should be careful that though t is induced by a fully faithful functor on the corresponding abelian

categories, it is a non full faithful functor.
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The functor RTdR is obtained by composing RFd/t^ with the canonical functor
DFk -* V*.

For s — et, pst, DFk > one has defined in the preceding section an analoguous exact
monoidal realization functor Re from the category of Nori's motives MM(K)qp.
This functor being exact induces a functor on the (bounded) derived categories and

according to the functoriality in Proposition 4.10, one gets for any Voevodsky motive
M G DMgm(K, Qp):

Rre(M) Re(T(M)). (4.2)

Same for the de Rham realizations: we have RFdR(M) RdR(T(M)). Therefore,
the essential commutativity of the previous diagram simply follows from the de

Rham comparison theorem for Nori's motives. More precisely, it yields, for any
Voevodsky's motive M, the de Rham comparison isomorphism:

PdR:RrdR(M) <&k BdR ~ RFét(M) BdR

which is a quasi-isomorphism of complexes of filtered finite rank BdR-modules

equipped with an action of Gk (continuous and compatible with the canonical action

on BdR).

This comparison can be made more precise through the Hyodo-Kato realization,
as illustrated in the essentially commutative diagram:

The Hyodo-Kato realization RTHk is obtained by composing RTdpk with the

projection DKp -> Mk(<P, N, Gk)- Then the essential commutativity of the part
(1) and (2) of the above diagram corresponds, respectively, for any Voevodsky's
motive M, to the potentially semistable comparison theorem and to the Hyodo-Kato
quasi-isomorphism:

Ppsd RThkC^O Bst ~ Rrét(M) (gjQ^ Bst,

£<]R:RFhk(M) <S>K[ir K ~ RTdR(M) <S>/sr K.

Again, the identification (4.2) holds when s HK and the above canonical

comparison quasi-isomorphisms correspond to the comparison isomorphisms
obtained in the previous section.
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Remark 4.16. By construction, for any (smooth) A"-variety /: X -> Spec (A), one
has a canonical identification: RF^t(/*(lx)) R f*(Qp) where the right hand side

denotes the right derived functor of the direct image for étale /?-adic sheaves.

This implies that the realization functor Rr-tl constructed above coincides with that

of [19,7.2.24], denoted by p*, and equivalently to the one defined in [4]. In particular,
it can be extended to any base and commutes with the six functors formalism. This

explains the preceding relation and why we have prefered the covariant realization
rather than the contravariant one (see the end of Example 4.9).11

Example 4.17. The above realizations allow us to define syntomic cohomology of a

motive M in DMgm(K, Qp) as

Rrsyn(M) := RHom£,(Reppst) (Qp, Rrpst(M))

R WomD(DfK) (K(0),RrDFK(M)).

In particular, we have the syntomic descent spectral sequence

syn4J := Hl(GK,H^Th{M)) =» Hl+JRTsyn(M).

If we apply it to the cohomological Voevodsky's motive M(A)V f*(lx) of any
A-variety X with structural morphism /, we get back the results of Theorem 2.25.

An interesting case is obtained by using the (homological) motive with compact

support MC(X) in DMgm(K, Qp) of Voevodsky for any A-variety X, and its
dual MC(X)V Horn(MC(X), Qp) which belongs to DMgm(K,Qp). Then

RFsyn(Mc(A)v(r)) is the nth twisted syntomic complex with compact support
and we recover the syntomic descent spectral sequence with compact support from
Remark 2.28:

Hlt(GK,Hlc(XR,Qp(r))) =» H^c(X,r).

Indeed, in terms of the 6 functors formalism, Mc(X)v(r) and the

identification relevant to compute the above £2-term follows from the previous
remark.

4.3. Example I: p-adie realizations of the motivic fundamental group. Let

EHM(^)q/j denote the category of effective homological Nori's motives, i.e. the

diagram category

ff (Äf, ff»), //* := (H*)* := Horn(H*,QP),

where the diagram is obtained from the diagram A|ff by reversing the edge /*
to /*: (A, Y, i) —> (X', Y', i) and changing 9 to 9: (X, Y, i) -> (Y, Z, i — 1). There

nIn Section 5, we will similarly extend the realization functor Rrpst to arbitrary Af-bases (see more
precisely Rem. 5.16).
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is a duality functor v:EHM(AT)qp —> EMM(AT)q respecting the representations

//* and H* via the usual duality that sends a good pair (X,Y,i) to (X,Y,i).
This induces an equivalence on the derived categories v: D^(EHM(A^)q/;) —

Db(EMM(K)Qp)°P.
In [21] Cushman developed a motivic theory of the fundamental group, i.e. he

showed that the unipotent completion of the fundamental group of varieties over
complex numbers carries a motivic structure in the sense of Nori. We will recall his

main theorem.

• Let Vur*K be the category of pairs (X, x), where X is a variety defined over K
and x is a If-rational base point; morphism between such pairs are morphisms
between the corresponding varieties defined over K that are compatible with the

base points.

• Let Var *f? be the category of triples (X; x\, x2), where X is defined over K and

xi, x2 are K-rational base points.

