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Simple length rigidity for Kleinian surface groups
and applications

Martin Bridgeman* and Richard D. Canary*

Abstract. We prove that a Kleinian surface group is determined, up to conjugacy in the isometry
group of HI3, by its simple marked length spectrum. As a first application, we show that a discrete
faithful representation of the fundamental group of a compact, acylindrical, hyperbolizable
3-manifold M is similarly determined by the translation lengths of images of elements of ji\ (M)
represented by simple curves on the boundary of M. As a second application, we show the

group of diffeomorphisms of quasifuchsian space which preserve the renormalized pressure
intersection is generated by the (extended) mapping class group and complex conjugation.
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Keywords. Kleinian surface groups, length spectrum and rigidity.

1. Introduction

We show that if p\ and P2 are two discrete, faithful representations of a surface

group jti(S) into PSL(2, C) with the same simple marked length spectrum, then pi
is either conjugate to p2 or its complex conjugate. (Two such representations have

the same simple marked length spectrum if whenever a e n\(S) is represented by
a simple closed curve, then the images of a have the same translation length. The

complex conjugate of a representation is obtained by conjugating the representation
by z -> z.) Marché and Wolff [21, Sec. 3] have exhibited non-elementary representations

of a closed surface group of genus two into PSL(2,M) with the same simple
marked length spectrum which do not have the same marked length spectrum, so the

corresponding statement does not hold for non-elementary representations.
We give two applications of our main result. First, if M is a compact,

acylindrical, hyperbolizable 3-manifold, we show that if p\ and p2 are discrete

faithful representations of Jti(M) into PSL(2,C) such that translation lengths of

*M.B. was partially suppported by grant DMS-1500545 and R.C. was partially supported by grant
DMS-1306992, from the National Science Foundation. The authors also acknowledge support from
U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: GEometric
structures And Representation varieties" (the GEAR Network).
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the images of elements of Tt\ (M) corresponding to simple curves in the boundary
of M agree, then p\ is either conjugate to pi or its complex conjugate. For our
second application we consider the renormalized pressure intersection, first defined

by Burger [9] and further studied by Bridgeman-Taylor [7], Bridgeman [5] (see

also [6]) showed that the Hessian of the renormalized pressure intersection gives
rise to a path metric on quasifuchsian space QF(S). We show that the group of
difFeomorphisms of QF(S) which preserve the renormalized pressure intersection
is generated by the (extended) mapping class group and the involution of QF(S)
determined by complex conjugation.

1.1. Simple length rigidity for Kleinian surface groups. A Kleinian surface group
is a discrete, faithful representation p : Jti(S) -> PSL(2,C) where S is a

closed, connected, orientable surface of genus at least two. If a e ni(S), then

let lp(a) denote the translation of length of p(a), or equivalently the length of the
closed geodesic in the homotopy class of a in the quotient hyperbolic 3-manifold
H3/p(7Ti(S)). We say that two Kleinian surface groups p\ : 7Ti(S) PSL(2,C)
and p2 : tt\ (S) —> PSL(2,C) have the same marked length spectrum if lPl(pt)
lp2(ct) for all a e Jti(S). Similarly, we say that pi and P2 have the same simple
marked length spectrum if lPx (a) lP2 (a) whenever a has a representative on S

which is a simple closed curve. If p : G — PSL(2, C) is a representation we define

its complex conjugate p>2 to be the representation obtained by conjugating by z —> z.

Theorem 1.1 (Simple length rigidity for Kleinian surface groups). If S is a closed,
connected, orientable surface of genus at least two, and p\ : n\{S) —> PSL(2,C)
and p2 : iti(S) -> PSL(2,C) are Kleinian surface groups with the same simple
marked length spectrum, then p\ is conjugate to either p2 or p2.

Since the full isometry group of H3 may be identified with the group generated
by PSL(2, C), regarded as the group of fractional linear transformations, and z -> z,
one may reformulate our main result as saying that two Kleinian surface groups with
the same simple marked length spectrum are conjugate in the isometry group of H3.

Historical remarks. It is a classical consequence of the Fenchel-Nielsen coordinates

for Teichmüller space that there are finitely many simple curves on S whose

lengths determine a Fuchsian (i.e. discrete and faithful) representation of n\ (S) into
PSL(2, R) up to conjugacy in PGL(2, R), which we may identify with the isometry
group of H2. However, Marché and Wolff [21, Sec. 3] showed that there exist non-
Fuchsian representations of the fundamental group of a surface of genus two into
PSL(2, R) with the same simple marked length spectrum which do not have the same
marked length spectrum. The representations constructed by Marché and Wolff do not
lift to SL(2, R), so do not lie in the same component of the PSL(2, C)-representation
variety as the discrete faithful representations.
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Kourounitis [19] showed that there are finitely many simple curves on S whose

complex lengths (see Section 2 for a discussion of complex length) determine a

quasifuchsian surface group up to conjugacy in PSL(2, C). Culler and Shalen [13,

Prop. 1.4.1] showed that there are finitely many curves whose traces determine a

non-elementary representation into SL(2, C), up to conjugacy in SL(2, C), while
Charles-Marché [11, Thm. 1.1] showed that one may choose the finite collection to
consist of simple closed curves.

Kim [18] previously showed that two Zariski dense representations into the

isometry group Isom(X) of a rank one symmetric space X with the same full marked

length spectrum are conjugate in Isom(X). More generally, Dal'Bo and Kim [14]
showed that any surjective homomorphism between Zariski dense subgroups of a

semi-simple Lie group G, with trivial center and no compact factors, which preserves
translation length on the associated symmetric space extends to an automorphism
of G.

1.2. Simple length rigidity for acylindrical hyperbolic 3-manifoIds. A compact,
orientable 3-manifold M with non-empty boundary is said to be hyperbolizable if its
interior admits a complete hyperbolic metric, which implies that there exists a discrete,
faithful representation of tï\ (M) into PSL(2,C). A compact, hyperbolizable
3-manifold is said to be acylindrical if every 7Ti-injective proper map of an annulus

into M is properly homotopic into the boundary of M. (Recall that a map of a surface

into a 3-manifold is said to be proper if it maps the boundary of the surface into the

boundary of 3-manifold and that a proper homotopy is a homotopy through proper
maps.)

In this setting, we use Theorem 1.1 show that a discrete, faithful representation of
ni (M) into PSL(2, C) is determined, up to conjugacy in the isometry group of H3,
by the translation lengths of images of simple curves in the boundary 3M of M.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and

pi : n\(M) —> PSL(2,C) and p2 : rt\(M) ->• PSL(2,C) are two discrete faithful
representations, such that iPl (a) iP2 (a) ifa e 7t\(M) is represented by a simple
closed curve on 3M, then p\ is conjugate to either p2 or p2.

1.3. Isometries of the renormalized pressure intersection. Burger [9] introduced
a renormalized pressure intersection between convex cocompact representations into
rank one Lie groups. Bridgeman and Taylor [7] extensively studied this renormalized

pressure intersection in the setting of quasifuchsian representation. We say that

p : TCy{S) -* PSL(2, C) is quasifuchsian if it is topologically conjugate, in terms of
its action on C, to a Fuchsian representation into PSL(2, M). If T > 0 we let

RT(p) {[a] e [jri(S)] | lp{a) < T)
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where [ni (5)] is the set of conjugacy classes in n\(S). We define the entropy

log (#(Rr(p)))
h(p) lim sup •

T

of a quasifuchsian representation p. Sullivan [32] showed that h(p) is the Hausdorff
dimension of the limit set of p{it\(5)).

Let QF(S) denote the space of PSL(2, C)-conjugacy classes of quasifuchsian
representations. Bers [1] showed that QF(S) is an analytic manifold which may
be naturally identified with T(S) x T(S). If pi, p2 e QF(S), the renormalized

pressure intersection of p\ and P2 is given by

T t ^ h(pf) 1

«..un L*0)0 v#(«7-o>i)

Bridgeman and Taylor [7] showed that the Hessian of J gives rise to a non-negative
bilinear form on the tangent spaceT QF(S) of quasifuchsian space, called the pressure
form. Motivated by work of McMullen [24] in the setting of Teichmüller space,
Bridgeman [5] used the thermodynamic formalism to show that the only degenerate
vectors for the pressure form correspond to pure bending at points on the Fuchsian
locus. Moreover, the pressure form gives rise to a path metric on QF(S), called the

pressure metric (see also [6, Cor. 1.7]).
We say a smooth immersion / : QF(S) -> QF(S) is a smooth isometry of the

renormalized pressure intersection if

J(/(Pi)> fi.Pi)) J(Pl,P2)

for all pi, p2 QF(S). We recall that the (extended) mapping class group Mod* (S)
is the group of isotopy classes of homeomorphisms of S. Since J is invariant
under the action of Mod* (S), every element of Mod* (S) is a smooth isometry of the

renormalized pressure intersection. There exists an involution r : QF(S) —»• QF{S)
given by taking [p] to [p]. Since r preserves the marked length spectrum, it is an

isometry of the renormalized pressure intersection. We use our main result and

work of Bonahon [4] to show that these give rise to all smooth isometries of the

renormalized pressure intersection.

