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Mean curvature in manifolds with Ricci curvature
bounded from below

Jaigyoung Choe* and Ailana Fraser**

Abstract. Let M be a compact Riemannian manifold of nonnegative Ricci curvature and X a
compact embedded 2-sided minimal hypersurface in M . It is proved that there is a dichotomy:
If ¥ does not separate M then X is totally geodesic and M \ X is isometric to the Riemannian
product X x (a,b), and if ¥ separates M then the map ix : 71(X) — w1 (M) induced by
inclusion is surjective. This surjectivity is also proved for a compact 2-sided hypersurface with
mean curvature H > (n — l)«/l: in a manifold of Ricci curvature Ricpy = —(n — Dk, k > 0,
and for a free boundary minimal hypersurface in an n-dimensional manifold of nonnegative
Ricci curvature with nonempty strictly convex boundary. As an application it is shown that a
compact (n — 1)-dimensional manifold N with the number of generators of m;(N) < n — 1
cannot be minimally embedded in the flat torus 7.

Mathematics Subject Classification (2010). 53C20, 53C42.

Keywords. Ricci curvature, minimal surface, fundamental group.

1. Introduction

Euclid’s fifth postulate implies that there exist two nonintersecting lines on a plane.
But the same is not true on a sphere, a non-Euclidean plane. Hadamard [11]
generalized this to prove that every geodesic must meet every closed geodesic on
a surface of positive curvature. Note that a k-dimensional minimal submanifold of
a Riemannian manifold M is a critical point of the k-dimensional area functional.
Replacing the geodesic with the minimal submanifold, Frankel [6] further generalized
Hadamard’s theorem: Let 2; and X, be immersed minimal hypersurfaces in a
complete connected Riemannian manifold M of positive Ricci curvature. If 2, is
compact, then >; and 2, must intersect. It should be remarked that a manifold of
nonnegative Ricci curvature like S? x S! has many disjoint minimal spheres.

Using the connectivity of the inverse image of ¥; under the projection map
in the universal cover of M, Frankel also proved that the natural homomorphism
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of fundamental groups: m(2{) — (M) is surjective. This means that the
minimality of X; imposes restrictions on 71(%). This reminds us of a similar
restriction on 71 (M ), as proved by Myers [ 18], thatif M has positive Ricci curvature,
then 771 (M) is finite.

These two theorems of Frankel have the dual versions in the negatively curved
case as follows: If M is a complete Riemannian manifold of nonpositive sectional
curvature, then every compact immersed minimal submanifold ¥ must have an infinite
fundamental group and moreover, if X is totally geodesic, then 71(X) — (M)
is 1-1 [13].

It was Lawson [15] who first realized the topological implication of Frankel’s
theorem; he found that Frankel’s proof of the surjectivity works also for each
component of M \ ¥ if M is a compact connected orientable Riemannian
manifold of positive Ricci curvature and X is a compact embedded orientable
minimal hypersurface. He then showed that m(ﬁj,E) = 0, j = 1,2, where
M \ ¥ = D; U D,. This implies that X has as many 1-dimensional holes (loops)
as D; does. Hence, when dim M = 3, D; and D, are handlebodies and if M is
diffeomorphic to S3 [12], ¥ is unknotted.

Recently Petersen and Wilhelm [21] gave a new proof of Frankel’s generalized
Hadamard theorem. They also showed that if M has nonnegative Ricci curvature
and has two nonintersecting minimal hypersurfaces, then these are totally geodesic
and a rigidity phenomenon occurs. Whereas Frankel and Lawson used the second
variation formula for arc length, Petersen and Wilhelm utilized the superhamonicity
of the distance function from a minimal hypersurface. It should be mentioned that
Cheeger and Gromoll had used the superharmonicity of the distance function arising
from a minimizing geodesic [3]. See also [5,25].

