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A compactness theorem for Fueter sections

Thomas Walpuski

Abstract. We prove that a sequence of Fueter sections of a bundle of compact hyperkähler
manifolds X over a 3-manifold M with bounded energy converges (after passing to a

subsequence) outside a 1-dimensional closed rectifiable subset S C M. The non-compactness
along S has two sources: (1) Bubbling-off of holomorphic spheres in the fibres of X transverse
to a subset T c S, whose tangent directions satisfy strong rigidity properties. (2) The formation
of non-removable singularities in a set of X1 -measure zero. Our analysis is based on the ideas
and techniques that Lin developed for harmonic maps [19]. These methods also apply to Fueter
sections on 4-dimensional manifolds; we discuss the corresponding compactness theorem in an

appendix. We hope that the work in this paper will provide a first step towards extending the

hyperkähler Floer theory developed by Hohloch, Noetzel, and Salamon [15] and Salamon [22]
to general target spaces. Moreover, we expect that this work will find applications in gauge
theory in higher dimensions.

Mathematics Subject Classification (2010). 58E20; 53C26, 53C43.

Keywords. Fueter sections, compactness, bubbling, hyperkähler manifolds.

1. Introduction
71

Let M be an orientable Riemannian 3-manifold, let X —»• M be a bundle of
hyperkähler manifolds together with a fixed isometric identification I: STM -> Sj (X) of
the unit tangent bundle in M and the bundle of hyperkähler spheres1 of the fibres
of X, and fix a connection on X.

Definition 1.1. A section u e T(X) is called a Fueter section if
3

$u:=J^I(vi)VViu Oer(u*VX) (1.2)

i=i
for some local orthonormal frame (uj, v2, v2).2 Here Vu Ql(M,u*VX) is the

'Given a hyperkähler manifold (X, g,I\, I2,13), for each £ (fi, i-2, £3) e 52 C R3. /j :

D; 1 h is a complex structure. The set F)(X) := {/j : S2} is called the hyperkähler sphere
of X.

2Of course, Ç does not depend on the choice of (t>i, v2, V3).
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covariant derivative of m, a 1-form taking values in the pull-back of the vertical

tangent bundle VX := ker(d7r: TX -* TM). The operator £ is called the Fueter

operator.

The Fueter operator is a non-linear generalisation of the Dirac operator, see [23]
and [13, Section 3],

Remark 1.3. A construction similar to (1.2) also exists in dimension four. Since it
is more involved, we relegate its discussion to Appendix B.

Example 1.4. Choose a spin structure s on M. If X $, I is the Clifford
multiplication and V denotes the induced spin connection, then the Fueter operator
is simply the Dirac operator associated with s.

Example 1.5. Let (X, g, 1\, I2, h) be a hyperkähler manifold and (ui, 112,113) a

orthonormal frame of M. A map u: M -» X satisfying

is called a Fueter map. In a local trivialisation the Fueter equation for sections of X,
takes the form (1.6) up to allowing for the 7/ to depend on x e M and admitting a

lower order perturbation (coming from the connection 1-form).

One of the main motivations for studying Fueter sections is the work of [15], who
introduced a functional whose critical points are precisely the solution of (1.6) and

developed the corresponding Floer theory in the case when the target X is compact
and flat, and the frame on M is divergence free and regular,3 see also [22]. The

requirement that X be flat is very severe and one would like to remove it. It has

been conjectured that the putative hyperkähler Floer theory should be very rich and

interesting, especially in the case when X is a K3 surface.

A further source of motivation is gauge theory on G2- and Spin(7)-manifolds.
Here, Fueter sections of bundles of moduli spaces of ASD instantons naturally
appear in relation with codimension four bubbling phenomena for G2- and Spin (7)-
instantons; see Donaldson-Segal [10] and the author [24,25] for further details.

Remark 1.7. Sonja Hohloch brought to the author's attention a cryptic remark in
[16, Section 1.5 Question 3], which indicates that their invariants of 3D Calabi-Yau
categories with stability structure can be interpreted as "quaternionic Gromov-Witten
invariants" of certain hyperkähler manifold M, which means as a count of Fueter

maps from some 4-manifold to M.
A major issue when dealing with Fueter sections is the potential failure of

compactness. This is demonstrated by the following example due to Hohloch,
Noetzel, and Salamon.

3Every 3-manifold admits a divergence free frame by Gromov's h-principle [22, Theorem A.l], A
frame is regular if there are no non-constant Fueter maps M —» H with respect to this frame; this is a

generic condition.

3

(1.6)

;=i
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Example 1.8. Consider a K3 surface X with a hyperkähler structure such that
(.X, I\) admits a non-trivial holomorphic sphere 3: 52 —> X and take M — SU (2),
the unit-sphere in the quaternions H, with a left-invariant frame (iq, tq, vf) which
at id e SU(2) it is given by (i, j, k). Let S2 -> S2 denote complex conjugation
on S2 P1. Let jt: S3 —» S2 denote the Hopf fibration whose hbres are the orbits
of tq. It is easy to check that u 3 o~o n: S3 —»• X satisfies

dVlu — 0 and dV2u — IdV3u 0,

and thus u is a Fueter map. For A > 0 define a conformai map s\: S2 —r S2

by s\(x) Xx for x e R2 c S2 and 00. Now, the family of Fueter

maps u\ := 30^ on blows up along the Hopf circle 7r_1(oo) as A j 0 and

converges to the constant map on the complement of the Hopf circle. Also, note that

S{ux) fs3 I Vwq|2 is independent of X.

