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Symplectic embeddings of products

Daniel Cristofaro-Gardiner and Richard Hind

Abstract. McDuff and Schlenk determined when a four-dimensional ellipsoid can be

symplectically embedded into a four-dimensional ball, and found that when the ellipsoid is close

to round, the answer is given by an "infinite staircase" determined by the odd-index Fibonacci
numbers. We show that this result still holds in higher dimensions when we "stabilize" the

embedding problem.
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1. Introduction

1.1. The main theorem. A symplectic embedding of one symplectic manifold

(Mi, &)i) into another (M2, mi) is an embedding of smooth manifolds

Mi ^ M2,

such that a)\. Determining whether or not one symplectic manifold can
be embedded into another can be subtle, even for simple domains. For example, let

E(a\,... ,ün) denote the 2N-dimensional symplectic ellipsoid

ut ^
lZl|2 \ZN\2 „E(ci\,... ,cin) := \tx F h Jt <1
a i aN

where the symplectic form is given by restricting the standard one on R2N. Except
for the trivial case N 1, and the case N 2, which we will review in §1.2 and

§1.4.2, the following, raised for example in [17, Rmk. 1.1.4] and [15], is essentially
completely open:

Question 1. When does there exist a symplectic embedding

aN)^E(bi bN)l



2 D. Cristofaro-Gardiner and R. Hind CMH

One celebrated result in this direction is the computation by McDuff and

Schlenk [17] of the function

c(x) := inf{R \ E(\.x)^B4(R)}.

Here, B4(R) denotes the four-ball B4(R) := E(R, R), while the arrow "<^V' means
that the embedding is symplectic. By scaling and symmetry, the function c(x)
for x > 1 completely determines when a four-dimensional symplectic ellipsoid can be

embedded into a four-dimensional ball. McDuff and Schlenk found [17] that when the

ellipsoid is close to round, namely when 1 < x < r4 (here r := (1 + V5)/2 denotes

the Golden Mean), the function c(x) is given by an "infinite staircase" determined by
the odd-index Fibonacci numbers, whereas if the ellipsoid is sufficiently stretched,

namely if x > (17/6)2, then all obstructions vanish except for the classical volume

obstruction; for r4 < x < (17/6)2, the function c(x) is mostly given by the volume

obstruction, except on 18 intervals on which it is linear.

In higher dimensions, however, it is generally believed that both new obstructions
and new constructions are needed to satisfactorily answer Question 1. This is also

believed for other simple shapes of interest like "polydiscs", see for example [4].
The aim of the present work is to begin the study of the "stabilized" version of

the function c(x) defined for a fixed N > 3 by

cN(x) inf {R I E(\,x)xCn~2^B4(R)xCn~2}.

One might guess that in fact cjv(x) c(x) for all x. This however is not
necessarily the case — there are no volume obstructions to embeddings into a

product B4(R) x CN~2 and the methods applied by McDuff and Schlenk are

explicitly 4-dimensional, relying on Seiberg-Witten theory and special properties
of holomorphic curves in dimension 4. Nevertheless our main theorem asserts that
this does indeed sometimes hold:

Theorem 1.1. If 1 < x < r4 then c^(x) c(x) for any N.

In fact, Theorem 1.1 is sharp, in the sense that it follows from previous work of the

second author, in combination with a result of Pelayo-Ngoc, that for x > r4 we have

C/v(x) < c(x) provided N > 3; we will review this in §1.4.1. Thus, Theorem 1.1

implies that it is precisely the "Fibonacci staircase" part of McDuff and Schlenk's
calculation that persists under stabilization, after which strictly better constructions

are available. It is an interesting open question to determine Cjv(x) for x > r4. In

general, computations of cm (x) give insight into Question 1, since the function c^ (x:)

exactly answers Question 1 in the case where a-$ h2 ••• bpj oo

and h\ k2.

1.2. The Fibonacci staircase and our approach. We now recall McDuff and

Schlenk's infinite staircase in greater specificity to explain the sketch of our approach.
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Let go 1 and gn for n > 1 be the nth odd-index Fibonacci number. Thus

{g„}~0 is the sequence beginning 1,1,2,5,13,34, Then we can define

sequences {an}=0 and {bn}ff0 by an ^-)2 and bn We have

lim an lim bn r4
n —>oo n->-oo z

Given this, [17, Thm. 1.1.2] says the following:

Theorem 1,2 (McDuff-Schlenk [17, Thm. 1.1.2]).

• On the interval 1 < x < r4 the function c(x) is linear on the intervals [an,bn]
and constant on the intervals [bn, a„+i].

• We have c(an) and c(bn) c(an+1)

S A

Now note that any 4-dimensional embedding E(\,x)^-B (R) induces a higher

dimensional embedding E(l,x) x CN~2c^>B4(R) x C"-2 by taking the product
with the identity. We therefore have

cn(x) < c(x). (1.1)

The following lemma, which follows directly from [17, Lern. 1.1.1] will then be key
for our approach:

Lemma 1.3. lfcx)(bn) c(bn) for all n, thenc^(x) c(x)forall 1 < x < r4.

Proof. Since cn is nondecreasing, the hypothesis together with (1.1) imply that

cN(x) c(x) on the intervals [bn, an+i\.
Next, as in [17, Lern. 1.1.1], we observe that

cw(Ax) < Acjv(X) (1.2)

for A > 1. Let the interval / [an,bn\ for some n. As the graph of c\i lies on
a line through the origin, and since from the above cn(x) coincides with c(x) at

the endpoints of /, the observation (1.2) implies that in fact cn c on the whole
interval and this completes the proof.

The proof of Theorem 1.1 thus reduces to showing that cat(â„) f°r
n > 1, and we will prove this by studying pseudoholomorphic curves in certain
symplectic cobordisms, as outlined in § 1.5, see also § 1.3 for the relevant definitions.

1.3. Terminology. Before proceeding, we briefly review some definitions that will
be central in what follows, see (for example) [8,16] for more details.

Recall that any symplectic manifold X admits an almost-complex structure,
namely a smooth bundle map J:TX —>• TX satisfying J2 — —1. Almost
complex structures can be used to define pseudoholomorphic curves', these are maps
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u: E —> X, where (2, j) is a Riemann surface, and u satisfies the /-holomorphic
curve equation du o j J o du. As mentioned in the previous section, the crux
of our argument will involve studying holomorphic curves in certain symplectic
manifolds; roughly speaking, these manifolds will be "completions" of certain

symplectic cobordisms E{a,\,... ,a^) \<f>(E(bi,..., b^)), where f is a symplectic
embedding.

Recall also that a contactform on an oriented 2n + 1 dimensional manifold Y is

a differential one-form /z satisfying /i A (d/f)n > 0. A contact form determines a

canonical vector field, called the Reeb vector field v, by the equations

fx(v) 1, d[i(v, •) 0.

The closed orbits of the Reeb vector field, called Reeb orbits, are of considerable

importance in our argument. Ellipsoid boundaries of a symplectic cobordism inherit
a contact form from the Liouville form on C N. We say that the form is nondegenerate

if the linearized Poincaré return map along each Reeb orbit has no eigenvalues equal
to 1 ; this is the case if the ratios a,- /ay are irrational for all i j The contact form
can be used to define a compatibility condition for our almost-complex structures near
the boundary of the cobordism and then closed Reeb orbits give natural asymptotic
conditions for the /-holomorphic curve equation near punctures in the Riemann
surface.

1.4. More about the main theorem. Theorem 1.1 connects to several other topics
of interest.

1.4.1. Symplectic folding. In general, it is desirable to have explicit constructions
for optimal symplectic embeddings. Most of the embeddings described by McDuff
and Schlenk in Theorem 1.2 are not given at all explicitly; they rely on the existence of
holomorphic curves established by Seiberg-Witten theory. In contrast Theorem 1.1

shows that in higher dimension many explicit embeddings constructed using the

"symplectic folding" operation described in [19] are in fact optimal. We now explain
this.

In [5], the second author showed that one can refine the folding construction

to show that for any S,x > 1, there exists a symplectic embedding

E{\,x, S + e)x Cn~2. Work of Pelayo and Ngoc, see [18,

Thm. 4.1], implies that these embeddings can be extended to E(\,x) x C 2 and

so we have that for N > 3,

cn(X) < (I-3)
x + 1
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Theorem 1.1 and Theorem 1.2, in combination with the identities:

3gn + l gn+2 + gn> g„ + 1 £n-l + #n+l (1-4)

(which can be proved by induction), imply that CN(bn) (3bn)/(bn + 1) for any n.

