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Simple length rigidity for Kleinian surface groups
and applications

Martin Bridgeman™ and Richard D. Canary™

Abstract. We prove that a Kleinian surface group is determined, up to conjugacy in the isometry
group of 3, by its simple marked length spectrum. As a first application, we show that a discrete
faithful representation of the fundamental group of a compact, acylindrical, hyperbolizable
3-manifold M is similarly determined by the translation lengths of images of elements of 71 (M)
represented by simple curves on the boundary of M. As a second application, we show the
group of diffeomorphisms of quasifuchsian space which preserve the renormalized pressure
intersection is generated by the (extended) mapping class group and complex conjugation.

Mathematics Subject Classification (2010). 57M50.
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1. Introduction

We show that if p; and p, are two discrete, faithful representations of a surface
group 1 (S) into PSL(2, C) with the same simple marked length spectrum, then p;
is either conjugate to p, or its complex conjugate. (Two such representations have
the same simple marked length spectrum if whenever @ € m1(S) is represented by
a simple closed curve, then the images of o have the same translation length. The
complex conjugate of a representation is obtained by conjugating the representation
by z — z.) Marché and Wolff [21, Sec. 3] have exhibited non-elementary represent-
ations of a closed surface group of genus two into PSL(2, R) with the same simple
marked length spectrum which do not have the same marked length spectrum, so the
corresponding statement does not hold for non-elementary representations.

We give two applications of our main result. First, if M is a compact,
acylindrical, hyperbolizable 3-manifold, we show that if p; and p, are discrete
faithful representations of 71(M) into PSL(2, C) such that translation lengths of

*M.B. was partially suppported by grant DMS-1500545 and R.C. was partially supported by grant
DMS-1306992, from the National Science Foundation. The authors also acknowledge support from
U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric
structures And Representation varieties” (the GEAR Network).
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the images of elements of w1 (M) corresponding to simple curves in the boundary
of M agree, then p; is either conjugate to p, or its complex conjugate. For our
second application we consider the renormalized pressure intersection, first defined
by Burger [9] and further studied by Bridgeman—Taylor [7]. Bridgeman [5] (see
also [6]) showed that the Hessian of the renormalized pressure intersection gives
rise to a path metric on quasifuchsian space Q F(S). We show that the group of
diffeomorphisms of QF(S) which preserve the renormalized pressure intersection
is generated by the (extended) mapping class group and the involution of QF(S)
determined by complex conjugation.

1.1. Simple length rigidity for Kleinian surface groups. A Kleinian surface group
is a discrete, faithful representation p : m;(S) — PSL(2,C) where S is a
closed, connected, orientable surface of genus at least two. If @ € 71(S), then
let £,(«) denote the translation of length of p(«), or equivalently the length of the
closed geodesic in the homotopy class of « in the quotient hyperbolic 3-manifold
H3/p(m1(S)). We say that two Kleinian surface groups p; : m1(S) — PSL(2,C)
and pz : w1 (S) — PSL(2, C) have the same marked length spectrum if £, (@) =
£, (o) for all @ € 1(S). Similarly, we say that p; and p, have the same simple
marked length spectrum if £,, (o) = £,,(z) whenever « has a representative on S
which is a simple closed curve. If p : G — PSL(2, C) is a representation we define
its complex conjugate p, to be the representation obtained by conjugating by z — Z.

Theorem 1.1 (Simple length rigidity for Kleinian surface groups). If S is a closed,
connected, orientable surface of genus at least two, and py : m1(S) — PSL(2,C)
and py : w1(S) — PSL(2,C) are Kleinian surface groups with the same simple
marked length spectrum, then py is conjugate to either pa or ps.

Since the full isometry group of H3 may be identified with the group generated
by PSL(2, C), regarded as the group of fractional linear transformations, and z — Zz,
one may reformulate our main result as saying that two Kleinian surface groups with
the same simple marked length spectrum are conjugate in the isometry group of H?.

Historical remarks. It is a classical consequence of the Fenchel-Nielsen coord-
inates for Teichmiiller space that there are finitely many simple curves on S whose
lengths determine a Fuchsian (i.e. discrete and faithful) representation of 1 (S) into
PSL(2, R) up to conjugacy in PGL(2, R), which we may identify with the isometry
group of H?. However, Marché and Wolff [21, Sec. 3] showed that there exist non-
Fuchsian representations of the fundamental group of a surface of genus two into
PSL(2, R) with the same simple marked length spectrum which do not have the same
marked length spectrum. The representations constructed by Marché and Wolff do not
lift to SL(2, R), so do not lie in the same component of the PSL(2, C)-representation
variety as the discrete faithful representations.
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Kourounitis [19] showed that there are finitely many simple curves on S whose
complex lengths (see Section 2 for a discussion of complex length) determine a
quasifuchsian surface group up to conjugacy in PSL(2, C). Culler and Shalen [13,
Prop. 1.4.1] showed that there are finitely many curves whose traces determine a
non-elementary representation into SL(2, C), up to conjugacy in SL(2, C), while
Charles—Marché [11, Thm. 1.1] showed that one may choose the finite collection to
consist of simple closed curves.

Kim [18] previously showed that two Zariski dense representations into the
isometry group Isom(X) of a rank one symmetric space X with the same full marked
length spectrum are conjugate in Isom(X). More generally, Dal’Bo and Kim [14]
showed that any surjective homomorphism between Zariski dense subgroups of a
semi-simple Lie group G, with trivial center and no compact factors, which preserves

translation length on the associated symmetric space extends to an automorphism
of' G-

1.2. Simple length rigidity for acylindrical hyperbolic 3-manifolds. A compact,
orientable 3-manifold M with non-empty boundary is said to be hyperbolizable if its
interior admits a complete hyperbolic metric, which implies that there exists a discrete,
faithful representation of m;(M) into PSL(2,C). A compact, hyperbolizable
3-manifold is said to be acylindrical if every my-injective proper map of an annulus
into M is properly homotopic into the boundary of M. (Recall that a map of a surface
into a 3-manifold is said to be proper if it maps the boundary of the surface into the
boundary of 3-manifold and that a proper homotopy is a homotopy through proper
maps.)

In this setting, we use Theorem 1.1 show that a discrete, faithful representation of
m1(M) into PSL(2, C) is determined, up to conjugacy in the isometry group of H?3,
by the translation lengths of images of simple curves in the boundary M of M.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and
p1:m1 (M) — PSL(2,C) and py : m1(M) — PSL(2,C) are two discrete faithful
representations, such that £, () = £p, (ct) if @ € w1 (M) is represented by a simple
closed curve on OM, then p; is conjugate to either py or p3.

1.3. Isometries of the renormalized pressure intersection. Burger [9] introduced
a renormalized pressure intersection between convex cocompact representations into
rank one Lie groups. Bridgeman and Taylor [7] extensively studied this renormalized
pressure intersection in the setting of quasifuchsian representation. We say that
p:m1(S) — PSL(2, C) is quasifuchsian if it is topologically conjugate, in terms of
its action on C, to a Fuchsian representation into PSL(2,R). If 7 > 0 we let

Rr(p) = {[e] € [m1(S)] | £p(e) < T}
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where [1(S)] is the set of conjugacy classes in 771 (S). We define the entropy

log(#(R1(p)))
T

of a quasifuchsian representation p. Sullivan [32] showed that %(p) is the Hausdorff
dimension of the limit set of p(m1(S)).

Let QF(S) denote the space of PSL(2, C)-conjugacy classes of quasifuchsian
representations. Bers [1] showed that QF(S) is an analytic manifold which may
be naturally identified with 7(S) x T7(S). If p1,p2 € QF(S), the renormalized
pressure intersection of py and p, is given by

h(p2) .. (
h(on) 100 \F R (1) |,

h(p) = lim sup

J(p1, p2) = Epz((x)).

JeRy (or) b1 @)
Bridgeman and Taylor [7] showed that the Hessian of J gives rise to a non-negative
bilinear form on the tangent spaceT Q F'(.S) of quasifuchsian space, called the pressure
form. Motivated by work of McMullen [24] in the setting of Teichmiiller space,
Bridgeman [5] used the thermodynamic formalism to show that the only degenerate
vectors for the pressure form correspond to pure bending at points on the Fuchsian
locus. Moreover, the pressure form gives rise to a path metric on Q F(S), called the
pressure metric (see also [6, Cor. 1.7]).

We say a smooth immersion f : QF(S) — QF(S) is a smooth isometry of the
renormalized pressure intersection if

J(f(p1), f(p2)) = J(p1,p2)

forall p1, po € QF(S). We recall that the (extended) mapping class group Mod*(S)
is the group of isotopy classes of homeomorphisms of §. Since J is invariant
under the action of Mod™ (), every element of Mod*(S) is a smooth isometry of the
renormalized pressure intersection. There exists an involution 7 : QF(S) — QF(S)
given by taking [p] to [p]. Since 7 preserves the marked length spectrum, it is an
isometry of the renormalized pressure intersection. We use our main result and
work of Bonahon [4] to show that these give rise to all smooth isometries of the
renormalized pressure intersection.

