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A compactness theorem for Fueter sections

Thomas Walpuski

Abstract. We prove that a sequence of Fueter sections of a bundle of compact hyperkihler
manifolds X over a 3-manifold M with bounded energy converges (after passing to a
subsequence) outside a 1-dimensional closed rectifiable subset S C M. The non-compactness
along S has two sources: (1) Bubbling-off of holomorphic spheres in the fibres of X transverse
to asubset I' C S, whose tangent directions satisfy strong rigidity properties. (2) The formation
of non-removable singularities in a set of J# !-measure zero. Our analysis is based on the ideas
and techniques that Lin developed for harmonic maps [19]. These methods also apply to Fueter
sections on 4-dimensional manifolds; we discuss the corresponding compactness theorem in an
appendix. We hope that the work in this paper will provide a first step towards extending the
hyperkéhler Floer theory developed by Hohloch, Noetzel, and Salamon [15] and Salamon [22]
to general target spaces. Moreover, we expect that this work will find applications in gauge
theory in higher dimensions.

Mathematics Subject Classification (2010). S8E20; 53C26, 53C43.

Keywords. Fueter sections, compactness, bubbling, hyperkéhler manifolds.

1. Introduction

Let M be an orientable Riemannian 3-manifold, let X 5 M be a bundle of hyper-
kédhler manifolds together with a fixed isometric identification /: STM — H(X) of
the unit tangent bundle in M and the bundle of hyperkéhler spheres! of the fibres
of X, and fix a connection on X.

Definition 1.1. A section u € I'(X) is called a Fueter section if

3
Fu:=> Iw)Vyu=0eTuVX) (1.2)

i=1

for some local orthonormal frame (vy, v, v3).2 Here Vu € QY (M, u*VX) is the

1Given a hyperkihler manifold (X, g, I1, I2, I3), for each § = (§1,£2,83) € 5% C R3, I ==

Z?=1 & I; is a complex structure. The set $(X) := {I¢ : § € S?} is called the hyperkéhler sphere
of X.
20f course, § does not depend on the choice of (v1, V2, v3).
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covariant derivative of u, a 1-form taking values in the pull-back of the vertical
tangent bundle VX := ker (dn: TX — TM). The operator § is called the Fueter
operator.

The Fueter operator is a non-linear generalisation of the Dirac operator, see [23]
and [13, Section 3].

Remark 1.3. A construction similar to (1.2) also exists in dimension four. Since it
is more involved, we relegate its discussion to Appendix B.

Example 1.4. Choose a spin structure s on M. If X = 8. I is the Clifford
multiplication and V denotes the induced spin connection, then the Fueter operator
is simply the Dirac operator associated with s.

Example 1.5. Let (X, g, I, >, I3) be a hyperkdhler manifold and (vy,v2,v3) a
orthonormal frame of M. A map u: M — X satisfying

3
Fu =) ILidu(v) =0 (1.6)
i=1
is called a Fueter map. In a local trivialisation the Fueter equation for sections of X,

takes the form (1.6) up to allowing for the /; to depend on x € M and admitting a
lower order perturbation (coming from the connection 1-form).

One of the main motivations for studying Fueter sections is the work of [15], who
introduced a functional whose critical points are precisely the solution of (1.6) and
developed the corresponding Floer theory in the case when the target X is compact
and flat, and the frame on M is divergence free and regular,?® see also [22]. The
requirement that X be flat is very severe and one would like to remove it. It has
been conjectured that the putative hyperkihler Floer theory should be very rich and
interesting, especially in the case when X is a K3 surface.

A further source of motivation is gauge theory on G- and Spin(7)-manifolds.
Here, Fueter sections of bundles of moduli spaces of ASD instantons naturally
appear in relation with codimension four bubbling phenomena for G,- and Spin(7)-
instantons; see Donaldson—Segal [10] and the author [24,25] for further details.

Remark 1.7. Sonja Hohloch brought to the author’s attention a cryptic remark in
[16, Section 1.5 Question 3], which indicates that their invariants of 3D Calabi—Yau
categories with stability structure can be interpreted as “quaternionic Gromov—Witten
invariants” of certain hyperké@hler manifold M, which means as a count of Fueter
maps from some 4-manifold to M.

A major issue when dealing with Fueter sections is the potential failure of
compactness. This is demonstrated by the following example due to Hohloch,
Noetzel, and Salamon.

SEvery 3-manifold admits a divergence free frame by Gromov’s h-principle [22, Theorem A.1]. A
frame is regular if there are no non-constant Fueter maps M — H with respect to this frame; this is a
generic condition.



Vol. 92 (2017) A compactness theorem for Fueter sections 753

Example 1.8. Consider a K3 surface X with a hyperkéhler structure such that
(X, I1) admits a non-trivial holomorphic sphere 3: S — X and take M = SU(2),
the unit-sphere in the quaternions H, with a left-invariant frame (v1, va, v2) which
atid € SU(2) it is given by (i, j, k). Let=: S? — S? denote complex conjugation
on S? = P!. Let r: S3 — S? denote the Hopf fibration whose fibres are the orbits
of vy. Itis easy to check that u = 300 7: S3 — X satisfies

Oy, u =0 and 0Oy, —[0y;u =0,

and thus u is a Fueter map. For A > 0 define a conformal map s,: S? — S?
by s3(x) = Ax for x € R? C 52 and s)(c0) = co. Now, the family of Fueter
maps u; := 3 o sy o 7 blows up along the Hopf circle 77 !(c0) as A | 0 and
converges to the constant map on the complement of the Hopf circle. Also, note that
&(up) = [g3 |Vua|? is independent of A.