Thus, for any n we see that the folding map from [5] is optimal at x bn; in

particular, this folding map is optimal for x r4.
Theorem 1.1 also implies that CN(an) *Ja~n for any n. Thus the graph of cjv

bounces between Nfx and for 1 < x 5 r4, see Figure 1, and in general we only
have explicit embeddings when the graph meets

Figure 1. The graph of cyv(x) for 1 < x < r called an "infinite Fibonacci staircase". The
bottom curve represents the four-dimensional volume constraint, while the top is the "symplectic
folding" curve.

1.4.2. Embedded contact homology. The N 2 case of Question 1 and our proof
of Theorem 1.1 are both connected to a kind of Floer homology for contact three-

manifolds, called "embedded contact homology".
Let (Y, fx) be a closed three-manifold equipped with a contact-form. The

embedded contact homology of Y, denoted ECH*{Y, /x) is the homology of a chain

complex ECC*(Y, /x). The chain complex ECC*(Y, /x) is freely generated over Z
by certain finite sets of simple Reeb orbits with multiplicities, and the differential
counts corresponding pseudoholomorphic curves inlxf. Although ECH*(Y, fx)
is therefore defined in terms of contact and symplectic data, Taubes [20] has shown
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that it is canonically isomorphic to the Seiberg-Witten Floer cohomology of Y. We

will explain more about the details of this that are relevant to our proof in §2, see

also [8],

In [9], Hutchings used embedded contact homology to define obstructions
to embeddings of symplectic four-maniholds, called ECH capacities. McDuff
showed in [15] that the obstruction ECH capacities give to embedding one (open)
four-dimensional ellipsoid into another is sharp. Since ECH capacities of ellipsoids
can be computed purely combinatorially, see [15], this gives considerable insight into
the A 2 case of Question 1.

Although ECH is only defined for contact three-manifolds, and ECH capacities are

only defined for symplectic four-manifolds, Theorem 1.1 implies that the obstructions

they give for certain ellipsoid embeddings persist under taking products. It is

interesting to look for other situations where features connected to ECH can be

lifted to higher dimensions.

1.5. Outline of the paper. Our argument combines ideas from [6] with some

techniques involving embedded contact homology. The details are as follows.

In Section 2 we consider an embedding cp: E(\,bn+e) ^ int(E(c, c + e)) where

c is slightly larger than c(bn) and s > 0 is small. We look at holomorphic curves
in the completion of the cobordism E(c,c + s) \ 0(int(ls(l, bn + e))) and establish

the nontriviality of a certain moduli space of curves with gn+i positive ends and a

single negative end. This relies heavily on the machinery of ECH.

In Section 3 we consider a product embedding cp: E(\,bn + e, SS) c->-

E{c,c + e) x ~R2(-n~2^ and a corresponding 2A-dimensional cobordism. For a

suitable choice of almost-complex structure the curves constructed in dimension 4

imply that a corresponding moduli space of curves in the 2A-dimensional cobordism
is also nonempty. We proceed to show that in fact the oriented count of its elements

is positive.

In Section 4 we prove a compactness theorem showing that the moduli spaces
studied in Section 3 are independent of the embedding ^r:XE(\, bn +e, S,..., S)
E(c,c + e) x R2<-n~2) with X > 0 up to cobordism, and in particular are always
nontrivial. As holomorphic curves have positive area this readily implies Theorem 1.1

as we make precise in Section 5.

Acknowledgements. This paper arose from conversations between the two authors

at the "Transversality in contact homology" conference organized by the American
Institute of Mathematics (AIM). We thank AIM for their hospitality. The first author
is partially supported by NSF grant DMS-1402200. The second author is partially
supported by grant # 317510 from the Simons Foundation.
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2. Four dimensional cobordisms

2.1. The main proposition. Fix a sufficiently small irrational s > 0, and consider
the four-dimensional symplectic ellipsoids

whereA > 1 is some real number close to 1. As with any irrational ellipsoid E(a, b),
these have a natural contact form with exactly two Reeb orbits, one of action a and

the other of action b. Here, the action of a Reeb orbit y is defined by

where /x is a Liouville form on C2.

Let a. I denote the short Reeb orbit on dE\ and let cc2 denote the long orbit;
define ßi and ß2 on 3E2 analogously. By an orbit set we mean a finite collection of
distinct embedded Reeb orbits with multiplicities, which we write with multiplicative
notation. For example a — a\al2 is an orbit set in 3E\ for any k,l >0. It is useful

to define the action of an orbit set by

Recall that by [17], see Theorem 1.2 above, there is a symplectic embedding
ff: E2 -> int(£i) for any A > 1. Choose such a A close to 1, let X denote the

symplectic cobordism E\ \ ty(E2), and let X denote the symplectic completion of X
(this is a symplectic manifold formed from X by attaching "symplectization-like"
ends, see for instance [8], section 5.5). Let J denote a "cobordism admissible" (in
the sense of [8] again for example) almost complex structure on V, and for orbit
sets a. and ß, let M(a,ß) denote the moduli space of /-holomorphic curves in X
asymptotic to an orbit set a at +oo and ß at —oo. Saying that a holomorphic curve is

asymptotic to a ct\otl2 means that its positive ends cover aj with total multiplicity k
and ol2 with total multiplicity /, see e.g. [8] for more details.

The goal of this section is to prove the following.

Proposition 2.1. For any n > 0, ifs is sufficiently small and A is sufficiently close to 1,

then there is a connected embedded J -holomorphic curve C M(a.2n+X, ßfn+2).
The curve C has genus 0, gn+\ positive ends, and one negative end. In other
words, each positive end is asymptotic to a2 and the negative end is asymptotic to the

degree gn+2 cover ofß\.
To put this slightly differently, let us define JvC0 to be the moduli space of genus 0

/-holomorphic curves in X with gn+\ positive ends asymptotic to a2 and one

negative end asymptotic to ßfn+2. Proposition 2.1 says that M0 is nonempty.

y
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2.2. ECH Preliminaries. We now provide further necessary details about embedded

contact homology, as introduced in §1.4.2.
Recall that if (Y, /z) is a closed three-manifold with a nondegenerate contact

form, the embedded contact homology of Y, ECH*(Y, /z), is the homology of a

chain complex ECC*(Y, /z). This chain complex is freely generated over Z/2 by
orbit sets, where the definition of orbit set was given in section 2.1 (note that in § 1.4.2

we introduced embedded contact homology with Z-coefficients; this can be done,

but is unnecessary for the applications in this paper). The orbit sets are required to
be admissible. This means that m; is equal to 1 whenever a, is hyperbolic. The
chain complex differential d is defined by counting ECH index 1 "/-holomorphic
currents" in M x Y, for admissible J. Specifically, the coefficient (da.ß) is a

mod 2 count of ECH index 1 /-holomorphic currents, modulo translation in the

R-direction, that are asymptotic to a at +00 and asymptotic to ß at —00; for the

definition of asymptotic in this context, see the previous section. By a holomorphic
current, we mean a finite set {(C/,m,-)}, where the C, are irreducible 1 somewhere

injective J -holomorphic curves in R x Y and the m; are positive integers. Two

J-holomorphic currents are declared equivalent if they are equivalent as currents.
We denote the space of /-holomorphic currents from a to ß by M.cumal(ct, ß). If J
is generic, then it is shown in [10,11] that d2 — 0. The ECH index, which is the key
nonstandard feature of the definition of ECH, will be defined in the next section. For

more about ECH, see [8].
Now let T: (X2,0)2) -» int(Xi,mi) be a symplectic embedding of Liouville

domains. Consider the symplectic cobordism

X (JC.mO \vI/(int(X2,m2)).

By [HT1], there is an induced map

<D: ECH(dXi) -> ECH(dX2).

This map is defined by using Seiberg-Witten theory. Nevertheless, it satisfies a

holomorphic curve axiom. Namely, it is shown in [13] that <f> is induced from a

chain map 4> with the following property: if a and ß are nonzero chain complex

generators with {<f>{a.),ß) 7^ 0, then there is a possibly broken J-holomorphic
current C £ <M.CUTTenl(a, ß) with ECH index 7(C) 0. A broken J -holomorphic
current from a to ß is a sequence of holomorphic currents C\,..., Cn such that

Ci e Afcurrent(yj, y;+i), where the gi are orbit sets such that yi a and gn+i ß-

The Ci are called levels, and in principle could be curves in either R x dX\ or R x 3A2,

with an R invariant almost-complex structure, or in X with a cobordism admissible

almost-complex structure. In fact, only one of the levels is a curve in X ; this is called
the cobordism level, and the other levels are called symplectization levels. The ECH
index of a broken holomorphic current is the sum of the ECH indices of each level.

