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Torsion order of smooth projective surfaces
(with an appendix by J.-L. Colliot-Théléne)

Bruno Kahn

Abstract. To a smooth projective variety X whose Chow group of 0O-cycles is Q-universally
trivial one can associate its torsion order Tor(X ), the smallest multiple of the diagonal appearing
in a cycle-theoretic decomposition a la Bloch—Srinivas. We show that Tor(X) is the exponent
of the torsion in the Néron—Severi group of X when X is a surface over an algebraically closed
field k, up to a power of the exponential characteristic of k.

Mathematics Subject Classification (2010). 14C25, 19E15.
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1. Introduction

Let X be a smooth projective irreducible variety over a field k. Assume that
CHo(Xkx)) ®Q — Q: this is the strongest case of “decomposition of the diagonal™
a la Bloch—Srinivas [5]. To X is associated its torsion order Tor(X), the smallest
multiple of the diagonal of X appearing in such a decomposition (Definition 2.5).
This number is also studied by Chatzistamatiou and Levine in [6].

The integer Tor(X) kills all normalised motivic birational invariants of smooth
projective varieties in the sense of Definition 2.1 (Lemma 2.6). In particular, away
from char k, the exponent of the torsion subgroup of the geometric Néron—Severi
group of X divides Tor(X) (Corollary 6.4); the main result of this paper is that we
have equality when X is a surface and k is algebraically closed: this result was
announced in [12, Remark 3.1.5 3)]. In the special case where Tor(X) = 1, it was
obtained previously in [17] and [1] (see also Theorem A.1 in the appendix).

The equality follows from a short exact sequence (Corollary 6.4(a)):

0 — CH?(Xi(x)),o,. = Tor (H(X), H3 (X))
— H2(X x X,Q/Z(2)) = 0 (L.1)

where H*(X) is Betti cohomology of X with integer coefficients in characteristic 0
(for simplicity; in positive characteristic, use /-adic cohomology). It also shows that
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CH 2(Xk( X))wors 18 finite (away from the characteristic of k), with a very explicit
bound.!

The exact sequence (1.1) is a special case of a more general one appearing in
Theorem 6.3, which implies in particular the finiteness of CH?(X, k(Y))tors for any
other smooth projective ¥, and an explicit bound on its order. See Theorem A.6 for
another proof of this finiteness, and a different bound.

Acknowledgements. I thank Arnaud Beauville, Luc Illusie and especially Jean-
Louis Colliot-Théléne for helpful exchanges. (See Remark 6.6 for further comments.)

2. Basic properties of the torsion order

2.1. Review of birational motives. We fix a base field k, and write Sm”®=Sm" ™ (k)
for the category of smooth projective k-varieties. Recall from [12] the category
Chow° (k, A) of birational Chow motives with coefficients in a commutative ring A:
there is a commutative diagram of functors

Sm(k) —"~ Chow*f (k, A)

o~
Chow® (k, A)

where Chow*®(k, A) is the covariant category of effective Chow motives with
coefficients in A (opposite to that of [16]), and Hom groups in Chow®(k, A) are
characterized by the formula

Chow°(k, A)(h°(Y), h°(X)) = CHo(Xkr)) ® A

for X,Y € SmP™ (k) (with Y irreducible). When A = Z, we simplify the notation
to Chow*" (k), Chow® (k), or even Chow*", Chow®.

2.2. Motivic birational invariants. Let X € Sm (k) be irreducible, with
CHo(Xrx)) ®Q = Q:

this condition is equivalent to Bloch—Srinivas’ decomposition of the diagonal relative
to a closed subset of dimension 0 [S5]. By [12, Prop. 3.1.1], this means that the
birational motive 4°(X) of X in the category Chow’(k, Q) is trivial, i.e. that the
projection map A°(X) — h°(Spec k) =: 1 is an isomorphism in Chow®(k, Q).
Then CHy(Xk) ® Q = Q for any field extension K of k& (loc. cit. Condition (vi)).

1Tt would be interesting to completely determine CH?(Xx(x))wrs: for example, when X is an
Enriques surface and chark = 0, is it Z/2 or (Z/2)%?
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To such an X, we want to associate a numerical invariant. To motivate it, let us
introduce a definition:

Definition 2.1. A motivic invariant of smooth projective varieties with values in an
additive category + is a functor F : Sm™ — A which factors through an additive
functor Chow®® — 4. We say that F is birational if it further factors through
Chow®. The invariant F is normalised if F(Spec k) = 0.

Remark 2.2. If X, Y € Sm™ are (stably) birationally equivalent, then 4°(X) ~
h°(Y) in Chow® [12, Prop. 2.3.8]. Hence, to be a motivic birational invariant is
stronger than to be a (stable) birational invariant. It is much stronger: A°(S) — 1
for S the Barlow surface [2], a complex surface of general type.

Examples 2.3. (a) For any cycle module M, in the sense of Rost [15], any K D k
andanyn € Z, X — A°(Xk, M,) (resp. X — Ao(Xg. M,)) defines a contravariant
(resp. covariant) motivic birational invariant with valuesin Ab, the category of abelian
groups [12, Cor. 6.1.3].

