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Counting periodic orbits of Anosov flows
in free homotopy classes

Thomas Barthelmé and Sergio R. Fenley™

Abstract. The main result of this article is that if a 3-manifold M supports an Anosov flow,
then the number of conjugacy classes in the fundamental group of M grows exponentially fast
with the length of the shortest orbit representative, hereby answering a question raised by Plante
and Thurston in 1972. In fact we show that, when the flow is transitive, the exponential growth
rate is exactly the topological entropy of the flow. We also show that taking only the shortest
orbit representatives in each conjugacy classes still yields Bowen’s version of the measure of
maximal entropy. These results are achieved by obtaining counting results on the growth rate of
the number of periodic orbits inside a free homotopy class. In the first part of the article, we also
construct many examples of Anosov flows having some finite and some infinite free homotopy
classes of periodic orbits, and we also give a characterization of algebraic Anosov flows as the
only R-covered Anosov flows up to orbit equivalence and finite lifts that do not admit at least
one infinite free homotopy class of periodic orbits.

Mathematics Subject Classification (2010). 37D20, 37C27; 57TM50, 57R30, 37C135, 37DS5.
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1. Introduction

A classical and fundamental problem in dynamical systems is to count the number
of closed orbits of the system with respect to the period. For Anosov flows, Margulis
in his thesis [41], and independently (and, more generally, for Axiom A flows)
Bowen [14] showed that the number of orbits grows exponentially with the period.
In fact, Margulis gave an asymptotic formula for the growth of the number of
closed orbits as a function of the period for weak-mixing flows and later Parry
and Policott [42] gave a formula for the general case. In particular, the topological
entropy, an ubiquitous quantity in dynamical systems that measures the complexity
of the flow, appears in the asymptotics of the counting function [14,41]. Moreover,
Bowen [14] showed that the unique invariant measure of maximal entropy is supported
by periodic orbits, that is, it can be obtained as the normalization of the sum of the
Lebesgue probability measures supported on periodic orbits. Bowen’s and Margulis’
work have been essential in the theory of hyperbolic dynamical systems.

*Research by the second author was partially supported by a grant from the Simons Foundation.
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At the same time that Bowen’s work appeared, Plante and Thurston [46] proved
that if a manifold M supports a codimension one Anosov flow (i.e. such that one of
the strong foliations of the flow is of dimension one), then 7r; (M) has exponential
growth. In that paper, they also asked the following question:

Question 1 (Plante, Thurston [46]). Suppose that M supports a codimension one
Anosov flow. Does the number of conjugacy classes in w1 (M) grow exponentially
fast with the length of a shortest orbit representative?

Given Bowen’s result, Plante and Thurston remark that a positive answer to this
question can be obtained by giving a low upper bound on the growth of the number
of orbits of period less than ¢ as a function of ¢ inside a free homotopy class.

To the best of our knowledge, it appears that no one has yet managed to answer
Question 1 in any setting, nor obtained any results on the number of orbits inside a
free homotopy class.

The main goal of this article is to give a positive answer to Plante and Thurston’s
question in the case of 3-manifolds. In fact we will obtain more information since we
also get a (coarse) estimate of the growth rate of the number of conjugacy classes, as
well as an equidistribution property of a shortest orbit representative (see Theorem A
below).

Before stating our results, we review what is known about freely homotopic
periodic orbits. A free homotopy class of periodic orbits is a maximal collection of
closed orbits that are pairwise freely homotopic to each other. Since we only talk
about periodic orbits in this article, we will henceforth just call it a free homotopy
class. First, it is easy to note that, in the case of algebraic flows, or more generally
flows that are orbit equivalent to either a suspension of an Anosov diffeomorphism
or the geodesic flow of a negatively curved metric, then the answer to Plante and
Thurston’s question is clearly yes. Indeed, in that case, there is at most one periodic
orbit in each free homotopy class (or two in the case of geodesic flows if one takes
our definition of free homotopy that forgets about the direction of an orbit, see
Convention 3). Hence Bowen’s or Margulis’ work directly implies the result.

Plante and Thurston knew of the existence of Anosov flows admitting distinct
orbits in the same free homotopy class. But non trivial explicit examples were not
constructed for more than ten years afterwards. The “trivial” examples are obtained
as finite lifts of the geodesic flow on the unit tangent bundle of a hyperbolic surface.
These manifolds are Seifert fibered (see definition in the Section 2) and finite covers
of any order can be obtained by unrolling the Seifert fibers. Then for each natural
number n one can obtain examples where every free homotopy class has 27 elements.
These examples are in some sense artificial, for example all orbits in a given free
homotopy class have exactly the same length in the lifted metric. Plante and Thurston
did not know whether there is an upper bound on the number of orbits in an arbitrary
free homotopy class. In 1994, the second author [19] constructed examples of Anosov
flows in 3-manifolds such that every periodic orbit is freely homotopic to infinitely
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many distinct orbits. In particular, for any enumeration of the orbits in the free
homotopy class, the lengths of the orbits diverge to infinity. It follows that counting
orbits inside a free homotopy class is a natural, and also non-trivial question at least
for some Anosov flows.

One goal of this article is to show that infinite free homotopy classes are very
common amongst Anosov flows. An Anosov flow in a 3-manifold is called R-covered
if the stable (or equivalently the unstable) foliation lifts to a foliation in the universal
cover that has leaf space homeomorphic to the reals. A vast amount of such flows
exists [5,19]. We will show in this article that, when one considers R-covered Anosov
flows then a flow is either orbit equivalent to a finite cover of an algebraic Anosov
flow, or it admits an enormous amount of free homotopy classes with infinitely many
distinct orbits (see Theorem B). For general Anosov flows, even if the same result
does not hold, it is not hard to construct examples with some infinite free homotopy
classes. So Plante and Thurston’s question is not trivial for “most” Anosov flows on
3-manifolds.

Before stating more precisely our results, there are a few more remarks that one
should make.

First, conjecturally, Plante and Thurston’s question is trivial in dimension at least 4.
Indeed, Verjovsky’s conjecture [54] states that any codimension one Anosov flow in
dimension at least 4 is orbit equivalent to a suspension of an Anosov diffeomorphism,
so a free homotopy class contains at most one orbit. Verjovsky’s conjecture is still
open in full generality, but it has been proven if the fundamental group is solvable [45],
or given some smoothness conditions on the Anosov splitting [32,51].

Second, consider the question of counting periodic orbits inside a free homotopy
class for a generic Anosov flow, that is for an Anosov flow in higher codimension.
One must note that nothing is known about the topology of manifolds admitting
Anosov flows in higher codimension. For instance, in higher codimension, we do not
know whether a periodic orbit has to be homotopically non trivial. In particular, no
one even knows whether any S”, when n > 6, supports (or, presumably, does not) an
Anosov flow. Not knowing the answer to this most basic question does not bode well
for trying to understand fine properties of free homotopy classes. More explicitly all
the techniques used in this article for Anosov flows in 3-manifolds completely break
down in higher codimension, because we do not yet have any of the understanding of
free homotopy classes that we have for 3-manifolds.

Finally, a problem that attracted a lot of attention in the past was to give counting
results for the number of periodic orbits of an Anosov flow inside a fixed homology
class. Amongst others, Katsuda and Sunada [38] (in the case of a surface with an
hyperbolic metric), Phillips and Sarnak [44] (for geodesic flows in negative sectional
curvature), Sharp [50], and Babillot and Ledrappier [2] gave precise estimates for the
asymptotic of the number of periodic orbits of period less than a given real number in
a homology class. Sharp’s and Babillot—Ledrappier’s asymptotics holds for Anosov
flows on any manifold, provided the flow is homologically full (i.e. if every homology
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class admits at least one periodic orbit) or a suspension. In particular, there are no
assumptions on the dimension of the manifold.

Given all the results on counting closed orbits inside a homology class, the lack of
counting results inside free homotopy classes seems even more surprising. However,
it must be mentioned that the tools used in the homological setting rely in part on deep
number theoretical results, whereas our tools are only topological and geometric in
nature. This difference in available tools also affects the results: while they obtained
precise asymptotics in the homological setting, we only get relatively coarse upper
and lower bounds.

We can now present more carefully the results of this article. From now on, we
will always be in a 3-manifold setting.

1.1. Statement of results. Our main result about the growth of conjugacy classes
and the equidistribution of a shortest orbit in a conjugacy class is the following (see
Theorem 7.4 for a more precise version):

Theorem A. Let ¢* be an Anosov flow on M 3. Then the number of conjugacy classes

in w1 (M) grows exponentially fast with the length of a shortest representative closed
orbit in the conjugacy class.

Moreover, if the flow is transitive, then the exponential growth rate is given by the
topological entropy of the flow. That is, if we write CI(h) for the conjugacy class of
an element h € mw1(M), acyn) for a periodic orbit in the conjugacy class Cl(h) with
smallest period (if such a periodic orbit exists), and

CCI(z) := {CI(h) | h € ;i(M), T (acin) < 1},
where T(OfCI(h)) is the period of acyp), then we have
1
lim sup — log {CCI(¢) = hyop,
t—>+o00 {

where hyp is the topological entropy of the flow.
Furthermore, the Bowen—Margulis measure [Lppy of the transitive flow ¢°
(i.e. measure of maximal entropy) can be obtained as

1
:U“BM = hm Z 80!@(}1)7
e HCCI(I) Cl(h)eCCl(z)

where SQC](h) is the Lebesgue probability measure supported on ocy(p).

As we will explain later, we obtain this result by counting orbits inside a free
homotopy class. But in order to do that, we first need to understand free homotopy
classes as well as possible. This is what the first part of this article is concerned
with, and it owes a lot to the good understanding of the topology of Anosov flows
in 3-manifolds obtained through the cumulative work of Barbot and the second
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author [3-5,7,9,10,19-22]. We first obtain a classification of R-covered flows such
that all of their free homotopy classes are finite:

Theorem B. Let ¢! be an R-covered Anosov flow on a closed 3-manifold M. Suppose
that every periodic orbit of ¢ is freely homotopic to at most a finite number of other
periodic orbits. Then either ¢' is orbit equivalent to a suspension or, up to finite
cover, ¢! is orbit equivalent to the geodesic flow of a negatively curved surface.

Most of the pieces of the proof of this result were essentially known, thanks to
the cumulative work of (mainly) Verjovsky, Ghys, Barbot and the second author.
The relevance of this result is that it shows that infinite free homotopy classes are
extremely common. In fact for R-covered Anosov flows the nonexistence of infinite
free homotopy classes is extremely rare.

An essential tool in this article will be the JSJ decomposition of a 3-manifold.
In our setting it roughly states that any manifold supporting an Anosov flow has
a decomposition by embedded tori into pieces that are either Seifert fibered or
hyperbolic (see detailed description in Section 2.2).

We also construct examples of contact Anosov flows (so, in particular, R-covered,
see [7]) on manifolds admitting all possible types of JSJ decompositions, by doing
Foulon—-Hasselblatt [28] surgery on geodesic flows. By the result above, all these
flows have some (in fact, infinitely many) infinite free homotopy classes.

Theorem B above is only true for R-covered Anosov flows. In some sense it is
not very surprising that this result does not hold for non-transitive Anosov flows. But
it turns out that it does not even hold when the flow is transitive:

Theorem C. There exists (a large family of) non-algebraic transitive Anosov flows
such that every periodic orbit is freely homotopic to at most finitely many others.

In fact, we will prove that all the examples of pseudo-Anosov flows constructed
in [10], called totally periodic, are such that every periodic orbit is freely homotopic
to at most finitely many others, and many of these examples are Anosov and transitive.

One should also point out that, up until now, all the known examples of
Anosov flows with all their free homotopy classes finite were on graph-manifolds,
i.e. manifolds so that their JSJ decomposition has only Seifert-fibered pieces.
However, we also construct examples of transitive Anosov flows on manifolds
containing an atoroidal piece and such that all free homotopy classes are finite.

The first step in order to obtain Theorem B is to use a JSJ decomposition of the
manifold which is well adapted to the flow. A modified JSJ decomposition is one
such that every torus of the decomposition is weakly embedded and quasi-transverse
to the flow, i.e. transverse except possibly for a finite number of periodic orbits of the
flow where the flow is tangent to the entire orbit. Thanks to works of Barbot [5] (for
the R-covered case) and Barbot and Fenley [9] (for the general case), any Anosov
flow admits a modified JSJ decomposition (see Section 2.2). Using modified JSJ
decompositions, we can prove that in general certain types of pieces in the JSJ
decomposition cannot admit an infinite free homotopy class:
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Theorem D. Suppose that ¥ # («) is an infinite free homotopy class of a periodic
orbit of an Anosov flow on M. Then no orbit of ¥ # («t) can cross a Seifert-fibered
piece on which the flow is periodic, except, possibly, when the piece is a twisted
I-bundle over the Klein bottle. In addition any Seifert fibered piece of the modified
JSJ decomposition can only contain a bounded number of orbits of F # (c).

Note that there are infinitely many examples of non R-covered Anosov flows that
admit some infinite free homotopy classes of orbits, but it seems difficult to come up
with a topological criterion that would detect such a feature.

Given that infinite free homotopy classes are very common, we now move towards
a proof of Theorem A. This is the second part of this article.

To prove Theorem A we will show that the period of orbits in a free homotopy
class grow at least at a certain rate. The proof of this will be heavily dependent on
the geometric type of the manifold or of the pieces of the JSJ decomposition of the
manifold and how the geometric type of the pieces relates with the flow lines.

To obtain an upper bound on the number of orbits inside a free homotopy class
with period less than a given real number, we need two preliminary key lemmas.

The first result (Proposition 2.26) shows that a free homotopy class can be split
into a uniformly bounded number of special orbits plus a uniformly bounded number
of what we call a string of orbits. Strings of orbits are particular subsets of free
homotopy classes: roughly speaking they are such that they do not involve non
separated stable/unstable leaves when lifted to the universal cover. These strings of
lozenges come naturally equipped with an indexation by N. The indexation is given
by a chain of lozenges when lifted to the universal cover (see definition in the next
section). The index is given by placement of the lift of the periodic orbit as a corner
of a lozenge in this infinite chain of lozenges.

The second result (Lemma 2.28) says that orbits inside a string of orbits, when
lifted to the universal cover, are at least linearly far apart with respect to the indexation.

These two results, while not technically difficult given what is already known,
are what allows us to bring in geometry into the picture. Using (either directly
or indirectly) some hyperbolic properties of the metric inside a piece of the JSJ
decomposition, we can obtain a lower bound on the growth of the period of orbits
inside a string of orbits. Using the fact that orbits in a string are also at most linearly
far apart (Lemma 2.29), we also get an upper bound.

Theorem E. Let {«;}ien be an infinite string of orbits, with the indexation chosen
so that o is one of the orbits with the smallest period in the conjugacy class. Then
the growth of the period is at least:

(1) Exponential in i if the manifold is hyperbolic,
(2) Quadratic in i if the {«; }ieN intersect an atoroidal piece;

(3) Linearini if {v;}ieN goes through two consecutive Seifert-fibered pieces.
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Moreover, the growth of the period is at most exponential in i, independently of
the topology of M.

Notice that for the lower bound, there is a very strong dependence on the geometric
type of the manifold or the piece of the JSJ decomposition.

This result can then be translated in terms of a counting result inside free homotopy
classes thanks to Proposition 2.26:

Theorem F. Let ¢! be an Anosov flow on a 3-manifold M, and F J (ag) be the free
homotopy class of a closed orbit ag of ¢*. For any periodic orbit «, let T () be the
period of «.

(1) If M is hyperbolic, then there exists a uniform constant Ay > 0 and a constant
C1 depending on F ¥ (ag) (or equivalently on o) such that, for t big enough,

f{o e FH(ao) | T(w) <t} < Aylog(t) + Ci.

(2) If the JSJ decomposition of M is such that no decomposition torus bounds a
Seifert-fibered piece on both sides (so in particular, if all the pieces are atoroidal),
then there exists a constant C depending on ¥ J (o) such that, for t big enough,

tlo € FH(ao) | T(e) <1} < C1/t.

(3) Otherwise, there exist constants A1 > 0 and By > 0, such that, fort big enough,
ji{oz eFH(nw) | T(x) < z‘} < Ait + B;.

Furthermore, if M is a graph manifold, then A, and B can be chosen
independently of ¥ ¥ (co).

So, in any case, the growth of the number of orbits inside a free homotopy class is at
most linear in the period — but a priori with constants depending on the particular
free homotopy class.

Moreover, independently of the topology of M, the growth of the number of orbits
inside an infinite free homotopy class is at least logarithmic in the period. More
precisely, there exists a uniform constant A, > 0 and a constant Cy depending on
F H (ag) such that, if F H (ap) is infinite, then for any t

o € FH(ao) | T(a) <1} > Zl—log(t) -,
2

Theorem F is not yet enough to get Theorem A. Indeed, we need to show that we
have a uniform upper bound for the rate of growth of the number of orbits inside a
free homotopy class with respect to the period. That is, we need the constants in the
previous theorem to be independent of the chosen free homotopy class. We manage
to do that, at the cost of getting worse rates of growth:
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Theorem G. Let ¢' be an Anosov flow on a 3-manifold M. There exist constants

A1, Az, A3 > 0 and tyg > 0, depending only on the flow and M, such that for any
periodic orbit o

(1) If M is a graph manifold, then for t > ty,

o € FH (o) | T(er) <t} < Ast.

(2) If M is hyperbolic, then for t > t,

o € FIH (o) | T(e) <t} < A+/tlog(r)
(3) Otherwise, fort > ty,
ST log(t)
o e FH(ao) | T(e) <t} < As/te2 8
So, independently of the topology of M, we always have, for t > to,

N
o€ FH (o) | T() <t} < Azv/te2 150,

The first two results of Theorem A are an almost direct corollary of Theorem G,
thanks to the counting results of Bowen [14] and Margulis [41]. To prove the
equidistribution result, i.e. that the measure of maximal entropy can be obtained by
a limit of sums of measures supported on the shortest orbit in a free homotopy class,
we also use a result of Kifer [39] (following an idea of Babillot and Ledrappier [2]).

We stress that the last three theorems establish a deep connection between counting
orbits in infinite free homotopy classes and the JSJ decomposition of the manifold. In
addition, they establish a connection with the particular geometry in the pieces of the
JSJ decomposition. It is worth noting that this is the first instance establishing such a
connection. This relationship does not appear in the aforementioned counting results
in homology classes and general counting of orbits of Anosov flows. It follows that
the results of this paper establish an important connection between counting results
and entropy on the one hand and the topology and geometry of the 3-manifold on the
other hand.

Finally, we also deduce from Theorem E the following result about quasigeodesic-
ity of R-covered Anosov flows, which generalizes a result of the second author in [19].