We call a somewhere injective curve irreducible if its domain is connected.
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2.3. The ECH index and the Jo index. Let C e Afcurrent(or, ß) be a /-holomorphic
current in X. The ECH index only depends on the relative homology class [C].
Specifically, the formula for the ECH index is as follows:

/([C]) cr([C]) + gr([C]) + CZl([C}). (2.1)

Here, r denotes a symplectic trivialization of £ := Ker(/u) over each embedded Reeb

orbit, cT([C]) denotes the relative first Chern class c\(TX\[c], *) (defined using an

admissible almost-complex structure), QX([C]) denotes the "relative intersection

pairing", and CZ^ ([C]) denotes the total Conley—Zehnder index

mi nj
cz[ ([C]) Y,Y,CZM) -EE CZr(ß)),

i 1=1 j k=1

where a E; a' and ß Ey ß"J In this formula CZT(yfe) denotes the Conley-
Zehnder index of the fc-times multiple cover of an embedded Reeb orbit y, defined

relative to the trivialization r. We will not define the relative intersection pairing or
the Conley-Zehnder index here, see [8] for the details, but in Section 2.5 we will give
formulas for computing these quantities for ellipsoids.

There is a variant of / which bounds the topological complexity of C, called
the Jo index, which we will also use. It is given by the formula

Jo([C]) := - ct([C]) + Qz([C]) + CZJr ([C]), (2.2)

where CZ/([C]) E; Ef^ czr(«') - Ey YÏk=i czr(ßj)- Assume now
that C is somewhere injective, connected, has genus g, and all ends are asymptotic
to elliptic orbits. It is shown in [7, Prop. 6.9] that

J0(C) > 2(g - 1 + 5(C)) + J2(2ny - 1),

y

where the sum is over all embedded Reeb orbits y at which C has ends, nY denotes

the total number of ends of C at y, and 5(C) denotes an algebraic count of the

number of singularities of C; in particular, 5(C) > 0, and equal to 0 if and only if C
is embedded.

2.4. The partition conditions. Let C g M(a,ß) be a connected somewhere

injective curve in X with /(C) 0 and Fredholm index ind(C) 0 as well. It
is shown in [7] that we can compute the multiplicities of the ends of C at a and ß

purely combinatorially, given the monodromy angles of the underlying embedded

orbits in a and ß. This works as follows for the positive ends, in the case where all
orbits in a and ß are elliptic. (The formula for the negative ends is similar, but we
will not need this. The formula when there are hyperbolic orbits is also not hard.)
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Suppose then that C is a somewhere injective curve with positive ends at an

elliptic orbit y, with total multiplicity m. This means that the positive ends of C form
an unordered partition (mi,, m„) of m, called the positive partition of m. Let y
be the underlying embedded orbit for y (to clarify the notation, this means that y is

an m-fold cover of y).
Here is how we can compute the partition (mi,... ,mn). As y is elliptic our

trivialization r is homotopic to one where the linearized Reeb flow generates a

rotation through an angle 2n9. Then 9 is the monodromy angle for y, and we let L
be the line in the xy-plane that goes through the origin and has slope 9. Now let A
be the maximum concave piecewise linear continuous lattice path that starts at (0,0),
ends at (m, [m9\), and stays below the line L; this means that the area under A is

the convex hull of the set of lattice points in the region bounded by the x-axis, the

line x m, and the line L. It is shown in [7] that the entries mf are the horizontal
displacements of the vectors in A.

2.5. The ellipsoid case. We now explain how to compute I and Jo in the case
relevant to Proposition 2.1.

Recall the notation from the beginning of this section, and let C be a J-
holomorphic current in X (to emphasize, X now denotes the completion of the

cobordism induced by the embedding of the ellipsoids at the beginning of this
section). We can trivialize the contact structure over each embedded Reeb orbit
on the boundary of either E\ or E2 by using the identification TR4 C © C and

observing that the contact structure on the boundary of either ellipsoid restricts to
each Reeb orbit as one of these C factors. Call this trivialization r. Now assume
that C is asymptotic to the orbit set a1«2 at +oo, and asymptotic to the orbit
set ß"1 /3"2 at —We now have the following formulas for the quantities that enter
into I and J0:

cT([C]) (mi + m2) - (ni + n2), Qz([C]) 2(mim2 - nln2).

We also know, e.g. from [8, §3.2], that for any elliptic orbit y,

CZT(y) 2|_0J + 1, (2.3)

where 9 denotes the "monodromy angle" of y. The monodromy angle (with respect
to r) of any of the four embedded Reeb orbits relevant to the asymptotics in the

ellipsoid case is equal to the length of this Reeb orbit, divided by the length of the

other Reeb orbit (so, for example, the monodromy angle of oq is slightly less than 1),

and the monodromy angle of any yk is k times the monodromy angle of y. These

formulas are proved in [8], see [Ex. 1.8, §3.7]. In this section of [8], Hutchings is

considering the case of the symplectization of a single ellipsoid; however, since these

quantities are purely topological the computations extend to our situation as well.



Vol. 93 (2018) Symplectic embeddings of products 11

The following basic consideration will also be useful:

Fact 2.2. Let b/a be irrational. Then the chain complex differential d for
ECH(dE(a. b)) satisfies d 0.

Proof. As explained in Section 2.1, as our ellipsoids are irrational the Reeb vector
field on the boundary has exactly two closed orbits, and they are both elliptic.
Fact 2.2 now follows, since it is shown for example in [14, Lem. 4.1] that the ECH
chain complex differential vanishes for any nondegenerate contact manifold with only
elliptic orbits.

2.6. Proof of the proposition. We now have all the ingredients needed to prove
Proposition 2.1.

Step 1. As stated above, the symplectic cobordism X — E\ \ ^(Ef) induces a map

<F: ECH(dEi) -* ECHfdEf).

This map must be an isomorphism. The reason for this is that the cobordism X is

diffeomorphic to a product, and the ECH cobordism map agrees2 with the cobordism

map on Seiberg-Witten Floer cohomology, which is known to be an isomorphism
for product cobordisms. Now consider the ECH generator af"+1. By Fact 2.2,

we know that the ECH chain complex differential vanishes for the boundary of any
irrational ellipsoid. Hence, [af"+1] defines a nonzero class in ECH(dE\). Thus,
<$>{[a.2n+x]) f 0. We know by the "holomorphic curve" axiom that for any orbit
set 0 appearing in T>([o:|"+1]) 0, there is a possibly broken /-holomorphic
current from OLSff+x to 0, of total ECH index 0.

Step 2. We will first explain why we must have 0 ßfn+2. This will follow from
ECH index calculations for ellipsoids, together with the fact that the holomorphic
building from to 0 has total ECH index 0.

First note that, as explained in Sections 2.3 and 2.5, the ECH index of any
/-holomorphic current in X only depends on the asymptotics of the current. It also

follows from the calculations in Section 2.5 that there is a canonical Z-grading for
ECH of the boundary of any ellipsoid with the property that the ECH cobordism map
must preserve this grading. This grading is given by

gr(yf1Ï22) xi +x2 + 1x\x2 + CL[ (yf y*2),

where r is the trivialization used in Section 2.5. It turns out that

gr(yf'Vz2) 2#{(a,Ä)|«A(yfy|) < Aiyf'y*2)}, (2.4)

2Indeed, this is currently the definition of the ECH cobordism map.
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where A denotes the symplectic action, and a and b are both nonnegative integers.
This can be proved directly by interpreting gr as a count of lattice points in a triangle
determined by (xi, X2), see e.g. [8, Ex. 3.11], but also follows from the fact that the

ECH "f/"-map is a degree —2 isomorphism on ECH(5'3) which decreases the action.

It follows from this that if e is sufficiently small then gr(«j"-1-1 Sn+\ + 3gn+1,
since for c we have

Sn +1

gr(a2"+l) 2#{(a,b) \ Aipt^a^) < A{al"+])}
2#{(a,b) I ac + b(c + s) < gn+i(c + e)}

2#{(a,b) I a(c + e) + b{c + s) < gn+i(c + e)} -2
fen+i + ' )(gn+i + 2) — 2 g„+1 + 3gn+1.

