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On p-adic absolute Hodge cohomology
and syntomic coefficients. 1

Frédéric Déglise* and Wiestawa Niziot™

Abstract. We interpret syntomic cohomology defined in [50] as a p-adic absolute Hodge
cohomology. This is analogous to the interpretation of Deligne—Beilinson cohomology as an
absolute Hodge cohomology by Beilinson [8] and generalizes the results of Bannai [6] and
Chiarellotto, Ciccioni, Mazzari |15] in the good reduction case. This interpretation yields a
simple construction of the syntomic descent spectral sequence and its degeneration for projective
and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they
form a full triangulated subcategory of the derived category of potentially semistable Galois
representations.

Along the way, we obtain p-adic realizations of mixed motives including p-adic comparison
isomorphisms. We apply this to the motivic fundamental group generalizing results of Olsson
and Vologodsky [56,71].

Mathematics Subject Classification (2010). 11Gxx, 14Fxx.

Keywords. Absolute Hodge cohomology, syntomic cohomology, syntomic coeflicients.

1. Introduction

In [8], Beilinson gave an interpretation of Deligne—Beilinson cohomology as an
absolute Hodge cohomology, i.e. as derived Hom in the derived category of mixed
Hodge structures. This approach is advantageous: absolute Hodge cohomology
allows coeflicients. It follows that Deligne—Beilinson cohomology can be interpreted
as derived Hom between Tate twists in the derived category of Saito’s mixed Hodge
modules [38, A.2.7].

Syntomic cohomology is a p-adic analog of Deligne—Beilinson cohomology.
The purpose of this paper is to give an analog of the above results for syntomic
cohomology. Namely, we will show that the syntomic cohomology introduced in [50]
is a p-adic absolute Hodge cohomology, i.e. it can be expressed as derived Hom in the
derived category of p-adic Hodge structures, and we will begin the study of syntomic

*The authors’ research was supported in part by the ANR (grants ANR-12-BS01-0002 and ANR-14-
CE25, respectively).
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coefficients — an approximation of p-adic Hodge modules. This generalizes the
results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction
case.

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k. Let Gxg = Gal(K/K) be the Galois group of K. For the
category of p-adic Hodge structures we take the abelian category DFg of (weakly)
admissible filtered (¢, N, G x )-modules defined by Fontaine. For a variety X over K,
we construct a complex RI'pr, (Xg.7) € Db(DFK), r € Z. The absolute Hodge
cohomology of X is then by definition

RF;{J(X, i") = RHome(DFK)(K(O)sRFDFK(XE,I'))» r € Z.

For r > 0, it coincides with the syntomic cohomology RI'sy, (X, r) defined in [50].
Recall that the latter was defined as the following mapping fiber

RTgn(X.7) = [RTE (X)#=P V=0 LRI (X)/F'],

where RFfK(X ) is the Beilinson—Hyodo—Kato cohomology from [10], R[jr(X) is
the Deligne de Rham cohomology, and the map tgr is the Beilinson-Hyodo—Kato
map.

We present two approaches to the definition of the complex RI'pr, (X g, 7). In
the first one, we follow Beilinson’s construction of the complex of mixed Hodge
structures associated to a variety [8]. Thus, we build the dg category D,y of p-
adic Hodge complexes (an analog of Beilinson’s mixed Hodge complexes) which is
obtained by gluing two dg categories, one, corresponding morally to the special fiber,
whose objects are equipped with an action of a Frobenius and a monodromy operator,
and the other one, corresponding to the generic fiber, whose objects are equipped with
a filtration thought of as the Hodge filtration on de Rham cohomology. It contains
a dg subcategory of admissible p-adic Hodge complexes with cohomology groups
belonging to DFg. The category i);‘}q admits a natural 7-structure whose heart is

the category DFg and @;‘}1 is equivalent to the derived category of its heart. That
is, we have the following equivalences of categories

0: DFg = Diy’,  0: D°(DFg) = Dy

The interest of the category CT);‘}{ lies in the fact that, for r € Z, a variety X over K

gives rise to the admissible p-adic Hodge complex
RTpu (Xg. 1) i= (ROG (X . 1), (RTgr(X), F**7), 1) € Dy

We define RUpry (X, r) := 0 'R o (X . r).
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Since the category DFg is equivalent to that of potentially semistable

representations [20], i.e. we have a functor Vg DFg — Reppst(G k), we can also
write

Rr;}f‘ (X, I') = Homﬁ)”(ReppSI(GK))(QP* Rrpsl(XE, i')),

for Ry (Xg.7) = VpsRIppg (Xg.r). Using Beilinson’s comparison theo-
rems [10] we prove that Rl (X g.7) >~ RI¢(Xg.Qp(r)) as Galois modules. It
follows that there is a functorial syntomic descent spectral sequence (constructed
originally by a different, more complicated, method in [50])

B E = B[O, BT 0, (il = B (Kt

where H! (G, ") := Extfzep l(GK)(QP, -). By a classical argument of Deligne [25],
, i
it follows from Hard Lefschetz Theorem, thdt it degenerates at E, for X projective

and smooth.

A more direct definition of the complex RI'pr, (X g.7), or, equivalently, of
the complex RI'hg (X g, r) of potentially semistable representations associated to
a variety was proposed by Beilinson [11] using Beilinson’s Basic Lemma. This
lemma allows one to associate a potentially semistable analog of a cellular complex
(of a CW-complex) to an affine variety X over K: one stratifies the variety by
closed subvarieties such that consecutive relative geometric étale cohomology is
concentrated in the top degree (and is a potentially semistable representation). For a
general X one obtains Beilinson’s potentially semistable complex by a Cech gluing
argument.

All the p-adic cohomologies mentioned above (de Rham, étale, Hyodo—Kato,
and syntomic) behave well, hence they lift to realizations of both Nori’s abelian and
Voevodsky’s triangulated category of mixed motives. We also lift the comparison
maps between them, thus obtaining comparison theorems for mixed motives. We
illustrate this construction by two applications. The first one is a p-adic realization
of the motivic fundamental group including a potentially semistable comparison
theorem. We rely on Cushman’s motivic (in the sense of Nori) theory of the
fundamental group [22]. This generalizes results obtained earlier for curves and
proper varieties with good reduction [1,37,56,71]. The second is a compatibility
result. We show that Beilinson’s p-adic comparison theorems (with compact support
or not) are compatible with Gysin morphisms and (possibly mixed) products.

To define a well-behaved notion of syntomic coefficients (i.e. coeflicients for
syntomic cohomology) we use Morel-Voevodsky motivic homotopy theory, and more
precisely the concept of modules over (motivic) ring spectra. Recall that objects of
motivic stable homotopy theory, called spectra, represent cohomology theories with
suitable properties. A multiplicative structure on the cohomology theory corresponds
to a monoid structure on the representing spectrum, which is then called a ring
spectrum. These objects should be be thought of as a generalization of (h-sheaves' of)

'An A-sheaf is a sheaf for the A-topology. The A-topology is the Grothendieck topology generated by
universal topological epimorphisms (see [69, 3.1.2]).
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differential graded algebras. In fact, as we will only consider ordinary cohomology
theories (as opposed to K-theory or algebraic cobordism with integral coefficients),
we will always restrict to this later concept. Therefore modules over ring spectra
should be understood as the more familiar concept of modules over differential
graded algebras.

One of the basic examples of a representable cohomology theory is de Rham
cohomology in characteristic 0. Denote the corresponding motivic ring spectrum
by E4qr. By [18, 28], working relatively to a fixed complex variety X, modules
over Egg, x satisfying a suitable finiteness condition correspond naturally to (regular
holonomic) Dx-modules of geometric origin.

In [50] it is shown that syntomic cohomology can be represented by a motivic dg
algebra &gy, i.e. we have

Rrsyn(Xa i‘) = RHomDM;,(K,Q,))(M(X): Ssyn("))ﬂ (1 -1)

where M (X) is the Voevodsky’s motive associated to X and DM, (K, Q) is the
category of h-motives. So we have the companion notion of syntomic modules, that
is, modules over the motivic dg-algebra &€y,. The main advantage of this definition
is that the link with mixed motives is rightly given by the construction and, most of
all, the 6 functors formalism follows easily from the motivic one.

Now the crucial question is to understand how the category of syntomic modules
is related to the category of filtered (¢, N, G g )-modules, the existing candidates for
syntomic smooth sheaves [30,31, 62, 66], and the category of syntomic coefficients
introduced in [24] by a method analogous to the one we use but based on Gros-
Besser’s version of syntomic cohomology. In this paper we study this question only
in dimension zero, i.e. for syntomic modules over the base field. With a suitable notion
of finiteness for syntomic modules, called constructibility, we prove the following
theorem.

Theorem (Theorem 5.13). The triangulated monoidal category of constructible
syntomic modules over a p-adic field K is equivalent to a full subcategory of the
derived category of admissible filtered (¢, N, G x)-modules.

It implies, by adjunction from (1.1), that p-adic absolute Hodge cohomology
coincides with derived Hom in the (homotopy) category of syntomic modules, i.e. we
have

Rr}f’(X~ I‘) =R Homggyn~m()clx (Ssyn,X: 8syn,)((r))-

In the conclusion of the paper, we use syntomic modules to introduce new
notions of p-adic Galois representations (Definition 5.20). We define geometric
representations which correspond to the common intuition of representations
associated to (mixed) motives, and constructible representations, corresponding to
cohomology groups of Galois realizations of syntomic modules.

We expect that the categories of geometric, constructible, and potentially
semistable representations are not the same. This is at least what is predicted by
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the current general conjectures. Note that this is in contrast to the case of number
fields where the analogs of these notions are conjectured to coincide with the known
definition of “representations coming from geometry’ [34].

1.0.1. Notation. Let Ok be a complete discrete valuation ring with fraction field K
of characteristic 0, with perfect residue field k of characteristic p. Let K be an
algebraic closure of K. Let W(k) be the ring of Witt vectors of k with fraction field K
and denote by K§" the maximal unramified extension of Ky. Set Gg = Gal(K/K)
and let /g denote its inertia subgroup. Let ¢ be the absolute Frobenius on K. We
will denote by Ok, O, and (9‘}< the scheme Spec(O k) with the trivial, canonical
(i.e. associated to the closed point), and (N — Ok, | + 0) log-structure respectively.
For a scheme X over W(k), X, will denote its reduction mod p”, Xy will denote
its special fiber. Let Varg denote the category of varieties over K, i.e. reduced,
separated, K-schemes of finite type.

For a dg category € with a z-structure, we will denote by €% the heart of
the ¢-structure. We will use a shorthand for certain homotopy limits. Namely, if
f:C — C'is amap in the dg derived category of abelian groups , we set

[C —f>C’] := holim(C — C’ < 0).
And, if
c -

C:—>C4

is a commutative diagram in the dg derived category of abelian groups , we set

Cl—f‘>c2

l l = [[Cr ER Co] —[C3 5 C4]].

Gy =il
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2. A p-adic absolute Hodge cohomology. I

2.1. The derived category of admissible filtered (¢, N, G g)-modules.

2.1. For a field K, let Vg denote the category of K-vector spaces. It is an abelian
category. We will denote by D? (V) its bounded derived dg category and by D? (Vi)
— its bounded derived category. Let Vd‘g denote the category of K-vector spaces with
a descending exhaustive separated filtration F'*. The category Vd{g (and the category
of bounded complexes C 9 (Vd{g )) is additive but not abelian. It is an exact category
in the sense of Quillen [57], where short exact sequences are exact sequences of
K -vector spaces with strict morphisms (recall that a morphism f: M — N is strict
if f(F'M) = F'N nim(f)). Itis also a quasi-abelian category in the sense of [61]
(see [60, 2] for a quick review). Thus its derived category can be studied as usual
(see [12]).
An object M € C b(VdIlg ) is called a strict complex if its differentials are strict.

There are canonical truncation functors on C? (V(fé ):

TenM = > M"2 5 M" ! 5 ker(d") - 0 — ---

TopM =+ 5 0--- > coim(d"™') > M" > M"T! ...

with cohomology objects
TenTon(M) = --- — 0 — coim(d" ') — ker(d") — 0 — ---

We will denote the bounded derived dg category of Vd{g by Db (Vd{g). It is defined as
the dg quotient [29] of the dg category C?( Vd[é ) by the full dg subcategory of strictly
exact complexes [48]. A map of complexes is a quasi-isomorphism if and only if it
is a quasi-isomorphism on the grading. The homotopy category of i)b(lelg ) is the
bounded filtered derived category D?(VK).

For n € Z, let Dﬂn (Vd[[g) (resp., Dﬁn(Vd{g)) denote the full subcategory of
D?( lelg ) of complexes that are strictly exact in degrees k > n (resp., k < n)2. The
above truncation maps extend to truncations functors

Ten: DP(VE) = DB, (VE) and . DP°(VE) - D2, (VE).

The pair (Dgn (Vd{g), Dgn (Vd[]g)) defines a t-structure on D? (Vd]}g) by [61]. The heart
D?(VK)? is an abelian category LH (V,K). We have an embedding

Vi < LH(Vx)
that induces an equivalence
DA(VE) — DY(LETEY).

This t-structure pulls back to a t-structure on the derived dg category P? (Vdg ’

g .
2Recall [61, 1.1.4] that a sequence A = B — C such that fe = 0 is called strictly exact if the
morphism e is strict and the natural map ime — ker f is an isomorphism.



Vol. 93 (2018)  On p-adic absolute Hodge cohomology and syntomic coefficients. I~ 77

2.2. Let the field K be again as at the beginning of this article. A @-module
over Ky is a pair (D, ¢), where D is a Ky-vector space and the Frobenius ¢ = ¢p
is a @-semilinear endomorphism of D. We will usually write D for (D, ¢). The
category Mg, (¢) of ¢-modules over K is abelian and we will denote by JO%O (p)
its bounded derived dg category.

For Dy, D, € Mg, (¢), let Homg, (D1, D3) denote the group of Frobenius
morphisms. We have the exact sequence

0 — Homg, » (D1, D2) — Homg, (D1, D2) — Homg,(D1. ¢« D2), (2.1)

where the last map is Six 1o YD, X — @x(X)pp,. Set HomﬁKO(p(Db Dy) =
Cone(8)[—1]. Beilinson proves the following lemma.

Lemma 2.3 ([10, .13, 1.14]). For Dy, Dy € D% (¢), the map
R Homgy,o(D1. D2) — Homly (D1, Dy)

is a quasi-isomorphism, i.e.

)
RHomg, ,(D1. D>) = Cone (Homg, (D1, D) — Homg, (D1, ¢« D2))[—1].

Proof. Note that, for D1, D, € !Df,’}o (), from the exact sequence (2.1), we get a
map

a:RHomg, 4 (D1, D7)

§
— Cone (RHomg, (D1, D3) — RHomg, (D1, ResD2))[—1].
Since
RHOH]KO(DI, Dz) S HomK()(Dl‘ Dz),
RHomKO(Dl,Rqo*DZ) o~ HomKO(Dl,go*Dz)

it suffices to show that the map « is a quasi-isomorphism.