Theorem H. Ler ¢’ be a R-covered Anosov flow on a closed 3-manifold M. If M
admits an atoroidal piece in its JSJ decomposition, i.e. if M is not a graph-manifold,
then @' is not quasigeodesic.

We also conjecture that all the R-covered Anosov flows on graph-manifolds are
quasigeodesic flows.
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Remark 1.1. Theorems E, F, and G all give coarse results where we only prove
the existence of constants. So, in particular, these results are unaffected by any
time-change of the flow, as a time-change would only modify the constants by a
multiplicative and/or an additive factor.

Moreover, we can also choose any metric on M, and instead of mesuring the
growth rate of the period, we can measure the growth rate of the lengths. Since the
ratio between the length and the period is uniformly (for a fixed metric and flow)
bounded away from zero and infinity, Theorems E, F, and G apply verbatim when
we consider lengths instead. The only cost, once again is that the constants will be
modified.

Therefore, in this article we will deal from now on with length instead of period,
since it is more natural in order to use geometry. Furthermore, since none of the
above listed results are changed by reparametrization of the flow, or modification of
the metric, we can, and always will, either reparametrize the Anosov flow in such a
way that it moves points at unit speed for a given choice of a metric, or choose the
metric such that the orbits of the Anosov flow are unit speed.

The topological entropy of a flow, however, is modified by reparametrizations, so
one might think that Theorem A would be affected by our choice. This is not the case,
as the proof of Theorem A (see Section 7.2) relies only on the existence of uniform
constants giving a striclty less than exponential growth rate, not on the actual values
of the constants.

1.2. Structure of the paper. In Section 2, we cover the background material
needed for this article about Anosov flows and their topology. We also prove some
new results describing free homotopy classes that are essential for the rest of the
article. In particular, we prove the key results Proposition 2.26 and Lemma 2.28.

In Section 3 we describe the Foulon—-Hasselblatt surgery and use it to construct
a number of contact Anosov flows on manifolds with all possible types of JSJ
decompositions.

In Section 4, we study what the existence or nonexistence of infinite free homotopy
classes implies for the topology of the manifold. In particular, we prove Theorems B,
C and D (Theorem 4.1, Corollaries 4.6 and 4.4 respectively).

Section 5 describes how one can use recent work of Béguin, Bonatti, and Yu [12]
to build non R-covered Anosov flows on manifolds with all possible types of JSJ
decompositions and both finite and infinite free homotopy classes.

Theorem E (Theorems 6.1 and 6.2) is then proved in Section 6, as well as more
precise results giving some explicit control of the constants. The proof of that result
is split over three subsections (6.1, 6.2, and 6.3), one for each topological type.

In Section 7, we derive the consequences of Theorem E. That is, we first derive
Theorem F (Theorem 7.1) and Theorem G (Theorem 7.3). We then explain how to
use the latter to finally prove Theorem A (Theorem 7.4, Corollaries 7.5 and 7.6).

Finally, in Section 8, we obtain Theorem H (Theorem 8.1) as yet another con-
sequence of the work done in Section 6.
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2. Background and preliminary results

2.1. Generalities on Anosov flows. An Anosov flow is defined as follows.

Definition 2.1. Let M be a compact manifold and ¢*: M — M a C! flow on M.
The flow ¢’ is called Anosov if there exists a splitting of the tangent bundle
TM =R -X @ E* @ E** preserved by D¢* and two constants a,b > 0 such
that:

(1) X is the generating vector field of ¢;
(2) Forany v € ESS and t > 0,

D' ()| < be™|v]|;
(3) Forany v € E** and t > 0,
1D~ ()| < be™|v] .

In the above, ||| is any Riemannian (or Finsler) metric on M.

Clearly this definition makes sense for M of any dimension and E**, E*¥ of any
positive dimension. The results of this article deal with M of dimension 3, so we
restrict to this dimension from now on.

The subbundle E*® (resp. E%¥) is called the strong stable distribution (resp.
strong unstable distribution). It is a classical result of Anosov [1] that ES, E**,
R-X & E* and R - X & E™* are integrable and are continuous. We denote by F°,
FU F* and F¥ the respective foliations and we call them the strong stable, strong
unstable, stable and unstable foliations.

All of these foliations, as well as the flow, th to the universal cover M of M , and
we denote the lifts by ¢!, F5, F*, 5 and F**. We then define the orbit and leaf
spaces of the flow in the following way:

e The orbit space of ¢' is the quotient space of M by the relation “being on the
same orbit of ¢’ ”. We denote it by ©.

* The stable (resp. unstable) leaf space ofﬁgbz is the quotient of M by the relation
“being on the same leaf of #° (resp. F%)”. We denote them by £° and £*
respectively.

The stable and unstable foliations project to two transverse 1-dimensional foliations
of the orbit space @. We will keep the same notations for the foliations on ¢ or on M
and hope it will not be the source of any confusion.

The orbit space @ is always homeomorphic to R? [3,19], but in general the leaf
spaces are not Hausdorff. So the leaf spaces are examples of simply connected
non-Hausdorff 1-manifolds. Therefore we make the following:

Definition 2.2. An Anosov flow is called R-covered if its stable leaf space &£°, or
equivalently, its unstable leaf space £* is homeomorphic to R.
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The proof that one leaf space being Hausdorff implies that the other is can be
found in [3,19].
A very important fact about R-covered flows is the following:

Theorem 2.3 (Barbot [3]). Let ¢’ be a R-covered Anosov flow on a closed 3-manifold M.
e either no leaf of FS intersect every leaf of F* (and vice-versa),
o or @' is orbit equivalent to a suspension of an Anosov diffeomorphism

Suppose that ¢' is R-covered but not orbit equivalent to a suspension. We say in
that case that ¢’ is skewed. The previous result implies that the structure of the orbit
space and the stable and unstable foliations are particularly nice: Start with a leaf
A € £F, Then the set

T*(A5) = A% € £4 | AN A° # 0}

is an open, non-empty, connected and bounded set in £* ~ R. Hence it admits an
upper and lower bound. Let n°(A%) € £ be the upper bound and n7*(A*) € £*
be the lower bound. Similarly, for any A* € £¥, define n*(A¥) and n—*(A¥%)
as, respectively, the upper and lower bounds in £° of the set of stable leafs that
intersects A¥. We have the following result (see Figure 1):

Proposition 2.4 (Fenley [19], Barbot [3,7]). Let ¢' be a skewed R-covered Anosov
flow in a 3-manifold M, where ¥° is transversely orientable. Then, the functions
n*: L5 — L% and n: £ — £° are Holder-homeomorphisms and mwi(M)-
equivariant. We have (n*)™' = n™, and (n*)~! = n~*. Furthermore, n* o n°
and n® o n* are strictly increasing homeomorphisms and we can define n: O — O by

n(0) := n*(F*(0)) N n*(F*(0)).
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Figure 1. The orbit space in the R-covered case.
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If ¥ is not transversely orientable the homeomorphisms 7°, n* are twisted
71(M)-equivariant.

When Anosov flows are non R-covered flows, we can make the following
definition:

Definition 2.5. A leaf of 5 or 7 is called a non- separated leaf if it is non- separated
in its respective leaf space (£° or £¥) from a distinct leaf. A leaf of 5‘7 ¥ or f('" L
called a branching leaf if it is the projection of a non-separated leaf in & FSor Fu.

Non R-covered Anosov flows are generally more complicated than R-covered
ones, but we do have the following nice result, that will be quite useful for us:

Theorem 2.6 (Fenley [22, Theorem F]). For any Anosov flow on a 3-manifold, there
are only a finite number of branching leaves.

2.2. Modified JSJ decompositions. A 3-manifold M is irreducible if every embed-
ded sphere bounds a ball [35]. A fundamental result of Jaco—Shalen and Johannson
states that 3-manifolds are decomposed into simple pieces. A 3-manifold N is Seifert
fibered if it has a foliation by circles [18,35]. A 3-manifold N is atoroidal if every
m1-injective map from the torus f : T2 — N is homotopic into the boundary
of N. A Seifert manifold usually has many ;-injective tori that are not homotopic
to the boundary, so these two types of manifolds are opposites. The Jaco—Shalen—
Johannson decomposition theorem also called the JSJ, or torus decomposition states
the following:

Theorem 2.7. Let M be a compact, irreducible, orientable 3-manifold. Then there
is a finite collection {T; } of w1 -injective, embedded tori which cut M into pieces { P;}
such that the closure of each component P; of M — UT is either Seifert fibered or
atoroidal. In addition except for a very small and completely specified class of simple
manifolds, the decomposition (in other words the T or the P; up to isotopy) is unique
if the collection {T';} is minimal.

Any manifold supporting an Anosov flow is irreducible [48]. However it may not
be orientable, but we will be able to lift to an orientable double cover as explained
later.

Definition 2.8. (Birkhoff annulus) Let ¢/ be an Anosov flow in M3. A Birkhoff
annulusis an a priori only immersed annulus A, such that the interior of A4 is transverse
to the flow and the boundary of A is a union of orbits of the flow (possibly the same
orbit).

A m-injective, a priori only immersed torus 7" in M is said to be quasi-transverse
to the flow ¢’ if T is a finite union of Birkhoff annuli. An embedded 7;-injective
torus is always homotopic to one that is either transverse or to a quasi-transverse torus
that is weakly embedded [9, Theorem 6.10]. Weakly embedded means that the torus
is embedded outside the tangent orbits. Unless the flow ¢’ is orbit equivalent to a
suspension then the torus is always homotopic to a quasi-transverse torus. Moreover,
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almost always this quasi-transverse torus is unique up to homotopy along the orbits
of ¢* and unique up to isotopy in the complement of the tangent orbits. In particular
the tangent orbits are completely determined by the isotopy class of the torus. There
is a special case when there is more than one [9, Lemma 5.5], in which case the
torus is associated with a scalloped region (see Definition 2.19 in Section 2.3). In
this case up to flow homotopy there are exactly two Birkhoff tori homotopic to 7.
This is related to the study of Z2-invariant chains of lozenges, as will be explained
further on in this article. In this case the torus is homotopic to two essentially distinct
Birkhoff tori, in particular the boundary orbits are not the same for the two tori.
In addition the torus is then also isotopic to another torus that is transverse to the
flow. So, in summary, the following result describes what we call the modified JSJ
decomposition.

Theorem 2.9 ([9], Sections 5 and 6). Let ¢* be an Anosov flow in M orientable,
which is not orbit equivalent to a suspension Anosov flow. Let {TJ’ } be a collection of
disjoint, embedded tori given by the JSJ decomposition theorem. Then each torus ij
is homotopic to a weakly embedded quasi-transverse torus T;. In case T; is not
unique up to flow homotopy then TJ’. is also isotopic to a transverse torus, which will
then be denoted by T;.

Moreover, the collection {T;} is also weakly embedded, that is, embedded outside
the union of the orbits tangent to the tori T; that are quasi-transverse to the flow.

With these choices the tori T are unique up to flow homotopy and unigue up to flow
isotopy outside the tangent orbits. The closure of the complementary components P;
of UT; are called the pieces of the modified JSJ decomposition.

Furthermore, if P; is not a manifold, then there are arbitrarily small
neighborhoods of P; that are representatives of the corresponding piece PJ’- of the
torus decomposition of M.

The fact that P; may not always be a submanifold is due to the possible collapsing
of tangent orbits in the union of the tori 7';. For example it could be that two distinct
“boundary” components 7’; and T} of P; have a common tangent orbit y (and this is
quite common as can be seen in [9]). Then, along y, the piece P; is not a manifold
with boundary, since two “sheets” of the boundary of P; intersect at y.

In addition, notice that to ensure the flow uniqueness of the 7', we need to choose
the transverse tori in the case that there are two essentially distinct quasi-transverse
tori homotopic to a given 7.

Let us now describe how the flow intersects a piece P;: An orbit intersecting dP;
intersects it either in the tangential or transverse part of dP;. If it is tangent then it
is entirely contained in 7'; for some j and so entirely contained in dP;. Otherwise it
either enters or exits P;. Hence the fact that P; may not be a manifold only affects
the orbits that are entirely contained in dP;.

Throughout the article we will use modified JSJ decompositions.
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Setup. All the counting questions we consider in this article are left unmodified
by passing to finite covers, modulo changing some of the constants. This will be
carefully explained later on in the article. Therefore we will always implicitly take a
finite cover where M is orientable if necessary, and we will mostly consider modified
JSJ decompositions.

Convention 1. We invariably think of y in 71(M) as both a covering translation
of M and as a homotopy class of curves in M.

Definition 2.10 (intersecting a piece, crossing a piece). Let P be a piece of the
torus decomposition of M and let P’ be an associated piece of a modified JSJ
decomposition. We say that a periodic orbit «@ intersects P if ¢ is either a tangent
orbit in P’ or if it intersects dP’ transversely. In the second case we in addition say
that o crosses the piece P. We may also refer to this as « intersects or crosses P’,
the associated piece of the modified JSJ decomposition.

Notice that P is defined up to isotopy and P’ is defined up to homotopy along flow
lines and isotopy outside the tangent orbits. Therefore « intersects P or crosses P
independently of the particular modified JSJ representative P’ and depends only on
the isotopy class of P.

Definition 2.11 (periodic piece, free piece). With respect to an Anosov flow, a
Seifert fibered piece S of the torus decomposition of M can have one of two possible
behaviors:

 Either there exists a Seifert fibration of S and up to powers there exists a periodic
orbit in M which is freely homotopic to a regular fiber of S in this Seifert fibration;
in which case the piece is called periodic;

* Or no periodic orbit is freely homotopic to a regular fiber (even up to powers) of
any Seifert fibration of S'; and the piece S is then called free.

Note that, S is periodic if and only if there is a Seifert fibration of S such that if
h € m1(S) represents a regular fiber of S, then / does not act freely on at least one
of the leaf spaces of stable/unstable leaves in M.

The most classical example of a free piece is the geodesic flow of a negatively
curved surface. More generally, all the flows that we will construct in Section 3
are free on each of their Seifert-fibered pieces thanks to Barbot’s result in [5]. But
Anosov flows with periodic pieces are far from uncommon either. A lot of examples
were constructed and studied in [9,10] by Barbot and the second author.

The added technicality in the statement about some Seifert fibration is that in
some exceptional cases there is more than one Seifert fibration in S. This happens
non trivially for example if S is a twisted /-bundle over the torus or the Klein bottle.

We will later (in particular in Section 6) need the following two lemmas
that describe the connection between free homotopy classes and a modified JSJ
decomposition. Throughout this article, we use the following convention for our
definition of freely homotopic orbit:
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Convention 2. We say that two orbits & and 8 of a flow on M are freely homotopic
if they are homotopic as non-oriented curves in M. In other words, if g € 71(M) is
a representative of the orbit «, then & and B are freely homotopic if and only if f is
represented by g*!.

Up to powers this is also equivalent to saying that there exist lifts o and gof o
and f to M such that g stabilizes & and ﬁ

Lemma 2.12. Let ¢’ be an Anosov flow on an orientable 3-manifold M. Let
M = U;N;j be a modified JSJ decomposition. Let oo be a periodic orbit and
F H (o) its free homotopy class. Suppose that some orbit f € F H (ag) crosses a
piece N = Ny. Then all the orbits o € ¥ ¥ (cg) also cross N.

In addition, if there exists a connected component 1 of B N N between two
boundary tori T1 and T> (where we also allow Ty = T5), then, for any @ € F H (cp),
there exists a connected component &1 of « N N between T| and T, that is in the
same free homotopy class as 1 modulo boundary.

Furthermore, the free homotopy between two segments of orbits can always be
realized inside the pieces of the decomposition that the orbits crosses.

Proof. Given the modified JSJ decomposition M = U; N, we construct the graph G
dual to it in the following way:

* The vertices v; corresponds to the interior of N;.

» Two vertices v;, v; are joint by an edge if N; and N; share a common torus
boundary.

This graph G lifts to a tree G that is dual to the lift of the JSJ decomposition
of M to its universal cover M. The vertices of G are copies of the universal cover of
some N, and the edges corresponds to lifts of the decomposition tori. This graph is
used a lot in 3-manifold theory [35].

The piece Ny crossed by B is fixed throughout the proof.

Since ¥ #€(xo) represents a free homotopy class, there exist a lift FH (co)
of ¥ H# (o) to the universal cover such that the collection of orbits & € FH (cp) is
exactly the set of orbits of a” that are individually left invariant by the same element
y € m1(M). We call such a lift a coherent lift of ¥ H (cp). We claim that the action
of y on G is of one of the following types:

(i) Either y acts freely on the tree G and y acts as a translation on an unique axis.

(ii) Or y acts freely on the set of vertices of G but fixes an edge, and moreover this
fixed edge is unique.

(iii) Or y has fixed vertices in 5, but does not leave invariant three consecutive
edges forming a linear subtree of G.

The general theory of group actions on trees (see for instance [49]) states that there
are three possibilities: (1) y acts freely on G and so y has a unique axis where it acts
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as a translation; (2) y does not fix any vertex of G, but leaves invariant an edge, so y2
fixes at least two points (this is what is called an “inversion of an edge”) — clearly
the invariant edge is unique; (3) ¥ has a fixed vertex. Given this, the only thing that
needs to be justified in the above classification is case (iii). We have to show that y
cannot fix 3 edges of G forming a linear subtree. Suppose by way of contradiction
that this is not true and let T1 Tz, T3 denote the lifts of the tori corresponding to the
edges in question. Let Ny, Nb be the lifts of the pieces of the JSJ decomposition
corresponding to the vertices between T, 3:2 and T, T5 respectively. Projecting
to M this means that y has a representative in the torus 77 (projection of ’ﬁ to M)
and also 7. This implies that in N, there is a cylinder or annulus from 77 to 75.
Notice that 77 may be the same torus as Tz, but in this case, the annulus cannot be
homotoped into 73 or Tl would be equal to T2 In other words there is an essential
annulus in N,. If the piece N, is atoroidal then it is acylindrical. This is because N,
is in fact hyperbolic and has boundary made up of tori, hence it is acylindrical (see
for instance [53]), so this cannot happen. If N, is Seifert this can only happen if y is
up to powers a representative of the Seifert fiber in N,. In the same way y fixes 7‘3
so Np is a Seifert piece and y up to powers represents the Seifert fiber in Np. Then,
up to powers, y represents the regular fiber in both N, and Nj. This is disallowed
by the minimality requirement in the JSJ decomposition. This proves that ¥ cannot
leave invariant 3 edges forming a linear subtree of G and yields possibility (iii) above.

In order to prove the lemma, we need to understand a bit better the projection
of the class ¥ J (ap) onto the graph. A lift @ of an orbit « € F H#(ap) to the
universal cover projects to a path on G. The path is continuous, but the projection is
not: when o crosses one of the lifts of the 7' the projection immediately goes from
a point, to an edge (at the intersection point with 7’;), to a point. Suppose that «
intersects a torus 7" of the modified JSJ decomposition.