For a variety X over C, let nx{X, x) be the fundamental group of X with base point x
and let n\(X; x\, x2) be the space of based paths up to homotopy from x\ to x2.
Denote by IX2 - the augmentation ideal in Qp[n\(X,x2)\ (i.e. the kernel of the

augmentation map Qp [tc\ (X, x2)] -> Qp) which acts on the right on n\ (X; x\, x2).
The following theorem [22, Thm. 3.1] shows that the quotient Qp[it\{X\x\, x2)] / / "2,

n N, has motivic version 11" (X ; x\, x2) (in the sense of Nori).

Theorem 4.18. For every n £ N, there are functors

nn:Var*K* -> EHM(iQQp, n": Var*K -* EHM(^)Qp.

These functors have the following properties.

(1) There is a natural transformation

ï\n+\X\xx,x2) -* n"(AT;xi,x2).

(2) We have a natural isomorphism ofQp-vector spaces

H*{nn(x(cy,xux2)) ~ qp[7tx{x{cyx^x2)\/if2.

(3) There are natural transformations

n"(A';x1,x2) (g) Yln(X;x2,x3) -> Y[n{X\xx,x2)

nn+m+\x.x2) -* nm+1(x,x2) ® n"+1(A-,x2).

Via the natural isomorphisms in (2), these transformations are compatible with
the product and coproduct structures as well as with the inversion in the path

space.
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This data is equivalent to giving a pro-EHM structure on the inverse limit

Qp[jri(V(C);xi,x2)]//"2 such that all the obvious maps are motivic, and the

completed ideal l£ is a sub-motive.

Dualizing the realization functors of Nori's motives used in Constructions 4.4,
4.5 we obtain the following functors

n"t: Vur*K* Rep(G^), Ylnk := Rétn";

n"HK: y^K MK(<p, N, Gk), n^K := RHKn";

Kr-'V^k* ^ Vi, nj}R := RdRn".

These realizations are compatible with change of the index n and with the structure

maps that endow these realizations with Hopf algebra structures.
From Constructions 4.5,4.6 (again dualizing) we obtain also the following

comparison isomorphisms.

Corollary 4.19. (1) There exists the Hyodo-Kato natural equivalence

Dr: n^K(V;xi,x2) K ~ n^R(V;xi,x2) ®k K.

(2) There exists a natural equivalence (potentially semistable period isomorphism)

Pp.«: n'HK(V; XI, x2) Bst ~ Y\nk(X ; x{, x2) <g>Q/, Bst

that is compatible with Galois action, Frobenius, the monodromy operator.
Extending to BdR and using the Hyodo-Kato equivalence, we get the de Rham

period isomorphism

PcIr: n"R(V;xi,x2) BdR ~ n?(V;xi,x2) <8)qp BdR

that is compatible with titrations.
These comparison isomorphisms are compatible with change of the index n and

with Hopfalgebra structures.

The above comparison statements were proved before in the case of curves in

[1,37], for varieties with good reduction over slightly ramified base in [71], and

for varieties with good reduction over an unramified base in [56]. The various
realizations appearing in these constructions should be naturally isomorphic with
ours but we did not check it.

4.4. Example II: p-adic comparison maps with compact support
and compatibilities.

4.20. When s HK, ét, dR, DFk, pst, we get from the preceding section, for any
AT-variety, a complex

RT£(V) := Rre(M(X)v) RVAMiX))*
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which computes the £-cohomology with enriched coefficients. When s et, HK, dR
this is the usual complex, respectively, of Galois representations, (<p, N, Gk)-
modules, filtered A-vector spaces which computes, respectively, geometric étale

cohomology, Hyodo-Kato cohomology and De Rham cohomology with their natural

algebraic structures. These complexes are related by the comparison isomorphisms
PdR> Ppst> and ijR.

An interesting point is that these complexes, as well as the comparison
isomorphisms are contravariantly functorial in the homological motive M (A). Recall

Voevodsky's motives are equipped with special covariant functorialities.
Let X and Y be A-varieties. A finite correspondence a from A to F is an

algebraic cycle in X xx Y whose support is finite equidimensional over X and which
is special over X in the sense of [18, 8.1.28].12 Then by definition, a induces a map

a*:M(A) M{Y).
Assume now that X and Y are smooth. Let /: X Y be any morphism

of schemes of constant relative dimension d. Then we have the Gysin maps

/*: M(Y) -» M(X)(d)[2d] (cf. [23]).

Corollary 4.21. Consider the notations above. Then RT£(A) is contravariant with

respect to finite correspondences and covariant with respect to morphisms ofsmooth
K-varieties.

Moreover, the comparison isomorphisms pdR, Ppst> Gr are natural with respect to
these functorialities.

Remark 4.22. 1 Note in particular that covariance with respect to finite correspon¬
dences implies the existence of transfer maps /* for any finite equidimensional
morphism /: X —> Y which is special (eg. flat, or A is geometrically unibranch).

(2) The syntomic descent spectral sequence and the syntomic period map of
Example 4.17 are natural with respect to the functorialities of the corollary.

(3) We can deduce from [23] the usual good properties of covariant funtoriality
(compatibility with composition, projection formulas, excess of intersection

formulas,...