The forgetful functor Mg, (¢) — Vg, has a right adjoint M — M,,, where the
@-module My, := [],., ¢¥M with Frobenius ¢pr,: (xo, X1....,) = (X1,x2,...).
The functor M — M, is left exact and preserves injectives. Since all Ky-modules
are injective, the map M — M, m +— (m, p(m), p*>(m),...), embeds M into an
injective ¢-module. It suffices thus to check that the map « is a quasi-isomorphism
for Dy any ¢-module and D, = G,,. We calculate

R Homg, »(D1, G,) < Homg, ,(D1,G,)
- 8
—> Cone (Homg, (D1, G,) — Homg, (D1, ¢sGy))[—1]

i 3
— Cone (R Homg, (D1.G,) — RHomg, (D1, Re:Gy))[—1].

This proves the lemma. L]
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24. A (g, N)-moduleisatriple (D, ¢p, N) (abbreviated often to D), where (D, ¢p)
is a finite rank ¢-module over K and ¢p is an automorphism, and N is a Ky-linear
endomorphism of D such that Nop = pep N (hence N is nilpotent). The category
Mg, (¢.N) of (¢, N)-modules is naturally a Tannakian tensor Q,-category and
(M, ¢p, N) — M is a fiber functor over K. Denote by !Dg!N(KO) and Df,,N(Ko)
the corresponding bounded derived dg category and bounded derived category,
respectively.

For (¢, N)-modules M. T, let Homy, x (M, T) be the group of (¢, N)-module
morphisms. Let Hom?, (M. T)) be the complex [10, 1.15]

Homg, (M, T) — Homg,(M, ¢« T) @ Homg,(M,T) — Homg, (M, ¢ T)
beginning in degree 0 and with the following differentials

do: x + (p2x — x@1, Nox — xNy);

dii(x.y) = (Nax — pxNi — p@ay + ye1).
Clearly, we have Homy, y(M,T) = HOHomi,N(M, 7). Complexes Homi,N
compose naturally and supply a dg category structure on the category of bounded

complexes of (¢, N)-modules.
Beilinson states the following fact.

Lemma 2.5 ([10, 1.15]). For Dy, D, € c@?{“(@, N), the map
RHomg,y (D1. D2) — Hom}, (D1, Dy)

is a quasi-isomorphism, i.e.

)
Hom, (D1, Dy) —— Homg (D1, ¢+ D2))
R Hom,,_y (D1, D2) = jgz l 5

)
HOI’I]KO(Dl N Dz) % HomK()(Dl s QD*DQ))
Here

§1:x > @ax — x@1, 811X > peax — x¢1;

82:x > Nax —xNy, 85:x +> Nax — pxNy.

Proof. By devissage we may assume that D, D, are just (¢, N)-modules placed in
degree 0. By devissage on m such that N D = 0, we may assume that N = 0
on Dy. Fix such a D. Since, clearly, the map in the lemma induces an isomorphism
on H°, it suffices to show that, as a functor of D, the cohomology groups H,
i = 1,2, are effaceable in the category of (¢, N )-modules.
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We will start with H?2. To kill H? Homi’N(Dl, D5) by an injection Dy < D3,
take m such that N = (0 on D, and define

L(m):= Ko(0) & Ko(1) D ---® Ko(m), N:(ag,....am) > (@r,...,am,0),
fiDy = D3 := Dy ®g, L(m), aw (a,0,...,0).

It is easy to check (by induction on m) that, for every x € D, there exists a y € D3,
vy = (0, y1,...,Vm) such that Ny = x in Dj. It follows that the same property
holds for the map

512: H()mK()(Dl, @*DZ) - HomK()(D, Px D2)*

killing H? as wanted.
To treat [ !, pass first to D3 as above so that, for every class

x e HlHomi’N(Dl,Dz),

J(x) can be represented by an element y € Homg, (D1, ¢« Dév:())_ By Lemma 2.3,
there exists a finite p-module M, where ¢ is an isomorphism, and an embedding
Dévzo <> M such that the image of

Homg, (D1, ¢« Dévzo) — Homg, (D1, ¢« M)

isin theimage of Homg, (D, M) by the map §;. Note that§, =0 on Homg, (D1, M ).
It follows that the pushout D4 = D3 ]_[D%v=o M Kkills H'! Homi,N(Dl, D»), i.e. that
the image of the map ‘

H! Homi’N(Dl‘ D;) — H! Homi’N(Dl, Dy)
is zero. This concludes our proof. [

2.6. A filtered (¢, N)-module is a tuple (Dg,@, N, F*®), where (Dg,@,N) is
a (¢, N)-module and F* is a decreasing finite filtration of Dg := Dy ®k, K
by K-vector spaces. There is a notion of a (weakly) admissible filtered
(¢, N)-module [20]. Denote by

MF¥(p,N) C MFk(p,N) C Mg, (¢, N)

the categories of admissible filtered (¢, N)-modules, filtered (¢, N)-modules, and
(¢, N)-modules, respectively. We know [20] that the pair of functors

Dy(V) = By ®q, V)95, Dy(V) = (Bi ®q, V)¥:
Va(D) = By ®k, Do)?~N¥=n F'Byr @k Dg)
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defines an equivalence of categories MF}?‘(QO, N) =~ Repy(Gg) C Rep(Gk),
where the last two categories denote the subcategory of semistable Galois represent-
ations [32] of the category of finite dimensional Q -linear representations of the
Galois group Gg. The rings By and Byr are the semistable and de Rham period
rings of Fontaine [32]. The category MF;“(@, N) is naturally a Tannakian tensor
Qp-category and (Dg. ¢, N, F*) — Dy is a fiber functor over K.

A filtered (¢, N, G g)-module is a tuple (Dy, ¢, N, p, F*), where

(1) Dy is a finite dimensional Kj-vector space;
(2) ¢: Dy — Dy is a Frobenius map;
(3) N:Dg — Dy is a Kj'-linear monodromy map such that N¢o = poN ;

(4) pis a Ky-semilinear G g-action on D (hence p|/x is linear) that is smooth,
i.e. all vectors have open stabilizers, and that commutes with ¢ and N;

(5) F°*isadecreasing finite filtration of Dg := (D ® kor K)G& by K-vector spaces.

Morphisms between filtered (¢, NV, G g )-modules are K'-linear maps preserving all
structures. There is a notion of a (weakly) admissible filtered (¢, N. G g )-module
[20,33]. Denote by

DFk := MFg(¢,N.Gg) C MFg(p, N, Gg) C Mk(p, N,Gk)

the categories of admissible filtered (¢, N, G g )-modules (D F stands for Dieudonné—
Fontaine), filtered (¢, N, G g)-modules, and (¢, N, G g )-modules, respectively. The
last category is built from tuples (Dy, ¢, N, p) having properties 1, 2, 3, 4 above. We
know [20] that the pair of functors

Doy (V) = injlim(By ®q, VYA H c Gy — an open subgroup,
H

Dk(V) = (V ®q, Ba&r)*:
Ve(D) = By @ Do)*=*N=0n FO(By ®x D)

define an equivalence of categories MF;"(@. N.Gk) =~ Repyy(Gk), where the last
category denotes the category of potentially semistable Galois representations [32].
We have the abstract period isomorphisms

Ppst- Dpst(V) ®K(“)’ Bst e W ®QP Bst- PdR - DK(V) Rk BdR ol ®Ql’ Bde (22)

where the first one is compatible with the action of ¢, N, and Gk, and the second
one is compatible with filtration. The category M F}?l is naturally a Tannakian tensor
Qp-category and (Dg, ¢, N, p, F*®) — Dy is afiber functor over Kj'. We will denote
by D?(DFg) and D?(DFk) its bounded derived dg category and bounded derived
category, respectively.

The category Mg (@, N,Gg) is abelian. We will denote by @%((p. N, Gg)
and D%(q), N, G) its bounded derived dg category and bounded derived category,
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respectively. For (¢, N, Gg)-modules M, T, let Homy, y G (M. T) be the group of
(¢, N, Gk )-module morphisms and let Homg . (M, T') be the group of K{'-linear

and G g - equivariant morphisms. Let Homi,N,GK (M, T) be the complex

Homg, (M. T) — Homg, (M, 9«T) ® Homg, (M, T) — Homg, (M, p:T).

This complex is supported in degrees 0, 1,2 and the differentials are as above for

(¢, N)-modules. Clearly, we have Homy y.G (M, T) = H° Homi’N’GK (M. T).

Complexes Homfa’ N.Gx compose naturally. Arguing as in the proof of Lemma 2.5,
we can show that, for M, T € @Il’{(go, N,Gg),

R Homy, n,g (M. T) = Hom}, o (M.T). 2.3)

Let M, T be two complexes in C?(MFg(¢, N,Gk)). Define the complex
Homb(M, T) as the following homotopy fiber

Homb(M, T) := Cone (Homg}’NBGK (My. Ty) ® Homgr (Mg, Tk)

can —cdan

— Homg .. (MI?‘ TI?))[_I]’

where Homggr (M g, Tk ) is the group of filtered K -linear morphisms and Homg (M z, Tg)

is the group of G g-equivariant, K-linear morphisms. Complexes Hom’ compose
naturally.

Proposition 2.7. We have RHompp, (M. T) =~ Hom" (M, T).

Proof. We follow the method of proof of Beilinson and Bannai [8, Lemma 1.7],
[6, Prop. 1.7]. Denote by fas,7 the morphism in the cone defining Hom"(M, T). We
have the distinguished triangle

ker( far.r) — Hom’ (M, T') — coker( far.7)[—1]
We also have the functorial isomorphism
HOmKh(DFK) (M T[l]) ; Hi ( ker(,]{M,T))
Hence a long exact sequence
— Hf_z(coker(fM,T)) — Homgs (ppe (M, T[i])
— H'(Hom’(M,T)) — H'~'(coker( fu,1)) —

Let /7 be the category whose objects are quasi-isomorphisms s: 7 — L in
K?(DFk) and whose morphisms are morphisms L — L’ in K?(DFg) compatible
with 5. Since

inj lim HomKh(DFK) (M L[l]) = HomD(DFK) (M, T[l]),

Iz
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it suffices to show that

inj lim H' (Hom® (M, L)) = H'(Hom"(M, T))

17

and that

injlim /' ( coker(fa,1.)) = 0.
-

The first fact follows from Lemma 2.5 and the second one from the Lemma 2.8
below. [l

Lemma 2.8. Let u € HoméK(Mlg, T%). There exists a complex E € C?(DFk)
and a quasi-isomorphism T — E such that the image of u in the cokernel of the
map { is zero.

Proof. We will construct an extension

0T — E — Cone (M ~> M)[—j — 1] — 0

in the category of filtered (¢, N, Gg)-modules. Since the category of admissible
modules is closed under extension, E will be admissible. The underlying complex
of K'-vector spaces is

_ (0,1d) .
Eg := Cone (Mo[—j — 1] —= Ty & Mo[—j — 1]).

The Frobenius, monodromy operator, and Galois action are defined on
i+j . i+j —1 i
E,”" =T, e My, & M,
coordinatewise. The filtration on
i+j . it =
Ey ' =E, @ ke K
is defined as

FPER = F'TL @ {0 ().0.x)|x € F" M)
@ {(dr (' "1 (x)), —x, —dpr (x))|x € FTME ).

Now take
é = (O, O,Id) + (ui,o, Id) € Homi,N,GK(Mia E6+J) @ Hode(M;(,E;*—J').

We have f(£) = (u',0,0), as wanted. O
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2.2. The category of p-adic Hodge complexes.

2.9. Let Vlg be the category of K-vector spaces with a smooth K -semilinear action
of G k. Itis a Grothendieck abelian category. We will consider the following functors:

e Fir: lelg — Vlg , which to a filtered K-vector space (E, F*) associates the
K -vector space E Qg K with its natural action of Gg.

e Fo:Mg(p,N,Gg) — VG, which to a (¢, N, Gg)-module M associates the

K -vector space M & g K whose G g-action is induced by the given G g-action
on M.

Both functors are exact and monoidal. Note in particular that they induces functors
on the respective categories of complexes which are dg-functors.

2.10. Let i)b(V[g ) and Db(Vg ) denote the bounded derived dg category and the

bounded derived category of Vg , respectively. We define the dg category O ,p of
p-adic Hodge complexes as the homotopy limit

Dpir 1= holim (D (M (9. N, Gx)) —> :ob(VG) - DAV E)Y).

We denote by D,z the homotopy category of O, . By [63, Def. 3.1], [13,4.1], an
object of D,y consists of objects My € DP(Mg(p,N,Gg)), Mg € Db dR) and
a quasi-isomorphism

Fo(Mo) 2> Far(M)

in i)(VI?). We will denote the objectabove by M = (M, M g, apr). The morphisms
are given by the complex Homgp ,,, (Mo, Mk, an ), (No, Nk.an)):

HomiDpH (Mo, Mk.apm), (No, Nk, an))
= Homi@b(MK((p,N,GK))(MO’ No) @D Homfj),)(VK)(MK, NK)

(2.4)
) Hom@b(vp) (Fo(Mo). Fer(Nk)).
The differential is given by
d(a.b,c) = (da,db,dc + ay Fo(a) — (—1)' Fr(b)ay)

and the composition

Homyp,,, ((No. Ng.an). (To. Tk.ar))@Homg ,, ((Mo. Mg.an). (No. Nx.an))
— Hom@pH ((MO, MK,aM). (To. TK,aT)) (2.5)

is given by

(a'.b'.cYa,b,c) = (a'a.b'b,c'Fo(a) + Far(b')c).
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It now follows easily that a (closed) morphism
(a,b.c) € Homg,,, (Mo, Mg.an).(No, Nk.an))

is a quasi-isomorphism if and only so are the morphisms a and h (see [13,
Lemma 4.2]).
By definition, we get a commutative square of dg categories over Q ,:

T
Dprr ——— D (V) (2.6)

T(N & \ledR
D (Mk (¢, N,Gg)) = D (VE),

Given a p-adic Hodge complex M, we will call Tyr(M) (resp., To(M)) the generic
fiber (resp., special fiber) of M. As pointed out above, a morphism f of p-adic
Hodge complexes is a quasi-isomorphism if and only if T4z (/) and Ty ( /) are quasi-
isomorphisms.

2.11. Let us recall that, since the category D,y is obtained by gluing, it has a
canonical z-structure [36, Prop. 4.1.12]. We will denote by £ ,p <o (resp., Dpr,>0)
the full dg subcategory of D,y made of non-positive (resp., non negative) p-adic
Hodge complexes. Let M be a p-adic Hodge complex. We define its non positive
truncation t<o(M ) according to the following formula:

‘L'S()(M) = ('L'SoMo, ‘ES()MK, 'EsoaM).

The functors Fyr and Fj being exact, this is indeed a p-adic Hodge module. The non
negative truncation is obtained using the same formula. According to this definition,
we get a canonical morphism of p-adic Hodge complexes:

T<o(M) > M

whose cone is positive. This is all we need to get that the pair (Dpp,<o. Dpr,>0)
forms a ¢-structure on D, .

Definition 2.12. The -structure (D ,x,<0. DpH,>0) defined above will be called the
canonical 7-structure on D, .

2.13. Let M € C®*(MFk(p, N,Gg)). Define (M) € D,y to be the object
Q(M) = (MO,MK,IdMZME =~ ME)

Through this functor we can regard M Fg (¢, N, Gg) as a subcategory of the heart
of the ¢-structure on D, x.