If it is contained in T then the projection of o is an edge in G.

If the intersection is transverse and 7', 7' are two lifts intersected by @ then they
are distinct.NThis is because either T is transverse to the flow, in which case this is
obvious or 7 is the lift of a quasi-transverse torus. In that case this fact is proved
in [10]. The idea of the proof is just that if T and T’ were the same, then one could
build a closed transversal to say the stable foliation by following @, closing it up
along T and making that closed path transverse to the stable foliation by pushing it
along the strong unstable foliation. Therefore, a lift @ of & cannot hit twice the same
lift of 7', and hence the projection to G intersects an edge at most once. It follows
that this projection of & has to be an infinite path.

So the projection to G of an orbit & is either a vertex, or an edge for the special
case of the periodic orbits tangent to a decomposition torus, or is an infinite path
in G.

We can now establish part of the lemma. RecaH that y is the element of 71 (M)
that fixes all the orbits @ in the coherent lift # H (ctp).
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If y fixes only one vertex N; (corresponding to case (ii) above), then the orbits in
FH (cp) are all included in N;. This case is not possible as the orbit B € F H ()
crosses the piece Ng, which implies that the projection of ﬁ to G is an infinite path
as seen above. Similarly case (iii) cannot happen either, again by the same reason.

It follows that the the action of y on G is free (of type (i) above). So all
the ¢ project to the axis of y and the lift of the decomposition tori cuts each orbits
in ﬁé’(ao) into freely homotopic connected pieces. This is because &; cannot
intersect a lift of one of {7;} more than once, so the projection to G is exactly the
axis of y acting on G and intersects a lift of a piece N; in a connected arc. Hence all
the o € F H (tp) cross the piece Ng.

Moreover if 81 is a segment o of B N Ny between two boundary tori 77 and 75,
then a lift ;‘31 will connect a lift T1 of Ty to a lift Tz of 7>. Call Nk the lift of Ny
containing ;31. By the argument above, any @ € ¥ J# (xp) has a coherent lift & that
contains a segment intersecting ﬁ and T; Call that segment ;. Notice that this
segment &; is uniquely determined, because @ intersects T, only once.

We define o to be the projection of @y on M. All we have left to do now is to
show that «; is freely homotopic to 8, relative to the boundary with a free homotopy
that stays inside the piece Ng.

The lift Ny is 51mply connected, because the tori in the torus decomposition are
mi-injective. Since Tl, T2 are path connected we can connect the points of 7, ﬁl
in T with an arc > a1 and similarly with an arc a in T,. This produce a closed loop
ay Uop Uay U ,81 (we are not paying attention to orientation along the arcs here).
Since N is simply connected, this loop is null homotopic in Nk and projects to a
closed loop in N which is null homotopic in N. Notice that the arcs a; and a
are well defined up to homotopy with endpoints fixed. Hence B and «; are freely
homotopic in Nj relative to the boundary.

If we keep doing this for all the other components of §—U{T }, so that at each step
the arcs a1 are chosen to be equal to a previously chosen arc on the same lift ﬁ , then
this produces a free homotopy from any segment of B to a corresponding segment
of o as claimed in the lemma.

This finishes the proof of Lemma 2.12. O

Lemma 2.13. Suppose that o and B are contained in a piece N of the torus
decomposition and that they are in the same free homotopy class. Let H be a
free homotopy between them. Then we can choose a free homotopy from o to B
entirely contained in N, unless, possibly, the image of H intersects a periodic Seifert
piece.

Proof. Fix a piece N of the decomposition, two orbits o, B in N and a free
homotopy H (in M) between them. Suppose that H is not already contained
in N. As the tori in the torus decomposition are two sided, we can choose the free
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homotopy to be in general position with respect to the boundary tori of the modified
JSJ decomposition.

Let ¢ be the intersection between the image in M of the free homotopy H and the
boundary tori of N. All the connected components of ¢ are closed paths on one of the
boundary tori. We first deal with the components of ¢ that are homotopically trivial
on the tori. We can modify the homotopy H in the following manner: For each such
connected component ¢; of ¢, starting with the innermost (since it bounds a disk in
the torus), we consider the disc on the torus that ¢; bounds. The homotopy H (or
more precisely the connected component of H outside of N that bounds c;) together
with that disc forms a sphere. Since M is aspherical (because the universal cover
of a 3-manifold supporting an Anosov flow is always R* [54]), the sphere that we
obtained bounds a ball. We can hence modify H by replacing its part inside of ¢; by
a disc on the torus and then modifying it slightly to eliminate this intersection with
the union of the tori in the modified JSJ decomposition. Doing this process on all the
homotopically trivial connected components of ¢ eliminates all such intersections.

If that process removed all the connected components of ¢, then the homotopy is
in N and we are done. Otherwise, we can assume that any remaining component of ¢
is homotopically non trivial in the particular torus. Consider a sub-annulus, outside
of N, of the free homotopy between consecutive such intersections, call it A. This
annulus A has image in a piece V' of the modified JSJ decomposition. If this annulus
is homotopic into the boundary of V' we modify H so that the annulus A is replaced
by its homotopic image inside the boundary of V.

If A is not homotopic into the boundary, then it is an essential annulus in V. As
seen before this implies that V' is Seifert (not atoroidal) and the core of the annulus
is freely homotopic to a regular fiber, up to powers. Since this core is also freely
homotopic to a periodic orbit of ¢’ this implies that V' is a periodic Seifert piece.
Any further sub-annulus such that no boundary is either ¢« or B has to be homotopic
into that boundary of V' as proved in the previous lemma.

Recall that V' and N are distinct pieces of the JSJ decomposition. So if the free
homotopy H cannot be modified to be contained in N it follows that

* There is a homotopy (still denoted by H) made up of 3 annuli: Ay, A, A,, where:
e A; is afree homotopy in N from « to a curve y; in a boundary torus 77 of N,
* A is a free homotopy contained in the periodic Seifert piece V' and

* A, is an annulus in N from a curve y; contained in a boundary component 73
of N to B.

Notice that both y; and y, are isotopic to regular fibers in their respective tori.
So if 77 = T> then the homotopy H can be modified to be entirely contained in N.
Therefore we can assume that 77 # 75, and this finishes the proof of the lemma. [J

2.3. Lozenges and separation constant. A half leaf of a stable leaf L of FSisa
component of the complement of an orbit in L. Similarly if L is an unstable leaf.
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Definition 2.14. A lozenge L in O is an open subset of O such that (see Figure 2):
There exist two points ¢, f € O and four half leaves A C ¥ Fs (@), B C "””(oz)
C C F5(B) and D C F*(B) satisfying:

» Forany A* € £5,A* N B # @ifandonlyif A°* N D # 0@,
o Forany A € £%, A* N A # @ if and only if A* N C # @,
* The half-leaf A does not intersect D and B does not intersect C.
Then,
L:={pecO|F(p)NB#£0, F'(p)n4#0}.

The points o and B are called the corners of L and A, B, C and D are called the
sides.

Figure 2. A lozenge with corners «, 8 and sides 4, B, C, D.

In [4], Barbot proves that a lozenge with a periodic corner (i.e. such that its corner
orbits project to periodic orbits in M) corresponds to a Birkhoff annulus. A Birkhoff
annulus is an annulus which is transverse to the flow, except for its two boundary
components which are orbits of the flow. Conversely, any Birkhoff annulus gives
rise to lozenges, however in general it may be a finite union of lozenges. When the
Birkhoff annulus is associated with a single lozenge, we say that the Birkhoff annulus
projects to this lozenge. More specifically, Barbot showed that starting with any
periodic lozenge, one can construct a Birkhoff annulus that projects to it (see [4]). A
Birkhoff torus is a torus obtained as a finite union of Birkhoff annuli.

Definition 2.15. A chain of lozenges is a connected union of lozenges such that two
consecutive lozenges always share a corner or a side.
A string of lozenges is a connected union of lozenges that only share corners.

Lozenges sharing sides are particular:

Lemma 2.16. If two lozenges share a side, then two of their other sides are on
non-separated leaves.
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(a) A string of lozenges. (b) A chain of lozenges.

Figure 3. Chain and string of lozenges.

Proof. The two leaves abutting to the shared side are not separated since any leaf in
the neighborhood of one of them is in the neighborhood of the other. See Figure4. [

Figure 4. Two lozenges sharing a side. The red (gray) leaves are not separated.

It follows from Theorem 2.6 that only a finite number of lozenges, up to deck
transformations, can share a side.

A periodic orbit can in general be the corner of anything from 0 to 4 lozenges,
but translating the previous lemma to corners gives:

Lemma 2.17. Suppose that & is the corner of 3 or 4 lozenges, then the opposite
corners are on non-separated leaves.

So up to deck transformations, there are only a finite number of orbits that can be
the corner of more than 2 lozenges.
Another fact can also limit the number of lozenges abutting to a particular orbit:

Lemma 2.18. Suppose that & is an orbit inside a lozenge L. Then ™ is the corner of
at most two lozenges.

Proof. If & is an orbit inside a lozenge L, then at least two of the quadrants that
the stable and unstable leaves of @ define cannot be part of a lozenge as can be seen
in Figure 5: The quadrant containing the red (dark gray) leaves cannot be part of a
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lozenge, since otherwise two stable leaves (and two unstable leaves) would intersect.
The other two quadrants can however define lozenges, as can be seen with the blue
(mid gray) leaves in Figure 5. L]

Figure 5. An orbit in a lozenge cannot be the corner of more than two lozenges

Definition 2.19. A scalloped chain of lozenges is an bi-infinite chain of lozenges all
of which intersect either a common stable leaf or a common unstable leaf.

A scalloped region is a scalloped chain of lozenges together with the sides in
between two consecutive lozenges.

If o« and B are two freely homotopic orbits, then we say that & and 8 are coherent

lifts if there exists g € 1 (M) that fixes both @ and 8. A property of freely homotopic
orbits that will be essential for us is the following

Proposition 2.20 (Fenley [22]). If @ and B are two freely homotopic orbits then any
coherent lifts o and B are corners of a chain of lozenges.

This proposition is the reason why we choose to forget the orientation when talking
about free homotopy classes (Convention 2): It is easy to see that if & and Eare the
corners of a lozenge, then, up to powers, @ = 7 (&) is represented by g € w1 (M)
and 8 = Jr(;t‘?) is represented by g~1. So, forgetting orientation allows us to have a
full chain of lozenges associated to a free homotopy class instead of just half of the
corners. Moreover, the difference between the number of orbits in a free homotopy
class and in a oriented free homotopy class is by a factor of 2. So it would not change
any of the counting results in Section 7, but would only change the constants.

In fact the same is true if one lifts the flow to a finite cover of M, modulo changing
the constants involved. In particular if needed we can lift to a cover where both
and F¥ are transversely orientable (in which case M is orientable as well). Then
given orbits o, B of ¢' and integers 7, m, not both zero, such that «” freely homotopic
to 8™, it follows that « is either freely homotopic to 8 or to S~ as oriented curves.
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We now introduce some terminology that will be needed later on.

Definition 2.21 (minimum distance, Hausdorff distance). Let A, B be two disjoint
closed sets in a metric space Z.

The minimum distance between A and B is the infimum of d(a, b) where a is
in Aand b isin B.

The Hausdorff distance between A and B is the infimum of » > 0 such that A4 is
contained in the r neighborhood of B and vice versa. This infimum could be infinite.

We will use later that the minimum and hence the Hausdorff distance (for a given
metric on M) between two corners of a lozenge is bounded below.

Lemma 2.22. There exists A > 0, depending only on the flow, such that, if the
minimum distance between two stable leaves A1, Ay € F 5 is less than A, then there
exists an unstable leaf [" € F intersecting both A1 and A,. The same statement
stays true with the same A when switching the roles of stable and unstable.

Moreover, if the minimum distance between two orbits o and p of the lifted flow ¢
is less than A, then the stable leaf through « intersects the unstable through B and
vice-versa.

This lemma is a simple consequence of the product structure of the foliations and
the compactness of the manifold.

A far less obvious fact that we will also need later on is that the Hausdorff distance
between two corners of a lozenge is also bounded from above (see [27, Corollary 5.3]):

Proposition 2.23 (Fenley [27]). Let «, B be two freely homotopic orbits such that
they admits lifts & and Ethat are the corners of the same lozenge. Then, there exists
B > 0 depending only on the flow and on the manifold such that there exists an
homotopy H from o to B that moves each point by a distance at most B.

2.4. From free homotopy class to strings of lozenges. In order to obtain our
counting results in Section 7 about free homotopy classes, we will consider some
subsets of free homotopy classes which are easier to work with.

We fix some terminology first. Let ¢! be an Anosov flow on a 3-manifold M,
and « a closed orbit of ¢*. Let ¥ # («) be the free homotopy class of «. Recall that
we defined (in the proof of Lemma 2.12) a coherent lift of ¥ # () in the following
way: Let g be an element of the fundamental group that represents « (so any other
element of the conjugacy class of g would also represent o). A coherent lift of
F H (x) is the set of all the lifts of orbits in F #(c) that are invariant under g.
Notice that there may be distinct orbits in a coherent lift of & # () that project to
the same orbit in ¥ # («).

By previous results of the second author [22], recalled in Proposition 2.20, a
coherent lift of ¥ # («) to the universal cover is composed of the corners of a chain
of lozenges.
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Definition 2.24. We say that {¢; }ics isa string of orbits in F H (), if it satisfies the
following conditions:

All the ¢; are distinct and contained in ¥ # («);

For a coherent lift of # # (o), the orbits {«; };es are the projections of the corners
of a string of lozenges {&; } (see Definition 2.15 above);

Each @; is the corner of at most two lozenges in M.
Here I is an interval in Z, which could be finite, isomorphic to N or Z itself.
There are several slightly different types of string of orbits:

A string of orbits {«; } is infinite if it is indexed by i € N. We call it bi-infinite if
it is indexed by Z.

A string of orbits {«;} is finite and periodic if it is finite but the collection {c¢;}
is the projection of corners of an infinite string of lozenges. In other words the
collection {&; };ez is infinite, but there is an element 2 € 7;(M) and a integer
k > 0 such that & - &; = o; 4. Note that all the orbits in a periodic string are
non-trivially freely homotopic to themselves (up to powers).

A string of orbits {«;} is finite and non-periodic otherwise. In other words the
string {o; } is finite, and it is not the projection of an infinite string {@; },i € N.

Example 2.25. Suppose that ¢’ is R-covered and that ¥ is transversely orientable.
Let & be a periodic orbit. Choose @ a lift of & and, set o; = 7 (7’ (@)) (where 1 is
the map on the orbit space defined in Proposition 2.4). Then {«;} is either a finite
periodic string of orbits or a bi-infinite string of orbits. In addition the free homotopy
class of « is exactly the collection {c; }.

2 «-wm\\ s
T
i

Figure 6. Three different strings of lozenges inside a chain of lozenges

This means that if the flow ¢’ is R-covered, then the free homotopy classes are

quite simple. In the general case however, things tend to be more complicated (see
Figure 6). Fortunately, we have the following result.
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Proposition 2.26. Let « be a closed orbit of an Anosov flow on a 3-manifold. The
free homotopy class ¥ ¥ () can be decomposed in the following way:

* A finite part ¥ H fnite (@),

* A finite number of disjoint strings of closed orbits (that could be infinite, finite and
periodic or just finite).

Moreover, there exists a uniform bound (i.e. depending only on the manifold and the
flow) on the number of elements in ¥ H gnie (). And there exists a uniform bound on
the number of different strings that a free homotopy class can contain.

In fact, the statement about the uniform bounds can be made even stronger, as we
will see in the proof: Except for a finite number of free homotopy classes, each free
homotopy class is either a finite, infinite, or bi-infinite string of orbits. We also want
to emphasize that we do not claim that there exists a uniform bound on the number of
orbits inside a finite free homotopy class (see after Theorem 7.3 for a discussion of
that point), but just a bound on the parts of a free homotopy class that are not strings
of orbits.

The very important consequence of this proposition for this article is the following:
counting orbits inside a free homotopy class is the same, up to a change of constants,
as counting orbits in an infinite string.

Proof. Let FH (o) be a coherent lift of the free homotopy class and g € w1 (M) be
a generator of the stabilizer of all the lifted orbits.

By Proposition 2.20 the elements of FH (o) are all corners of a chain of lozenges.
Moreover, an orbit is a corner of three or more lozenges if and only if the adjacent
corners are on branching leaves (see Lemma 2.17).

From 7 J (o) we construct a graph (V, E) in the following way:
* The vertices are the orbits;
» Two vertices are joined by an edge if they are the two corners of a lozenge.

Note that, even though we will not be using that fact here, the graph defined here is
in fact a tree ([9, Proposition 2.12] or [22]).

The stabilizer G of FH () contains g and acts on the graph (V, E). With the
assumption that M is orientable and ¥° is transversely orientable, then an element
h € G has a fixed point if and only if & = g”" for some n. We define the quotient
graph (V’, E’) by applying the following rules:

* The vertices vy, v, are identified if there exists 4 € w1 (M) such that vy = & - vy;

* Two edges are identified if their corresponding lozenges are sent one onto the other
by an element of G.

Note that in the new graph (V’, E’), some edges might go from a vertex to itself.
It is now easy to see that the graph (V’, E’) has at most a finite number of vertices
of degree strictly greater than 2. Indeed, each vertex in this graph of degree > 2 is
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associated to an orbit which is a corner of at least 3 lozenges. Hence by Lemma 2.17,
its neighboring vertices have to be on non-separated leaves, but there are only a finite
number of non-separated leaves up to deck transformation (see Theorem 2.6).

Notice that (V’, E’) is connected. So removing all the vertices of degree > 2 from
(V', E") gives a finite number of infinite connected components plus a finite number
of finite connected components. Let S be one of these connected components. The
only way that S can fail to project to a string of orbits is if some of the lozenges
representing the edges in S share sides. But two lozenges share sides if and only if the
two opposite corners are on non-separated leaves (see Lemma 2.16). So removing
all the corners on non-separated leaves and their adjacent corners leaves only strings
of orbits.

So we define F H ginie (@) as the set of all the orbits on non-separated leaves plus
their adjacent orbit, i.e. the orbits that comes from corners adjacent to the one on
non-separated leaves. Clearly, by construction, ¥ J (o) ~ F H finite (&¢) consists of a
finite number of strings of orbits.