In this paper we show that there is a dichotomy for a compact Riemannian
manifold of nonnegative Ricci curvature (Theorem 2.5): A compact embedded
2-sided minimal hypersurface ¥ does not separate M or separates M into two
nonempty components D and D,, and consequently, X is totally geodesic and M is
isometric to a mapping torus or the map i, : (%) — m(DJ-), j = 1,2, induced by
inclusion is surjective. As a result M cannot have more 1-dimensional holes than %
unless M is diffeomorphic to ¥ x S!. The first part of Theorem 2.5 reminds us of
the Cheeger—Gromoll splitting theorem [3]; their /ine is dual to our nonseparating
minimal hypersurface. We note that G. Galloway proved in [9] a theorem similar to
Theorem 2.5 and to Petersen—Wilhelm’s theorem [21]. Also, L. Rodriguez obtained
some theorems which are relevant to Theorem 2.5 in [1] and [10].

The surjectivity of ix : (%) — (D) is obtained in more general settings as
follows. Let M™ be a Riemannian manifold of Ricci curvature Ricys > —(n — 1)k,
k > 0 and let £ be a compact 2-sided hypersurface that bounds a connected region €2
in M. If Q is mean convex with H(X) > (n — l)«/l?, then X is connected and
iv (X)) — m1(Q) is surjective. Thus if n = 3 then € is a handlebody.

We also consider the case when the compact Riemannian manifold M" of
nonnegative Ricci curvature has nonempty boundary dM which is strictly convex
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with respect to the inward unit normal. Fraser and Li [7] showed that any two
properly embedded orientable minimal hypersurfaces in M meeting dM orthogonally
must intersect. They also showed that if ¥ is a properly embedded orientable
minimal hypersurface in M meeting dM orthogonally, then ¥ divides M into
two connected components Dy and D,. Generalizing [7], we show that the maps
iv 1 (D) = 1 (M) and iy : 7 () = Hl(D_j), j = 1,2, are surjective. When
n = 3itis shown that both components of M \ X are handlebodies and X is unknotted.
We also prove some corresponding results in the case where Ricyy > —(n — 1)k,
k> 0.

Finally, from our dichotomy (Theorem 2.5) we derive nonexistence of some
minimal embeddings. Let N be an (n — 1)-dimensional compact manifold with
the number of generators of w1(N) = k that is minimally embedded in the flat
n-torus 7". Then we must have k > n — 1. If k = n — 1, then N ~ T" !, and
if Kk > n—1, then 7" \ N has two components D, D, such that the number of
generators of (D) is bigger than n — 1, j = 1,2. This is a higher dimensional
generalization of Meeks’ theorem [16] that a compact surface of genus 2 cannot be
minimally immersed in 7°3.

The authors thank the referee for helpful comments and suggesting [8, Theo-
rem 2.1].

2. Surjectivity

It is well known that the second variation of arc length involves negative the integral
of the sectional curvature. It is for this reason that the Ricci curvature affects both
the mean curvature of the level surfaces of the distance function and the Laplacian of
the distance function. The following lemma verifies this influence.

Lemma 2.1. Assume that M" is a complete Riemannian manifold of nonnegative
Ricci curvature. Let D be a domain in M and N C 3D a hypersurface with mean
curvature Hy > ¢ with respect to the inward unit normalvto N, i.e. Hy = ([;VN v).
Suppose that the distance function d from N is well defined in D. Then at a point
q € D such that d is smooth in a neighborhood of q,

(a) locally near q, the level surface of d through g has mean curvature > ¢ with
respect to the unit normal away from N (in fact, that mean curvature is monotone
nondecreasing in d along a minimizing geodesic from a fixed point p € N to q);

(b) Apd < —c.

Proof. Let S be a smooth level surface of d through a pointg € D. Lety C D
be the geodesic up to g that realizes the distance from N and is parametrized by arc
length. Then y hits § and N orthogonally at ¢ and at a point p € N. Choose any
unit vector v tangent to N at p and parallel translate it along y to g, obtaining a unit
parallel vector field V' along y which is normal to y and tangent to S at ¢. Consider
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the lengths of the curves obtained by moving y in the direction of V. Then the second
variation formula and the assumption that S is a level surface of d give us

Ly =lUs(V,V)—=In(V,V) —/ K(V.y) =0,
14

where /I denotes the second fundamental form defined by I1(u,v) = (V,v,v) with
respect to the inward unit normal v away from N, and K(V,y’) is the sectional
curvature on the span of V' and y’. We can compute the same for orthonormal vectors
U1, ..., Uy—1 Spanning the tangent space to N at p and sum up the above inequalities
for the corresponding orthonormal parallel vector fields Vi, ..., V,—1, to get