The following is the main result of this article.

Theorem 1.9. Suppose X is compact. Let (w, be a sequence of solutions of the

(perturbed) Fueter equation
$Ui p oui (1.10)

with peF (X, VX)4 and

g(Ui):= f I Vu, |2 < eg (1.11)
JM

for some constant cg > 0. Then (afterpassing to a subsequence) thefollowing holds:

• There exists a closed subset S with Ml(S) < 00 and a Fueter section u e

T(M \ S, X) such that Ui |m\s converges to u in Cff.
• There exist a constant £0 > 0 and an upper semi-continuous function ©: S -»

[£o, 00) such that the sequence of measures p.i := |Vm;|2 M3 converges weakly
to p — IVw|2 JC3 + 0MX(S.

• S decomposes as
S T U sing(w)

with

T := supp(0 JC1 LS)

and sing(w) := |x e M : lim sup - [ |Vu|2 > 0>.

ri0 r JBrix)

F is Ml-rectifiable, and Jf^sing^)) 0.

4This sort of deformation of (1.2) is important for applications; e.g. Hohloch, Noetzel, and Salamon

perturb (1.2) using a Hamiltonian function to achieve transversality.
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• For each smooth point5 x G F, there exists a non-trivial holomorphic sphere

lx'- S2 —> (Xx n~l{x),—I{v)) with v a unit tangent vector in TXT. Moreover,

• If X is a bundle of simple hyperkähler manifolds with > 6, then there is a

subbundle 3 C PTM, depending only on sup 0, whose fibres are finite sets such

that TXT e bfor all smooth points x F.

Remark 1.12. The analysis of (1.2) is similar to Lin's work on the compactness
problem for harmonic maps [19]. We follow his strategy quite closely; however,
there are a number of simplifications in our case, many of the arguments have to be

approached from a different angle and our result is stronger.

Remark 1.13. In the situation of Example 1.5 if X is flat and (v\,V2, V3) is regular,
then the uniform energy bound (1.11) is automatically satisfied; see [22, Lemma 3.2
and Remark 3.5].

Remark 1.14. If I is parallel (which is very rarely the case, but holds, e.g. in
the situation of Example 1.5 if M T3 equipped with a flat metric and the Vi

are parallel), then there are topological energy bounds; see Remark 2.10. In
this case Fueter sections are stationary harmonic sections and one can derive
most of Theorem 1.9 from [19]; cf. [18, Section 4] and [8], who study
triholomorphic/quaternionic maps between hyperkähler manifolds. More recently,

very important progress in the study of triholomorphic maps was made by [4],

Remark 1.15. In the situation of Example 1.5 if X is flat, then S — 0; see [15,
Section 3] and Remark 3.5. This does not immediately follow from Theorem 1.9;

however, since 7r2(Tn) 0, flat hyperkähler manifolds admit no non-trivial
holomorphic spheres and we can rule out bubbling a priori, i.e. F 0. See also
Remark 3.5.

Remark 1.16. By Bogomolov's decomposition theorem (after passing to a finite
cover) any hyperkähler manifold is a product a flat torus and simple hyperkähler
manifolds. Hohloch, Noetzel, and Salamon's compactness result says that nothing
interesting happens in the torus-factors. Thus the assumption of X being a bundle
of simple hyperkähler manifolds is not restrictive. The requirement i»2 > 6 is an

artefact of a result of Amerik and Verbitsky that we use in Section 8.

As stated, Theorem 1.9 is very likely far from optimal. Here are some conjectural
improvements:

• We believe that the limiting section u e T(M \S,X) extends to M \ sing(w) and,

moreover, that sing(w) is finite (possibly countable and closed).

5We call a point x e F smooth if the tangent space Tx T exists and x £ sing(w). Since Y is rectifiable,
Tx T exists almost everywhere.
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• We believe that T enjoys much better regularity than just being J^-rectifiable.
It seems reasonable to expect that F is a graph (possibly with countably many
vertices) embedded in M and 0 is constant along the edges of F ; moreover, we

expect that the vertices (r, 0) are balanced.

Remark 1.17. In the situation of Remark 1.14, Bethuel's removable singularities
theorem for stationary harmonic maps [5, Theorem 1.4] shows that u extends to
M \ sing(w) and a result of [1] affirms the conjecture in the third bullet.

The holomorphic sphere ix can be replaced by a bubble-tree, cf. [20], such that
the energy of the entire bubble tree equals 0(x). In an earlier version of this article
it was conjectured that there can be no energy stuck on the necks; in particular,
0(x) is the sum of energies of holomorphic spheres in (3cx, — 7(u)). Shortly after
the first version of this article was posted on the arXiv, [4] proved the analogue of
this conjecture for triholomorphic maps, and after a brief discussion with the author,
in an updated version also the author's earlier conjecture. We refer the reader to
[4, Section 7] for details.

It is an interesting and important question to ask: what happens for a generic
choice of I: STM -» i)(X) and perturbation p? One would hope (perhaps too

optimistically) that generically the situation is much better and possibly good enough
to count solutions of (1.10) and thus define the Euler characteristic of the conjectural
hyperkähler Floer theory.

Assumptions and conventions. Throughout the rest of the article we assume the

hypotheses of Theorem 1.9. We use c to denote a generic constant. We write
x < y for x < cy and denotes a generic (multi-)linear expression which is
bounded by c. We fix a constant 0 < r0 <3C 1; in particular, r0 is much smaller than
the injectivity radius of M and we take all radii to be at most ro.