The uniform bounds come from the fact that there are a finite number of branching
leaves in M. Hence, there are only a finite number of free homotopy classes that are
not just a finite non-periodic, finite periodic, infinite, or bi-infinite string of orbits.
The fact that we have uniform bounds on the number of different strings is therefore
immediate. [

A particularly useful property for us is that strings of orbits that are finite and
periodic are actually fairly special, in the sense that they are forced to stay in some
topologically limited part of the manifold M :

Proposition 2.27. Let {«;} be a finite periodic string of orbits. Then {a;} is a
complete free homotopy class. In addition they are either entirely contained in a
Seifert piece of the modified JSJ decomposition, or are the orbits on one of the
quasi-transverse decomposition tori.

Proof. Leta; beacoherentliftof {o; }. Letg € 1 (M) be a generator of the stabilizer
of all the &; and & € 71 (M) such that /& - &; = o;4+. First, applying A", n € Z,
to g shows that the indexation i needs to be bi-infinite, and since all the &; are, by
definition, assumed to be the corners of at most two lozenges, the part F J fiee (o)
has to be empty and {o; } = F H# (xg), which finishes the first part.

Now, since « is freely homotopic to itself, there exists a m1-injective immersed
torus that contains «g. Using Gabai’s version of the Torus theorem [30], we see that
this immersed torus is either embedded or the manifold is (a special case of) Seifert-
fibered. If it is the second case, we are done, and if the torus is embedded, then it can
be isotoped inside a Seifert piece or to one of the modified JSJ decomposition tori
(see Section 2.2 or [9]), which finishes the proof. OJ

We defined strings of orbits in no small part in order to have the following lemma,
that we will use time and time again in Section 6. But before stating it we introduce
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the following convention that we will use for the remainder of this article since it
simplifies notations for us:

Convention 3. If {¢;} is a finite periodic, non-periodic, infinite, or bi-infinite string
of orbits, we choose the indexation so that o is one of the shortest orbits in the string
and split the string in two so that 7 is always taken to be non-negative.

Notice that there are only finitely orbits in the string in F # («tp) that can be the
shortest in the string. From now on, a string of orbits will always refer to the result
of applying the convention above to a finite or infinite string of orbits.

Lemma 2.28. There exists A > 0, depending only on the flow, such that, if {c;} is a
string of orbits and {&; } is a coherent lift, then, for all i,

d(do, o) > Ai.

Here d is the minimum distance between oy and @;. In this result, we use
Convention 3 so that we can write / instead of |/|. Notice that in this and in the

following result we do not need to assume that M is orientable or any hypothesis
on 7, F".

Proof. This is just a consequence of Lemma 2.22. Let &; be a coherent lift of the «;.
There exists a uniform constant A > 0 such that, since the stable leaf of &7 does not
intersect the unstable leaf of @y, d (a7, @) > A. Moreover, we can choose A such
that the minimum distance between the stable leaves of &; and o1, is at least 24,
because no unstable leaf intersects both the stable leaf of @; and @; 1».

So, using the facts that M ~ R3, that each leaf of the lifted flow is homeomorphic
to R? and that the stable leaf of @; separates M in two pieces, one containing o;—1
and the other @; 41, we immediately obtain

d (o, o) > Al t

And, using Proposition 2.23 instead of Lemma 2.22, we get an upper bound:

Lemma 2.29. There exists B > 0, depending only on the flow, such that, if {c;} is a
string of orbits, then, for all i, there exists an homotopy H; between oy and «; that
moves points a distance at most Bi.

3. Examples of R-covered Anosov flows on toroidal manifolds

Obviously, examples of R-covered Anosov flows include suspensions of Anosov
diffeomorphism and geodesic flows of negatively curved surfaces. But there are
many more examples. For instance, the second author [19] constructed examples of
R-covered Anosov flows on hyperbolic manifolds. On the other hand, Barbot proved
in [5] that the examples constructed by Handel and Thurston in [34] are R-covered
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Anosov flows on graph manifolds, i.e. manifolds such that all their pieces in their JSJ
decomposition are Seifert-fibered.

But there also exist R-covered Anosov flows on manifolds admitting all sorts of
torus decomposition, i.e. with any number of Seifert fibered pieces and atoroidal
pieces, including examples with only atoroidal pieces. For instance, the second
author constructed in [26] examples of R-covered Anosov flow on manifolds with
some Seifert and some atoroidal pieces. We give here a slightly different construction
and note that it can also yield manifolds with only atoroidal pieces.

Our construction will be based on the Foulon—Hasselblatt surgery described
in [28]. One of the great advantages of that surgery is that it yields a contact Anosov
flow, i.e. an Anosov flow such that its generating vector field is the Reeb field of a
contact form. This is helpful in our setting because Barbot showed in [7] that contact
Anosov flows are R-covered.

Note that the results in [28] essentially imply the existence of R-covered Anosov
flows on manifolds with various torus decompositions, but this was not explicitly
stated there.

The Foulon—Hasselblatt surgery is a Dehn surgery done on a tubular neighborhood
of an E-transverse Legendrian knot. A Legendrian knot in a contact manifold is a
closed curve tangent to the contact structure. By definition, such a curve is always
transverse to the flow. It is called E-transverse if it is also transverse to the strong
stable and strong unstable subbundles.

E-transverse Legendrian knots are very common. For instance, if ¢’ is the
geodesic flow of a negatively curved surface %, then one can take a closed
geodesic (c(t),¢(¢)) € T'E and rotate the tangent vectors by n/2. The curve
(c(t),¢(t) + /2) is then a E-transverse Legendrian knot.

We can now paraphrase the Foulon—Hasselblatt construction in one theorem,
restricting to the case of a geodesic flow (see Theorem 4.2 in [28]). Note that, in [28],
there is a missing assumption on the E-transverse Legendrian knot to ensure that the
post-surgery flow is still Anosov, but this assumption is automatically verified for the
knots obtained by 7r/2-rotation of a geodesic.

Theorem 3.1 (Foulon, Hasselblatt [28]). Let ¢ be an Anosov geodesic flow on a
unit tangent bundle of a surface M = T'X. Suppose that y is a simple closed curve
in M, obtained by rotating the vector direction of a geodesic by /2. Then, for
any small tubular neighborhood U of v, half of the Dehn surgeries on U yields a
manifold N that supports a contact Anosov flow .

Moreover, the orbits of ¢! that never enter the surgery locus U are still orbits of
the new flow ¥' and the contact form of ¢* and " are the same on M ~U = N\ U.

In particular, the Foulon—Hasselblatt surgery can be performed, either simultan-
eously or recursively, on a finite number of disjoint, simple, £-transverse Legendrian
knots. Indeed, an E-transverse Legendrian knot that does not enter the surgery locus
is still E-transverse and Legendrian for the surgered flow.
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The reason we can do only half of the Dehn surgeries is that a certain positivity
condition needs to be satisfied in order for the proof that the surgered flow is Anosov
to work (see the proof of Theorem 4.3 in [28] or Sections 2.3 and 2.4 in [8])

We can now explain how to build an R-covered Anosov flow such that its torus
decomposition consists of one Seifert-fibered piece and one atoroidal one.

Let £ 3 be a genus 3 surface equipped with a hyperbolic metric, and ¢, its geodesic
flow. Let c; be a geodesic on X5 that splits X3 into two subsurfaces X1, of genus 1,
and X, of genus 2. Let ¢ be a geodesic that fills ¥, and does not intersect cj.
Here, “fills” means that any closed geodesic in X, except for ¢y, intersects c¢2. Now
let y1 and y, be the E-transverse Legendrian knots in 7! ¥3 obtained by rotating the
direction vector of the geodesics (c1, ¢1) and (¢2, ¢2) by 7 /2.

Claim 3.2. For infinitely many Foulon—Hasselblatt surgeries on y; and y,, the
resulting manifold M has a torus decomposition with one Seifert-fibered piece and
one atoroidal piece.

Proof. This is a folkloric result. For convenience of the reader we provide a proof
and refer to other references for more details.

Recall that a Dehn surgery is the following process in a 3-manifold N: remove
a solid torus neighborhood V of a simple closed curve and glue back by a
homeomorphism of the boundary torus Z of V. The torus Z has a basis of its
fundamental group given by a meridian and a longitude. The meridian is the unique
curve up to isotopy that is not null homotopic in Z but bounds a solid disc in V.
The longitude is a choice of a not null homotopic simple closed curve that has
geometric intersection number one with the meridian. There are countably infinitely
many homotopically distinct choices of a longitude. The surgery is determined
topologically by the new meridian. This is the curve up to isotopy in the corresponding
component of N — int(V') which is glued to the meridian in Z = dV.

Let N be the manifold obtained after a Foulon-Hasselblatt surgery on ;. The
unit tangent bundle of ¢; is a separating torus 7" in M splitting it into two Seifert-
fibered spaces N; and N, homeomorphic respectively to 71X, and 7!X,. The
Dehn surgery is done in a torus neighborhood U of y;, where y; is contained in the
torus 7. The boundary of U is also a torus W, which has a well defined meridian.
The torus W is isotopic to one W; around a flow line oy correponding to ¢; (the
unit tangent vectors to c¢; in one direction). In Wj there is a natural longitude,
which is a component of the intersection of the stable leaf of «; with the boundary
of the torus. This then defines uniquely a longitude in W. The surgery done by
Foulon—Hasselblatt is such that the new meridian in W is (1, n), where (1, 0) was the
old meridian and (0, 1) the longitude, see [28, Theorem 6.2] and [34]. By classical
3-manifold topology techniques, it is not hard to see that doing this Dehn surgery
on M is the same as cutting M open along T and regluing with a Dehn twist: the
direction correponding to «; is sent to itself, but the fiber of the Seifert fibration
is taken to a curve homotopic to itself plus n iterations of ;. As such the Seifert
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fibrations in each of the two pieces of N do not extend beyond 7'. It follows that N
is a graph manifold with torus decompostion 71X, T1X,.

Now we consider the second Dehn surgery, the one around y,. If Uy, is a tubular
neighborhood of y,, then N> ~U,,, = T 1%, ~ U,, is hyperbolic (see explicit proofs
in [28, Appendix B] or [26]). The proofs are done by considering a m;-injective
torus in 71X, ~ Uy, and showing that it has to be peripheral, that is, homotopic to
the boundary. The important point is that y, fills 25, which implies the property
of mq-injective tori. Hence by the hyperbolic Dehn surgery theorem of Thurston all
but a finite number of Dehn surgeries on U, will yield a hyperbolic manifold [52].
Therefore, for infinitely many Foulon—Hasselblatt surgeries on y, in NV, the surgered
manifold will have a torus decomposition consisting of one atoroidal piece (coming
from 7' %,) and a Seifert-fibered piece homeomorphic to Nj. O

To build a contact flow on a manifold with two atoroidal pieces, we can start
with 24 a surface of genus 4, choose c¢1, ¢ and c¢3 three non-intersecting geodesics
such that: ¢; splits X4 in two surfaces of genus 2, and ¢, and c3 each fills one of the
split surfaces. Doing Foulon—Hasselblatt surgery on the Legendrian knots obtained
from c1, ¢, and c¢3 will almost always give a contact Anosov flow on a manifold with
two atoroidal pieces.

It should be clear from that construction how one can build a contact Anosov flow
on a manifold with any sort of JSJ decomposition. So in summary, we have:

Theorem 3.3. There exist contact Anosov flows (so, in particular, R-covered Anosov
flows) on manifolds with their torus decomposition consisting of any number of
Seifert-fibered pieces and any number of atoroidal pieces (including only atoroidal
pieces or only Seifert pieces).

4. Classifying flows via their free homotopy classes

In this section, we first prove Theorem B.

Theorem4.1. Let ¢’ be a R-covered Anosov flow on a closed 3-manifold M. Suppose
that every periodic orbit of @' is freely homotopic to at most a finite number of other
periodic orbits. Then either ¢' is orbit equivalent to a suspension or ¢ is orbit
equivalent to a finite cover of the geodesic flow of a negatively curved surface.

Theorem 4.1 is a consequence of the following:

Theorem4.2. Let ¢’ be aR-covered Anosov flow on a closed, orientable 3-manifold M
and suppose that ¢ is not orbit equivalent to a suspension. Suppose that ¥° is

transversely orientable. Let a be a periodic orbit of ¢'. Then o has only finitely

many periodic orbits in its free homotopy class, if and only if « is either isotopic

into one of the tori of the JSJ decomposition, or isotopic to a curve contained in a

Seifert-fibered piece of the JSJ decomposition.
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Proof. Since ¢' is R-covered and not orbit equivalent to a suspension, then ¢* has the
skewed type as explained in Section 2. There are no branching leaves and hence any
chain of lozenges is in fact a string of lozenges. Since ¢’ is skewed each lift & of o
generates an infinite string of lozenges € in M. Since this is a string of lozenges
then a closed orbit 8 is in ¥ # () if and only if there is a lift Ethat is a corner
of €. Hence ¥ # () is finite if and only if the string of orbits obtained by projecting
the corners of € to M is finite, that is, ¥ #(«) is finite periodic. So in particular
if ¥ J () is finite, then Proposition 2.27 implies the result.

Let us now deal with the other direction. Suppose that up to isotopy « is on one
of the tori or entirely inside a Seifert piece of the JSJ decomposition.

If o is on one of the boundary tori then as an element of 71 (M), « is in a Z?2
subgroup of 7 (M ). If o is contained in a Seifert piece of the JSJ decomposition,
then in m1(M), a? commutes with an element representing a regular fiber of the
Seifert fibration in the piece. In either case o? is an element of a subgroup G ~ 7~
of 71 (M). Let g € G associated with «?, and @ a lift of o to M left invariant by g.
Let f € G not leaving & invariant. Then

g(f(@) = f(g(@) = f(@),

so@and f (&) are distinct orbits of ¢ that are invariant under g non trivial in 7y (M).
This implies that @ and f (&) are connected by a chain of lozenges €,. This chain
is a part of a bi-infinite chain € that is invariant by g. The transformation f acts
as a translation in the corners of €, which shows that these corners project to only
finitely many closed orbits of ¢* in M. Therefore the string of orbits associated to €
is finite. On the other hand, using agam that the flow is R-covered, we have that any
B € F H(x) has a coherent lift ,6 to M such that ﬁ is a corner of this bi-infinite
chain €.

This ends the proof of Theorem 4.2. 0

Now we prove Theorem 4.1.

Proof of Theorem 4.1. If a finite lift of ¢’ is a suspension then ¢’ itself is a
suspension [23]. So we assume from now on that M is orientable and both stable
and unstable foliations are transversely orientable.

Suppose that every periodic orbit of ¢’ is freely homotopic to at most a finite
number of other periodic orbits and also that ¢ is not orbit equivalent to a suspension.
We want to show that the flow is, up to finite covers, orbit equivalent to a geodesic
flow. All we have to do is to prove that the manifold M is Seifert-fibered, as a
previous result of Barbot [5] (see also Ghys [31], or [9] for the generalization to
pseudo-Anosov flows) yields the orbit equivalence.

Suppose that M isnot Seifert-fibered. If M was hyperbolic then [19, Theorem 4.4]
shows that every free homotopy class is infinite, contrary to the hypothesis. It follows
that M has at least one torus in its torus decomposition. As ¢’ is R-covered, it is
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transitive (see [3]), so there exists a periodic orbit « that is neither contained in one
piece of the modified JSJ decomposition nor in one of the tori of the decomposition.
To build such a periodic orbit, we can start from a dense orbit and pick a long orbit
segment returning inside one of the interiors of the Birkhoff annuli in a Birkhoff torus
of the torus decomposition. Using the Anosov closing lemma this orbit is shadowed
by a periodic orbit with the same properties. By Theorem 4.2, o has to have an
infinite free homotopy class, which gives us a contradiction. O

The second author’s construction in [26] gave the first explicit examples of Anosov
flows such that some orbits have infinite free homotopy classes and some have
finite free homotopy classes. Gathering the results of Barbot [3,5], Fenley [19]
and Theorem 4.1, we can now be a bit more precise. Let us say that a flow has
a homogeneous free homotopy type if either all the closed orbits have infinite free
homotopy class or they all have finite free homotopy class.

Theorem 4.2 immediately implies the following:

Corollary 4.3. Let ¢’ be an R-covered Anosov flow on M such that ¥ ° is transversely
orientable. Then ¢' has a homogeneous free homotopy type if and only if one of the
following happens:

* M is hyperbolic (and then every closed orbit has an infinite free homotopy class),

e M is Seifert-fibered (and then ¢ is orbit equivalent to a finite cover of a geodesic
flow and there exist k such that all the closed orbits have exactly k orbits in their
Jfree homotopy class);

* The flow is orbit equivalent to a suspension of an Anosov diffeomorphism (and
then every closed orbit has a free homotopy class that is a singleton).

If 5 is not transversely orientable the results holds in a double cover of M. In M
itself there will be some free homotopy classes that are singletons and in the first two
cases, other free homotopy classes that are not singletons.

4.1. Restrictions on infinite free homotopy classes. In this section, we prove
Theorem D and then use it to show that Theorem 4.1 is “sharp”, in the sense that the
assumption that the flow is R-covered cannot be dropped.

It turns out that every periodic piece except for one special case is an obstruction
to having an infinite free homotopy class crossing it:

Theorem 4.4. Suppose that ¥ # («) is an infinite free homotopy class of a periodic
orbit of an Anosov flow on an orientable manifold M. Then only finitely many
orbits of ¥ J(a) can be contained in a Seifert-fibered piece of the modified JSJ
decomposition. No orbit of F # () can cross a periodic Seifert-fibered piece unless
that piece is a twisted I -bundle over the Klein bottle.

Moreover, there exists a bound C, depending only on the flow and the topology of
the manifold, such that if ¥ # (&) is a free homotopy class that stays entirely inside
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a Seifert piece of the modified JSJ decomposition, or crosses a periodic piece that is
not a twisted I-bundle over a Klein bottle, then the number of orbits in ¥ H («) is
less than C.

In order to prove this theorem, we will use the following result. Recall that
a Birkhoff annulus is an annulus transverse to the flow except for its boundary
components that are periodic orbits (see Section 2.3).

Theorem 4.5 (Barbot, Fenley [9], Theorem B and Section 7). Suppose that M is
orientable. Let P be a periodic Seifert piece of the modified JSJ decomposition of M .
There exists a two dimensional complex Z in M, called the spine of P, consisting of
a finite union of Birkhoff annuli with boundary periodic orbits that up to powers are
freely homotopic to the regular fiber of P.

The submanifold Z is a model for the core of P in the sense that a small
neighborhood N(Z) of Z is a representative for the piece P. Moreover, the only
periodic orbits inside N(Z) are the boundary periodic orbits in Z, and all the orbits
that intersect the piece P are either on one of the periodic orbits, or intersect Z in a
segment entering and exiting Z transversely to the boundary.