The following is the main result of this article.

Theorem 1.9. Suppose X is compact. Let (u;) be a sequence of solutions of the
(perturbed) Fueter equation
Sui =pou; (1.10)

withp € I'(X, VX)%and

g(u,) = f |Vui|2 < Cg (1.11)
M

for some constant ce > 0. Then (after passing to a subsequence) the following holds:

 There exists a closed subset S with #1(S) < oo and a Fueter section u €
(M \ S,X) such that u; | pr\s converges to u in C 52

loc*

e There exist a constant £g > 0 and an upper semi-continuous function @: S —
[€0, 00) such that the sequence of measures [1; = |Vu;|*> #3 converges weakly
top = |Vul> #3 + 0 HS.

* S decomposes as
S = T' Using(u)

with
I := supp(® #'|S)
1
and sing(u) := {x € M : limsup —f |Vul? > O}.
rio T JBr(x)

I is H#-rectifiable, and J¢' (sing(u)) = 0.

4This sort of deformation of (1.2) is important for applications; e.g. Hohloch, Noetzel, and Salamon
perturb (1.2) using a Hamiltonian function to achieve transversality.
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» For each smooth point® x € T, there exists a non-trivial holomorphic sphere
520 82 = (X, := w71 (x), —1(v)) with v a unit tangent vector in Ty I". Moreover,

O() = () = fS el

* If X is a bundle of simple hyperkdhler manifolds with b, > 6, then there is a
subbundle © C PTM, depending only on sup ©, whose fibres are finite sets such
that TxI" € 0 for all smooth points x € T'.

Remark 1.12. The analysis of (1.2) is similar to Lin’s work on the compactness
problem for harmonic maps [19]. We follow his strategy quite closely; however,
there are a number of simplifications in our case, many of the arguments have to be
approached from a different angle and our result is stronger.

Remark 1.13. In the situation of Example 1.5 if X is flat and (vq, vz, v3) is regular,

then the uniform energy bound (1.11) is automatically satisfied; see [22, Lemma 3.2
and Remark 3.5].

Remark 1.14. If 7/ is parallel (which is very rarely the case, but holds, e.g. in
the situation of Example 1.5 if M = T3 equipped with a flat metric and the v;
are parallel), then there are topological energy bounds; see Remark 2.10. In
this case Fueter sections are stationary harmonic sections and one can derive
most of Theorem 1.9 from [19]; cf. [18, Section 4] and [8], who study
triholomorphic/quaternionic maps between hyperkihler manifolds. More recently,
very important progress in the study of triholomorphic maps was made by [4].

Remark 1.15. In the situation of Example 1.5 if X is flat, then S = @; see [15,
Section 3] and Remark 3.5. This does not immediately follow from Theorem 1.9;
however, since m>(7") = 0, flat hyperkidhler manifolds admit no non-trivial

holomorphic spheres and we can rule out bubbling a priori, i.e. I' = @. See also
Remark 3.5.

Remark 1.16. By Bogomolov’s decomposition theorem (after passing to a finite
cover) any hyperkdhler manifold is a product a flat torus and simple hyperkéhler
manifolds. Hohloch, Noetzel, and Salamon’s compactness result says that nothing
interesting happens in the torus-factors. Thus the assumption of X being a bundle
of simple hyperkdhler manifolds is not restrictive. The requirement b, > 6 is an
artefact of a result of Amerik and Verbitsky that we use in Section 8.

As stated, Theorem 1.9 is very likely far from optimal. Here are some conjectural
improvements:

* We believe that the limiting section u € I'(M \ S, X) extends to M \ sing(u) and,
moreover, that sing(u) is finite (possibly countable and closed).

SWe call a point x € I" smooth if the tangent space T, I exists and x ¢ sing(u). Since I is rectifiable,
T, T exists almost everywhere.
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« We believe that " enjoys much better regularity than just being J !-rectifiable.
It seems reasonable to expect that I' is a graph (possibly with countably many
vertices) embedded in M and @ is constant along the edges of I'; moreover, we
expect that the vertices (I', ®) are balanced.

Remark 1.17. In the situation of Remark 1.14, Bethuel’s removable singularities
theorem for stationary harmonic maps [5, Theorem 1.4] shows that u extends to
M \ sing(u) and a result of [1] affirms the conjecture in the third bullet.

The holomorphic sphere 3, can be replaced by a bubble-tree, cf. [20], such that
the energy of the entire bubble tree equals ®(x). In an earlier version of this article
it was conjectured that there can be no energy stuck on the necks; in particular,
®(x) is the sum of energies of holomorphic spheres in (X, —1(v)). Shortly after
the first version of this article was posted on the arXiv, [4] proved the analogue of
this conjecture for triholomorphic maps, and after a brief discussion with the author,
in an updated version also the author’s earlier conjecture. We refer the reader to
[4, Section 7] for details.

It is an interesting and important question to ask: what happens for a generic
choice of I: STM — $(X) and perturbation p? One would hope (perhaps too
optimistically) that generically the situation is much better and possibly good enough
to count solutions of (1.10) and thus define the Euler characteristic of the conjectural
hyperkéahler Floer theory.

Assumptions and conventions. Throughout the rest of the article we assume the
hypotheses of Theorem 1.9. We use ¢ to denote a generic constant. We write
x Syforx <cyand{,...,-}denotes a generic (multi-)linear expression which is
bounded by ¢. We fix a constant 0 < rp < 1; in particular, rg is much smaller than
the injectivity radius of M and we take all radii to be at most rg.