Now from the computation of the ECH of S3, together with (2.4), it follows that
there is a unique orbit set in any grading. We now claim that

#{(a,b)\Mß1ß2) < Mßl"+2)} +23g"+1 •

To see this, one computes

*{{a,b)\*Wl) < Mßl"+2)} #{(a,b) I a + b(*e& + s) < gn+2]

m=0

gn~ 1

gngn+2~ E
m 1

gngn+2 + gn+2 + gn ~ 1

2

_ gn+l + 3ff" + l
2

where the second to last equality follows from the identity

q-1

E
1=0

for relatively prime positive integers p and q, and the last line follows from (1.4).
Note that one can also prove by induction that gn and gn+2 are always relatively
prime. It now follows that in fact <£>([a2'i+l ]) [yßf"+2]-

Step 3. Because 4>([o'f"+']) [ßfn+2], it follows from the properties of the ECH
cobordism map explained in §2.2 that there is a broken J -holomorphic current Z

k+2-»(äff+ ») +1)

ip (p - OO? - i)



Vol. 93 (2018) Symplectic embeddings of products 13

from af"+1 to ß^n+2. This broken current could in principle consist of multiple
levels, and multiple connected components. Call a symplectization level trivial if it
is a union of branched covers of trivial cylinders.

Claim 2.3. The current Z has a single nontrivial level, consisting of a single
somewhere injective (in fact embedded.) connected component.

Note that such a level is necessarily a cobordism level. Claim 2.3 will follow from
the following:

Lemma 2.4. Fix orbit sets a on dXE(^j1±2l, Fn+1. _|_ e) an(j « on 0ß(\ in+1 _|_ £)_
ygn +1 gn +1 ' r V ' gn f_

Let C e M (a, ß) be a somewhere injective connected J-holomorphic curve in X,
and asume that gr(a) < gr^j"4"')- If £ is sufficiently small, and X is sufficiently
close to 1, then ,A(C) > (A — l)gn4-2 + eXgn+\.

Here, the action A(C) is defined by

Proof Given positive real numbers a,b, let M(a,b) denote the sequence whose
ki\\ term (indexed starting at 0) is the (k + i)st smallest element in the matrix
(ma + nb)mtne%>0. The motivation for studying this sequence is as follows. By
Step 2, JT (a, b)k is the action of the unique ECH generator for dE (a, b) in grading 2k,
if a/b is irrational. Moreover, for fixed k, JT(a, b)k is a continuous function of a
and b (in fact, M (a, b) is the sequence of ECH capacities of the ellipsoid E(a, b)).

With this in mind, note first that we know from the calculations in Step 2 that

2/8n\g%+l+3gn+i)/2 ~ Sn+2/gn+l,gn+2/gn +1 )(g2+]+3g>, + 1 )/2"

Moreover, it follows from [17], see also e.g. [2], that

M(l,gn+2/gn)k < M (gn+2/gn+\, gn+2/gn+l)k

for all k. In fact, we now claim that we must have M(\, gn+2/gn)k <
M(gn+2/gn+\, gn+2/gn+\)k for all 0 < k < (g2+l + 3g„+i)/2. Otherwise,
there would exist nonnegative integers x, y and T such that

with 0 < T < gn+i- One can show by induction that gn+i and gngn+2 are relatively
prime; hence, we must have T gn+i and so

A(C) A(a)-A(ß).

y
gn+2

gn + 1

or, rearranging,
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Arguing as in Step 2, we see that if k < (g2+1 + 3g„+i)/2, then «AT (1, gn+2/gn)k <
«^0. gn+2/gn)(g2 ]+3gn+l)/2!

and hence the claim follows.

We can now complete the proof of Lemma 2.4. Since C is somewhere injective,
we must have /(C) > 0, for example by [7]. Therefore gr(ß) < gr(a). As explained
in Step 2, the action of a generator of ECH(dE(a, b)) is a strictly increasing function
of its grading. Thus, ^(a) — A(ß) > .A (a) — A(ß'), where ß' is the unique orbit
set with gr(/T) gr(a) < gr^l"-1-1). By the above claim, if s is sufficiently small
and A is close enough to 1, then by continuity of the functions J\f(a,b)jc we have

that A(a) — A(ß') is bounded below by some fixed positive number independent
of k gr(ct). The result follows by again choosing s sufficiently small and A close

enough to 1.

We now explain why the lemma implies Claim 2.3. Assume that there was such a

building, and look at the cobordism level. This consists of a (possibly disconnected)

holomorphic current B, with A(B) < (A — 1 )gn+2 + eXgn+i (the action difference
between af"-1"1 and /3f"+2). Look at the underyling somewhere injective curve for
a given component, say C, of this current; the underlying curve C must also satisfy
A(C) < (A — l)gn+2 + sXgn+i, and if C is an honest multiple cover, then C
must be asymptotic at +oo to an orbit set with action strictly less than a8"+I, and

hence grading strictly less than the grading of It follows from Lemma 2.4

that there are no such curves if s is close to 0 and A close to 1 ; hence, C must be

somewhere injective. The same argument shows that B must consist of a single
connected component.

It now follows by general properties of the ECH index, see [7], that 1(B) > 0.

Since the total index of the building is 0, and I(S) > 0 for any symplectization level

of the building, with equality if and only if S is a union of branched covers of trivial
cylinders (again by general properties of the ECH index), Claim 2.3 now follows.

Step 4. We can now complete the proof of Proposition 2.1. By the previous steps,
there is a connected somewhere injective curve C 6 ^(af"-1-1, ß8n+2). It remains

to show that this curve has the properties claimed in the proposition.
First, note that the partition conditions from earlier in this section show that if s

is small enough, then C has gn+\ positive ends. This is because one can make the

monodromy angle for a2 arbitrarily small and positive mod 1 by making s sufficiently
small, so that this claim follows by the definition of the positive partition.

We know by the formulas in section 2.3 that for any current C,

I([C]) - /o([C]) 2cr([C]) + CZ?P([C]),

where CZlTop([C]) CZz(a1 — J2j CZz(ß"J). We also know that for our
particular somewhere injective curve C we have /(C) 0. It follows from this, and
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the formulas in Sections 2.3 and 2.5, that

Jo(Ç) 2£«+2 — 4g„ + i + 2(gn - 1).

By the inequality on Jo at the end of Section 2.3 we therefore have

2(g — 1 + 8(C)) + ^(2ny — 1) < 2g„+2 — 4gn+\ + 2(gn — 1),

y

hence

2(g + x) + 5(C) 5 2(gn+2 — 3gn+i + gn) + 2 2,

where x denotes the number of negative ends of C, and we have applied the

identity (1.4). It follows that g 5(C) 0, andx 1. This proves Proposition 2.1.

3. Holomorphic curves for the product embedding

We begin by describing our cobordism and then the moduli space of interest; the

basic setup we describe here is similar to the setup in [6, §3]. We want to understand

embeddings in any dimension 2N > 6, but for the analysis in this section we will
assume that N 3. This simplifies the notation, but does not result in any loss

of generality because we will not use any index formulas which may be dimension

dependent.
Recall from Theorem 1.2 that there is an embedding

d>: E(\,bn + e) —» int(£(c,c + e)),

where bn 8ng+2 and c can be chosen slightly larger than gn+2/gn+\. Let X be

the cobordism associated to this embedding, and let X be the manifold obtained by

attaching cylindrical ends to X.
For any S we can prolong the embedding î> to a map

+: E(\,bn + s, S) —> int(£"(c, c + e)) x C,

given by

(zi,z2,z3) (0(zi,z2),z3).

The projection of the image of + to the C factor lies inside some large open
disc B2(T). The map therefore induces an embedding

E(\, bn + s, S) -> int(£(c, c + e)) x C P1 (27),

where T is some large real number that we will say more about later. It is convenient

to think of B2(T) as embedded in CP1(2T) as the lower hemisphere. We can
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remove the image of to get a symplectic cobordism M. Attach ends to M to get a

completed symplectic manifold M.
The manifold dE(\,bn + s,S) is contact, and the manifold 3E(c,c + e) x

C P1 (2T) has a natural stable Hamiltonian structure. We will study 7-holomorphic
curves asymptotic to appropriate Reeb orbits, for these stable Hamiltonian structures.

To specify these orbits, first note that we can regard the orbit ß\ from Section 2 as

an orbit on 3P(1, bn + s, S). This orbit is non-degenerate. We can regard the orbit a2
from Section 2 as an orbit on 37?(c, c + e) x C P1 (2T), by thinking of it as a2 x {p}.
The point p is chosen as follows. There is an S1 action on CP1 (27"), with a unique
fixed point in the image of the projection of our embedding to the C P1 factor. This
is the point p. It will be convenient to choose a coordinate z3 on a neighborhood of
this fixed point, such that z3 0 is the fixed point.