Finally, let g in w1 (M) associated with a periodic orbit in Z and let ‘C‘,”Z be the
tree of lozenges with corners the fixed points of powers of g and the lozenges that
connect these. Let €z be the subtree of ‘(‘,"Z that contains all the axes of the elements
f € w1 (P) such that f acts freely on ‘C”Z. This tree €z of lozenges projects to Z in
the appropriate sense. Then every corner in €z is the corner of at least two lozenges.
In addition unless P is a twisted I -bundle over the Klein bottle, the tree €z is not
a linear tree, and there exists n such that any string of lozenges inside the chain Cz
contains at most n lozenges.

We explain the last statement. The set Z is a finite union of Birkhoff annuli,
suppose there are m such annuli. If there is a string of lozenges of length more
than m, it forces €z to be a linear tree. Under the hypothesis of M orientable, it was
shown in [9] that this implies that P is a twisted /-bundle over the Klein bottle.

Proof of Theorem 4.4. Let ¥ # (o) be a finite or infinite free homotopy class. Let P
be a Seifert-fibered piece of the modified JSJ decomposition of M. We suppose
that an orbit of ¥ J€ («) intersects P. We split the proof in two cases, depending on
whether P is periodic or free.

First case. Suppose that P is periodic. We want to show that there exists a uniform
bound on the number of orbits in ¥ # («) that can be contained in P. Let Z be the
spine of P defined in Theorem 4.5. We denote by {y;};=1....x the set of periodic
orbits in Z.

If B € FJ () is contained in P, then f is one of the y;. This proves the first
statement in the case that P is periodic.

.....
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Suppose now that B crosses P and that P is not a twisted /-bundle over the Klein
bottle. Then the geometric intersection number of B with one of the boundary tori
of P is non zero. Therefore the same is true for any y € ¥ # («) (by Lemma 2.12).

Thanks to Proposition 2.26, we can pick a string of orbits {«;} inside ¥ H («),
and, thanks to the uniform control given by Proposition 2.26 on the number of such
strings and the number of orbits of ¥ # gne (@), finding a uniform bound for the
number of orbits in the string {&; } gives a uniform bound for the number of orbits
in ¥ H(x).

As explained previously we can assume that the «; intersect P but are not
contained in it. Since the «; are periodic, they cannot be on the stable or unstable
leaves of the {y;};=1,..k. Hence, again by Theorem 4.5, each «; intersects Z
transversely. Let €z be a chain of lozenges in @ that projects to Z given by
Theorem 4.5 and &; be a coherent lift of the string «;. Since ¢ intersects Z
transversely, we can furthermore choose the lift &; such that @y (seen in ) is inside
one of the lozenges in €z. We call that lozenge Lo and its corners co and c¢;.
Since {&; } are the corners of a string of lozenges, up to renaming c¢o and ¢y, then ¢
has to be in the lozenge between &y and @;. In particular, according to Lemma 2.18,
c1 can be the corner of at most two lozenges. So, thanks once again to Theorem 4.5,
c1 is the corner of exactly two lozenges. We call L the second lozenge. The orbit oy
is in L1, hence we can iterate the argument above to get a third lozenge L, such
that Lo U L1 U L5 is a string of lozenges. Since P is not a twisted /-bundle over
the Klein bottle, then Theorem 4.5 implies that the number of elements in a string
of lozenges inside €z is bounded above. Therefore the number of orbits inside the
string {¢; } is bounded above by a uniform constant.

This finishes the proof when P is periodic.

Second case. Suppose that P is free. We want to show that there exists a uniform
bound on the number of orbits in & # (c) that stay inside P.

As explained before we only need to worry about strings of orbits in & # (o). Let
again {o;} be a string of orbits in # # (&) contained in P and let {&; } be coherent
lifts to the universal cover. Let g € m1(M) be the common stabilizer of the ¢; and
let i € 71 (M) be the representative of the fiber of P. Since P is a free Seifert piece,
we have hgh™! = g*!. Hence, gh -Gy = hg™! - Qo = h - Gy, so g stabilizes & - qp.
And, by iteration, g stabilizes A" - oy for any n € Z. Hence all the A" - o are linked
by a chain of lozenges. Moreover, since &y cannot be the corner of more than two
lozenges, it follows that, for all n > 0 (or all n < 0), A" - &y € {&;}. In particular,
there exists k € N such that @ = 4 -G (or @x = h~' - &), hence the number of
orbits in the string {¢;} is less than k.

All there is to show now is that k does not depend on the string {«;}, but only
on & (hence only on P), which will finish the proof. Let 7, (%) be the maximum
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translation length of 4 inside P, i.e.

Tuallt) I= S0P A% R %),

x€eP

where P is a lift of P in M. Since P is compact, the supremum above is in fact
attained, and hence finite.
By Lemma 2.28, there exists 4 > 0 uniform such that d(cfp, &;) > Ai, so

Ak < d@Oaak) = d (o, h - @) < Tmax(h).

Hence k < 1,4 (h)/ A, so is bounded above by a uniform constant. This finishes the
proof of Theorem 4.4. (I

It is easy to see that this result is also true for the more general case of pseudo-
Anosov flows.

Now, using the examples of totally periodic Anosov flows constructed in [9]
and Theorem 4.4, we can show that Theorem 4.1 is not true for non R-covered
flows. Pseudo-Anosov flows are a generalization of Anosov flows where one
allows finitely many periodic, singular p-prong orbits where p > 3 and one only
assumes the existence of continuous (weak) stable/unstable foliations and not the
strong stable/unstable foliations, see [25,27]. Note that by results of Inaba and
Matsumoto [36] and Paternain [43] (see also [15]), for flows on 3-manifolds, being
pseudo-Anosov is equivalent to being expansive.

A (pseudo-)Anosov flow on M is totally periodic it M is a graph manifold such
that all its Seifert pieces are periodic. A consequence of Theorem 4.4 is the following:

Corollary 4.6. Suppose that ¢* is a totally periodic (pseudo-)Anosov flow such that
no piece of the JSJ decomposition is a twisted I -bundle over the Klein bottle. Then
every periodic orbit is freely homotopic to at most a finite number of other periodic
orbits (and there exists a uniform bound on the number of freely homotopic orbits).

Proof. If necessary we can lift to a double cover such that M is orientable. The fact
that this result is true also for pseudo-Anosov flows is just because Theorem 4.5 holds
for pseudo-Anosov flow, hence so does Theorem 4.4. In the case of totally periodic
pseudo-Anosov flows it follows that one can choose the neighborhoods N(Z) of the
spines Z to have boundary transverse to the flow. As explained in [9, section 7] this
implies that the tree of lozenges ‘GIZ is equal to the “pruned” chain €z. In particular
if a periodic orbit is freely homotopic into the Seifert piece P, then it is one of the
vertical orbits in Z. This proves the result for the vertical orbits in some Seifert piece.
Any other orbit crosses a piece. Then again Theorem 4.4, implies the finiteness of
the corresponding free homotopy class, since we assumed that no piece is a twisted
I -bundle over the Klein bottle. All the bounds are global. 0

Note also that Theorem 4.1 for non R-covered flows cannot be true, even if we
ask for transitivity.
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Corollary 4.7. There exist (many) non-algebraic transitive Anosov flows such that
every periodic orbit is freely homotopic to at most finitely many others (and there
exists a uniform bound on the number of freely homotopic orbits).

Proof. The construction of totally periodic (pseudo)-Anosov flows described in [9,
Section 8] can be done in such a way that the resulting flow is transitive, and no piece
of the JSJ decomposition is a twisted /-bundle over the Klein bottle. This produces
the desired examples. O

As explained in [9], the generalized Bonatti-Langevin examples studied by
Barbot [6] are a particular case of totally periodic transitive Anosov flows. They
are therefore examples of Anosov flows satisfying the above corollary. But if we
consider only the original Bonatti—Langevin example [13], we have something even
stronger:

Proposition 4.8. Every orbit of the Bonatti—-Langevin Anosov flow is alone in its free
homotopy class.

Proof. In the Bonatti-Langevin example, every orbit but one intersects a transverse
torus 7. If B is an orbit intersecting 7 then ¥ H (B) = {B} because if B is freely
homotopic to some orbit y, there is « periodic orbit such that f is freely homotopic
to !, with orientations induced by the flow and perhaps up to powers. But since T
is a transverse torus to ¢’ this cannot happen.

On the other hand if « is the single orbit not intersecting 7', then « is periodic
and by the above ¥ # (o) = {«}. This proves the result. O

5. More examples of infinite free homotopy classes

Here we produce a variety of non R-covered examples with infinite free homotopy
classes. The starting point is the geodesic flow @ in the unit tangent bundle My of
a closed, orientable, hyperbolic surface S. In [26] the second author constructed the
following examples. Let y be a closed geodesic in S and S; the subsurface of S that
it fills, and we assume that S is not all of S. Let S, be the closure of § — §;. For
simplicity we also assume that y is not simple, so S is not an annulus either. Let @
be a closed orbit of @ that projects to y in S. Do Fried Dehn surgery along the orbit
« to produce a manifold M; and a surgered Anosov flow ®;. The orbits of ®; are in
one to one correspondence with the orbits of ®y. Under a positivity condition on the
Dehn surgery (satisfied by infinitely many Dehn surgery coefficients) the resulting
Anosov flow @, is still R-covered. The following was proved in [26]:

e Let B be a closed orbit of ®@;. It corresponds to an orbit By of @ and that in turn
corresponds to a geodesic § in S.
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 If § is not isotopic into S, then the free homotopy class of B with respect to the
surgered flow @ is infinite.

o If § is isotopic into S, then the free homotopy class of f with respect to the
surgered flow ®; has exactly two elements.

Theorem 5.1. There is an infinite family of Anosov flows satisfying the following
property: each flow is intransitive (hence not R-covered) and has infinitely many
orbits such that each one has infinite free homotopy class. It also has orbits with
finite free homotopy classes.

Proof. Start with the geodesic flow ®( and do Fried Dehn surgery as above to obtain
the Anosov flow ©;. Now consider a geodesic 7 in S that is homotopic into S, and is
not peripheral in S,. Peripheral means that the curve is homotopic to the boundary.
Let @ be a periodic orbit of the flow ®; that corresponds to an orbit of ®q that
projects to T in S. Do a blow up of this orbit, using a derived from Anosov operation.
The resulting flow ®, has an expanding orbit. This operation does not affect the
periodic orbits B of ®; which correspond to geodesics § in S contained in S; and
the free homotopies between the periodic orbits in € (f). If the geodesic § in S
corresponding to B is not peripheral then ¥ J€(f) is infinite (with respect to the
flow @), and remains infinite when seeing 8 as an orbit of ®,. Now remove a solid
torus neighborhood of the expanding orbit to produce a semi-flow in a manifold with
torus boundary and the flow incoming along boundary. Glue a copy of this with
a reversed flow such that it is exiting along the boundary, as was done by Franks
and Williams in [29]. This can be done to produce a flow that is Anosov, as was
carefully proved by Bonatti, Beguin and Yu in [12]. The resulting flow ®3 still has
the orbits “B” as above and each of these orbits has an infinite free homotopy class,
as do infinitely many other orbits of the flow ®3. By the construction the flow ®3 is
not transitive and hence not R-covered. It also has diversified homotopic behavior:
if the orbit of ®; corresponds to a peripheral curve in S; then the blow up operation
does not affect this orbit and one can easily show that the corresponding orbit of @3
has a free homotopy class with exactly two elements.

This finishes the proof of the theorem. |

We also obtain the following result:

Theorem 5.2. There is an infinite family of transitive Anosov flows that are not
R-covered and that have infinitely many orbits, each of which has an infinite free
homotopy class.

Proof. This a modification of the construction in the previous theorem. We use the
geodesic T in S that is homotopic into S; and not peripheral in S>. For simplicity
assume that 7 is simple. Suppose now that S, has high enough genus so there is
another simple geodesic T’ homotopic into S, not peripheral and disjoint from .
Let @’ be a periodic orbit of ®; corresponding to the geodesic 7’. Besides doing
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the blow up of w, we also do the blow up of @’ now to produce an attracting orbit.
Remove neighborhoods of w and @’ and glue another copy with a reversed flow. The
resulting flow is denoted by ®4. Exactly as explained for the flow @3 in the previous
theorem, the flow @4 has infinitely many periodic orbits with infinite free homotopy
classes and also has periodic orbits with finite free homotopy classes. On the other
hand since we did the blow up with both a repelling and an attracting orbit, Béguin,
Bonatti and Yu [12] proved that the resulting flow is transitive. As it has a transverse
torus and is not a suspension, it is not R-covered.

This finishes the proof of the theorem. O

Now it is very easy to see that this can be iterated and blow up finitely many orbits
to obtain more complicated flows with the same properties as in these two theorems.
Finally we prove the following:

Theorem 5.3. There is an infinite family of Anosov flows each of which satisfies the
following: the flow @' is transitive, and not R-covered. The underlying manifold is not
hyperbolic but has atoroidal pieces in its torus decomposition. Every free homotopy
class of periodic orbits of ¢ has at most 4 elements, and every free homotopy class
but two is a singleton.

Proof. Let ¢pg be a suspension Anosov flow on a manifold My and y;, y» two periodic
orbits of ¢ that have stable and unstable leaves that are annuli. Do a blow up of both
of them, turning one into a repelling orbit r; and the other an attracting orbit «;.
Remove neighborhoods of «, @ to produce a manifold M; with boundary a union
of two tori 77, 7> and a semiflow in M; that is entering 77 and exiting 7>. Glue M,
to a homeomorphic manifold M, with a reversed flow. The torus 77 in M, bounds
a solid torus and therefore has a well defined meridian up to isotopy, that is, a curve
in 77 that bounds a disk in the solid torus. Because the stable and unstable leaves
of y; are annuli, there is also a well defined longitude in 77 that is a component of
the intersection of the local stable leaf of y; with the torus 77. Similarly the same
happens in 75.

The resulting flow is ¢ in the manifold M = M; U M>. By results of Béguin,
Bonatti and Yu [12] the gluing can be done in such a way that the resulting flow is
Anosov and transitive. In addition ¢ admits two transverse tori 77, 7> which are not
isotopic to each other. It follows that ¢ cannot be orbit equivalent to a suspension
Anosov flow. In addition ¢ also cannot be R-covered with skewed type — this is
because it admits a torus transverse to the flow. It follows that ¢ is not R-covered.

We will show that for any periodic orbit B of ¢ then the free homotopy class
of § has at most 4 elements. In fact we show that FH(B) = {8} except for one free
homotopy class. We will also show that M = M; U M, is the torus decomposition
of M and that M, M, are atoroidal.

We first show that for any periodic orbit B of ¢, then F H () has at most 4 elements.
Suppose that there is an orbit freely homotopic to B and distinct from . Then there is
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an orbit that is freely homotopic to the inverse of S as oriented curves [20]. Suppose
first that B intersects 77 or T5. Since 77 and T; are transverse to ¢ this implies that 8
cannot be freely homotopic to any other periodic orbit of ¢. This can be done by
looking at the algebraic intersection number with T} and 7>. Suppose now that j is
contained in say M; and let A be a possibly immersed annulus that realizes a free
homotopy from f to the inverse of a periodic orbit §. Put this free homotopy in
general position with dM; = T; U T,. Using the fact that M is irreducible, and
cut and paste techniques, we may assume that either A is contained in M; or there
is a subannulus 4; of A contained in My, such that 4; is a free homotopy from y
to a closed curve € in dM;. Suppose first that A is entirely contained in M;. In
this case € = § and the free homotopy can be blown back down to a free homotopy
between orbits of ¢o. This can only happen if they are the same orbit of ¢g as ¢o
is a suspension. In particular this implies that f is isotopic in M; to a longitude of
either 77 or T>. In either case the curve f is peripheral in M;. In particular if one
blows back down to M) this produces a free homotopy between an orbit of ¢ and one
of the blow up orbits y; or y». Again since ¢y is a suspension we obtain that the orbit
blown down from f is either y; or y,. Again this implies that f is isotopic in M; to
a longitude of either 77 or 75. The same happens from the side of M, and therefore
this can only happen if the longitudes were glued to each other. Notice that there are
two possible such orbits B in M;: these are the two closed orbits obtained by blowing
either y; or y» into 3 periodic orbits and then removing the original orbits y; or y»
when removing the solid tori. Therefore this implies that the free homotopy class
of B has at most 4 elements. This can only happen for the periodic orbits obtained
by blowing up y; or 2. So there are two free homotopy classes with four elements.
Every other free homotopy class is a singleton. This proves the statement about free
homotopy classes.

Let us now prove the statement about the JSJ decomposition of M. We will show
that M; (and consequently M>) is atoroidal. Let 7" be an incompressible torus in M.
Since T, T are incompressible in M, then T is also an incompressible torus in M.
As ¢ is not orbit equivalent to a suspension, 7" can be homotoped into a Birkhoff
torus. In other words, 7" can be a realized as a free homotopy from an orbit to itself.
But we just proved above that the only free homotopies are between the blow up
orbits from ¢g. This shows that 7" is homotopic and hence isotopic into either 77
or T». This shows that M is atoroidal. This finishes the proof of the theorem. [

6. Growth of period of orbits in strings of closed orbits

We now start the second part of this article, where we study orbits inside a free
homotopy class. This section contains the bulk of the work of the second part of
the article. Here we prove Theorem E, i.e. that inside an infinite string of orbits,
the period grows at least linearly and at most exponentially. We fix a Riemannian
metric g on M. We denote by d the distance in M for that particular metric.



Vol. 92 (2017) Counting orbits in free homotopy classes 679

Recall (see Remark 1.1) that we may, and will, always choose our metrics and
Anosov flows in such a way that the orbits are unit speed, since this does not change
the results of Theorems E, F, and G.

We will use the following notations. For any curve ¢ in M, we write /(c) for the
length of the curve. In addition if ¢ is a path in the universal cover M, which is the a
lift of a closed curve « in M, by [(c) we always mean the length of the corresponding
curve . Recall also that the Hausdorff distance between two sets Sy, S is defined
in the following way

ditaus (S1. S2) := max { sup mf d(x,y), sup inf d(x,y)},
x€S Y y€eS, ¥€51
and when talking about the distance between two sets, we mean the minimal distance,
18

d(Sl,Sz) i TR {d(x,y) | X € S],y < Sz}

We start by stating the result for the upper bound on the length growth, which is
the easiest result.

Theorem 6.1. Let ¢* be an Anosov flow in M3, Let {o;}ier be a string of orbits
indexed such that og is the shortest. Then the length growth is at most exponential
in i. More precisely, there exists C1,Cy > 0, depending only on the flow and the
manifold such that, for all i € 1

(o) < C1l(ceg)e?.

Proof. Let &; be a coherent lift of the string «; and y the element of 1 (M) fixing
all of the &;.