Hs(q) - Hy (p) — f Ric(y',7') = 0,
Y

which proves (a) because jy Ric(y’,y’) is monotone nondecreasing in d. Let
Eq, ..., E,—; be orthonormal vector fields on S in a neighborhood of ¢. Extend
them to orthonormal vector fields £ o s i s En_l, En on M in a neighborhood of ¢
such that £, = y’. Then at g

n

Apd =) [EiEi(d) — (Vs Ei)d] = —Hs(q) < —Hn(p) < —c.

i=1

This proves (b). []

It follows from Lemma 2.1 that the distance function from a minimal hypersurface
in a manifold of nonnegative Ricci curvature is superharmonic at points where it is
smooth. In the following lemma we show that the distance function is superharmonic
in the barrier sense at points where it is not smooth, and hence satisfies the maximum
principle ([2], [20, Theorem 66]), that is, it is constant in a neighborhood of every
local minimum.

Lemma 2.2. Let ¥ be a minimal hypersurface in a complete Riemannian mani-
fold M of nonnegative Ricci curvature. Then the distance function d from % is
superharmonic Ad < O in the barrier sense. That is, given p € M, for every ¢ > 0
there exists a smooth support function from above d; defined in a neighborhood of p
such that:

(1) ds(p) =d(p).
(2) d(x) < dg(x) in some neighborhood of p,
(3) Ade(p) <e.

Proof. By Lemma 2.1(b) we know that Ad < 0 whenever d is smooth. For any
other p € M choose a unit speed minimizing geodesic y : [0,/] — M between X
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and p, with y(0) € ¥ and y(/) = p. Let v be the unit normal of X near y(0) in the
direction toward p, let ¢(r) = e~*"/0~*) be a smooth cut-off function, and define

Ts = {exp, 8¢(d=(y(0),x))v(x) : x € TN B,(y(0))}

for small § > 0, r > 0. Since X is a small perturbation of X, we have | Hx;| < C(8)
with C(§) — 0 as § — 0. Given & > 0, choose 6 = (&) sufficiently small so that
C(8) < e. We claim that ds(-) := 6(¢) + d(Z5(e). -) is a smooth support function
from above for d at p. It is clear from the construction that d.(p) = d(p). If x is
sufficiently close to p, there is an interior point x” in Xy that realizes the distance
from x to Xs. By the construction of g, d(XZ, x’) < &, and we have

d(x) =d(Z,x) <d(Z,x)+dx', x) <6+ d(Zs,x) = de(x).
If d; is smooth at p, then by Lemma 2.1(b), Ad.(p) < C(8) < e. It remains to show
smoothness. Suppose d, is not smooth at p. Then we know that either
(1) there are two minimizing geodesics from p to 25, or
(2) p is afocal point of 5.

In case (1), there is a minimizing geodesic from p to a point ¢ # y(§) in Xs. But by
construction of £, d(X,g) < 4, and so this implies that

d(Z,p) <d(X,q)+d(g.p) <é+d(Zs.p) =1,

a contradiction. In case (2), if p is a focal point of X3, there is a Jacobi field J along
¥ lis,1p with J(8) tangent to Xs at y(8), J(/) = 0, and such that J'(8) + S, (/(8))
is orthogonal to X, where S,/ (s) is the linear operator on 77, (5) 25 given by the second
fundamental form of X5 in M, thatis, S,/ X = —(Vx y’(S))T, X € Ty Xs. The
second variation of length of y|(s ;1 in the direction J is zero:

/ !
10LJ)=3£ [V, I — (R V) Y] di + (Vs 1.7)

5

[

!
— _[5 (J"+ R, YNy Jydt + [(Vy I J) + (Vs J, y')]‘g

!
=—£LV+Mwawawma+&muwnnm
= {J).

Let o be the geodesic in X5 with 6(0) = y(§) and ¢'(0) = J(8). For § small, there
is a unique minimizing geodesic y; between o (s) and X. Since ¢”(0) < 0, y(d)
is the point on 2 that is furthest from X, and the second variation of y; is strictly
negative,

dz

732 0L()/S) < 0.