Theorem 1.3. If S is a closed, orientable surface of genus at least two, then the group
of smooth isometries of the renormalized pressure intersection on QF (S) is generated
by the (extended) mapping class group Mod* (S) and complex conjugation t.

Royden [29] showed that Mod*(S) is the isometry group of the Teichmiiller
metric on 7°(S). Masur and Wolf [23] proved that Mod*(S) is the isometry group
of the Weil-Petersson metric on 7(S). Bridgeman [5] used work of Wolpert [33] to
show that the restriction of the pressure form to the Fuchsian locus is a multiple of
the Weil-Petersson metric.
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One may thus view Theorem 1.3 as evidence in favor of the following natural
conjecture.

Conjecture. The isometry group of the pressure metric on quasifuchsian space
QF (S) is generated by the (extended) mapping class group and complex conjugation.

In the proof of Theorem 1.3, we establish the following strengthening of our main
result which may be of independent interest.

Theorem 1.4. If S is a closed, connected, orientable surface of genus at least two,
p1 . m1(S) — PSL(2,C) and py : n1(S) — PSL(2,C) are Kleinian surface
groups, and there exists k so that and £,, (o) = k€,, () for all o € 71(S) which
are represented by simple curves on S, then p; is conjugate to either p or ps.

Kim [18, Thm. 3] showed that if p; and p, are irreducible, non-elementary,
nonparabolic representations of a finitely presented group I" into the isometry group
of a rank one symmetric space and there exists k > O such that £, (y) = k€,,(y) for
all y € T" (where £,, ()) the translation length of p; (y)), then kK = 1 and p; and p,
are conjugate representations.

Outline of paper. In Section 2 we analyze the complex length spectrum of Kleinian
surface groups with the same simple marked length spectrum, then in Section 3, we
give the proof of our main result. In Section 4 we prove Theorem 1.2, while in
Section 5 we establish Theorems 1.3 and 1.4.

Acknowledgements. The authors would like to thank Maxime Wollff for several en-
lightening conversations on the length spectra of surface group representations,
Jeff Brock and Mike Wolf for conversations about the Weil-Petersson metric
and Alan Reid for conversations about the character variety. This material is
partially based upon work supported by the National Science Foundation under grant
No. 0932078 000 while the authors were in residence at the Mathematical Sciences
Research Institute in Berkeley, CA, during the Spring 2015 semester.

2. The complex length spectrum

In this section, we investigate the complex length spectra of Kleinian surface groups
with the same simple marked length spectrum.

Given ¢ € m1(S) and p € AH(S), let )Lf,(a) be the square of the largest
eigenvalue of p(x). Notice that A%(a) is well-defined even though the largest
eigenvalue of a matrix in PSL(2, C) is only well-defined up to sign. If we choose
log )L%(a) to have imaginary part in [0, 27), then log A%(a) is the complex length
of p(a).

If « is a simple, non-separating closed curve on S, we let W(«) denote the set of
all simple, non-separating curves on S which intersect @ at most once. We say that p;
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and p, have the same marked complex length spectrum on W(«) if l% (B) = A%z (B)
for all B € W(w). Similarly, we say that p; and p, have conjugate marked complex
length spectrum on W(x) if }“;201 (B) = A2, () forall B € W(a).

We will show that if two Kleinian surface groups p; and p; have the same simple
marked length spectrum, then, there exists a simple non-separating curve & on S such
that p; and p, either have the same or conjugate complex length spectrum on W(w).

Proposition 2.1. If S is a closed, connected, orientable surface of genus at least
two, p:m(S)— PSL(2,C) and py : m1(S) — PSL(2,C) are Kleinian surface
groups with the same simple marked length spectrum, then there exists a simple
non-separating curve o on S such that p1(«) is hyperbolic and either

(1) p1 and p2 have the same marked complex length spectrum on W(x), or
(2) p1 and pa have conjugate marked complex length spectrum on W ().

Proposition 2.1 will be a nearly immediate consequence of three lemmas. The first
lemma shows that for two Kleinian surface groups with the same length spectrum,
then the complex lengths of a simple non-separating curve either agree, differ by
complex conjugation, or differ by sign (and are both real). The second lemma deals
with the case where the complex length of every simple, non-separating curve is real,
while the final lemma handles the case where some complex length is not real. All the
proofs revolve around an analysis of the asymptotic behavior of complex lengths of
curves of the form o” 8 where « and f intersect exactly once. We begin by recording
computations which will be used repeatedly in the remainder of the paper.

2.1. A convenient normalization. We recall that two elements «, B € 71(S) are
coprime if they share no common powers. We say that a representation p : 71(S) —
PSL(2,C) is («, B)-normalized if a, B € m1(S) are coprime and p(w) is hyperbolic
and has attracting fixed point co and repelling fixed point 0. In this case,

A0
p(C() =+ (0 A—l)

a b
ey =%(2 7).

where ad —bc = 1. Notice that the matrix representations of elements of PSL(2, C)
are only well-defined up to multiplication by =47, but many related quantities like
the square of the trace, the product of any two co-efficients, and the modulus of the
eigenvalue of maximal modulus are well-defined.

where |A| > 1, and

Lemma 2.2. Suppose that S is a closed, connected, orientable surface of genus
at least two and p : w1(S) — PSL(2,C) is an («, B)-normalized Kleinian surface
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group. In the above notation,

man L [ A"a  AmD
pla ﬁ)—i(k_nc k_nd)

and all the matrix coefficients of p(B) are non-zero. Moreover, if ju(n) is the modulus
of the eigenvalue of p(a™ B) with largest modulus, then

b
log ju(n) = nlog|A| + log|a| + ?R(?FZ” c) + O(JAI~*).

Proof. The first claim follows from a simple computation. If any of the coefficients
of p(B) are 0, then p(f) takes some fixed point of p(c) to a fixed point of p(x), e.g.
if a = 0, then p(B)(c0) = 0. This would imply that p(Baf~!) shares a fixed point
with p(a). Since p(m1(S)) is discrete, this would imply that there is an element
which is a power of both p(«) and p(BaB 1) which would contradict the facts that p
is faithful and the subgroup of 771 (S) generated by « and B is free of rank two.

The eigenvalues of p(a” ), which are only well-defined up to sign, are then given
by

i((l”a +A7"d) £ /(A"a + A7"d)? — 4)
2

So, since |A| > 1, for all large enough n, one may use the Taylor expansion for
»/1 + x to conclude that they have the form

i()t”a(l - A—Z"(ada; 1) + O()L“‘”)))

Therefore, since ad — bc = 1,

b
log pu(n) = nlog|A| + log |a| + log ’1 - a2 -

3 o(A™*")|.

We then use the expansion of log |1 + z| about z = 0 given by

1 1
log|l +z| = —10g(]1+z| y= 510g(1—|—2§ft(z)—|—|z|2) = R(z) + 0(|z*)
to show that

bc
log u(n) = nlog|A| + log|a| + 9%()&—2" ) + O(|A[7*). O

2.2. Basic relationships between complex lengths. Our first lemma shows that if
two Kleinian surface groups have the same simple marked length spectrum, then the
complex lengths of any simple, non-separating curve either agree or differ by either
complex conjugation or sign.
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Lemma 2.3. If p; and p; in AH(S) have the same simple marked length spectrum
and o is a simple non-separating curve on S, then either

(1) 23, (@) = 47, (@),

(2) A%I (@) = ,\2 , (@), or

(3) )L%l () = —k%z (o) and )L%l (o) is real.

Proof. If p1(a) is parabolic, then p, () is parabolic (since £,, (o) = £, () = 0).

In this case, A2 (@) = A2, () = 1. So we may assume that p(c) is hyperbolic.
Let B be a curve intersecting « exactly once. We may assume that both p; and p;

are (o, B)-normalized, so
A 0
pie) =+ (01 )L_—l)

i

b;
pi(B) = (Cz di) ;
where a;d; — bic; = 1.

Since, p; and p, have the same simple marked length spectrum and |A1| = |A2|,
Lemma 2.2 implies that

where [A;| > 1, and

bici

b
10g|a1|+5ﬁ(r2" 3 )+0(|Al|“4") 1og|a2|+m(r2" ZCZ)+0(|A2|—4")

1 2

for all n. Taking limits as n — oo, we see that log |a;| = log |az|, so

srt(;r?-" b(‘fl) + O(|][™*") = 9%(152" bzcz) + O(|a| ")

1 2

for all n. Therefore, after multiplying both sides by |A1|*" = |A,|*", we see that

lim ER(u V1 —uzvz) =0

n—00

A\ 72 bici
u,-z(l) and v; = 2750
| Ai

Lemma 2.3 is then an immediate consequence of the followmg elementary lemma.
O

where

Lemma 2.4. Iful,uz (S Sl, V1,V € C — {0} and

lim R(ufvy —ubvy) =0,
o i ( 191 2 2)



Vol. 92 (2017) Simple length rigidity for Kleinian surface groups 723

then either
(1) ur = uy,
(2) U = ﬁz, or
3) ug = —uy = 1.
Proof. We choose 6; so that '
u; = e,

If s = {ng}p—, is a strictly increasing sequence of integers, let S; (s) be the set of
accumulation points of {m(ufk v;)}. Then, by assumption, S;(s) = Sz(s) for any
sequence s.