According to Lemma 2.29 there exists B > 0 depending only on the flow and the
manifold such that there exists an homotopy H;(s,),0 <s < 1,0 <t < 1, from
oo = H;(0,-) to o; = H;(1,-) that moves points a distance at most Bi (that is, for
any 7, the length of H; (-, 7) is bounded above by Bi).

Let A; bealiftof H; fromo tod;. Letx = H; (0,0) epand y = H;(1,0) € &
be fixed. Let cg be the part of &y from x to y - x and ¢; the part of &; from y to y - y.
Then H; is a free homotopy from ¢ to ¢; that moves points by at most Bi.

Hence, ¢; is included in N(cq, Bi), the tubular neighborhood of ¢¢ of radius Bi
in M.

We are going to show that the length of ¢; (that is, the length of «; ) cannot get too
big, because it stays in a part of M that has a bounded volume (depending on i)

There exists constants C1, C, > 0, depending only on the metric on M (in fact
just on a lower bound for the curvature), such that the volume of balls in M of radius r
is bounded above by C1e¢2".

Hence,

Vol(N(co. Bi)) < I(co)C1e“25",

where /(¢p) is the length of ¢o.
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Thanks to Anosov’s closing lemma, there exists ¢ > 0 depending only on the flow,
such that, for any orbit &@ in M, the tubular neighborhood N(@, €) of & of radius ¢ is
an embedded solid tube in M . Indeed, otherwise the Anosov closing lemma would
imply the existence of a closed orbit in M, which is impossible.

Hence, N(c;, €), the tubular neighborhood of ¢; of radius ¢ is embedded in, up to
replacing B by B + &, N(cg, Bi). So Vol (N(c;j, e)) < Vol (N(co, Bi)).

Now, thanks to classical Riemannian comparison theorems, the volume of the
embedded tubular neighborhood N(¢;, ¢), will be, for & small enough, controlled
above and below by a term of the form /(c;) K(e), where K(¢) is either the maximum
(for the control above) or the minimum (for the control below) of the area of an
embedded disk of radius &. These maximum and minimum can, in turn, be controlled
in terms of bounds of the curvature of the metric, and the area of such a disk in the
corresponding model space. In particular, there exists ¢’ > 0, depending only on ¢
and the (bounds on the curvature of the) metric on M, such that

I(ci)e’ < Vol(N(ci,€)) < Vol(N(co, Bi)) < I(co)Cre“25".
So up to renaming the constants Cy and C», we get, as claimed,
(o) = I(ci) < 1(co)C1C28" = () C1e“25. .

Now we state the result for the lower bound on the growth of period inside a string
of lozenges. The proof is much more involved, as ¢ depends in a delicate way on the
topology and geometry of M or its pieces. Establishing that result will take the next
three subsections.

Theorem 6.2. Let ¢' be an Anosov flow in M3, Let {a;} be a string of orbits of ¢,

with the indexation chosen so that g is the shortest orbit. Then the length growth is
at least:

(1) Exponential in i if the manifold M is hyperbolic;

(2) Quadratic in i if the {vj}ien intersects an atoroidal piece of the JSJ
decomposition of M ;

(3) Linearini if {a;}ien goes through two consecutive Seifert-fibered pieces of the
JSJ decomposition of M.

Remark 6.3. In some sense the theorem has content only when the string is infinite,
since with big enough constants this is trivial for any finite string. We will however see
in the next subsections that we can get explicit bounds on the length of «; depending
only on the length of a shortest orbit in the string.

For M Seifert fibered every free homotopy class is finite and uniformly bounded
in cardinality. So in the proof we may assume that M is not Seifert fibered. Therefore,
using the geometrization theorem, then either (i) M is hyperbolic; or (ii) M is not
hyperbolic, but has an atoroidal piece in its JSJ decomposition; or (iii) M is a graph
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manifold and has at least one torus in its torus decomposition. In the third case of the
above theorem, the two consecutive Seifert pieces may be the same piece, but in that
case it is assumed that the Seifert fibration does not extend across the gluing torus.

Also up to a double cover we may assume that M is orientable. This does not
affect possibilities (1)—(3), up to changing the constants involved.

Remark 6.4. By Lemma 2.12 if an orbit «; in the string crosses a torus T of the
JSJ decomposition then every orbit in its free homotopy class also crosses 7. The
remaining case is that distinct orbits in the string {¢; } may be contained in distinct
pieces of the modified JSJ decomposition. Again by Lemma 2.12 as we move through
the string (say increasing i) the orbits can only change the pieces they are contained
in at most two times. So in any case we may choose a substring still denoted by {«; }
such that every orbit in this string is contained in the same piece of the modified JSJ
decomposition.

6.1. Hyperbolic case. We first start with the hyperbolic case, which is both the
easiest and the one for which the period growth is the fastest.

Proposition 6.5. Let {«;} be a string of orbits of an Anosov flow on M. If M is
hyperbolic, then there exist constants A, B > 0, independent of the homotopy class
and Dy, depending on ag such that

l(o;) > Be Paoedl,

In order to prove this proposition, we recall the following classical lemma of
hyperbolic geometry (see for instance [40, Proposition 3.9.11])

Lemma 6.6. Let c(t), t € R be a geodesic of H". Let ¢1(t), a <t < b, be a curve.
Let p, resp. q, be the orthogonal projection of c1(a), resp. c1(b), onto c¢. Suppose
that d(c1(a), p) = d(c1(b),q) > k and that d(c1(t),c) >k, foralla <t < b.
Then

[(c1) > d(p,q)coshk.

Proof of Proposition 6.5. We first fix a hyperbolic metric on M. As previously
mentioned, by reparametrization, we can now assume that the flow is unit speed for
that particular metric. Let {@;} be a coherent lift of the {&;} and g be a generator
of the stabilizer in 71 (M) of all &;. Since g preserves all of the &;, these curves
have the same endpoints on the boundary at infinity doH?>. Let ¢, be the axis of g
acting on H, or equivalently the geodesic with the same two endpoints as the &7.
Since c¢g and d@p have the same endpoints on the boundary at infinity, they are a
bounded Hausdorff distance from each other. We denote by Dy, that distance, that
is, Dgy = dyaus (Cgaa?O)-

By Lemma 2.28, there exists a constant A > 0, depending only on the flow, such
that the minimal distance between &; and & is at least Ai. Therefore, the distance
between &; and ¢, is bounded below by Ai — D, . Let x be a point on ¢g. Define x;
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as the point on &; such that the orthogonal projection of x; onto cg is x, and (in case
there is more than one such point), we take x; to be a point closest to ¢g (but any
other choice works as well).

Now [(«;) is equal to the length of the part of the curve &; between x; and g - x;.
Therefore, by Lemma 6.6, we get that

I(

I(a;) = d(x, g - x)cosh(Ai — Dyy) = _%g_)eAie—Dao_

Replacing /(cg) by the length of the smallest geodesic in M, we obtain the
existence of a universal constant B > 0 such that, for all i,

[(ot;) > Be Pao A O

Remark 6.7. In order to later obtain counting results with uniform control, we need
to give an explicit control of Dy, in terms of /(¢tg). The concern here is the following.
If Dy, is very big, this means that the curve oy has pieces at least D, away from c,
and possibly all of @y is at least Dy, from cg. By the lemma this implies that og may
have a huge length. Therefore the exponential growth of [(«;) with respect to [(ap)
takes much longer to kick in in terms of i and hence this growth is not uniform
amongst strings of orbits. Notice that for example in the case of R-covered Anosov
flows in hyperbolic 3-manifolds with & ° transversely oriented, every periodic orbit
generates an infinite string of orbits. Therefore there may be infinitely many different
strings of orbits (in fact, our bound will prove that there must be infinitely many, see
Theorem 7.1). To get uniform control we will split ¢; into pieces depending on how
big Dy, is and also how much of @; is near cg or far from ¢g. The downside is that,
to get this uniform control, we obtain a worse bound of the growth of /(;) than in
the proposition above.

Lemma 6.8. Let {«; } be a string of orbits as above. Let a be the length of the shortest
geodesic in M. If [(cg) < t, with t > max(4,ae/2), then, for all i,

l(ai) > Be—ﬁlog(Zt/a)eAi.

Proof. Notice that we only have to worry about the case that Dy, is big, for otherwise
the result is immediate given the previous lemma. Let g and cg be as in the preceding
proof. Recall that D, is the Hausdorft distance between oy and cg .

First, suppose that d(lg, cg) > D,/ /1. Then, by Lemma 6.6, we have

H(a0) = 8 Pl V.

So, if a is the length of the shortest geodesic in M, we get

oo 2 (Lo )*” ; (z)ﬁ
“\2aw)) - T\2t)
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Hence, by Proposition 6.5, for all 7,
Z(O.’i) > Be_DO‘OeAi > Be_ﬁIOg(ZI/a)eAi.

And the lemma is proved in that case.

Now suppose that d (¢, cg) < Dg,/+/T. We then cut @ in two (not necessarily
connected) pieces (see Figure 7): Let B¢ be the set of points of ¢y that are at most
Dy, /+/t from cg, and let yo be the closure of @y ~ Bo, i.e. yo is the piece of &y such
that d(yo, cg) = Dq,/+/t. By our assumption, B¢ is not empty. And since Dy, is
the HausdorfF distance between @ and ¢, yo cannot be empty either (because ¢t > 1,
80 Do/ A/t < D).

Figure 7. The splitting of the orbit &g and the geodesic cg.

We fix a fundamental domain Q of oy under the action of g. Let sg be the
orthogonal projection of (8o N 2) onto ¢ and let s, be the orthogonal projection
of (yo N ) onto c¢g. We write dg for the length of sg and d,, for the length of s,,.
Clearly, dg + d, > l(cg), so either dg > [(cg)/2 0rdy > l(cg)/2.

First case. Suppose that dg > I(cg)/2. In this case we can redo the proof of
Proposition 6.5 for the parts of ¢; that are far enough from cg: Each curve ¢; has the
same endpoints as cg, hence the orthogonal projection to ¢, is surjective. For each i
let B; be the inverse image of sg of this orthogonal projection.

Since d(Bi, Bo) > Ai and dyays(Bo, cg) < Day/+/t, we obtain that d(B;, cg) >
Ai — Dgy,/~/t. Moreover, by construction, the length of the orthogonal projection
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of B; onto cg is at least dg. Then applying Lemma 6.6 again, we get that
[e) = 1(Bi) = d?'ge“‘“_Dﬂfo/\/’T > l((ng)eAfe—Dao/«/?_

Now, since Dy, = dpaus (00, g ), then yo contains a curve that has to go from the
annulus of radius D,/ A/t around cg to the annulus of radius Dy, around cg. So,

L) 10w _ o) _t
Dao(l_ﬁ)_ 5 =5 <2.

Taking ¢ > 4, we get that Dy, < ¢. Using this and the previous inequality, we get

() > l(cg)eAie—DaO/ﬁ > Z(Cg)eAz'e—ﬁ'
4 4
So for some universal constant B > 0, we get
I(c;) > Bedle ™1,
hence the lemma follows for ¢ > ae!/2.

Second case. Suppose that dg < I(cg)/2. It follows that d), > [(cg)/2. Applying
Lemma 6.6 once again, we get

[
I(oto) > 1(y0) > %ebao/ﬁ,

So,
Vi Vi
e_DaO b @ > _a_ .
— \ 2l(p) — \ 2t
And finally,
I(a;) > BemDO‘OeAi > Be-\/flog(zt/a)eAi.
This finishes the proof of the lemma. O

Remark 6.9. The choice of the function Dg,/ 4/t as the transition function from
being near cg to being far from cg is to some extent arbitrary. Possibly different
choices of the transition function could lead to a better inequality in Lemma 6.8.
However, it is not clear how to make a better choice, or if it is even possible with
that proof. Indeed, if one takes a bigger transition function, say Dy, /2, then we get
a better bound (in 1/1¢) for the part of & that is far from cg, but a far worse (in fact
exponential) bound for the part that is close. Whereas if one takes a smaller transition
function, say Dg,/?, then the situation is reversed. In particular, none of these other
choices would be good enough to obtain Theorem 7.4, i.e. the answer to Question 1,
even though the constants would still be uniform. It is very natural to try bounds of
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the form Dg,/ t*. The first bound above corresponds essentially to k = 0 and the
second to £k = 1. Neither works for Theorem 7.4, and we are leadto 0 < k < 1.
With the transition function D,/ t*, if one follows the proof of the proposition from
near and far from the geodesic cg the following happens: One gets a bound in terms
of exp(—t¥ log t) and another in terms of exp(—t'* log#). So clearly the optimal
bound for these types of transition functions occurs when k = 1/2.

6.2. One atoroidal piece.

Proposition 6.10. Suppose that the orbits {«;} are all entirely contained in an
atoroidal piece N of the modified torus decomposition of M or they all cross into
this piece N. Then there exists B > 0 depending only on M and the flow, and
Dy, > 0 depending on ag such that

I(et;) > Bi%e Peo,

In order to prove the above proposition, we need a result on neutered manifolds.

Definition 6.11. A compact manifold N is a neutered hyperbolic manifold if N =
V ~ H where V is a complete hyperbolic manifold of finite volume and H is the
interior of a disjoint union of horoball neighborhoods centered at the cusps.

The neutered metric on N, denoted by d,,, is the path metric obtained from the
hyperbolic Riemannian metric in N. We also lift the Riemannian metric to N and
again denote by d,, the path metric in N (for this lifted Riemannian metric).

The hyperbolic metric on V' induces another metric on N, that we denote by dj,.
We also write dj, for the metric on N induced by the hyperbolic metric on V = H3.
Here we think of N as a subset of ¥ C H?.

Note that we may always choose the horoball neighborhoods such that they are
spaced at least one unit from each other and we will always assume that in the
following. Let 7: V' — V be the universal cover.

Lemma 6.12. In N the following holds: dy < d, < 2sinh(dj/2).

Proof. The first inequality is trivial, so we only prove the second. Let x;,x2 be
points in N. Let ¢ be the hyperbolic geodesic arc from x; to x2. The hyperbolic
distance from x to y is exactly the hyperbolic length of ¢. As long as c is disjoint
from 7! (H) then c is contained in N and the hyperbolic length along ¢ is the same
as the neutered length. So we suppose this is not the case and let 8 be the closure
of a component of ¢ N 7~ }(H). In the upper half space model we can assume that
the removed horoball containing f is associated with infinity. We may furthermore
assume that the horosphere bounding that horoball is the set of points where z = 1.
By rotations and translations we can assume that g is actually in H? and connects the
points ag = 7 +i and a; = 5 + i in the upper half plane. Let p be the hyperbolic
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length of B, which is the same as the hyperbolic distance from ag to a;. So p is
given by
.o P X
sinh = = —.
2 2
Notice that x is exactly the length of a segment in the boundary of the horoball,
and that is also the neutered length of this segment. Hence any segment B of length p
can be replaced by a segment in N of neutered length x = 2sinh §. The inequality

of the lemma follows. O

Proof of Proposition 6.10. We are going to prove that the corresponding parts of the
orbits ; that are inside the atoroidal piece N grow quadratically with the index 7.
So, if the orbits {¢;} are not entirely contained in N, we consider the curves §;
obtained in the following manner. First, we fix a generator of the fundamental group
of each of the decomposition tori (so this is independent of the orbits ¢;). Then, by
Lemma 2.12, for each i, there exists aiN a connected component of &; N N such that
each oeiN are freely homotopic to each other relative to the boundary of N. Let 77, 7>
be the boundary tori of N that the curves Y intersects.

(1) If 77 = T, then we close each a;N along a geodesic segment on the torus between
its two endpoints, making sure that we choose each geodesic segments in a coherent

way, i.e. making sure that the closed paths §; are still pairwise freely homotopic to
each other.

(2) If Ty # T, then we close up & by adding loops I} and /2, starting at the
endpoints of aiN , and in the free homotopy class of the fixed generator chosen above
of, respectively, 77 and 7;. Moreover, we choose Zl.l and ll?‘ to be of minimal length in
their homotopy class, so that their length is bounded above by a constant depending

only on the flow and the manifold.

The path §; is obtained by concatenation of /1, &V, 12, and —c" .

If the orbits {¢;} are contained in N, then we write §; = «;. For convenience,
we note that the important features of the §; are:
e Foralli,§; C N,
» The curves §; are freely homotopic in N,

e The length of §; ~ aiN , that is, the length of the pieces of the curve which are not
part of an orbit of the flow, are bounded independently of i and independently of
the family {c;}. Indeed, setting D’

D' = max supinf {/(d) | d is homotopic to ¢ with fixed base point ¢(0)},
€ ¢

where € runs over the chosen generators of each of the decomposition tori, and

c:[0,1] — N runs over all the curves in the free homotopy class of €, then
1(8; \oziN) = JI¥,
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We choose a metric on M such that the atoroidal piece N is a neutered hyperbolic
manifold. Let dj, and dj be the neutered and hyperbolic metrics in N, as in the
definition of neutered manifolds.

Let 5 be coherent lifts of the §; to the universal cover N of N. Recall that,
Lemma 2.28 gives a uniform 4 > 0, such that the distance in M between &; o; and g
is greater than Ai (and hence the same inequality is true for the dy distance for
the parts of @; and o do that stays i in N ) So, the minimal separation for the neutered
distance d,, in N C M between §; and 80 is atleast Ai —4 D', since [(§; ~a¥) < 2D’

For convenience, we write d,’z = dy (50,51), and, setting D = 4D’, we have that
di > Ai — D.

Since N is contained in V' = H?2, we can use the boundary at infinity of H3: Let g
be the element of 1 (N) that leaves invariant everyrg Since N = V ~ H, we can
see 1(N) as a group of isometries of H?>. More precisely each element of 771 (N)
seen as a covering translation of N is the restriction of a hyperbolic isometry of H?3
to N C H3. So we call ¢, the hyperbolic geodesic in H?> representing g. The
geodesic cg is in general not contained in N, but cg has the same endpoints as the §;
on the boundary at infinity . H?3. _

Let d,i’o be the minimum hyperbolic distance between points in §; and cg. Let
I1(cg) be the hyperbolic length of cg /g, or in other words, [;(cg) is the translation
length of the hyperbolic element g. Let /,,(8;) be the neutered length of §; (which is
the same as its length for the Riemannian metric on M), and /5 (§;) be its hyperbolic
length. Note that, since §; stays in N, its neutered and hyperbolic length are the
same. Thanks to Lemma 6.6, we then have

dlo

2

In(8:) = 1n(81) = In(cg) coshdy® >

In addition if d,i is the minimum neutered distance from FS: to E) and d;; is
the corresponding minimum hyperbolic distance then by Lemma 6.12, d; <
25inh(d}‘;/2). Hence

e@/? > d}

Lét Dy 7= tlias, H(’SUO, cg) be the Hausdorff distance for the hyperbolic metric
between &p and cg. Then

di = dy(80,8:) < dp(8:,cg) + Dag = di° + Doy,
SO
o

[ i
zn(ai)zzh(cg)ez > h(zcg)edhe_DO’o

> lh(zcg)e—DaO (drfl)z > gh(%_)_e_[)ao (Al — D)2
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Replacing [ (cg) by the minimal translation length of the hyperbolic isometries
in 71 (N), we can find a constant B > 0 depending only on the manifold and the flow
such that

1,(8;) > Be P02,

Since 1, (8; ~ oV) has length bounded by a uniform constant, we have that for
some uniform constant C > 0, /(«;) > CI,(8;). So, replacing the constant B above
by B/C, we obtain

l(e;) > Be P02, O

This finishes the proof of Proposition 6.10.