2. Mononicity formula

The foundation of the analysis of (1.2) is the monotonicity formula which asserts that
the renormalised energy

- f |Vm|2.
r Jb, (x)

is almost monotone in r > 0:

Proposition 2.1. Ifu e satisfies (1.10), then for all x e M and 0 < s <
r <r0

— [ IVm|2 — — f |Vw|2 > f —|Vrn|2 — c(r2 — s2).
r J Br (x) S J Bs{x) JBr(x)\Bs(r) P

Here p := d(x, •)•
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It is instructive to first prove the following which contains the essence of
Proposition 2.1.

Proposition 2.2. If u: R3 -> X is a Fueter map with i>; ~j, then for all x e M
and 0 < s < r

-f \du\2 — - f \du\2 2 [ -\dru\2. (2.3)
r JBr(x) S JBs(x) JBr(x)\Bs(r) P

Proof. The derivative of

/(P) := - [ |dw|
P JBp(x)

2

IS

f'(p) ~f \du\2 + -f \du\2.
P JBp(x) P JdBp(x)

By a direct computation

3

|dw|2 vol \$u\2 vol — 2 ^ dxl A u*u>i, (2.4)
i 1

see [15, Lemma 2.2]. Here a>i — g(f •, •) denotes the Kähler form on X associated

with /,-. Hence,

3 3

— f \du\2 2 f Au*u>i 2 f d{xlu*(Oj)
Jbp(x) Jbp{x)~[ JBp(x)frj

2pf
Ja.

(2.5)

m <u3r

with 9r ]l,3=1 f£r gfr denoting the radial vector field. On dBp{x), we can take
the local orthonormal frame (uj, «2, u3) t° be of the form (dr, 9i, 82) with (9j, 82)

a local positive orthonormal frame for 3Bp(x). Now, twice the integrand in the last

term is

2(/(3r)9iw, 32u) 2(/191 w, 12^211)

|/i9iw + /2a2n|2 - |/i9m|2 - |/292m|2 (2.6)

2|9rw|2 — |dw|2.

Putting everything together yields

/'(p) 2p-1 f \dru\2.
JdBr

Upon integration this yields (2.3).
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ProofofProposition 2.1. The map I yields a section of n*TM (g> A2 FX which,
using the connection on X, can be viewed as a 3-form A e £2 3 (X). For sections of X
the identity (2.4) is replaced by

|Vw|2 vol |3F|2 vol — 2u* A. (2.7)

If we define /(/?) as before, then using (2.7) its derivative can be written as

f'(p) -P~2[ \pou\2 + 2p'2[ u*A + p~1 |Vw|2.
J Bp(x) JBp(x) JdBp(x)

Let 3r denote the radial vector field emanating from x and set £2 := i (v)A with
v := jz*(rdr). We can write A as

A d£2 + e

where e is the sum of a form of type (1,2) and a form of type (2,1) satisfying

|e| 0(8r) with 8 := |V/| + |F^| + | A |. (2.8)

Here we use the bi-degree decomposition of £2 * (X) arising from TX n*TM © FX,
r := d(x, TV(•)), Fx is the curvature of the connection on X and R is the Riemannian

curvature of M. Hence,

2 f u*A ~ 2 f w*£2 + 0(p2) f(p) + O (p4)
JBp(x) JdBpix)

^
2pf i(dr)u*A + 0(p2)f(p) + O (p4).

JdBp(x)

Arguing as before,

2/ i(dr)u*A — f \IdrVru-pou\2 + |Vru|2-|Vu|2.
JdBp{x) JdBp(x)

Putting everything together one obtains

f'(p) > - f |Vrw|2 - cf(p) - cp.
P J Bp(x)

Since we can assume that ecr° < 2 and using ecp > 1, we have

dP(ecpf(p)) > - [ I Vrw|2 — 2cp
P JBp(x)

This integrates to prove the assertion.
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Remark 2.10. If A is closed (which is rarely the case), then

£(u)= [ \Vu\2 f \3u\2 — 2 {[M], [w*A]).
J M JM

Since the first term on the right-hand side only depends on the homotopy class of u,
this yields a priori energy bounds for Fueter sections.

Corollary 2.11. In the situation ofProposition 2.1,

-[ \Vu\2<-[ |Vu|2 + r2
s Jbs(x) r JB, (x)

and if Bs(y) C Br/2(x), then

~f \Vu\2<-[ I Vm|2 + r2.
S JBs(y) r JBr(x)

3. e-regularity

The following is the key result for proving Theorem 1.9. It allows to obtain local
L°°-bounds on Vu provided the renormalised energy is not too large.

Proposition 3.1. There is a constant so > 0 suchthat ifu e T(M, X) satisfies (1.10)
and

e := - \Vu\2 < e0,
r JBr(x)

then

sup \Vu\2(y) < r~2e + I. (3.2)
yeBr/4(x)

Remark 3.3. Given (3.2), higher derivative bounds over slightly smaller balls can
be obtained using interior elliptic estimates.

Proposition 3.1 follows from the following differential inequality and Corollary

2.11 using the Heinz trick; see Appendix A.

Proposition 3.4. Ifue T(M, X) satisfies (1.10), then

A|Vu|2 < |Vw|4 + 1.