We now specify the set of almost complex structures that we want to consider. First
note that E{\,hn + e, S) and E(c, c + s) x CP1(2T) both have an S1 action, given
by acting on the third factor. Moreover, we can arrange it so that the embedding \jr is

equivariant with respect to this action. Thus, the manifold M has an S1 action. Later

we will want to choose J to take advantage of this. Also, we will want to choose J
so that the curves we want to study avoid the point at oo in C P1 (27"). To accomplish
this, denote by U(7") the subset

E(c,c + e) x ((CP1 (27") \ P2(P)),

where E(c,c + e) denotes the completion formed by attaching a cylindrical end.

Then, since \j/E{\,bn + e, S) does not intersect this subset, we can regard U(T) as

a subset of M.
Now first let #(P) denote the space of cobordism admissible almost complex

structures on M. Also, fix a positive real number R. Let C be a curve in M
asymototic to orbits a at (3E(c,c + £)) x CP1 (2P) and ß at 3P(1, hn + s, S). We

can define the action of C as before by

A(C) A(a)-Ä{ß).

Let &r(T) denote the space of almost complex structures such that any curve C with
<A(C) < dnR2 and one negative end has image contained in the interior of U(T)C.
Here, d g„+i.
Lemma3.1. Given R, forsufficiently large T, the space $r(T) is open and nonempty.

Proof. This is proved as in [6, Lern. 3.3],

We will now write instead of $r{T) when the explicit value of T is not
needed and all we need to know is that we have chosen T large enough so that

Lemma 3.1 applies. Now let $r C $r denote the space of P1 invariant almost

complex structures, and recall the cobordism X from 2.1. There is an inclusion
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X C M induced by the map —> {z\,Z2,p). Note that if J G $,r, then
this inclusion is /-holomorphic, as in [6, Lem. 3.17]. Also following [6], say that
a J G $r(T) is suitably restricted if its restriction to X is regular for all somewhere

injective, finite energy curves of genus 0 in A.
We can now state the main goals of this section. Given J G $r, let

Mj (gn+iot2, ßi"+2) denote the moduli space of genus 0 somewhere injective
/-holomorphic curves in M with gn+\ positive punctures and one negative puncture,
that are asymptotic to translations of a.2 at the positive punctures, and asymptotic
to ßx"+2 at the negative puncture. (Note that for curves in higher dimensional
cobordisms, we will always specify the number of positive and negative punctures
and the corresponding multiplicities, rather than just the total orbit set). In §4, we
will show that this space is compact. For S1 invariant J the moduli space Mq from
the end of Section 2.1 of curves in X is naturally a subset of Mj(gn+\a2, ßfn+2).
It turns out that both of these moduli spaces have virtual dimension 0; a discussion
of the index formulas in higher dimension is postponed until Section 4.

The first result is the following.

Proposition 3.2. If J G %r is regular and suitably restricted, then the signed count

ofelements in Mj{gn+\a.2, ß\"+2) is positive.

We prove this in Section 3.1.

We will combine Proposition 3.2 with the following.

Proposition 3.3. The set of J G $,r which are regular for M j(gn+\ct, ßfn+2) and

suitably restricted is nonempty.

This is established in section 3.2.

3.1. The moduli space for invariant almost-complex structures. Here we prove
Proposition 3.2 (modulo the compactness of the moduli space, which is deferred

to §4).

Proof. The proof is similar to [6, Prop. 3.15]. The key will be a version of automatic

transversality in this setting established by Wendl in [21].

Step 1. Splitting the normal bundle. Let C be a curve in Mj{gn+\a2, ßxn+2)-
Then C is index 0 (we will prove this in Lemma 4.2), somewhere injective, and

transverse, hence by [21, Cor. 3.17] immersed, since J is regular. Also, since C is

transverse, its projection to C P1 lives in the fixed point set (otherwise, it would not
be rigid), and thus its projection is p. Hence C G Mo- Now let N denote the normal
bundle to C. A linear Cauchy-Riemann type operator is a map:

D: r(N) -> r(r°'1c ® n).
We first claim that the bundle N splits as a sum of complex line bundles

N H ® V.
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Here, H and V are defined as follows. First, note that C is a symplectic submanifold
of M. We can therefore identify its normal bundle with a subbundle of TM |c • Now,
a point y on C either maps to the complement of the image of £(1, bn + s, S), or
to the cylindrical end dE(\,bn + e, S) x (—oo, 0], In the first case, we can write

TM\y Tn(y){X) x Tp(<CPl), and in the second case we can write TMy C3;
here jr denotes the natural projection M \ E{\, bn + e, S) —> X, and we are thinking
of dE(l,bn + s, S) x (—oo, 0] as identified with the complement of the origin
in £(1, bn + s, S). We define V to be the subbundle that is parallel to the Tp(<CPl)
factor in the first case, and the {z3} factor in the second, and we define H to be the

subbundle that is parallel to the T]t(y)(X) factor in the first case, and the {z\,z2}
factors in the second. Note that this is well-defined.

The argument in [6, Lern. 3.17] now says that this is in fact a 7-holomorphic
splitting of complex subbundles. In that argument, the map 0O is induced from an

inclusion, but it generalizes to this case without change: all we need is that the map
is induced by an embedding which restricts to the 3rd coordinate as the identity.

Step 2. Counting with sign. By Proposition 2.1, there is at least one element C
in the moduli space Mq C Mj{gn+\a2, ß\"+2)- If there are no other curves then

our proposition follows immediately from regularity of J. Assume then that there is

some other curve C'. We claim that C' counts with the same sign as C. To compute
the difference in sign between C and C', we identify their normal bundles, and

choose a family of linear Cauchy-Riemann type operators interpolating between their
deformation operators, with the same asymptotics. As in [6, §3.3.1], the difference in
sign is then given by computing a sum of crossing numbers; these crossing numbers

are computed at parameter values where the relevant Cauchy-Riemann type operator
has a nontrivial cokernel.

By Step 1, as in [6, Lern. 3.17], the deformaton operator for either C or C' splits
as a sum with respect to this splitting:

We can choose our interpolating family D{t) to respect this splitting and hence define

corresponding D(t)n and D(t)y. Now let D(to) be some operator in this family.
Then we claim that the cokernel of D(to) is trivial. This is because the normal
Chern numbers of the operators Dn(to) and Dy(to) are negative, so we can appeal
to [21, Thm. 1 ].

To see why they are negative, let us first recall from [21, Eq. 1.2] that the normal
Chern number is given by

where #T0 denotes the number of punctures with "even parity". In the case where all
the ends are at nondegenerate orbits, even parity means that the corresponding orbit

2 + 2g + #T0, (3.1)



Vol.93 (2018) Symplectic embeddings of products 19

has even Conley-Zehnder index; the Morse-Bott case, which we will also need, is

more complicated, and is explained in [21, §3.2],
Now note first that we can identify the bundle H with the normal bundle to C

in X, and by the conditions on J, we can choose this identification such that the

operator Dn(to) agrees with the linearized deformation operator for C in X and in

particular has the same asymptotics. Thus, in this case, the normal Chern number
is -2, by (3.1).

As for the operator Dy(to), note that the stable Hamiltonian structure on

dE(c, c + e) x C P1 restricts to a stable Hamiltonian structure on cr2 x C P1. The

operator Dy(t0) is asymptotic at any positive puncture qi at a Reeb orbit a2 x {p} to
the asymptotic operator on TP(C Pl)\a2x{p} induced by the Reeb flow for this stable

Hamiltonian structure.
To finish the proof of the claimed fact, we need to show that the orbit at qt has

odd parity. Referring the reader to [21, §3.2] for the definition of the parity, note that

we can choose a trivialization for Tp(<CPl) such that this asymptotic operator is i dt,
where t is the angular coordinate near the puncture, so if we perturb this operator
by adding a constant, the perturbed operator will have odd Conley-Zehnder index,
and therefore does not contribute to the #To term in (3.1). Thus, the normal Chern
number is —2 in this case as well, so the operator Dy(to) cannot have a nontrivial
cokernel, so we are done.

3.2. Regular and invariant structures exist. Here we prove Proposition 3.3, that

is, we establish the existence of suitably restricted almost-complex structures J e
that are regular for curves in Mj(gn+i&2< ß\"+2).