=
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Let W be the variation field of the variation y; of y|jp,s;. Then W(§) = J(§), and
for the vector field V' along y given by

W) for0<t <6,

V) =
J(@) ford<t<I,

the second variation of length of y is strictly less than zero. This contradicts the
fact that y is a minimizing geodesic from p to X. Therefore, d, is smooth in a
neighborhood of p and is a smooth support function from above for d at p. L]

With the superharmonicity of the distance function in our hands we are now able
to prove the main theorem.

Definition 2.3. Let ¥ be a compact connected embedded hypersurface in a compact
manifold M. X is said to be separating if M \ X has two nonempty connected
components, and nonseparating if M \ X is connected.

Definition 2.4. A handlebody is a 3-manifold with boundary which is homeomorphic
to a closed regular neighborhood of a connected properly embedded 1-dimensional

CW complex in R3. A surface ¥ in a 3-manifold M is called a Heegaard surface
if 2 separates M into two handlebodies.

Theorem 2.5. Let M be a compact Riemannian n-manifold of nonnegative Ricci
curvature and ¥ a compact connected embedded 2-sided minimal hypersurface
in M. Then either

(a) X is nonseparating and totally geodesic and M is isometric to a mapping torus
¥ % [0,d]
(x,0) ~ (y,a) iff p(x) = ¥’

where ¢ © X — X is an isometry, or

(b) X is separating, and if D1, D, C M are the components of M \ X, then for
j = 1,2 the maps
i (2) = w1 (D)), ix:m(Z) = m(M),
and iy :m(D;) — m(M)

induced by the inclusion are all surjective.
If n = 3 and X is separating, then X is a Heegaard surface.
Proof. (a) Choose a function that is equal to O on X and in a neighborhood of one
side of ¥ and equal to 1 in a neighborhood of the other side of X. Since X is

nonseparating, this function can be extended to a smooth function on M \ X, and by
passing to the quotient mod Z we obtain a nonconstant smooth function

f:M —>R/Z =S
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Let f« : m1(M) — Z be the induced map on the fundamental groups, and for the
universal cover M of M, consider the cyclic cover M = M/G of M corresponding
to the subgroup G = ker f, of m;(M). Since M has a geodesic line, the result
follows from the splitting theorem [3]. However, we will give an alternate direct
proof, which will be needed for the proof of part (b).

Let £1, ¥» C M be two adjacent preimages of X under the projection 7 : M—>M
such that 7 and >, bound a connected domain D C M on which 7 is 1-1. Here
we adopt the arguments of [21]. If d; is the distance function on D to %;, then our
hypotheses on the Ricci curvature of M and the minimality of ¥; imply that Ad; <0
in the barrier sense, by Lemma 2.2. Hence d; + d» is also superharmonic in the
barrier sense. But it has an interior minimum on a minimal geodesic y between X
and X, and so by the maximum principle it is constant on D. Then it follows that d;
is haArmonic and smooth on D. Recall the Bochner formula for a smooth function u
on M:

1
§A|du|2 = |Hess u|* + (Vu, V(Au)) + Ric(Vu, Vu).

Since |du| = 1 for u = d;, the formula yields Hess d; = 0 on D. Therefore %; is
totally geodesic and M is isometric to &; x R!. Thus M is isometric to a mapping
torus
¥ x [0,d]
(x,0) ~ (y.a) iff ¢p(x) =y’

where ¢ is the length of y and ¢ : ¥ — X is an isomeltry.

(b)Letm : 151- — D be the universal cover of D, j = 1, 2. Extending 7 up to
dD;, we claim that 3D ; = 7~ '(X) is connected. If 3D is not connected, let

do = inf {d (X', £") : " and " are distinct components of 8151-}.