Proof. This is proved in [15, Lemma 3.3 and Remark 3.4]. We recall the proof which
is a simple direct computation. Denote by V the induced connection on u*V3i and

define F: Q.°{M,u*VT> -» n°(M,u*VX) by

3

Fû := ^2 I(Vi)VViû
i 1
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for some local orthonormal frame (vi, V2, V3). A simple computation yields

Fgu V*Vu + {Vu}

where {•} makes the dependence on I etc. implicit. Further

VF3w VV*Vu + {Vu} + {VVw}.

Using

VVkVviVViu VViVVkVViu + {Vu, Vu, Vu}

V^. VUl. VWjtM + {Vu, Vu, Vu} + {VVu}

and Çu p o u we derive

V*VVu VF^m + {Vu, Vu, Vu} + {VVu}
{Vu, Vu, Vu} + {VVu} + 0(1).

From this it follows that

A\Vu\2 2(V*VVw, Vm) — 2|VVm|2

< c(|Vn|4 + |Vw| + \VVu\\Vu\2) - 2\VVu\2

< |Vm|4 + 1.

Remark 3.5. If X — M x X and X is flat, then one can prove that

A|Vw|2 < IVm|3 + 1

and the Heinz trick for subcritical exponents shows that \\Vu\\loo^m^ is bounded in
terms of the energy $(u)\ see Remark A.2 and [15, Appendix B],

4. Convergence away from the blow-up locus

Proposition 4.1. There exists a subsequence (Ui)iej C (m;)îsn0 and a subset S CM,
called the blow-up locus, with the following properties:

• S is closed and M1 (S) < 00.

• The sequence (w,-1M\s)i&j converges to a section u e F(M \ S, X) in Cff.

• If there is a subset S' C M such that a subsequence (w,-1 M\S')ie^cj converges
in then S' D S.
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Proof. We proceed in four steps.

Step 1. Construction of S.

With e0 as in Proposition 3.1, for r (0, r0] and i e No, define

Note that, by Proposition 2.1, Si>s C S;,r whenever s < r.
Since the Si>r are compact, for each r, we can pick Jr C No such that the

subsequence (S!;r);67r converges to a closed subset Sr in the Hausdorff metric. By a

diagonal sequence argument, we can find / C No such that {Si 2-kr^)i&J converges
to a closed subset S2-kro for each k e Nq. Set

By construction S is closed.

Step 2. M 1(S) < oo.

Given 0 < 8 < ro, cover 5 by a collection of balls {B^rj (xj) : j 1,,m}
with Xj 6 S, rj < 8 and B2rj(xj) pairwise disjoint. Pick k 5ï> 1 such that

2~kr0 < mm{rj}. For i » 1, we can find x'j e Si 2-kr() with d{x'j, xj) < 8. Then
the balls Bsrj (x'-) still cover S while the smaller balls Brj (x'j) are pairwise disjoint.
By definition of Si<r,

A 2ecr° A f |2 2 2ecr° f |2 AX] ri - ~~ Y. / IVm<-| +crj-^— IVmH +cro^G-
pi £0 £o JM p!

Since we can assume that cro < 1/2 and ecr° < 2, it follows that

Since this bound is uniform in 8 e (0, ro], the assertion follows.

Step 3. Selection of and construction of m 6 F (M \ S, X).

If x e M \ S, then there exists r e (0, ro] such that for all i e J sufficiently large

By Proposition 3.1, for all i e J, | Vu, | is uniformly bounded on ür/4(x). It follows
using standard elliptic techniques and Arzelà-Ascoli that we can chose J c I such

that the subsequence of (wi),6/ converges in Cj~ on M \ S.

S := n »
£eNo
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Step 4. M \ S is the maximal open subset on which a subsequence (wOie/'c/ can

converge in C,^.

Suppose converges in C1 in a neighbourhood of x e M. Then | Vtq |

is uniformly bounded in this neighbourhood. Hence, there is a slightly smaller

neighbourhood of x £ M which is contained in M \ Si>r for each sufficiently small

r > 0 and each i £ I'. Since lim,e/' Si>r — Sr c S, it follows that x e M \ S.

5. Decomposition of the blow-up locus

We assume that we have already passed to a subsequence so that the convergence
statement in Proposition 4.1 holds. Consider the sequence of measures (jif) defined

by

fit := [Vu,-]2 Jf3.

Here 3 is the 3-dimensional Hausdorff measure on M, which is simply the standard

measure on M. By (1.11) the sequence of Radon measures (fii is of bounded mass;
hence, it converges weakly to a Radon measure /i. By Fatou's lemma we can write

^ |Vm|2 3 + v

for some non-negative Radon measure v.

Definition 5.1. We call v the defect measure and

F := supp v

the bubbling locus.6 We call

sing(w) \x e M : ®^(x) := limsup- f |Vm|2 > o|
rf0 r JBr (x)

the singular set of u.

If we denote by ®^(x) the upper density of /r at the point x e M, then it follows
from Proposition 3.1 that S {x £ M : Q^(x) > 0} C T U sing(w). The reverse
inclusion also holds; hence, we have the following.

Proposition 5.2. The blow-up locus S decomposes as

S T U sing(u).

This means that there are two sources of non-compactness: one involving a loss

of energy and another one without any loss of energy.

6The justification for this terminology will be provided in Section 7.
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6. Regularity of the bubbling locus

As a first step towards understanding the non-compactness phenomenon involving
energy loss, we show that the set T at which this phenomenon occurs is relatively
tame.