(b) Inparticular, for M, = Kf"’ (Milnor K -theory), the functor X +— Ao(Xg, Mp) =
CHy(Xg) is a motivic birational invariant. When K = k(Y') for some ¥ € SmP*,
this is also obvious by the intepretation of CHy(Xg) as Chow®(h°(Y), h°(X)).

(¢) Given a contravariant motivic invariant ', we get two (contravariant) normalised
invariants by the formulas

F(X) =Ker (F(k) - F(X)), F(X)= Coker(F(k) — F(X))
and similarly for covariant motivic invariants:
F(X) = Coker (F(X) — F(k)), F(X)=Ker(F(X)— F(k)).

They are birational if F is birational.

(d) Suppose that F is a motivic invariant with values in the category of Z[1/ p]-
modules, where p is the exponential characteristic of k (or, more generally, in a
Z[1/ p]-linear additive category); assume F contravariant to fix ideas. Then F is
birational if and only if, for any ¥ € Sm™®, the map F(Y) — F(Y x P!) is an
isomorphism. This follows from [12, Th. 2.4.2].

0
norm

Definition 2.4. The category Chow is the quotient of Chow® by the ideal

generated by 1.

Thus a motivic birational invariant is normalised if and only if it factors through
Chow,,

norm-*

Let M,N € Chow°. By definition, Chow, (M,N) is the quotient of
Chow° (M, N) by the group of morphisms f : M — N which factor through 1. If
M = h°(Y) and N = h°(X), this gives

Chow,

norm

(h°(Y), h°(X)) =~ Coker (CHo(X) — CHo(Xr(v)))-
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2.3. The torsion order. If now the birational motive of X is trivial in Chow’ (k, Q),
then the image of ~A°(X) in Chow?___ is torsion; in other words, there is an integer

norm

n > 0 such that nlze(x)y = 0 in Chow, . (h°(X), h°(X)).

Definition 2.5. The smallest such integer n is called the forsion order of X, and
denoted by Tor(X'). We extend this to arbitrary (connected) X by setting Tor(X) = 0
if h°(X) is not trivial in Chow’(k, Q).

If p is the exponential characteristic of k, we write Tor?” (X ) for the part of Tor(X)
which is prime to p (so Tor? (X) = Tor(X) if chark = 0).

In Chow?’, the identity morphism 10(x) is givenby ny € CHo(Xk(x)), Where nx
is the generic point viewed as a closed point of Xy(x). This gives a concrete
description of the torsion order:

Lemma 2.6. Suppose that C Ho(X(x)) ® Q — Q. Then the torsion order of X is
the order n of nx in the group CHo(Xy(x))/ CHo(X) (it is O if and only if nx has
infinite order). Moreover, we have n F(X) = 0 for any normalised motivic birational
invariant F. In particular,

CHo(Xk)

nCHo(XK)O =R CHo(X)

=0 forany K Dk

where CHo(Xx)o = Ker(CHo(Xg) =5 Z).

Proof. The first and second statements are tautological; the third follows as a special
case of the second. a

2.4. Torsion order and index. Another important invariant is:

Definition 2.7. The index of an irreducible X € SmP™ is the positive generator of
Im(deg : CHy(X) — Z). We denote it by I(X).

Proposition 2.8. Let X € Sm™, irreducible. Write n for its torsion order and d for
its index.

(a) If F isamotivic invariant and F is as in Example 2.3(c), then we have d F (X)) =0.

(b) n is divisible by d.

(¢) Suppose CHo(Xk(x)) ® Q — Q. If x € CHo(X) is an element of degree d,
then m(xg(x) — dnx) = 0in CHo(Xy(x)) for some m > 0, and n | md.

(d) Ifd = 1 and m is minimal in (c), then n = m.

Proof. (a) Suppose F is contravariant. Let « € F(k) be such that 7*a = 0,

where w : X — Spec k is the structural morphism. If x € CHy(X) is an element

of degree d, it defines a morphism x : 1 — h°(X) such that # o x = d. Hence
da = 0.
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(b) A diagram chase yields an exact sequence

CHo(Xk(x))

CHy(X CHy(X
0(X)o — 0( k(X))O_> CHo(X)

—Z/d -0 (2.1)

where CHy(Xg)o was defined in Lemma 2.6 and the last map sends the class of ny
to 1.

(c) The first claim follows from (2.1), and the second follows from pushing this
identity in CHo(Xx(x))/CHo(X).

(d) Ifd =1, (2.1) yields a surjection

CHo(Xk(x))
CHo(X)

CHO(Xk(X))O

Let y € CHo(Xk(x))o mapping to the class of nx. This means that ny —y = xx(x)
for some x € CHy(X), and necessarily deg(x) = 1. By Lemma 2.6, we haveny = 0
so the conclusion is true for this choice of x. But if x’ € CHy(X) is of degree 1,
then n(x” — x) = 0 hence the conclusion remains true when replacing x by x’. O

Remark 2.9. When d = 1, we can avoid the recourse to the category Chow, . : in

this case, the morphism /#°(X) — 1 is (noncanonically) split, hence we may consider
its kernel £°(X)o € Chow°. The endomorphism ring of this birational motive is
canonically isomorphic to CHo (X (x))/ CHo(X).