Theorem 1.3. IfS is a closed, orientable surface ofgenus at least two, then the group
ofsmooth isometries ofthe renormalizedpressure intersection on QF(S) is generated
by the (extended) mapping class group Mod*(S) and complex conjugation x.

Royden [29] showed that Mod*(S) is the isometry group of the Teichmüller
metric on T(S). Masur and Wolf [23] proved that Mod*(S) is the isometry group
of the Weil-Petersson metric on T(S). Bridgeman [5] used work of Wolpert [33] to
show that the restriction of the pressure form to the Fuchsian locus is a multiple of
the Weil-Petersson metric.
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One may thus view Theorem 1.3 as evidence in favor of the following natural

conjecture.

Conjecture. The isometry group of the pressure metric on quasifuchsian space
QF(S) is generated by the (extended) mapping class group and complex conjugation.

In the proof of Theorem 1.3, we establish the following strengthening of our main
result which may be of independent interest.

Theorem 1.4. If S is a closed, connected, orientable surface of genus at least two,

Pi : 7t\(S) —> PSL(2,C) and p2 ' tti(S) —> PSL(2,C) are Kleinian surface

groups, and there exists k so that and tPl (a) kiP2(a) for all a tti(S) which

are represented by simple curves on S, then p\ is conjugate to either p2 or p2-

Kim [18, Thm. 3] showed that if pi and P2 are irreducible, non-elementary,
nonparabolic representations of a finitely presented group T into the isometry group
of a rank one symmetric space and there exists k > 0 such that lPl (y) kIP2 (y) for
all y e T (where iPi (y)) the translation length of p;(y)), then k — 1 and p\ and p2

are conjugate representations.

Outline of paper. In Section 2 we analyze the complex length spectrum of Kleinian
surface groups with the same simple marked length spectrum, then in Section 3, we

give the proof of our main result. In Section 4 we prove Theorem 1.2, while in
Section 5 we establish Theorems 1.3 and 1.4.

Acknowledgements. The authors would like to thank Maxime Wolff for several

enlightening conversations on the length spectra of surface group representations,
JefF Brock and Mike Wolf for conversations about the Weil-Petersson metric
and Alan Reid for conversations about the character variety. This material is

partially based upon work supported by the National Science Foundation under grant
No. 0932078 000 while the authors were in residence at the Mathematical Sciences

Research Institute in Berkeley, CA, during the Spring 2015 semester.

2. The complex length spectrum

In this section, we investigate the complex length spectra of Kleinian surface groups
with the same simple marked length spectrum.

Given a e Jt\(S) and p e AH(S), let Ap(a) be the square of the largest

eigenvalue of pipe). Notice that A2p(a) is well-defined even though the largest
eigenvalue of a matrix in PSL(2, C) is only well-defined up to sign. If we choose

logAp(a) to have imaginary part in [0, 27t), then logA^a) is the complex length
of p{a).

If a is a simple, non-separating closed curve on S, we let W(a) denote the set of
all simple, non-separating curves on S which intersect a at most once. We say that pi
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and p2 have the same marked complex length spectrum on W(a) if X2pi (ß) X2p2 (ß)
for all ß e W(a). Similarly, we say that p\ and P2 have conjugate marked complex
length spectrum on W(a) if X2pi (ß) X2p2{ß) for all ß e W(a).

We will show that if two Kleinian surface groups pi and P2 have the same simple
marked length spectrum, then, there exists a simple non-separating curve a on 5 such

that pi and P2 either have the same or conjugate complex length spectrum on W(a).

Proposition 2.1. If S is a closed, connected, orientable surface of genus at least

two, p : Jti(S) -> PSL(2,C) and p2 : 7Tj(5) -> PSL(2,C) are Kleinian surface

groups with the same simple marked length spectrum, then there exists a simple
non-separating curve a on S such that p\(a) is hyperbolic and either

(1) pi and p2 have the same marked complex length spectrum on W(a), or

(2) pi and p2 have conjugate marked complex length spectrum on W(oi).

Proposition 2.1 will be a nearly immediate consequence of three lemmas. The first
lemma shows that for two Kleinian surface groups with the same length spectrum,
then the complex lengths of a simple non-separating curve either agree, differ by
complex conjugation, or differ by sign (and are both real). The second lemma deals

with the case where the complex length of every simple, non-separating curve is real,
while the final lemma handles the case where some complex length is not real. All the

proofs revolve around an analysis of the asymptotic behavior of complex lengths of
curves of the form an ß where a and ß intersect exactly once. We begin by recording
computations which will be used repeatedly in the remainder of the paper.

2.1. A convenient normalization. We recall that two elements a, ß e jt\(S) are

coprime if they share no common powers. We say that a representation p : n\(S) —>

PSL(2, C) is (a, ß)-normalized if a, ß tï\(S) are coprime and p(a) is hyperbolic
and has attracting fixed point oo and repelling fixed point 0. In this case,

where ad —be 1. Notice that the matrix representations of elements of PSL(2, C)
are only well-defined up to multiplication by ±7, but many related quantities like
the square of the trace, the product of any two co-efficients, and the modulus of the

eigenvalue of maximal modulus are well-defined.

Lemma 2.2. Suppose that S is a closed, connected, orientable surface of genus
at least two and p : 7ri(>S) —> PSL(2, C) is an (a, ß)-normalized Kleinian surface

where |A| > 1, and
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group. In the above notation,

r no, A"b\
p(a ß) ± x-ndJ

and all the matrix coefficients ofp(ß) are non-zero. Moreover, ifpin) is the modulus

of the eigenvalue of p(anß) with largest modulus, then

log fi(n) n log |A| + log \a\ + 9t^A~2"^-^ + 0(|Ap4").

Proof. The first claim follows from a simple computation. If any of the coefficients
of p{ß) are 0, then piß) takes some fixed point of p{a) to a fixed point of p(a), e.g.

if a 0, then p(ß)(oo) 0. This would imply that p{ßaß~l) shares a fixed point
with p{a). Since p(ni(S)) is discrete, this would imply that there is an element
which is a power of both p(a) and p{ßaß~l) which would contradict the facts that p
is faithful and the subgroup of n\(S) generated by a and ß is free of rank two.

The eigenvalues of p(anß), which are only well-defined up to sign, are then given
by

/(A"a + X~nd) ± ß(Xna + X~nd)2 -4N
±V 2

So, since |A[ > 1, for all large enough n, one may use the Taylor expansion for
s/\ + x to conclude that they have the form

1 +A_2"(^r^) + °(A_4n)

Therefore, since ad — be — 1,

log pin) n log |A| + log \a\ + log 1 + + 0(A~4")

We then use the expansion of log 11 + z | about z 0 given by

log 11 +z\ ~ log (l 1 +z]2) ~ log (l +291(z) + |z|2) 91(z) + 0(|z|2)

to show that

log p,in) n log ]A| + log \a\ + + 0(\X\~4n).

2.2. Basic relationships between complex lengths. Our first lemma shows that if
two Kleinian surface groups have the same simple marked length spectrum, then the

complex lengths of any simple, non-separating curve either agree or differ by either

complex conjugation or sign.
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Lemma 2.3. If p\ and P2 in A H (S) have the same simple marked length spectrum
and a is a simple non-separating curve on S, then either

(1) X2pi (a) X22(a),

(2) X2pi (a) X2p2 (a), or

(3) X2pi (a) — —X22(a) and X2pi (a) is real.

Proof. If /Oi(a) is parabolic, then /02(a) is parabolic (since iP2{ci) lPx (a) 0).

In this case, X2p[ (a) — X20 (a) 1. So we may assume that p(a) is hyperbolic.
Let ß be a curve intersecting a exactly once. We may assume that both p\ and p2

are (a, ß)-normalized, so

«W ±(o A"1)

where A/1 > 1, and

1).
where a ; dj —biCi 1.

Since, pi and P2 have the same simple marked length spectrum and |Ai | |A21,

Lemma 2.2 implies that

log \aiI + 91 ^Aj2n —+ 0(|AiI 4") log |ö2|+ 9i^A22"-^j-^ + 0(|A2| 4")

for all n. Taking limits as n -> 00, we see that log \a\| log |«215 so

+ 0(|Air4") m^Xf2n^j + 0(|A2|-4")

for all n. Therefore, after multiplying both sides by |Ai|2" |A212"? we see that

lim DI( ufvi — u2v2 0
n—poo \ J

where

f A; A-2 biCi
Ui 1 TT7 and Vi 2~ ^ °-

V |A; I / af
Lemma 2.3 is then an immediate consequence of the following elementary lemma.

Lemma 2.4. Ifu\,U2 e S1, iq, V2 £ C — {0} and

lim IRiu'lv 1 — u2v2) 0,
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then either

(1) u i m 2,

(2) ui Ü2, or
(3) U1 —U2 ±1.

Proof. We choose 0,- so that

Ui — el9'.

If ^ {nk}_1 is a strictly increasing sequence of integers, let Si (s) be the set of
accumulation points of {îft(u"kVi)}. Then, by assumption, 5*1(5) 52(5) for any
sequence s.