Proposition 6.1. F is M -rectifiable and v can be written as

v 0 Ml\T

with 0: M -> [0, oo) upper semi-continuous. Moreover, Jf1(sing(w)) 0.

The interested reader can find a detailed discussion of the concept of rectifiablity
in DeLellis' lecture notes [9]. For our purposes it shall suffice to recall the definition.

Definition 6.2. A subset r C Mis called Mk-rectifiable if there exists a countable
collection {F/} of ^-dimensional Lipschitz submanifolds such that

Mk (r \ (J, r.) o.

A measure p on M is called Mk-rectifiable if there exist a non-negative Borel
measurable function © and a Jffc-rectifiable set F such that for any Borel set A

p(A) [ @Mk.

Since T is 3Î^rectifiable, at Ml-a.e. point x e T, it has a well-defined tangent
space TXF and v has a tangent measure, i.e. the limit

Txv := lim -(exp o ^£)*v
s-s-o e

exists and

Txv S(x)Je1[TxT.

Here 5£(x) := ex.
To prove Proposition 6.1 we will make use of the following deep theorem, whose

proof is carefully explained in [9].

Theorem 6.3 (D. Preiss [21]). Ifp is a locally finite measure on M and m No is
such thatfor p-a.e. x M the density

eiw:=taî».ß r|0 rm

exists and is finite, then p is Mm-rectifiable.
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Proof ofPropositi 6.1. The proof has five steps.

Step 1. With the same constant as in Proposition 2.1 and for all x e M and 0 < s < r

tC!i"V(gs(x)) < ecrr~1ii(Br(x)) + cr2.

This is not quite a trivial consequence of Proposition 2.1 because (//., only weakly
converges to /z; hence, we only know that /i(Br(x)) > limsup^^ pi(Br(x)) and

liminfj^oo m(Br(x)) > /i(Br(x)).
For x e M set

:= {r 6 (0, r0] : /x(3£, (x)) > 0}.

If r ^ then it follows from Proposition 2.1 that

ecss~lii(Bs(x)) < ecrr~lp(Br(x)) + cr2.

The general case follows by an approximation argument. Note that is at most
countable. Thus, given r e £%x, we can find a sequence (r,) such that s < r,- < r,
ri £ ffx, and r := lim^oo r;-. By dominated convergence

p{Br{x)) lim ß(Bri(xj).
i —>00

Step 2. The limit
0(x) := limr_1/z(.ßr(T))

rfo

exists for all x e M. The function 0: M —r [0, oo) is upper semi-continuous, it
vanishes outside S, is bounded and 0(x) > eo for all x e 5.

The existence of the limit is a direct consequence of Step 1.

To see that 0 is upper semi-continuous, let (x;) be a sequence of points in M
converging to a limit point x lim^oo x,. Let r <£ Sfx and e > 0. For / » 1

©(x,) < ecrr~lp,(Br(xij) + cr2 < ecrr~lfi(Br+e(x)) + cr2.

Therefore, limsup,^^ 0(x*) < ecrr~1 fi(Br(x)) + cr2. Taking the limit as r -> 0

shows that 0 is upper semi-continuous.
The last part is clear.

Step 3. 0* vanishes TC'-a.e. in M, i.e. 311(sing(u)) 0.

Given s > 0, set

Es := {x e M : 0*(x) > e}.
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Given 8 > 0, choose {x\,... ,xm} C Ee and {r\,...,rm} C (0,5] such that the balls

B2rj (xj) cover Ee, but the balls Brj (xj) are pairwise disjoint. Moreover, we can

arrange that

where N$(S) — {x e M : d(x, S) < 5}. The right-hand side goes to zero as 8 goes
to zero. Thus Ml{Es) — 0 for all e > 0. This concludes the proof.

Step 4. v is J(1 -rectifiable.

By Step 2 for any x e M \ sing(w) the density

exists and agrees with 0(x). In general 0* < 0 < oo, which implies that v <SC Jt1

(see, e.g. [17, Proposition 2.2.2]). By Step 3, JC1(sing(M)) 0 and, hence,

v(sing(w)) 0. Applying Theorem 6.3 yields the assertion.

Step 5. We prove the proposition.

We have already proved the assertion about sing(w). Since v is 311 -rectifiable
and F supp(u), it follows that F is M ^rectifiable and v can be written as

v @3£l [T

for some 0. By Step 3, 0v(x) 0(x) for JC^a.e. x e T.

7. Bubbling analysis

We will now show that the "lost energy" goes into the formation of bubbles transverse
to F. To state the main result recall that an orientation on Nx F induces a canonical

complex structure and an orientation of Nx T is canonically determined by the choice
of a unit tangent vector v G TXT c TxM since M is oriented.

Proposition 7.1. If x e V is smooth, i.e. TXT exists and x f sing(w), then there

exists a {—I{v))-holomorphic sphere ix\ NXT U {oo} -> X \= Xx with

Since u is smooth on M \S, we must have Ee C S. Hence,

r|o r

(7.2)

Here we have picked some unit vector v eTxT.
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Remark 7.3. It is immaterial whether we choose v or its opposite — v since this
results in changing the complex structures on both NXF and X. In particular, the
above cannot be used to fix an orientation of F ; however, the existence of does

restrict the possible tangent directions, see Section 8.

Remark 7.4. The reason that (7.2) may be strict is that we only extract one bubble of
what is an entire bubbling-tree, cf. [20] for the general notion of a bubbling tree, and

[4, Section 7] for a discussion on how to extract a bubbling tree in the our situation.