Lemma 2.14. The natural functor
0: MFg(p.N.Gg)—Dyy,
is fully faithful.
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Proof. Analogous to [36, Prop. 4.1.12], [61, 1.2.27]. O

Definition 2.15. We will say that a strict p-adic Hodge complex M is admissible if its
cohomology filtered (¢, N, Gg)-modules H" (M) are (weakly) admissible. Denote

y D DI the full dg subcategory of D,z of admissible p-adic Hodge complexes. It
carries the induced 7-structure.

Since 6 preserves quasi-isomorphisms, it induces a canonical functor:
0: D’ (DFg) — D
. K ])H

This is a functor between dg categories compatible with the 7-structures.

Lemma 2.16. The natural functor
. ~ ad,Q
0: DFK — gDpH
is an equivalence of abelian categories.

Proof. By LLemma 2.14, it suffices to prove essential subjectivity. Note that a strict
p-adic Hodge complex M is in the heart of the ¢-structure if and only if M is
isomorphic to T<gt>0(M). Accordmg to the formula for this truncation, we get
that M is isomorphic to an object M such that My is a (¢, N, Gg)-module, Mg is a
filtered K-vector space, and one has a G g-equivariant isomorphism

MO ®K(n)r K ~ 1\71K Rk K.
In particular, /\70 has the structure of a filtered (¢, N, Gg)-module, as wanted. [
Theorem 2.17. The functor 0 induces an equivalence of dg categories
0: DP(DFx) — D%.
Proof. Since, by Lemma 2.16, we have the equivalence of abelian categories
0: DFg = DP(DFx)® = D4y’

and we work with bounded complexes, it suffices to show that, given two complexes
M, M’ of Cb(M FE[), the functor 6 induces a quasi-isomorphism:

6:Homgs pr,y (M. M") — Homg ,,, (6(M),6(M")).
By (2.3) and Proposition 2.7, since

Fo(Mg) = Fr(Mg) = Mg, Fo(My) = Fr(My) = M



86 F. Déglise and W. Niziot CMH
we have the following sequence of quasi-isomorphisms

Homgp ,,, (6(M),6(M"))
= Homg ,,, ((My. Mk . 1dp). (M. My 1dp))

Fy
e (Homg)h(MK((P,N,GK))(MO’ M(;) —> Homi)h(Vg)(ME’ M}?)
Far

~ ﬂ / FO / Far ’
e (Hom%N,GK(MO, My) — Homg . (Mg, MI?) «— Homgr (Mg, MK))

— HOH’]@/}(DFK)(M, M/)

This concludes our proof. [

2.3. The absolute p-adic Hodge cohomology.

2.18. Any potentially semistable p-adic representation is a p-adic Hodge complex.
Therefore, we can define the Tate twist in D, as follows: given any integer r € Z,
we let K(r) be the p-adic Hodge complex

K(—r) = (K, K.1dg: K = K)

that is equal to K" and K concentrated in degree 0; the Frobenius is ¢x,y(a) =
p"@(a), the Galois action is canonical and the monodromy operator is zero; the
filtration is F! = K fori < r and zero otherwise.

As usual, given any p-adic Hodge complex M, we put M(r) := M ® K(r). In
other words, twisting a p-adic Hodge complex r-times divides the Frobenius by p”,
leaves unchanged the monodromy operator, and shifts the filtration r-times.

Example 2.19. Given any p-adic Hodge complex M, by formula (2.5) and by (2.3),
we have the quasi-isomorphism of complexes of Q ,-vector spaces

Homi),,ﬂ (K(O), M(r)) ~ Cone (,Méi @ F' Mg M FdR(MK)GK)[*l],

where Mé;t is defined as the following homotopy limit (we set ¢; 1= ¢/ p')

11—
MOGK 4 MOGK

M= | |

1—gr—
LMOGK @r IMOGK

- % ~ 5 P ad
2.20. Let X be a variety over K. Consider the following complex in @;‘H

RT, (X e.0) == (RTE (X ). RTr(X). F*).RTE (X g) -5 RTw(Xg)).
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Here RrgK(XIZ) is the (geometric) Beilinson—Hyodo—Kato cohomology [10], [50,
3.4]; by definition it is a bounded complex of (¢, N, Gg)-modules. The filtered
complex RI"gg (X) is the Deligne de Rham cohomology. The map tg4r is the Beilinson—
Hyodo—Kato map [10] that induces a quasi-isomorphism

wr: RIOF(Xg) @k K = ROwR(Xg).

The comparison theorems of p-adic Hodge theory (proved in [10, 14,31, 53, 65])
imply that the p-adic Hodge complex RI" 7 (X £, 0) is admissible.
We will denote by

RIpr (X, r) = Rlpu (X, 0)(r) € Doy

the rth Tate twist of R[5 (X g,0). We will call it the geometric p-adic Hodge
cohomology of X . Since the Beilinson-Hyodo—Kato map is a map of dg K)'-algebras,
the assignment X +— RI',5 (X g, *) is a presheaf of dg algebras on Var x. Moreover,
we also have the external product RT pz (X g, 7) @ RIpr (Y, 5) in D35,

Lemma 2.21 (Kiinneth formula). The natural map
RT,u(Xg,7) @ RT 5 (Y, s) — R,y (Xg x Y, r +9)
is a quasi-isomorphism.

Proof. This follows easily from the Kiinneth formulas in the filtered de Rham
cohomology and the Hyodo—Kato cohomology (use the Hyodo—Kato map to pass
to de Rham cohomology). L]

Set

RUpre(Xg,r) i= 07 'RT 5 (X, r) € DP(DFk),
RIpu(X . 1) i= Va0 'REppy (X . 7) € DP(Rep, (Gk)).

Lemma 2.22. There exists a canonical quasi-isomorphism in D? (Rep(Gg))
Rrpst(X]Ev I’) = Rrét(XE» Qp(f))

Proof. To start, we note that we have the following commutative diagram of dg
categories.

D (Rep,(Gx)) DP (Rep(G))
Vost I Dpy can
DP(DFg) —— 0%, > D(Spec(K)pmoa)
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Here the functor

rEg i);dH — D (Spec(K) proer)
associates to a p-adic Hodge complex (Mo, Mg.,apy: Fo(My) — Fagr(Mg)) the
complex

_ . aps @t—can @t
[[Mo @k B~V =" & FO(Mg ®k Bir) ————— Fir(Mk) ® g Br]

= —pn apm®t
= [[Mo ®kp B4]?=*N =0 5 (Fr(My) ® g Bar)/ F*]

where ¢: By < Bggr is the canonical map of period rings3. To see that the diagram
commutes, recall that we have the fundamental exact sequence

0—Qp(r) - B~ "= F'Bj »> B =0, reN. 2.7)
It follows that, for V € D? (Rep,(Gk)), we have a canonical morphism

- . ld ®@t—can ®
¥ [V R0, Bﬁ [d,N=0 ®V Rq, FOBdR % 1% ®qQ, BdR}

= = Id ®t—can @t
~ [[V ®q, Bul? LN=0g v ®qQ, FBr ————V ®q, Bar]

(Ppsi B PR 5 PaR) . -
———— [[Dpu(V) @k By*= "V =" & FO(Dg (V) ®k Bar)

apg r—can @t
S D(V) ®k By |

~ rg0Dpu (V).
Since the abstract period morphisms ppg, par from (2.2) are isomorphisms, the above

morphism is a quasi-isomorphism and we have the commutativity we wanted.
The above diagram gives us the first quasi-isomorphism in the formula

R w(Xg.r) = reRU g (Xg.r) @ R (X g, Qp(r)). (2.8)
It suffices now to prove the second quasi-isomorphism. But, we have
R (¥ r) = (R X e, 1), (RT3 (X, F*17),
RIS (Xg.r) ®kw K 5 R[r(Xg)).

where we twisted the Beilinson—Hyodo—Kato cohomology to remember the Frobenius

twist. Recall that Beilinson has constructed period morphisms (of dg-algebras) [9,
3.6],[10, 3.2]%

Ppsl:erfK(XE) ®K(“{ By ~ Rrél(XK—~ Qp) ®qQ, By,
par:RTUR(Xz) ® g Bar ~ RI'q(X . Q) ®q,, Bak-

3For an explanation why we work with the pro-étale site as well as the technicalities involved in the
passage between continuous Galois cohomology and pro-étale cohomology see [50, proof of Theorem 4.8].

4We will be using consistently Beilinson’s definition of the period maps. Itis likely that the uniqueness
criterium stated in [54] can be used to show that these maps coincide with the other existing ones.
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The first morphism is compatible with Frobenius, monodromy, and G g-action; the
second one with filtration. These morphisms allow us to define a quasi-isomorphism

PrreRUpa(Xg. 1) > RIq(Xg. Qp(r))

in D(Spec(K)proe) as the composition

M o _— L r
B:raRTpm (X g, 1) =[[RIJ (X )@k Bo]?=7 V=0 = (RTr (X g)® gBar)/ F”]

(PHKPAR) =p" N=0
——— [RT4(X g, Qp) ®q, B’

5 RTa(X g, Qp) ®o, (Bar)/F']
<RI (X Qp(r))

Here the last quasi-isomorphism follows from the fundamental exact sequence (2.7).

To finish we note that the quasi-isomorphism in (2.8) come from quasi-
isomorphisms between complexes of continuous representations of G on (locally
convex) Q-vector spaces. L]

Remark 2.23. The geometric p-adic Hodge cohomology RI" 5 (X z.r) we work
with here is not the same as the geometric syntomic cohomology RIsyn(X g 5, 1)
defined in [50]. While the first one, by the above lemma, represents the étale
cohomology RT¢ (X z, Q,(r)), the second one represents only its piece, i.e. we have
T<rRUyn (X . 1) = 1< RTG(X g, Qp (1))

2.24. The p-adic absolute Hodge cohomology of X (also called syntomic cohomology
of X if this does not cause confusion) is defined as

Rl (X.r) = Ry (X.r) := Homg ,,, (K(0).RTp (Xg.r)).  (2.9)
By Theorem 2.17, we have

RTge (X, r) 2~ Homgps pr,y (K(0).RTpry (Xg. 1))
= Hom@”(Reppst(GK)) (st R (X g, F))-

The assignment X +— RIg(X,r) = Ry (X, %) is a presheaf of dg Q,-algebras
on Varg.
Set H_:'yn(X, r) := H'R[yn(X, r).
Theorem 2.25. (1) There is a functorial syntomic descent spectral sequence
WEN = H(Gk. H] (Xg.Qp(r)) = HLE (X.r). (2.10)
where H.(G g, -) is the group of (potentially) semistable extensions Extf{eppﬂ((; (Qp.°)
as defined in [35, 1.19].
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(2) There is a functorial syntomic period morphism
Puyn: RTgyn(X. 1) = RT4 (X, Qp(r)).
(3) The syntomic descent spectral sequence is compatible with the Hochschild—Serre
spectral sequence
“Ey’ = H'(Gr. H)(Xg.Qp(r)) = Hy7 (X.Qp(r)).  (211)

More specifically, there is a natural map " Ey’ — “E2’ that is compatible
with the syntomic period map pgyy.

Proof. From the definition (2.9) of RI',iz (X z,r) we obtain the following spectral
sequence

Eb = EXtizepps.(GK) (Qp, H/ RTp(X g, 7)) = H I RTyu(X, 7).

Since, by Lemma 2.22, we have R (Xg.7r)) =~ RI4w(Xg,Qp(r)), the first
statement of our theorem follows.

We define the syntomic period map pgyn: RIsyn (X, 7) — RI'¢ (X, Qp(r)) as the
composition

Psyn: RTgya (X, r) = Homyp (K(0),RT 5 (Xg, 1))

ra
—# Hom@(SpL‘C(K)pmc‘[) (Qp’ reRUpH (st ”)))
B
— Hom g spec( K)o (Qp- RTa(X g, Qp (1))
= RI4 (X, Qp(r)).

The second statement of the theorem follows.
Finally, since the Hochschild—Serre spectral sequence

SEN = H (Gx. H (X£.Q,(r)) = H'T(X,Q,(r))
can be identified with the spectral sequence
SEL = H(Spec(K)poet H (X, Qp(r))) = H' (X,Q,(r))

we get that the syntomic descent spectral sequence is compatible with the Hochschild—
Serre spectral sequence via the map pyy,, as wanted. L]

Theorem 2.26. Let Ry, (X, ) be the syntomic cohomology defined in [50, 3.3].
There exists a natural quasi-isomorphism (in the classical derived category)

RFS)/[‘I(X}‘[! r) :) Rrgyn(X- r)-_ r 2 O

It is compatible with syntomic period morphisms and the syntomic as well as the étale
descent spectral sequences.



Vol. 93 (2018)  On p-adic absolute Hodge cohomology and syntomic coefficients. I~ 91

Proof. Letr > 0. Recall that we have a natural quasi-isomorphism [50, Prop. 3.20]
Ldr —Can

RTgyn (X5, 7) = Cone (R[E (X)?Y @& F'RTR(X)———RT (X))[1],

where

1=,
RT i (X) — R (X)
RTZ (Xp)?V = lN J{N

| RIZ () =S RO (X)

and the complex RT{?K(X ) is the (arithmetic) Beilinson—Hyodo—Kato cohomol-
ogy [10] that comes equipped with the Beilinson—Hyodo—Kato map [50, 3.3]

tar: R[E (X)) - RTr(X).

Since RT'Z.(X) ~ RIE (Xz)0% and RTw(X) ~ RIw(Xg)9% by [50,
Prop. 3.22], Example 2.19 and Theorem 2.17 yield

RIgyy (X, 7) ~ Homg . (K(0),RT 5 (X g, 7))
~ Hom g pr,y (K(0), RTprg (X g, 7)) 2 Ry (X, 1),

as wanted. The last claim of the theorem is now clear. L]

Remark 2.27. The above theorems gives an alternative construction of the syntomic
descent spectral sequence from [50, 4.2] (that construction used the geometric
syntomic cohomology mentioned in Remark 2.23) and an alternative proof of its
compatibility with the Hochschild—Serre spectral sequence [50, Theorem 4.8]. In
the present approach the syntomic descent spectral sequence is a genuine descent
spectral sequence: from geometric étale cohomology to syntomic cohomology. In
the approach of [50] this sequence appears as a piece of a larger descent spectral
sequence that remains to be understood.