2.5. Change of base field and products.

Proposition 2.10. Let K/ k be a field extension. Then:

(a) Tor(Xg) | Tor(X).

(b) Ifk and K are algebraically closed, then Tor(Xk) = Tor(X).

Proof. (a) is obvious, and (b) follows from the rigidity theorem for torsion in Chow
groups [13]. O

Proposition 2.11. For any connected X, Y € SmP™, Tor(X x Y) | Tor(X) Tor(Y).

Proof. If Tor(X) = 0 or Tor(Y) = 0, this is obvious. Otherwise, let m > 0
(resp. n > 0) be such that mlpo(x) (resp. nlpo(y)) factors through 1. Then
mnlho(Xxy) = mlko(X) ® I’llho(y) factors through1 ® 1 = 1. U
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3. Torsion order for cycle modules
For any abelian group A4, write
exp(A) = inf {m >0|mA= O}
and, by convention, exp(A) = 0 if no such integer m exists. Also write

exp? (4) = exp (A[1/p)).

3.1. General case. We refine the notion of torsion order as follows:

Definition 3.1. Let M be a cycle module. For X € Sm”™, K D k and n € Z, write
F,(Xg) = Coker(M,(K) — A°(Xk, M,)): then X — F,(Xg) is a normalised
motivic birational invariant in the sense of Definition 2.1. We set

Torg (X, Mn) = exp (Fn (XK))’

Tor (X, My) = lemg ok Torg (X, My),
Tor (X, M) = lcm, Tor (X, M,).

where lcm means lower common multiple.
By Lemma 2.6, Torg (X, M,) | Tor(X, M) | Tor(X). Moreover,
Lemma 3.2. Tor(X, M,_y) | Tor(X, M}).

Proof. Let K/k be an extension. We have a naturally split exact sequence ([15,
Prop. 2.2] and its proof):

0 — A%(Xk, My) — A°(Xk@y, Mn) > @D A°(Xk(x), Mn—1) — 0.
xe(Al)®

Indeed, K — A°(Xg, M,) defines a cycle module. Comparing with the same
exact sequence for X = Spec k, we get the conclusion. d

3.2, Unramified cohomology of degree < 2. For K 2 k, we write K for an alge-
braic closure of K and Gg = Gal(K/K). Let p be the exponential characteristic
of k. We compute Tor(X, #,) for low values of n, where #,, is the cycle module

K+ HZ(K,(Q/Z) (n — 1))

with
(Q/2)(n— 1) := lim u&"".
(m,p)=1
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As is well known, we have

H°(K,(Q/Z)'(-1)) forn =0,
A’ (Xg, #y) = {HY (XK, (Q/Z)') forme=1,
Br (XK)[I/p] forn = 2.
Let X be such that CHy(Xk(x)) ® Q = Q; then 5'(X) = 0 and b*(X) =

p(X) where b*(X) (resp. p(X)) denotes the ith Betti number (resp. the Picard
number) of X [12, Prop. 3.1.4 3)]. In particular, we have Picg( sk = 0 and for
any K 2 k, H'(Xg,(Q/Z)") => NS(Xp)wrs[1/p] and similarly Br(X g){/} =
H2 (X g, Zp)ors Tor [ # p, so Br(Xp)[1/p] = Br(Xg)[1/p]. (We neglected Tate
twists in these computations.)

In the sequel, we abbreviate Xz to X ; for simplicity, we assume 7(X) = 1 so that
H'(K,(Q/Z)(j)) — H'(Xk,(Q/Z)'(j)) is split injective for any K,i, j. The
Hochschild—Serre spectral sequence then gives isomorphisms (see Definition 3.1 for
the notation F}):

FO(XK) =0, Fl(XK) = (Ns(f)tors[l/p])GK

and an exact sequence
0 — H(K.NS(X))[1/p] = F2(Xx) — (Br(X)[1/p])°¥. 3.1)

For K 2 E,_GK acts trivially on NS(X) and Br(X). Then H!(K, NS(_)?)) =
Hom(G g, NS(X)ors) and the last map in (3.1) is split surjective: indeed, Br(X)[1/ p]
maps to > (Xg) by functoriality. This yields:

Proposition 3.3. Let X be such that I(X) = 1 and CHo(Xk(x)) ® Q — Q. Then
Tor (X, Ho) = 1
Tor (X, H#1) = exp? (NS(X)tors)
Tor (X, #2) = lem (exp” (NS()_(_)MS), exp? (Br(f)).

In particular, Tor(X) is divisible by exp? (NS(X )iors) and exp? (Br(X)). |

(Of course, one could recover this conclusion directly by considering the
normalised motivic birational functors X — NS(X)wr[1/p]and X — Br(X)[1/p].)
Remark 3.4. When k is algebraically closed, the above computation yields
Tory (X, #1) = exp? (NS(X)iors) and Torg (X, H2) = exp? (Br(X)).