2. Mononicity formula

The foundation of the analysis of (1.2) is the monotonicity formula which asserts that
the renormalised energy
k f |Vu)2.
r By (x)
is almost monotone in r > 0:
Proposition 2.1. If u € I'(M, X) satisfies (1.10), then forallx € M and 0 < s <

r <rp

eCI‘

cs 1
- |Vu|2—f—/ |Vu]22f —|Veu® —elr® —5%).
r B, (x) S By (x) Br (x)\Bs(r) P

Here p := d(x,").
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It is instructive to first prove the following which contains the essence of
Proposition 2.1.

Proposition 2.2. Ifu: R® — X is a Fueter map with v; = a -, then for all x € M
and0 <s <r
1 1 1
—f |wﬁ—-/ |wﬁ=2f ~19,ul?. (2.3)
r By (x) § B (x) By (x)\Bs(r) P

Proof. The derivative of

1 2
ﬂm’pﬁwﬁ”

1 1
fw:ﬁ7j1|wf+—f du?.
P= JBy(x) P JaB,(x)

By a direct computation

is

3
|du|? vol = |Fu|? vol—Zdei Au*w;, (2.4)
t=]
see [15, Lemma 2.2]. Here w; = g(I; -, -) denotes the Kahler form on X associated
with 7;. Hence,

— ldu\ _2[ dx’ Auw,_Z[ d(x’ u*w;)
/Bp(x) Bp(x) ;= Z By (x) ;

=25 / u*wp,
0B, (x)

with 9, = Zf =1 |’§:| 5.7 denoting the radial vector field. On 0B,(x), we can take
the local orthonormal frame (vy, vz, v3) to be of the form (d,, d1, d2) with (1, d2)
a local positive orthonormal frame for dB,(x). Now, twice the integrand in the last

term is

(2.5)

2([(8,)8114, Bzu) = 2(11811/!, Izazu)
= |Lowu + Ldul* — |Lduf* — |Laul>  (2.6)
= 2|8,ul* — |du*.

Putting everything together yields

fw=nﬂf|mw.
0B,

Upon integration this yields (2.3). O
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Proof of Proposition 2.1. The map I yields a section of 7*TM ® A2V X which,
using the connection on X, can be viewed as a 3-form A € Q3(X). For sections of X
the identity (2.4) is replaced by

IVu|? vol = |Fu|* vol — 2u*A. (2.7)

If we define f(p) as before, then using (2.7) its derivative can be written as

f%p)==—p"2j" naouf-+2p—2j' u*A-+p-1j' V.
) Bp(x) 3B, (x)

By(x
Let 9, denote the radial vector field emanating from x and set Q := i (v) A with
v = m*(rd,). We can write A as

A=dQ +e
where ¢ is the sum of a form of type (1, 2) and a form of type (2, 1) satisfying
le| = O(r) with§ :=|VI|+ |Fx|+ |R|. (2.8)

Here we use the bi-degree decomposition of Q*(X) arising from7X = n*TM @V X,
r :=d(x,n(-)), Fx is the curvature of the connection on X and R is the Riemannian
curvature of M. Hence,

2 wa=2f w2+ 06)fe)+ 0

Bp(x) dBp(x) (2.9)

—20 [ iGuA+ 0GR f(p) + O (6*).
9B, (x)

Arguing as before,
z[ i(0)uU*A = f I3, Vou —poul® + |Veul* — |Vul.
Putting everything together one obtains

1
f(p) = —/ IVrulz—cf(p)—cp.
P JBy(x)
Since we can assume that e < 2 and using e’ > 1, we have
cp 1 2
dp(e f(p) = — |Vyul™ —2cp
P JBp(x)

This integrates to prove the assertion. ]
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Remark 2.10. If A is closed (which is rarely the case), then

cﬂw==LAVMZ=1;WM2—ZHMLWWH%

Since the first term on the right-hand side only depends on the homotopy class of u,
this yields a priori energy bounds for Fueter sections.

Corollary 2.11. In the situation of Proposition 2.1,

1 1
—[ |st~f Vul? + 72
S JBg(x) F JBy(x)

and if Bg(y) C By/2(x), then

1 1
—f IVul® < —f |Vu|* + r2.
§ Bs(y) r By (x)

3. e-regularity

The following is the key result for proving Theorem 1.9. It allows to obtain local
L°°-bounds on Vu provided the renormalised energy is not too large.

Proposition 3.1. There is a constant eg > 0 such that ifu € I'(M, X) satisfies (1.10)

and "
£ 1= -f |Vul? < e,
r By (x)
then
sup  |Vul*(y) S r2e+ 1. (3.2)
YEBy/4(x)

Remark 3.3. Given (3.2), higher derivative bounds over slightly smaller balls can
be obtained using interior elliptic estimates.

Proposition 3.1 follows from the following differential inequality and Corol-
lary 2.11 using the Heinz trick; see Appendix A.

Proposition 3.4. Ifu € I'(M, X) satisfies (1.10), then
AlVul> < |Vul* + 1.

