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Torsion order of smooth projective surfaces
(with an appendix by J.-L. Colliot-Thélène)

Bruno Kahn

Abstract. To a smooth projective variety X whose Chow group of 0-cycles is Q-universally
trivial one can associate its torsion order Tor(A), the smallest multiple of the diagonal appearing
in a cycle-theoretic decomposition à la Bloch-Srinivas. We show that Tor(A) is the exponent
of the torsion in the Néron-Severi group of X when A is a surface over an algebraically closed
field A:, up to a power of the exponential characteristic of k.

Mathematics Subject Classification (2010). 14C25, 19E15.
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1. Introduction

Let X be a smooth projective irreducible variety over a field k. Assume that

C//0(^;t(.v))(8>Q —> Q: this is the strongest case of "decomposition of the diagonal"
à la Bloch-Srinivas [5], To X is associated its torsion order Tor(A), the smallest

multiple of the diagonal of X appearing in such a decomposition (Definition 2.5).
This number is also studied by Chatzistamatiou and Levine in [6],

The integer Tor(A) kills all normalised motivic birational invariants of smooth

projective varieties in the sense of Definition 2.1 (Lemma 2.6). In particular, away
from chark, the exponent of the torsion subgroup of the geometric Néron-Severi

group of X divides Tor(A) (Corollary 6.4); the main result of this paper is that we
have equality when A is a surface and k is algebraically closed: this result was
announced in [12, Remark 3.1.5 3)]. In the special case where Tor(A) 1, it was
obtained previously in [17] and [1] (see also Theorem A.l in the appendix).

The equality follows from a short exact sequence (Corollary 6.4(a)):

0 -> CH2(XHX))lors -> Tor [H2{X), H\X)f
->4(1x1, Q/Z(2))->0 (1.1)

where H*(X) is Betti cohomology of X with integer coefficients in characteristic 0

(for simplicity; in positive characteristic, use /-adic cohomology). It also shows that
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CH2{Xk(x))iors is finite (away from the characteristic of k), with a very explicit
bound.1

The exact sequence (1.1) is a special case of a more general one appearing in
Theorem 6.3, which implies in particular the finiteness of CH2{Xk(7))t0rs for any
other smooth projective Y, and an explicit bound on its order. See Theorem A.6 for
another proof of this finiteness, and a different bound.

Acknowledgements. I thank Arnaud Beauville, Luc Illusie and especially Jean-

Louis Colliot-Thélène for helpful exchanges. (See Remark 6.6 for further comments.)

2. Basic properties of the torsion order

2.1. Review ofbirational motives. We fix a base field k, and write SmproJ= Smproj (k)
for the category of smooth projective A:-varieties. Recall from [12] the category
Chow°(k, A) of birational Chow motives with coefficients in a commutative ring A:
there is a commutative diagram of functors

where ChowefF(/c, A) is the covariant category of effective Chow motives with
coefficients in A (opposite to that of [16]), and Horn groups in Chow°(fc,A) are
characterized by the formula

Chow°(k,A){h°(Y),h°(X)) CH0(Xk(Y)) ® A

for 1,7 e SmproJ(k) (with Y irreducible). When A Z, we simplify the notation
to Choweff(k), Chow°(k), or even Choweff, Chow°.

2.2. Motivic birational invariants. Let X e Smproi (k) be irreducible, with

this condition is equivalent to Bloch-Srinivas' decomposition of the diagonal relative
to a closed subset of dimension 0 [5], By [12, Prop. 3.1.1], this means that the
birational motive h°(X) of X in the category Chow"(/c, Q) is trivial, i.e. that the

projection map h°(X) —> /i°(Spec k) =: 1 is an isomorphism in Chow0(A;, Q).
Then CH0(XK) ® Q Q for any field extension K of k (loc. cit. Condition (vi)).

'It would be interesting to completely determine CH2(Xiç(x))iors'- for example, when X is an
Enriques surface and chark 0, is it Z/2 or (Z/2)2?

Sm(k) —^-3» Choweff(/t, A)

Chow°(/c, A)

CH0{Xk(x)) ® Q Q :
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To such an X, we want to associate a numerical invariant. To motivate it, let us
introduce a definition:

Definition 2.1. A motivic invariant of smooth projective varieties with values in an

additive category is a functor F : SmproJ A which factors through an additive
functor Choweff —> A. We say that F is birational if it further factors through
Chow0. The invariant F is normalised if F(Spec k) 0.

Remark 2.2. If X, Y e Smproj are (stably) birationally equivalent, then h°{X) ~
h°(Y) in Chow0 [12, Prop. 2.3.8], Hence, to be a motivic birational invariant is

stronger than to be a (stable) birational invariant. It is much stronger: h°(S) -^4 1

for S the Barlow surface [2], a complex surface of general type.