When dim X = 2, exp? (NS(X)wors) = exp? (Br(X)) by Poincaré duality. We
shall see in Corollary 6.4 that, then, Tor? (X) = exp? (NS(X )iors) = exp? (Br(X)).
In view of Proposition 3.3, this also yields

Tor?(X) = Tor(X, #) ifdimX <2. (3.2)

Question 3.5. Is the equality (3.2) true in general? In other words, does the cycle
module . always compute the torsion index?
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4. Extension of functors

Definition 4.1. If F is a contravariant functor from smooth k-schemes of finite type
to abelian groups, we extend it to smooth k-schemes essentially of finite type by the
formula

F(X)=111}>1F(DC) 4.1)
%
where X runs through the smooth models of finite type of X/ k.

Note that if F'(X) = A}, (X), then F is defined on all smooth k-schemes (not
necessarily of finite type), but does not commute with filtering colimits; so the natural
map
(X)
is not an isomorphism in general, see [12, Rk. 2.3.10 2)]. By contrast, we have:

Lemma4.2. For any cycle module M, the functors A? (—, My) of §5 below commute
with filtering colimits of smooth schemes.

~:1g(X) Sy A:lg

Proof. This is obvious, since the same is true for the cycle complexes of [15]. O

As a special case, one recovers the commutation of Chow groups with filtering
colimits [3, Lemma 1A.1].

5. The Rost spectral sequence

Let M be a cycle module. For any smooth X /k, recall its cycle cohomology with
coefficients in M :

AP (X, My) = HP(--- - P My_pk(x)) - )

xeX ()
where the differentials are defined through Rost’s axioms. We assume:
i) M, =0forn <0;
(ii) Moy(K) = A for any K/k, where A is a torsion-free abelian group.
By Rost’s axioms [15], there is then a canonical homomorphism of cycle modules

KMoAd-sM

where KM is the cycle module given by Milnor’s K-theory. For any n > 0, this
yields a surjective homomorphism

CH"(X)® A= A"(X, KM ® A) —» A"(X, M,,) =: A% (X). (5.1)

We may thus think of A%, (X) as the group of cycles of codimension #» modulo
“M -equivalence”.
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Examples 5.1. (1) For M = KM @ A, we get A%,(X) = CH"(X) ® A.

(2) Let H be Betti cohomology (in characteristic 0) or /-adic cohomology (in
characteristic # [): in the first case, let A = Z and in the second case let A = Z;;.
For a function field K/ k, set

H,(K) := H"(Spec K, A(n))

see Definition 4.1. (This is not the cycle module # considered in Subsection 3.2.)
By [4, Th. 7.3] and [11, proof of Prop. 4.5], one has

AR(X) = AB(X) ® 4

where A;g(X ) is the group of cycles of codimension n on X, modulo algebraic
equivalence.

We now take two smooth k-varieties X, Y, and study the Rost spectral sequence
[15, Cor. 8.2] attached to the first projection 7 : ¥ x X — ¥

EP(r) = @) A% (Xiey, Mr—p) = APTI(Y x X, My) )
y€Y(P)

abutting to the coniveau filtration on A?79(Y x X, M,) with respect to Y. Note that
A% (Xy(y), Mr—p) = 0 for p + g > r by Condition (i) on M, hence E{"Y(r) = 0in
that range.

Take r = 2: we only have to consider p + ¢ < 2. By definition, we have for a
function field K/ k (see (5.1) for the notation A%,):

AY(Xk, Mg) = lim A3 (X x U) = A% (Xk)
U

where U runs through smooth models of K as above (see Lemma 4.2). This yields
E}?(2) = Ay (Xer))

E3'(2) = Coker (Al(Xk(y), M) — P Ay (Xk(y)))
yEY(l)

EZ'Q2) = Coker( P 4° Xy Mi) - Z>(¥) ® A).

yey

The latter group is a quotient of A%, (Y) (consider the maps M (k(y)) —
A°(Xk(y), M1)). If X has a O-cycle of degree 1, the map A3, (Y) — A3, (Y x X)
is split, hence 7* : A3,(Y) — E§’0(2) is an isomorphism. Thus E; = E in the
Rost spectral sequence. We summarise this discussion:
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Proposition 5.2. Let gry A%u (X x Y) be the associated graded to the coniveau
filtration relative to Y. Assume that X has a O-cycle of degree 1. Then we have
isomorphisms

grgf AZZM(X X Y) = /Tﬁ(Xk(y))

grl A2, (X x Y) = Coker (A‘ (Xe). M2) > B Ay (Xk(y)))
yey (1)

gry A3 (X x Y) = A3,(Y).

Moreover, we have an exact sequence.