We follow the methods of [6] closely, and the first observation is that standard

transversality arguments imply the existence of suitably restricted almost-complex
structures J which are regular for curves in Mj(gn+1&2, ßf"+2) which are

orbitally simple, that is, curves which intersect at least one orbit of the S1 action

exactly once and transversally, see [6, §3.3.2].
We may suppose that our embedding <I> extends to a slightly larger ellipsoid

(1 + 8)E{\,bn + e). Denote by

E <Î>(9(1 + S)E(l,bn + s)) xCPl(2T).

This is a stable Hamiltonian hypersurface in M. Furthermore, the same transversality
arguments allow us to find suitably restricted JK e which are regular for orbitally
simple curves and also satisfy the following conditions:

• The almost-complex structure JK is stretched to length K along E;

• Away from E the JK converge smoothly to a fixed almost-complex structure;

• On (E{c,c + e) \ 0((1 + 8)E(\,bn + e))) x CPl(2T) the natural projection
n: M —>• X is /^-holomorphic.
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Proposition 3.3 now follows from the next proposition.

Proposition 3.4. For K sufficiently large, all curves in Mjfc{gn +i&2> ßi"+2) are
orbitally simple.

Proof. The proof is analogous to [6, Proposition 3.18]. We argue by contradiction
and suppose uk is a curve in Mjk(gn+ioi2. ß\"+2) which is not orbitally simple.

Taking a limit as K -» oo the compactness theorem of Symplectic Field
Theory [1] implies that a subsequence of the uk converges to a holomorphic building
with components in the completion A of

<5((1 + 8)E(\,bn +£)) xCP\2T)\f(E(l,bn +e,S)),

the completion B of

(E(c, c + e)\ <5(0 + 8)E( 1, bn + e))) x CP\lT)

and possibly the symplectizations of df (E(\, bn + s, S)) and S and 3E(c,c + e) x
CP1 (270.

Let Sk uf} (B). Since uk is not orbitally simple, the map n o uk\sk is

a branched covering onto its image of degree at least two. The degree is constant

on each component and by the asymptotic behaviour of the uk near their positive
punctures we see that the degree is bounded by gn+i The convergence implies
that for the limiting curves v mapping to B the projection n o v is also a nontrivial
multiple cover.

Suppose that n o v is a multiple cover of a finite energy curve w mapping to the

completion of E(c,c + s) \ <5((1 + 8)E(\,bn + s)). Counting with multiplicity
suppose that w has k positive ends, / negative ends asymptotic to ß\ and m negative
ends asymptotic to multiples of ß2. Then up to terms of order e, 8 the curve w has

symplectic area

7 Sn+2 j gn+2
k / — m

gn+1 gn

As the curves uk have action of order s, so does w and therefore the expression
above is 0. Hence

Sn+2
(kgn - mg,,+i) Z.

gngn-\-1

Now, consecutive odd index Fibonacci numbers are coprime. Therefore gn+\\ (kgn —

mgn.fi) and k is a multiple of gn+\. Butu is a limit of the uk, and the limit of the uk
in the levels above B has positive area. Hence v can have at most gn+i positive ends,

and if it does have gn+\ positive ends they must be simply covered. As we have

seen that w must also have gn+i positive ends this contradicts our assumption that v

covers w nontrivially and completes the proof.
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4. Compactness

Continue to consider the manifolds M and X from the previous section, only we

now allow any N > 3 as a parameter in their construction, rather than restricting
to the case N 3 as we did in that section. Hence now M is a completion of
E(c, c + s) x C P1 (2T)n~2 with the image of an embedding ij/ removed, where

f: E{\,bn+e,S,...,S)-+ int(E(c, c + e)) x C P1 (2T)N~2.

Similarly to Section 3 we choose coordinates on CP1(2T)N~2 such that the fixed

point of the (S1)^-2 torus action is z3 • • • z# 0. By choosing T
sufficiently large, by Lemma 3.1 we need only consider curves whose projection
onto CP1 (2T)n~2 lies in the affine part C^-2.

Let a/ and ß ; be the embedded closed Reeb orbits on 3E(c, c+s) and dE(\,bn+s)
as in the previous sections, and continue to denote an r-fold cover of a simple Reeb

orbit y by yr. We denote by aI>u, the Reeb orbit

a.i x {w} C 3E(c,c + s) x C P1 (2T)JV~2

and ßi will also denote a Reeb orbit in

dE(\,bn+s,S,...,S)

using the inclusion E(\,bn+s) C E(\,bn+s, S,..., S). We fix an almost complex
structure J which is compatible with the symplectic form and has cylindrical ends.

Define

M(J) M(a[\...,a["\as2l,...,a2n2-,ß[\...,ß[n3,ßZl,...,ßU2"4-,J)

to be a certain moduli space of /-holomorphic spheres in M with «i+«2 + «3+«4
punctures, quotiented by reparameterizations of the domain. Specifically, require
curves u e M(J) to have n\ positive punctures asymptotic to covers of some a\tW,
with the i th one covering the simple orbit r2- times. Similarly there must be «2 positive
punctures asymptotic to covers of the ci2,w and so on.

The goal of this section is to show that for the relevant values of the r,, Si, f;,
and Ui, the moduli space M{J) is sequentially compact, as is a related moduli space
associated to 1 -parameter families of almost-complex structures, see Theorem 4.7. To

do this, we first need formulas for the virtual index of holomorphic curves in various
cobordisms. The index formula for holomorphic curves in symplectic cobordisms

can be found for example in [3]; the formulas in the case of ellipsoids were worked

out in [6].
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Proposition 4.1. For S sufficiently large and e small, the virtual deformation index

ofcurves u e M(J) is given by

index(w) (N — 3)(2 — n\ — n2 — n3 — nf)
"i

;' 1

«3

1=1

r,c(2r,- +2
_c + e

f U
2ti +2

_bn + £

n 2

i=1
«4

2si +2
Si (c + £)

+ N - 1

V c J

— y ](2uj + 2 [m,- (bn + e)J + N — 1

i 1

«2

2(yV - 3) + 2n2 - (2N - 4)«3 - (2N - 4)n4 + 4 +4X>
i=i i l

n3

1

L
I U +

_bn + £
_

\ «4

J - 2^(m! + |w;(è„ +£)J)
2 i' l

We note that this index is always even. Here is an immediate application of
Proposition 4.1 that we will need:

Lemma 4.2. Let M(J) — M(a2, a2, ßf"+2', J) with gn+1 copies ofa2, and let

u M (J). Then index(w) 0.

Proof By Proposition 4.1, we have

index(u) 2{N - 3) + 2gn+x - (2N - 4) + 4gn+l - 2[ gn+2 +

—2 + 2gn + 1 + 4gn+1 — 2(gn+2 + gn - 1)

2(3gn + l - gn+2 - gn) 0.

In the last line, we have used a standard Fibonacci identity.

£n-\-2
1 gn+2 +

ffin + £_

There are similar moduli spaces of curves in the cylindrical manifolds
3E(c, c + e) x (C x M and dE(\, bn + e, S,..., S) x E that we will want
to study, where the almost complex structure is assumed M-invariant.

In the first case we study moduli spaces

^baii(^) M{af ccj"1, (*2 ' at\ ' • • • ' ai"3 'a"1 ' • • • '
w""4

' J)

of curves in 3E{c,c + e) x (CP1)^-2^ x JR. Note that, as before, we only require
the ends of our curves to lie on the Morse-Bott families corresponding to the ar- (that
is, we are not specifying a particular orbit). The analogue of Proposition 4.1 in this

case is the following.
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Proposition 4.3. The virtual deformation index of curves u JvCb-d\\(J) is given by

index(w) (N — 3) (2 — n \ — n2 — n 3 — nf)
«1

r=i
«3

i=i

rtehn+2
_c + e_

Ucllti+2
_c + e

_

n 2
Si (c + s)

Ui(c + e)

+ N - 1

- N +3

«3 «4

+ N — 1 j + y ' I 2si + 2
' i=i ^

+3) +2
' i=i ^

n\ 12

2(V — 3) + 2iî2 + 2/13 + 4 y '
r,- + 4 y '

.v; — 4 ^ — 4 y '
m,-

i l i=l i l i l

The following is an important application of Proposition 4.3.

Lemma 4.4. Let u e M^A\\(a2, o^; y ; /); tftat /.v, Zef u be a curve with positive
ends simply covering a2 and a single negative end y, which may be a cover. Then

index(u) > 2(N — 2) + 2(c — 1), where c is the covering degree of the end in the

case when it covers a2 and is 0 otherwise. Moreover, there is equality ifand only ifu
covers a cylinder over y a2.