If 6; is an irrational multiple of 27, then S; (N) is the interval [—|v; |, |v;|]. If 6;
is a rational multiple of 27 then S; (N) is finite. Therefore either (a) both 6 and 6,
are irrational with |v;| = |vz| or (b) both #; and 6, are rational multiples of 27r. We
handle these two cases separately.

Case L. Both 61 and @3 are irrational multiples of 2 and |v1| = |v2|. Since 6 is
an irrational multiple of 27, there is a sequence {r } such that limy_, o, €!"*%1 = z—h
Therefore,

o] = Jim 9(e™01) = lim R(e02) = [oal,

50 limy_y o0 /%2 = ig_il If {mg} = {nx + 1}, then
lvi|cos B = klirn %(eimkelvl) = kl_i)m Eﬁ(eimkezvz) = |va| cos 6.
—>00 oo

Since |vq| = |vz| # 0, it follows that 8, = £6,, so either u; = u, or u; = u, and
we are either in case (1) or in case (2).

Case I1. Both #; and 0, are rational multiples of 2. Let 6; = 27 p;/q; where
0 < pi < gq; and p; and g; are relatively prime (and ¢; = 1 if p; = 0).
Ifr € Z and s, = {r + kq1g>}, then
S1(sr) = {R@Wiv)} = Sa(s,) = {R(ubv2)},
SO
R(uivi) = R(ujvy) forallr € Z.

If R(ujvy) = R(uivy) =0forall r € Z, then u; = *u,; = +£1, and we are in
either case (1) or case (3).
If R(ujvi) = R(ubvy) # 0 for some r, then
2cos(01)R(ujvy) = m(u;+1v1) - %(u’i”lvl)
= R(ub T v2) + R(uh " v2) = 2cos(02)R (uhv2).
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Since NR(ufjvy) = R(ujvy) # 0, this implies that cos(61) = cos(6,), so 8 = 6,.
Therefore, either u; = u, or u; = U, and we are in either case (1) or case (2).

This completes the proof, since in all situations we have seen that either case (1),
(2) or (3) occurs. ]

2.3. When the simple non-separating complex length spectrum is totally real.
We use a similar analysis to show that if the complex lengths of every simple, non-
separating curve is real for two Kleinian surface groups with the same simple marked
length spectrum, then the complex lengths agree for every simple, non-separating
curve.

Lemma 2.5. If S is a closed, connected, orientable surface of genus at least two and
p1:m1(S) = PSL(2,C) and p; : m1(S) — PSL(2, C) are Kleinian surface groups
with same simple marked length spectrum, then either

(1) there exists a simple non-separating curve y on S such that )L%l (y) €R, or

(2) )L%l (y]= )‘;2)2 (y) € R whenever y is a simple non-separating curve on S.

Proof. Suppose that (1) does not hold, so )Lf) () € R whenever y is a simple non-
separating curve on S. Lemma 2.3 then implies that )L‘zo () = :tk%z (y) whenever y
is a simple non-separating curve on S

Suppose that there is a simple non-separating curve « such that Af, (o) =
~)uf;2 (). Notice that if pj(«) is parabolic, then £, (@) = 0 = £,,(), so
AZ (a) = 1= A2 (). Therefore, p1 (), and hence pa (er), must be hyperbolic

We choose a simple non-separating curve 8 intersecting « exactly once. We adapt
the normalization and notation of Lemma 2.3. Lemma 2.2 implies that

ti(n) = Tr? (pi(@"B)) = A"a? 4 2a;d; + A72"d?
= 32 @"B) +2+ 1,2 (@"B).
(Notice that the trace Tr(p; (¢"fB)) of p;(a”p) is well-defined up to sign, so
T2 (p; (@ B)) is well-defined.) Since A2 (@"B) = £A2 (a"p) for all n, by

assumption, either (i) 1 (n) = t2(n) or (i) f1 (n) = 4—12(n) forall n and A3 = —A3.
The proof divides into two cases.

Case L. There is an infinite sequence {n } of even integers so that 1 (nz) = t2(ng).
Dividing by )L%"k = )L%"" and taking limits we see that

2a1d d? 2a,d a=
= limal+ o S g 2 222 222
il AVE A koo Ay AE
It follows that 5 5
d d
2a1d1 + Azi = 2a;d; + 2,21
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for all ng, so, after again taking limits, we see that
aird, = axd,.
Then, by considering the final term, we see that
A2 =,

If there exists an infinite sequence {m ;} of odd integers so that t1(m ;) = t2(m;)
for all m;, then

A2 g2 4 2ardy + A7 A2 = =23 a? + 2aydy — A7 d2

Then we may divide each side by A?mj and pass to a limit to conclude that a? = —a?.
This would imply that a; = 0, which would contradict Lemma 2.2.

On the other hand, if there exists an infinite sequence {m ; } of odd integers so that
fi(mj;) =4 —ty(m;) for all m;, then

BT R gy AR =i { = A o Bandy — AT DY,
SO
2a1d1 = 4—2a1d.

Therefore, ay;dy = 1, which implies that by¢; = 0, so either by = O or¢; = 0,
which again contradicts Lemma 2.2.

CaseIl. Thereis an infinite sequence {ry } of evenintegerssothat ¢y (ng) = 4 — t2(nx).
We then argue, as in Case I, to show that

a? = —a2, 2a1d) = 4—2axd, and d} = —dj.

If there exists an infinite sequence {m ;} of odd integers so that t1(m ;) = t,(m;)
for all m ;, then

M3+ 2ardy + A7 AR =07 ad + (A= 2ady) + A d

So, a1dy = 1, again giving a contradiction.
On the other hand, if there exists an infinite sequence {m ; } of odd integers so that
ti(m;) =4 —tx(m;) for all m, then

AR 4 2aydy + AT AR = 4— (M6} + (A—2a1dh) + AV dP).
Dividing both sides by A‘Z‘mj and passing to a limit, we conclude that a} = —a?,
which is again a contradiction.

Therefore, neither Case I or Case II can occur, so case (2) must hold. O
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2.4. When the complex length is not always totally real. We now show that if
2 . . . 2 2

A%, (@) is not real, for some simple non-separating curve «, then A5 (8) and A5 (f)

either agree for all § € W (), or differ by complex conjugation for all § € W ().

Lemma 2.6. Suppose that S is a closed, connected, orientable surface of genus at

least two and p; : m1(S) — PSL(2,C) and p; : m1(S) — PSL(2, C) are Kleinian

surface groups with same simple marked length spectrum. If o is simple non-

separating curve on S such that }L% (@) € R, then either

(1) p1 and pa have the same marked complex length spectrum on W(w), or

(2) p1 and pa have conjugate marked complex length spectrum on W (o).

Proof Lemma 2.3 implies that either A3 (&) = A2 (@) or A (&) = A (o). If
(a) = A , (@), then we consider the representation p. In T.hlS case, )L , () =
)L%z (y) for all y € mi(S). In particular, A2 (@) = A2 (). Therefore, it suffices

to prove that p; and p, have the same marked complex length spectrum on W ()

whenever A2 = A% (o) = )Lf;z () and p; and p;, have the same simple marked length
spectrum.

First, suppose that B is a simple non-separating curve on S which intersects «
once. We adopt the normalization and notation of Lemmas 2.3 and 2.5, so

t:(n) = Te* (p; (@" B)) = A*"a} + 2a;d; + A~2"d7?.

Lemma 2.3 implies that for any n, either (i) t1(n) = t2(n); (ii) t1(n) = m; or (iii)
t1(n) = 4 —ty(n) and t;(n) is real.

If there is an infinite set of values of n such that ¢;(n) = t,(n), then, by taking
limits, we see that

a%:a%, a1d1=a2a’2 and d2=d22

It follows then that 7y (n) = t(n) for all n. Moreover, since a; and d; are non-
zero, either ay = ap and d; = dy or a1 = —a» and dy = —d>, so Tr*(p1(B)) =
Tr? (p2(B)) which implies that A2 (8) = A2_(B).

If there is an infinite set of values n such that 7, (n) = 4 — t2(n) with ¢; (n) real,
then taking limits we have

a% = —a%, 2a1d; = 4 —2a,d> and df = —d22.

It follows that t; (n) = 4 — t5(n) for all n, so by Lemma 2.3, t; (n) is real for all n.
Since J(¢; (n)) = 0 for all n,

. S(l‘z(ﬂ))_ . ox A2\ 2\ _
s, A —nllygo\s((W a ) =0

Sincea? # 0, by Lemma 2.2, this can only happen if 25 |A|2 = &1, Thus, A% = A, @*)
is real, contradlctlng our assumption.




Vol. 92 (2017) Simple length rigidity for Kleinian surface groups 727

Finally, if ¢ (n) = t2(n) for all but finitely many values of n, we may divide the
resulting equation by A2” and take a limit, to see that

b e —
lim (:) a‘i‘ — a%.
n—00 /12

Since A2 # A2, the limit does not exist unless a; = 0, which again contradicts
Lemma 2.2.