Examples 2.3. (a) For any cycle module M* in the sense of Rost [15], any K 2 k
and any neZ,Ih> A°{Xk, Mn) (resp. X Aq(Xk, M„)) defines a contravariant
(resp. covariant) motivic birational invariant with values in Ah, the category of abelian

groups [12, Cor. 6.1.3],

(b) In particular, for M* (MilnorK-theory), the functor X Aq{Xk, Mq)
CHq{Xk) is a motivic birational invariant. When K k{Y) for some Y e Smproj,

this is also obvious by the intepretation of CH0(Xk) as Chow°(h°(Y),h°(X)).

(c) Given a contravariant motivic invariant F, we get two (contravariant) normalised
invariants by the formulas

F(X) Ker (F(k) -> F(Xj), F(X) Coker (F(k) -> F(X))

and similarly for covariant motivic invariants:

F(X) Coker (F(X) -> F(k)), F(X) Ker (F(X) -» F(k)).

They are birational if F is birational.

(d) Suppose that F is a motivic invariant with values in the category of Z[l/p]-
modules, where p is the exponential characteristic of k (or, more generally, in a

Z[l/j?]-linear additive category); assume F contravariant to fix ideas. Then F is

birational if and only if, for any Y e Smproj, the map F(Y) -» F(Y x P1) is an

isomorphism. This follows from [12, Th. 2.4.2].

Definition 2.4. The category Chow°orm is the quotient of Chow0 by the ideal

generated by 1.

Thus a motivic birational invariant is normalised if and only if it factors through
Chow°orm.

Let M,N 6 Chow0. By definition, Chow°orm(M, N) is the quotient of
Chow°(M, N) by the group of morphisms / : M N which factor through 1. If
M h°(Y) and N h°(X), this gives

Chow°orm (h°(Y), h°(X)) ~ Coker (CH0Q() -> CH0(Xk(Y))).
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2.3. The torsion order. If now the birational motive of X is trivial in Chow0(k, Q),
then the image of h°(X) in Chow°orm is torsion; in other words, there is an integer
11 > 0 such that n\h°(x) 0 in Chow°orm(/t°(Z), h°(X)).
Definition 2.5. The smallest such integer n is called the torsion order of X, and

denoted by Tor(X). We extend this to arbitrary (connected) X by setting Tor(X) 0

if h°(X) is not trivial in Chow°(fc, Q).
If p is the exponential characteristic ofk, we write Tor^ (X) for the part of Tor(A)

which is prime to p (so Torp (X) Tor(X) if char k 0).

In Chow0, the identity morphism 1 h°(X) is given by rjx e CHo(Xk(x))i where r]x
is the generic point viewed as a closed point of Xk(x)- This gives a concrete

description of the torsion order:

Lemma 2.6. Suppose that CHq(X]c(X)) ® Q Q- Then the torsion order of X is

the order n ofrjx in the group CHo(Xk(x))/CHo(X) (it is 0 if and only ift]x has

infinite order). Moreover, we have nF(X) — 0for any normalised motivic birational
invariant F. In particular,

nCH0{XK)0 0 for an? K^k
C Ho (A J

deg
where CH0(Xk)o — IS£.ï(CHq(Xk:) —> Z).

Proof. The first and second statements are tautological; the third follows as a special
case of the second.

2.4. Torsion order and index. Another important invariant is:

Definition 2.7. The index of an irreducible X e Smproj is the positive generator of
Im(deg : CHq(X) -> Z). We denote it by I(X).
Proposition 2.8. Let X e Smprqi, irreducible. Write n for its torsion order and d for
its index.

(a) IfF is a motivic invariant and F is as in Example 2.3(c), then we have d F(X)=0.
(b) n is divisible by d.

(c) Suppose CHoiXk^x)) ® Q Q- If x e CH0(X) is an element of degree d,
then m(xk(x) — drjx) 0 in CHo(Xic(x)) for some m > 0, andn \ md.

(d) Ifd — 1 and m is minimal in (c), then n m.

Proof. (a) Suppose F is contravariant. Let a e F(k) be such that n*a — 0,

where n : X -> Spec k is the structural morphism. If x e CHo(X) is an element
of degree d, it defines a morphism x : 1 -» h°(X) such that n o x d. Hence
da 0.
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(b) A diagram chase yields an exact sequence

CH0(X)o -» CH0(Xk(X))0 -> CH^{^ ^Z/d^0 (2.1)

where CHo(Xx)o was defined in Lemma 2.6 and the last map sends the class of r]x
to 1.

(c) The first claim follows from (2.1), and the second follows from pushing this

identity in CH0(Xk(x))/CH0(X).

(d) If d 1, (2.1) yields a surjection

lY CHo(Xkm)
o( km)o CH„(X)

'

Let y eC//o(Xfc(x))o mapping to the class of r]X. This means that rix—y — Xk(X)
forsomex e CH0 (Z), and necessarily deg(x) 1. By Lemma 2.6, we have «y 0

so the conclusion is true for this choice of x. But if x' e CH0(X) is of degree 1,

then n(x' — x) 0 hence the conclusion remains true when replacing x by x'.

Remark 2.9. When d 1, we can avoid the recourse to the category Chow°orm: in
this case, the morphism h°(X) 1 is (noncanonically) split, hence we may consider
its kernel h°(X)o e Chow0. The endomorphism ring of this birational motive is

canonically isomorphic to CH0(Xk(X))/CHo(X).