4.23 {Products). Consider again the notations of the Paragraph 4.20. As said

previously, from the Kiinneth formula, RT£ is a monoidal functor and the comparison
isomorphisms are isomorphisms of monoidal functors.

Consider a A-variety A with structural morphism /. Recall from Remark 4.12
that M{A)v The functor /* is left adjoint to a monoidal functor.
Therefore it is weakly monoidal and we get a pairing:

Pl: M{A)v <g> M(A)v Mix) <8> Mix) Mix) M{A)v

12If X is geometrically unibranch, every a whose support is finite equidimensional over X is special
(cf. [18, 8.3.27|). If Z is a closed subset of X Y which is flat and finite over A, the cycle associated

with Z is a finite correspondence (cf. [18, 8.1.31]).
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in DMgm(K, Qp). This induces a cup-product on the e-complexes:

Rr£(V) ® rt£(V) Rre(Mix)) ® Rr£(/*(i*))

~ Rre(/*(ijr) ® Mix)) ^ RTe(Mix)) rt£(V),
(4.3)

where the isomorphism labelled K stands for the structural morphism of the monoidal
functor RT£, and corresponds to the Künneth formula in e-cohomology. When

s ét, HK, dR, we deduce from the definition of this structural isomorphism that
these products correspond to the natural products on the respective cohomology. As
the comparison isomorphisms are isomorphisms of monoidal functors, we deduce

that they are compatible with the above cup-products.

From the end of Example 4.17, we can also define the £-complex of X with

compact support:

Rre>c(*) Rr£(/,(i*)).

Because we have a natural map /* -> f of functors [18, 2.4.50(2)], we also deduce,

as usual, a natural map:

Rre,c(v) -> Rr£(v).

From the 6 functors formalism, we get a pairing in DMgm(K, Qp):

Rc: /*(ly) <8> fX^x) — f.{f* f*ßx) ® lz) ./i(/*/*(lz)) fX^-x)

where the isomorphism (1) stands for the projection formula [18, 2.4.50(5)] and the

map (2) is the unit map of the adjunction (/*, /*). Then, using gtc instead of /z in
formula (4.3), we get the pairing between cohomology and cohomology with compact
support:

RT£(V) <g> Rr£,c(V) -> RT£,c(A). (4.4)

Using again the fact that the comparison isomorphisms pdR> Ppst, Ur are isomorphisms
of monoidal functor, we deduce that they are compatible with this pairing. Let us

summarize:

Proposition 4.24. For * 0, c, we have comparison isomorphisms

tHK,*' RThk,*(^0 K ~ RrdR,*(V) ®a: K,

/W-RWW ®z(n)r Bst — RréMxx) ®Qp ^st'

PdR,*' Rl~dR,*(^0 ®K BdR — RPét,*(^z) /»
BdR.

that are compatible with cup-products (4.3) and with the pairing (4.4).
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5. Syntomic modules

5.1. Definition. In this section we use the dg-algebra 8syatK, which represents

syntomic cohomology of varieties over K [50, Appendix] to define a category of
syntomic modules over any such variety. This is our candidate for coefficients systems

(of geometric origin) for syntomic cohomology. We prove that in the case of Spec K
itself the category of syntomic coefficients is (via the period map) a subcategory of
potentially semistable representations that is closed under extensions. We call such

representations constructible representations.
Let us first recall the setting of Voevodsky's /z-motives, with coefficients in a given

ring R and over any noetherian base scheme S. We let Sh(S, R) be the category
of h-sheaves of A-modules on Schs — the category of separated schemes of finite

type over S. This is a monoidal Grothendieck abelian category with generators the

free R-linear /z-sheaves represented by any X in Schs; we denote them by R^(X).
In particular, its derived category <£)(Sh(5', R)) has a canonical structure of a stable

monoidal oo-category in the sense of [59, Def. 3.5] (see also [46]).13 Moreover, it
admits infinite direct sums. Let us define the Tate object as the following complex of
R-sheaves: Rs( 1) := ä|(P^)/ä^({oo})[—2].

The following theorem is an oo-categorical summary of a classical construction
phrased in terms of model categories in [19]:

Theorem 5.1. There exists a universal monoidal oo-category S)Mh{S, R) which
admits infinite direct sums and is equipped with a monoidal oo-functor

S°°: £>(Sh(S, R)) £>Mh(S, R)

such that:

• A^Homotopy: for any scheme X in Sch^, the induced map Ti°°R^(Alx)
S°°A^(A) is an isomorphism;

• IP1 -stability: the object E°° RsO) is ®-invertible.

Moreover, the monoidal oo-category £)Mh(S, R) is stable and presentable.

Concerning the first point, the statement follows from the existence of localization
for monoidal oo-categories. The statement for the second point follows from [59,

4.16] and the fact that, up to A^homotopy, the cyclic permutation on Rs(l)®'3 is

the identity.