As in [15], there exist components £’ and X” such that there is a geodesic y in 15j
from X' to X7 of length dy. By continuity, there is a neighborhood of y in Dj such
that the distance functions d’ and d” to ¥’ and to £” in 15j are well defined. By the
same arguments as in (a) we see that d’ + d” is superharmonic. Note that d’ + d”
has interior minimum at all points of y. Asin (a), it follows that a neighborhood of y
is isometric to a product manifold (X" N U) x (0,dy), where U is a neighborhood
of ¥(0) in X’. Let U be the set of points in X’ that can be connected to ¥ by a
geodesic of length dy. By the argument above, U is open and U C U. We claim
that U is also closed. To see this, let p,, be a sequence of points in U converging
to p € ¥’, and let y,, be a geodesic in ﬁj of length d¢ from p,, to Z”. By passing
to a subsequence we can see that there exists a geodesic y, of length dy from p
to X" such that {y,} converges to yo. It may happen that yo hits 9D; \ ¥ at
some point ¢ with dist(p,q) < dy. But then dist(p‘aﬁj \ X') < dy, which is a
contradiction. Therefore p € U and U is closed. Since U is both open and closed,
U = ¥'. Therefore 51- is isometric to the product manifold £’ x (0, dy). Hence D
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is isometric to X x (0, dp), and so the closure D; is isometric to ¥ x [0, dp] or to a
mapping torus. Either case will lead to a contradiction because 9D ; is not connected
in the first case and dD ; is empty in the second. Hence dD ; ; is connected, as claimed.

Let £ be a loop in D; with base point p € X. Lift £ to a curve { in D from

p1 € w1 (p) to p; € w7 (p). Since ' (X) is connected, there is a curve ¢
in m1(X) connecting p; to p,. Moreover, ¢ is homotopic to ¢ in D as Dj is
simply connected. Hence Jr(ﬂ) is a loop in X that is homotopic in D ; to £. Therefore
the map i, : m1(2) — m1(D;) induced by inclusion is surjective.

Let £ be aloop in M. Divide £ into two parts £, £, such that £; C D;. Cover {;
with a curve E]’ in D]‘ as above. By the connectedness of 7~ (X) again we have
a curve EA,- in 771(X) with the same end points as Ej and homotopic to E~j. Then
n(él) U n(éz) is a loop in X that is homotopic to £. Hence iy : w1 (X) — w1 (M) is
also surjective.

Since X is 2-sided there exists E_j C Dj which is very close to zt((?l) U I[(gz).
Hence ij and J‘r(@l) u n(éz) are homotopic and therefore i : 71 (D) — m1 (M) is
surjective.

To prove the final statement, suppose n = 3. The surjectivity of ix : 7;(¥) —
nl(Dj) implies n;(]jj, ) A~ 0. Then by [19] we can use the Loop theorem and
Dehn’s lemma to show that Dy and D, are handlebodies. Thus % is a Heegaard
surface. L]

Corollary 2.6. Let X~ be a compact connected embedded minimal surface in a
Riemannian three-sphere M of nonnegative Ricci curvature. Then X is unknotted.

Proof. From the Jordan—Brouwer separation theorem it follows that X is separating.
We show that ¥ is unknotted in the sense that if X’ is a standardly embedded surface of
the same genus as X in M , then there exists an orientation preserving diffeomorphism
f M — M such that f(X) = X'. By Theorem 2.5(b), X is a Heegaard surface.
It follows from [24] that there is a PL homeomorphism f M — M such that
f(X) = ¥'. Then by results from [14] there exists a smooth map / as claimed. [J

Remark 2.7. It should be mentioned that Meeks and Rosenberg [17] showed a
noncompact properly embedded minimal surface in S? x R is unknotted.

The result of Frankel shows that two compact minimal hypersurfaces in a manifold
of positive Ricci curvature must intersect. However, a manifold of nonnegative Ricci
curvature can have many disjoint compact minimal hypersurfaces. Furthermore, in
the case of negative curvature, there can even exist disjoint hypersurfaces that bound
a connected mean convex region; for example, spheres equidistant to two disjoint
planes in hyperbolic space. On the other hand two disjoint horospheres in hyperbolic
space cannot bound a connected mean convex region. This suggests that there can
only exist a connected mean convex region with two disjoint boundary components
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if the mean curvature is less than a critical number involving a lower bound on the
curvature of the ambient manifold.