Therefore, if f € W(x) intersects o once, then A2 (8) = A2 (B).

Now suppose that f is a simple non-separating curve on S which does not
intersect . We choose f’ to be a simple non-separating curve intersecting both «
and B once.

For all n, "’ € W(«) and intersects o once. By the first part of the argument,

A2, @) = A2, (@"B)

for all n. If there exists ng so that /'\.f,l (a0 ') is not real, then since g € W(a"°f’)
and intersects "¢ 8" exactly once, we may apply the above argument to show that

A%, (B) =A%, (B).

It remains to consider the case that )L%l (@™ B’) is real for all n. Suppose that

By = (% b
ey == (% 7).
Again, by Lemma 2.2 all the matrix coefficients must be non-zero. Since
S(k%l (@"B")) = 0 for all n, I(Tr*(py(@"B’))) = O for all n, so, after dividing
the resulting equation by |A|?", for all n, and passing to the limit we see that

. A2\
() o) =0

Since &W ¢ R, this implies that a} = 0, which is again a contradiction. Therefore,

if B € W(a) does not intersect ¢, then A%l {B) = Afn (B) which completes the
proof. O

2.5. Assembly. We can now easily assemble the proof of Proposition 2.1.

Proof of Proposition 2.1. If there exists a simple, non-separating curve & on § so
that A%I (o) is not real, then Proposition 2.1 follows immediately from Lemma 2.6.
It )Lf‘)l (o) is real for every simple, non-separating curve o on S, then Lemma 2.5
implies that p; and p, have the same marked complex length spectrum on W(«) for
any non-separating simple closed curve . A result of Sullivan [30] implies that there
are only finitely many simple curves ¥ on S so that p; () is parabolic, so we may
always choose « so that py (@) is hyperbolic. ]
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Remark. An examination of the proofs reveals that Proposition 2.1 holds whenever
the length spectra of p; and p, agree on all simple, non-separating curves.

3. Simple marked length spectrum rigidity

We are now ready for the proof of our main result.

Theorem 1.1 (Simple length rigidity for Kleinian surface groups). If S is a closed,
connected, orientable surface of genus at least two, and py : m1(S) — PSL(2,C)
and py : m1(S) — PSL(2,C) are Kleinian surface groups with the same simple
marked length spectrum, then p; is conjugate to either py or ps.

We begin with a brief sketch of the proof. It follows from Lemma 2.1 that,
perhaps after replacing p, with a complex conjugate representation, there exists a
simple, non-separating curve « so that p;(«) is hyperbolic and p; and p, have
the same marked complex length spectrum on W(x). We then lift p; and p»
to representations into SL(2,C) which have the same trace on a standard set of
generators {o1, B1,....0g, Bg} where o = &y, see Lemma 3.1. An analysis of the
asymptotic behavior of the traces of a;? B allows us to conclude that the restriction of
the lifts to any subgroup of the form G; =< «, B; > are conjugate, see Lemma 3.2.
A more intricate analysis of the same type is then applied to show that if we conjugate
the lifts to agree on G ;, then, for any k, they either agree on Gy, or differ by conjugation
by a lift of the rotation of order two in the axis of the image of the commutator
of [, B;], see Lemmas 3.3 and 3.4. The proof is then easily completed when the
genus is greater than two, see Lemma 3.5, but a separate analysis is required when
the genus is two, see Lemma 3.6.

Proof of Theorem 1.1. Proposition 2.1 implies that there exists a a simple non-
separating curve o such that pj(e) is hyperbolic and p; and p, have the same
marked complex length spectrum on W(wx). If p; and p, have conjugate complex
marked length spectrum on W(x), then p; and p, have the same marked complex
length spectrum on W(w). Therefore, we may assume that p; and p, have the same
marked complex length spectrum on W ().

We begin by choosing lifts whose traces agree on a standard set of generators
which includes . We willcall 8 = {o, B1,..., a4, Bg}astandard set of generators
for 71 (S) if each & and B; is non-separating,

4
m1(S) =<a;,B; | [[lei.fi]=id> and i(a;.B;) =1

j=1

for all j and if j # k then

(o, o) =i(Bj,Bx) =i(aj, Bx) =0,
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see Figure 1. We say that two lifts p; and p> of p; and p; are trace normalized with
respect to & if

(1) p1(8) is hyperbolic for all § € &, and
(2) Tr(p1(8)) = Tr(p2(8)) forall § € 8.

Figure 1. Generators of 7 (S, p).

Lemma 3.1. Suppose that p; : m1(S) — PSL(2,C) and p2 : m1(S) — PSL(2,C)
are Kleinian surface groups with the same marked complex length spectrum on W (o)
for some simple, non-separating curve «. If pi() is hyperbolic, then there exists a
standard set of generators 8, so that a1 = «, and lifts p1 : m1(S) — SL(2,C) and
02 - m1(S) — SL(2,C) of p1 and pa which are trace normalized with respect to §.

Proof. Let a; = a. Choose a simple non-separating curve  which intersects o
exactly once so that p;(f1) is hyperbolic. (We may do so, since, by a result of
Sullivan [30], there are only finitely many simple curves y such that p; () is parabolic
and there are infinitely many possibilities for 81.) Extend {c;, 81} to a standard set
of generators {oq, B1,....0g,Bg}. We may assume that py(c;) is hyperbolic for
all j > 2, by replacing «; by «; ﬂ;? for some n if necessary. We may then assume
that p1(B;) is hyperbolic for all j > 2 by replacing B; by p;a’; for some n if
necessary. Notice that § C W(«).

Since each p; is discrete and faithful, each p; lifts to a representation
p; 1 w1 (S) — SL(2,C) (see Culler [12] or Kra [20]). Let

_ )8 i Tr(p1(8)) = Tr(p5(8)).

0> (8
P2(9) —p5(8) if Tr(p}(8)) = —Tr(p5(8)),
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for all § € &. Notice that p;(§) is a lift of p;(6) for all § € & and that

ﬁf(l_[§=l[aj,ﬁj]) = [, since pg(]—[‘ﬁ:l[aj,ﬁj]) = I. Therefore, p; and p, are
lifts of p; and p, which are trace normalized with respect to §. U

We next show that the trace normalized lifts are conjugate on the subgroups
Gj =< oy, ,Bj >
Lemma 3.2. Suppose that py : 71(S) — SL(2,C) and p> : m1(S) — SL(2,C) are
trace normalized lifts, with respect to a standard generating set 8, of Kleinian surface
groups with the same marked complex length spectrum on W(wy). If j € {1,..., g},
then there exists K ; € SL(2, C) such that p2|G, = (K;p1 KJTI)\GJ.. In particular,
if y € Gj, then Tr(p1(y)) = Tr(p2(y)).

Proof. Fix j for the remainder of the proof of the lemma and assume that p; and p;
are (o, Bj)-normalized, so

P =me) = (5 ).

~ N (75 bi
ae) = (2 )
where a;d; — b;c; = 1 and all the co-efficients are non-zero, by Lemma 2.2. Since

Tr(p1(B;)) = Tr(p2(B,)),

where |A| > 1, and

a1+ di1 = az + da.

The curve oz;?ﬁ i € W(ay), for all n, since it is non-separating, simple and
disjoint from « if j > 1 and intersects o exactly once if j = 1. Therefore,
Tr(p1 (o)) = £Tr(p2(e} B5)), which gives the equation

k”al + A_ndl = :l:()\"ag + A_ndz).

If \"ay + A7"dy = —(A"ay + A7"d>) for infinitely many values of 7, then we
see, by dividing by A" and passing to a limit, that a; = —a,. It then follows that
dy1 = —d,. Thus, a; + di = —(a> + d») which contradicts the fact that the traces
of p; agree (and are non-zero) on elements of &.

Therefore, there are an infinitely many values of n where A"a; + A™"d; =
A"as + A7"d, Taking limits again, we see that a; = a, and d; = d,. Therefore,

b1C1 = 1—a1d1 = ] —azdz = szg.

Choose u € C such that u? = b,/b; = c1/cp. Then u?b; = by and u2c; = c».

Let
u 0
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Notice that K ;5 (et;) K7' = pi(a;) and that

_ o u 0 a b M_l 0
K;p(B)K;' = (o u_l) (c; di)( 0 u)

u2 2
= (ule dfl) = p2(B;).

C1
Therefore, K; conjugates the restriction of p; to G to the restrictionof p to G;. O

We begin our analysis of trace normalized lifts which agree on G ; by examining
the relationship between the images of elements of §. Lemma 3.3 is the crucial
step in the proof of our main result. The additional information concerning matrix
co-efficients in case (2) will only be used when S has genus two.