Remark 5.2. According to [19] and [59], the oo-category £)Mh(S, R) is associated

with an underlying symmetric monoidal model category — this also implies it can

be described by a canonical R-linear dg-category. According to the description of
this model category, up to quasi-isomorphism, the objects of £)Mh(S, R) can be

l3Actually, this follows from the existence of a closed monoidal category structure on the category of
complexes of Sh(S, R) (cf. [ 161 or [191) and from 159, Sec. 3.9.1].
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understood as N-graded complexes of Ä-linear /z-sheaves (6?r)>-eN which satisfy the

following properties:

• (Homotopy invariance) for any integer r, the /z-cohomology presheaves H£ (—, Sr)
are A'-invariant;

• (Tate twist) there exists a (structural) quasi-isomorphism Sr —> Hom(Z?,<?(!), ër+i)

One should be careful however that, in order to get the right symmetric monoidal
structure on the underlying model category, one has to consider in addition an action

of the symmetric group of order r on Sr, in a way compatible with the structural

isomorphism associated with Tate twists. The corresponding objects are called

symmetric Tate spectra.14

Example 5.3. Let S Spec (K) and R Qp. Consider the/?-sheaf associated with
the presheaf of dg-Qp-algebras

X (Rrsyn(V/î, r) ~ Rrsyn(A, r))

defined in 2.9 (see Theorem 2.26 for the isomorphism). Because of [50], it satisfies
the homotopy invariance and Tate twist properties stated above; thus as explained
in Appendix B of [50], it canonically defines an object Ssyn of Qp).
Moreover, the dg-structure allows us to put a canonical ring structure on this object,
which corresponds to a strict structure (the diagrams encoding commutativity and

associativity are commutative not only up to homotopy).

For any scheme X in Schs, we put Ms(X) : E°°R^(X), called the

(homological) /î-motive associated with X/S.

Definition 5.4. We define the stable monoidal oo-category of /z-motives DM/, (S, R)
(resp., constructible /z-motives 3)Mh,c(S, R)) over S with coefficients in R as the
smallest stable sub-oo-category15 of £)Mh(S, R) containing arbitrary direct sums
of objects of the form Ms(X)(n)[i] (resp., objects of the form Ms(X)(«)[/]) for a

smooth S-scheme X and integers (n.i) eZ2.
We let DMh(S, R) (resp., DM/,iC(5, R)) be the associated homotopy category,

as a triangulated monoidal category.

Example 5.5. When A is a Q-algebra (resp., R is a Z/»-algebra where » is invertible
on S), DMh(S, R) is equivalent to the triangulated monoidal category of rational
mixed motives (resp., derived category of A-sheaves on the small étale site of 5);
see [19, Th. 5.2.2 (resp., Cor. 5.5.4)]. In particular, 3)Mh(S, R) is presentable by a

monoidal model category.

14See 118, Sec. 5.3] for the construction in motivic homotopy theory.
l5Here, and later in Definition 5.7, a stable sub-oo-category of an oo-category <0 means a sub-oo-

category 0o of 0 in the sense of [45, 1.2.11] such that the associated homotopy category Zz0o is a full
triangulated subcategory of the associated homotopy category /z0.
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The justification of the axioms of A^homotopy and IP1 -stability added to the

derived category of /z-sheaves comes from the following theorem:

Theorem 5.6 ([19]). The triangulated categories DMh (S, R)for various schemes S

are equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent schemes S and morphisms of finite
type, the subcategories DM^^C(S, R) are stable under the 6 operations, and satisfy
Grothendieck—Verdier duality.

We refer the reader to [18, A.5] or [19, Appendix A] for a summary of
Grothendieck 6 functors formalism and Grothendieck-Verdier duality.

Let us now take the notations of Example 5.3. We view 6?syn in the model category
underlying £)Mh(K, Qp), equiped with its structure of (commutative) dg-algebra.

According to [18, 7.1.11(d)], one can assume that 8syn is cofibrant (by taking a

cofibrant resolution in the category of dg-algebras according to loc. cit.). Given any
morphism f:S—> Spec (K), we put

8%yn,S L/*(Ssyn)

which is again a dg-algebra because /* is monoidal. According to the construction
of [18, Sec. 7.2], the category 6syn-^fody of modules over this dg-algebra is

endowed with a monoidal model structure, and therefore with a structure of monoidal

oo-category. The free gsyn-module functor induces an adjunction of oo-categories:

Rsyn - Mh (S1, Qp) gsyn-^od5: 0syn.

Given any S-scheme X, and any integer ne Z, we put

®syn,S (*)(») •'— ^syn

Definition 5.7. Using the above notations, we define the oo-category of syntomic
modules (resp., constructible syntomic modules) over S as the smallest stable

oo-subcategory of 8syn-Mods containing arbitrary direct sums of modules of the

form 6syn,.s'(A)(n)[z] for a smooth S-scheme X and integers (n, i) e Z2.

We denote it by gsyn-Atods (resp., 6?syn- <AtodC;,s) and let gsyn-mods (resp.,

gsyn-modC;s) be its associated homotopy category. This is a monoidal triangulated
category.

In particular, we get an adjunction of triangulated categories:

Asyn: DMh(S,Qp) U S,yn-mods : 0syn, (5.1)

such that Rsyn, called the realization functor, is monoidal and sends constructible
motives to constructible syntomic modules.