2.5. Change of base field and products.

Proposition 2.10. Let K/kbe afield extension. Then:

(a) Tor(Aji:) | Tor(Z).

(b) Ifk and K are algebraically closed, then Tor(Z^) Tor(Z).

Proof, (a) is obvious, and (b) follows from the rigidity theorem for torsion in Chow

groups [13],

Proposition 2.11. For any connected X, Y e Smpr°i Tor(Z x Y) | Tor(Z) Tor(L).

Proof. If Tor(Z) 0 or Tor(T) 0, this is obvious. Otherwise, let m > 0

(resp. n > 0) be such that mlh°(X) (resp. n\h°(Y)) factors through 1. Then

mnlho(XxY) tn\h°(X) <8> factors through 1 <g> 1 1.
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3. Torsion order for cycle modules

For any abelian group A, write

exp(A) inf {m > 0 | m A 0}

and, by convention, exp(A) 0 if no such integer m exists. Also write

exp^(A) exp (A[\/p)).

3.1. General case. We refine the notion of torsion order as follows:

Definition 3.1. Let M be a cycle module. For X e Smpro-i, K 2 k and ne Z, write
Fn(XK) - Coker(Mn(K) -> A°(XK,Mn)): then X i-> Fn(XK) is a normalised
motivic birational invariant in the sense of Definition 2.1. We set

Tor* (X,Mn) exp(F„(X*)),
Tor (X, Mn) lcm^Dfc Tor^ (X, M„),
Tor (X, M) lcm„ Tor (X, Mn).

where 1cm means lower common multiple.

By Lemma 2.6, loxfc(X, Mn) | Tor(X, Mn) | Tor(X). Moreover,

Lemma 3.2. Tor(X, M„_i) | Tor(X,Mn).

Proof. Let K/k be an extension. We have a naturally split exact sequence ([15,
Prop. 2.2] and its proof):

o -> A°(Xk, Mn) -> A°(XK(t),Mn) -* 0 A°(XKM, Mn-i) -> 0.

xe(AÀ:)<1)

Indeed, K A°(Xk, Mn) defines a cycle module. Comparing with the same
exact sequence for X Spec k, we get the conclusion.

3.2. Unramified cohomology of degree < 2. For K 2 k, we write K for an
algebraic closure of K and Gk Gal (K/K). Let p be the exponential characteristic
of k. We compute Tor(X, -Xn) for low values of n, where Xn is the cycle module

K H£(K, (Q/Z)'(n - 1))

with

(Q/Z)'(n — 1) := lim/z®""1.
{m,p)= 1
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As is well known, we have

H°(K,(Q/Z)'(—1)) for 7i 0,

A°(XK,Mn) Ih'Ixk^Q/Z)') for n 1,

Br(Vjf)[l/j3] for 7i 2.

Let X be such that CH0{Xk(x)) ® Q —> Q; then b1(X) — 0 and b2(X) —

p{X) where bl(X) (resp. p(Z)) denotes the 7 th Betti number (resp. the Picard

number) of X [12, Prop. 3.1.4 3)]. In particular, we have Pic°x,k 0 and for

any K 2 k, H1(Xx, (Q/Z)') NS(Z^)tors[l/p] and similarly Br(Z^){/}
if|(X^,Z/)tors for I ^ p, so Br(Xk)[l/p] Br(Z^)[l/p], (We neglected Tate

twists in these computations.)
In the sequel, we abbreviate Xp to X; for simplicity, we assume /(X) 1 so that

H1 (K, (Q/Z)'(j)) -> Hl (Xk, (Q/Z)'(y is split injective for any K,i,j. The
Hochschild-Serre spectral sequence then gives isomorphisms (see Definition 3.1 for
the notation Fn):

Fo{Xk) 0, Fx (XK) (NS(Z)tors[l/p]fK

and an exact sequence

0 -> Hl(K,NS(X))[l/p] F2(XK) (Br(Z)[l/p])G*. (3.1)

For K 2 k, Gk acts trivially on NS(Z) and Br(Z). Then Hl(K, NS(Z))
Hom(G^, NS(Z)tors) and the last map in (3.1) is split surjective: indeed, Br(Z)[l/p\
maps to F2(Xk) by functoriality. This yields:

Proposition 3.3. Let X be such that 7(Z) 1 and CHo(Xk(x)) <8> Q —V Q. Then

Tor (Z, M0) 1

Tor(Z,J7i) exp^(NS(Z)tors)

Tor (Z, M2) lern (exp^ (NS(Z)tors), exp^ (Br(Z)).

In particular, Tor(Z) is divisible by exp-p(NS(Z)t0rs) and expp(Br(Z)).

(Of course, one could recover this conclusion directly by considering the

normalised motivic birational functors Z NS(Z)t0IS[l/p] andZ i-t- Br(Z)[l /p\.)
Remark 3.4. When k is algebraically closed, the above computation yields
Torfc(Z, Mi) exp?(NS(Z)tors) and Tor^(Z, M2) exp^(Br(Z)).