Lemma 3.3. Suppose that p] : 71(S) — SL(2,C) and p} : 7:1(S) — SL(2,C)
are trace normalized lifts, with respect to a standard generating set 8, of Kleinian
surface groups with the same complex marked length spectrum on W(ay). If p{

and p3, agree on G; =< aj, B; > and § € 8, then either

(1) p{(8) = p}(8), or
(2) p{ ([ej, B;]) is hyperbolic and R ; ,o{ )] RJ_.1 = pg (8), where R is a lift of the

rotation of order two about the axis of pj ([oj, B;]). Moreover, if y € G such
that y,yé € W(ay), and

p{([cw,/fh'])=(gL )ﬁl)» p{(y)=(z Z), and p{(5)=(§ i)

where |A| > 1, then

Proof. The proof breaks up into two cases, depending on whether p{ ([j, B]) is
hyperbolic or parabolic.

Case L. p{ ([ot js B j]) is hyperbolic. We may assume, by conjugating, that
ol 811 = ol ) = (3,2,

where |A| > 1. As p{ and pé agree on G, we can assume that § is not either

ot §;. Let
o (€ i
i @) = (gi hi)
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where e;h; — f;gi = 1. Moreover, since the traces agree on generators,
e1+ hy = ez + hy.

Suppose that y € G; and y,y8 € W(;). (We can choose either y = f; or
¥ = ,8171 depending on the orientations on the curves, see Figure 2). Let

; ; a b
p1(v) = p3(¥) = (C d),
where ad — bc = 1.

Let yn = [, Bj]"y[ee;, Bj]17"6, which also lies in W(ay), since it is the image
of & under the n-fold Dehn twist about [« , B]. So, by assumption,

Tr(p] (va)) = £Tr(p3 (v)).

By expanding, we see that, for all n,
aey +dhy + ngAZIl + Cfll_zn = :|:(a€2 +dhy, + ngAZH —+ cle—?.n)-

Thus there exists an increasing subsequence where the traces either all agree or all
differ up to sign.

i, 5]

.
ot ——

Figure 2. Curves y, 6 and [c, B ;].

If there exists an increasing sequence {n ;| such that the traces all agree, then

aey + dhy + bg A*" + il = aey + dhy + bga AP 4 ol
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for all n;. Dividing the above equation by A"/ and taking a limit as j — oo, we
see that bg; = bg,. Since b # 0, by Lemma 2.2, g1 = g,. Thus,

aey + dh] + Cf]l_znj = aep + d/’lz -+ Cfgk_znj

and we see, by taking the limit as n; — oo, that ae; + dh; = ae; + dh,. Finally,
since ¢ 1A 72" = cf,A72™ and A and ¢ are non-zero, f; = f,. Summarizing, we
have

aey +dhy = ae, +dhy, f1 = f, and g1 = ga. (3.1)

Similarly, if there exists an increasing sequence {n;} such that the traces all
disagree then,

aer +dhy +bg12*" 4+ c il = —(aez + dhy + bgaA*" + cfr) )
for all n ;. Taking limits as above, we conclude that
ae; +dhy = —(a€2 -+ dhz), f] = —fz, and g; = —g2. (3:2)

Thus given any y € G; such that y, y§ € W(xy), then y either satisfies equation
(3.1) or (3.2). Since f; and g; are non-zero , we conclude that, with the above
normalization, either

(a) Equation (3.1) holds for all y € G such that y, y§ € W(ay), or
(b) Equation (3.2) holds for all y € G such that y, y§ € W(ay).

Case Ia. Equation (3.1) holds for all y € G such that y, y§ € W(a1). Choose
¥ € G such that y, y§ € W(ay) and let
; ; a b
P1(Y) = py(y) = (C d),
where ad — bc = 1. Then, by equation (3.1),
ae; +dhy = aey + dhs, f1 = fg, and g; = g3.

Since e;h; — f;gi = 1, we conclude that e;h; = ezhs, so, since we also have
e1 + hy = ez + ha,

(x —e1)(x — hy) = x? = 2(e1 + h1)x + e1h1 = (x — e2)(x — h2),

which implies that either (i) e; = ep and hy = hp; or (ii) ey = hp and h; = es.

If e; = ez and by = hy, then, since we already know that f1 = f; and g1 = g»,
we may conclude that pf (§) = p3 (§) and we are in case (1).

If e; = h, and hy = e,, then, since ae; + dh; = aey + dh,, we conclude that

(@ —d)(er —hy) =0.
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If a # d, then this implies that e; = hy, so e; = e,. Since we already know that
fi = f>and g1 = g, and all the matrix co-efficients are non-zero, we may conclude
that p{ (§) = p3 (8), so we are again in case (1).

In order to conclude that we are in case (1), it only remains to check that we can
choose yp € G, so that yg, yo6 € W(ap) and

- - ap b
pliw = slow = (22 ).

where ag # dp.

We may assume that we have initially chosen y to be either ,6;1 or B, and
that, with the above notation, @ = d. We may then choose Y, to be the element in
{leej, By, [eej, B;17 1y} which is simple and has the property that yg, yo8 € W(a1)
(see Figure 3). Observe that either ag = Aa and dg = A~'d or ag = A~ 'a and
do = Ad, so ag # dy. This choice of y, allows us to complete the proof.

Figure 3. The curve yq.

Case Ib. Equation (3.2) holds for all y € G such that y, y6 € W(a1). Choose
y € Gj sothat y, y6 € W(x;) and let

CHOEFAOE (a 2),

o
where ad — bc = 1. Then, by equation (3.2).

aey +dhy = —(aex +dhy), fi=—f2, and g1 =—gs.
As e;h; — figi = 1, we conclude that e;h; = eyh,. Since ejhy = exh, and
e1 + hy1 = ez + ha, we may conclude, just as in Case Ia, that either (i) e; = &5 and
hl = €, 0r (ii) €] = €, and hl = l’lz.

If e; = hy and h; = ey, then, since aey + dhy = —(aez + dhy), we see that

Tr(ol (¥))Tr (0l (8)) = (a + d)(e1 + h1) = aey + dhy + aes + dhy = 0,
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which is impossible since both traces are non-zero. Therefore, e; = e, and h; = h,.
Since fi = —f2 and g1 = —g»,

- - 0 —i 0 e
0= (3, 1)-6 ) £E Y-nson

) p{ (8) = R; pg (S)RJ_.1 and R; is a lift of the rotation of order two about the axis

of o ([t} B;))-
Moreover, since ae; + dhy = —(aey; + dhy) = —(aey + dhy), we see that

aey +dh; =0, so
€1 d

h] a ’
and we are in case (2).

Case II. p{ ([eej, B 1) is parabolic. Choose y € G; so that y, y§ € W(ay). We
may conjugate so that

ol (s = ol ) = (1)
and 0 is a fixed points of p{ (y) = pg (), so
P =p(y) = (? 2) :

where ad = 1. So, a and d are non-zero and ¢ is non-zero, since otherwise
p} ([oi, Bi]) and p}(y) would have a common fixed point.

Let f
j (e i
pi (8) - (gi hz) ’

where e;h; — f;gi = 1 and all the matrix coefficients are non-zero. Moreover, since
the lifts are trace normalized with respect to &,

ey + hy = ez + hs.
Again, let y, = [, Bi]"v[oi, Bi]™"*8, which lies in W(w;), so
Tr(p} (va)) = £Tr(03(1n)).

Expanding, we obtain

(@a+nc)ey + (n(d —a) —1126)g1 +cfi +(d—nc)h
= +((a +nc)ez + (n(d —a) —n’*c)gz + cfo + (d —nc)hy).
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If there are infinitely many n where the traces differ, then, by dividing by n?
and taking limits, we conclude that cg; = —cg», so, since ¢ # 0, g1 = —g2. By,
successively taking limits, we further conclude that

c(ey —hy) = —c(ea —hy) and ae; +cfy +dhy = —aex —cfa — dh,.
Since ¢ # 0, we see that ey — hy = —ez + ha. As ey + hy = ez + ha, this implies
that e; = hy and h; = e,. Therefore,
fHigi=ethi—1=ehy— 1= fogr =—f281.
As plj (8) does not have a fixed point at oo, g1 must be non-zero, so f; = — f>. Since
aey + cf1 + dhy = —ae; — cfo — dh,, this implies that
Tr(y)Tr(8) = (@ +d)(e1 + h1) =0

which is a contradiction, since both traces are non-zero.
Therefore, there are infinitely many n where the traces agree, so, taking limits as
above, we see that

g1 = g2, clex—hy) =c(ea—h3), and ae,+cfi+dhy = aey+cfo+dhs.

Since ¢ # 0, e; —h| = ep — hp, which we may combine with the fact thate; + 71 =

e> + h», to conclude that e; = e, and h; = h,. Therefore,
fisi=ethi—1=eh—1= frg:= fog1

which implies that f; = f>, so p{ (6) = pg (6), which implies that we are in

case (1). [l

We now refine our analysis of trace normalized lifts which agree on G; to show
that, for all k, they either agree on Gy or differ by a rotation in the axis of the image
of the commutator in G ;.