Remark 5.8. By definition, the triangulated category Ssyn- mods (resp., DM/1(S, Qp))
is generated by the objects of the form gsyn>s(V)(n) (resp., Ms(X)(n)) for a smooth
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S-scheme X and an integer ne Z. By construction, the functor (9syn commutes with
arbitrary direct sums.16 Thus, because Ms(X)(n) is compact17 in DMh(S,Qp)
(see [18, 15.1.4]), we deduce that Ssyn^(X)(n) is compact. This implies that a

syntomic module is constructible if and only if it is compact.18

Note also that 6?syn- mods is a compactly generated triangulated category.

Essentially using the previous theorem and the good properties of the forgetful
functor 0syn, we get the following result:

Theorem 5.9. The triangulated categories Ssyn-mods f°r various schemes S are
equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent K-schemes S and morphisms offinite
type, the subcategories ësyn-modCis are stable under the 6 operations, and satisfy
Grothendieck-Verdier duality.

Ifone restricts to K-varieties S, the syntomic (pre-)realization functors:

Kyn- DMhtC(S, Qp) -> Ssyn-modc,s,

for various S, commute with the 6 operations and in particular with duality.

See Corollary 5.15 for the computation of this functor over the base field K.

Proof. All the references in this proof refer to [18]. According to 7.2.18, the fibred

triangulated category Ssyn- mod: S Ssyn- mods is a motivic triangulated category
(Definition 2.4.45) because Z)M/,(—, Qp): S i-> DMh(S,Qp) is such a category.
Besides, it is oriented in the sense of 2.4.38 as the same facts hold for DMh(—, Qp)-
Thus it satisfies the six functors formalism as explained in 2.4.50.

Applying again 7.2.18, we also deduce that S m* é?syn-mods is separated (see

Def. 2.1.7) and satisfies the absolute purity property (as stated in 14.4.1). This

implies in particular that gsyn-mod is r-compatible (see Definition 4.2.20 and

Example 4.2.22). Thus the assertion about the stability of constructible syntomic
modules under the 6 operations is an application of Theorem 4.2.29.

Besides, the absolute purity property also implies that Ssyn- mod is r-dualizable
(see Definition 4.4.13 and Example 4.4.14). Thus the assertion about duality comes
from Theorem 4.4.21 and its Corollary 4.4.24.

The last assertion follows from what was said about é?syn- mod and Theorem 4.4.25

applied to the adjunction (5.1).

,6This follows from the fact it is the derived functor of a left Quillen functor, more precisely the functor
which forgets the structure of §syn-module in the category of symmetric spectra which trivially commutes
with arbitrary direct sums; see [18, proof of 7.2.14],

17Recall an object M of a triangulated category T is compact when the functor Homy-(A/,—)
commutes with arbitrary direct sums.

18This corresponds to the description of perfect complexes of a ring as compact objects of the derived

category.
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Remark 5.10. To get a feeling for the category gsyn- mod^s the reader might want
to recall a more classical case of coefficients defined by de Rham cohomology.
Let K C be the field of complex numbers; let ëdR be the commutative ring
spectrum representing de Rham cohomology X i-^ RrdR(2f), for varieties X over K.
We have

H^(X) RUomDMh(K,c) (M(X), SdR[«]).

We can define, in a way analogous to what we have done above, the category of
constructible de Rham coefficients 6?dR — mod^s, for varieties S that are smooth

over K. By [18, Example 17.2.22] (using the Riemann-Hilbert correspondence) or
by [28, Theorem 3.3.20] (more directly, using the isomorphism between Betti and

de Rham cohomologies) this category is equivalent to the bounded derived category
of analytic regular holonomic fD-modules on S that are constructible, of geometric
origin.
5.11. Recall the Grothendieck-Verdier duality property means that for any regular
ÄT-scheme S and any separated morphism of finite type / : X -> S, the syntomic
module Mx /!(Ssyn,s) is dualizing for the category of constructible syntomic
modules over X. In other words, the functor

Dx := Hom(—, Mx): (Ssyn- modC;x)op -> Ssyn- modc,* (5.2)

is an anti-equivalence of monoidal triangulated categories. Moreover, it exchanges
usual functors with exceptional functors: given any separated morphism of finite type

p: Y —» X, one has: Dyp* p'Dx and Dxp* P\Dy.

5.2. Comparison theorem.

5.12. Consider the abelian category Reppst(Gif) of potentially semistable representations

and the coinvariants functor

coi : Reppst (G -> V^p

where the right hand side is the category of finite dimensional Q^-vector spaces. It
admits a right adjoint denoted by or which to a finite dimensional Qp-vector space V

associates the representation V with trivial action of Gk- It is obviously exact and

monoidal. One could also put a>* &>! because it also admits a right adjoint a)*

which to a potentially semistable representation V associates the -vector VGk of
Gif-invariants. The situation can be pictured as follows:

CO\

RePpSt(G*) ^co'=co*T- VQp

It will be convenient for what follows to enlarge the category Reppst(Gif).
Consider the category

ReP~t(G^) := Ind~Reppst(G^)
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of ind-objects. Thus, for us, an infinite potentially semistable representation V will
be a Q^-vector space V with an action of Gk which is a filtering union of sub-