If 0,- is an irrational multiple of 2tt, then 5)(N) is the interval [—|u;-1, |u; (]. If 0,-

is a rational multiple of 2n then Si (N) is finite. Therefore either (a) both 0i and 02

are irrational with |iq | |u2| or (b) both 0i and 02 are rational multiples of 2n. We
handle these two cases separately.

Case I. Both 0\ and 02 are irrational multiples of In and [ui | |r21. Since 0i is

an irrational multiple of 2jr, there is a sequence {nk } such that limfc-^x, e'nk 01 j^y.
Therefore,

[ui| lim %l(einkeiv\) — lim <S\.{eink02v2) |u2|,
fc—» 00 k-+oo

so limfc^oo eink02 If {mk} - {nk + 1}, then

Ii»iI cos 0i lim *$\.(eimkdlv\) lim Vft(eim/cd2v2) — |u2|cos02.
Jc-*00 k—>oo

Since |iq| |u2| 7^ 0, it follows that 0i ±02, so either wi w2 or ui — u2 and

we are either in case (1) or in case (2).

Case II. Both 0j and 02 are rational multiples of 2jv. Let 0,- 2npi/qi where
0 < Pi < qi and pi and qi are relatively prime (and qi 1 if pi — 0).

If r Z and sr {r + kq\q2}, then

Sl(Sr) {9t(M>l)} S2{sr) {D<t(ur2V2)},

so

IR(uiUi) 9t(w2U2) for all re Z.

If DI(mjUi) 9t(w2U2) 0 for all r e Z, then u\ ±u2 ±1, and we are in
either case (1) or case (3).

If IR(MjUi) m(ur2v2) 74 0 for some r, then

2cos(0i)9t(wiVi) 9l(uj+1ui) + 9I(mi_1UI)

dî(u2+1v2) + Ïïï(u2~1v2) 2cos(02)9l(w2n2).
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Since 1R(u\vi) ^(11^2) 7^ 0, this implies thatcos(öi) cos($2)> so 0\ ±$2-
Therefore, either u\ U2 or u\ Û2 and we are in either case (1) or case (2).

This completes the proof, since in all situations we have seen that either case (1),

(2) or (3) occurs.

2.3. When the simple non-separating complex length spectrum is totally real.
We use a similar analysis to show that if the complex lengths of every simple, non-

separating curve is real for two Kleinian surface groups with the same simple marked

length spectrum, then the complex lengths agree for every simple, non-separating
curve.

Lemma 2.5. IfS is a closed, connected, orientable surface ofgenus at least two and

Pi : 7ti (S) -> PSL(2, C) and P2 ' tti (S) -> PSL(2, C) are Kleinian surface groups
with same simple marked length spectrum, then either

(1) there exists a simple non-separating curve y on S such that X2 (y) $ R, or

(2) X2pi (y) X22 (y) £ M whenever y is a simple non-separating curve on S.

Proof Suppose that (1) does not hold, so X2 (y) G M whenever y is a simple non-

separating curve on S. Lemma 2.3 then implies that X2 (y) ±A22(y) whenever y
is a simple non-separating curve on 5

Suppose that there is a simple non-separating curve a such that X2Pl{ot)

—A22(a). Notice that if pi(a) is parabolic, then lPl{ot) — 0 lP2(a), so

X2 (a) 1 X22(a). Therefore, pi (a), and hence p2{ot), must be hyperbolic
We choose a simple non-separating curve ß intersecting a exactly once. We adapt

the normalization and notation of Lemma 2.3. Lemma 2.2 implies that

U (n) Tr2(pi(anß)) X2na2 + 2aidi + X~2n d2

X2pi(anß) + 2 + X-p2(anß).

(Notice that the trace Tr(pi(anß)) of Pi(anß) is well-defined up to sign, so

Tr2(pi(anß)) is well-defined.) Since X2pi(anß) ±X22(anß) for all n, by

assumption, either (i) t\(n) t2(n) or (ii) ti (n) 4 — t2(n) for all n and X\ —X\.
The proof divides into two cases.

Case I. There is an infinite sequence {nk} of even integers so that t\ («*) t2 (n^).
Dividing by X2"k X^lk and taking limits we see that

2 i- 2 1
Xaidi dj 2 2ö2<^2 d2 2af lim a, -\ T- —f— lim ai H ^ —-f— ai.1

fc-^oo
1

xfk x\nk fc-00
2

x\nk xfk 2

It follows that
d\ d%

2aidi + -9h_ — 2Ö2<^2 4—2nf
2

72nf Z"2«2 Ï- "2
A y A 2
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for all Mfc, so, after again taking limits, we see that

a,\d\ — û2^2-

Then, by considering the final term, we see that

d-l — d-2-

If there exists an infinite sequence {m y } of odd integers so that t\ (m/) — t2{mj)
for all mj, then

A2J a\ + 2a\d\ + X2mj df —X2mj a\ + 2a\d\ — Xl2mj df.

Then we may divide each side by A^"-7 and pass to a limit to conclude that a \ — —a\.
This would imply that ai 0, which would contradict Lemma 2.2.

On the other hand, if there exists an infinite sequence {my} of odd integers so that

t\ (mj) — 4 — t2(mj) for all mj, then

X2mj of + 2aidi + Aj2mj d\ 4 — — X2mj a\ + 2aid\ — Xl 2mj d±),

so

2a\d\ 4 — 2aid.

Therefore, 1, which implies that b\C\ — 0, so either b\ — 0 or c\ 0,

which again contradicts Lemma 2.2.

Case II. There is an infinite sequence \rik} ofeven integers so that 11 (n*) 4 — O (ßk)•
We then argue, as in Case I, to show that

a\ —a\, 2a\d\ =4 — 2ö2^2 and d\ —d\.

If there exists an infinite sequence {mj} of odd integers so that t\(mj) — t2(mj)
for all mj, then

A2J a\ + 2a\d\ + X 12mj df a\ + (4 — 2ai^i) + X2mjd\.

So, aidi — 1, again giving a contradiction.
On the other hand, if there exists an infinite sequence {mj} of odd integers so that

tiiptj) 4 — t2{mj) for all my, then

A2mjaj + 2axdx + X~2mjd\ 4 - (A\mja\ + (4 - 2a^i) + X~2mjdf).

Dividing both sides by X2mj and passing to a limit, we conclude that a\ — —a\,
which is again a contradiction.

Therefore, neither Case I or Case II can occur, so case (2) must hold.
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2.4. When the complex length is not always totally real. We now show that if
X2pi (a) is not real, for some simple non-separating curve a, then X2pi (ß) and X22{ß)
either agree for all ß G W(a), or differ by complex conjugation for all ß G W(a).

Lemma 2.6. Suppose that S is a closed, connected, orientable surface of genus at
least two and p\ : tt\(S) -> PSL(2, C) and P2 : tz\(S) —> PSL(2, C) are Kleinian
surface groups with same simple marked length spectrum. If a is simple non-
separating curve on S such that X2 (a) ^ E, then either

(1) p\ and p2 have the same marked complex length spectrum on W(a), or

(2) pi and p2 have conjugate marked complex length spectrum on W(a).

Proof. Lemma 2.3 implies that either Xpi(a) — X22(a) or X2l(a) X22(ot). If
X2pi(a) — X22(a), then we consider the representation p2- In this case, A22(y)

X|2(y) f°r all Y e tti(5"). In particular, X^Ça) A|2(a). Therefore, it suffices

to prove that pi and p2 have the same marked complex length spectrum on W(a)
whenever X2 Xpi (a) Xp2 (a) and pi and p2 have the same simple marked length
spectrum.

First, suppose that ß is a simple non-separating curve on S which intersects a
once. We adopt the normalization and notation of Lemmas 2.3 and 2.5, so

Lemma 2.3 implies that for any n, either (i) t\ («) t2(n)\ (ii) 11 (n) t2{n)\ or (iii)
h (n) 4 — t2(n) and t\ (n) is real.

If there is an infinite set of values of n such that t\(ri) t2(n), then, by taking
limits, we see that

It follows then that t\{n) ?2(«) for all n. Moreover, since a, and di are
nonzero, either a\ — ü2 and d\ ^2 or a\ —ü2 and d\ —c?2, so Tr2(pi(jß))
Tr2(p2(/Ö)) which implies that X2pi {ß) X22(ß).

If there is an infinite set of values n such that t\(n) — 4 — t2(n) with ti(n) real,
then taking limits we have

It follows that t\ («) 4 — t2(n) for all n, so by Lemma 2.3, t\(n) is real for all n.
Since S(f,- («)) 0 for all n,

ti(n) Tr2(pi(anß)) X2naf + 2atdi + X 2ndf.

a
2 a2, a\d\ 02^2 and d2 d2.

a2 —a\, 2a\d\ 4 — 2û2^2 and d2 —d2.

Since a2 7^ 0, by Lemma 2.2, this can only happen if^ ±1. Thus, A2 (a2)
is real, contradicting our assumption.
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Finally, if t\ (n) — tjfn) for all but finitely many values of n, we may divide the

resulting equation by A2" and take a limit, to see that

f^2Y 2 -vlim I — I af ai.
n^°°\x2 J

Since A2 ^ A2, the limit does not exist unless a\ 0, which again contradicts
Lemma 2.2.