Lemma 3.4. Suppose that py : w1(S) — SL(2,C) and p; : m1(S) — SL(2,C) are
trace normalized lifts, with respect to a standard generating set 8, of Kleinian surface
groups with the same marked complex length spectrumon W(ey). If j.k € {1,..., g}
and p] and p} agree on G; =< a;, B; >, then either

(D) p{ and p% agree on Gy, or
(2) p{ ([ej, B;]) is hyperbolic and p{ l6, = (ijé R;1)|Gk where R; is a lift of the

rotation of order two about the axis ofp{ (e, B]).

Proof. If neither (1) or (2) holds, then Lemma 3.3 implies that, perhaps after
switching o and B, pf ([, B;]) is hyperbolic,

p3 () = pi(ax) and pj(Br) = Rjp1(Bi) R’

where R is a lift of the rotation of order two about the axis of p{ ([ee, BjD)-
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Lemma 3.2 implies that there exists K e SL(2 C) so that p1 and K,o2 K1 agree

on Gi. If K = £1, then p] and p; = szK agree on G and we are in case (1).
So, we may assume that K # £/ and

pl () = Kpj () K™ = Kp] () K™
and p1(Br) = Kp3 (Br) K~ = KR p] (B)R7' K.

It follows that K fixes the fixed points of p{ (ctx) and that KR} fixes the fixed points

of p (ﬁk)
If p] and szK ! agree on either «; or B;, then, since pl and p2 agree on G,
either

ol (@) = Kpl(a;) K = Kp] (@;) K™
i pl(B)) = Koj(BK™" = Kol (B)K™

which implies that K fixes the fixed points of either o1 (oz J) or pj (,8 j). But, since K
fixes the fixed points of ,o1 (g ), and the fixed points of P1 (otr), ,o1 (aj) and ,o1 (;3 i)
are all distinct, this 1mp11es that K = +£1, which is a contradiction.

Therefore p1 and K ,o2 K~ disagree on both o and ;. Lemma 3.3 then implies

that p] ([oz;c Br]) is hyperbolic and
pl () = ReKpa(e) KR and  p](B;) = ReKpj(B)K 'Ry

where Ry is alift of the rotation of order two about the axis of pj ([ak Bx]). Therefore,
,o1 and Ry sz K~ le agree on G ;. Since ,01 and ,02 agree on G ; this implies that
RyK = +1,s0 K = :I:R,:l. Therefore, K fixes the fixed points of pf ([ax, Bx]).

However, since we already know that K fixes the fixed points of p (e ), this implies
that K = £/, which is again a contradiction. O

It is now relatively simple to use Lemma 3.4 to complete the proof when S has
genus at least three.

Lemma 3.5. Suppose that S has genus g > 3 and that py : 71(S) — SL(2,C)
and pz : w1 (S) — SL(2, C) are trace normalized lifts, with respect to a standard
generating set 8, of Kleinian surface groups with the same marked complex length
spectrum on W(ay). Then, py is conjugate to py in SL(2, C).

Proof. Lemma 3.2 implies that we may choose conjugates p} and p} of p and p,
which agree on G; =< «;,f; > . Lemma 3.4 implies that for all j > 1, the
restrictions of p] and pj to G; either agree or are conjugate by Ry, where R; is a
lift of the rotation of order two about the axis of p] ([a1, f1]). If p; # pi, we may
assume without loss of generality that pl|g, = (R1psRTY)|c,-
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Lemma 3.4 implies that either (1) pj and R;pjRy' agree on Gp; or (2)
p5 (o2, B2]) is hyperbolic and p] and R; p R7! are conjugate by R» on G; where R,
is a lift of the rotation of order two about the axis of p} ([a2, B2]).

If p] and R1p} R! agree on Gy, then, since p! and p3 agree on G1, Ry commutes
with every element of pj(G1). Since pj(G1) is non-elementary, this implies that
R = +£1, which is a contradiction.

If p} and Ry(Ry1piRTY)R; ! agree on Gy, then since p! and pl agree on Gy,
we similarly conclude that R, Ry = +£1. So, Ry, = iRl_l. This would imply that
pl([a1, B1]) and pl([az, B2]) have the same axis, so share fixed points, which is a
contradiction unless S has genus 2 and [or1, B1] = [or2, B2] L. O

We now complete the proof by establishing our result in the genus two case.

Lemma 3.6. Suppose that S has genus g = 2 and that p; : 71(S) — SL(2,C)
and pp : 7w1(S) — SL(2,C) are trace normalized lifts, with respect to a standard
generating set 8, of Kleinian surface groups with the same marked complex length
spectrum on W(a1). Then, py is conjugate to py in SL(2, C).

Proof. Inthiscase 71(S) =< o1, B1, a2, f2 > given by the standard oriented curves
as in Figure 4. Lemma 3.2 implies that we may conjugate p; to p; so that p] and p)
agree on (.

Suppose that p; # p;. Lemma 3.4 implies that p; ([e1, B1]) is hyperbolic and p}
and R;pj Ry! agree on G, where R; is a lift of the rotation of order two about the
axis of py ([ot1, B1]). We may normalize so that

p1(ler, B1]) = p3([er, B1]) = (g AC—)I)

where [A| > 1.

Figure 4. Surface of genus 2 with standard generators.
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Lety = oel"l . Notice that, assuming that elements of § are oriented as in Figure 4,
ya, and ypB, are simple and lie in W(a;). Define A = pj(e7!), C = pj(a2), and
D = pl(B,), and adapt the convention that if a matrix is denoted by capital letter X,
then it has coefficients (x;;). Since pj and p; differ on both o and 5, Lemma 3.3
implies that

€22 dxm an
We now consider the element ;8> € G,. We replace generators {o,, f2} by
{az B2, az—l} in & to form another standard generating set 8’ = {a, B1, 282,05 '}
(we note that [0z 82, @5 '] = [z, B2]). The representations pi and p; agree on G,
and their traces agree on §’. Notice that y(a2f82) € W(a;) (see Figure 4) and
let E = CD = pi(a2B2). Since p] and pj agree on G; and disagree on a,fs,

Lemma 3.3 implies that
en _ _an

€22 a11.
IfM =CDCID™! = pi(loa, B2]71) = pi ([or1, B1]), then

A0
M—(o /\—1)'

Since DC = M~'CD = M~'E and C™1(CD)C = DC,
Tr(DC) = Tr(CD) = Tr(E) = Tr(M ™1 E),
soey; + e = A ley; + Aeaxs. Therefore
gy Ay g G-1) _,
€22 dy exn L — A=) '
Since CD = MDC,
(CD)12 = c11d12 + c12das = (MDC)12 = A(DC)12 = A(dy1¢12 + d12¢22),
SO, since C11 = )LCZZ and d11 = A.dzz,
Acaadiz + c12dan = A(Adaacyz + di2¢22),
which implies that
(A* = 1)ciaday = 0.
Thus, since d,» and cj» are both non-zero, A> = 1 which is a contradiction.

Therefore, it must be the case that p; = p;. O

Remark. Observe that in the proof we only assume that there exists a simple non-
separating curve « such that p; and p, have the same or conjugate marked complex
length spectrum on W(«). It then follows from the remark at the end of Section 2 that
p1 and p, are conjugate in the isometry group of H? if they have the same marked
length spectrum on all simple, non-separating curves.
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4. Acylindrical 3-manifolds

We now use our main result to prove our length rigidity theorem for acylindrical
3-manifolds.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and
p1:m (M) — PSL(2,C) and pp : m1(M) — PSL(2,C) are two discrete faithful
representations, such that £, (o) = £,, (o) ifa € mw1(M) is represented by a simple
closed curve on 0M, then py is conjugate to either py or p,.

In order to motivate the more general proof, we offer a sketch of the proof
in the case that M has connected boundary and p; and p, are both convex
cocompact, i.e. each N; = H3/p; (7r1(M)) admits a conformal compactification with
boundary d. N;. After perhaps replacing p, with a complex conjugate representation,
we may assume by Johannson’s Classification Theorem [16], that there exists an
orientation-preserving homeomorphism j : N; — N, in the homotopy class
determined by p, o p7!. In this case, work of Bers [2] implies that p; is conjugate
to pp if and only if j extends, up to isotopy, to a conformal homeomorphism
f . Bch —> Bch.

If the length spectra of p; and p, agree on simple curves on the boundary,
our main result implies that the restrictions of p; and p, to the fundamental group
of the boundary agree up to conjugacy in the isometry group of H?. It follows
that the conformal compactifications NIS and NZS of the covers of N; and N,
associated to m;(S) are either conformal or anti-conformally homeomorphic (by
a homeomorphism in the homotopy class consistent with the identifications of their
fundamental groups with 771 (S).) Notice that d. N; is identified with one component
of the conformal boundary of NiS . If the conformal compactifications of N IS and NZS
are conformally homeomorphic, then j extends to a conformal homeomorphism
between d.N; and d.N,, so Bers’ result implies that p; and p, are conjugate
in PSL(2,C). If not, then one may use the Klein—-Maskit combination theorems
(see Maskit [22]) to combine p; and (a conjugate of) p, to produce the holonomy
representation of a hyperbolic structure on the double of M. Mostow’s Rigidity
theorem [27] then implies that the involution of the double is an isometry, so the
restriction of p; and p, to the boundary is Fuchsian, and the conformal structures on
the boundary must agree.