0— A (Y. M) — ANY x X, M3) — A" (Xrqr), M2)

- P Ay (Xeey)) > A3 (Y x X)/A3(Y). (5.3)
yey®

6. Trivial birational motives of surfaces

We start with a special case of Proposition 5.2:

Theorem 6.1. Suppose k algebraically closed, and let X / k be a smooth projective
variety such that Picg{ 1 = 0. Then for any smooth Y, there is an exact sequence

CH?*(Y) @ Pic(Y) @ NS(X) & CH*(X)
— CH*(Y x X) > CH*(Xy))/CH*(X) > 0 (6.1)
where the maps CH?*(X),CH?*(Y) — CH?*(Y x X) are induced by the two

projections, and the map Pic(Y) ® NS(X) — CH?(Y x X) is given by the cross-
product of cycles.

A version of this theorem is found in Merkurjev’s appendix [14]; I thank
J.-L. Colliot-Thélene for pointing out this reference.

Proof. Consider the Rost spectral sequence (5.2) for the cycle module M = KM,
Since Picg(/k = 0, we have NS(X) = Pic(Xg(,)) forany y € Y W hence

Ey' = Coker (A" (Xkr), K2) — Z1(Y) @ NS(X)).

Then the natural map k(Y)* ® NS(X) — A'(Xkr)), Ka) realises E,' as a
quotient of Pic(Y) ® NS(X). We conclude by applying Proposition 5.2. O
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Theorem 6.1 may be compared with a computation of the cohomology of ¥ x X.
We use [-adic cohomology, neglecting Tate twists: so H' (X) := ]_[,75 i e,ft(X V),
where p is the exponential characteristic of k (p = 1 if chark = 0). If k = C, we
have H*(X) ~ HL(X) ® []; Z;, by M. Artin’s comparison theorem. We note that
the choice of a rational point of X gives a retraction of the map F(Y) — F (Y xX) for
any contravariant functor F : SmP™ — Ab; the quotient F(Y x X, Y) is therefore a
direct summand of F (Y x X). Then the Kiinneth formula gives split exact sequences

0— H*(X)— H*(Y xX,Y) - Tor (H*(Y), H*(X)) — 0 (6.2)

and

0> H>(Y)® H*X)® H'(Y)® H}(X) ® H*(X)
— HYY x X,Y)
— Tor (H*(Y), H*(X)) & Tor (H>(Y), H*(X)) — 0. (6.3)

We now make the following

Assumption 6.2. k is algebraically closed, Y is projective and X is a surface such
that CHo (Xx(x)) ® Q = Q.

Recall that, then, Alb(X) = Pic(}’( /= 0andCH 2(X) = Z (Roitman’s theorem),
so that Theorem 6.1 applies. Recall also that

HY (X)=0

NS(X) ® Z => H*(X)
H?*(X) =~ Hom (NS(X)iors, (Q/Z)")
HYX)=17

where Z = Z;. Thus (6.1) and (6.3) yield a commutative diagram
I#p y

~ ~ 2
(Pic(Y) ®NS(X) @ Z) ®Z — CHX (Y xX,Y)®Z y g

l‘l’ J{CI%XX,Y lgo

H2(Y) ® H*(X) Tor(H?(Y), H*(X)) 8
e H\(Y)® H (X) & 7 ® Tor(H3(Y), HX(X))

(6.4)

VA )

9 B Y xX,Y) —
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An obvious generalisation of the exact sequence (2.1) boils down to an
isomorphism
CHO(Xk(y))O — CHO(Xk(y))/CHo(X).

In (6.4), the left vertical map v is diagonal; its cokernel is
Cokery = H2(Y) @ NS(X) ® H'(Y) ® H*(X)

where HZ2(Y) := Cokercly, and its kernel is Pic’(¥Y) @ NS(X) ® 7 (we use here
that H2(Y) is torsion-free). The snake lemma thus yields an exact sequence

Pic®(Y) ® NS(X) ® Z' > Ker cl%xX’Y L2 Ker g
— H2(Y) ®NS(X) & H'(Y) ® H3(X) &> Cokercl}, y y — Cokerg — 0.
(6.5)
To go further, we use étale motivic cohomology as in [11]; the cycle class map
clgfx x extends to an étale cycle class map [11, (3-1)]:

gﬁ’xX,Y CHI(Y x X, Y. Z(2)) ® 7 > H*(Y x X.Y).

. ~2 .
Theorem 6.3. Under Assumption 6.2, Kercl3, x,y andKercly, y y are torsion-free;
the exact sequence (6.5) yields a surjection

Pic®(Y) @ NS(X) ® Z' —» Kercl?
YxX,Y

and an exact sequence of finite groups

0— Kerg — H2(Y) @ NS(X)ors @ HY(Y) ® H3(X)
— H2(Y x X,Y;(Q/Z)'(2)) — Cokerp — 0 (6.6)

where H3(Y x X,Y;(Q/Z) (2)) := H_r)n(m i H3(Y x X,Y; u®2). In particular,
CHo(Xk))/CHo(X)[1/p] >~ CHo(Xk(v))wrs[1/ p] is finite.

Proof. This proof is ugly, mainly because the Leray spectral sequence for étale
motivic cohomology relative to the projection (¥ x X,Y) — Y does not behave as
well as the spectral sequence (5.2). So, instead of comparing directly étale motivic
and /-adic cohomology, we have to wiggle through.