When dimZ 2, expp(NS(Z)tors) expp(Br(Z)) by Poincaré duality. We

shall see in Corollary 6.4 that, then, Torp(Z) exp/7(NS(Z)t0rs) exp-p(Br(Z)).
In view of Proposition 3.3, this also yields

Tor^ (Z) Tor(Z, M) if dim Z < 2. (3.2)

Question 3.5. Is the equality (3.2) true in general? In other words, does the cycle
module M* always compute the torsion index?
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4. Extension of functors

Definition 4.1. If F is a contravariant functor from smooth ^-schemes of finite type
to abelian groups, we extend it to smooth ^-schemes essentially of finite type by the

formula

F(X) limF(X) (4.1)

x
where X runs through the smooth models of finite type of X/k.

Note that if F{X) A"lg(X), then F is defined on all smooth ^-schemes (not
necessarily of finite type), but does not commute with filtering colimits; so the natural

map

Klg(X) A\{X)
is not an isomorphism in general, see [12, Rk. 2.3.10 2)]. By contrast, we have:

Lemma 4.2. For any cycle module M, the functors Ap (—, Mq) of§5 below commute
with filtering colimits of smooth schemes.

Proof. This is obvious, since the same is true for the cycle complexes of [15].

As a special case, one recovers the commutation of Chow groups with filtering
colimits [3, Lemma 1A.1].

5. The Rost spectral sequence

Let M be a cycle module. For any smooth X/k, recall its cycle cohomology with
coefficients in M :

Ap{X, Mq) Hp(- • 0 Mq-P(k{x)) -> • ]
where the differentials are defined through Rost's axioms. We assume:

(i) Mn 0 for n < 0;

(ii) Mo(K) A for any K/k, where A is a torsion-free abelian group.

By Rost's axioms [15], there is then a canonical homomorphism of cycle modules

KM ® A -> M

where KM is the cycle module given by Milnor's F-theory. For any n > 0, this
yields a surjective homomorphism

CHn(X)®A An(X,K ® A) An(X,Mn) =: AnM(X). (5.1)

We may thus think of AnM (X) as the group of cycles of codimension n modulo
"M-equivalence".
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Examples 5.1. (1) For M — KM 0 A, we get AnM{X) CHn{X) 0 A.

(2) Let H be Betti cohomology (in characteristic 0) or /-adic cohomology (in
characteristic ^ I): in the first case, let A Z and in the second case let A Z/.
For a function field K/k, set

Hn(K) := //"(Spec Z,Z(n))

see Definition 4.1. (This is not the cycle module M considered in Subsection 3.2.)
By [4, Th. 7.3] and [11, proof of Prop. 4.5], one has

A"h(X) AnAg{X) 0 A

where A^{X) is the group of cycles of codimension n on X, modulo algebraic
equivalence.

We now take two smooth /^-varieties X, Y, and study the Rost spectral sequence
[15, Cor. 8.2] attached to the first projection n : Y x X -» Y :

£f'V) 0 A«(Xkiy),Mr-p) =4 Ap+q(Y X X, Mr) (5.2)

yeyO>)

abutting to the coniveau filtration on Ap+q{Y x X, Mr) with respect to Y. Note that

Aq(Xk(y), Mr-p) 0 for p + q > r by Condition (i) on M, hence Ep'q{r) 0 in
that range.

Take r — 2: we only have to consider p + q < 2. By definition, we have for a

function field K/k (see (5.1) for the notation AqM)\

Aq(XK,Mq) limAqM(XxU)=: AqM{XK)
u

where U runs through smooth models of K as above (see Lemma 4.2). This yields

Z?2°'2(2) A2M(Xk(Y))

Zt2U(2) Coker (t1 (Zfc(F), M2) -> 0 ÄlM{Xkiy))\
V

yeYW J

E22'\l) Coker 0 A°{Xk{y),Mi) Z2(Y) 0 a\

The latter group is a quotient of A2M(Y) (consider the maps M\{k(y)) -»
A0{Xk(y),M\)). If X has a 0-cycle of degree 1, the map A2M(Y) -> A2M{Y x X)
is split, hence n* : A2M{Y) -» E2'°{2) is an isomorphism. Thus E2 Eœ in the

Rost spectral sequence. We summarise this discussion:
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Proposition 5.2. Let gty A2M (X x Y) be the associated graded to the coniveau

filtration relative to Y. Assume that X has a 0-cycle of degree 1. Then we have

isomorphisms

gr°y A2m(X x Y) A2M{XHY))

gt\ A2m{XxY) Cotet(A1 {Xk{Y),M2)-+ © ÄlM{Xkiy))\
^ yerU) J

gT2A2M(XxY) A2M(Y).