Proof. This is proved in [15, Lemma 3.3 and Remark 3.4]. We recall the proof which
is a simple direct computation. Denote by V the induced connection on u*V X and
define F: QO(M,u*VX) —» QO(M,u*VX%) by

3
Fit := Y I(v;)Vy,

i=1
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for some local orthonormal frame (v;, va, v3). A simple computation yields
Fdu = V*Vu + {Vu}
where {-} makes the dependence on / etc. implicit. Further
VFZu = VV*Vu + {Vu} + {VVu}.
Using

Vo Vo, Vo, b = Vi, Vi, Vo u + {Vut, Vi, Vu}
@,,i vvi Vot +{Vu, Vu, Vu} + {(VVu}

I

and §u = p o u we derive

V*VVu = VFFu + {Vu, Vu, Vu} + {VVu}
= {Vu, Vu, Vu} + {VVu} + 0(1).

From this it follows that
AlVul? = 2(V*VVu, Vu) — 2|V Vu [?
< c(|Vul* + |[Vu| + |[VVu||Vul?) = 2|VVu?
< [Vul* + 1. O

Remark 3.5. If X = M x X and X is flat, then one can prove that
AlVul? < |Vul]®> +1

and the Heinz trick for subcritical exponents shows that || Vu||zoc(ar) is bounded in
terms of the energy & (u); see Remark A.2 and [15, Appendix B].

4. Convergence away from the blow-up locus

Proposition 4.1. There exists a subsequence (u;)ier C (U;)ien, and a subset S C M,
called the blow-up locus, with the following properties:

e S isclosed and ' (S) < oo.

» The sequence (ui | M\S) converges to a sectionu € I'(M \ §,X) in CZ2.

iel
o [fthere is a subset S’ C M such that a subsequence (ui |M\S’)ie1'c1 converges
in C2, then S’ O S.



760 T. Walpuski CMH

Proof. We proceed in four steps.
Step 1. Construction of S.

With &g as in Proposition 3.1, for » € (0, ro] and i € Ny, define

eCT 5 5 80

Sipi=¢x€EM:— |Vu; |“ +cr® = —¢.
P JBr(x) 2

Note that, by Proposition 2.1, S; s C S;  whenever s < r.

Since the S;, are compact, for each r, we can pick J, C Ny such that the
subsequence (S; »)ies, converges to a closed subset S, in the Hausdorff metric. By a
diagonal sequence argument, we can find J C Ny such that (Sisz—k ,,O)l. oy converges
to a closed subset S,—«,, for each k € No. Set

5= ﬂ Sz—k,.o.

keNo
By construction S is closed.
Step 2. #1(S) < oo.
Given 0 < § < ro, cover S by a collection of balls {Bs,, (x;) : j = 1,...,m}

with x; € S, r; = 6 and By, (x;) pairwise disjoint. Pick k& > 1 such that
27%ry < min{r,}. Fori > 1, we can find X' € 8 p—kp, with d(x;, x7) < 8. Then
the balls Bs;; (x;-) still cover S while the smaller balls B, , (x;.) are pairwise disjoint.
By definition of S; ,,

m

2ecT0 26510 “

E rj < E |Vu,-|2—|—cr12-§ |Vu,-|2+cr0 E g~
l4

j=1 g0 =1 YBr; () fo JuM i=1

Since we can assume that crg < 1/2 and e’ < 2, it follows that
o SCg
2 E —
j=1 4

Since this bound is uniform in § € (0, o], the assertion follows.
Step 3. Selection of (u;);es and construction of u € I'(M \ S, X).

If x € M \ S, then there exists r € (0, ro] such that forall i € J sufficiently large

1
—[ |Vui|2 = €o.
" JBy(x)

By Proposition 3.1, for all i € J, [Vu;| is uniformly bounded on B, 4(x). It follows
using standard elliptic techniques and Arzela—Ascoli that we can chose J C [ such
that the subsequence of (u;);ey converges in C2° on M \ S.

loc
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Step 4. M \ S is the maximal open subset on which a subsequence (u;);e;/c7 can

converge in CC.

Suppose (1;)ies’cy converges in C! in a neighbourhood of x € M. Then |Vu;|
is uniformly bounded in this neighbourhood. Hence, there is a slightly smaller
neighbourhood of x € M which is contained in M \ S;, for each sufficiently small
r >0andeachi € I'. Since lim;ey/ S;, = S, C S, itfollowsthatx e M\ S. O

5. Decomposition of the blow-up locus

We assume that we have already passed to a subsequence so that the convergence
statement in Proposition 4.1 holds. Consider the sequence of measures (x;) defined

by
wi = |Vu;|* #3.

Here #3 is the 3-dimensional Hausdorff measure on M, which is simply the standard
measure on M. By (1.11) the sequence of Radon measures (;) is of bounded mass;
hence, it converges weakly to a Radon measure p. By Fatou’s lemma we can write

w=|Vul> #3+v

for some non-negative Radon measure v.

Definition 5.1. We call v the defect measure and
[' ;== suppv

the bubbling locus.® We call

1
sing(u) := {x € M : ®)(x) := limsup—f |Vul? > O}
ri0 T JBr(x)

the singular set of u.

If we denote by ®7, (x) the upper density of . at the point x € M, then it follows
from Proposition 3.1 that S = {x € M : ©},(x) > 0} C I' U sing(u). The reverse
inclusion also holds; hence, we have the following.

Proposition 5.2. The blow-up locus S decomposes as
S =T U sing(u).

This means that there are two sources of non-compactness: one involving a loss
of energy and another one without any loss of energy.

%The justification for this terminology will be provided in Section 7.
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6. Regularity of the bubbling locus

As a first step towards understanding the non-compactness phenomenon involving
energy loss, we show that the set I' at which this phenomenon occurs is relatively
tame.