The holomorphic sphere ix is obtained by blowing-up iuf) around the point
x P. We assume a trivialisation of X in a neighbourhood U of x has been fixed;
see Example 1.5. We use the following notation: given any map u: U -> X and a

scale factor A > 0, we define a rescaled map u\\ 5;3q^(0) -* X by

u\ := u(expo5a) (7.5)

with sx(y) := Ay. We write (z, w) to denote points in TXY x NXT TxM and

work with generalised cubes of the form

Qr,s(zo,wo) Br(zo) x Bs(w0) C TXT x NXT TXM.

Proof ofProposition 7.1. We proceed in four steps.

Step 1 (Preliminary scale fixing). There exists a null-sequence (e*) C (0,1) such

that

|duiVi I2 M3 - Txv 0(x) [TXF.

By definition, Txv is the weak limit of s~l (exp os£)*r as s tends to zero. Since

x f sing (w), we have

lim -(exp o s£)*v lim -(exp o se)*ji.
«->0 S £->0 S

Thus

Txv lim lim -(expo se)* fii lim -(expo sSi)* pt
s^-0 i —>-oo 8 z—>oo £

for some null-sequence (e,-). This implies the assertion since

— (expo s£(.)Vi \dui;Si\2 J(3.

Step 2 (Asymptotic translation invariance). After passing to a subsequence, we can

assume that there exists a null-sequence (z,-) such that

lim sup- f \dvtii\sj |2 — 0. (7.6)
l-»oos<! J jQs l(Zifi)
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Step 2.1. We have

lim f \dvui>ei\2 0.
;_>0° JQ2,i(0)

Denote by dp the radial vector field emanating from 4v. By Proposition 2.1, for
for 0 < s < r

f eCB'Tr~1 \dpUi;ei 12

7B,(4«)\B.ç(4u)

<eCBirr~1f \dui;Si |2 - f \dui;ej\2 + cefr2. (7.7)
JBr(4v) J Bs{Av)

As z tends to infinity the first two terms on the right-hand side both converge to @(x),
since Txv — 0(x) 3Î1 \ TXT and the last term tends to zero.

Since Ö2,i(0) C B%{4v) \ £i(4u), it follows that

lim [ \dpUitSi\2 0.
'-*00 7ö2.I(0)

This completes the proof, because along ^Tfl 52(0) the vector fields 3P and v are

colinear and 13W|2 JC3 converges to zero outside TXT.

Step 2.2. For Jt^-a.e. z e 5i(0) C 7^r

lim sup- f |9i;Wi;e,-|2 0. (7.8)
,->0° i<l ^ JQs,\(z,0)

Define /}: #2(0) CftF -> [0, 00) by

fi(z) := [ \dvUi-Ei\2{z,-)
JBi(0)<ZNxT

and denote by Mfi: B i(0) C —»• [0,00) the Hardy-Littlewood maximal
function associated with fi :

Mfi(z) := sup - f fi.
s< 1 5 7ss(z)crxr

We need to show that the set

A {z e B\(0) : lim inf Mfi (z) > 0}
i—>00

is such that Jf1 (A) 0. If we set

Aitg := {z Bfi0) : M/;(z) > S},
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then
OO

a=u u n Ai>s-

8>0I SNi—I

By the weak-type L1 estimate for the maximal operator, for each 8 > 0

3t\Ai,s) <

Since || fi ||Li —> 0, we have

(n^) =0;

hence, 3Î1 (A) 0 by monotonote convergence.

Step 2.3. We prove (7.6).

By Step 2.2, for each j e N we can find zj G Bi/j (0) such that

lim sup - f IdvUi;Bi |2 0.
S JQs i(zj,0)

Now apply a diagonal sequence argument.

Step 3 (Bubble detection). There exists a null-sequence (Si) e (0,1/2) such that,
for each i 1,

max —I |dwi,e; |2 e0/8; (7.9)
weBi/2(0) Oi JBs. (z;-,w)

moreover, if wt e Ë 1/2(0) denotes a point at which this maximum is already, then

(wi is a null-sequence.

By Step 1, we have

1 r 2liminf max - / |dwi;e/1 0(x) > eo
weB1/2(0) 0 JB§(zi,w)

for all 8 > 0, while for fixed i G N and w e ^1/2(0) C NXT

lim^ [ \dui;Si\2 0.
54,0 Ô JB§(zi,w)

Hence, we can find a null sequence (3/ such that

max — [ |dui)8i |2 e0/8.
îûsJj/2(0) °i JBgi (zi,u>)

If (after passing to a subsequence) we can find a > 0 and (id*) g 51/2(0) \ Ba (0)
such that the maximum in (7.9) is achieved at w un, then by Proposition 2.1 the

density of Txv at (0, w) would be positive, contradicting Step 1.
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Step 4. We prove Proposition 7.1.

Let (tvi) be as in Step 3. Define

üi := M,-(•) := Ui-Sisf (S'r1 (Zi, Wi) + •).

By construction

max / |dMi|2 eo/8
«"65(i/2-|u;,-|)«i(0) J B\ (0,w)

with the maximum achieved at w 0.