Moreover, we have an exact sequence:

0 -> A1(Y,M2) A1 (Y x X,M2) -> A1 (Xk(Y), M2)

-> © 4tr(**0o) ->^ x X)/A2m{Y). (5.3)

J,67(1)

6. Trivial birational motives of surfaces

We start with a special case of Proposition 5.2:

Theorem 6.1. Suppose k algebraically closed, and let X/ k be a smooth projective
variety such that Pic 0. Then for any smooth Y, there is an exact sequence

CH2(Y) © Pic(T) <g> NS(Z) © CH2(X)

-> CH2(Y x X) CH2(Xk{Y))/CH2{X) -> 0 (6.1)

where the maps CH2{X),CH2(Y) —> CH2(Y x X) are induced by the two

projections, and the map Pic(F) <g> NS(Z) —» CH2(Y x X) is given by the cross-
product ofcycles.

A version of this theorem is found in Merkurjev's appendix [14]; I thank
J.-L. Colliot-Thélène for pointing out this reference.

Proof. Consider the Rost spectral sequence (5.2) for the cycle module M KM.
Since Pic^yfc 0, we have NS(X) -^4- Pic(Ajt(y)) for any y e hence

E\'1 Coker (Al(XHY),K2) -» Zl(Y) <g) NS(Z)).

Then the natural map k(Y)* <g> NS(Z) -» Al{Xk(Yf), K2) realises E^'1 as a

quotient of Pic(7) <g) NS(Z). We conclude by applying Proposition 5.2.
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Theorem 6.1 may be compared with a computation of the cohomology of 7 xl.
We use /-adic cohomology, neglecting Tate twists: so H1 (X) ["]i^p ^l)>
where p is the exponential characteristic of k (p 1 if char k 0). If k C, we
have H1 (X) ~ H'B(X) ]~{; Z/, by M. Artin's comparison theorem. We note that
the choice of a rational point of X gives a retraction of the map F(Y) -> F(YxX) for

any contravariant functor F : SmproJ -> Ab; the quotient F(Y x X, 7) is therefore a

direct summand of 7(7 x V). Then the Künneth formula gives split exact sequences

0 -> H3(X) -» H3(Y x V, 7) -> Tor (H2(Y), H2(X)) -© 0 (6.2)

and

0 -> H2(Y) ® H2{X) 0 H\Y) ® H3(X) © H\X)
-» H4(Y xX,Y)

-> Tor (//2(7), tf3(X)) © Tor (//3(7), //2(Z)) -> 0. (6.3)

We now make the following

Assumption 6.2. k is algebraically closed, 7 is projective and X is a surface such

that CHo(Xk(X)) ®Q-^Q'

Recall that, then, Alb(X) Pic°x/k — Oand CH2{X) Z (Roïtman's theorem),
so that Theorem 6.1 applies. Recall also that

H\X) 0

NS(Z) <8> Z' H2(X)

H3(X) ~ Horn (NS(7)tors, (Q/Z)')

tf4(Z) Z'

where 71 Wi^p Thus (6.1) and (6.3) yield a commutative diagram

(Pic(y) ® NS(Z) ® Z) ® Z' -© Ci/2(y x Z, 7) ® Z' )Z'

rtf2(T) ® //2(Z)
©tf^y)® ft3(z)®z'

•i2-'yxjr.r

© H\Y xX,Y)

CHHXhy))
* CH2(X)

I9
Tor(H2(Y),H\X))

©Tor(H3(Y),H2(X))

© 0

0.

(6.4)
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An obvious generalisation of the exact sequence (2.1) boils down to an

isomorphism
CH0(Xk{Y})0 ^ CHo(Xk{Y))/CH0(X).

In (6.4), the left vertical map is diagonal; its cokernel is

Coker V - H2(Y) 0 NS(X) © H\Y) 0 H3{X)

where H2(Y) := Coker cly, and its kernel is Pic0 (7) 0 NS(X) 0 Z' (we use here

that H2(Y) is torsion-free). The snake lemma thus yields an exact sequence

Pic0(7) 0 NS(X) 0 Z' —> Kercl|xZ y 4 Ker<p

-* H2(Y) 0 NS(X) © Hl(Y) 0 H3(X) ^ Cokerc\YxX Y -* Coker -> 0.

(6.5)

To go further, we use étale motivic cohomology as in [11]; the cycle class map

XxXc^\xX extends to an étale cycle class map [11, (3-1)]:

clyxX.F : K(Y x X, 7, Z(2)) 0Z'^ H\Y x X, 7).

~2
Theorem 6.3. UnderAssumption 6.2, Kerclyx^ Y andKer c\YxX Y are torsion-free;
the exact sequence (6.5) yields a surjection

Pic0(7) 0 NS(X) 0 Z' —» Kercl|xX y

and an exact sequence offinite groups

0 -»• Ker(p -» H2(Y) 0 NS(X)tors © Hl(Y) 0 H3(X)

H3r(Y x X, 7; (Q/Z)'(2)) -> Coker cp 0 (6.6)

where H3(Y x X, 7; (Q/Z)'(2)) := lim H3(Y x X, 7; p®2). In particular,

CH0(XkiY))/CH0(X)[l/p] ~ CHo(Xfc^y)tör![l/p] «./mite.