Here we show this, that in fact Frankel’s argument can be extended to the case
of manifolds of negative Ricci curvature provided the Ricci curvature is bounded
from below and the hypersurfaces have mean curvature that is sufficiently large.
We obtain the corresponding result on surjectivity of the natural homomorphism of
fundamental groups for compact 2-sided hypersurfaces with mean curvature above
this critical (sharp) threshold involving the lower bound on the Ricci curvature. In
the 3-dimensional case, such hypersurfaces must bound handlebodies; for example, a
compact connected 2-sided hypersurface with mean curvature | /| > 2 in hyperbolic
3-space bounds a handlebody.

Theorem 2.8. Let M" be a complete Riemannian manifold of Ricci curvature
bounded from below, Ricpy > —(n — 1)k, k > 0. Let X be a compact hypersurface
that bounds a connected region 2 in M. Suppose that the mean curvature vector
of X points everywhere into Q2, and H > (n — 1)«/?. Then X is connected, and the
map

iy 1 701(X) = m1(£2)

induced by the inclusion is surjective. If n = 3 then 2 is a handlebody.

Proof. We argue by contradiction. Suppose ¥ is not connected. Let 2 and 2>
be distinct connected components of 3. Then there exists a unit speed geodesic
vy [=1/2,1/2] - M with y(—[/2) = p € £, and y(I/2) = g € X, that realizes
distance from 2; to X, and meets X orthogonally at the endpoints on the mean
convex sideof 2. Letey,. .., e,—; beanorthonormal basis for the tangent space to X
at p, and parallel transport to obtain parallel orthonormal vector fields Eq, ..., E,—1
along y. Since y meets %, orthogonally, £,(q)...., E,—1(q) are tangent to X,
atq. Let V; (1) = @(t) Ei (1) with (1) = g5 cosh(v/k 1) and ¢ (1) = cosh(vk 1/2).
Note that ¢” — k¢ = 0 and ¢(—[/2) = ¢(l/2) = 1. Consider the sum of the second
variations of length of y in the directions V;:

n—1

0<) LY (0)

i=1
1/2 = 1/2
= f [(n = D)@' ~ > Ricly'y)di + Y 0*(Vis, Ei.y)|

. —1/2
1/2 = /

1/2 1/2
= —f”z [(n = D" + ¢ Ric(y'y)]dt = Hz(p) = Hz(@) + (1 = Do¢'|_ |

1/2
<—(n-— 1)[_1/2(,0((,0”—/@0) dt —2(n — 1)vk + 2(n — 1)vk tanh («/121/2)

= —2(n — DVk +2(n — 1)vk tanh (Vk 1/2)
< 0.
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which is a contradiction. Therefore X is connected. Similarly 7 ~1(X) is connected
in the universal cover €2 of 2 under the covering map 7 : 2 — 2. It then follows by
arguments as in the proofs of Theorem 2.5(b) that i, : 771 (X) — 71 (Q) is surjective,
and if n = 3 then 2 is a handlebody. L]

Remark 2.9. The assumption that X bounds a region is not necessary. If M”" is
a complete Riemannian manifold with Ricyy > —(n — 1)k, k > 0, and X is a
compact 2-sided hypersurface in M with |H| > (n — 1)/k, then it follows that &
bounds a collection of disjoint connected regions €21, ..., €2 in M such that the
mean curvature vector [ points everywhere into 2;, and each has as boundary 9€2;
a connected component of X. To see this, first observe that each component %’
of 3 is separating. If not, we may construct a cyclic cover M of M as in the proof
of Theorem 2.5(a). Then Ric,, > —(n — 1)k, and each component of (2
divides M into two infinite pieces. For one of these pieces, €2, the mean curvature

vector H of 32 points everywhere into Q and satisfies |H | > (n — 1)v/k. It follows
from [23, Lemma 1] that

1
Vol(f2) < 1\/01(852) < 00,
n—
a contradiction. Therefore each component of ¥ is separating, and hence X bounds
a collection of disjoint regions €21, ..., € such that / points everywhere into £2;
fori = 1,...,s. Finally, Theorem 2.8 implies that 0$2; is connected for each i and
hence is a connected component of X.