Q^-vector spaces stable under the action of Gk which are potentially semistable

representations of Gk- The category Repj^Gjf) is an abelian (symmetric closed)
monoidal category which contains Reppst(G^) as a full abelian thick subcategory.
Moreover, it is a Grothendieck abelian category — it admits infinte direct sums and

filtering colimits are exact. The above diagram of functors extends to this larger

category. Note in particular that according to this definition, Formula (2.9) can be

rewritten:
FpstÖ"1 : RFsyn(V, r) R«*Rrpst(V^ r). (5.3)

Due to the Drew's thesis [28] together with our main construction (§2.24), we get
the following computation of syntomic modules over K:

Theorem 5.13. There exist a canonical pair ofadjoints of triangulated categories:

P*'- £>syn- mod# ±+ D(Rep~(G/c)) : p*

such that p* is monoidal and which can he promoted to an adjunction of stable

oo-categories. Moreover, the functor p* is fully faithful and induces by restriction a
monoidal fully faithfull triangulated functor:

p*: gsyn-modc,k -* Dè(Reppst(G^))

such that for any K-variety X with structural morphism f, there exists a canonical
quasi-isomorphism of complexes of Gk-representations:

P*{f*Ssyn,x(r)) ~ RTpst(V^, r). (5.4)

Proof. We will apply Theorem 2.2.7 and Proposition 2.2.21 of [28]. To be consistent
with the notations of loc. cit., we take B Spec(A") and put % Reppst(G^:),
T Rep£(G*).

Consider the functor 8syn: X Rrpst(V^,0) (recall that Rrpst(Vp,0) ~
RFét(3^,Qp (0)) as Galois representations). This is a presheaf of dg-Qp-algebras

on A"-varieties with values in %. Then gsyn satisfies the axioms of a mixed Weil

7[)-theory in the sense of [28, 2.1.1]: the axiom (Wl) comes from the fact Ssyn

satisfies /z-descent which is stronger than Nisnevich descent, (W2), (W3) comes from
homotopy invariance of geometric p-adic Hodge cohomology and the computation
of the syntomic cohomology of K, (W4) comes from the projective bundle formula
for geometric p-adic Hodge cohomology, and (W5) was proved in Lemma 2.21.
Then we can apply 2.2.7 and 2.2.21 of loc. cit. to £syn and this gives the theorem.

Let us explain this in more detail. First, Drew generalizes Theorem 5.1, to
the category SHRep^cK)(S) of Nisnevich sheaves with values in the category of
ind-representations T, seen as an enriched category over T — morphisms are not
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simply sets but ind-representations. This defines the Reppst(G^)-enriched stable

homotopy category over any base scheme S. Drew proves that this category is a

stable monoidal oo-category — actually it is defined by a monoidal model category
— that we will denote here by <0Ai (A, T). We will denote by <2)ai (A, Q^) the usual
monoidal oo-category of A 1-homology, obtained by replacing T with the category
of Qp-vector spaces — and the associated homotopy category still satisfies the 6

functors formalism (cf. loc. cit., Prop. 1.6.7).19

Then applying Theorem 2.1.4 of loc. cit. to the presheaf £syn we get that
the geometric p-adic Hodge cohomology is representable in SHRePfis^GK)(S) by

a commutative monoid 8syn in the underlying model category — in our case the

corresponding object is simply the collections of presheaves X m- REp^A^, r), as

a N-graded dg-algebra indexed by r, seen as presheaves on Sm^- (the category of
smooth A-varieties) with values in T.

Then Drew shows that one can define a monoidal oo-category of modules over the

dg-algebra gsyn which is enriched over T, that we will denote here by Ssyn-mod^:.
It follows that we have the following interpretation of the Künneth formula: by
Theorem 2.2.7 of loc. cit. the functor

p: Ssyn-modA —D(T), M h» RHom- (8syn, M),
&syn

where Hornig indicates the enriched Horn (with values in complexes of T), is an

equivalence of monoidal triangulated categories. Recall that any smooth A-variety X
defines a canonical gsyn-module gsyn(A). It follows from the construction that, for
any smooth A-variety X and any integer re Z, there exists a canonical quasi-
isomorphism:

RHom- (8syn(X),8syn(r)) ~Rrpst(Af,r) (5.5)
C'syn

functorial in X.
Now we descend. According to loc. cit., 1.6.8, the pair of adjoint functors

(co*, ü)*) induces an adjunction of stable oo-categories:

Leo* : £)ai(K,Qp) ±+ £>ai(A, T) : Rm*

such that Leo* is monoidal. Then Drew defines (loc. cit., 2.2.13) the absolute

cohomology associated with the enriched mixed Weil cohomology 8syn as R &>* (SSyn),

seen as a monoid in IDai (A, Qp) — recall Rcu* is weakly monoidal. According to
this definition, Formula (5.3), and the definition recalled in Example 5.3, we get:

®syn — R^AC^syn)*

''Essentially, its object are graded presheaves on the category of smooth S-scheme with values in T
satisfying homotopy invariance, Tate twist, as in Remark 5.2, but we have to add the Nisnevich descent

property.
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the absolute cohomology associated with 6?syn. According to this definition, we
deduce from the adjunction (Leu*, Rcu*) an adjunction of stable oo-categories:

L m* : S^-mod# Ssyn-mod^ : R<3*

whose left adjoint, L 53*, is monoidal. Therefore, one gets the first two statements of
the theorem by putting:

p* p o L &>*, p* &5* o R p~

Moreover, Prop. 2.2.21 of loc.cit. tells us thatL ü>* is an equivalence of categories

if one restricts to constructible objects on both sides (i.e., generated by, respectively,
the objects of the form fbsyn(A)(r) and 6?syn(A)(r) for a smooth AT-scheme X and an

integer r Z). The fact that p* is fully faithful is a formal consequence of this result

together with the fact that 6?syn- mod^ is compactly generated (cf. Rem. 5.8).
Recall that, for any smooth -variety X with structural morphism /: X ->

Spec(Al), one gets:

8syn(X) Lœ*(8syn(X)) L 5* (/,./%„,*)
L œ*DK(f*f*8syn,K) Lœ*DK(f*8syn,x),

where Dk is the Grothendieck-Verdier duality operator on constructible syntomic
modules over K defined in Paragraph 5.11. Thus, in the case when X is a smooth

-variety, Formula (5.4) follows from this identification, the definition of p*,
and (5.5). One removes the assumption that X is smooth using the fact that the

quasi-isomorphism (5.4) can be extended to diagrams of smooth A'-varieties and that
both the left and the right hand side satisfies (by definition) cohomological descent

for the A-topology.

Remark 5.14. As a consequence, the category of constructible syntomic modules

over K can be identified with a full triangulated subcategory <0 of the derived

category Dè(Reppst(G^)).
It is easy to describe this subcategory: using resolution of singularities, all

objects of f?syn- modC;^: are obtained by taking iterated extensions20 or retracts of
syntomic modules of the form /*(Ssyn,x)(r) for a smooth projective morphism

f:X —ï Spec(AT) and an integer re Z (this is an easy case of the general result [18,
4.4.3]). So 0 is the full subcategory of Db Reppst(G^)) whose objects are obtained

by taking retract of iterated extensions of complexes of the form RFpst(l'^,r)
for X/K smooth projective and re Z.

Similarly, the (essential image of the) category of (not necessarily constructible)
syntomic modules over K can be identified with the smallest full triangulated
subcategory of D(RepjJt(Gx-)) stable under taking (infinite) direct sums and which
contains complexes of the form Rrpst(A^, r) with the same assumptions as above.

20Recall: in a triangulated category T, an object M is an extension of M" by M' if there exists a

distinguished triangle M' —> M —> M" —> M'[ 1] in T.
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Composing the syntomic realization functor over K with the fully faithful
functor p* above, we get:

Corollary 5.15. The syntomic (pre-)realization functor of Theorem 5.9 in the case
S Spec(Al) defines a triangulated monoidal realization functor:

Rf *
Rsy„:DMgm(K,QP) ~ DMh c(K, Qp) gsyn-modc,* ^ Dfe( RePpst(6»).

It coincides with the functor RFpst defined in Paragraph 4.15.

Proof. Only the last statement requires a proof. By definition, Rrpst is the functor
defined on DMgm(K, Qp) applying Example 4.9 to the functor which to a smooth
affine ^-variety X associates the complex Rrpst(Js£'r). Thus the statement follows
from the description of the functor p* in the above proof and the identification (5.5).

Remark 5.16. The corollary means in particular that the realization R'syn of
Theorem 5.9 does indeed extends the realization Rrpst to arbitrary K-bases in a

way compatible with the 6 operations.

Corollary 5.17. For a variety f\X —> Spec(A'), we have a natural quasi-
isomorphism

(X, r) R Homgsyn_modjf (^syn,.^ ®syn,X 0")) •

Proof. Since, by the above theorem, p*(f*8synix(r)) — RTpstiXr)> we ^ave

RHomgsyn.motlx (6>syn,A% ®syn,X (/)) RHomgsyn.modj §syn,AT> ^syn,.Y(0)

RHomgsyn.mod^ (SSyn,AT> f*&syrt,X (>))

RHom0(RePpsi(G^) (Qp.RFpstCA'^,/-))

- Rrx(X,r),
as wanted.

This means that we can define syntomic cohomology of a syntomic module in the

following way.

Definition 5.18. Let X be a variety over K and M E gsyn- rnodj. Syntomic cohomology

ofM is the complex

RTjfpC M) RTsyn(2f, M) := R Homgsyir modA, (gsyn,x, M).

This definition is compatible with the definition of syntomic cohomology of
Voyevodsky's motives from Example 4.17. That is, for M E Qp), we
have a canonical quasi-isomorphism

Rrsyn(Spec(/0, Kyn(M)) - RTsyn(M).

This follows easily from Theorem 5.13 and Corollary 5.15.
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Remark 5.19. Syntomic cohomology with coefficients was studied before in [6,51,
52,64]. The coefficients used there could be called "syntomic local systems". They
are variants of the crystalline and semistable local systems introduced by Faltings [30,

31]. There exists also a notion of "de Rham local systems". Those were introduced

by Tsuzuki in his (unpublished) thesis [66] and later by Scholze [62] in the rigid
analytic setting.