Proof. This proof is ugly, mainly because the Leray spectral sequence for étale

motivic cohomology relative to the projection (7 x X, 7) -> 7 does not behave as

well as the spectral sequence (5.2). So, instead of comparing directly étale motivic
and I -adic cohomology, we have to wiggle through.

We have a commutative diagram

H?t(Y x X, 7, (Q/Z)'(2)) —^ lim(m^)=1 H3(7 x X, 7, p®2)

(6.7)

H*t(Y x X, 7, Z(2)) 0 Tl H\YxX,Y)
d2
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in which the right vertical map is injective, because H (Y xX,Y) is torsion by (6.2).
~2 9Thus Kerclyx^ Y is torsion-free, and so is its subgroup Kerclyxy Y But the image

of a in (6.5) is divisible, hence a direct summand. Therefore the image of ß is

torsion-free, hence 0. So we get the surjection promised in the theorem, and an exact

sequence

0 -» Kerq> -* H2(Y) <g>NS(X) © Hl{Y) ® H3(X)
—>• Cokercly y -> Coker cp -> 0. (6.8)

As a consequence, Ker cp is finitely generated; since it is torsion it must be finite,
hence CHq^X^^y))/CH0{X)[\/p] is finite.

We now deduce from [11, Th. 1.1] the following surjection:

Hl{Y x X, Y-(Q/Z)'(2)) —» (Cokercl|xZ!y)tors (6.9)

(if k — C, this is due to Colliot-Thélène-Voisin [10, Th. 3.7], with Betti
cohomology instead of /-adic cohomology). This map has divisible kernel; however,
Z H^(Y x Z,7; (Q/Z)'(2)) is a normalised motivic birational invariant, hence

H3r(Y x X,Y\ (Q/Z)'(2)) is killed by Tor(Z) and therefore finite; so (6.9) is an

isomorphism.
2 ~2

Let M Cokerclyx;f y/tors; by [11, Cor. 3.5], this is actually CokerclyxX Y,
although we won't use it. The composition of the map y of (6.5) with the projection
p : Cokerclyxy Y —> M has image isomorphic to Hßr(Y) ® (NS(X)/tors).

I claim that p o y is surjective. To see this, choose a retraction p of the map 0

in Diagram (6.4); composing p o clYxX Y with the projection to Coker iß, we get an
induced map

CH2(XHy))/CH2(X) <g> Z' -* Coker xß

whose composition with

Coker xj/ -+ H2(Y) ® (NS(Z)/tors)

is 0 since CH2(X/c(y))/CH2(X) is torsion. This shows that p induces a map

p : CokerclyxZy -> H2(Y) ® (NS(X)/tors)

factoring through a left inverse of the inclusion H2(Y) ® (NS(Z)/tors) ^ M
induced by y. But y ® Q is an isomorphism, since Kercp and Coker<p are torsion;
therefore p o y is surjective as claimed.

Chasing in (6.8) with this information and using the isomorphism (6.9) now yields
the exact sequence (6.6).
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Corollary 6.4. (a) Suppose Y X. Then we have a commutative diagram ofshort
exact sequences:

cl2
0-+ CH2(XxX)® Z' -42^ H\XxX) -+H2(XxX,(Q/Z)'(2))-+0

I I "

0^CH2(Xkm)/CH2(X)[\/p] —Tor(H2(X), H2(X))2H2x{X x X, (Q/Z)'(2))->0.

(b) In particular, the first map of (6.1) (for Y X) has p-primary torsion kernel,

andToxp(X) expp(NS(X)t0rs)-

Proof. Indeed, we have Pic°(X) H1(X) H2(X) 0, and Theorem 6.3 boils
down to the injectivity of cl^^- x and cp, plus an isomorphism

Hl(X x X, X; (Q/Z)'(2)) Coker <p.

But HlfX, (Q/Z),(2)) 0, hence

Hl(XxX, (Q/Z)'(2)) H'(XxX, X; (Q/Z)'(2)).

Corollary 6.5. If Y is a curve, we have a short exact sequence

0 CH2(XHY)\ois[l/p] -> H\Y) 0 H\X) -> Cokercl2xX 0.

Proof In this case, H2(Y) 0 and the target of cp is 0.

Remarks 6.6. (a) The special case NS(X)t0rs 0 and charfc 0 of Corollary

6.4(b) was proven in [1, Cor. 1.10] and [17, Prop. 2.2], As Colliot-Thélène points
out, the methods of [8] imply that for any smooth projective k-variety X with b1 0

andb2 p, Y.&x(CH2(Xk) -> CH2(Xx)) is killed by exp(NS(X)tors)-exp(Br(X))
(see Theorem A.l).
(b) In the first version of this paper, I had proven Corollaries 6.4 and 6.5 but had

doubts on the finiteness of CHo(Xk(Y))i0rS in general. Colliot-Thélène provided a

proof based on his 1991 CIME course [9], see Theorem A.6. This encouraged me
to find a proof in the spirit of this note, and Theorem 6.3 is the result. Note that the

group © appearing in [9, Th. 7.1] coincides with //5(X, Z(2))t0rs- In this spirit, a

weaker analogue of [9, Th. 7.3] is the following fact: for any field F, the functor