From Proposition 3.1 and Remark 3.3 we obtain -bounds on ü, which allow
us to pass to a limit u: Bi(0) x NXT —r X, which solves the Fueter equation. It
follows from Step 2, that

lim [ |3vw!-|2 0.
i^°° JQi.msi (o,o)

Hemce, u is going to be constant in z G ßi(0) C TXT\ hence, it is the pullback of
a map 3: NXT -> X. We can choose the orthonormal frame (tq, iq, tq) on TXM
constant and with v\ v £ TXT and iq, tq e NXT. With respect to this frame the

Fueter operator takes the form

$ 7(tq)3„ + 7(tq)3

with 3 dV2 + (—I(v))dV3. Thus 3 is (—7(u))-holomorphic.

Question 7.10. What happens near non-smooth points of F?

8. Constraints on tangent directions

By Proposition 7.1, if x jÉ sing(w) and v e STXF, then Xx must admit a non-
trivial (—7(u))-holomorphic sphere 3* of area at most 0(x). Since 0 is upper
semi-continuous, it achieves a maximum dmax on F. Thus, the area of 3* is bounded

by /Imax and the following shows that the possible tangent directions of T are strongly
constrained.

Proposition 8.1. Let X be a simple hyperkähler manifold with 62(27) > 6. Given

^max > 0; there exists onlyfinitely many 7^ e Sj(X)for which there exists a rational
curve C in (.X, 7j) with

area(C) - ([C],û)ç) < Amax.

Here ûjj g(7r, •)•
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If X is a K3 surface, then this is essentially contained in [7, Proposition 3.1]. Its
proof mainly uses some facts about the iV 3-lattice (H2(K 3, Z), U). The appropriate
replacement of the cup-product for general simple hyperkähler manifold is the

Beauville-Bogomolov-Fujiki (BBF) form q: S2H2{X, Z) -> Z. We refer the reader

to [3,6,11] for details about the BBF form. For our purposes it suffices to recall that:

• q is non-degenerate, i.e. the induced map H2(X, Q) —> H2(X, Q)* is an

isomorphism. In particular, for each C e H2 (X, Z) there exists a unique y e

H2{X, Q) such that

q(y>0 — (c,-> e h2(x,q)*. (8.2)

• q has signature (3,&2(V) — 3) with span{[cu^] : f e S2} forming a maximal

positive definite subspace. We denote the perpendicular maximal negative definite
subspace by N.

Theorem 8.3 (Amerik-Verbitsky). If X is a simple hyperkähler manifold with
b2(M) > 6, then there exists an positive integer ueN such that

q(y> y) > -CT

for all y e H2(X, Q) with (8.2) for some C represented by a Iç-holomorphic sphere

for some Iç e fj(X).

Proof. This follows by observing that y is a MBM class in the sense of [2,
Definition 2.14] and then appealing to [2, Theorem 5.3].

Remark 8.4. Theorem 8.3 generalises the fact that any class representing a

holomorphic sphere in K3 has square —2.

Proposition 8.5. There exists a constant Cq > 0 such that if C is represented by a

I^-holomorphic sphere ofarea A, then y as in (8.2) is of the form

y ß + c0Acoç (8.6)

with ß N and

q(ß,ß) > -a - C0A2.

Proof It follows from (8.2) that

q(y,con) 0 (8.7)

for all q -L £; hence, y — ß + c0Ao)% with cq l/q(coç,coç), which does not depend

on £ S2, and ß e N. Since q(y, y) > —a, we have

q(ß,ß) > ~ coA2.

ProofofProposition 8.1. There are only finitely many y as in Proposition 8.5 with
A < Amax and y determines £ e S2 uniquely.
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A. The Heinz trick

T. Walpuski CMH

Throughout we consider a bounded open subset U C R" endowed with a smooth

metric g which extends smoothly to Ü. Implicit constants are allowed to depend on
the geometry of U.

Lemma A.l (E. Heinz [14]). Fix d > 0 and set

2

q'-d + 1

Suppose f'.U —> [0, oo) and p, 8 {0,1} are such that the following hold:

(1) We have

Af<fq + fp.

(2) If Bs (y) C Br/2(x) C U, then

sd~n [ f < rd~n f f + 8r2.
J Bs (y JBr (x)

Then there exists a constant Sq, > 0 such thatfor all Br (x) C U with

s rd~n [ f < e0
J Brix)

we have

SUP /00 ^ r~de + ((1 - p) +<5)r2.
y&Br/Aix)

Remark A.2 (Heinz trick in the subcritical case). If« < d,

e < eo whenever r < £°

\Ju J

In particular, for all compact K C U, H/Hl^cst) is bounded a priori depending only
on fjj f and d(K,dU).

We use the following standard result; see [12, Theorem 9.20] or [15, Proof of
Theorem B.l].
Proposition A.3. For all Br(x) C U and every smoothfunction f : Br(x) [0, oo)

/OO ~ r~" f f vol + r21| A/ ||x,oo.
JBr (x)

ProofofLemma A.l. Define a function 9: Br/2 (x) [0, oo) by

8(y) := (^~d(x,y)j f(y).
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Since 6 is non-negative and vanishes on the boundary of it achieves its
maximum

M := max 0(y)
yeBr(x)2

in the interior of Br_ (x). We will derive a bound for M, from which the assertion
follows at once.

Let jo be a point with 0(jo) — M, set

F /(Jo)

and denote by

V) := x (ö ~d(x'yo))

half the distance from yo to the boundary of B^ (x). Each y e Bso(yo) has distance

from the boundary of B>_ (x) at least so", hence,

f(y)<söd0(y)<söd9(yo)<F.