Remark 2.10. This theorem is sharp in the sense that on a hyperbolic surface, disjoint
circles of curvature 1 cannot bound a convex region, but on a hyperbolic surface with
a cusp there exists a convex annular region with two boundary components (cross
sections of the cusp) that have curvature slightly less than, but arbitrarily close to 1.
One can construct analogous compact examples in higher dimensions in quotients
of hyperbolic space H"”. Two disjoint horospheres with H = n — | cannot bound a
connected mean convex region in hyperbolic n-space H", but in the half-space model
of " there can exist a connected convex region bounded by the two hyperplanes Py,
P, with 0P, = 0P, C 0H" and making angles 6, r — 6 with dH"; the boundary
components have mean curvature slightly less than, but arbitrarily close to n — 1
as  — 0.

3. Convex domain

In this section the Riemannian manifold M" will be assumed to have nonempty
boundary dM . Suppose that M has nonnegative Ricci curvature and dM is strictly
convex. Recall that Frankel [6] showed that two compact immersed minimal
hypersurfaces in a Riemannian manifold M of positive Ricci curvature must intersect.
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Fraser and Li [7, Lemma 2.4] extended Frankel’s theorem to two properly embedded
minimal hypersurfaces X1, %, in M, ie. d%; C oM, i = 1,2, meeting oM
orthogonally. They also showed ([7, Corollary 2.10]) that if ¥ is a properly
embedded orientable minimal hypersurface in M meeting dM orthogonally, then X
divides M into two connected components D and D,. We show that the maps
Ix 1M (X)) = m(D_j), j = 1,2, are surjective and that X is unknotted when n = 3.
We also prove some corresponding results in the case where the Ricci curvature is
bounded from below by a negative constant.

Lemma 3.1. Let M be an n-dimensional compact manifold of nonnegative Ricci
curvature with strictly convex boundary oM. Suppose that % is a properly
embedded minimal hypersurface in M meeting oM orthogonally. Then the maps
v (X)) > mi(M) and ix : m1(2) — J‘L’l(D_j), j = 1,2, are surjective,
where Dy, Dy are the components of M\ X.

Proof. Let D ; be the universal cover of D ; with the projectionmapw : D; — D;.
Since 7 ~1(X) is connected, by the same arguments as in the proof of Theorem 2.5(b)
we easily get the surjectivity of iy : 71 (X) — my (D_j)‘ Applying the same arguments
towr : M — M, we get the surjectivity of ix : 71 (X) — 71 (M) as well. O

Theorem 3.2. Let M be a 3-dimensional compact orientable Riemannian manifold
of nonnegative Ricci curvature. Suppose M has nonempty boundary dM which is
strictly convex with respect to the inward unit normal. Then an orientable properly
embedded minimal surface ¥ in M meeting OM orthogonally divides M into two
handlebodies.

Proof. By Lemma 3.1 we have (D1, %) = 7,(D,.X) = 0. As in the proof
of Theorem 2.5, using the Loop theorem and Dehn’s lemma, we conclude that D,
and D, are handlebodies. L]

Corollary 3.3. Let M be a 3-dimensional compact Riemannian manifold of
nonnegative Ricci curvature with nonempty strictly convex boundary oM. Then
any orientable properly embedded minimal surface ¥ in M orthogonal to OM is
unknotted.

Proof. M is diffeomorphic to the 3-ball B3 by [7, Theorem 2.11]. X divides M into
two handlebodies by Theorem 3.2. It then follows from [8, Theorem 2.1] that X is
unknotted. B

We also have a version in the case of curvature with a negative lower bound.

Theorem 3.4. Let M" be a compact Riemannian manifold with nonempty boundary.
Suppose M has Ricci curvature bounded from below Ricyy > —(n— 1)k, k > 0, and
the boundary M is strictly convex with respect to the inward unit normal. Let ¥ be
a hypersurface in M that bounds a connected region 2 in M and makes a constant



66 J. Choe and A. Fraser CMH

contact angle 0 < 1 /2 with 92 N IM . Suppose that the mean curvature vector of %
points everywhere into 2, and H > (n — 1)v'k. Then T is connected, and the map

iy 1 1 (T) = 11(R)
induced by the inclusion is surjective.