Therefore, if ß e W(a) intersects a once, then X2px (ß) X22(ß).
Now suppose that ß is a simple non-separating curve on S which does not

intersect a. We choose ß' to be a simple non-separating curve intersecting both a
and ß once.

For all n, anß' e W(a) and intersects a once. By the first part of the argument,

X2pi{anß') X22{anß')

for all n. If there exists no so that Xpi (an°ß') is not real, then since ß e W(ctn°ß')
and intersects an°ß' exactly once, we may apply the above argument to show that

X2pi(ß) X2pi(ß).

It remains to consider the case that X2pi (ctnß') is real for all n. Suppose that

«OT ±(c| di)-

Again, by Lemma 2.2 all the matrix coefficients must be non-zero. Since

3(A2j (anß')) 0 for all n, S(Tr2(pi(a:,I/3/))) 0 for all n, so, after dividing
the resulting equation by |A|2", for all n, and passing to the limit we see that

äa((pf) "?)=«•

Since ^ ^ M, this implies that a\ 0, which is again a contradiction. Therefore,

if ß e W(a) does not intersect a, then X2px(ß) X22(ß) which completes the

proof.

2.5. Assembly. We can now easily assemble the proof of Proposition 2.1.

ProofofProposition 2.1. If there exists a simple, non-separating curve a on S so

that A2 (a) is not real, then Proposition 2.1 follows immediately from Lemma 2.6.

If A21 (a) is real for every simple, non-separating curve a on S, then Lemma 2.5

implies that pi and p2 have the same marked complex length spectrum on W(a) for

any non-separating simple closed curve a. A result of Sullivan [30] implies that there

are only finitely many simple curves y on S so that pi (y) is parabolic, so we may
always choose a so that pi (a) is hyperbolic.
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Remark. An examination of the proofs reveals that Proposition 2.1 holds whenever
the length spectra of p\ and p2 agree on all simple, non-separating curves.

3. Simple marked length spectrum rigidity

We are now ready for the proof of our main result.

Theorem 1.1 (Simple length rigidity for Kleinian surface groups). If S is a closed,

connected, orientable surface of genus at least two, and p\ : tc\{S) -» PSL(2,C)
and p2 : Tti(S) —> PSL(2,C) are Kleinian surface groups with the same simple
marked length spectrum, then p\ is conjugate to either p2 or p2-

We begin with a brief sketch of the proof. It follows from Lemma 2.1 that,

perhaps after replacing p2 with a complex conjugate representation, there exists a

simple, non-separating curve a so that pi(a) is hyperbolic and p\ and p2 have

the same marked complex length spectrum on W(a). We then lift p\ and p2

to representations into SL(2,C) which have the same trace on a standard set of
generators {cti, ßi,... ,ag, ßg} where a a\, see Lemma 3.1. An analysis of the

asymptotic behavior of the traces of a" ß allows us to conclude that the restriction of
the lifts to any subgroup of the form Gy < ay, ßy > are conjugate, see Lemma 3.2.

A more intricate analysis of the same type is then applied to show that if we conjugate
the lifts to agree on Gj, then, for any k, they either agree on or differ by conjugation
by a lift of the rotation of order two in the axis of the image of the commutator
of [ay, ßj], see Lemmas 3.3 and 3.4. The proof is then easily completed when the

genus is greater than two, see Lemma 3.5, but a separate analysis is required when
the genus is two, see Lemma 3.6.

Proofof Theorem 1.1. Proposition 2.1 implies that there exists a a simple non-
separating curve a such that p\{a) is hyperbolic and p\ and p2 have the same
marked complex length spectrum on W(a). If p\ and p2 have conjugate complex
marked length spectrum on W(a), then p\ and p2 have the same marked complex
length spectrum on W(a). Therefore, we may assume that p\ and p2 have the same
marked complex length spectrum on W(ct).

We begin by choosing lifts whose traces agree on a standard set of generators
which includes a. We will call S {ai,ßi,... ,ag,ßg} a standard set ofgenerators
for tx\ (S) if each ay and ßj is non-separating,

g

=< aj,ßj I Yl[cti,ßi] id > and i(ptj,ßj) l
j=i

for all j and if j ^ k then

i (aj > ak) i{ßj,ßk) i(<Xj,ßk) 0,
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see Figure 1. We say that two lifts pi and p2 of p\ and p2 are trace normalized with
respect to S if
(1) pi (8) is hyperbolic for all 8 e S, and

(2) Tr(p! (5)) Tr(p2(S)) for all 8 e -8.

Figure 1. Generators of 7rj (S, p).

Lemma 3.1. Suppose that p\ : tti(S) -» PSL(2, C) and p2 : ni(S) —> PSL(2, C)
are Kleinian surface groups with the same marked complex length spectrum on W{ct)

for some simple, non-separating curve a. Ifpi (a) is hyperbolic, then there exists a
standard set ofgenerators S, so that a\ a, and lifts p\ : tt\(S) -» SL(2, C) and

p2 : tt\(S) —>• SL(2, C) ofpi and p2 which are trace normalized with respect to S.

Proof. Let cti a. Choose a simple non-separating curve ß which intersects ai
exactly once so that pi(^i) is hyperbolic. (We may do so, since, by a result of
Sullivan [30], there are only finitely many simple curves y such that pi (y) is parabolic
and there are infinitely many possibilities for ßi.) Extend {«i, /3i} to a standard set

of generators {cti, ßi,..., ag, ßg}. We may assume that pi (ay) is hyperbolic for
all j > 2, by replacing ay by ay ß" for some n if necessary. We may then assume
that pi(ßj) is hyperbolic for all j > 2 by replacing ßy by ßjce" for some n if
necessary. Notice that S ç W(a).

Since each pi is discrete and faithful, each pi lifts to a representation
p\ : 7n(S) SL(2, C) (see Culler [12] or Kra [20]). Let

~ (g)
U(V if Tr(P'M Tr(pi(Ä)),

P2U \-p'2(S) ifTr(pi(S)) -Tr(p^(S)),
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for ail <5 6 S. Notice that Pi(8) is a lift of pi(<5) for ail 8 6 S and that

Pi(Y[8j=\[aj' ßA) since PiiTVj^foj'ßj]) J- Therefore, pi and p2 are

lifts of pi and p2 which are trace normalized with respect to S.

We next show that the trace normalized lifts are conjugate on the subgroups

Gj =< ocj, ßj >.

Lemma 3.2. Suppose that p) : ni (S) —> SL(2,C) and p2 : ni(S) —> SL(2,C) are
trace normalized lifts, with respect to a standard generating set S, ofKleinian surface

groups with the same marked complex length spectrum on W(a i). Ifj e {1,..., g},
then there exists Kj e SL(2, C) such that p2\Gj (.KjPiKfl)\Gr In particular,
if y e Gj, thenTrfpiiy)) Tr(p2(y)).

Proof. Fix j for the remainder of the proof of the lemma and assume that pi and p2

are (ay, /3y)-normalized, so

P2(0tj) ^ A-1

where |A| > 1, and

Pi(fij) ai bt

a di

where a,di — bfCi 1 and all the co-efficients are non-zero, by Lemma 2.2. Since

Tr(pi(/3y)) Tr(p2(^y)),
ü\ d\ — a2 -f d2.

The curve a"ßj e W(ai), for all n, since it is non-separating, simple and

disjoint from a if y > 1 and intersects a exactly once if y — 1. Therefore,

Tr(pi(a"/3y)) ±Tr(p2(a"jßy)), which gives the equation

Xna\ + À nd\ i(A"a2 + A nd2j.

If Xna\ + X~nd\ —(Ana2 + A~nd2) for infinitely many values of n, then we

see, by dividing by A" and passing to a limit, that a\ —a2. It then follows that

d\ —d2. Thus, ai+rfi — (a2 + d2) which contradicts the fact that the traces

of pi agree (and are non-zero) on elements of S.
Therefore, there are an infinitely many values of n where X"a\ + X~nd\

Xna2 + X~nd2 Taking limits again, we see that a\ a2 and d\ — d2. Therefore,

b\C\ 1 — a\d\ 1 — a2d2 b2c2.

Choose u e C such that u2 b2/b\ c\/c2. Then u2b\ — b2 and u~2c\ c2.
Let

K =(u 0
1 (o u'1
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Notice that Kjp\ (ctj)Kj
1 pf(ay) and that

- ("0 /.) (:; bd\) ("0" °u)

=(„-%,

Therefore, Xy conjugates the restriction of p\ to Gy to the restriction of p2 to Gy.

We begin our analysis of trace normalized lifts which agree on Gy by examining
the relationship between the images of elements of S. Lemma 3.3 is the crucial
step in the proof of our main result. The additional information concerning matrix
co-efficients in case (2) will only be used when S has genus two.

Lemma 3.3. Suppose that p\ : —» SL(2,C) and p]2 : tt\{S) —> SL(2,C)
are trace normalized lifts, with respect to a standard generating set S, of Kleinian
surface groups with the same complex marked length spectrum on W{ai). If p\
and pJ2 agree on Gy < ay, ßy > and 8 S, then either

(1) p{($) p]2{8), or

(2) pj ([ay, ßj]) is hyperbolic and Rj p{ (8)Rj1 p2(S), where Rj is a lift of the

rotation of order two about the axis of p[ ([ay, ßj]). Moreover, ifye Gj such

that y, y8 W(ai), and

pi([«j,ßj]) (<o A-i). Pi(y) (c d)' and p^8) {^ {)'
where |A| > 1, then

e d
h a

Proof. The proof breaks up into two cases, depending on whether p[ ([ay, ßj]) is

hyperbolic or parabolic.