Proposition 6.1. T is J¢-rectifiable and v can be written as
v=0HT

with ©: M — [0, 00) upper semi-continuous. Moreover, ' (sing(u)) = 0.

The interested reader can find a detailed discussion of the concept of rectifiablity
in DeLellis’ lecture notes [9]. For our purposes it shall suffice to recall the definition.

Definition 6.2. A subset I' C M is called J*-rectifiable if there exists a countable
collection {I';} of k-dimensional Lipschitz submanifolds such that

Je"(r U, ri) =0,

A measure ;1 on M is called H*-rectifiable if there exist a non-negative Borel
measurable function ® and a J#*-rectifiable set I' such that for any Borel set 4

p(A) = fmr O Kk,

Since T is J¢!-rectifiable, at #!-a.e. point x € T, it has a well-defined tangent
space T I" and v has a tangent measure, i.e. the limit

1
Tyv := lim —(exp o 5¢)*v
e—=>0 ¢
exists and

Tev = O(x) #!|T,T.

Here s:{x) 1= &x.

To prove Proposition 6.1 we will make use of the following deep theorem, whose
proof is carefully explained in [9].

Theorem 6.3 (D. Preiss [21]). If i is a locally finite measure on M and m € Ny is
such that for p-a.e. x € M the density

Q) (x) := lrlﬂ)l &—ﬂn—x

exists and is finite, then p is " -rectifiable.
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Proof of Proposition 6.1. The proof has five steps.

Step 1. With the same constant as in Proposition 2.1 and forallx € M and0 <s < r
e’ s~ u(Bs(x)) < e“"r 1 (B, (x)) + cr?.

This is not quite a trivial consequence of Proposition 2.1 because (i) only weakly
converges to j; hence, we only know that u(B,(x)) > limsup,_, . i (B, (x)) and

liminfi oo pi (Br(x)) = p(Br(x)).
For x € M set

Py = {r € (0,ro] : n(0B,(x)) > 0}.
If r ¢ %y, then it follows from Proposition 2.1 that
e“s T u(Bs(x)) < e r T u(Br(x)) + cr®.

The general case follows by an approximation argument. Note that & is at most
countable. Thus, given r € %y, we can find a sequence (r;) such thats < r; < r,
ri & %y, and r ;= lim; .o r;. By dominated convergence

p#(Br(x)) = lim p(By, (x)).

Step 2. The limit
O(x) 1= limr (B, (x))
rlo

exists for all x € M. The function ®: M — [0, c0) is upper semi-continuous, it
vanishes outside §, is bounded and ®(x) > ¢g forall x € S.

The existence of the limit is a direct consequence of Step 1.
To see that ® is upper semi-continuous, let (x;) be a sequence of points in M
converging to a limit point x = lim; oo X;. Letr ¢ %y and & > 0. Fori > 1

O(xi) < e r (B (xi)) + cr® < e r T u(By s (x)) +cr?.

Therefore, lim sup;_, ., ©(x;) < e r~! (B, (x)) + cr?. Taking the limit as r — 0
shows that ® is upper semi-continuous.
The last part is clear.

Step 3. ©F vanishes #!-a.e. in M, i.e. K!(sing(u)) = 0.
Given ¢ > 0, set

={xeM:O)(x)> e}
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Given § > 0, choose {x1,...,X,} C Ecand {r;,...,rm} C (0, 8] such that the balls
By, (x;) cover E,, but the balls B, (x;) are pairwise disjoint. Moreover, we can
arrange that

1
— |Vul? > &.
7"]' Brj (xj)

Since u is smooth on M \ S, we must have E. C S. Hence,
= R 1
Srsi s [ v
j=1 € j=1 Brj(xj) € JN;s(S)

where Ng(S) = {x € M : d(x,S) < §}. The right-hand side goes to zero as § goes
to zero. Thus #!(E,) = 0 for all £ > 0. This concludes the proof.

Step 4. v is J !-rectifiable.
By Step 2 for any x € M \ sing(u) the density

8, (1) = lim 28
. N rl0 r

exists and agrees with ®(x). In general ®} < ® < oo, which implies that v < J*
(see, e.g. [17, Proposition 2.2.2]). By Step 3, #!(sing(x)) = 0 and, hence,
v(sing(u)) = 0. Applying Theorem 6.3 yields the assertion.

Step 5. We prove the proposition.

We have already proved the assertion about sing(u). Since v is J¢!-rectifiable
and I' = supp(v), it follows that I" is # !-rectifiable and v can be written as

v=0HT
for some ®. By Step 3, ©,(x) = O(x) for #'-ae.x € I [

7. Bubbling analysis

We will now show that the “lost energy” goes into the formation of bubbles transverse
to I'. To state the main result recall that an orientation on N, I" induces a canonical
complex structure and an orientation of N, I" is canonically determined by the choice
of a unit tangent vector v € T,I' C Tx M since M is oriented.

Proposition 7.1. If x € T" is smooth, i.e. Tx" exists and x ¢ sing(u), then there
exists a (—1(v))-holomorphic sphere 35: NxI' U {oo} = X := X, with

£Gx) = ] 052 < O(). 71.2)
52

Here we have picked some unit vector v € T, T,
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Remark 7.3. It is immaterial whether we choose v or its opposite —v since this
results in changing the complex structures on both N,I" and X. In particular, the
above cannot be used to fix an orientation of I'; however, the existence of 3, does
restrict the possible tangent directions, see Section 8.