Remark 2.28. In everything above, the variety X can be replaced by a finite
simplicial scheme or a finite diagram of schemes. In particular, we obtain statements
about cohomology with compact support: use resolutions of singularities to get a
compactification of the variety with a divisor with normal crossing at infinity and then
represent cohomology with compact support as a cohomology of a finite simplicial
scheme built from the closed strata. In particular, we get the syntomic descent spectral
sequence with compact support:
PMEy = Hy(Gx, Hy (X, Qp(r))) = Hepl(X.7)

that is compatible with the Hochschild—Serre spectral sequence for étale cohomology
with compact support.
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Corollary 2.29. For X smooth and projective over K, the syntomic descent spectral
sequence (2.10)

MEY (r) = H(Gg. HI (Xg.Qp(r))) = HEV (X, r)

syn
degenerates at ;.
Proof. The argument proceeds along standard lines [25, Thm 1.5]. Let X be a
smooth and projective variety over K, of equal dimension d. Recall that we have the
Hard Lefschetz Theorem [26, Thm 4.1.1]: if L € HZ(XI?, Q,(1)) is the class of a
hyperplane, then for i < d, the map

L' HET (X, Qp) — HIY (Xg.Qp(i), ar>aUL!,
is an isomorphism. This gives us the Lefschetz primitive decomposition

H,(Xg. Qp(r) = @rzo L Hygd" (Xg. Qp(r — ). 2.12)
where
Hiin (X Qp (1)) 1= Ker L™ € HE (X, Qp(1):
Moreover, we get a morphism of spectral sequences
LBy (r) — 2By T2 (r 4 1).

Take s > 2. Assume that the differentials of our spectral sequence dy = -+ =
dy—1 = 0. We want to show that d; = 0. This assumption is trivially true for s = 2.
By the inductive assumption %" £;/ = %" £l We note that Hard Lefschetz gives
us that the differentials

dg: HY (G, HZZF (X . Qp(r —k))) — H{™* (Gx. H T (X . Qp(r —k)))

(2.13)
are trivial. Indeed, we have the following commutative diagram (we setg = i — 2k,
t=r—k,a=d—-q+1)

chl (GK’ Hpnm(XI?’ QP ([)))

lLu:O L4

HIP (Gr, HT T (X 2. Q1))

H) Gk, HIT* (X g, Q,(1 +u))) = BTG, HITT (X2, Qp(t + a))) )=

LS—Z

HS{+S(GK3 Héql+2a+s_3(XE’QP([ +a —I—S—Z)))

which implies that the top map d is zero. Applying L¥ to the differentials in (2.13)
we obtain that the differentials

de: H) (G, LFHI K (X 2, Qp(r — k) — HI ™ (Gr, H T (X . Q,(r)))

prim

are trivial as well. By (2.12), this gives that dy = 0, as wanted.
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Remark 2.30. In fact, we have the Decomposition Theorem, i.e. there is a natural
quasi-isomorphism in Db(Reppst(GK))

P Hi(Xg.Qp)[—i] = RTp (X . Qp).

Our corollary follows immediately from that. 0

3. A p-adic absolute Hodge cohomology. II: Beilinson’s definition

In this section we will describe the definition of p-adic absolute Hodge cohomology
due to Beilinson [11]. Beilinson associates to any variety over K a canonical complex
of potentially semistable representations of G g representing the geometric étale
cohomology of the variety as a Galois module. Then he defines p-adic absolute
Hodge cohomology of this variety as the derived Hom in the category of potentially
semistable representations from the trivial representation to this complex.

3.1. Potentially semistable complex of a variety.

3.1.1. Potentially semistable cellular complexes. The Basic Lemma of Beilinson
[7, Lemma 3.3] allows one, in analogy with the cellular complex for C W-complexes,
to associate a canonical complex of potentially semistable representations of G g
to any affine variety over K. Recall that the cellular complex associated to a
C W-complex X is a complex of singular homology groups

d» d d
s HE (X% XY 2 g (xL, 2% = B (X%,0) S0 (3.1)

where X/ denotes the j-skeleton of X. The homology of the above complex computes
the singular homology of X: we have HJB (X7 /X771 ~ HJB (V1189) = 3¢ &2,
[ being the index set of j-cells in X.

We will briefly sketch the construction of potentially semistable (cohomological)
cellular complexes and we refer interested reader for details to [39,43,55].

Definition 3.1. (1) A pairis a triple (X, Y, n), for a closed K-subvariety ¥ C X of
a K-variety X and an integer n.

(2) Pair (X, Y,n) is called a good pair if the relative geometric étale cohomology

Hj(XIg, Y.Qp) = 0. unless j # n.

(3) A good pair is called very good it X is affine and X \ Y is smooth and either X is
of dimension n and Y of dimensionn — 1 or X = Y is of dimension less than n.
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Lemma 3.2 (Basic Lemma). Let X be an affine variety over K and let Z C X be
a closed subvariety such that dim(Z) < dim(X). Then there is a closed subvariety
Y D Z such that dim(Y) < dim(X) and (X, Y, n), n := dim(X), is a good pair, i.e.

H (X, Y,Q,) =0, j#n.
Moreover, X \'Y can be chosen to be smooth.
Proof. See [7, Lemma 3.3] (a result in any characteristic) ([55]; [40, 7]; [43]). [

Corollary 3.3. (1) Every affine variety X over K has a cellular stratification
FXO=F4XCRXC--CFj 1 XCF; X=X

That is, a stratification by closed subvarieties such that the triple (F; X, F; 1 X, j)
is very good.

(2) Celullar stratifications of X form a filtered system.

(3) Let f: X — Y be a morphism of affine varieties over K. Let F, X be a cellular
stratification on X. Then there exists a cellular stratification F,Y such that
f(FiX) C FiY.

Proof. See Corollary D.11, Corollary D.12 in [39]. Ll

Having the above facts it is easy to associate a potentially semistable analog of
the cellular complex (3.1) to an affine variety X over K [39, Appendix D]. We just
pick a cellular stratification

FX0=F X CFXC--CFy_1XCF;X=X

and take the complex

Rlpa(X g, FoX) :=0—> H(FoXg,Qp) — --- > H! (Fj X, Fj_1Xg.,Qp)

45, sl & B diy _

— H'7 (Fip1 Xg, FiXg,Qp) —— -+ —> H (Xg, Fg—1X%,Qp) — 0.
This is a complex of Galois modules that, by p-adic comparison theorems, are
potentially semistable. To get rid of the choice we take the homotopy colimit over all
cellular stratifications, i.e. we set

R T

pst(XK) := hocolimg, x Ry (X g, Fo X).

Itis acomplex in £ (Ind — Rep,,, (G x)) whose cohomology groups are in Reppst(GK)
hence we can think of it as being in D (Rep,(Gk)).

The complex RF[Z:{(XE) computes the étale cohomology groups H* (X z.Qp)

as Galois modules. More precisely, we have the following proposition.
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Proposition 3.4 ([43, Prop. 2.1]). (1) Let F,X be a cellular stratification of X.
There is a natural quasi-isomorphism
K(x,Fox) RIps(X g, FoX) > RT4 (X . Qp)
that is compatible with the action of Gg.

(2) Let f:Y — X be amap of affine schemes and let F,Y be a cellular stratification
of Y such that, foralli, F;Y C F; X. Then the following diagram commutes (in
the dg derived category)

K(y.FeY)

Rr‘pst(yfa Fold ) = Rrét(yfa Qp)

f*T f*T
RFpS[(X[?’ F-XS‘(X:T—"\;’)RFéI(XE‘ Qp)

(3) There exists a natural quasi-isomorphism
kx: RO (Xg) ~RT4(Xg.Qp)

S

that is compatible with the action of Gg.

Proof. We have the following commutative diagram of Galois equivariant morphisms

H(FyXg.Qp) =+ ——— H*(Fi X, Fr1 X, Qp) > HY(Xg. Fao1Xg, Qp)
| | |
R4 (FoXg.Qp) = = [RIG(Fr Xg.Qp) = RUa(Fro X g, Qp)lk] = -+ = [RT4(Xg. Qp) = RIu(Fa_1 X, Qp)lld]

l l |

0 0 > Rl (X g. Qp)ld]

The first vertical maps are the truncations 7<;7-4. We obtain the map «(x, r, x) from
the first statement of the proposition by taking homotopy fibers of the rows of the
diagram. Second statement is now clear. The third one is an immediate corollary of
the first statement and Corollary 3.3. L]

3.1.2. Potentially semistable complex of a variety. For a general variety X over K,
one (Zariski) covers it with (rigidified) affine varieties defined over K, takes the
associated Cech covering, and applies the above construction to each level of the
covering [39, D.5-D.10]. Then, to make everything canonical, one goes to limit over
such coverings.

Proposition 3.4 implies now the following result [39, Prop. D.3].

Theorem 3.5. Let X be a variety over K. There is a canonical complex RFp’f;t(XE) €
i)b(ReppS[) which represents the étale cohomology RUs (X 7.Qp) of X g together
with the action of G, i.e. there is a natural quasi-isomorphism

kx:RTS(Xg) ~ RTeXg. Qp),

that is compatible with the action of Gg.



96 F. Déglise and W. Niziot CMH

3.2. Beilinson’s p-adic absolute Hodge cohomology. Beilinson [11] uses the

above construction of the potentially semistable complexes to define his syntomic
complexes.

Definition 3.6 ([11]). Let X be a variety over K, r € Z. Set R['3 (X, Qp(r)) =

pst
RIS (X g)(r) and

B B . B )
RFJ{, (X.r)= RFSyn(X, ) = Hom ¢ (Repyy (G k) (Qp Rrpst(XK—, Qp (1 )))
Hl (X.r):= H'RTS (X.r).
Immediately from this definition we obtain that
(1) For X = Spec(K), we have RT'Z (X,r) = Hom ph rep . (6 1)) (Qp- Qp ().

syn

(2) There is a natural syntomic descent spectral sequence

WEN = HI (G, H (Xg.Qp(r)) = HLV (X, r). (3.2)

syn
(3) We have a natural period map
p8 RIS (X.r) > RIa(X.Q,(r))

defined as the composition

R[S (X.r) = Hom D (Repp (G ) (Q- RIZ(Xg.Qp(r))
—> HoMph spec( )y (Qrs RTp(X 2. Qp (1))
KX
= HOM i (spec () (Qor RAT Qp (1)
= RT4(X. Qp(r)).

It follows that the syntomic descent spectral sequence is compatible with the
Hochschild—Serre spectral sequence via the map pSByn.

3.3. Comparison of the two constructions of syntomic cohomology. We will show

now that the syntomic complexes defined in 2.24 and by Beilinson are naturally quasi-
isomorphic.

Corollary 3.7. (1) There is a canonical quasi-isomorphism in D (Reppy(Gk))

RIps(Xg.r) — RLE (X g, Qp(r).

(2) There is a canonical quasi-isomorphism
po RIS (X.r)  ROyn(X.r), r €L

It is compatible with period maps to étale cohomology and the syntomic as well
as the étale descent spectral sequences.
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Proof. The second statement follows immediately from the first one. To prove
the first statement, consider the complex RFgFK(XE”') in DP(DFk) defined
by a procedure analogous to the one we used in Proposition 3.4 to define

RFFﬁ[(XE,Qp(r))(but starting with cohomology RI',y (Yg.r) of good pairs Y

instead of pst-representations RI'¢ (Y g, Q, (7)) of such pairs). This is possible since,
for a good pair (X, Y, j), we have
RT,u(Xg. Yg.r) = (Hix(Xg. Yg. 1), (HR(X,Y), F**),
. - .
Hix(Xg.Yg) — Hp(Xg. Yp)),
and, by p-adic comparison theorems, this is an element of DFg. Proceeding as in
the proof of Proposition 3.4, we get a functorial quasi-isomorphism in D (DFk):
kx:RTpe (Xg.7) ~ Rlprg (X, 7).

For good pairs (X, Y, j), the Beilinson period maps puk, par [9, 3.6, [10, 3.2]

induce the period isomorphism
VosRD ot (X, Y, 1) — HY (X, Y, Qp(r)).

This period map lifts to a period map

VosRT Bp (Xg.r) — RIE (X g.Qp(r).

We define the map RI', (X g, r) = R[‘rﬁt(XE, Q (r)) as the following composition
—1
K

RTpu(Xg. ) — VouRTpp, (Xg.r) = RLE (X £.Q, (). O

3.4. The Bloch—Kato exponential and the syntomic descent spectral sequence.
Let V' be a potentially semistable representation. Let D = Dp(V) € DFg. The
Bloch—Kato exponential

expgi: Dx/F® — HY(Gg, V)

is defined as the composition [50, 2.14]

Dg/F® — C(Gk, Cou(D)[1]) = C(Gk, C(D)[1]) < C (G, V[1]),

where C(G g, -) denotes the continuous cochains cohomology of G g. The complexes
Cpst(D), C(D) are defined as follows

(Nsl*(pﬁl') (1_p§0)_N
Cpsl(D): Dst—>Dst @ Dsl S DK/FO — Dsi-

(N, 1=p.1)
C(D): D ®gw By ———— D @k By @ D @k By & (Dg ® g Bar)/ F°

(1—pe)—N
— D ®K(n)r B.

We have Cyi (D) = C(D)%k.
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The following compatibility result is used in the study of special values of
L-functions. Its f-analog was proved in [52, Theorem 5.2]5.

Proposition 3.8. Leti > 0,r > 0. The composition
o ad B Psyn ; :
Hig (X)) F" = Hyyy(Xp.1) — H(X.Qp(r) = H(Xg. Qp(r))
is the zero map. The induced (from the syntomic descent spectral sequnce) map
HR'(X)/F" — HY Gk, H. ' (X, Qp(r)))

is equal to the Bloch—Kato exponential associated with the Galois representation
i—1
H 7 (X, Qp(r)).

Proof. By the compatibility of the syntomic descent spectral sequence and the
Hochschild—Serre spectral sequence [50, Theorem 4.8], we have the commutative
diagram

Psyn

H'RT g (Xp. )0 H! (X, Qp(r))o

- -

HY(Gg, Hi (X, Qp(r) —> HY(Gk. H (X . Qp (1)),

where

H'RTgyn(Xp, j)o := ker (H'RD (X, 7) — HY(Gg, H (X g, Q,(r)))).
H (X, Qp(r))o 1= ker (HE(X. Qp(r) — Hi(Xg.Qp(r)).

It suffices thus to show that the dotted arrow in the following diagram

H'RT (X, 1) H'RTgyn(Xp. 7)o

HIZ (X)) FT — Hi(Gg. H ' (Xg.Qp(r)))

exists and that this diagram commutes.
To do that, we will use freely the notation from the proof of Corollary 3.7. Set

RIS, (X.r) = Homgph pgy) (K(0). RTpp, (Xg. 7))
= holim Cpy(RI'p 1 (X . 7).

SThere the exponential exp,, is called /.
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Arguing as in the proof of Proposition 3.4, we get the following commutative diagram
(we denoted by (H3 (X, r), Hj (X, r)) the rth twist of the canonical Dieudonné—
Fontaine modules associated to X)

KX

~

HIRTB (X.r)o

syn

Hersyn(Xhﬂ r)O

8
8

s1( H' (Cou(Hig ' (X, 1))

~

(PHKPdR)

HGr, 3 (X Qalr)))

Moreover the comparison map kx is compatible with the boundary maps d from the
de Rham cohomology complexes RI'jr(X') and RF(ﬁ{(X ). It suffices thus to show
that the dotted arrow in the following diagram

Hiﬁfsyn(X, r) Hiiirsyn(er)O

N

HiZ (X)) FT —— HY (Cou( HIg (X. 1)

exists and that this diagram commutes.