We have a commutative diagram

H3(Y x X,Y,(Q/Z)'(2)) —— lim H2(Y x X, Y, u8?)

—>(m,p)=1

l l 6.7)

~2
clyxx,y

HAY x X, Y, ZQ)®Z —— H4(Y x X,Y)
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in which the right vertical map is injective, because H>(Y x X, Y) is torsion by (6.2).
~2

Thus Kercly, y y is torsion-free, and so is its subgroup Ker clf,, x.y- But the image

of a in (6.5) is divisible, hence a direct summand. Therefore the image of 8 is

torsion-free, hence 0. So we get the surjection promised in the theorem, and an exact
sequence

0— Kergp — H2(Y)@NS(X)® H'(Y) ® H>(X)
— Cokercl%,xx,y — Cokergp — 0. (6.8)

As a consequence, Ker ¢ is finitely generated; since it is torsion it must be finite,
hence CHy, (Xk(y))/CHo (X)[1/ p] is finite.
We now deduce from [11, Th. 1.1] the following surjection:

HX(Y x X,Y:(Q/Z)'(2)) — (Cokercly, x y) (6.9)

tors

(if £k = C, this is due to Colliot-Théléene—Voisin [10, Th. 3.7], with Betti
cohomology instead of /-adic cohomology). This map has divisible kernel; however,
Z > H2(Y x Z,Y;(Q/Z)'(2)) is a normalised motivic birational invariant, hence
H3(Y x X,Y:(Q/Z)(2)) is killed by Tor(X) and therefore finite; so (6.9) is an
isomorphism.

Let M = Cokercl%xX’Y/tors; by [11, Cor. 3.5], this is actually Coker a;xx,y,
although we won’t use it. The composition of the map y of (6.5) with the projection
p: Cokercl?, x,y —> M has image isomorphic to H2(Y) ® (NS(X)/tors).

I claim that p o y is surjective. To see this, choose a retraction p of the map 6
in Diagram (6.4); composing p o cl"}z,>< x,y With the projection to Coker ¢, we get an
induced map

CH?(Xy))/CH?*(X) ® Z' — Coker y
whose composition with
Cokeryy — HZ(Y) ® (NS(X)/tors)
is 0 since CH?(Xg(y))/ CH?(X) is torsion. This shows that p induces a map
p: Cokercly, xy — HZ(Y) ® (NS(X)/tors)

factoring through a left inverse of the inclusion HZ(Y) ® (NS(X)/tors) — M
induced by y. But y ® Q is an isomorphism, since Ker ¢ and Coker ¢ are torsion;
therefore p o y is surjective as claimed.

Chasing in (6.8) with this information and using the isomorphism (6.9) now yields
the exact sequence (6.6). O
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Corollary 6.4. (a) SupposeY = X. Then we have a commutative diagram of short
exact sequences:

cl2
XxX
—_—

0> CH*(XxX)®Z HYX xX) —HXX xX,(Q/Z)(2))—0

| | I

0—>CH?*(Xr(x))/CH?*(X)[1/p] LN Tor(H?(X), H*(X))*—>H2(X x X,(Q/Z) (2))—0.

(b) In particular, the first map of (6.1) (for Y = X ) has p-primary torsion kernel,
and Tor? (X)) = exp? (NS(X ) ors)-

Proof. Indeed, we have Pic®(X) = H'(X) = H2(X) = 0, and Theorem 6.3 boils
down to the injectivity of cl%rx x,x and ¢, plus an isomorphism

H)(X x X, X;(Q/Z)(2)) => Coker ¢.
But H3(X,(Q/Z)'(2)) = 0, hence
H2(XxX,(Q/2)(2)) = H2(XxX,X;(Q/Z)(2)). O
Corollary 6.5. If'Y is a curve, we have a short exact sequence

0 = CH*(Xk)) o [1/P) = H'(Y) ® H*(X) — Cokercl}, x — 0.

tors

Proof. In this case, HZ(Y) = 0 and the target of ¢ is 0. O

Remarks 6.6. (a) The special case NS(X)wrs = O and chark = 0 of Corol-
lary 6.4(b) was proven in [1, Cor. 1.10] and [17, Prop. 2.2]. As Colliot-Théléne points
out, the methods of [8] imply that for any smooth projective k-variety X withb! = 0
and b? = p,Ker(CH?*(Xx) — CH?(Xg)) is killed by exp(NS (X )rors) -exp(Br(X))
(see Theorem A.1).