Smpr°j(F) 3 Z h* Ker Z(2))) -* h£(Zf, Z(2))

is a normalised motivic birational invariant (indeed, the map H2t(Y, Z(l))
H2t(Yp, Z(l)) is injective for any smooth projective Y). As a consequence,
Ker(7/5(X, Z(2)) Hf(Xp. Z(2)) is killed by Tor(X) if X has a trivial birational
motive.
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A. Cycles de codimension deux, complément à deux anciens articles

par Jean-Louis Colliot-Thélène

A.l. Introduction. On donne des conséquences faciles de résultats établis dans [8]
(avec W. Raskind) et dans le rapport de synthèse [9], en particulier dans une section
où je développais des arguments de S. Saito et de P. Salberger.

A.2. Notations et rappels. Pour simplifier les énoncés, on se limite ici aux variétés
définies sur un corps de caractéristique nulle. On note k une clôture algébrique de k.
Pour une telle k-variété A, supposée projective, lisse, géométriquement connexe sur
le corps k, on note X X k. On note bt le z'-ième nombre de Betti /-adique
de A. On sait qu'il est indépendant du nombre premier /. On note p le rang du

groupe de Néron-Severi géométrique NS(A). Pour tout entier z, on note ici

w(x, Un) :=rK(^0')).
I

Le sous-groupe de torsion H1 (A, Z(y ))tors est fini. On note e, son exposant. Pour
k C le corps des complexes,

^Betti(A(C),Z) <g>Z/ ~ i/|t(A, Z/).

On sait que l'on a un isomorphisme de groupes finis NS(A)tors T/2(A, Z(l))tors-
Le groupe de Brauer Br(A) de X est extension du groupe fini //3(A, Z(l))tors
par (Q/Z)è2~p. La condition H ' (A. Ox) 0 équivaut à b\ =0. La condition
H2{A, Ox) 0 équivaut (théorie de Hodge) à p b2, c'est-à-dire à la finitude du

groupe de Brauer de A. Pour A une variété lisse, on note CH'(X) le groupe de

Chow des cycles de codimension i de A. Pour A une variété projective, on note

CHi (A) le groupe de Chow des cycles de dimension i de A.

A.3. Exposant de torsion. L'énoncé suivant aurait pu être inclus dans [8]. Comme

indiqué formellement ci-dessus, l'entier e,- est l'annulateur de la torsion du z'-ème

groupe de cohomologie entière.

Théorème A.l. Soit k un corps de caractéristique zéro. Soit X une k-variété

projective, lisse, connexe, satisfaisant X(k) ^ 0. Supposons que le réseau

NS(A)/tors admet une base globalement respectée par le groupe de Galois absolu
de k.

(a) Supposons b\ 0 et p 7>2- Alors le groupe de torsion

Ker[Ctf2(A) -> CH2(X)]

est annulé par le produit ê2 -e3» quiest aussi le produit de l'exposant de NS A)tors

et de l'exposant du groupe Br(A).
(b) Si de plus b3 0, alors CH2(X)tors est annulé par e2.e3.e4.
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Démonstration. Il suffit de suivre les démonstrations du §3 de [8]. On note H1 (k, •)
les groupes de cohomologie galoisienne.

Sous l'hypothèse H1 (X, Ox) — 0, le théorème 1.8 de [8] donne une suite exacte
de modules galoisiens

0 D0 -> H°{X,X2) -> H2(X, Z(l))tors -* 0

où Do est uniquement divisible. Le groupe K2k est uniquement divisible. On a la
suite exacte

0 -* H°(X, JC2)/K2k -» K2k(X)/K2k -> K2k(X)/H°(X,X2) -> 0.

Comme on a supposé X(k) ^ 0, on a H1(k, K2k(X)/K2k) 0 [7, Theorem 1],

On voit alors que le groupe Hl(k, K2k(X)/H°(X, X2)) est un sous-groupe de

H2(k, H2(X, Z(l))tors) et donc est annulé par e2.
Sous les deux hypothèses H2(X, Ox) 0 et H1(X, Ox) 0 (cette dernière

garantissant Pic(X) NS(Z)), le théorème 2.12 de [8] donne une suite exacte de

modules galoisiens

0 _* Dl -> NS(l)®P -* H1(X,X2) -> [£>2 ® 7/3(Z, Z(2))torJ 0,

où Di et D2 sont uniquement divisibles. L'hypothèse que l'action du groupe
de Galois sur NSIX)/tors est triviale assure via le théorème 90 de Hilbert que
l'on a H1 (Je, NS(X) <g) k*) 0. De la suite exacte ci-dessus on déduit que
Hx(k, H1 (X, X2)) est un sous-groupe de Hx(k, H3 (X, Z(2))tors) et donc est annulé

par e2.