Let

0 1 2
g B 4 B oo

D D

RIBp, (Xg.r)=D"=D

Then holim Cpg (RI” g Fx (X g, r)) is the total complex of the double complex below.

d2 d2 d2 d2
Cos(D?) Dz %% p2g p2g DL/ FO 225 p2
d! dl d!l d!
(N,1—@,1) (1—pe)—N
Cost(DV) : D=5 plg ple pL/Fo——22"5 pl
d() d() dO d()

N,1—p,
Dg ( ®.1)

(1—p@)—N
Cost (D) D% & D @ DY/ F* 25 po
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We note that D = RFP‘?K(X, r), Dy = RI‘(%(X). The following facts are easy to
check.

(1) The map 0: Rl“({f{(X)/F’ — RI'3 (X, r)[1] is given by the canonical morphism

syn

Dy/F° — [Dy—— D3 ® D ® Dy /F*——DZ][1].
Similarly, the map Hiz'(X)/F" — H'(Co(HIZ'(X,r))) is given by the
canonical morphism

HIZ'(X)/F" — [HIZ (X, r) —» HiZ' (X, r) ® HiZ (X, r)
& Hig"(X.r)/F° — Hig (X.n][1].

(2) The map H'RTE (X,r) — HO(Cpu(Hiy(X, 1)) is induced by (a,b,c) > a.

syn

(3) Themapd,: H'RI'E (X.r)o — H'(Co(HIZT (X, r)))isinducedby (a. b, c)

syn
b — dga’, where a’ is such that d'a’ = a.

(4) As acorollary of the above, we get that the composition

. ey 81 .
HiZW(X)/FT — H'RTE (X.r)o = H (Cpu(Hig (X, 1))

syn

is induced by the map b + (0,5,0) + b.

This proves our proposition. O

4. p-adic realizations of motives

4.1. p-adic realizatons of Nori’s motives. We start with a quick review of Nori’s
motives. We follow [5,39,44], and |2, 2].

Take an embedding K < C and a field FF D Q. A diagram A is a directed
graph. A representation 7: A — VF assigns to every vertex in A an object in Vg
and to every edge e from v to v a homomorphism 7'(e): T (v) — T(v'). Let €(A, T)
be its associated diagram category ([44, Thm. 41], [2, 2.1]): the category of finite
dimentional right End" (7")-comodules. It is the universal F-linear abelian category
together with a unique representation 7: A — € (A, T) and a faithful, exact, F-linear
functor 7: €(A, T) — VF extending the original representation 7". If A is an abelian
category then we have an equivalence A >~ €(A, T).

More specifically we have the following result of Nori.

Proposition 4.1 (Nori [2, Cor. 2.2.10, 2.2.11]). (1) Let R be an F-linear abelian
category with a faithful exact functor p: R — V. Assume that the representation
T:A — Vg factors, up to natural equivalence, as Typ. Let A be an F-linear
abelian category equipped with a faithful exact functor U: A — R. If G: A — A
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is a morphism of directed graphs such that Ty is equivalent to UG, then there
exist functors (A, T)— R, G:C(A, T) — A such that the following diagram

commutes up to natural equivalence.

(2) For a commutative (up to natural equivalence) diagram

A—Y 5 A

/ T
0 il

we have a commutative (up to natural equivalence) diagram

G

€(A,T) T
e, Ty —

Example 4.2. The following diagrams appear in the construction of Nori’s motives.

(1) The diagram A°" of effective pairs consists of pairs (X, Y,i) and two types of
edges:

(a) (functoriality) for every morphism f: X — X’ with f(Y) C Y’, an edge
(XY ) — (X, Y,0).

(b) (coboundary) for every chain X D Y D Z of closed K-subvarieties of X,
anedge d: (Y, Z,i) —» (X, Y,i +1).

(2) The diagram Aegﬂ' (resp., A%g) of gffective good (resp., of effective very good)
pairs is the full subdiagram of A" with vertices good (resp., very good) pairs
(X,Y,1).

(3) The diagrams A of pairs, A, of good pairs, and A,, of very good pairs are
obtained by localization with respect to the pair (G,,, {1}, 1) [39, B.18].
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Let H*: A, — VF be the representation which assigns to (X, Y, i) the relative
singular cohomology H*(X(C), Y(C), F).
Definition 4.3. The category of (resp., effective) Nori motives MM(K)r (resp.,
MM(K) ) is defined as the diagram category €(A,, H*) (resp., (A, H*)).
For a good pair (X,Y,i), we denote by H! (X,Y) the object of EMM(K)F
(resp., MM(K) ) corresponding to it and we define the Tate object as

1(—1) := H! (Gm.x,{1}) € EMM(K)p, 1(-n):=1(—1)®".

mot

We have [39, Thm. 1.6, Cor. 1.7]
* EMM(K)r >~ EMM(K)g ®q F and MM(K)Fr >~ MM(K)q ®q F.
* As an abelian category EMM(K)r is generated by Nori motives of the form

Hl (X,Y) for good pairs (X, Y,i); every object of EMM(K)F is a subquotient
of a finite direct sum of objects of the form H: (X,Y).

* EMM(K)r C MM(K)F are commutative tensor categories [44, p. 466].
e MM(K)F is obtained from EMM(K) r by ®-inverting 1(—1).

 The diagram categories of A" and of Aff; with respect to singular cohomology

with coeflicients in F are equivalent to EMM(K)F as abelian categories. The
diagram categories of A and of A, are equivalent to MM(K)z.® In particular,
any pair (X, Y, 7) defines a Nori motive H (X, Y).

e Nori shows that these categories are independent of the embedding K — C.

From the universal property of the category EMM(K)F it is easy to construct
realizations. We will describe the ones coming from p-adic Hodge Theory.

Construction 4.4 (Galois realization). Consider the map A®" — Rep(Gk):
(X,Y,i) = H (Xg,Yz.Qp).

We have H' (X g, Y, Qp) >~ H' (X(C),Y(C),Q,). Thus, by Proposition 4.1, we
obtain an extension which is the exact étale realization functor

Re: EMM(K)q, — Rep(Gx).

Note that Rg (1(—1)) = H'(G,, . {1},Q,) = Q,(—1). Hence the functor Ry lifts
to MM(K)QP )
In analogous way we obtain the exact potentially semistable realization

RPS[: MM(K)Q,U — ReppS[(GK)'

It factors R via the natural functor Rep, (G k) — Rep(Gk).

6This is shown by an argument analogous to the one we have used in the construction of Beilinson’s
potentially semistable complex of a variety in Section 3.1.2: via cellular complexes and Cech coverings
one lifts the representation H™ from very good pairs to all pairs to a representation that canonically
computes relative singular cohomology.
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Construction 4.5 (Filtered (¢. N. G k) realization). Consider the map A" — DFg:

(X.Y.0) > Hpp(X.Y) = (Hy(Xg. Yg). (Hg(X.Y). F*),
wr: Hig (Xg. Yg) ®ky K — Hip(Xz. Yz)).
By p-adic comparison theorems, we have
Do (Hhp(X.Y)) =~ H (X, Y. Qp) =~ H' (X(C), Y(C),Q)).
Thus, by Proposition 4.1, we obtain an extension which is the exact filtered (¢, N, Gg)
realization functor
RDFKiEMM(K)Qp — DFg.

Since Rpr (1(—1)) = K(—1), the functor R pr lifts to MM(K)q, -
Projections yield faithful exact functors from D Fg to the categories Mg (¢, N, Gg)
and Vd{g. Composing them with the realization Rpr we get

 the exact Hyodo—Kato realization

Ruk: MM(K)q, — Mk (p. N, Gk).

¢ the exact de Rham realization

Rir: MM(K)q, — VdKR"

Composing R pr, with the projection on the third factor of the filtered (¢, N, Gg)-
module, we obtain the Hyodo—Kato natural equivalence

tar: Rk ® ki K > Rag ®x K:MM(K)q,, — V. 4.1)

where the tensor product is taken pointwise.

Construction 4.6 (Realization of period isomorphism). To realize period isomor-

phisms, we define the category of realizations R(K). An object of R(K) is a tuple

M = (Mpp., My, pps) consisting of Mpr € DFg, Myy € Reppsl(GK), and a

comparison isomorphism ppq: VoM =~ Mg of Galois modules. It is a abelian

category (it is naturally equivalent to the category Rep,(Gk)). Projections yield

faithful exact functors from R(K) to the categories DFg and Rep, (G k).
Consider the following map A®" — R(K):

(X,Y,i) = (Hpr(X,Y), H (Xg, Yz, Q,),
Post: Vo Hp (X, ¥) = HY (X, Y. Q0))-

Since the functor R(K) — Rep,, (Gk) — Vq, is faithful and exact, Proposition 4.1
gives us an extension EMM(K)q, — R(K) that is compatible with the étale
realization. Since

(G {15 1) = (K(=1). Qp(=1), Vo K(—1) = Qp(=1)),



104 F. Déglise and W. Niziot CMH

again by Proposition 4.1, we obtain the exact realization
Rr:MM(K)q, — R(K).

Projecting on the first two factors we get back the realizations Rpp, and R,y and
projecting on the third factor we get that the above two realizations are related via a
period morphism, i.e. we have a natural equivalence

ppsi: VpisDFK — Rpst: MM(K)QP — Reppgl(GK).
To sum up, we have a potentially semistable comparison theorem for Nori’s

motives.

Corollary 4.7. For M € MM(K)q,,, there is a functorial isomorphism
Ppst- RHK(M) ®K6" le =~ Rgt(M) ®Qp Bst

that is compatible with Galois action, Frobenius, and the monodromy operator.
Moreover, after passing to Byr via the Hyodo—Kato map (4.1), it vields a functorial
isomorphism
par: Rar (M) @k Bar >~ Ry(M) ®¢,, Bar
that is compatible with filtration.
We can illustrate the above constructions by the following, essentially commuta-

tive, diagram of exact functors

®Qp Bar

Rep(Gx) ’\

MB‘(QDs N:GK)%MFBUR

st

Here My (¢, N, Gk) is the exact category of free finite rank By-modules equipped
with an action of ¢, N, Gg (¢ is an isomorphism, N is nilpotent, and G g-action
is continuous — everything being compatible in the usual way and compatible with
the same structures on By). M Fg,, is the exact category of filtered finite rank
Bgr-modules equipped with a continuous action of G g compatible with its action
on Bgr; Mg, — Mp,, is the natural functor.
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4.2. p-adic realizations of Voevodsky’s motives.

Recall 4.8. The category of Voevodsky’s motives DM(K,Q,) with rational
coefficients admits several equivalent constructions, each interesting in its own. In
this section, we will be using the one of Morel (see [47]) for a review of which we
refer the reader to [24, §1].

By construction, the triangulated category DM (K, Q) is stable under taking
arbitrary coproducts. In this category, each smooth K-scheme X admits a
homological motive M(X), covariant with respect to morphism of K-schemes
(and even finite correspondences). Each motive can be twisted by an arbitrary
integer power of the Tate object Q, (1), and as a triangulated category stable under
taking coproducts, DM (K, Q) is generated by motives of the form M (X)(n), X/ K
smooth, and n € Z.

The category of constructible motives (see also 5.4) is the thick” triangulated
subcategory of DM(K,Q,) generated by the motives M(X)(n), X/K smooth,
and n € Z, without requiring stability by infinite coproducts. It is equivalent to
Voevodsky’s category of geometric motives DMy, (K. Qp) [70, Chap. 5] and can also
be described in an elementary way as follows. Let Q,, [Sm(}lg] be the Q,-linearization

of the category of smooth affine K-varieties, K?(Q, [Sm‘}g]) its bounded homotopy
category. This is a triangulated monoidal category, the tensor structure being induced
by cartesian products of K- schemes First we get the geometric A !-derived category
D g1 o (K. Qp) out of Kb (Qp[Sm¥ ]) by the following operations:

(1) Take the Verdier quotient with respect to the triangulated subcategory generated
by complexes of the form:

* (homotopy) -++ — 0 — A} X 0., for X € Sm‘}’?, p canonical

projection;
—k +
* (excision)---—>0—> W = UV J—p> X ..., for any cartesian square
whk v
qJ( p
U=X

in Sm}'jg such that j is an open immersion, p is étale and an isomorphism
above the complement of ;.

(2) Formally invert the Tate object Q,(1), which is the cokernel of {1} — G,,
placed in cohomological degree +1.

(3) Take the pseudo-abelian envelope.

7i.e. stable by direct factors [49, Definition 2.1.6].
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Let 7 be the automorphism of Q,(1)[1] ® Q,(D[1] in D1 ,,(K.Qp) which
permutes the factors. Because Q,(1) is invertible, it induces an automorphism ¢
of Qp in Dy 4y (K.Qp) such that > = 1. Then we can define complementary
projectors: py = (1 —¢)/2, p— = (¢ — 1)/2, which cut the objects, and therefore
the category, into two pieces:

Dptgm(K,Qp)+ =Im(p4), D1 (K, Qp)— = Im(p-).

Then, according to a theorem of Morel (cf. [18, 16.2.13]),

DMgm(K’ QP) = DA],gm(K7 Qp)—}-'

Example 4.9. Let F be an extension field of Q, and » be a Tannakian F'-linear
category with a fiber functor w: A — V. Consider a contravariant functor;

R: (Sm®)® s CP ().

It automatically extends to a contravariant functor R’: K?(Q 5 [Sm‘}-g])“P — DB(A).
The conditions for R’ to induce a contravariant functor defined on DM, (K, Qp) are
easy to state given the description of DMy, given above. We will use the following
simpler criterion:

We now suppose that the functor R takes its values in the bigger category
C?(Ind —A) but we assume that there exists a functorial isomorphism

H'wR(X) ~ H' (X(C), F)

and that the product map H'(X(C), F)® H’ (Y(C), F) — H'*/(X(C)x Y(C), F)
can be lifted to a map R(X) ® R(Y) — R(X xx Y) in C?(A).
Then the functor R’ uniquely extends to a realization functor

RY: DMgn(K, Q) — DP(A)

which is monoidal and such that H? (R (M (X))) = H!(R(X)).® After composing
this functor with the canonical duality endofunctor of the (rigid) triangulated
monoidal category D?(A), we get a covariant realization:

R: DMyn(K.Q,) — DP(A)

such that H ’ﬁ(M (X)) = H'(R(X))Y. Note also that, by construction, the pre-
ceding identification can be extended to closed pairs. Also, because DMy (K, Q)
satisfies /-descent (see section 5.5), it can be extended to singular K-varieties and
pairs of such.

8Note in particular that the permutation € acts by —1 on singular cohomology.
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Using this example we can easily build realizations:

Proposition 4.10. Let F be an extension field of Q, and A be a Tannakian F-linear

category with a fiber functor w: A — Vg. Consider a representation A*: Ag — A

such that w A* is isomorphic to the singular representation (see Definition 4.3).
Then there exists a canonical covariant monoidal realization:

Ra: DMyn(K, Q) — D?(A)

such that for any good pair (X, Y,i), H' R4(M(X,Y)) = A'(X, Y)Y and this identi-
fication is functorial in (X, Y, i) — including with respect to boundaries.

Moreover, this construction is funtorial with respect to exact morphisms of
representations.