In the general case, we must organize the components of the boundary into those
where the conformal structures agree and those where they disagree and replace the
use of Bers’ theorem and Mostow’s Rigidity theorem with applications of the Ending
Lamination theorem [8,26].

Proof of Theorem 1.2. Suppose that p; : 71 (M) — PSL(2,C) and p; : 11 (M) —
PSL(2,C) are two discrete faithful representations, such that £,, (o) = £,, (@) if
a € w1 (M) isrepresented by asimple closed curve on dM . Let N; = H3/p; (m1(M)).
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There exists a homotopy equivalence #; : M — N; in the homotopy class
determined by p; (where we regard p; as an isomorphism between m{(M) and
m1(N;) = pi(m1(M))). Bonahon’s Tameness theorem [3] implies that Nj;
may be identified with the interior of a compact 3-manifold M;. Since M is
acylindrical, Johannson’s Classification theorem [16] implies that 4; is homotopic
to a homeomorphism. Therefore, there exists a homeomorphism g : My — M, so
that g o h; is homotopic to 5, i.e. g is in the homotopy class determined by p, o p7!.
If g is not orientation-preserving then we replace p, with p>. So, we may assume
that g is orientation-preserving.

Thurston associates to each p; a family of ending invariants, i.e. a multicurve p;,
called the parabolic locus, in the collection dg M; of non-toroidal components of dM;,
and on each component of doM; — p;, either a hyperbolic structure of finite area
(in which case the component is called geometrically finite) or a filling, geodesic
lamination which admits a transverse measure of full support, called the ending
lamination (in which case the component is called geometrically infinite), see [8,26]
for details. The Ending Lamination theorem of Minsky [26] and Brock—Canary—
Minsky [8] implies that p; is conjugate to pp in PSL(2,C) if and only if the
ending invariants of p; agree with the ending invariants of pa, i.e., up to isotopy
of g, g(p1) = pa, the restriction of g to each geometrically finite component of
doM7 — p; is an isometry onto a geometrically finite component of do M — p», and
if a geometrically infinite component of dg M; — p; has ending lamination A, then g(4)
is the ending lamination of a geometrically infinite component of doM> — p».

Let {Sy,...,S,} be the components of doM;. Since £, () = £p, () if
a € m1(M) is represented by a simple closed curve on dM, our main result,
Theorem 1.1, implies that, for each j, p1[z(s;) is conjugate to either p, or ps.
If each p1]x,(s;) is conjugate to p2|x, (s;). then the ending invariants of p; agree
with the ending invariants of p,, so p; is conjugate to p2 in PSL(2,C) and we are
done.

If there exists S; so that p1 |, (s;) is conjugate to p» |7;(s;)» then we may re-order
the components of dM, so that p1|x,(s,) is conjugate to p2|r,(s;) if and only if

j >qforsomeq € {l,...,r —1}. Let N/ be the cover of N; associated to 71 (S;).
Then, N/ may be identified with the interior of S; x [0, 1] so that the end invariants

of Nl.j on S; x {1} agree with the restriction of the end invariants of N; restricted

to S;. The Covering theorem (see [10]) may be used to show that the restriction of
the ending invariant of Nij to S; x {0} is a conformal structure on all of S; x {0} (see
the discussion in Kent’s proof of Thurston’s Bounded Image theorem [17, Thm. 41]).
If j < g, then the ending invariant of NIJ on §; x {1} agree with the end invariants
of sz on S; x {0}, while the ending invariant of N IJ on S; x {0} agree with the end
invariants of sz on S; x {1}. It follows that, if j < ¢, then the ending invariants
of N/ are a pair of hyperbolic structures on S; x {0} and §; x {1}, s0 pj[z,(s;) is

1

quasifuchsian, and the map from S; x {0, 1} to itself given by taking (x, 7) to (x, 1—¢)
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is isotopic to an isometry from the ending invariants of N 1J to the ending invariants
of Nj .

Let M be the manifold obtained by doubling M along S§; U --- U S;—1. We
first conjugate p, so that py(71(S1)) = p2(71(S1)). We may use the Klein—
Maskit Combination theorems [22] to see that the combination of p;(7r;(M)) and
P2 (w1 (M)) gives rise to a hyperbolic structure on the double of M along S;. For
each j =2,...,q,let Aj € PSL(2,C) be chosen so that 4; conjugates p1|r,(s;)
to p2|x,(s;)- Then, the Klein-Maskit Combination theorems give that the group
generated by pl(nl(M)) p2(mw1(M)) and {A,,... A4} gives rise to a hyperbolic
structure on M and so a representation p : (M ) — PSL(2,C). (See Sections 8
and 9 of Morgan [25], in particular Theorem 9.4, for a discussion of the Klein—-Maskit
Combination theorems in a topological phrasing compatible w1th our apphcatlon )
The obvious involution of M preserves the ending invariants of N = ]HI3 /p(my (M ).
so, by the Ending Lamination theorem, there is an isometry of N realizing this
involution. By restriction, p; is conjugate to p,. a

Remark. In the case that dg M is connected, Ian Agol astutely pointed out that one
may rephrase this proof as an application of the fact that the square of the skinning

map has a unique fixed point, see Morgan [25] and Kent [17] for a discussion of the
skinning mabp.

S. Renormalized pressure intersection

We next show that the isometry group of the renormalized pressure intersection is
generated by the (extended) mapping class group and complex conjugation. We begin
by reinterpreting our renormalized pressure intersection in terms of the Patterson—
Sullivan geodesic current, following Bridgeman [5] and Bridgeman—Taylor [7]. Since
isometries of the renormalized pressure intersection are isometries of the pressure
metric and the only degenerate vectors for the pressure metric are at points on the
Fuchsian locus (see Bridgeman [5]), any isometry f of the renormalized pressure
intersection must preserve the Fuchsian locus. Since the restriction of the pressure
metric to the Fuchsian locus is a multiple of the Weil-Petersson metric, we may apply
Masur and Wolf’s classification of isometries of the Weil-Petersson metric [23], to
conclude that the restriction of f to the Fuchsian locus agrees with the action of a
mapping class g. We then use Bonahon’s interpretation (see [4]) of the Thurston
compactification of Teichmiiller space in terms of geodesic currents, to show that
if p e QF(S),then f(p) and g(p) have proportional simple marked length spectrum.
The proof is completed by showing that any two Kleinian surface groups with

proportional simple marked length spectrum are conjugate in the isometry group
of H3.
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5.1. Geodesic currents. Identify the space G(H?) of geodesics in H? with the
open Mdbius band (S}, x S., — diagonal)/Z, by identifying a geodesic with its
endpoints. A geodesic current on a hyperbolic surface X = H?/T is a positive
Borel measure on G (H?) that is invariant under the action of I". For example, if « is
a primitive closed geodesic on X, we may consider the geodesic current C, given by
taking the Dirac measure on the pre-image of o in G(H?). Let €(X) be the space of
geodesic currents defined for X = H? /T with the weak*-topology. If S is a closed
surface of genus at least two, we identify S with a fixed hyperbolic surface Xy and
let €(S) = €(Xy).

Following Bonahon [4], Bridgeman and Taylor [7, Sec. 5] showed that there is a
natural continuous, linear function

L:€(S)x QF(S) — R,

called the length function, with the property that if r C,, is a positive multiple of C,,
then L(rCy, p) = rf,(a). Since multiples of closed geodesics are dense in €(S)
(see [3, Prop. 4.2]), this property completely determines L.

Given p € QF(S), Sullivan [31, Prop. 11, Thm. 21], following work of
Patterson [28] in the Fuchsian case, used the Poincaré series to define a non-
atomic I'-invariant measure p(, on JocH? x 0ooH?3, called the Patterson—Sullivan
measure, which is supported on A (p) X A(p), where A(p) is the limit set of p(7r1(S)),
such that I" acts ergodically on A(p) x A(p) with respect to i1, (see also Sullivan
[32, Thm. 3]). One may push forward p, to obtain a I'-invariant measure fi, on
A(p) x A(p)/Z> (where Z, acts by interchanging the factors). The representation p
induces a homeomorphism f, : S' — A(p), where we use our identification of S
with Xo to identify S! with dooH2, so one obtains a homeomorphism f, x f, :
G(H?) — A(p) x A(p)/Z,. One then defines the Patterson-Sullivan current as

the scalar multiple ¥ (p) € €(S) of (m)*(ﬁ,p) so that L(¥(p),p) = 1. If p
is Fuchsian, then 1/ (p) is the Liouville geodesic current constructed by Bonahon [4]

(see [15, Thm. 1]). Hamenstadt [15, Thm. 1] showed that the associated map

¥ QF(S) — €(S)

is continuous and injective. = See Bridgeman [5], Bridgeman-Taylor [7] or
Hamenstadt [15] for further discussion of the Patterson—Sullivan geodesic current.