Proof. Suppose X is not connected. Let ¥; and %, be two distinct connected
components of X. Let d; and d, be the distance functions on © from ¥, and %,
respectively. Since dM is convex and ¥;, i = 1, 2, makes a contact angle < /2
with 02 N oM, for any point x in 2 \ X;, d; (x) is realized by a geodesic in 2 from x
to an interior point y on %;. Then there exists a geodesic y in 2 from some interior
point p € X to some interior pointg € X,, that realizes the distance from X to 25,
and meets X7 and X, orthogonally. But as in the proof of Theorem 2.8 the Ricci
curvature lower bound and assumption on the mean curvature of X; and X, imply
that y is unstable, a contradiction. Therefore X is connected.

Let © be the universal cover of € with projection map 7 : Q - Q. By the
same argument as above, 92 \ 7! (dM) must be connected, and we easily get the
surjectivity of iy, : 71 (Z) — 71 (). [

Corollary 3.5. Under the assumptions of Theorem 3.4, if n = 3 then Q is a
handlebody.

4. Nonexistence

As an application of the surjectivity of ix : w1(X) — w1 (M) Frankel showed that
S"~! cannot be minimally embedded in P”. In this section we further utilize the
surjectivity of i, and prove nonexistence of some minimal embeddings in 7.

Meeks [16] proved that a compact surface of genus 2 cannot be minimally
immersed in a flat 3-torus 73. He used the fact that the Gauss map of a minimal
surface ¥ C T3 into S? has degree one. A theorem of a similar nature can be proved
in higher dimension by using the surjectivity of i.

Theorem 4.1. Let N be a compact orientable (n — 1)-dimensional manifold and
suppose the minimal number of generators of w{(N) is k.

(a) If k < n—1, N cannot be minimally embedded in the n-dimensional flat
torus T".

(b) If k =n—1and N is minimally embedded in T™, then N is a flat T" 1.

(¢) If k > n—1and N is minimally embedded in T", then N is separating and
the number of generators of m(D ;) must be bigger than n — 1 for j = 1,2

(D1 U Dy = T"\ N).
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Proof. Let N*~! be an embedded minimal submanifold in 77 with k < n — 1.
Then the map i, : w1 (N) — m(T") is not surjective. Hence from Theorem 2.5
we conclude that N is nonseparating and totally geodesic in 7". Hence N is a
flat 7" ! and k = n — 1. Therefore N cannot be minimally embedded in 7" in
case k <n — 1. If kK > n— 1, then N must be separating and (c) follows from the
surjectivity of 7y : w1 (D) — m1(T") in Theorem 2.5(b). U

Remark 4.2. Incase n = 3, Theorem 4.1(c) gives a new proof of the Meeks theorem
mentioned above for the embedded case.

Let 'y C R? be the union of k loops y1, ...,y in R? with y; Ny; = {p} for
every pair 1 <i,j <k and let I'? be the &-tubular neighborhood of I'y in R™. '/
can be seen as a high-dimensional handlebody in R". Note that dI"}’ is diffeomorphic
to #¢ (S"~?xS1), the connected sum of k copies of "2 xS', and that 1 (9T'}) has &
generators when n > 4. Since dI')_, is not diffeomorphic to T =1 Theorem 4.1
implies that 1"} cannot be minimally embedded in 7" forany k = 1,....n — 1.

Schwarz’s P-surface is a minimal surface of genus 3 in the cubic torus 7. One
can generalize this surface to higher dimension as follows. 7" has a 1-dimensional
skeleton £.,, which is homeomorphic to I',. There also exists its dual L;T that is a
parallel translation of L,. One can foliate 7" \ (L, U L}) by a 1-parameter family
of (n — 1)-dimensional hypersurfaces which are diffeomorphic to dI") and sweeping
out from L, to L). Applying the minimax argument, one could find a minimal
hypersurface % from this family of hypersurfaces [4]. X should be diffeomorphic
to dI') and 71 (X) should have n generators. Therefore the upper bound n — 1 in
Theorem 4.1 is sharp.

We know that every positively curved S? has a closed geodesic. And the Clifford

torus | |
()5 (5)
is minimally embedded in S3. Moreover,
() <5 (55) %5 ()

is minimally embedded in S°; however, its codimension is 2. Then it is natural to
ask the following:

Question. Can one minimally embed T" (n > 3) in a Riemannian sphere S"T1 of
nonnegative Ricci curvature?
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