Proof. Let X be a smooth affine K-scheme. To any cellular stratification of X
(cf. Corollary 3.3) F, X, we can associate the complex

W(FX) =0 — A°(FoX) = AY(F1X, FpX) = -+ — A% (X, F4_1X) = 0.
We put: R',(X) := colimp, x R',(F,X). This defines a contravariant functor:
P’k (Sm‘}?)"p — CP(Ind —A),

which satisfies the assumptions of the previous example. Hence we get the proposition
by applying the construction of this example. L

Remark 4.11. Consider again a fiber functor w: A — VF and a contravariant functor
R: (Schg)® — C?(Ind —A)

such that for any K-variety X, one has a functorial isomorphism H'wR(X) ~
H'(X(C), F). Then we can apply the preceding example to R|, ar and also the
a4

preceding proposition to the unique representation A* induced by R such that
AN(X,Y) = H'(Cone(R(X) — R(Y)[-1]). By applying the construction of
the preceding proof, we get for any smooth affine K-scheme a canonical map of
complexes

R(X) — Ra(X),

which is a quasi-isomorphism. By the functoriality of the construction of the previous
example, we thus get a canonical isomorphism between the two realizations of any
Voevodsky’s motive M:

R(M) = R4(M).
Remark 4.12. Voevodsky’s motives M (X) are homological: they are covariant

in X . In fact, the monoidal category DM, (K, Q) is rigid: any object has a strong
dual; this follows from [58] and from the existence of the monoidal triangulated
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functor SH(K) — DM (K.Qp) [18, 5.3.35] (here SH(K) denotes the stable
homotopy category of Morel-Voyevodsky over K). Then for any smooth K-variety X,
M(X)" is the cohomological motive of X /K. Using the notations of the previous
proposition, because R 4 is monoidal and therefore commutes with strong duals, we
get: H'RA(M(X)Y) = A (X).

Recall that the category DM, (K, Q) can be extended to any base and satisfies
the 6 functors formalism (cf. [18], in particular 16.1.6). According to [oc. cit., 15.2.4,
M(X)Y = fe(lyx) where f:X — Spec(K) is the structural morphism. The
preceding relation can be rewritten:

H' RA(fe(1x)) = A'(X).

Note finally that f,. exists for any K-variety X. One can extend the above
identification to this general case using De Jong resolution of singularities and
h-descent, which is true for Voevodsky’s rational motives [18, 14.3.4] and for Betti
cohomology.

There is fully faithful monoidal functor
CHM(K)“p — DMyn(K,Qp), h(X) — M(X)

from the category of Chow motives (X is smooth projective over K) [70, Chapter 5,
Prop. 2.1.4, Cor. 2.4.6.]. Applying duality on the right hand side, we get a covariant
fully faithful monoidal functor:

CHM(K)q, — DMn(K.Qp). h(X) > M(X)¥ = fu(lx).

In view of this embedding, it is convenient to identify the Chow motive #(X') with
the Voevodsky’s (cohomological) motive M(X)V.

Let us also state the following corollary which follows from the preceding prop-
osition and [27]:

Corollary 4.13. In the assumptions of the previous proposition, for any smooth
projective K-scheme X of dimension d, the complex R4(h(X)) = R4(M(X)Y) is
split: there exists a canonical isomorphism:

Ra(h(X)) = @H Ra(h(X))[~ @A (X[~

=0

This decomposition statement follows simply from loc. cit. as the derived category
DP(A) satisfies the assumptions of loc. cit. and the object R 4(h(X)) satisfies the
assumption (L.V.) for the map A(X) — h(X)(1)[2] given by multiplication by the
(motivic) first Chern class of an ample invertible bundle on X .



Vol. 93 (2018)  On p-adic absolute Hodge cohomology and syntomic coefficients. I 109

Example 4.14. In particular, applying the preceding proposition to the functor A, —
MM(K)q, coming from the singular representation, we get the classical realization,®
due to Nori, of (cohomological) Nori’s motives:

[: DMy (K, Q,) — DP(MM(K)q,).

By definition, and applying the preceding remark, we get for any smooth projective
(resp., smooth, any) K-variety f: X — Spec(K):

H'T(h(X)) = HL (X), resp, H' T(M(X)) = HL(X)",
HIT(fi(1x)) = HE (X).

When X is smooth projective of dimension ¢, we also get by the above corollary the
decomposition:

F(h(X)) = EB H o (X[
i=0
Moreover, because of the functorialility statement of the proposition, this realization
of Voevodsky’s motives is the universal (initial) one.

4.15. More interestingly, using either Example 4.9 or Proposition 4.10, we can
get various p-adic realizations of Voevodsky’s motives, and extend the de Rham
p-adic comparison theorem to the derived situation as summarized in the following
essentially commutative diagram of triangulated monoidal functors:

Rla D?(Rep(Gk) )
pBar
/ \
DMgn(K.Qp) D”(Rep, (G k)) Db (M Fy,)
. 4;
DY (DFg) DE(pE

RT4r

where ¢ is the canonical functor.'® The functors RI';, RI', and RI"pf,. are obtained

either from 4.9 or equivalently from 4.10 (according to Remark 4.11) by considering
respectively the following functors:

« X eSmY, f:X — Spec(K) > R f(Q,) and (X.Y.i) > Hi(Xg, Yz, Q,):
« X eSmY > RI(Xg.r) ~ RTE (X, Q,u(r)

and (X, Y,i) > HI(Xg,Yg.Qp) € Rep, (Gg);
* (X.Y.i) > Hi.(X.Y) (see Construction 4.5).

9Conjecturally, this is more than a realization: it is thought to be an equivalence of categories!
190ne should be careful that though ¢ is induced by a fully faithful functor on the corresponding abelian
categories, it is a non full faithful functor.
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The functor RI'4r is obtained by composing RI'pg, with the canonical functor
DFg — VK.

Fore = ét, pst, DFg, one has defined in the preceding section an analoguous exact
monoidal realization functor R, from the category of Nori’s motives MM(K)q,,.
This functor being exact induces a functor on the (bounded) derived categories and
according to the functoriality in Proposition 4.10, one gets for any Voevodsky motive
M € DM, (K,Qp):

RI(M) = Re(I'(M)). (4.2)

Same for the de Rham realizations: we have R['(r(M) = RdR(F (M )). Therefore,
the essential commutativity of the previous diagram simply follows from the de
Rham comparison theorem for Nori’s motives. More precisely, it yields, for any
Voevodsky’s motive M, the de Rham comparison isomorphism:

par: RUGr(M) @k Bar > RIG(M) ®q,, Bar

which is a quasi-isomorphism of complexes of filtered finite rank Bgr-modules
equipped with an action of G g (continuous and compatible with the canonical action
on Bgr).

This comparison can be made more precise through the Hyodo—Kato realization,
as illustrated in the essentially commutative diagram:

®qpBar

D?(Rep(G K))T}\
%

DP (Mg, (¢. N, Gg)) —= D (M Fy,,)

DM, (K. Qp)

The Hyodo-Kato realization RI'ykx is obtained by composing RI'pr, with the
projection DKr — Mg (¢, N, Gg). Then the essential commutativity of the part
(1) and (2) of the above diagram corresponds, respectively, for any Voevodsky’s
motive M, to the potentially semistable comparison theorem and to the Hyodo—-Kato
quasi-isomorphism:

Ppst: Rk (M) ®K'(“)r By >~ RIg(M) ®Q, By,
tar: Rluk (M) @k K ~ RIr(M) ®k K.

Again, the identification (4.2) holds when ¢ = HK and the above canonical
comparison quasi-isomorphisms correspond to the comparison isomorphisms
obtained in the previous section.
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Remark 4.16. By construction, for any (smooth) K-variety f: X — Spec(K), one
has a canonical identification: RI4(fx(1x)) = R f+(Q,) where the right hand side
denotes the right derived functor of the direct image for étale p-adic sheaves.

This implies that the realization functor RI'¢, constructed above coincides with that
of [19,7.2.24], denoted by p7,, and equivalently to the one defined in [4]. In particular,
it can be extended to any base and commutes with the six functors formalism. This
explains the preceding relation and why we have prefered the covariant realization
rather than the contravariant one (see the end of Example 4.9).!!

Example 4.17. The above realizations allow us to define syntomic cohomology of a
motive M in DMy, (K, Qp) as

Rrsyn(M) = RHomD(Reppst) (Qpa RFpst(M))
= RHomD(DFK) (K(O), RFDFK (M))

In particular, we have the syntomic descent spectral sequence
gL = HIi(Gg, H/RT4(M)) = H' T/ RTy(M).

If we apply it to the cohomological Voevodsky’s motive M(X)Y = fi(1x) of any
K -variety X with structural morphism f, we get back the results of Theorem 2.25.

An interesting case is obtained by using the (homological) motive with compact
support M(X) in DMy, (K.Qp) of Voevodsky for any K-variety X, and its
dual M¢(X)” = Hom(M¢°(X).Qp) which belongs to DM,y(K,Qp). Then
RIn(M€(X)Y(r)) is the nth twisted syntomic complex with compact support
and we recover the syntomic descent spectral sequence with compact support from
Remark 2.28:

syn,cE;sj = HJ{(GIC HJ (XIZ’QP(r))) = HH_j (X,r).

et,c syn,c

Indeed, in terms of the 6 functors formalism, M“(X)Y(r) = fi(1x)(r) and the
identification relevant to compute the above Ej-term follows from the previous
remark.

4.3. Example I: p-adic realizations of the motivic fundamental group. Let
EHM(K)q, denote the category of effective homological Nori’s motives, i.e. the
diagram category

€A H,), H.:=(H*)*:=Hom(H*.Q)).

where the diagram ZZ,”‘ is obtained from the diagram A% by reversing the edge /™
to fx:(X,Y,i) — (X', Y',i) and changing d to d: (X, Y,i) — (Y, Z,i — 1). There

H1n Section 5, we will similarly extend the realization functor RFW to arbitrary K-bases (see more
precisely Rem. 5.16).
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is a duality functor V:EHM(K)q, — EMM(K )(())p,, respecting the representations
H, and H™ via the usual duality that sends a good pair (X,VY,7) to (X,Y,i).

This induces an equivalence on the derived categories V: Db(EHM(K)Qp) oty
D?(EMM(K)q,,)".

In [21] Cushman developed a motivic theory of the fundamental group, i.e. he
showed that the unipotent completion of the fundamental group of varieties over
complex numbers carries a motivic structure in the sense of Nori. We will recall his
main theorem.

* Let Vary be the category of pairs (X, x), where X is a variety defined over K
and x is a K-rational base point; morphism between such pairs are morphisms
between the corresponding varieties defined over K that are compatible with the
base points.

e Let Vary be the category of triples (X: xy, x2), where X is defined over K and
X1, X are K-rational base points.

For a variety X over C, let 71 (X, x) be the fundamental group of X with base point x
and let 71 (X x1, x2) be the space of based paths up to homotopy from x; to x».
Denote by /., — the augmentation ideal in Qp[m;(X, x2)] (i.e. the kernel of the
augmentation map Q[ (X, x2)] — Q) which acts on the right on 71 (X; x1, x2).
The following theorem [22, Thm. 3.1] shows that the quotient Q , [r1 (X ; x1, x2)]/ 1},
n € N, has motivic version 1" (X; x1, x2) (in the sense of Nori).

Theorem 4.18. For every n € N, there are functors
M": Vary  — EHM(K)q,, T1":Varyx — EHM(K)q,.

These functors have the following properties.

(1) There is a natural transformation

M (X x1, x2) = T7(X: X1, x2).
(2) We have a natural isomorphism of Q ,-vector spaces
H (" (X(C): %1, %2)) 2= Qpm1 (X(C); x1, x2))/ 1,

(3) There are natural transformations

[T (X;x1.x2) @ IT" (X x0, x3) — T"(X; xq, x3)
Hn—i—m—i—l(X’ xz) — Hm+l (X,xz) ® Hn—H(X,xz).
Via the natural isomorphisms in (2), these transformations are compatible with

the product and coproduct structures as well as with the inversion in the path
space.
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This data is equivalent to giving a pro-EHM structure on the inverse limit
Qi (X(C); x1,x2)| /1 such that all the obvious maps are motivic, and the
completed ideal 17 is a sub-motive.

Dualizing the realization functors of Nori’s motives used in Constructions 4.4,
4.5 we obtain the following functors

% : Vary — Rep(Gg), I = Rgll™;
Mig: Vary — Mg(p.N.Gg), T = Ry I1";
e Vary — le}gw I} := RggIT™.

These realizations are compatible with change of the index n and with the structure
maps that endow these realizations with Hopf algebra structures.

From Constructions 4.5,4.6 (again dualizing) we obtain also the following
comparison isomorphisms.

Corollary 4.19. (1) There exists the Hyodo—Kato natural equivalence

ldRIH?}K(X;.Xl,Xz) @K(f;f E 2 HﬁR(Xlxl,Xz) KRk [?

(2) There exists a natural equivalence (potentially semistable period isomorphism)
Ppst: Tk (X5 1, x02) @ ggr By 2 T1E (X X1, x2) ®q, B

that is compatible with Galois action, Frobenius, the monodromy operator.
Extending to Byr and using the Hyodo—Kato equivalence, we get the de Rham
period isomorphism

par: Mg (X1 x1.x2) @k Bar > T4 (X x1, x2) ®q, Bar

that is compatible with filtrations.

These comparison isomorphisms are compatible with change of the index n and
with Hopf algebra structures.

The above comparison statements were proved before in the case of curves in
[1,37], for varieties with good reduction over slightly ramified base in [71], and
for varieties with good reduction over an unramified base in [56]. The various

realizations appearing in these constructions should be naturally isomorphic with
ours but we did not check it.

4.4. Example II: p-adic comparison maps with compact support
and compatibilities.

4.20. When ¢ = HK, ét,dR, DFg, pst, we get from the preceding section, for any
K -variety, a complex

RT:(X) := RIe(M(X)") = RTe(M(X))*
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which computes the e-cohomology with enriched coefficients. When ¢ = ét, HK, dR
this is the usual complex, respectively, of Galois representations, (¢, N, Gg)-
modules, filtered K-vector spaces which computes, respectively, geometric étale
cohomology, Hyodo—Kato cohomology and De Rham cohomology with their natural
algebraic structures. These complexes are related by the comparison isomorphisms
PdR> Ppst> and (gR.

An interesting point is that these complexes, as well as the comparison
isomorphisms are contravariantly functorial in the homological motive M (X). Recall
Voevodsky’s motives are equipped with special covariant functorialities.

Let X and Y be K-varieties. A finite correspondence a from X to Y is an
algebraic cycle in X x g ¥ whose support is finite equidimensional over X and which
is special over X in the sense of [18, 8.1.28].12 Then by definition, & induces a map
as: M(X) — M(Y).

Assume now that X and Y are smooth. Let f:X — Y be any morphism
of schemes of constant relative dimension ¢. Then we have the Gysin maps
STM(Y) — M(X)(d)[2d] (cf. [23]).

Corollary 4.21. Consider the notations above. Then RT'.(X) is contravariant with
respect to finite correspondences and covariant with respect to morphisms of smooth
K-varieties.

Moreover, the comparison isomorphisms pgr, Ppst> Lar are natural with respect to
these functorialities.

Remark 4.22. (1) Note in particular that covariance with respect to finite correspon-
dences implies the existence of transfer maps f. for any finite equidimensional
morphism f: X — Y which is special (eg. flat, or X is geometrically unibranch).