Case I. pj ([ay, ßj]) is hyperbolic. We may assume, by conjugating, that

Pi ([aJ> ßj]) Pi ([«7 - ßj]) (g A"1) '

where |A| > 1. As p{ and p2 agree on Gy, we can assume that 8 is not either ay
or ßj. Let
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where e,/z,- — figi 1. Moreover, since the traces agree on generators,

ei + hi e2 + h2.

Suppose that y 6 Gy and y,yS e W(ai). (We can choose either y ßj or

y ßj1 depending on the orientations on the curves, see Figure 2). Let

f>i(r) fiw (° J).

where at/ — he 1.

Let y„ [ay, ßy]"y[ay, /ßy]_"5, which also lies in W(ai), since it is the image
of y <5 under the «-fold Dehn twist about [ay, ßj]. So, by assumption,

Tr(pj (yn)) ±1r(p]2(yn)).

By expanding, we see that, for all n,

ae i + dhi + bgiX2n + cf\X~2n ±{ae2 + dh2 + bg2X2n + cf2X~2n).

Thus there exists an increasing subsequence where the traces either all agree or all
differ up to sign.

If there exists an increasing sequence {/iy} such that the traces all agree, then

aei + dh\ + bg\X2"J + cf\X~2nj ae2 + dh2 + bg2X2nj + cf2X~2nj,
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for all Hj. Dividing the above equation by A2nJ and taking a limit as j —> oo, we
see that bg\ — bg2. Since b f 0, by Lemma 2.2, gx g2. Thus,

ae i + dhi + cf\X"2nj ae2 + <7^2 + cfeA-2"-7'

and we see, by taking the limit as tij —> 00, that aex + dhy — ae2 + dh2. Finally,
since c/iA-2"7 cf2X~2ni and A and c are non-zero, /1 /2- Summarizing, we
have

aex + dh\ ae2 + dh2, fi h, and gx g2. (3.1)

Similarly, if there exists an increasing sequence {nj} such that the traces all
disagree then,

ae 1 + dh\ + bg\X2nj + cf\X~2nj — (ae2 + dli2 + bg2X2nj + c/2A-2"-')

for all rij. Taking limits as above, we conclude that

aei + dh1 ~(ae2 + dh2), and gx -g2. (3.2)

Thus given any y e Gj such that y, yS W{a 1), then y either satisfies equation
(3.1) or (3.2). Since ft and g/ are non-zero we conclude that, with the above

normalization, either

(a) Equation (3.1) holds for all y e Gj such that y, y8 e W{oq), or

(b) Equation (3.2) holds for all y e Gj such that y, yS e W(a 1).

Case la. Equation (3.1) holds for all y e Gj such that y, y8 W(c/X). Choose

y G/ such that y, y8 e IL(ai) and let

dw d()o (" ^).

where ad — be 1. Then, by equation (3.1),

aex + dh\ ae2 + dh2, f\ /2, and gx g2.

Since e;-/zj — figi 1, we conclude that exhx e2^2, so, since we also have

ei + h\ — e2 + /Î2>

(x — ex)(x — Aj) x2 — 2(ex + /zx)x + eiAx (x — e2)(x — A2),

which implies that either (i) ex — e2 and hx /z2; or (ii) ex /î2 and Ax e2.

If ex — e2 and h\ h2, then, since we already know that fx — f2 and gx g2,
we may conclude that p[ (8) p2 (8) and we are in case (1).

If ex /z2 and Aj e2, then, since aex + dh\ ae2 + dh2, we conclude that

(1a — d){e 1 — hi) 0.
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If a ^ d, then this implies that e\ h\, so e\ e2. Since we already know that

/i fi and gi g2, and all the matrix co-efficients are non-zero, we may conclude
that p[ (<5) pJ2 (S), so we are again in case (1).

In order to conclude that we are in case (1), it only remains to check that we can
choose yo 6 Gj, so that yo, yo<5 £ W(ct,\) and

d(w) d(w) (°; J°).

where ao 7^ do.

We may assume that we have initially chosen y to be either ß~l or ßj, and

that, with the above notation, a — d. We may then choose yo to be the element in

{[oij,ßj]y, [oLj, ßj]~1y} which is simple and has the property that yo, yo5 6 W(a 1)

(see Figure 3). Observe that either ao Aa and do X~ld or ao — A-1a and

do Ad, so ao ^ do- This choice of yo allows us to complete the proof.

Case lb. Equation (3.2) holds for all y e Gj such that y, y S e W(ct 1). Choose

y e Gj so that y, yS e W{oii) and let

pi(y) Air) (° bd),

where ad — be — 1. Then, by equation (3.2).

ae\ + dhx ~(ae2 + dh2), fi -/2, and gi -g2.

As ethi — figi — 1, we conclude that ej/zx e2h2. Since e\hi e2h2 and

e\ + h\ e2 + h2, we may conclude, just as in Case la, that either (i) e\ h2 and
h 1 e2\ or (ii) e\ — e2, and hi h2.

If e\ h2 and h 1 e2, then, since aei + dh\ — —{ae2 + dh2), we see that

Tr(p{ (y))Tr(p{(S)) (a + d)(e 1 + hi) — ae 1 + dhi + ae2 + dh2 0,
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which is impossible since both traces are non-zero. Therefore, ex e2 and h i h2.
Since fx -f2 and gx -g2,

^ - (4 t)-(o -,) (;: (:) (» °) - «-v- •.

so p\ (5) Rj pJ2 (8)RJ1 and Rj is a lift of the rotation of order two about the axis

Of p{([<Xj,ßj]).
Moreover, since aex + dh\ — (ae2 + dh2) — (ae\ + dhx), we see that

aex + dhx — 0, so
ex d

h\ a
'

and we are in case (2).

Case II. p-J ([ay? ßj]) is parabolic. Choose y Gj so that y, yS 6 W(ax). We

may conjugate so that

p{([aJ,ßJ]) pJ2(laJ,ßj}) (]Q J)

and 0 is a fixed points of p[ (y) p2 (y), so

p{(Y) pJ2(y) °dy

where ad 1. So, a and d are non-zero and c is non-zero, since otherwise

p\ ([a,-, ßi]) and p\ (y) would have a common fixed point.
Let

£)
where — figi 1 and all the matrix coefficients are non-zero. Moreover, since
the lifts are trace normalized with respect to S,

el + h\ e2 + ^2-

Again, let y„ [a,-, ßi]ny[cii, ßi]~n8, which lies in W(ai), so

Tr(pi(y„)) ±Tr(p^(y„)).

Expanding, we obtain

{a + nc)ex + (n(d — a) — n2c)g\ + cfi + (d — nc)hx

±((a + nc)e2 + (n(d - a)- n2c)g2 + cf2 + (d - nc)h2).
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If there are infinitely many n where the traces differ, then, by dividing by n2

and taking limits, we conclude that cgi —cg2, so, since c ^ 0, g\ — g2- By,
successively taking limits, we further conclude that

c(e i — hi) —c(e2 — h2) and aei + cf\ + dhi —ae2 — cf2 — dh2.

Since c ^ 0, we see that e\—h\— —e2 + h2. As ei + hi e2 + h2, this implies
that ei /z2 and hi =62- Therefore,

figi exhi - 1 e2h2 - 1 f2gi -figi-
As pj (5) does not have a fixed point at 00, g 1 must be non-zero, so fi —f2. Since

ae 1 + cfi + dhi —ae2 — c/2 — r//z2, this implies that

Tr(y)Tr(<5) — (a + d)(e 1 + /*i) 0

which is a contradiction, since both traces are non-zero.
Therefore, there are infinitely many n where the traces agree, so, taking limits as

above, we see that

gi — g2, c(ei — hi) c(e2 — h2), and aei + cfi + dhi ae2 + cf2 + dh2.

Since c ^ 0, ei — hi e2 — h2, which we may combine with the fact that ei+hi —

e2 + h2, to conclude that ei e2 and hi h2. Therefore,

figi eihi - 1 e2h2 - 1 - f2gi figi
which implies that f\ f2, so p\ (S) pJ2(S), which implies that we are in
case (1).

We now refine our analysis of trace normalized lifts which agree on Gj to show

that, for all k, they either agree on G& or differ by a rotation in the axis of the image
of the commutator in Gj.
Lemma 3.4. Suppose that pi : n 1 (S) -> SL(2, C) and p2 : n 1 (S) SL(2, C) are
trace normalized lifts, with respect to a standard generating set -8, ofKleinian surface

groups with the same marked complex length spectrum onW(cti). Ifj,k e {1,..., g}
and p[ and pJ2 agree on Gj =< aj, ßj >, then either

(1) pj and p2 agree on Gk, or

(2) Pi([otj,ßj]) is hyperbolic and p[\Gk CRj P2R~jl)\Gk where Rj isaliftofthe
rotation oforder two about the axis ofp\ ([a.j, ßj]).