Proof. First we suppose y a[ and u has k positive ends. Then by Proposition 4.3

index(u) 2(N — 3) + 2k + 2 + Ak — Ar

2(N - 2) + 6k- 4r.

But by area considerations, we may assume k > r and so the index is strictly greater
than 2(N — 2).

Now we suppose y a2 and still u has k positive ends. Then

index(w) 2 (N — 3) + 2k + Ak — 4 r
2(N ~ 2) + 6k — 4r ~ 2.

Again as k > r the index is at least 2(N — 2) + 2(r — 1), but now we have equality
only if k r, which implies that u covers a cylinder.

We can do a similar analysis for curves in dE{\,bn + e, S,..., S) x R. The
relevant moduli spaces are now denoted

^eiiip (J) M(ß? ,...,ß[ni,ßs2\...,ßs2"2-,ß[1,..., ß["3 ,ßu2\..., ß2"4 ; J),f22-,ß\'

and the corresponding index formula is as follows:
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Proposition 4.5. The virtual deformation index ofcurves u G Me\wp{J) is given by

index(w) (N — 3)(2 — n\ — n2 — »3 — «4)
«1

i 1

«3

i l

f r;hn+2
+ £_

U
I 2tj + 2

_bn + s
_

X "2
+ N — 1 j + y '(2a'; + 2[.V,-(bn + e)J + Af — 1)

' i l
x «4

+ Al — 1 j — ^ ffLuj + 2[iii(bn + e)J + A' — 1)
' i=l

2(N - 3) + 2«! + 2n2 - (2N - 4)n3 - (2N - 4)n4
n 1

+ 2I]( A' +
i 1 ^

«3 /-2^U- +
1=1

+ e

u

b„ + e
_

n 2

+ 2 y^(.Vj + L's'i (A« + e)J)
1=1

n4

— 2 y^fuj + Lm/(A„ + e)J).
i l

Here is an important application of this that we will need:

Lemma 4.6. Let m e ^eiiipO^i',..., ßj"1, ßsf ßj"2; ßsx"+2\ J); that is u has

arbitrary positive ends, Lut Lav on/y a single negative end covering ß\ gn+2 times.

Then index(w) > 0, with equality if and only if u also has a single positive end

covering ßf"+2.

Proof. By Proposition 4.5, we have

LLL /
index(w) 2{N — 3) + 2« 1 + 2n2 — {IN — 4) + 2 I r, +

i=i ^
«2

+ 2 y>, + [.s',-(A„ + e)J) — 2| gn+2 +
7 1

«1 X

2«! + 2/7 2 + 2 ^ I r,

bn + e

gn+2
bn + e

i 1
+ £

+ 2 + LSiipn + e)J) — 2(g„+2 + gn)
i l

/ ">
r. X "2

> 2f ^ (ri + —j + J> + .S'iA« + 1) — g„+2 — 5"/;

i=l " i \

with equality here if and only if Ltr+lJ Tf ~ ^ an^ Lsi(^n + £)J $ibn for all i.
These conditions hold if and only if jf- and Sibn are always integers.

Now, the area inequality for holomorphic curves implies that

n 1 n 2

Y2 n + yr st {bn+s) > gn+2
i 1 i 1
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and hence for a small choice of e we have

n \ «2 n\ n2

+È Sih" - Sn+2 and + Si > ^y1 gn

i l i l 1 1 " i l "

It follows that index(u) > 0 with equality only if ri2 0 and ri Sn+2-
We claim that in the case of equality each r, > gn+2 As J2ri Sn+2 this

immediately implies that there is a single positive end and completes the proof of the

lemma.
To justify the claim, to have equality we have seen that each r, must be a multiple

of/i„ —pt-, so if the claim were false and some r, < gn+2 then gn+2 and gn have

a common factor. Using the identity 3gn+i gn+2 + gn we see that either this

common factor is 3, or all gn share a prime factor, which is certainly not the case.

However, in fact none of the gn are divisible by 3. This is implied, for example,
by the Fibonacci identity g2 + g^+x — 3gngn+\ —1 (which is shown in [17]),
since —1 is not a square mod 3.

Now we choose a generic family {Jt} of admissible almost-complex structures

on X, all equal outside of a compact set, and study the universal moduli space
M {(M, Ol [u\ e Ms(Jt), t [0,1]} where MS{J) C M{ci2, &2, ß8xn+2\ J),
consists of somewhere injective curves, with the notation as in Lemma 4.2. The main
result of this section is the following.

Theorem 4.7. M is compact.

Proof.

Step 1. Gathering together curves into components of the holomorphic building.
By the compactness theorem in [1], the limit of curves in M is a holomorphic building
consisting of curves in M and perhaps multiple levels of curves in dE(c, c + e) x

p i)iV—2 x ]g> ancj q_ £) s,..., S) x 1 with matching asymptotic limits.
For the purposes of our index calculations, it will be convenient to think of certain

subsets of curves with matching ends as glued together to form a single component.
This is done as follows:

(1) Any two curves which both lie in levels of 3E(c,c + e) x (CPl)N~2 x R or
both lie in levels of dE(\, bn + s, S,..., S) x R and have a matching end are

glued together to lie in the same component.

(2) Any component without negative ends will be glued with the higher level curves
which match its positive ends, and the resulting component will be thought of as

a component in the higher level.

To help avoid confusion we will always denote these components with upper
case letters and individual curves by lower case letters. Note that Lemmas 4.4
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and 4.6 apply also to components mapping to 3E(c, c + e) x (CP1)N~2 x M and

3£(1, bn + s, S,..., S) x M defined as above.

After these identifications we will end up with components mapping to M,
each with a single negative end, a single component (perhaps trivial) mapping to

dE(\,bn + s, S,..., S) x M with a single negative end asymptotic to ßsxn+2, and

perhaps a union of components mapping to 3E(c,c + s) x (CP1)^-2 x R. Each

of the components in 3E(c,c + e) x (Ci31)*-2 x R has positive ends asymptotic
to a2 and a single negative end. The control on the negative ends follows because we

are taking limits of curves of genus 0.

Note, however, that it is certainly possible that curves in M (and 3E(c, c + s) x
(Cpx)N~2 x R) have multiple negative ends.

Step 2. Index estimates. We will obtain a useful estimate for the index of curves
in M, and as a result for the index of components in M.

Suppose that a limiting curve u in M lies in a moduli space

At (a j1,.
r" 1 s 1

ckj a2
u 1

2 ' ß^-j).
For generic 1-parameter families of almost-complex structures we may assume

that somewhere injective curves in M have index(n) > —1. Then since all indices

are automatically even we have that in fact the index is nonnegative.
In general, suppose that a curve u is a degree k multiple cover of a somewhere

injective curve u. Suppose this curve lies in

ccj"', aj1. • a22; ß'i ' • • • ' ß"3 ' ß\

This means that the positive ends of u asymptotic to multiples ofa\ can be partitioned
into n\ blocks according to which end of u they cover. Thus the sum of the r, in the

first block add to kr\ and so on, and similarly for the other limiting orbits.

Proposition 4.1 gives us the index of u as follows:

«4)

2«,
rMn

2 4;/).

index (m) (N — 3) (2

2 + 2

n i

E
1 1

n3

E
i=i

«1 - «2

he

2U

c + e

bn + e.

n 3 -
+ N - 1

1 1

n4

(2?'+ 2
Si (c + s)

+ A - 1

c J

\
+ N — 1

J — ^ ](2uj + 2 \_Ui (bn + e)J + A — 1)
'

i=i
n 1

2(A - 3) + 2nz - (2A - 4);73 - (2A - 4)n4 + 4 ^G +4^7,-
1 1 i 1

«3

_2Z1 ^ +
1=1

bn + s

x «4

j -2 ^(m; + L"i+ s)J).
2 i=i

(4.1)
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By combining Proposition 4.1 and (4.1), and using ri k pi, together with
similar formulas, we get:

index(n) kindex(w) + 2(1 — k)(N — 3) + 2 (n2 — kn2)

+ 2(N — 2)(kn3 — nf) + 2 (N — 2)(kn4 — n 4) (4.2)

With this formula in hand for curves in M we proceed to consider components
in M.

Let us assume that a component C in M consists of curves in M for 1 < p < P
and components Wq in 3£(1, bn + e, S S) x E for I < q < Q. We assume
that the negative end of the component is the negative end of ul asymptotic to ß.
The assumption here is that this negative end is asymptotic to a cover of ß 1 ; the case
when it is asymptotic to a cover of ß2 follows by the same argument.