(2) The syntomic descent spectral sequence and the syntomic period map of
Example 4.17 are natural with respect to the functorialities of the corollary.

(3) We can deduce from [23] the usual good properties of covariant funtoriality
(compatibility with composition, projection formulas, excess of intersection
formulas,. . .)

4.23 (Products). Consider again the notations of the Paragraph 4.20. As said
previously, from the Kiinneth formula, RI'; is a monoidal functor and the comparison
isomorphisms are isomorphisms of monoidal functors.

Consider a K-variety X with structural morphism f. Recall from Remark 4.12
that M(X)Y = fi«(lx). The functor fs is left adjoint to a monoidal functor.
Therefore it is weakly monoidal and we get a pairing:

pMX)Y © M(X)Y = fi(lx) ® fil(lx) — fullx) = M(X)”

12[f X is geometrically unibranch, every o whose support is finite equidimensional over X is special
(cf. [18, 8.3.27]). If Z is a closed subset of X X g ¥ which is flat and finite over X, the cycle associated
with Z is a finite correspondence (cf. [18, 8.1.31]).
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in DMy, (K, Qp). This induces a cup-product on the e-complexes:

RFE(X) ® RFE(X) = Rre(.f*(ﬂX)) X Rrs(.f*(ﬂX))

= RT(f2(1x) ® fu(lx)) 25> RTL(fu(lx)) = RI(X),

(4.3)
where the isomorphism labelled K stands for the structural morphism of the monoidal
functor RI';, and corresponds to the Kiinneth formula in e-cohomology. When
e = ét, HK, dR, we deduce from the definition of this structural isomorphism that
these products correspond to the natural products on the respective cohomology. As
the comparison isomorphisms are isomorphisms of monoidal functors, we deduce
that they are compatible with the above cup-products.

From the end of Example 4.17, we can also define the e-complex of X with
compact support:

Rre,c(X) = Rre(.fl(ﬂX))-

Because we have a natural map fx — fi of functors [18, 2.4.50(2)], we also deduce,
as usual, a natural map:

RI,..(X) — RIL(X).

From the 6 functors formalism, we get a pairing in DM, (K, Q):

et f+(lx) ® fi(lx) 2 A" felx) ® 1x) = fi( f* fe(lx)) 2 hax

where the isomorphism (1) stands for the projection formula [18, 2.4.50(5)] and the
map (2) is the unit map of the adjunction ( /™, fi). Then, using . instead of p in
formula (4.3), we get the pairing between cohomology and cohomology with compact
support:

RT(X) @ RTu o (X) = RIe(X). (4.4)

Using again the fact that the comparison isomorphisms pgr, Ppst; Lar are isomorphisms
of monoidal functor, we deduce that they are compatible with this pairing. Let us
summarize:

Proposition 4.24. For x = @, ¢, we have comparison isomorphisms

thk,+ ROpk (X)) @ ke K ~ RTgr+(X) @k K,
Ppst, *- RThk «(X) ®K{;’ By >~ R« (X ) ®q, By,
par, - REgr «(X) @k Bar > RIg (X g) ®q, Bur.

that are compatible with cup-products (4.3) and with the pairing (4.4).
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5. Syntomic modules

5.1. Definition. In this section we use the dg-algebra &y, x, which represents
syntomic cohomology of varieties over K [50, Appendix] to define a category of
syntomic modules over any such variety. This is our candidate for coefficients systems
(of geometric origin) for syntomic cohomology. We prove that in the case of Spec K
itself the category of syntomic coefficients is (via the period map) a subcategory of
potentially semistable representations that is closed under extensions. We call such
representations constructible representations.

Let us first recall the setting of Voevodsky’s h-motives, with coeflicients in a given
ring R and over any noetherian base scheme §. We let Sh(S, R) be the category
of h-sheaves of R-modules on Schg — the category of separated schemes of finite
type over S. This is a monoidal Grothendieck abelian category with generators the
free R-linear h-sheaves represented by any X in Schg; we denote them by Rg(X ).
In particular, its derived category £ (Sh(S, R)) has a canonical structure of a stable
monoidal co-category in the sense of [59, Def. 3.5] (see also [46]).!* Moreover, it
admits infinite direct sums. Let us define the Tate object as the following complex of
R-sheaves: Rs(1) := RE(PL)/RE({oo})[-2].

The following theorem is an co-categorical summary of a classical construction
phrased in terms of model categories in [19]:

Theorem 5.1. There exists a universal monoidal co-category D My (S, R) which
admits infinite direct sums and is equipped with a monoidal co-functor

3% D(Sh(S, R)) — DM, (S. R)

such that:

« Al'-Homotopy: for any scheme X in Schg, the induced map EOORg(A}Y) -
EooRg (X) is an isomorphism;,

« Pl stability: the object Z*° Rs(1) is ®-invertible.
Moreover, the monoidal co-category D My (S, R) is stable and presentable.

Concerning the first point, the statement follows from the existence of localization
for monoidal co-categories. The statement for the second point follows from [59,
4.16] and the fact that, up to A'-homotopy, the cyclic permutation on Rg(1)®:3 is
the identity.

Remark 5.2. According to [19] and [59], the co-category D M, (S, R) is associated
with an underlying symmetric monoidal model category — this also implies it can
be described by a canonical R-linear dg-category. According to the description of
this model category, up to quasi-isomorphism, the objects of DM, (S, R) can be

13 Actually, this follows from the existence of a closed monoidal category structure on the category of
complexes of Sh(S, R) (cf. [16] or [19]) and from [59, Sec. 3.9.1].
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understood as N-graded complexes of R-linear i-sheaves (&, ),en which satisfy the
following properties:

* (Homotopy invariance) for any integer r, the i-cohomology presheaves H,*(—, &)
are A!-invariant;

* (Tate twist) there exists a (structural) quasi-isomorphism &, — Hom(Rgs(1), &,41).

One should be careful however that, in order to get the right symmetric monoidal
structure on the underlying model category, one has to consider in addition an action
of the symmetric group of order r on &, in a way compatible with the structural
isomorphism associated with Tate twists. The corresponding objects are called
symmetric Tate spectra.'*

Example 5.3. Let S = Spec(K) and R = Q. Consider the #-sheaf associated with
the presheaf of dg-Q ,-algebras

X > (RTyyn(Xp, 1) 2 REy(X, 1))

defined in 2.9 (see Theorem 2.26 for the isomorphism). Because of [50], it satisfies
the homotopy invariance and Tate twist properties stated above; thus as explained
in Appendix B of [50], it canonically defines an object &y, of DM,(K, Q).
Moreover, the dg-structure allows us to put a canonical ring structure on this object,
which corresponds to a strict structure (the diagrams encoding commutativity and
associativity are commutative not only up to homotopy).

For any scheme X in Schs, we put Mg(X) := E®RZ(X), called the
(homological) A-motive associated with X /S.

Definition 5.4. We define the stable monoidal co-category of #-motives D My (S, R)
(resp., constructible h-motives DMy, (S, R)) over S with coefficients in R as the
smallest stable sub-co-category'® of DMy (S, R) containing arbitrary direct sums
of objects of the form Mg (X)(n)[i] (resp., objects of the form Mg (X)(n)[i]) for a
smooth S-scheme X and integers (n.,i) € Z2.

We let DMy (S, R) (resp., DMy (S, R)) be the associated homotopy category,
as a triangulated monoidal category.

Example 5.5. When R is a Q-algebra (resp., R is a Z/ n-algebra where n is invertible
on §), DMy(S, R) is equivalent to the triangulated monoidal category of rational
mixed motives (resp., derived category of R-sheaves on the small étale site of §S);
see [19, Th. 5.2.2 (resp., Cor. 5.5.4)]. In particular, D M} (S, R) is presentable by a
monoidal model category.

14See [18, Sec. 5.3] for the construction in motivic homotopy theory.

SHere, and later in Definition 5.7, a stable sub-0o-category of an co-category & means a sub-0o-
category Do of D in the sense of [43, 1.2.11] such that the associated homotopy category £ is a full
triangulated subcategory of the associated homotopy category AD.
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The justification of the axioms of A'-homotopy and P!-stability added to the
derived category of /i-sheaves comes from the following theorem:

Theorem 5.6 ([19]). The triangulated categories DMy (S, R) for various schemes S
are equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent schemes S and morphisms of finite
type, the subcategories DMy, (S, R) are stable under the 6 operations, and satisfy
Grothendieck—Verdier duality.

We refer the reader to [18, A.5] or [19, Appendix A] for a summary of
Grothendieck 6 functors formalism and Grothendieck—Verdier duality.

Let us now take the notations of Example 5.3. We view &y, in the model category
underlying O M, (K, Q). equiped with its structure of (commutative) dg-algebra.
According to [18, 7.1.11(d)], one can assume that &y, is cofibrant (by taking a
cofibrant resolution in the category of dg-algebras according to loc. cit.). Given any
morphism f:S — Spec(K), we put

8syn,S = Lf*(gsyn)

which is again a dg-algebra because f™* is monoidal. According to the construction
of [18, Sec. 7.2], the category &gy,-Modg of modules over this dg-algebra is
endowed with a monoidal model structure, and therefore with a structure of monoidal
oo-category. The free &;,,-module functor induces an adjunction of co-categories:

Rsyn: orOMh (S Qp) = ggyn-MOdSI (gsyn-
Given any S-scheme X, and any integer n € Z, we put

8syn,S(X)(n) — Rsyn(MS(X)(n))'

Definition 5.7. Using the above notations, we define the oco-category of syntomic
modules (resp., constructible syntomic modules) over S as the smallest stable
oo-subcategory of Egyn-Modg containing arbitrary direct sums of modules of the
form Eyn s (X)(n)[i] for a smooth S-scheme X and integers (n,i) € Z7.

We denote it by Egyn- Mods (resp., Egyn- Mode,s) and let Egyy- mods (resp.,
Eqn-mod, 5) be its associated homotopy category. This is a monoidal triangulated
category.

In particular, we get an adjunction of triangulated categories:
Royn: DMp(S,Qp) = Egyn-mods @ Ogyn, (5.1)

such that Ry, called the realization functor, is monoidal and sends constructible
motives to constructible syntomic modules.

Remark 5.8. By definition, the triangulated category &gyn- modgs (resp., DM (S.Qp))
is generated by the objects of the form &y 5 (X )(n) (resp., Mg (X )(n)) for a smooth
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S-scheme X and an integer n € Z. By construction, the functor @Syn commutes with
arbitrary direct sums.'® Thus, because Mg(X)(n) is compact!” in DM,(S.Q),)
(see [18, 15.1.4]), we deduce that &g, s(X)(n) is compact. This implies that a
syntomic module is constructible if and only if it is compact.'8

Note also that Eyyy- mods is a compactly generated triangulated category.

Essentially using the previous theorem and the good properties of the forgetful
functor Oy, we get the following result:

Theorem 5.9. The triangulated categories Egyn- modg for various schemes S are
equipped with Grothendieck 6 functors formalism and satisfy the absolute purity
property. If one restricts to quasi-excellent K-schemes S and morphisms of finite
type, the subcategories Egy,- mod. s are stable under the 6 operations, and satisfy
Grothendieck—Verdier duality.

If one restricts to K -varieties S, the syntomic (pre-)realization functors:

R, DMh,c(S» Qp) - 8syn“rnOdC,S~

syn*
Jor various S, commute with the 6 operations and in particular with duality.

See Corollary 5.15 for the computation of this functor over the base field K.

Proof. All the references in this proof refer to [18]. According to 7.2.18, the fibred
triangulated category Egy,- mod: S +— Egyp- modg is a motivic triangulated category
(Definition 2.4.45) because DMy(—,Qp): S — DMy(S,Q,) is such a category.
Besides, it is oriented in the sense of 2.4.38 as the same facts hold for DMy (—, Qp).
Thus it satisfies the six functors formalism as explained in 2.4.50.

Applying again 7.2.18, we also deduce that § — &,- modyg is separated (see
Def. 2.1.7) and satisfies the absolute purity property (as stated in 14.4.1). This
implies in particular that &€,y,-mod is t-compatible (see Definition 4.2.20 and
Example 4.2.22). Thus the assertion about the stability of constructible syntomic
modules under the 6 operations is an application of Theorem 4.2.29.

Besides, the absolute purity property also implies that &y,- mod is 7-dualizable
(see Definition 4.4.13 and Example 4.4.14). Thus the assertion about duality comes
from Theorem 4.4.21 and its Corollary 4.4.24.

The last assertion follows from what was said about &,,,- mod and Theorem 4.4.25
applied to the adjunction (5.1). [

16This follows from the fact it is the derived functor of a left Quillen functor, more precisely the functor
which forgets the structure of &,y,-module in the category of symmetric spectra which trivially commutes
with arbitrary direct sums; see |18, proof of 7.2.14].

7Recall an object M of a triangulated category 7 is compact when the functor Homg (M, —)
commutes with arbitrary direct sums.

18This corresponds to the description of perfect complexes of a ring as compact objects of the derived
category.
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Remark 5.10. To get a feeling for the category &syn- mod. s the reader might want
to recall a more classical case of coeflicients defined by de Rham cohomology.
Let K = C be the field of complex numbers; let & be the commutative ring
spectrum representing de Rham cohomology X + RI4r(X), for varieties X over K.
We have

Hjx(X) = RHompy, (k.c) (M(X), Egr[n]).

We can define, in a way analogous to what we have done above, the category of
constructible de Rham coeflicients Ejg — mod, s, for varieties S that are smooth
over K. By [18, Example 17.2.22] (using the Riemann—Hilbert correspondence) or
by [28, Theorem 3.3.20] (more directly, using the isomorphism between Betti and
de Rham cohomologies) this category is equivalent to the bounded derived category
of analytic regular holonomic £-modules on S that are constructible, of geometric
origin.

5.11. Recall the Grothendieck—Verdier duality property means that for any regular
K-scheme S and any separated morphism of finite type f: X — S, the syntomic
module My = f'(Eyn,s) is dualizing for the category of constructible syntomic
modules over X . In other words, the functor

Dy := Hom(—, Mx): (Esyn- mode, x )P — Egyn- mod, x (5.2)

is an anti-equivalence of monoidal triangulated categories. Moreover, it exchanges
usual functors with exceptional functors: given any separated morphism of finite type
p:Y — X,onehas: Dyp* = p'Dy and Dy px = ;1 Dy.

5.2. Comparison theorem.

5.12. Consider the abelian category Rep,, (G k) of potentially semistable represen-
tations and the coinvariants functor

wi:Rep,(Gk) — V({p

where the right hand side is the category of finite dimensional Q ,-vector spaces. It
admits a right adjoint denoted by @' which to a finite dimensional Q p-vector space V
associates the representation V' with trivial action of Gg. It is obviously exact and
monoidal. One could also put ®* = ' because it also admits a right adjoint w.
which to a potentially semistable representation V' associates the Q ,-vector VGK of
G g -invariants. The situation can be pictured as follows:

w1

Repyy (Gx) Zo'=a™= V.