Proof If neither (1) or (2) holds, then Lemma 3.3 implies that, perhaps after

switching and ßk, p\ {[ctj, ßj]) is hyperbolic,

PJ2(°<k) p{{otk) and pJ2(ßk) Rjpi(ßk)RJl

where Rj is a lift of the rotation of order two about the axis of p\ ([ccy, ßj]).
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Lemma 3.2 implies that there exists K e SL(2, C) so that p{ and KpJ2 K 1

agree

on Gk. If K ±7, then p\ and pJ2 Kp2K~l agree on Gk and we are in case (1).
So, we may assume that K ^ ±7 and

p{(ak) Kp2(otk)K~l Kp{ (ak)K~1

and p{ (ßk) KpJ2(ßk)K~l KRjP{ <ßk)R?K~l.

It follows that K fixes the fixed points of p{ (ak) and that KRj fixes the fixed points
of p[(ßk)-

If p\ and Kp2K~l agree on either ctj or ßj, then, since p\ and p2 agree on Gj,
either

p{{a.j) KpJ2(aj)K_1 - Kp{ {aj)K~l
or p{ (ßj) Kp{ C6j)K-1 Kp{ (ßj)K'1

which implies that K fixes the fixed points of either p{ (otj) or p[ (ßj). But, since K
fixes the fixed points of p{ (c^), and the fixed points of p[ (otk), p[ (<Xj) and p{ (ßj)
are all distinct, this implies that K — ±7, which is a contradiction.

Therefore, p{ and Kp2 disagree on both cry and ßj. Lemma 3.3 then implies
that p{ ([ak, ßk]) is hyperbolic and

p{(otj) RkKp2(ctj)K-lRZl and pJ1(ßj) RkKpJ2(ßj)K~1R^

where Rk is a lift of the rotation of order two about the axis of p[ ([a,k, ßk}) • Therefore,

p[ and RkKp2K~lR~ßl agree on Gj. Since p{ and p2 agree on Gj this implies that

RkK ~ ±7, so K iR'ß1- Therefore, K fixes the fixed points of p\ (\ak, ßk]).
However, since we already know that K fixes the fixed points of p\ (ak), this implies
that K ±7, which is again a contradiction.

It is now relatively simple to use Lemma 3.4 to complete the proof when S has

genus at least three.

Lemma 3.5. Suppose that S has genus g > 3 and that p\ : n\(S) -> SL(2,C)
and p2 : tti(S) SL(2,C) are trace normalized lifts, with respect to a standard

generating set -8, of Kleinian surface groups with the same marked complex length

spectrum on W(cei). Then, pi is conjugate to pj in SL(2, C).

Proof. Lemma 3.2 implies that we may choose conjugates p\ and p\ of p\ and p2
which agree on Gi —< a.j,ßj > Lemma 3.4 implies that for all j > 1, the

restrictions of p\ and p\ to Gj either agree or are conjugate by 7?i, where R\ is a

lift of the rotation of order two about the axis of p\([ot\, ßi]). If p\ # pi, we may
assume without loss of generality that p\\g2
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Lemma 3.4 implies that either (1) pj and R\p\Rfl agree on Gi; or (2)

p2(|a2, jS2]) is hyperbolic and p\ and IGp^I?^1 are conjugate by R2 on G1 where R2
is a lift of the rotation of order two about the axis of p\ ([cü2, ßi])-

If p\ and Rip^Rf1 agree on G\ then, since p\ and p\ agree on G\, R\ commutes
with every element of p}(Gi). Since p}(Gi) is non-elementary, this implies that

R\ ±7, which is a contradiction.

If p\ and R2(R\p\R\l)R2 1

agree on Gi, then since p\ and p\ agree on G\,
we similarly conclude that R2R1 ±7. So, R2 ±7?^*. This would imply that

pJ([ai,jßi]) and p}([a2,/32]) have the same axis, so share fixed points, which is a

contradiction unless S has genus 2 and [a\, ßi\ — [a2, /02]_1.

We now complete the proof by establishing our result in the genus two case.

Lemma 3.6. Suppose that S has genus g 2 and that p\ : n\(S) —> SL(2,C)
and p2 : ni(S) -> SL(2,C) are trace normalized lifts, with respect to a standard

generating set S, of Kleinian surface groups with the same marked complex length

spectrum on W(ai). Then, p\ is conjugate to p2 in SL(2,C).

Proof. In this case 7Ti (S) =< ot\, ß\,ci2, ßi > given by the standard oriented curves
as in Figure 4. Lemma 3.2 implies that we may conjugate p; to pj so that p\ and p\
agree on G\.

Suppose that p\ p\. Lemma 3.4 implies that pi ([ai, jö 1]) is hyperbolic and p\
and Rip^Rf1 agree on G2 where R\ is a lift of the rotation of order two about the

axis of pi ([«i ,ßi]). We may normalize so that

P}([«i.0i]) P2O« l'ßü) (g A"1)

where |A| > 1.

Figure 4. Surface of genus 2 with standard generators.
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Let y Notice that, assuming that elements of S are oriented as in Figure 4,

ya2 and yß2 are simple and lie in W(ui). Define A — p^ctj"1), C p|(a;2), and

D p\ (/32), and adapt the convention that if a matrix is denoted by capital letter X,
then it has coefficients (x/y). Since p\ and p\ differ on both a2 and ß2, Lemma 3.3

implies that
Cn

__
du_ _ a-22

C22 d-22 an
We now consider the element a2/l2 £ G2. We replace generators {a2,ß2} by

{a2/32,a21}inS to form another standard generating set S' {«i, ß\, ct2/32, *}
(we note that [a.2ß2,oi2 *] [a2,ßi])- The representations p\ and p\ agree on G1

and their traces agree on S'. Notice that y(o:2/32) e W(ai) (see Figure 4) and

let E CD pi(a2yfi2). Since p\ and p\ agree on G\ and disagree on a2ß2,
Lemma 3.3 implies that

en _ ^a22
@22 <211

If M CDC"1 D~l p\ Q0C2, /ß2]_1) p\([<xi,ßi\), then

M
A 0

0 A-1

Since DC M~XCD M~XE and C~1(CD)C DC,

Tr(DC) Tr(CD) Tr(£) Tx(M~lE),

so en + e22 A_1en 4- Àe22. Therefore

c 11 _ du_
— £ü —

~~ 1)
_ ^

C22 d-22 e22 (1—A-1)

Since CD MDC,

(CD) i2 C\\d\2 + ci2(i22 (MDC)\2 X(DC)\2 X(d\\C\2 + di2c22),

so, since cn Ac22 and d\\ Ac/22,

Ac22<ii2 + c\2d22 X(Xd22c\2 + d\2c22),

which implies that
(A2 — l)c12d22 0.

Thus, since d22 and ci2 are both non-zero, A2 1 which is a contradiction.
Therefore, it must be the case that p\ — p\.

Remark. Observe that in the proof we only assume that there exists a simple non-
separating curve a such that p\ and p2 have the same or conjugate marked complex
length spectrum on W(a). It then follows from the remark at the end of Section 2 that

pi and p2 are conjugate in the isometry group of H3 if they have the same marked

length spectrum on all simple, non-separating curves.
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4. Acylindrical 3-manifolds

We now use our main result to prove our length rigidity theorem for acylindrical
3-manifolds.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and

Pi : ni(M) —» PSL(2,C) and p2 : rt\{M) -> PSL(2,C) are two discrete faithful
representations, such that tpi (a) — lP2 (a) ifa e n\ (M) is represented by a simple
closed curve on dM, then p\ is conjugate to either p2 or p2.

In order to motivate the more general proof, we offer a sketch of the proof
in the case that M has connected boundary and p\ and p2 are both convex

cocompact, i.e. each Ni H3/pi {tï\(M)) admits a conformai compactification with
boundary 3cNi. After perhaps replacing p2 with a complex conjugate representation,
we may assume by Johannson's Classification Theorem [16], that there exists an

orientation-preserving homeomorphism j : N\ —> N2 in the homotopy class

determined by p2 o pf1. In this case, work of Bers [2] implies that p\ is conjugate
to p2 if and only if j extends, up to isotopy, to a conformai homeomorphism

/ : dcNi 3cN2.

If the length spectra of p\ and p2 agree on simple curves on the boundary,
our main result implies that the restrictions of p\ and p2 to the fundamental group
of the boundary agree up to conjugacy in the isometry group of H3. It follows
that the conformai compactifications Nf and N2 of the covers of N\ and N2
associated to jri(S) are either conformai or anti-conformally homeomorphic (by
a homeomorphism in the homotopy class consistent with the identifications of their
fundamental groups with n\ (S).) Notice that 3cNi is identified with one component
of the conformai boundary of Nf. If the conformai compactifications of Nf and N2
are conformally homeomorphic, then j extends to a conformai homeomorphism
between dcN\ and dcN2, so Bers' result implies that p\ and p2 are conjugate
in PSL(2,C). If not, then one may use the Klein-Maskit combination theorems
(see Maskit [22]) to combine p\ and (a conjugate of) p2 to produce the holonomy
representation of a hyperbolic structure on the double of M. Mostow's Rigidity
theorem [27] then implies that the involution of the double is an isometry, so the

restriction of p\ and p2 to the boundary is Fuchsian, and the conformai structures on
the boundary must agree.