Remark 7.4. The reason that (7.2) may be strict is that we only extract one bubble of
what is an entire bubbling-tree, cf. [20] for the general notion of a bubbling tree, and
[4, Section 7] for a discussion on how to extract a bubbling tree in the our situation.

The holomorphic sphere 3, is obtained by blowing-up (u;) around the point
x € I'. We assume a trivialisation of X in a neighbourhood U of x has been fixed;
see Example 1.5. We use the following notation: given any map u: U — X and a
scale factor A > 0, we define a rescaled map u: Br30 /2 (0) > X by

u) :=u(expos,) (7.5)

with 53 (y) := Ay. We write (z, w) to denote points in 7, I x NyI' = TxyM and
work with generalised cubes of the form

Qr,s(ZO, wO) = Br(ZO) X Bs(wo) CTxI' x NxI' =T M.
Proof of Proposition 7.1. We proceed in four steps.

Step 1 (Preliminary scale fixing). There exists a null-sequence (¢;) C (0, 1) such
that

|duze; | H2 — Tev = O(x) H| Ty

By definition, Ty v is the weak limit of ™! (exp o s¢)*v as ¢ tends to zero. Since
x ¢ sing(u), we have

1 1
lim —(exp o 5¢)*v = lim —(exp o s¢)™ .
e—>0 & e—=>0 ¢

Thus

1 1
Tyv = lim lim —(exp o s¢)*u; = lim —(exp o s, )™ i
e=>0i—o0 & i—00 &

for some null-sequence (&;). This implies the assertion since
1 * 2 3
—(exp o 52,)" i = [dutiz, | I,
1

Step 2 (Asymptotic translation invariance). After passing to a subsequence, we can
assume that there exists a null-sequence (z;) such that

1
lim sup—/ [Bvuf;£i|2 = Q. (7.6)
05.1(2:,0)

I—>00 g<1 §
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Step 2.1. We have

lim |0y ¢, |> = 0.
b=H00 ) @g,140)

Denote by d, the radial vector field emanating from 4v. By Proposition 2.1, for
forO<s <r

c

goEi gl |0pUise; ’2

fBr (4v)\ Bs (4v)

< gttt ] |duie; |2 — et f |dutize; >+ cefr®. (1.7)
By (4v) Bg(4v)

As i tends to infinity the first two terms on the right-hand side both converge to ®(x),
since Txv = O(x) #!| T, T and the last term tends to zero.
Since Q2,1(0) C Bg(4v) \ Bj(4v), it follows that

lim 18,ui 6, |* = 0.
I-09.4.05.1(0)

This completes the proof, because along 7, I" N B, (0) the vector fields 9, and v are
colinear and [0y u; ¢, ]2 H3 converges to zero outside T, I.

Step 2.2. For #1-ae.z € B;(0) C T,. '

1
lim sup — f 1814126, > = O. (7.8)
05.1(2,0)

i—>00s51 S

Define f;: B2(0) C TxI' — [0, 00) by

fi(2) = f Buttise, (2. )
B{(0)CNxT

and denote by Mf;: B1(0) € TyI' — [0,00) the Hardy-Littlewood maximal
function associated with f;:

1
Mfi(z) = sup—f 1.
SE] S Bs(Z)CTxF

We need to show that the set

A ={z € B1(0): li.n_linfo,- (z) > 0}

is such that #(A4) = 0. If we set

Ais =1{z € B1(0) : Mf;(z) = é},
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then

A= JU N s

§>0IeNi=]I
By the weak-type L! estimate for the maximal operator, for each § > 0

o1 5 0L

' (ﬂ Ai,s) = 0;
i=1

hence, #!(4) = 0 by monotonote convergence.

Step 2.3. We prove (7.6).

Since || fi||;1 — 0, we have

By Step 2.2, for each j € N we can find z; € B;/;(0) such that

1
lim sup — f |0y Uise; [2 = 0.
=500 s<1 S Qs.l(zj;o)

Now apply a diagonal sequence argument.

Step 3 (Bubble detection). There exists a null-sequence (8;) € (0, 1/2) such that,
foreachi > 1,

1
max — |du; g, ]2 = g0/8; (7.9)
weBy/2(0) §i Bs, (zi,w)

moreover, if w; € B; /2(0) denotes a point at which this maximum is already, then
(w;) is a null-sequence.

By Step 1, we have

1
liminf max —/ |dui;€i|2 =0O(x) > g
Bs(zi,w)

i—>00 weBy/,(0)
for all § > 0, while for fixed i € Nand w € By/5(0) C NyT
1
lim = |du, :
810 8 JBy(z;,w)
Hence, we can find a null sequence (§;) such that

max — |dut; e, > = &0/8.
weB; /2(0) 8i Bs, (zi,w)

If (after passing to a subsequence) we can find o > 0 and (w;) € By /2(0)\ B5(0)
such that the maximum in (7.9) is achieved at w = w;, then by Proposition 2.1 the
density of T v at (0, w) would be positive, contradicting Step 1.
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Step 4. We prove Proposition 7.1.
Let (w;) be as in Step 3. Define

Ui i=ui() = Uis;e (Si_l(zi’ wi) + )

By construction

max f |dii; |> = £0/8
wEB(1 /2—|w; s; (0) J By (0,w)

with the maximum achieved at w = 0.
From Proposition 3.1 and Remark 3.3 we obtain C,32-bounds on #; which allow

us to pass to a limit u: B1(0) x NI’ — X, which solves the Fueter equation. It
follows from Step 2, that

lim 18,3 |* = 0.
F70 J Q1 1/28;(0,0)

Hemce, u is going to be constant in z € B;(0) C TxI'; hence, u is the pullback of
amap 3: NyI' — X. We can choose the orthonormal frame (vy, v2,v3) on T,y M
constant and with v; = v € T, I" and vy, v3 € N,I'. With respect to this frame the
Fueter operator takes the form

§ = 1(v1)dy + 1(v2)3
with 8 = 0y, + (=I1(v))dy;. Thus 3 is (—I(v))-holomorphic. O

Question 7.10. What happens near non-smooth points of I'?