W

It will be convenient for what follows to enlarge the category Rep, (Gk).
Consider the category

Reppq(Gk) := Ind —Rep, (Gk)
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of ind-objects. Thus, for us, an infinite potentially semistable representation V' will
be a Q-vector space V' with an action of Gg which is a filtering union of sub-
Q,-vector spaces stable under the action of Gk which are potentially semistable
representations of Gg. The category Repgft(G k) is an abelian (symmetric closed)
monoidal category which contains Rep, (G k) as a full abelian thick subcategory.
Moreover, it is a Grothendieck abelian category — it admits infinte direct sums and
filtering colimits are exact. The above diagram of functors extends to this larger
category. Note in particular that according to this definition, Formula (2.9) can be
rewritten:

Vot i REgyn(X, 1) — RawRTp (X g, 7). (5.3)

Due to the Drew’s thesis [28] together with our main construction (§2.24), we get
the following computation of syntomic modules over K:

Theorem 5.13. There exist a canonical pair of adjoints of triangulated categories:
p*: Egyn-modg = D(Repgst(GK)) e

such that p* is monoidal and which can be promoted to an adjunction of stable
oo-categories. Moreover, the functor p* is fully faithful and induces by restriction a
monoidal fully faithfull triangulated functor:

p*: Eyn-mod, x — DP(Rep,,(Gk))

such that for any K-variety X with structural morphism f, there exists a canonical
quasi-isomorphism of complexes of G g -representations:

P*(febynx (1) =~ RTpu (X . 7). (5.4)

Proof. We will apply Theorem 2.2.7 and Proposition 2.2.21 of [28]. To be consistent
with the notations of loc. cit., we take B = Spec(K) and put 7o = Rep (G k),
T = Reppy(Gk).

Consider the functor &yy: X > RIpq(Xg,0) (recall that RMpy(Xg,0) ~
RI¢ (X g, Qp(0)) as Galois representations). This is a presheaf of dg-Q ,-algebras
on K-varieties with values in 75. Then ésyn satisfies the axioms of a mixed Weil
Jo-theory in the sense of [28, 2.1.1]: the axiom (W1) comes from the fact ésyn
satisfies ~A-descent which is stronger than Nisnevich descent, (W2), (W3) comes from
homotopy invariance of geometric p-adic Hodge cohomology and the computation
of the syntomic cohomology of K, (W4) comes from the projective bundle formula
for geometric p-adic Hodge cohomology, and (W5) was proved in Lemma 2.21.
Then we can apply 2.2.7 and 2.2.21 of loc. cit. to ggyn and this gives the theorem.

Let us explain this in more detail. First, Drew generalizes Theorem 5.1, to
the category SHRL,pW(G «)(8) of Nisnevich sheaves with values in the category of
ind-representations 7, seen as an enriched category over 7 — morphisms are not
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simply sets but ind-representations. This defines the Rep (G g)-enriched stable
homotopy category over any base scheme S. Drew proves that this category is a
stable monoidal co-category — actually it is defined by a monoidal model category
— that we will denote here by D41 (K, 7). We will denote by D41 (K, Q) the usual
monoidal co-category of Al-homology, obtained by replacing 7~ with the category
of Q,-vector spaces — and the associated homotopy category still satisfies the 6
functors formalism (cf. loc. cit., Prop. 1.6.7).19

Then applying Theorem 2.1.4 of loc. cit. to the presheaf E:;_gyn we get that
the geometric p-adic Hodge cohomology is representable in SHReppst(G ) (S) by

a commutative monoid gsyn in the underlying model category — in our case the
corresponding object is simply the collections of presheaves X + RIpg (X 5. 7). as
a N-graded dg-algebra indexed by r, seen as presheaves on Smg (the category of
smooth K-varieties) with values in 7.

Then Drew shows that one can deﬁne a monoidal oco-category of modules over the
dg-algebra &yn which is enriched over 7, that we will denote here by Sgyn modg.
It follows that we have the following interpretation of the Kiinneth formula: by
Theorem 2.2.7 of loc. cit. the functor

p: Esyn- mod g = D(T), M~ RHomf'S:_ (g}yn. M),
where H0m9 indicates the enriched Hom (with values in complexes of 7), is an
equivalence of monoidal triangulated categories. Recall that any smooth K-variety X
defines a canonical &gy,-module Eg,(X). It follows from the construction that, for
any smooth K-variety X and any integer r € Z, there exists a canonical quasi-
isomorphism:
RHom (8 (X ), & syn(7)) = Rl (X, 1) (5.5)

functorial in X.
Now we descend. According to loc. cit., 1.6.8, the pair of adjoint functors
(0™, w«) induces an adjunction of stable co-categories:

(DAI (K Qp) cDAl(K ) R

such that Lw™* is monoidal. Then Drew defines (loc. cit., 2.2. .13) the absolute
cohomology associated with the enriched mixed Weil cohomology &yn as R w, (Ssyn)

seen as a monoid in D41 (K, Q) — recall Rws is weakly monoidal. According to
this definition, Formula (5.3), and the definition recalled in Example 5.3, we get:

Eeyn = Rk (Egyn).

19Essentially, its object are graded presheaves on the category of smooth S-scheme with values in 7
satisfying homotopy invariance, Tate twist, as in Remark 5.2, but we have to add the Nisnevich descent
property.
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the absolute cohomology associated with &y,. According to this definition, we
deduce from the adjunction (L @*, R w4 ) an adjunction of stable co-categories:

L&" : Egyy-modg & Egyp- modg : Ry

whose left adjoint, L @*, is monoidal. Therefore, one gets the first two statements of
the theorem by putting:

p*:ﬁoL&j*’ p*:5*0R5_1

Moreover, Prop. 2.2.21 of loc. cit. tellsus that L. @™ is an equivalence of categories
if one restricts to constructible objects on both sides (i.e., generated by, respectively,
the objects of the form &gy, (X)(r) and ésyn (X)(r) for a smooth K-scheme X and an
integer r € Z). The fact that p* is fully faithful is a formal consequence of this result
together with the fact that &sy,- modg is compactly generated (cf. Rem. 5.8).

Recall that, for any smooth K-variety X with structural morphism f: X —
Spec(K), one gets:

Eqn(X) = L&*(Egn(X)) = L&* (/1S Eyn k)
=L&"Dg(fe [/ Eynx) =L&" Dk ([eEsyn.x).

where Dk is the Grothendieck—Verdier duality operator on constructible syntomic
modules over K defined in Paragraph 5.11. Thus, in the case when X is a smooth
K -variety, Formula (5.4) follows from this identification, the definition of p*,
and (5.5). One removes the assumption that X is smooth using the fact that the
quasi-isomorphism (5.4) can be extended to diagrams of smooth K-varieties and that
both the left and the right hand side satisfies (by definition) cohomological descent
for the A-topology. L]

Remark 5.14. As a consequence, the category of constructible syntomic modules
over K can be identified with a full triangulated subcategory O of the derived
category Db(ReppS[(GK)).

It is easy to describe this subcategory: using resolution of singularities, all
objects of &,- mod. x are obtained by taking iterated extensions2© or retracts of
syntomic modules of the form f(Esn x)(r) for a smooth projective morphism
/X — Spec(K) and an integer r € Z (this is an easy case of the general result [18,
4.4.3]). So D is the full subcategory of D? ( Repm(GK)) whose objects are obtained
by taking retract of iterated extensions of complexes of the form RIpu(Xgz.r)
for X/ K smooth projective and r € Z.

Similarly, the (essential image of the) category of (not necessarily constructible)
syntomic modules over K can be identified with the smallest full triangulated
subcategory of D(Repgﬁ(GK)) stable under taking (infinite) direct sums and which
contains complexes of the form RI (X g, r) with the same assumptions as above.

20Recall: in a triangulated category 7, an object M is an extension of M by M’ if there exists a
distinguished triangle M — M — M"” — M'[1]in T .
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Composing the syntomic realization functor over K with the fully faithful
functor p* above, we get:

Corollary 5.15. The syntomic (pre-)realization functor of Theorem 5.9 in the case
S = Spec(K) defines a triangulated monoidal realization functor:

RI

syn

p*
Ryn: DMym(K,Qp) =~ DMp (K. Qp) —> Egyn-mode x — D’ (Repy(Gk)).
It coincides with the functor Ry defined in Paragraph 4.15.

Proof. Only the last statement requires a proof. By definition, RI, is the functor
defined on DM, (K, Q) applying Example 4.9 to the functor which to a smooth
affine K-variety X associates the complex RI"y (X g, r). Thus the statement follows
from the description of the functor p* in the above proof and the identification (5.5).

n

Remark 5.16. The corollary means in particular that the realization Ry, of

Theorem 5.9 does indeed extends the realization RI to arbitrary K-bases in a
way compatible with the 6 operations.

Corollary 5.17. For a variety f:X — Spec(K), we have a natural quasi-
isomorphism
Rr.}’f(Xa I") =R Homé?syn—modx (8syn,X ) 8syn,X (r))

Proof. Since, by the above theorem, p* ( f+Esyn x (r)) =~ RIpg(X g, 1), we have

RHomSSyn-modX (Ssyn,X > CC-"hsyn,X (i‘)) =R Homéﬁsyn-modx (f*gsyn,K~ 8syn,X(r))
=R H()m&y,,- mod g (Ssyn,K3 f* 8syn,X ("))
= RHomprep,, (Gx) (Qp- R (X g ”))
~ RTg(X,r),
as wanted. ]
This means that we can define syntomic cohomology of a syntomic module in the
following way.
Definition 5.18. Let X be a variety over K and M € &Ey,- mody. Syntomic cohom-
ology of M is the complex
RI g (X, M) = RI gy (X, M) := RHomg,, - moay (Esyn,x - M).

This definition is compatible with the definition of syntomic cohomology of
Voyevodsky’s motives from Example 4.17. That is, for M € DM,,(K,Qp), we
have a canonical quasi-isomorphism

Rl gyn( Spec(K), Ryyn(M)) =~ RTgn(M).

syn

This follows easily from Theorem 5.13 and Corollary 5.15.
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Remark 5.19. Syntomic cohomology with coeflicients was studied before in [6,51,
52,64]. The coefficients used there could be called “syntomic local systems”. They
are variants of the crystalline and semistable local systems introduced by Faltings [30,
31]. There exists also a notion of “de Rham local systems”. Those were introduced
by Tsuzuki in his (unpublished) thesis [66] and later by Scholze [62] in the rigid
analytic setting.

In all these cases, syntomic local systems have a de Rham avatar and an étale one.
These two avatars are related by relative Fontaine theory and their cohomologies (de
Rham, étale, and syntomic) satisfy p-adic comparison isomorphisms. We hope that
this is also the case for the syntomic coefficients introduced here and we will discuss
itin a forthcoming paper.

5.3. Geometric and constructible representations.

Definition 5.20. Keep the notations of the previous section. We define the category
Rep,,,,(Gk) (resp., Repy n(Gk), resp., Rep.(Gk)) of geometric (vesp., Nori's
geometric, resp., constructible) p-adic representations of G g as the essential image
of the following (composite) functor:

Rs_vn H()
DMy (K, Qp) —> D”(Rep,,(Gx)) —> Rep,(Gx).

resp., Rps: MM(K)q,, — Rep,(G k),
p* b HO
resp., Esyn-mode x —> D (Reppsi(GK)) — Rep,( (Gk).

Thus a geometric G g-representation can be described as the geometric étale
p-adic cohomology of a Voevodsky’s motive over K with its natural Galois action and
Nori’s geometric G g-representation — as the geometric étale p-adic cohomology of
a Nori’s motive. By Corollary 5.15, a geometric G g-representation is constructible
and by the compatibility of realizations of Nori’s and Voevodsky’s motives (4.2)
geometric representation is Nori’s geometric. So we have the following inclusions of
categories

Rep,.(Gk)

/ \ (5.6)

Rep,,,(Gk) = Repy ou(Gx) —— Rep,(Gk).

We do not know much about these subcategories. Neither do we have a conjectural
description of them in purely algebraic terms — this contrasts very much with the
case of number fields, see [34].

Here is a few trivial facts:

* All three subcategories are stable under taking tensor products and twists.
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* All three categories contain representations of the form H éi:(X %> Qp(r)) for any
integers i, r € N x Z and any K-variety X (possibly singular). They also contain
kernel of projectors of these particular representations when the projector is
induced by an algebraic correspondence modulo rational equivalence for X /K
projective smooth, and any finite correspondence for an arbitrary X /K.

We do not know if any of these subcategories are stable under taking sub-objects,
quotients, or even direct factors.
The following fact is the only nontrivial result about stability.

Proposition 5.21. The category Rep.(Gk) contains all potentially semistable
extensions of representations of the form H éil(X 7. Qp(r)) for X/K smooth and
projective, i € N, r € Z.

Proof. Let D be the essential image of the functor
p*: Egyn-mod, x — Db(Reppxt(GK)).

Note that O is stable under taking retracts, suspensions, and extensions (see Re-
mark 5.14). We first prove that for any smooth projective morphism f: X — Spec(K)
and any integer r € Z, the representation Hél(XIg, Qp(r)) belongs to D.

The complex or representations RIhg(Xz.7) =~ R f4x(Qp)(r) belongs to D
(according to the end of Theorem 5.13). Moreover, using [26, 4.1.1] and [25], there
exists an isomorphism in Db(Reppst(GK)):

R £e(Qp)(r) >~ DR fu(Qp)(n)[—i].

i€Z

This means that R’ f+(Qp)(r) is the kernel of a projector of R fx(Qp)(r), thus
belongs to O because the later is stable under taking retracts.
Thus the result follows, using the fact that O is stable under taking extensions in

D?(Rep,, (G k)). O

Remark 5.22. The preceding proof shows that the essential image O of constructible
syntomic modules in complexes of pst-representations contains arbitrary truncations
of the complexes RI',i (X z.r). A natural question would be to determine if, more
generally, O is stable under taking truncation. This would immediately imply that
Rep,.(Gk) is a thick abelian subcategory of Rep(G ) (i.e. it is stable under taking
sub-objects and quotients) and that O is the category of bounded complexes of
pst-representations whose cohomology groups are constructible in the above sense.

Remark 5.23. In the diagram of inclusions (5.6) we believe that the first bottom one
is an equality and the rest are strict. We can support this belief with the following
observations. The first bottom inclusion should be an equality since the category of
Nori’s motives is expected to be the heart of a motivic ¢-structure on DMy (K, Q)
(see [42, p. 374]). The second bottom and the first skewed inclusions should be strict
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by the philosophy of weights: by Proposition 5.21, we allow all potentially semistable
extensions as extensions of certain geometric representations in the constructible
category but in the geometric category such extensions should satisfy a weight
filtration condition. For properties of geometric representations coming from abelian
varieties over Q, see the work of Volkov [67,68].

For the second skewed inclusion, take k = F, the finite field with ¢ = p*
elements. Let VV € Rep,(Gg) be a constructible representation. Then, by the
Conjecture of purity of the weight filtration, the ¢-module D (V') is an extension
of “pure” p-modules, i.e. p-modules such that, foranumbera > s, ¢“ has eigenvalues
that are p?-Weil numbers?' (cf. [41, Conjecture 2.6.5]). But there are crystalline
representations that do not have this property. For example, any unramified character
x: Gk, — Qp, Fr — p € Q7, such that 4 is not a p®-Weil number for any a > 0
(such a p exists by the uncountability of Q).
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