We will later need to control that the constant D, obtained in the Proposition 6.10
does not get too big with /(ctp). The following lemma deals with that and its proof is
essentially the same as the Lemma 6.8

Lemma 6.13. Ler {a;} and p be as in Proposition 6.10. There exists a uniform
constant C > 0 such that, if [(co) < t, with t > max(4, Ce'/€), then, for all i,

I(a) > Be~V1oet/C);2,

Proof. We use the same notations as in the proof of Proposition 6.10. In particular,
h indices refer to distance computed in the hyperbolic metric, while n indices refer to
the neutered metric. Length without any index refers to the length in M. Also recall
that the curves {d;} are contained in N.

First, suppose that d, (3:;, ¢g) > Dg,/~/t. Then, applying once more Lemma 6.6,
we have

10 (80) = I (80) = In(cg)ePeo/ v,

where the first equality comes from the fact that §o is entirely in N, hence its
neutered and hyperbolic length are equal. Recall that by construction of §;, there
exists a uniform constant C > 0 such that /(¢;) > CI(6;). Setting a to be the
smallest translation length of hyperbolic elements in 771 (N), we get

Vi Vit
e~Dao > (BT (LT
Hence, by Proposition 6.10, for all 7,

I(ct;) > Bi%e Peo > Bi2e—Vtlog(t/Ca)

And the lemma is proved in that case, up to changing C to aC.

Now suppose that dj, (?%, cg) < Dyy/+/t. Then, as in the proof of Lemma 6.8,
we let Bo be the piece of §y such that its Hausdorff hyperbolic distance is at most
Dao/\/?, and let yg be the closure of 8o ~ By, i.e. Yo is the piece of @y such that
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dn(y0,cg) = Dgy/~/ (see Figure 8). By our assumption, Bo is not empty. And
since Dy, is the Hausdorff distance between 8¢ and cg, yo cannot be empty either
(because we can assume ¢ > 1,50 Dy, /+/t < Dgp).

0
/.
—
"
N "
(3)

Figure 8. The orbit 8o in N = V ~ H and the geodesic ¢ in V = H3.

Let © be a fundamental domain of § under the action of g. Letsg be the orthogonal
projection (for the hyperbolic metric) of (8o N £2) onto ¢g and s, the orthogonal
projection of (yp N 2) onto cg (see Figure 8). We write [, g for the hyperbolic length
of sg and /5, ,, for the hyperbolic length of s,,. Clearly, I g + l5,, > [p(cg), so either
lh,ﬁ = lh(cg)/2 or lh!y > lh(cg)/z.

First case. Suppose that [ g > I5(cg)/2. Here we redo the proof of Proposi-
tion 6.10 for the parts of 3; that are far enough from cg. Let e, : H> — ¢, be the
orthogonal projection and let B; = E N (Jtcg)—l (sg). Notice that §; is not necessarily
connected.

Let d’ 0 = 4, (Bi.cg). Let I,(B;) be the neutered length of B; and /5 (B;) its
hyperbohc length Once again, since we are talking about lengths of curves in N (and
not distances between points), [,(8;) = [,(Bi), but we keep the different subscripts
to help remembering which metric we are considering at each time. Thanks to
Lemma 6.6, and our assumption that /, g > I5(cg)/2, we have

; [ 3,
In(8:) = 1,(B:) = In(Bi) = lp, g cosh d;l,’,% > h(:g)edh.%_

(6.1)

In addition if d ,’l 8 is the minimum neutered distance from B; to Bo and d;; 8
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is the corresponding minimum hyperbolic distance then by Lemma 6.12, d ,’1 g =
ZSinh(d,i ‘3/2). Hence

di /2 i
e mtl">d, g.

Recall that, by construction of §;, we have d,, (8;, o) > Ai — D, where D is a uniform
constant (see proof of Proposition 6.10). Therefore, the same inequality holds for
d, g = dn(Bi, Po), so we have

eh8/2 > Aj — D

Now, by construction, B¢ is such that dyas, 7 (Bo,cg) < Dap/ AT, 50

. ; D
di g <d% + —2.
h’B - h:ﬂ t

Hence, using (6.1), we get

- 4
> %) =Dagi i} )2 > 1) e/ VE(4; — Dy

Since Dy, = duaus,H (80, Cg ), Yo contains a curve that has to go from the annulus
of radius Dg,/+/t around ¢, to the annulus of radius Dy, around cg, which implies

that
1 ln(}/O)
D l—— ] < ,
aO( «/?) -2

Taking once again C > 0 to be a uniform constant such that [(¢«;) > CI(5;), we
obtain, for t > 4,

4
<=,

Dao = ln()’O) = ln(SO) = C

[(eo)
g
Using this and the previous inequality, we obtain
)
(o) > Clu(8;) > cl’%g—)e“%/ﬁ(m — D)2 > Bi2e~ViC,
where B > 0 is some universal constant. The lemma follows for t > C el/C,

Second case. Suppose now that I , > I;(cg)/2. Here we apply Lemma 6.6 once
again, and obtain

[(a)
C

> 1, (80) = In(80) = In(vo) > ﬂ;ﬂeuao/ﬁ_
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So,

e Peo > (___Clh(cg))ﬁ > (g)ﬁ
21 (o) O\ 2f

Using Proposition 6.10, we get
Z(Oli) > Bi2€—Da0 > Bi2e_ﬁ1°g(2t/ca) ’
which yields the lemma after changing C to Ca/2. O

6.3. Two Seifert-fibered pieces.

Proposition 6.14. Let ¢* be an Anosov flow on M. There are uniform constants
A1, Ay > 0 such that the following happens: Let {o;} be a string of orbits. Let Sy
and S, be two Seifert pieces glued in M along one of the decomposition tori (so S
and S, are allowed to be the same with two boundary tori glued together). Suppose
that o intersects both Seifert pieces Sy and Sy consecutively. Then

l(O!i) > Ay — Ay — Z(C(o).

Proof. This proof will split into several different cases, depending on the topological
type of the Seifert pieces S; and S», and on the dynamical type of the flow (i.e. free
or periodic) on them.

Suppose first that either S or S is periodic and is not a twisted /-bundle over the
Klein bottle. This is the easy case, because by Theorem 4.4, there exists a uniform
bound on the number of orbits in {; }. The result follows therefore trivially.

The remaining possibilities are either that the flow is free on both S and S, or
that one is free and the other is a twisted /-bundle over the Klein bottle, or both are
twisted /-bundles over the Klein bottle.

We first show that the last situation cannot happen. If §; and S, are both twisted
I-bundles over the Klein bottle, then S and S, have a unique boundary torus 7.
Hence we have that M = S; U S,. Since 7 (7T) is a subgroup of index 2 in 71 (S)
and in 1 (S3), it follows that 71 (7) is a subgroup of index at most 4 in 71 (M).
This is impossible since a 3-manifold supporting an Anosov flow cannot have a finite
index subgroup homeomorphic to Z?. Indeed, this would contradict the fact that
the fundamental group of a 3-manifold supporting an Anosov flow has exponential
growth [46].

So we can now suppose that either the flow is free on both S; and S, or that one is
free and the other is a twisted 7-bundle over the Klein bottle. This situation is quite
complicated and requires a long proof.

Note for future reference that since one of S; or S5 is free then the tori constituting
the common boundaries of S; and S5 are quasi-transverse but cannot be transverse.
Indeed, let T be such a torus and consider € a bi-infinite chain of lozenges that
is (T )-invariant. As explained in [9,10] if 7" is homotopic to a transverse torus,
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then all consecutive lozenges in € are adjacent (i.e. € is a scalloped chain). This
contradicts the fact that S (or S») is a free piece [10].

Now, if T is an incompressible torus in the boundary of §; and S;, then either
there exists a loop on T that is freely homotopic to a periodic orbit of the flow or the
flow is a suspension Anosov flow [21]. By hypothesis, the flow is not a suspension,
so any boundary tori of S; and S> must have one generator of their fundamental
group freely homotopic to a periodic orbit. Since we can assume that 7" is a quasi-
transverse torus, there is a periodic orbit contained in 7'. If both S; and S, are free
Seifert pieces, this orbit cannot be freely homotopic to the Seifert fiber direction.
This remark will be important for us in the following way: Since S; and S, are glued
along the quasi-transverse torus 7', the gluing is a Dehn twist that has to preserve the
periodic orbits in 7. Therefore the gluing is a Dehn twist around the orbits on 7'.
If (1, 0) represents the closed orbits in 7 then the gluing is given by the matrix [(1, 1 ]

If both S; and S, are free, there is a lot of structure of the flow when restricted
to these pieces. First of all we choose models for S;, S, that have every boundary
a quasi-transverse torus. In [11] the following facts are proved: the stable foliation
restricted to S; (or S») is transverse to the boundary and it is an R-covered foliation.
In addition since S; and S, are free one can choose the Seifert fibration in the
respective piece to be transverse to the stable foliation.

As Sy, S, are Seifert fibered spaces, let By and B, be the bases of respectively S;
and S,. In other words By, B, are the quotients of Sy, Sz by the respective Seifert
fibrations. If Sy or S, is periodic then, at this point, it is a twisted /-bundle over the
Klein bottle, and its base is not a hyperbolic orbifold.

First case. Suppose that By and B, are hyperbolic orbifolds. So in particular,
both §; and S, are free.

Choose a hyperbolic metric on B; and B, and lift this to metrics in Sy, S>
respectively, such that the leaves of the stable foliation are hyperbolic surfaces and
local holonomy along the Seifert fibers is a hyperbolic isometry. The Seifert fibrations
do not agree along the common boundary of S§; and S>. So in S, we make an
interpolation between the two Riemannian metrics near these boundaries.

Let 81-1 and 81-2 be connected components of, respectively, o; N S; and «; N S7 such
that §; = Sil U Siz is (possibly a subset of ) a connected component of o; N (S7 U S7).
We as usual choose all these connected components in such a way that they are freely
homotopic to each other inside each piece. Let 7" be the decomposition torus in
between 8 and 87, and x; be the point on 7 that separates &; between §; and &7

Let 341 be the universal cover of S;. Note that §1 = §1 x R, where El is the
universal cover of B;. Note that §1 C H?. Let E;l be a coherent lift of the 51.1 and
T = ;3:.1 N T be the endpoint on T

The horizontal foliation is the stable foliation. The vertical foliation is the Seifert
fibration in each piece. For any x, y € S1, we write dji..(x, y) for the distance along
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the horizontal foliation and dy. (x, y) for the distance along the vertical foliation.
Since the pieces S and S, are glued together by a Dehn twist along T, there exists
a constant C; > O such that a vertical leaf for the fibration on S; is sent to a line of
slope C; in the coordinates given by the horizontal and vertical foliations on S,.
Once more using Lemma 2.28, we know that for some uniform A > 0,
d(30,87) = Ai, s0
Ai = dl-llor(fo’}(i) + d\}er(’ib’%)'

Suppose that

ACqi
dI-llor(xU’xl) = 2—{—C1

then the result follows from the following claim.

Claim 6.15. Let C > 0. There exists a uniform constant Co > 0 such that, if
di. (X0, %:) = Ci then 1(8}) = Ci —1(83) — Ca.

Figure 9. Large horizontal distance between yg and y;.

Proof We first fix one horizontal leaf 31 = Bl x {0} inside Sl = B1 x R and
write /6, for the projection (through the vertical foliation) of 8 onto B1 Let y; be the
projection along the Seifert fibration direction of X; onto B;. We write dp, for the
hyperbolic distance on B: C H2. By definition, dp, (yo, i) = dit,.(X0,%;) > Ci.
Let 7T} be the decomposition torus containing the other endpoint of Sil. Let ﬁ
be the coherent lift of 77, i.e. the lift such that the other endpoint of FS? is on ﬁ
Note that 77 and T might be the same torus, however, ﬁ = T since the d; are not
homotopically trivial in S; relative to the boundary. This last fact comes from the
quasi-transversality of 7 and 77. Let y = TN B1 and y; = T1 N 31 By our choice
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of metric, y and y; are geodesics boundaries of §1 inside H?. Let ¢ be the geodesic
in Bj realizing the minimal distance between y and y; and let y = ¢ My the endpoint
of ¢ on y (see Figure 9).

We have thatdp, (v, y;) = Ci—dp, (¥, yo). Now, since the B; are curves from y;
to y, that ¢ is the geodesic arc perpendicular to both y; and y, that the metric on By
is hyperbolic, and that /(c) is greater than some constant depending only on the
manifold M (so up to scaling the metric, we can suppose that /(c) > 1), we get that
for some uniform constant Cy,

1(B:) = dp, (¥, yi) + d(y.y1) — Co = Ci —dp, (¥, y0) — Ca,

where C, can be chosen to depend only on the manifold and the JSJ decomposition.
Note that we also have

1(Bo) = dg, (¥, o) + d(y,y1) — Co,

s0, dp, (¥, yo) < l(ﬁo) + Co. So finally, since [(§}) > Z(E), we obtain

1)) = 1(Bi) = Ci = 1(35) = (C2 + Co),
and the claim is proved. O

So the proposition is proved if dj (X¥o,X;) > ACyi/(2+ Cy), with a constant 4,
that can be taken to be A; := AC;/(2 + C1). We now suppose that d}} (Xo,%;) <
AClz/(Z + Cl) Then,

N ACyi 2Ai
da X)) > Al — — .
ver(Xo, i) Z Al = 5 £ G | 20

Using the fact that S; and S, are glued together by a Dehn twist on 7" such that the
slope in the horizontal/vertical coordinates is C;, we get that

dﬁor@(}!%) Z Cld\}er(’fOSTX‘;) - dl—ll()r(f‘.x‘b!tfi)'

Hence,
241 ACqi B ACqi

FL0 G B
Therefore, we can apply the previous claim in the piece S, and thus finish the proof,
with the same constant A; = AC;/(2 + C1) as the first case.

Let us recap what we showed up to now: The proposition is proven if either S;
or S, is a periodic piece that is not a twisted /-bundle over the Klein bottle, or if
both §; and S, are free and have an underlying orbifold admitting an hyperbolic

structure. We assume now that this is not the case. Whether S1, S> are periodic or
not, let By, B, be their base spaces.

d3..Fo. %) = C;
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Second case. Up to renaming S; and S», we can suppose that either S; is periodic
and a twisted I-bundle over the Klein bottle or S; is free with By not an hyperbolic
orbifold.

So whether S is periodic or free, B is not an hyperbolic orbifold. Denoting
by y o the orbifold Euler characteristic, by y the topological Euler characteristic, and
by n; the order of the cone points of By, we then have (since S is Seifert, and so the
singular points of By can only be elliptic points)

xo(B1) = x(B1) — Z (1 —_ ni) > (.

j J

Since yo(B1) > 0, we must have y(B;) > Zj (1 — %) > 0. Hence the list of
topological types for B; is: the disk, the sphere, the real projective plane, the annulus,
the Mobius band, the Klein bottle and the torus. Now, by assumption, S; has at least
one boundary torus, so B; can only be a disk, an annulus or a Mobius band.

If By is an annulus or a Mobius band, then y(B;) = 0, so B; cannot have any
cone point. Suppose that B; is an annulus, then, since M is orientable S; has to be
orientable, so the Seifert fibration in S; has to be orientable. Hence S; has to be a
torus times an interval, but no Seifert piece of a IS decomposition can be T? x I,
so we have a contradiction in this case.

Hence, if y(B;) = 0, then B; has to be a Mobius band. And in that case,
since M is orientable, the S! fibration has to be non-orientable. So S is a regular
neighborhood of a one sided Klein bottle. In particular, .S; has only one boundary
component, and 71(S;) = 71(K), where K is the Klein bottle. We let N; be a
manifold which is a regular neighborhood of a one sided Klein bottle. In particular,
N is a twisted 7 -bundle over the Klein bottle.

Before continuing with the case S; = Ny, let us consider the other case left.

Suppose that B; is a disk, then, since yo(B1) > 0, By has at most 2 singular
fibers. Suppose that B; has either 0 or 1 singular fibers. Then §; is a solid
torus, so its boundary torus 7" is compressible, which is ruled out since 7' is a tori
of the JSJ decomposition of an irreducible manifold, so in particular 7" has to be
incompressible [35,37].

So B; has two singular fibers of order 2 each. In addition, since the disk
is orientable and M is assumed to be orientable too, the S! fibration has to be
orientable. Call N, that Seifert manifold. A presentation of the fundamental group
of N, is the following

Ti(Np) = (c,d,h|[c,h] =[d, k] =1, c* =d* =h).
In particular, settinga = c and b = d~c, we see that

71(N2) = (a,b | a”tba = b™1) = m1(K).
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So N, has also the fundamental group of the Klein bottle, and N, is also a
regular neighborhood of a Klein bottle. It follows that the manifolds N;, N, are
homeomorphic, but the Seifert fibrations are different. This is one of the few
manifolds where this happens.

Therefore, independently of whether S; = N; or ;1 = N,, we always have
that Sy has a unigue boundary torus, that we call 7" and 711 (S;) = 71 (K). Moreover,
B, always admit a finite cover which is an annulus and the universal cover of S
is FSVI = §1 x IR. We can replace the Seifert fibration in N, such that the R factor is
always the fiber direction and B is homeomorphic to [0, 1] x R.

We now turn our attention towards S». If we suppose that B;, the base orbifold
of 83 isnot hyperbolic, then, the argument just above shows that S, = NjorS; = N,.
In particular, S, has only one boundary torus 7" and M = §; U S,. As we saw earlier
in the proof, this is impossible since otherwise 71 (7) would be a subgroup of index
at most 4 in 1 (M), which would contradict the fact that 7;(M) has exponential
growth.

Therefore, B, is an hyperbolic orbifold.

So in either case we obtain, up to switching §; and S,, that S} is a twisted
I-bundle over the Klein bottle, and that S» is a free Seifert piece with hyperbolic
orbifold base.