Proposition A.3 applied to Bs(yo) together with (1) and the above bound yields

F < s~~n f f + sz (.Fq + Fp)
JBs(yo)

for all 0 < s < so- Combined with (2) this becomes

F < s~de + s2 {Fq + Fp) + 8r2,

which can be rewritten as

sd F < s + sd+2 (.Fq + Fp) + 8r2sd. (A.4)

This inequality will yield the desired bound on M. It is useful to make a case

distinction.

Case 1. F < 1.

In this case a bound on M follows from simple algebraic manipulations. If p 0

or 8 1, then (A.4) with s so yields

M 9(y0)<sdF <e + rd+2.

If p 1 and 8 0, this bound can be sharpened. (A.4) becomes
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If cSq < i, then we obtain

M < Sq F < s',

otherwise, setting s := (2c) 2 < s0 yields

F < e

and thus M < e.

Case 2. F > 1.

From (A.4) we derive

sdF < s + sd+2Fq +8r2sd

for ail 0 < s < so- Set t := t(s) sFl^d. Then the above inequality can be

expressed as

td(l-ct2) < c(e + 8r2).

For sufficiently small s > 0, the corresponding equation td (1 — ct2) c(s + 8r2)
has d small roots which are approximately ±(ce + c8r2)d and two large
roots. Since t{0) 0 and by continuity, for each s 6 [0, so], t(s) must be less than

the smallest positive root; hence, t(s) < (e + 8r2)a for all s 6 [0, so]- This finishes
the proof.

B. Compactness for Fueter maps with four dimensional source manifold

Proposition B.l. LetV be a A-dimensional Euclidean vector space, H a quaternionic
vector space, /: SA + F* —> S(ImH) an isometric identification of the unit length
self-dual forms on V with the unit imaginary quaternions and 1: A+F* —> so(F).
The endomorphism T e End(Horn(F, H)) defined by

3

i 1

has eigenvalues 1 and —3. Here we sum over an orthonormal basis

of A+V*. We denote the (—3)-eigenspace by Hom/(F, H).

Let M be an orientable Riemannian 4-manifold, let X M be a bundle of
hyperkähler manifolds together with a fixed identification I : SA+T*M -> f)(X) of
the unit sphere bundle of self-dual forms on M and the bundle of hyperkähler spheres
of the fibres of X and fix a connection on X.
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Definition B.2. A section u e T(X) is called a Fueter section if

du := Vw - >TVu 0 r(w*Hom/(jr*TM, VX)). (B.3)

Remark B.4. If M R x N for some 3-manifold N, X is the pullback of a

bundle 2) of hyperkähler manifolds on A, I is obtained from an identification
J: STM i)(3£) and the connection on X is the pullback of a connection on 2),
then (B.3) can be written as

3 tu — du 0

with £ denoting the 3-dimensional Fueter operator. This is the form in which the

4-dimensional Fueter operator appears in [15].

Remark B.5. Unlike in the 3-dimensional case, A+T*M need not be trivial.7 Thus
the analogue of the setup in Example 1.5 rarely makes sense globally, and one is

almost forced to work with bundles of hyperkähler manifolds.

The analogue of Theorem 1.9 in the 4-dimensional case is the following result.

Theorem B.6. Suppose X is compact. Let (u,-) be a sequence of solutions of the

(perturbed) Fueter equation
dUi p o m

with p 6 T(ï, Horn/(n*TM, VX)) and

g(ui)\= I |Vw,|2 <cs
J M

for some constant cg > 0. Then (after passing to a subsequence) thefollowing holds:

• There exists a closed subset S with (K2(S) < oo and a Fueter section u e

T(M \ S, X) such that Ui |m\s converges to u in

• There exist a constant so > 0 and an upper semi-continuous function 0: S —>

[so, oo) such that the sequence of measures IVu^2 Jf4 converges weakly
to ii \Vu\2Je4 + ©M2lS.

• S decomposes as
S T U sing(u)

with

T := supp(@ Jf1 [S)

and sing(w) := \x e M : lim sup\ f |Vw|2 > oj.
rfo ' JBr(x)

F is M2-rectifiable, and JC2(sing(w)) 0.

1A+T*M being trivial is equivalent to 3o(M) + 2x(M) 0 and Wj(M) 0.
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• For each smooth point of Y there exists a non-trivial holomorphic sphere in

lx'- S2 —> {%X,—I(ff)) with f a unit self-dual 2-form on TXM, whose associated

complex structure preserves the splitting TXM Tx Y © NXY. Moreover,

• If X is a bundle of simple hyperkähler manifolds with b2 > 6, then there is a

subbundle i C {/ End(TM): I2 —id}, depending only on sup©, whose

fibres are finite sets such that TXY is complex with respect to a complex structure

I 6 \x for all smooth points x 6 Y.

Sketch of the proof. The proof is analogous to that of Theorem 1.9 with a few minor
modifications:

• The renormalised energy is now

• In the proof of the monotonicity formula one now uses the 4-form A e £2 4(3c)

obtained from the section of A+n*TM <g> A2VA induced by I. Direct
computation shows that (2.7) still holds. Similarly, one can verify the analogue
of (2.6).

• The proof of the e-regularity and convergence outside S carry over mutatis
mutandis.

• In the bubbling analysis, Ui-xt will be asymptotically translation invariant in the

direction of TXY. Fix a unit vector no & TXY. Since, asymptotically, everything
is invariant in the direction of Vo, we arrive back at the situation in Section 7.
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