8. Constraints on tangent directions

By Proposition 7.1, if x ¢ sing(u) and v € ST,I', then X, must admit a non-
trivial (—I(v))-holomorphic sphere 3, of area at most @(x). Since ® is upper
semi-continuous, it achieves a maximum A .« on I'. Thus, the area of 3, is bounded
by Amax and the following shows that the possible tangent directions of I" are strongly
constrained.

Proposition 8.1. Let X be a simple hyperkdhler manifold with bo(X) > 6. Given
Amax > 0, there exists only finitely many I¢ € $(X) for which there exists a rational
curve C in (X, I¢) with

area(C) = ([C], g) < Amax.

Here wg = g(Ig+,+).
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If X is a K3 surface, then this is essentially contained in [7, Proposition 3.1]. Its
proof mainly uses some facts about the K3-lattice (H?(K 3, Z), U). The appropriate
replacement of the cup-product for general simple hyperkdhler manifold is the
Beauville-Bogomolov—Fujiki (BBF) form q: S> H*(X,Z) — Z. We refer the reader
to [3,6,11] for details about the BBF form. For our purposes it suffices to recall that:

* ¢ is non-degenerate, i.e. the induced map H?(X,Q) — H?(X,Q)* is an iso-
morphism. In particular, for each C € H,(X,Z) there exists a unique y €
H?(X, Q) such that

q(v.n) = (C,") € H*(X,Q)*. (8.2)

* ¢ has signature (3,b2(X) — 3) with span{[w¢] : £ € S?} forming a maximal
positive definite subspace. We denote the perpendicular maximal negative definite
subspace by N.

Theorem 8.3 (Amerik—Verbitsky). If X is a simple hyperkihler manifold with
ba(M) > 6, then there exists an positive integer o € N such that

C](% y) 2 —0

forally € H*(X, Q) with (8.2) for some C represented by a I g-holomorphic sphere
for some Iz € $H(X).

Proof. This follows by observing that y is a MBM class in the sense of [2,
Definition 2.14] and then appealing to [2, Theorem 5.3]. O

Remark 8.4. Theorem 8.3 generalises the fact that any class representing a
holomorphic sphere in K3 has square —2.

Proposition 8.5. There exists a constant co > 0 such that if C is represented by a
I¢-holomorphic sphere of area A, then y as in (8.2) is of the form

y =B + codws (8.6)

with B € N and
q(8,B) = —o —coA®.

Proof. It follows from (8.2) that
q(y,wy) =0 (8.7)

foralln L &; hence, y = B+ coAwg with cg = 1/q(wg, wg), which does not depend
on£ € S2,and B € N. Since g(y, y) = —o, we have

q(B,B) = — — egA>. O

Proof of Proposition 8.1. There are only finitely many y as in Proposition 8.5 with
A < Apmay and y determines & € S? uniquely. O
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A. The Heinz trick

Throughout we consider a bounded open subset U C R" endowed with a smooth
metric g which extends smoothly to U. Implicit constants are allowed to depend on
the geometry of U.

Lemma A.1 (E. Heinz [14]). Fixd > 0 and set

=241
q:=- .

Suppose f: U — [0,00) and p,8 € {0, 1} are such that the following hold:
(1) We have
&F 5 £ 5

(2) If Bs(y) C Brj2(x) C U, then

sd_”f f =< rd_”f f—{-Sr"‘.
Bs(y) By (x)

Then there exists a constant g9 > 0 such that for all B,(x) C U with

g= rd_”f f <eo
By (x)

sup  f(y) Sr %+ (1 - p) +8) 2.
YEBy/4(x)

Remark A.2 (Heinz trick in the subcritical case). If n < d,

we have

) d—n
e <egyg wheneverr < :

Juf

In particular, for all compact K C U, || f'|| Lec(k) is bounded a priori depending only
on [; f and d(K,dU).

We use the following standard result; see [12, Theorem 9.20] or [15, Proof of
Theorem B.1].

Proposition A.3. Forall B,(x) C U and every smooth function f: B,(x) — [0, c0)

f&)sf“f £ vol + 2| Af | oo

B, (x)

Proof of Lemma A.1. Define a function 6: B,/>(x) — [0, 00) by

o) = (L —dex.»)’ 100,
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Since 6 is non-negative and vanishes on the boundary of B% (x), it achieves its
maximum

M = %)
yergf;%x) )

in the interior of B 5 (x). We will derive a bound for M, from which the assertion
follows at once.
Let yo be a point with 6(yg) = M, set

F = f(yo)
and denote by
1 /r
So = B (5 - d(x,yo))

half the distance from yj to the boundary of By (x). Each y € By, (yo) has distance
from the boundary of B% (x) at least so; hence,

f() < s540(y) < s5%60(y0) S F.