La proposition 3.6 de [8] fournit une suite exacte

H1(k,K2k(X)/H°(X, X2)) -» Ker[CH2(X) -+ CH2(X)]

-> H1(k,Hl(X,X2)).
On voit donc que Ker[CH2(X) CH2(X)] est annulé par le produit e2.e2. Par

Bloch et Merkurjev-Suslin, CH2(X)t0TS est un sous-quotient de H?(X, Q/Z(2))
[9, Théorème 3.3.2], Si b2 0, alors CH2(X)t0IS, est un sous-quotient de

H4(X, Z(2))tors, d'exposant e^. Sous les hypothèses du théorème, on obtient alors

que CH2(X)tOK est annulé par e2.e3.e4.

Remarques A.2. (1) Soit Y une variété projective et lisse sur le corps des

complexes C satisfaisant les hypothèses du théorème. Pour tout corps k contenant C,
le théorème s'applique à la k-variété X Y xc k. L'hypothèse sur l'action
galoisienne est alors automatiquement satisfaite pour la k-variété X, car on a

NS(F) NS(X).
(2) Lorque e2 1 e3, l'énoncé (a) est le théorème 3.10 b) de [8],

(3) SiZ est une surface, e4 \,etb\ — b2. En outre, e2 e3. Sous les hypothèses
du théorème, on trouve que le groupe CH2(X)tors CHo(X)tors est annulé par le
carrré de l'exposant de la torsion de NS(X).
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A.4. Finitude. On utilise ici les notations et résultats du §7 de [9],

Théorème A.3. Soient k un corps de caractéristique zéro et k une clôture
algébrique. Soit X une k-variété projective et lisse, géométriquement intègre.
Notons X — X X£ k. Notons bi 6 N les nombres de Betti l-adiques de X et

p rang(NS(X)). Supposons H1 (X, Ox)=0, ce qui équivaut àb\ — 0. Supposons
aussi H2(X, Ox) 0, ce qui équivaut à p b2. Supposons b3 0. Alors le

conoyau de l'application

H?(k, Q/Z(2)) © [Hl(X, JC2) © Q/Z] H?(X, Q/Z(2))

est d'exposant fini.

Démonstration. L'hypothèse b2 — 0 implique que le groupe H?(X, Q/Z(2))
s'identifie au groupe fini H^(X, Z(2))tors. L'énoncé est alors une conséquence
immédiate du Théorème 7.3 de [9], auquel je renvoie pour les notations.

Théorème A.4. Soient k un corps de caractéristique zéro et k une clôture algébrique.
Soit X une k-variété projective et lisse, géométriquement intègre. Notons X
X Xfc k. Supposons que chacun des entiers b\, b2 — p et b2 associés à X est nul.

Supposons X(k) 7^ 0. Alors il existe un entier N > 0 annulant le groupe CH2 (V)tors
et tel que pour tout entier n > 0 multiple de N, l'application

CH2(X)i0IS -* CH2(X)/n -> HÏ(X,pf2)

composée de la projection naturelle et de l'application classe de cycle en cohomologie
étale est injective.

Démonstration. Il suffit de combiner le théorème A.3 avec le théorème 7.2 de [9],

Remarque A.5. Si X est une surface, l'hypothèse b2 0 est impliquée par b\ 0.

On dit qu'un corps k de caractéristique zéro est à cohomologie galoisienne
finie si pour tout module fini galoisien M sur k, tous les groupes de cohomologie
galoisienne H1 (k, M) sont finis. Parmi les corps de caractéristique zéro satisfaisant

cette propriété, on trouve : les corps algébriquement clos, les corps réels clos, les

corps jf-adiques, les corps de séries formelles itérées sur un des corps précédents.

Théorème A.6. Soit k un corps de caractéristique zéro à cohomologie galoisienne
finie. Soit K un corps de type fini sur k. Soit X une K-variété projective et lisse

satisfaisant X(K) 0. Notons X X Xk K. Supposons que chacun des entiers

b\, b2 — p et b2 associés à X est nul. Alors le groupe CH2(X)to rs estfini.

Démonstration. D'après le théorème A.4, il existe un entier n > 0 tel que le groupe
CH2(X)torS s'identifie à un sous-groupe de l'image de l'application classe de cycle

CH2(X)/n Hl{X,pf2).
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Soit Y une fc-variété intègre de corps des fonctions K. Quitte à restreindre la fc-variété

F à un ouvert non vide convenable, il existe un Y-schéma intègre, projectif et lisse

X —> Y dont la fibre générique est la -variété X. L'application de restriction
CH2(X) —> CH2(X) est surjective, et les applications classe de cycle

CH2(X)/n -> et CH2(X)/n -> H\X, ptf2)

sont compatibles. L'image de

CH2(X)/n Hl(X,nf2)

est donc dans l'image de la restriction

H\X,^2)^H^X>fif2).
Sous les hypothèses du théorème, les groupes H1 (W, fifJ) sont finis pour toute
variété W de type fini sur k, en particulier H4(X, pt®2) est fini. On conclut que
CH2(X)lors est fini.

Remarque A.7. Si X est une ./^-surface, b\ bj, et l'hypothèse est simplement que
b\ — 0 et &2 — P 0, et la conclusion est que CHo(X)tors est fini.
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