In the general case, we must organize the components of the boundary into those
where the conformai structures agree and those where they disagree and replace the

use of Bers' theorem and Mostow's Rigidity theorem with applications of the Ending
Lamination theorem [8,26].

Proofof Theorem 1.2. Suppose that p\ : n\(M) —> PSL(2,C) and p2 : n\(M) ->
PSL(2,C) are two discrete faithful representations, such that lpi(pt) £P2{a) if
a e 7Ti(M) is represented byasimpleclosed curve on3M. Let A; H3/p,'(7Ti(M)).
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There exists a homotopy equivalence hi : M -> Ni in the homotopy class

determined by p,- (where we regard p, as an isomorphism between n\(M) and

ni(Ni) pi (ni (M))). Bonahon's Tameness theorem [3] implies that Ni
may be identified with the interior of a compact 3-manifold M;. Since M is

acylindrical, Johannson's Classification theorem [16] implies that hi is homotopic
to a homeomorphism. Therefore, there exists a homeomorphism g : Mi -» M2 so

that g o h 1 is homotopic to I12, i.e. g is in the homotopy class determined by P2 o p"1.
If g is not orientation-preserving then we replace P2 with p2- So, we may assume
that g is orientation-preserving.

Thurston associates to each pi a family of ending invariants, i.e. a multicurve pi,
called the parabolic locus, in the collection 3o M; of non-toroidal components of 3M;,
and on each component of 3oM,- — pi, either a hyperbolic structure of finite area

(in which case the component is called geometrically finite) or a filling, geodesic
lamination which admits a transverse measure of full support, called the ending
lamination (in which case the component is called geometrically infinite), see [8,26]
for details. The Ending Lamination theorem of Minsky [26] and Brock-Canary-
Minsky [8] implies that pi is conjugate to P2 in PSL(2,C) if and only if the

ending invariants of p\ agree with the ending invariants of P2, i.e., up to isotopy
of g, g{p\) P2, the restriction of g to each geometrically finite component of
doMi — pi is an isometry onto a geometrically finite component of doM2 — P2, and

if a geometrically infinite component of doM\ —p\ has ending lamination A, then g(X)
is the ending lamination of a geometrically infinite component of 3oM2 — P2-

Let {S\,..., Sr} be the components of doMi. Since lPl(oc) lP2(a) if
a. e Jti(M) is represented by a simple closed curve on 3M, our main result,
Theorem 1.1, implies that, for each j, pi\7ri(sJ) is conjugate to either p2 or p2.
If each pilafs,) is conjugate to P2U1(sy), then the ending invariants of pi agree
with the ending invariants of P2, so pi is conjugate to p2 in PSL(2, C) and we are

done.

If there exists Sj so that pi\ni (Sj) is conjugate to p2\ni (Sj)> then we may re-order
the components of 3M, so that pi |

(5"y is conjugate to P2|7r;(s,j,-) if and only if

j > q for some q e (1,..., r — 1}. Let N- be the cover of Ni associated to Jti (Sj).
Then, N- may be identified with the interior of Sj x [0,1] so that the end invariants

of N/ on Sj x {1} agree with the restriction of the end invariants of V,- restricted
to Sj. The Covering theorem (see [10]) may be used to show that the restriction of
the ending invariant of N/ to Sj x {0} is a conformai structure on all of Sj x {0} (see

the discussion in Kent's proof of Thurston's Bounded Image theorem [17, Thm. 41]).

If./ < q, then the ending invariant of N]r on Sj x {1} agree with the end invariants

of N2 on Sj x {0}, while the ending invariant of N( on Sj x {0} agree with the end

invariants of N2 on Sj x {1}. It follows that, if j < q, then the ending invariants

of N- are a pair of hyperbolic structures on Sj x {0} and Sj x {1}, so p,- UiCSy) is

quasifuchsian, and the map from Sj x{0,1} to itself given by taking (x, t) to (x, 1 —f)
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is isotopic to an isometry from the ending invariants of N( to the ending invariants

of

Let M be the manifold obtained by doubling M along Si U • • U Sq~i. We

first conjugate p2 so that Pi (tti (S1!)) /^(^iOSi)). We may use the Klein-
Maskit Combination theorems [22] to see that the combination of p\(n\(M)) and

p2(nl(M)) gives rise to a hyperbolic structure on the double of M along Si. For
each j =2,q, let Aj e PSL(2,C) be chosen so that Aj conjugates p\ Uifsy)
to P2\m(Sj)- Then, the Klein-Maskit Combination theorems give that the group
generated by p\(n\(M)), p2{n\{M)) and {A2,. Aq} gives rise to a hyperbolic
structure on M and so a representation p : n\{M) -» PSL(2,C). (See Sections 8

and 9 of Morgan [25], in particular Theorem 9.4, for a discussion of the Klein-Maskit
Combination theorems in a topological phrasing compatible with our application.)
The obvious involution of M preserves the ending invariants of N H3/p(7Ti (M)),
so, by the Ending Lamination theorem, there is an isometry of N realizing this
involution. By restriction, pi is conjugate to p2.

Remark. In the case that do M is connected, Ian Agol astutely pointed out that one

may rephrase this proof as an application of the fact that the square of the skinning
map has a unique fixed point, see Morgan [25] and Kent [17] for a discussion of the

skinning map.

5. Renormalized pressure intersection

We next show that the isometry group of the renormalized pressure intersection is

generated by the (extended) mapping class group and complex conjugation. We begin
by reinterpreting our renormalized pressure intersection in terms of the Patterson-
Sullivan geodesic current, following Bridgeman [5] and Bridgeman-Taylor [7]. Since
isometries of the renormalized pressure intersection are isometries of the pressure
metric and the only degenerate vectors for the pressure metric are at points on the

Fuchsian locus (see Bridgeman [5]), any isometry / of the renormalized pressure
intersection must preserve the Fuchsian locus. Since the restriction of the pressure
metric to the Fuchsian locus is a multiple of the Weil-Petersson metric, we may apply
Masur and Wolf's classification of isometries of the Weil-Petersson metric [23], to
conclude that the restriction of / to the Fuchsian locus agrees with the action of a

mapping class g. We then use Bonahon's interpretation (see [4]) of the Thurston

compactification of Teichmüller space in terms of geodesic currents, to show that

if p e QF(S), then /(p) and g(p) have proportional simple marked length spectrum.
The proof is completed by showing that any two Kleinian surface groups with
proportional simple marked length spectrum are conjugate in the isometry group
of H3.
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5.1. Geodesic currents. Identify the space G(H2) of geodesies in H2 with the

open Möbius band (S^ x — diagonal) /Z2 by identifying a geodesic with its
endpoints. A geodesic current on a hyperbolic surface X H2/ T is a positive
Borel measure on G(H2) that is invariant under the action of T. For example, if a is
a primitive closed geodesic on X, we may consider the geodesic current Ca given by
taking the Dirac measure on the pre-image of a in G(H2). Let C (AT) be the space of
geodesic currents defined for X H2/ F with the weak*-topology. If S is a closed
surface of genus at least two, we identify S with a fixed hyperbolic surface X0 and

let G (S) G(ATo).

Following Bonahon [4], Bridgeman and Taylor [7, Sec. 5] showed that there is a

natural continuous, linear function

L : G(S) x QF(S) -» R,

called the length function, with the property that if rCa is a positive multiple of Ca,
then L(rCa,p) rip(a). Since multiples of closed geodesies are dense in F(S)
(see [3, Prop. 4.2]), this property completely determines L.

Given p QF(S), Sullivan [31, Prop. 11, Thm. 21], following work of
Patterson [28] in the Fuchsian case, used the Poincaré series to define a non-
atomic T-invariant measure ptp on 3ooH3 x SoqH3, called the Patterson-Sullivan

measure, which is supported on A(p) x A(p), where A (p) is the limit set of p(ni(S)),
such that F acts ergodically on A (p) x A(p) with respect to fip (see also Sullivan
[32, Thm. 3]). One may push forward ptp to obtain a T-invariant measure fip on
A (p) x A(p)/Z2 (where Z2 acts by interchanging the factors). The representation p
induces a homeomorphism fp : S1 -> A (p), where we use our identification of S

with Xo to identify S1 with 3ooH2, so one obtains a homeomorphism fp~xfp :

G(H2) —> A(p) x A(p)/Z2. One then defines the Patterson-Sullivan current as

the scalar multiple \j/(p) e F(S) of {fp x fp)*(ß-p) so that L(xfr(p),p) 1. If p
is Fuchsian, then VKp) is the Liouville geodesic current constructed by Bonahon [4]
(see [15, Thm. 1]). Hamenstadt [15, Thm. 1] showed that the associated map

f : QF(S) G(S)

is continuous and injective. See Bridgeman [5], Bridgeman-Taylor [7] or
Hamenstadt [15] for further discussion of the Patterson-Sullivan geodesic current.