Proposition A.3 applied to Bg(yo) together with (1) and the above bound yields

Fss—"f f+s2(F1+FP)
Bs(y0)

for all 0 < s < s¢. Combined with (2) this becomes
F <s7% + 5% (F9+ FP) + 6r?,
which can be rewritten as
s®F < e+ 5912 (F9 + FP) 4 6r%s°. (A.4)

This inequality will yield the desired bound on M. It is useful to make a case
distinction.

Casel. F <1.

In this case a bound on M follows from simple algebraic manipulations. If p = 0
or § = 1, then (A.4) with s = s¢ yields

M =0(y) <s8F Se4+r?t2,

If p = 1and § = 0, this bound can be sharpened. (A.4) becomes

cé

d
sCF < -
—1—cs?
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If csg g %, then we obtain
M < s(‘f F <e¢g;
otherwise, setting s := (2c)“% < s yields
F <es,
and thus M < e.

Case2. F > 1.

From (A.4) we derive
sF <e+s%t2F9 4 §r259

forall 0 < s < so. Sett := t(s) = sF'%. Then the above inequality can be
expressed as

t4(1 — ct?) < c(e + 8r?).

For sufficiently small £ > 0, the corresponding equation ¢4 (1 — ct?) = c(e + §72)
has d small roots 1, ..., g, which are approximately = (ce + c¢8r?) ?]i‘, and two large
roots. Since #(0) = 0 and by continuity, for each s € [0, so], f(s) must be less than

the smallest positive root; hence, 7(s) < (¢ + 5,,2)% for all s € [0, sg]. This finishes
the proof. O

B. Compactness for Fueter maps with four dimensional source manifold

Proposition B.1. Ler V be a 4-dimensional Euclidean vector space, H a quaternionic
vector space, I: SATV* — S(ImH) an isometric identification of the unit length
self-dual forms on V with the unit imaginary quaternions and 1. ATV* — so(V).
The endomorphism W € End(Hom(V, H)) defined by

3

WT = I(w)oT ou(w)

i=1

has eigenvalues 1 and —3. Here we sum over an orthonormal basis (w1, w2, @3)
of AT V*. We denote the (—3)-eigenspace by Hom; (V, H).

Let M be an orientable Riemannian 4-manifold, let X 5 M be a bundle of
hyperkihler manifolds together with a fixed identification 7: SATT*M — §(X) of
the unit sphere bundle of self-dual forms on M and the bundle of hyperkéhler spheres
of the fibres of X and fix a connection on X.
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Definition B.2. A section u € I'(X) is called a Fueter section if
Su:=Vu—¥Vu=0¢€cT'(u" Hom;(x*TM,VX)). (B.3)

Remark B4. If M = R x N for some 3-manifold N, X is the pullback of a
bundle ) of hyperkdhler manifolds on NV, I is obtained from an identification
J: STM =~ $(X) and the connection on X is the pullback of a connection on 2),
then (B.3) can be written as

ou—3u =20

with § denoting the 3-dimensional Fueter operator. This is the form in which the
4-dimensional Fueter operator appears in [15].

Remark B.5. Unlike in the 3-dimensional case, AT T* M need not be trivial.” Thus
the analogue of the setup in Example 1.5 rarely makes sense globally, and one is
almost forced to work with bundles of hyperkéhler manifolds.

The analogue of Theorem 1.9 in the 4-dimensional case is the following result.

Theorem B.6. Suppose X is compact. Let (u;) be a sequence of solutions of the
(perturbed) Fueter equation

Sui =pou;
withp € I'(X,Hom; (n*TM, V X)) and

E(u;) = fM |Vu;|* < ce

for some constant cg > 0. Then (after passing to a subsequence) the following holds:

o There exists a closed subset S with #2(S) < oo and a Fueter section u €
(M \ S, X) such that u;|p\s converges to u in C5g

loc*

o There exist a constant £g > 0 and an upper semi-continuous function ®: § —
[€0, 00) such that the sequence of measures p; = |Vu;|*> H* converges weakly
topu = |Vul®> H* + 0 H?|S.

* S decomposes as

S =T U sing(u)

with
I := supp(® #'|.S)
1
and sing(u) := {x € M : limsup — |Vu|? > 0}.
710 v Br(x)

T is J2-rectifiable, and #*(sing(u)) = 0.

7ATT* M being trivial is equivalent to 30(M) + 2x(M) = 0 and w2 (M) = 0.
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» For each smooth point of T' there exists a non-trivial holomorphic sphere in
5x: 8% = (Xx, —1(£)) with § a unit self-dual 2-form on Ty M, whose associated
complex structure preserves the splitting Ty M = T, I" @ NxI'. Moreover,

0 2 £6x) = [ 1P

o If X is a bundle of simple hyperkdhler manifolds with b, > 6, then there is a
subbundle i C {I € End(TM): I? = —id}, depending only on sup ®, whose
fibres are finite sets such that T T" is complex with respect to a complex structure

I € iy for all smooth points x € I,

Sketch of the proof. The proof is analogous to that of Theorem 1.9 with a few minor
modifications:

* The renormalised energy is now
1
r By (x)

* In the proof of the monotonicity formula one now uses the 4-form A € Q*(X)
obtained from the section of AT7n*TM ® A?VX induced by I. Direct
computation shows that (2.7) still holds. Similarly, one can verify the analogue
of (2.6).

* The proof of the e-regularity and convergence outside S carry over mutatis
mutandis.

* In the bubbling analysis, u;;,, will be asymptotically translation invariant in the
direction of 7, I'. Fix a unit vector vy € T, I". Since, asymptotically, everything
is invariant in the direction of vg, we arrive back at the situation in Section 7. [
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