Let F(S) denote the space of Fuchsian representations in QF(S) and let
PE(S) denote the space of projective classes of non-zero currents in €(S).
Bonahon [4, Thm. 18] showed that if one considers the associated map into the
space of projective geodesic currents ¥ : F(S) — PE€(S), then the closure of
U (F(S))is Y (F(S)) U PML(S) where PML(S) is the space of projective classes
of measured laminations. (We recall that the set M L(S) of measured laminations
in €(S) is exactly the closure of the set of positive multiples of currents associated
to simple curves, see Bonahon [3, Sec. 4.3] for more details.)
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We note that L(y(p1), p2) can also be defined to be the length in p, of a random
geodesic in py, i.e.

. 1 Lo, (V)
L o) = 1 . 5.1
S S 7 IS SO DR A
It follows that
h
Jo1. p2) = %L(W(m), 52, 52)

where the the renormalized intersection number J and the entropy 4 are as defined in
Section 1.3.

In analogy with Thurston’s formulation of the Weil-Petersson metric on
Teichmiiller space, and Bonahon’s re-formulation in terms of geodesic currents
[4, Thm. 19], Bridgeman and Taylor [7] consider, for each p € QF(S), the function
Jo: OQF(S) — R given by J,(0) = J(p,0) and define a non-negative symmetric
two-tensor G, called the pressure form, on the tangent bundle TQ F(S), where G,
on T,QF(S) is the Hessian of J,. By construction, the pressure form is invariant
under the action of the (extended) mapping class group Mod™* (S) of S. It follows from
the work of Wolpert [33] and Bonahon [4], that the restriction of the pressure form
to the Fuchsian locus F () is a multiple of the Weil-Petersson metric. Motivated
by the work of McMullen [24] in the setting of Teichmiiller space, Bridgeman [5]
showed that the pressure form is non-degenerate except along pure bending vectors
based at points in the Fuchsian locus. Moreover, the pressure form gives rise to a
path metric on QF(S), see [6, Cor. 1.7].

Remark. In the proof of Theorem 6.1 in [5], Bridgeman gives an expression for
L(y(p1), p2) in terms of equilibrium measures. Our equation (5.1) then follows
from equations (12) and (13) in [6], see also the discussion in Section 8 of [6]. If one
prefers that the proof of Theorem 1.3 be self-contained, one can take J to be defined
by our equation (5.2) as is done in Bridgeman—Taylor [7] and Bridgeman [5].

5.2. Isometries of renormalized pressure intersection. We use the interpretation
of renormalized pressure intersection in terms of geodesic currents to show that the
restriction of an isometry f of the renormalized pressure intersection to the Fuchsian
locus F(S) agrees with an element g of the (extended) mapping class group. We
further show that f(o) and g(o) have closely related length spectrum whenever

o€ QF(S).

Proposition 5.1. If f : QF(S) — QF(S) is a smooth isometry of J, then f
preserves the Fuchsian locus F(S) and there exists g € Mod™(S) such that f and g
agree on the Fuchsian locus.

Moreover, if o is a simple curve on S and o € QF(S), then

h(g(0))Eg(0)(@) = h(f(0)) s (@).
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Proof. Since f is smooth and preserves J, one sees by differentiating that f* also
preserves the pressure form G.

If o € F(X) and v is a pure-bending vector, then Gy(v,v) = 0, so
G r(o)(Dfs(v), Dfs(v)) = 0. Since, f is an immersion, Df;(v) # 0 which implies
that f(o) € F(S).

Since the restriction of G to F(S) is a multiple of the Weil-Petersson metric, the
restriction of f to the Fuchsian locus is an isometry of the Weil-Petersson metric.
Masur and Wolf [23] proved every isometry of the Weil-Petersson metric is an
element of Mod* (S). So we may choose g € Mod™(S) so that f and g agree on the
Fuchsian locus F(S).

If pe F(S)and 0 € QF(S), then since

J(p.0) =J(f(p). f(0)) = I(g(p).g(0)),

and 4 is constant on F(S), we may conclude that

L(y(g(p).g(0) _ h(f(@)

Ly (f(p), f(@)) h(g)

_If o is a simple curve, let {p,} be a sequence in F(S) so that (U (f(oa))} =
{¥(g(pn))} converges to [C,] in P E(S). Since L is continuous,

by (@) _ .. L(v(g(pn).2(@)) _ h(f(0))

L@ L (flen) f©@)  h(g(0))

which establishes our claim. [l

5.3. Simply k-related Kleinian surface groups. We say that two Kleinian surface
groups p; : 71(S) — PSL(2,C) and p; : 71(S) — PSL(2, C) are simply k-related,
for some k > 0, if

Lo (@) = ktp, ()

whenever « is a simple closed curve on S.

Proposition 5.1 implies that if f is an isometry of the renormalized pressure
intersection, then there exists g € Mod*(S), such that f(o) and g(o) are simply
k-related whenever 0 € QF(S). Theorem 1.3 will thus follow from the following
strengthening of our simple length rigidity theorem.

Theorem 1.4. If S is a closed, connected, orientable surface of genus at least two
and py : 71(S) — PSL(2,C) and py : m1(S) — PSL(2,C) are simply k-related
Kleinian surface groups, then py is conjugate to either py or ps.

Proof of Theorem 1.4. We first choose non-separating simple curves o and B on S
which intersect exactly once, so that py (@), p1(B), p2(e) and p, (B) are all hyperbolic.
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(One may do so, since, again by a result of Sullivan [30], only finitely many simple
curves have parabolic images for p; or p;.)
We can assume that p; and p, are («, f)-normalized, so

A O
nw==(3 ,0)

aj bi
pt(ﬁ) ==+ (Cz' dl)

where all the matrix coefficients are non-zero (see Lemma 2.2). Since p; and p, are
simply k-related,

where [A;| > 1, and

i = [Azl*.

Notice that if £ = 1, then Theorem 1.4 follows immediately from our main result,
Theorem 1.1. So we may assume, without loss of generality, that & > 1.
Let u;(n) be the modulus of the eigenvalue of p;(«”f) with largest modulus.
Since a8 is simple for all n, pq(n) = pp(n)* for all n. Lemma 2.2 implies that
bic; _
log 1 (n) = nlog ;] + log |a| + m(xz-‘z” ;;) + 0 (A7),

i

Since log jt1(n) = k log p2(n), after eliminating the leading terms (which are equal),
we obtain

b
loglas| + m(kﬁ”;—?) + 0 (M™)
1

b
= klog|az| + k(2527722 ) 1+ 0(|ra74).
a3

Therefore, by considering the limits as n — oo, we see that
log |a1| = klog|az|.
So, after subtracting the equal leading order terms,
bic bsc
m(x;”%) + 0|17 = km(xgz"iz—z) + O(|A2]*).
1 2

for all n. If we multiply both sides of the above equation by |A,|?”, then since
-}%} > 1, the left hand side converges to 0, and we see that

; A2 _2”[926‘2 .
me(() )0 o
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If we let

-2
u=(£) =¢'? and v:bzﬁ;&().
2|

Then we may rewrite (5.3) as

lim R@"v) = 0.

n—o

As we can always choose a sequence {ny} so that limy_,, u"* = 1, we see that
R(v) =0.

If 6 is an irrational multiple of 277, then for all z € S? there exists a sequence {n; }
so that lim "¢ = z, which implies that R (zv) = 0. Therefore, in this case,as v # 0
then choosing z = |v|/v, we get |v| = 0 a contradiction.

If 6 is a rational multiple of 27w and u # =1, then there exists {ng} so that
u"k =y for all k, so R(uv) = 0. Since R(v) =0, v =iy fromsome y € R, so,

R(efv) = —sin(@)y = 0.

Thus, y = 0, since sin(f) # 0. It again follows that v = 0 and we obtain a
contradiction.

Therefore, we can assume that u = =£1, so A3 is real. It follows that if 5 is a
simple, non-separating curve on S, then )L;z,z (n) € R, so

T (p2(m)) = A2, () + 2+ A7 (n) € R.
In particular, since & B is simple and non-separating for all n, we see that
Tr*(p2 (" B)) = A3"a3 + 2azxda + Ay%"d? e R,

SO,
3(Te? (p2 (" B))) = A3"3(a3) + 23(a2ds) + A;2"3(d3) = 0

for all n. Therefore,

¥(Tr? o
tim STE@B) _ 2 _g
n—00 },2”
SO
lim 3(Tr?(p2(c"B))) = 23(azd2) = 0.
n—>00
Since a2 and aad, are real, v = b;gz = a2d22—1 is real. Therefore, since we have

2 2
already shown that 9t (v) = 0, we see that v = 0, which contradicts the fact that a»,
by and c¢5 are all non-zero. Since we have now achieved a contradiction in all cases
where k > 1, this completes the proof. O
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5.4. Proof of Theorem 1.3. If f is an isometry of the renormalized pressure
intersection, then Proposition 5.1 implies that there exists g € Mod*(S) such that f
and g agree on F(S) and f (o) and g(o) are simply k-related, where k = ‘Z((ﬁg))g L
whenever 0 € QF(S). Theorem 1.4 implies that if o € QF(S), then either
f(o) = g(o) or f(o) = t(g(0)). Since f is continuous, this implies that either
f =gor f = 1o0g. The result follows. O
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