We denote the numbers of ends and covering numbers of curves up using the

same notation as above but with a superscript p. We define V3 YLPnf and

V4 YlpnA- The total number of matching ends with components Wq is then

Nj + N4 — 1 (because one end is unmatched), and each negative end of a up (except
the first end of n1) matches with a positive end of one of the Wq. Finally, as the

component has genus 0 we must have P + Q V3 + N4.

As above, up will be a degree kp cover of a somewhere injective curve îtp, and

we use the natural notation to describe the up.

Our key index estimate can now be stated as follows.

Lemma 4.8. index(C) > 2^p{n^ — kpn^) with equality if and only if the

component C contains no curves Wq.

Proof. We sum over all curves to get the total index of our component. For curves
in M we use formula (4.2) and the fact that somewhere injective curves have

nonnegative index. The index of components Wq in dE(\,bn + e, S,..., S) x M

with no negative ends is given by Proposition 4.5 with n3 «4 0. After summing
we end up with

2 ^2 [ui (bn + e)J +2k^2 L"/ (K + £)J

; 1

index(C) > 2(P - ^H)(V - 3) + 2 J](«f - kpn%)
p p
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+ 2{N -2)1 ^kpnp -N3 +2{N -2)i ^kpn\ - N.

-2
bn + £

+ 2 £*'
l,p

t

bn + £
+ + e)J (4.3)

i,p

+ 2Q(N — 3) + 2(A^3 — 1) + 2A^4 + 2 ^ ' tp + 2 ^ ' u^.
(i,p)#(l,I) i,p

The last line in (4.3) corresponds to terms in the index formulas for lower level

curves which do not immediately cancel with terms in (4.2).
We get a rougher estimate by ignoring all nonnegative terms corresponding to the

matching ends. Suppose that our unmatched end covers the end corresponding to tj
on m 1. Gathering multiples of (N — 3) this results in

-index(C) >(N — 3)(p + Q — ^2^P 4" ^2,^pnp — ^3 + 4 ~~ ^a
2 ^

p p p

+ 2 _ kpnp + ^ Y2 kpnp - yV3^

^kpnp - Na\
r> '

t

bn + £
+ k1

t}
'?n + £.

(4.4)

Note that we have equality in the above formula only if there are no matching
ends in our component. Using the identity P + Q N3 + N4 and removing more
nonnegative terms (in particular the (N — 3) factor) we get

-index(C) > (N — 3)( — ^2,kP + ^^kpnp + '^jkpn^\ + ~ kpnp)
2 ^

p p p
2

p

+ ^^(kpnp — np) — -—-— + k1

p

> ^^(«2 — kpnp) + kln\ — n\ —
3« + £.

bn + £

+ kl

bn + £.

n
Pn + £.

(4.5)
Suppose the unmatched end of C locally covers w1 with degree I < k1, that

is, t\ lT\. Then using the inequality l[f J — |_jcJ > —/ + 1 (which follows, for
J\ t\

example, from "Hermite's identity") we have that /c1 L^+iJ — —+ 1
• On

the other hand kln\ — n\ is at least kl minus the number of ends covering the first
end of u1, which is at most 1 + (k1 — I). We conclude that

index(C) > 2 ^(«2 —kpnp)

with equality only if there are no matching ends and the proof is complete.
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Step 3. Completion of the proof. Note that although the term J2p(n2 ~ k.pn^) in
Lemma 4.8 could be negative, it is bounded from below by

<4-6)

Up

where we recall that the sf are the covering numbers of the limits of our component
on a2. There is equality here if and only if all Jf 1.

We can now complete the proof of Theorem 4.7.

The index formulae and matching conditions of the compactness theorem [1] for
finite energy curves imply that the sum of the indices of the limiting components,
minus 2m(N - 2), where m is the number of ends matched on dE(c,c + e) x
(C/"1)®-2, is the index of curves in M, which is 0 by Lemma 4.2. Note that
the 2(N — 2)m term here comes from the fact that the index formula from Lemma 4.4

is for curves whose ends are allowed to vary in the corresponding Morse-Bott family.
We also recall that with our identifications m is also the number of components in
dE(c,c + s) x (CP'pxl.

Adding the inequalities from Lemmas 4.4, 4.6 and 4.8 however, this sum is at

least

m

(2m(N - 2) + 2 J^icj ~ 0) + 0 + 2 - kpn%)
7 1 P

m

> 2m(N - 2) + 2 - 1)) - 2 - 1). (4.7)

7=i Up

Following the notation in Lemma 4.4, here cj denotes the number of times the

negative end of the / th component in dE(c, c + s) x (C pl)N~2 x M covers a2.
The matching conditions in a holomorphic building imply that each negative end

of a component in BE(c, c + s) x (C/>1)A~2 x M is matched with a positive end of a

component in M and hence Y^j \(cj ~ 0 T2i P(sï ~ 0 and equation (4.7) says
that the sum of the indices of the limiting components is at least 2m(N — 2). Thus

inequality (4.7) is an equality and so are the constituent inequalities coming from
Lemmas 4.4, 4.6 and 4.8.

Equality in Lemma 4.4 implies that the components in dE (c, c + s) x (C P1 )N~2x M

are covers of trivial cylinders. Trivial cylinders have action 0 and so we can also see

that there was no gluing of lower level curves (which necessarily have positive area)

to construct these components.
Equality in Lemma 4.8 shows that there was no matching to construct components

in M, and we see by Lemma4.6 that any components in 3£'(1, bn + s, T,..., T) xl
must be trivial cylinders. In conclusion the only limiting curve of nonzero action is

a single curve in M.
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To finish the proof we need to show that the components in 3E(c, c + s) x
(C pl)N~2 x M are in fact trivial cylinders, rather than nontrivial covers, and hence

we have compactness as required. To this end we claim that the limiting curve
in M is somewhere injective. For a generic choice of almost-complex structure this

implies that the curve has nonnegative index and so we can replace the term (4.6)
in equation (4.7) simply by 0. The remaining sum is equal to 2m (N — 2) only if
all cj —— 1, that is, the curves in 3E(c,c + s) x (CPÏ)N~2 are trivial cylinders.

Assume to the contrary that the curve in M is a multiple cover of degree k of some

underlying curve ü. For equality in the index formula, we have seen that the positive
ends of u must be simply covered, and so there are exactly gn+i/ k such ends. There

is a single negative end asymptotic to ß\n+2 k. By our identity 3gn+\ gn+2 + gn »

we can then see that k actually divides all gn. This is a contradiction.

Note that the same argument gives that the moduli space Mj{gn+1«2, jßf"+2)
from Proposition 3.2 is compact, as promised.

5. Proof of Theorem 1.1

Proof. Suppose there exists a symplectic embedding

XE(l,bn + s,S,...,S)<^ B4(c)xCn~2 C E(c,c + s)xCn~2. (5.1)

Here c yy, A > 0 and S is chosen sufficiently large that the moduli spaces

described in Section 4 all have dimension 0 or 1 as claimed.

Arguing as in [6, Lemma 3.1], there exists a smooth family of symplectic
embeddings

(pt:X(t)E(\,bn+e,S S) E(c, c + e) x CN~2

where A(0) 1 and0o is a product embedding as discussed in Section 3, and A(l) A

and <f>i 0 is the embedding (5.1). By slightly enlarging c to gn+2/gn+i + s' if
necessary, we can assume that has image in int(£'(c,c + e)) x <CN~2, and by

choosing T sufficiently large, in some int(l?(c, c + s)) x C P1 (2T)N~2.
Associated to these embeddings we choose a smooth family of almost complex

structures Jt on the corresponding completions of E(c,c + e) x CP1 (2T)N~2 \
4>t{X{t)E(\,bn + s, S,..., S)). We can view this family as a family of almost

complex structures on M, and we can assume without loss of generality that all
these almost complex structures are equal outside of a compact set. We can then

consider the universal moduli space M {([m], 01M e G [0,1]} as

in Theorem 4.7. By Proposition 3.3 we may choose Jq as in Proposition 3.2 so

that Ms(Jq) represents a nontrivial cobordism class. Thus, by Theorem 4.7,

is also nontrivial.
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The action of curves in M{J\) is

gn+l(c + e) - Xgn+2 gn+lO — A) + (fi + s')g„+1-

Therefore since holomorphic curves have positive action and s and s' can be chosen

arbitrarily small we see that A < 1. This then implies Theorem 1.1 by Lemma 1.3.
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