(b) In the first version of this paper, I had proven Corollaries 6.4 and 6.5 but had
doubts on the finiteness of CHo(Xk(y))wrs in general. Colliot-Théléne provided a
proof based on his 1991 CIME course [9], see Theorem A.6. This encouraged me
to find a proof in the spirit of this note, and Theorem 6.3 is the result. Note that the
group ® appearing in [9, Th. 7.1] coincides with H ;(X ,Z.(2))ors- In this spirit, a
weaker analogue of [9, Th. 7.3] is the following fact: for any field F, the functor

SmP(F) 5 Z v Ker (H;(Z,Z(2))) - Hi(ZF. Z(2))

is a normalised motivic birational invariant (indeed, the map Hézt(Y VL(1)) —
Hézt(Yﬁ,Z(l)) is injective for any smooth projective Y). As a consequence,
Ker(Hé";(X, 7(2)) — Hé‘t (X7, Z(2)) is killed by Tor(X) if X has a trivial birational
motive.
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A. Cycles de codimension deux, complément a deux anciens articles

par Jean-Louis Colliot-Théléne

A.1. Introduction. On donne des conséquences faciles de résultats établis dans [8]
(avec W. Raskind) et dans le rapport de synthese [9], en particulier dans une section
ou je développais des arguments de S. Saito et de P. Salberger.

A.2. Notations et rappels. Pour simplifier les énoncés, on se limite ici aux variétés
définies sur un corps de caractéristique nulle. On note k une cldture algébrique de k.
Pour une telle k-variété X, supposée projective, lisse, géométriquement connexe sur
le corps k, on note X = X xi k. On note b; le i-iéme nombre de Betti /-adique
de X. On sait qu’il est indépendant du nombre premier /. On note p le rang du
groupe de Néron—Severi géométrique NS(X). Pour tout entier #, on note ici

H (X, Z())) : ]_[Het (X.Z:()))-

Le sous-groupe de torsion H (X, Z(j))wrs est fini. On note e; son exposant. Pour
k = C le corps des complexes,

Bettl (X(C) Z) X Zl HZ (X, Z[)

On sait que 1’on a un 1somorphlsme de groupes finis N S(X dtors = H 2(X Z(l))mrs
Le groupe de Brauer Br(X) de X est extension du groupe fini H3(X, Z(l))torS
par (Q/Z)%27P. La condition H'(X, Ox) = 0 équivaut 2 b; = 0. La condition
H?*(X,0x)=0 équivaut (théorie de Hodge) a p = b, c’est-a- dire a la finitude du
groupe de Brauer de X. Pour X une variété lisse, on note CH'(X) le groupe de
Chow des cycles de codimension i de X. Pour X une variété projective, on note
CH;(X) le groupe de Chow des cycles de dimension i de X.

A.3. Exposant de torsion. L’'énoncé suivant aurait pu étre inclus dans [8]. Comme
indiqué formellement ci-dessus, I’entier e; est I’annulateur de la torsion du i-&me
groupe de cohomologie entiere.

Théoréeme A.1. Soit k un corps de caractéristique zéro. Soit X une k-variété
projective, lisse, connexe, satisfaisant X(k) # @. Supposons que le réseau
NS(X)/tors admet une base globalement respectée par le groupe de Galois absolu
de k.

(a) Supposons by = 0 et p = by. Alors le groupe de torsion
Ker[CH?*(X) — CH*(X)]

est annulé par le produit e .e3, qui est aussi le produit de I’exposant de NS (X)) tors
et de I’exposant du groupe Br(X).

(b) Side plus by = 0, alors CH?(X)iors €St annulé par e;.e3.ey.
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Démonstration. 1l suffit de suivre les démonstrations du §3 de [8]. Onnote H’ (k, )
les groupes de cohomologie galoisienne.

Sous I’hypothése H1(X, Ox) = 0, le théoréme 1.8 de [8] donne une suite exacte
de modules galoisiens

0 — Do — H°(X, X5) — H*(X,Z(1)),_ — 0

tors

ou Dy est uniquement divisible. Le groupe Kok est uniquement divisible. On a la
suite exacte

0 — H(X, X2)/ Kok — K2k(X)/ K2k — K2k(X)/H (X, X2) — 0.

Comme on a supposé X(k) # @, on a H(k, K»k(X)/K»k) = 0 [7, Theorem 1].
On voit alors que le groupe H'(k,K>k(X)/H®(X, X5)) est un sous-groupe de
H?(k, H*(X, Z(l))tors) et donc est annulé par e;.

Sous les deux hypothéses H?(X, Ox) = 0 et H'(X, Ox) = 0 (cette derniére
garantissant Pic(X) = NS(X)), le théoréme 2.12 de [8] donne une suite exacte de
modules galoisiens

0— D; - NS(X)® k* - H' (X, X2) - [D2® H*(X,Z(2)), ] — 0,

ou D; et D, sont uniquement divisibles. L’hypothése que 1’action du groupe
de Galois sur NS(X)/tors est triviale assure via le théoréme 90 de Hilbert que
'on a H'(k,NS(X) ® k*) = 0. De la suite exacte ci-dessus on déduit que
H'(k, H (X, X)) estun sous-groupe de H ' (k, H3(X, Z(2)).s) et donc est annulé
par es.