In all these cases, syntomic local systems have a de Rham avatar and an étale one.
These two avatars are related by relative Fontaine theory and their cohomologies (de

Rham, étale, and syntomic) satisfy p-adic comparison isomorphisms. We hope that
this is also the case for the syntomic coefficients introduced here and we will discuss

it in a forthcoming paper.

5.3. Geometric and constructible representations.

Definition 5.20. Keep the notations of the previous section. We define the category

Repgm(G^) (resp., RepN&m(GK), resp., Repc(GjS:)) of geometric (resp., Nori's
geometric, resp., constructible) p-adic representations of Gk as the essential image
of the following (composite) functor:

DMgm(K, Qp) ^ Dè(RePpst(G*)) Reppst(G*),

resp., Rpst: MM(K)Qp -> Reppst(G^),

P* u H°
resp., gsyn-modCj/c Dè(Reppst(G^)) —^ Reppst(G;c).

Thus a geometric G^-representation can be described as the geometric étale

/>-adic cohomology of a Voevodsky's motive over K with its natural Galois action and

Nori's geometric G^-representation — as the geometric étale p-adic cohomology of
a Nori's motive. By Corollary 5.15, a geometric G^-representation is constructible
and by the compatibility of realizations of Nori's and Voevodsky's motives (4.2)

geometric representation is Nori's geometric. So we have the following inclusions of
categories

Repc(G^)

(56)

RePgrnCC/f) c > RePjVgm(G^) c > RePpst(G^)-

We do not know much about these subcategories. Neither do we have a conjectural
description of them in purely algebraic terms — this contrasts very much with the

case of number fields, see [34].
Here is a few trivial facts:

• All three subcategories are stable under taking tensor products and twists.



126 F. Déglise and W. Niziol CMH

• All three categories contain representations of the form H^(X^, Qp(r)) for any
integers freNxZ and any Ai-variety X (possibly singular). They also contain
kernel of projectors of these particular representations when the projector is

induced by an algebraic correspondence modulo rational equivalence for X/K
projective smooth, and any finite correspondence for an arbitrary X/K.

We do not know if any of these subcategories are stable under taking sub-objects,

quotients, or even direct factors.
The following fact is the only nontrivial result about stability.

Proposition 5.21. The category Repc(G^:) contains all potentially semistable
extensions of representations of the form H^(X^,Qp(r)) for X/K smooth and

projective, i e N, r e Z.

Proof. Let 0 be the essential image of the functor

P • ®syn" modc,k -> Dè(Reppst(Gjf)).

Note that <0 is stable under taking retracts, suspensions, and extensions (see

Remarks.14). We first prove that for any smooth projective morphism / : X -»• Spec(AT)
and any integer re Z, the representation //J X^, Qp(r)) belongs to 0.

The complex or representations Rrpst(A^,r) ~ R f*(Qp)(r) belongs to 0
(according to the end of Theorem 5.13). Moreover, using [26, 4.1.1] and [25], there

exists an isomorphism in Dè(Reppst(G^;)):

R MQp)(r) ~ ® R' /,(Qp)(r)[-i].
iez

This means that R! f*(Qp)(r) is the kernel of a projector of R/*(Qp)(r), thus

belongs to 0 because the later is stable under taking retracts.
Thus the result follows, using the fact that 0 is stable under taking extensions in

Dè(RePpst(G*)).

Remark 5.22. The preceding proof shows that the essential image 0 of constructible

syntomic modules in complexes of pst-representations contains arbitrary truncations
of the complexes RFpst(Ar). A natural question would be to determine if, more
generally, 0 is stable under taking truncation. This would immediately imply that

Repc(G^) is a thick abelian subcategory of Rep(G^) (i.e. it is stable under taking
sub-objects and quotients) and that 0 is the category of bounded complexes of
pst-representations whose cohomology groups are constructible in the above sense.

Remark 5.23. In the diagram of inclusions (5.6) we believe that the first bottom one
is an equality and the rest are strict. We can support this belief with the following
observations. The first bottom inclusion should be an equality since the category of
Nori's motives is expected to be the heart of a motivic ^-structure on DMgm(K, Qp)
(see [42, p. 374]). The second bottom and the first skewed inclusions should be strict
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by the philosophy of weights: by Proposition 5.21, we allow all potentially semistable

extensions as extensions of certain geometric representations in the constructible

category but in the geometric category such extensions should satisfy a weight
filtration condition. For properties of geometric representations coming from abelian

varieties over Qp see the work of Volkov [67,68].
For the second skewed inclusion, take k Fq, the finite field with q ps

elements. Let V e Repc(G^) be a constructible representation. Then, by the

Conjecture of purity of the weight filtration, the ^-module Z)pst(F) is an extension

of'pure" (^-modules, i.e. ^-modules such that, foranumbera > s,tpa has eigenvalues
that are pa-Weil numbers21 (cf. [41, Conjecture 2.6.5]). But there are crystalline
representations that do not have this property. For example, any unramified character

X'- Gk0 y QP' Fr /x Q*, such that /x is not a pa-Weil number for any a > 0

(such a /x exists by the uncountability of Qp).
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