Let F(S) denote the space of Fuchsian representations in QF(S) and let

P'C(S) denote the space of projective classes of non-zero currents in F(S).
Bonahon [4, Thm. 18] showed that if one considers the associated map into the

space of projective geodesic currents ijr : F (S) -> -PFiS), then the closure of
1jr(F (5)) is 1]r(F(S)) U PML(S) where PML(S) is the space of projective classes

of measured laminations. (We recall that the set ML(S) of measured laminations
in G(.S) is exactly the closure of the set of positive multiples of currents associated

to simple curves, see Bonahon [3, Sec. 4.3] for more details.)
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We note that L(i/r(/o1), p2) can also be defined to be the length in p2 of a random

geodesic in pi, i.e.

r(»to).P2)= lim ' £ (5.1)
1 ~ MMIipy(y)<T} piyn

It follows that

3(pi,Pi) —\L(f(pi),p2), (5.2)
Hpi)

where the the renormalized intersection number J and the entropy h are as defined in
Section 1.3.

In analogy with Thurston's formulation of the Weil-Petersson metric on
Teichmüller space, and Bonahon's re-formulation in terms of geodesic currents
[4, Thm. 19], Bridgeman and Taylor [7] consider, for each p e QF(S), the function
Jp : QF(S) Ä given by Jp(a) J(p,a) and define a non-negative symmetric
two-tensor G, called the pressure form, on the tangent bundle T QF{S), where Gp
on TpQF(S) is the Hessian of Jp. By construction, the pressure form is invariant
under the action of the (extended) mapping class group Mod* (5) of S. It follows from
the work of Wolpert [33] and Bonahon [4], that the restriction of the pressure form
to the Fuchsian locus F(S) is a multiple of the Weil-Petersson metric. Motivated
by the work of McMullen [24] in the setting of Teichmüller space, Bridgeman [5]
showed that the pressure form is non-degenerate except along pure bending vectors
based at points in the Fuchsian locus. Moreover, the pressure form gives rise to a

path metric on QF(S), see [6, Cor. 1.7].

Remark. In the proof of Theorem 6.1 in [5], Bridgeman gives an expression for
L(i/r(pi), p2) in terms of equilibrium measures. Our equation (5.1) then follows
from equations (12) and (13) in [6], see also the discussion in Section 8 of [6]. If one
prefers that the proof of Theorem 1.3 be self-contained, one can take J to be defined

by our equation (5.2) as is done in Bridgeman-Taylor [7] and Bridgeman [5].

5.2. Isometries of renormalized pressure intersection. We use the interpretation
of renormalized pressure intersection in terms of geodesic currents to show that the
restriction of an isometry / of the renormalized pressure intersection to the Fuchsian
locus F(S) agrees with an element g of the (extended) mapping class group. We
further show that /(ct) and g(cr) have closely related length spectrum whenever

ff 6 QF(S).

Proposition 5.1. If f : QF{S) —> QF(S) is a smooth isometry of J, then f
preserves the Fuchsian locus F(S) and there exists g e Mod* (5) such that f and g
agree on the Fuchsian locus.

Moreover, ifa is a simple curve on S and a QF(S), then

%(CT)Kg(a)(a) h(f(cr))tna)(a:).
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Proof. Since / is smooth and preserves J, one sees by differentiating that / also

preserves the pressure form G.

If CT G F(X) and v is a pure-bending vector, then Ga{y,v) 0, so

G/(CT)(Dfa(v), Dfa(v)) 0. Since, / is an immersion, Dfa(v) / 0 which implies
that /(ct) e F(S).

Since the restriction of G to F(S) is a multiple of the Weil-Petersson metric, the

restriction of / to the Fuchsian locus is an isometry of the Weil-Petersson metric.
Masur and Wolf [23] proved every isometry of the Weil-Petersson metric is an
element of Mod* (5). So we may choose g e Mod* (5) so that / and g agree on the

Fuchsian locus F(S).
If p G F(S) and ct QF(S), then since

J(P,ct) J(/(p),/(ct)) J(g(p),g(cr)),

and h is constant on F{S), we may conclude that

L{f(g(j>)),g(p)) M/(qQ)

h(g(a))'

If a is a simple curve, let {p„} be a sequence in F(S) so that {^(f(pn))}
{&(g(Pn))} converges to [Ca] in JPG(S). Since L is continuous,

ig (a) (a) L(j/(g(pn)),g(a)) ft (/(g))
if(a)(pc)

im
L(f(f(pn)), /(ct)) h(g(a))

which establishes our claim.

5.3. Simply ft-related Kleinian surface groups. We say that two Kleinian surface

groups pi : 71*1 (S) -» PSL(2, C) and p2 ' (S) -> PSL(2, C) are simply k-related,
for some ft > 0, if

iPl (a) kip2 (a)

whenever a is a simple closed curve on S.

Proposition 5.1 implies that if / is an isometry of the renormalized pressure
intersection, then there exists g e Mod* (5), such that /(ct) and g(a) are simply
ft-related whenever ct g QF(S). Theorem 1.3 will thus follow from the following
strengthening of our simple length rigidity theorem.

Theorem 1.4. If S is a closed, connected, orientable surface of genus at least two
and pi : 7^(5") —> PSL(2,C) and p2 : 711(5") —> PSL(2,C) are simply k-related
Kleinian surface groups, then p\ is conjugate to either p2 or p2-

ProofofTheorem 1.4. We first choose non-separating simple curves a and ß on 5
which intersect exactly once, so that pi (a), pi(ß), Pi{oi) and P2(ß) are all hyperbolic.
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(One may do so, since, again by a result of Sullivan [30], only finitely many simple
curves have parabolic images for p\ or p2.)

We can assume that pi and P2 are (a, ß)-normalized, so

Pi (a) ±

where |A/1 > 1, and

Piiß) ±

A,- 0

0 À-:

at bi

Ci cli

where all the matrix coefficients are non-zero (see Lemma 2.2). Since p\ and p2 are

simply -related,

t-21|Ai| |A2|fc

Notice that if k 1, then Theorem 1.4 follows immediately from our main result,
Theorem 1.1. So we may assume, without loss of generality, that k > 1.

Let p-i{n) be the modulus of the eigenvalue of p,(otnß) with largest modulus.
Since anß is simple for all n, pi\(n) /x2(n)k for all n. Lemma 2.2 implies that

log pi{n) n log I A/1 + log|a;-| + 3Î^A]~2"^^ + 0(|A/r4").

Since log p-i(n) k log after eliminating the leading terms (which are equal),
we obtain

log|fli| + m(xi2n—+ ö(|Ai| 4")
ai

klog \a2\ +klU+ 0(|A2| 4").

Therefore, by considering the limits as n —> oo, we see that

log |oi I A log |<a2|-

So, after subtracting the equal leading order terms,

A+ °(|Al|~4") m^2nbj^) + °(lA2l"4")-9t

for all n. If we multiply both sides of the above equation by |A21 then since

jj^j > 1, the left hand side converges to 0, and we see that

lim9,((iLV2"tî£L=0. (5.3)
n—>-oo |A:
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If we let
A2 \ iQ b2c2

u -7— e and v —x- ^ 0.
VJA2I/ a\

Then we may rewrite (5.3) as

lim SW(w"v) 0.
n->00

As we can always choose a sequence {rik} so that lim^^ u"k 1, we see that

9f(u) 0.

If 0 is an irrational multiple of 2tc, then for all z e S1 there exists a sequence {«&}
sothatlime"fc0 z, which implies that 91 (zv) 0. Therefore, in this case, as v ^ 0

then choosing z \v\/v, we get |u| 0 a contradiction.
If 0 is a rational multiple of 2n and m ^ ±1, then there exists {n,t} so that

unk u for all k, so 91 (mu) 0. Since 91 (u) 0, v — iy from some y e R, so,

m(ei9v) - sin (9)y 0.

Thus, y — 0, since sin(0) 7^ 0. It again follows that v 0 and we obtain a

contradiction.
Therefore, we can assume that u ±1, so X\ is real. It follows that if 77 is a

simple, non-separating curve on S, then X22{rj) e R, so

Tr2(p2(h)) Ap2(h) + 2 + Xp2(jj) R.

In particular, since an ß is simple and non-separating for all n, we see that

Tr2(p2(ctnß)) Alna\ + 2a2d2 + Aj2"^2 e

so,

3(Tr2(p2(anß))) X2nS(a2) + 2%(a2d2) + A22n%{d2) 0

for all n. Therefore,

S(Tr2(p2(o;rt^))) 2„t X? S("2) "•

so

lim S(Tr2(p2(oinß))) 22s{a2d2) 0.

Since a\ and a2d2 are real, v ^f2- -^§— is real. Therefore, since we have

already shown that 31 (u) 0, we see that v 0, which contradicts the fact that a2,
b2 and c2 are all non-zero. Since we have now achieved a contradiction in all cases

where k > 1, this completes the proof.



748 M. Bridgeman and R. D. Canary CMH

5.4. Proof of Theorem 1.3. If / is an isometry of the renormalized pressure
intersection, then Proposition 5.1 implies that there exists g e Mod* (S) such that /
and g agree on F(S) and /(er) and g{a) are simply k-related, where k

»

whenever a e QF(S). Theorem 1.4 implies that if a e QF(S), then either

/(cr) g(a) or /(ct) r(g(a)). Since / is continuous, this implies that either

/ g or / r o g. The result follows.
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