La proposition 3.6 de [8] fournit une suite exacte

tors

H'(k, K2k(X)/H®(X, X2)) — Ker[CH*(X) — CH?*(X)]
H'(k, H' (X, X3)).
On voit donc que Ker[CH?(X) — CH?(X)] est annulé par le produ1t es.e3. Par
Bloch et Merkurjev—Suslin, CH?(X )ors €st un sous-quotient de H (X Q/Z(2))
[9, Théoreme 3.3.2]. Si b3 = 0, alors CH? (X tors» €St UN sous-quotient de

H 4(}? , Z(Z))mrs, d’exposant e4. Sous les hypotheses du théoréme, on obtient alors
que CH? (X )ors €st annulé par e;.e3.e4. |

Remarques A.2. (1) Soit Y une variété projective et lisse sur le corps des
complexes C satisfaisant les hypotheses du théoréme. Pour tout corps k contenant C,
le théoréme s’applique & la k-variété X = Y x¢ k. L'hypothése sur 1’action
galoisienne est alors automatiquement satisfaite pour la k-variété X, car on a
NS(Y) = NS(X).

(2) Lorque e2 = 1 = e3, I’énoncé (a) est le théoreme 3.10 b) de [8].

(3) SiX estune surface,es = 1,etb; = bz. Enoutre, e; = e3. Sous les hypothéses
du théoréme, on trouve que le groupe CH?(X )ors = CHo(X)iors €St annulé par le
carrré de 1’exposant de la torsion de NS(X).
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A.4. Finitude. On utilise ici les notations et résultats du §7 de [9].

Théoréme A.3. Soient k un corps de caractéristique zéro et k une cloture
algébrique. Soit X une k-variété projective et lisse, géométriquement intégre.
Notons X = X xi k. Notons b; € N les nombres de Betti |-adiques de X et
p = rang(NS(f)). Supposons H' (X, Ox)=0, ce qui équivaut a by = 0. Supposons
aussi H*(X, Ox) = 0, ce qui équivaut ¢ p = b,. Supposons bz = 0. Alors le
conoyau de ’application

H(k,Q/Z(2)) @ [H'(X,X>) ® Q/Z] — H(X,Q/Z(2))
est d’exposant fini.

Démonstration. L'hypothése b3_=A 0 implique que le groupe Hé?()? ,Q/Z(2))
s’identifie au groupe fini Hé‘: (X,Z(2))tors- L'énoncé est alors une conséquence
immédiate du Théoreme 7.3 de [9], auquel je renvoie pour les notations. O

Théoréme A.4. Soient k un corps de caractéristique zéro et k une cloture algébrique.
Soit X une k-variété projective et lisse, géométriquement intégre. Notons X =
X Xp k. Supposons que chacun des entiers by, by — p et bz associés a X est nul.
Supposons X (k) # 0. Alors il existe un entier N > 0 annulant le groupe C H? (X );ors
et tel que pour tout entier n > 0 multiple de N, I’application

CH?(X)ors = CH*(X)/n — HE(X, 13?)

composée de la projection naturelle et de I’ application classe de cycle en cohomologie
étale est injective.

Démonstration. 11 suffit de combiner le théoréme A.3 avec le théoréeme 7.2 de [9]. O

Remarque A.5. Si X est une surface, I’hypothése b3 = 0 est impliquée par b; = 0.

On dit qu'un corps k de caractéristique zéro est a cohomologie galoisienne
finie si pour tout module fini galoisien M sur k, tous les groupes de cohomologie
galoisienne H*(k, M) sont finis. Parmi les corps de caractéristique zéro satisfaisant
cette propriété, on trouve : les corps algébriquement clos, les corps réels clos, les
corps p-adiques, les corps de séries formelles itérées sur un des corps précédents.

Théoreme A.6. Soit k un corps de caractéristique zéro a cohomologie galoisienne
finie. Soit K un corps de type fini sur k. Soit X une K-variété projective et lisse
satisfaisant X(K) # . Notons X = X xg K. Supposons que chacun des entiers
by, by — p et b3 associés a X est nul. Alors le groupe CH? (X )ior est fini.

Démonstration. D’apres le théoréme A .4, il existe un entier n > 0 tel que le groupe
CH?(X)ors 8'identifie 2 un sous-groupe de 1'image de I’application classe de cycle

CH*(X)/n — HJ(X,n2?%).



856 B. Kahn CMH

Soit ¥ une k-variété intégre de corps des fonctions K. Quitte a restreindre la k-variété
Y a un ouvert non vide convenable, il existe un ¥ -schéma intégre, projectif et lisse
X — Y dont la fibre générique est la K-variété X. L application de restriction
CH?(X) — CH?(X) est surjective, et les applications classe de cycle

CH*(X)/n — HJ(X,n2%) et CH*(X)/n— H*(X,u?)
sont compatibles. L'image de

CH*(X)/n — HZ(X,n2?)

et

est donc dans I'image de la restriction
(%, 18?) — HA(X. 1),

Sous les hypothéses du théoréme, les groupes H* (W, [,L,?j ) sont finis pour toute
variété W de type fini sur k, en particulier H*(X, 1®?) est fini. On conclut que
CHZ(X)[OrS est fini. O

Remarque A.7. Si X estune K-surface, b; = b3 et I’hypothese est simplement que
by = 0et b, — p = 0, et la conclusion est que C Ho(X )ors st fini.
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