In order to finish the proof we will apply a trick that will allow us to reduce the
proof to what we did in the first case. The manifold S, is a twisted /-bundle over the
Klein bottle. This can be described as follows. First let 7" with coordinates (x, y)
defined mod 1. Let j : T — T be the free involution of 7' given by j(x,y) =
(x +1/2,1—y). Now define S; to be the quotient of 7 x [0,1] by g(p,t) =
(j(p),1 —1t). Up to isotopy there are two Seifert fibrations in Si: the first %7 is
given by the curves y = const, f = const, the second F, is defined by the curves
x = const, t = const. The stable foliation when restricted to S; has up to isotopy an
annular leaf y = 0. The Seifert fibration #7 cannot be made transverse to the stable
foliation in S, but % can be made transverse.

Let f:T C S — T C S; be the Dehn twist giving the gluing between S,
and S;. Now, if V is a vertical fiber of S5, it travels through S; and comes back
to Sy, it becomes the curve f~! o j o f(V). In particular, since f(V) is a curve
of slope C; > 0 in the horizontal/vertical coordinates in Sy, j o f(V) will be of
negative slope and hence f~! o j o f(V) will have an even more negative slope.

The trick is the following: S; has a double cover T" x [0,1]. Since K is one
sided in S this produces a double cover M, of M made up of T x [0, 1] and two
copies of M — int(S) glued along 7" x {0} and T x {1}. In particular the Seifert
piece S lifts to two Seifert fibered spaces S3 and S4 contained in M, and each one
is homeomorphic to S,. In addition since Sy lifts to 7' x [0, 1] then S3 U (T x [0, 1])
is also a Seifert fibered space. But the Seifert fibration cannot be extended to Sy4
because as explained in the paragraph above the Seifert fiber V' in S5 (a lift of the
Seifert fiber V' in S2) moves through 7" x [0, 1] (corresponding to the curve ¥ moving



Vol. 92 (2017) Counting orbits in free homotopy classes 697

through S1) to a curve V" which is a lift of =1 o j o f(V)) and as explained in
the paragraph above this is not a curve isotopic to a lift of the fiber V' in S,. This
shows that the Seifert fibration in S3 U (7" x [0, 1]) cannot extend into S4. Notice
that S3 U (T x [0, 1]) is homeomorphic to S3 which is in turn homeomorphic to S,
and hence has hyperbolic base orbifold. In addition the Seifert fibration in S35 cannot
extend to any other parts of M> or else the projection to M would extend the Seifert
fibration of S in M. The important conclusion for us is that S3 U (7 x [0, 1]) and Sy
are Seifert fibered pieces of the JSJ decomposition of M>. The Anosov flow in M
lifts to an Anosov flow in M, and the string of orbits also does, with a factor of at
most 2 in the periods of the orbits. Now S5 U (T x [0, 1]) is free and with hyperbolic
base orbifold. The same is true of S4. The lifted string of orbits crosses through
S3 U (T x [0, 1]) into S4. So we reduced the last possibility to the first case and the
result follows.

This finally ends the proof of Proposition 6.14. O

7. Consequences for counting orbits

7.1. Counting orbits in free homotopy classes. First, it is a classical result that
the number of periodic orbits of an Anosov flow grows exponentially fast with the
period [14,41]. Moreover (when the flow is transitive and not a suspension of an
Anosov diffeomorphism) the exponential rate of growth is the topological entropy of
the flow. Several authors also studied the growth of periodic orbits when restricted
to a given homology class (see for instance [2,38,44,50] and references therein). In
a fixed homology class, the rate of growth is still exponential, and they obtain some
precise expression of the exponential rate.

Thanks to our previous results, we can give bounds for the rate of growth of the
number of orbits inside a fixed free homotopy class. Let us first explain what we
exactly mean by that: The free homotopy class of an orbitis only well determined up to
conjugacy, so when talking about a fixed free homotopy class, we fix a conjugacy class
in w1 (M). We will write Cl(h) for the conjugacy class of an element g € m; (M).
If o is a closed orbit of ¢, then we write Cl() for the conjugacy class in the
fundamental group of M that represents «. So

F H (o) = {B closed orbit | C1(B) = Cl(a)}.

Theorem 7.1. Let ¢' be an Anosov flow on a 3-manifold M, and h be an element of
the fundamental group of M.

(1) If M is hyperbolic, then there exists a uniform constant A1 > 0 and a constant
C1 n depending on h such that, for t big enough,

1
fj{a closed orbit | Cl(«) = ClI(h), l(x) < t} < i log(?) + Cy 1.
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(2) Ifthe JSJ decomposition of M is such that no decomposition tori bounds a Seifert-
fibered piece on both sides (so in particular, if all the pieces are atoroidal), then
there exists a constant Cy j, depending on h such that, for t big enough,

ﬂ{a closed orbit | Cl{«) = Cl(h), I(x) < t} <Cih V1.

(3) Otherwise, there exist constants Ay > 0 and B > 0, that do not depend on h if
M is a graph manifold, such that, for t big enough,

fi{o closed orbit | Cl(a) = Cl(h), I(x) <t} < Ayt + B.

So, in any case, the orbit growth inside a conjugacy class is at most linear in the
period.

Moreover, independently of the topology of M, there exists a uniform constant
Az > 0 and a constant C, j, depending on h such that, if the set

{o closed orbit | Cl(er) = Cl(h)}

is infinite, then for any t
1
fi{o closed orbit | Cl(a) = Cl(h), l(e) <t} > - log(t) — Ca.p.
3

Remark 7.2. Note that, when M is hyperbolic, the growth rate of the number of
orbits inside a free homotopy class is exactly logarithmic.

Proof. First note that, if {o closed orbit | Cl(«) = Cl(h)} is empty or finite, then the
first parts of the theorem follows trivially, so we restrict our attention to elements £
that yields an infinite free homotopy class of orbits.

In order to prove the result, we also note that, thanks to Proposition 2.26, counting
the number of orbits in a free homotopy class is, up to a uniform factor, the same
thing as counting orbits inside an infinite string. Hence the above result is just a
transcription of Theorem 6.2 and Theorem 6.1, if we bound the worst case scenario
in the finitely many strings of orbits in any free homotopy class.

Let {; }ien be an infinite string of orbits inside {« closed orbit | Cl(«) = Cl(h)}
and suppose that «g is the shortest orbit in the string. We will prove the three different
cases of the theorem separately and then prove the lower bound.

(1) If M is hyperbolic, then, according to Proposition 6.5, there exist A, B > 0
independent of the homotopy class and D, depending on the length of ¢zp such that

I(ej) > Be Paoedl,

So, if [(a;) < t, then

1 [(1eP=o 1
z<Zlog( 3 )=Zlog(t)—|—Ca,
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where Cy = (Dgy, — log(B))/A is a constant depending only on the infinite string
chosen. Hence,

o | 1) <t} < %log(z‘) + Cqy.

Using the above inequality and Proposition 2.26, we get, up to arenaming of constants
that, for ¢ big enough,

|
ﬂ{a closed orbit | Cl() = Cl(h), l(x) < t} < " log(t) + Cp.

So the first case is proven.

(2) Suppose now that M is such that no decomposition tori bounds a Seifert-fibered
piece on both sides. Since no infinite free homotopy class can stay entirely in a
unique Seifert piece (by Theorem 4.4), the {;}ien has to go through one of the
decomposition tori or be contained in an atoroidal piece of the JSJ decomposition.
And since the tori do not bound a Seifert-fibered piece on both sides, the orbits {c; }
have to enter an atoroidal piece of the modified JSJ decomposition or be contained in
an atoroidal piece of the JSJ decomposition. We can hence apply Proposition 6.10.
There exists B > 0 depending only on M and the flow, and Dy, > 0 depending
on o such that
I(et;) > Bi%e Peo,

So, if [(a;) < t, then
Dy

B ]

L le
12 <

SO,

Dy 1/2
o | 1) <1} < ﬁ(eB ) ;

Which implies, using again Proposition 2.26, that for some constant Cy, depending
only on % and for ¢ big enough,

#{a closed orbit | Cl(a) = CI(h), I(a) <t} < Cp/1.

(3) Since linear growth is faster than a square root growth, the last case is proven by
what we did above as soon as the orbits ¢; enters an atoroidal piece. As mentioned
above, thanks to Theorem 4.4, an infinite string cannot stay entirely in a unique
Seifert piece. So the only case we are left to deal with is when the string crosses
a decomposition torus that bounds two Seifert pieces (note that the torus can also
bound the same Seifert piece on both side, but this is the same for us). We can then
apply Proposition 6.14 and deduce the result in the same manner as above.

Finally, to prove the lower bound on the growth rate, we use Theorem 6.1; There
exist uniform constants C;, C, > 0 such that

() < C1l(og)e?.
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Hence, for any i such that i < (logt —log(C1l(wo)))/Ca, we have [(e;) < t. So

logt  log(Cil(eo))

o | () <t} > Cs Cs

and this finishes the proof. O

As we saw, the constants given in the preceding theorem depend on the free
homotopy class we start with, but thanks to the Lemmas 6.8 and 6.13, we can also
obtain some uniform growth rate for the upper bounds.

Theorem 7.3. Let ¢' be an Anosov flow on a 3-manifold M. There exist uniform
constants A1, ..., A7 > 0 and ty such that, if h is an element of the fundamental
group of M, then fort > ty,

(1) If M is a graph manifold, then

ﬁ{a closed orbit | Cl(x) = Cl(h), () < t} < At + A,.
(2) If M is hyperbolic, then
fi{o closed orbit | Cl() = Cl(h), (o) <t} < Aslog(t)+As~/1log(Asr)+As
(3) Otherwise,
#{a closed orbit | Cl(@) = CI(h), [(@) <t} < Agv/re s 1o8t/47)

So, independently of the topology of M, we can rename to and Ag, A7 so that we
always have, for t > ty,

VT
#{e closed orbit | Cl(a) = Cl(h), I(at) < t} < Ag~/Te> 08W/AD),

Note that Theorem 7.3 is not trivial even when looking at finite free homotopy
classes, as opposed to Theorem 7.1. Indeed, one consequence of Theorem 7.3 is
that there exists constants Ag, A7 > 0 uniform, such that if #,,,x is the longest orbit

in a given finite free homotopy class, then this class has cardinality bounded above
by Ag n/TmaxeVimes 108tma/A7)/2,

Proof. The proof of this theorem is almost the same as Theorem 7.1, we just replace
the use of Proposition 6.5 by Lemma 6.8 and Proposition 6.10 by Lemma 6.13. The
only difference is that, when we want a uniform control, the worse, i.e. fastest, control
we get is in the case of manifolds containing one or more atoroidal pieces in their JSJ
decomposition. Here are the details.

As before, choose a string of orbits {«;} contained in the free homotopy class
associated with /£, that is, {« closed orbit | Cl(«r) = Cl(h)}. Note that, in order to get
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uniform controls on the constants and on the size of 7, we do have to deal with finite
strings of orbits also.

Recall that there is a uniform bound on the numbers of strings of orbits in any
free homotopy class and a uniform bound on the number of orbits in a free homotopy
class outside a string (by Proposition 2.26). Therefore counting the number of orbits
of length less than ¢ inside a string implies the result of Theorem 7.3 up to a change
of (uniform) constants.

(1) Suppose that M is a graph-manifold. Then, either {¢; } stays in a Seifert fibered
piece, or it intersects at least two different Seifert-fibered pieces. In the first case, by
Theorem 4.4, there exists a uniform bound on the number of orbits in {; }, and the
result follows trivially for ¢ big enough (and independently of % in 71 (M)). In the
latter case, we can apply Proposition 6.14 and get that, for some uniform constants
A1, A, > 0,if (o) < 1, then [(ag) < ¢ and

'<A2+2t
S\ 4. )"

which implies the result up to renaming A;, A».

(2) If M is hyperbolic, then we can apply Lemma 6.8 and get that, if /(o;) < ¢ and
t > max(4, 22) where a is the length of the shortest geodesic in M, then

i < llog (ie‘mogm/a)),
A B

where A, B and a are uniform constants. Then

1 2t
I < Z(logr —log B + \/?log (;)) < Azlogt + Agx/flog(Au‘) + As,

where A3 = 4, A4 = % and 45 = yl"iB |. This implies the result in the hyperbolic

case.

(3) In the general case, we have three possibilities: The first possibility is that the
orbits of the string stay in a Seifert piece. Then Theorem 4.4 yields the result. Notice
that there is a global bound on the number of orbits. The second option is that the
orbits intersect two consecutive Seifert-fibered pieces. In this case we have uniform
growth bounded above by a linear function, by Proposition 6.14. The third and final
option is that the orbits have to enter (cross) an atoroidal piece. In this final case, we
can use Lemma 6.13, and we obtain that for some uniform constants, if /(¢;) < ¢,

then
i2 < L ov/ilogt/C)
B

therefore
i < _‘/ie«/flog(t/C)/z.

VB
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Then take Ag = LB and A7 = C.

JB
The third function is eventually bigger than the other two so up to changing A¢, A7
and to, we obtain the final statement of the theorem. O

7.2. Counting the conjugacy classes. We can now use Theorem 7.3 to prove Theo-
rem A, and thereby answer, in the case of Anosov flows on a 3-manifold, the question
raised by Plante and Thurston in [46]. Now, in this section, we are not allowed
anymore to use reparametrizations of the Anosov flow (as they modify the topological
entropy). To make that point clear, we will switch our notation back to those of the
introduction and talk about the period of orbits instead of the length.

Recall that if 7 € my(M), then we denote by acyp) a periodic orbit in the
conjugacy class Cl(h) with smallest period if there is a periodic orbit in it. We also
write

CCl(¢) := {Cl(h) | hem(M), T(aCI(h)) < r}

for the set of conjugacy class in 7 (M) that admit a periodic orbit representative
of period less than 7. Plante and Thurston [46] asked if the number of elements in
CCl(t) grew exponentially with . We have

Theorem 7.4. Let ¢ be an Anosov flow on a 3-manifold M.

Then the number of conjugacy classes in w1 (M) grows exponentially fast with
the period of the shortest representative. Moreover, the exponential growth rate is
equal to the exponential growth rate of the number of periodic orbits.

More precisely, there exists constants Aeg, A7 > 0 and to > 0, given by
Theorem 7.3, such that,

gCCI(r) < Ii{oz closed orbit | T'(x) < t},

and, fort > to,

| v
#CCI(t) > 7 \/Ee_ 5 log(t/ A7) fi{e closed orbit | T'(a) < t}.

Moreover:
» If M is hyperbolic, then there exist Az, A4, As > 0 such that, for all t > to,

1
CCl(¢t) = « closed orbit | T (x) < 4.
el 2 Azlog(t) + A3/t log(Aat) + As d Ry = 5

» If M is a graph manifold, then there exist A1, A2 > 0 such that, for all t > to,

1
gCCI(¢) > T H{a closed orbit | T () < t}.
1 2

With this result, and Margulis’ [41] or Bowen’s [14] counting results we obtain
the following:
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Corollary 7.5. Let ¢’ be a transitive Anosov flow on a 3-manifold M. Then
1
i — 1(2) =
t—1>1$oo » log #CCI1(¢) = hiop,

where hiop is the topological entropy of the flow.

Note that, if we use more precise asymptotics of the number of periodic orbits
(see for instance [47]), we could deduce a more precise control on §CCI(¢). However,
even in the best possible case, i.e. when M is hyperbolic, our results are not quite
enough to deduce an actual asymptotic formula for §CCI(z).

Note finally that Plante and Thurston asked the question about the growth of
conjugacy classes in the setting of Anosov flows on a manifold of any dimension, so
in a setting much more general than ours. It is possible that parts of our method can be
extended directly to higher dimensions for codimension one Anosov flows. However,
we are not aware of any previous results on that particular question. Moreover, as
previously mentioned, if the Verjovsky conjecture is true, then that question is void
for codimension one Anosov flow in higher dimensional manifolds.

Before proving Theorem 7.4, we also state another easy consequence, which is
that the shortest orbit representatives of conjugacy classes are equidistributed. For «
a periodic orbit of ¢, we can define a probability measure supported on it by setting

e :

= Leb,,
T@ = °

where Leb, is the image of the Lebesgue measure on [0, 7' ()] under the map
X = ¢'x, with x € a.

Corollary 7.6. Ler ¢* be a transitive Anosov flow on a 3-manifold M. Then, the
Bowen—Margulis measure gy of ¢' (i.e. measure of maximal entropy) can be
obtained as

1
ey = lim ———— Z SQCIM).
t=+e0 JCCI(r) CI(h)eCCI(r)

Proof of Theorem 7.4. The first inequality in the theorem is trivial: If a conjugacy
class has its smallest representative of length less than 7, then there exists at least an
orbit with length less than 7, so

ﬂ{Cl(h) | hemi(M), T(aCI(h)) < I} = ﬂ{a | T{et) < l‘}.
We now prove the second inequality. For any 4 € I', we set
N(CI(R), 1) := fi{e closed orbit of ¢ | Cl(er) = Cl(h), T () < t}.

By Theorem 7.3, there exist uniform constants Ae, A7 > 0, such that, for ¢ big
enough — that is r > t¢ (note that this is where we need to know that the ¢ does not
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depend on the conjugacy class of % for the control given in Theorem 7.3 to work)

to | T(@) <1} = 3 NCIh), 1) < Agv/ie s 020147 g cCigr).
Cl(h)eCCl(z)

Which gives the second inequality. The other inequalities follow in the same manner.

The exponential growth of the number of closed orbits of an Anosov flow is
always positive (even when the flow is not transitive [14]). Therefore §CCI(¢) has
exponential growth as well. This is because {& | T () < t} grows at least as fast
as b for some b > 0 and bt — % log (74%) > ¢t for some ¢ > 0 and for all > 1;
for some uniform time #;. Therefore the number of conjugacy classes also grows
exponentially fast with the length of the shortest representative. U

Proof of Corollary 7.5. The second inequality in Theorem 7.4 yields

%logﬂ{a | T(a) <t} < %(log(Asﬁ) - % log(t/A7)) - %log # CCI(1).

Passing to the limit (if it exists), and also using the first inequality of Theorem 7.4,
gives

.1 a1
t—llToo - logff{a | T(a) <t} = t}:g@ - log iCCl(2),

And, since the flow is transitive, then Bowen’s result in [14] (or Margulis [41])
shows that the above limit exists and

1
lim ;logﬁ{a | T () < t} = hiop,

t——+o00

so this proves Corollary 7.5. g

To prove Corollary 7.6, one could follow Bowen’s original proof [14] that the
closed orbits of an Anosov flow are equidistributed. Instead we copy the proof of
equidistribution of closed orbits under homological constraints given by Babillot and
Ledrappier in [2]. Their proof is based on the following result of Kifer [39].

Theorem 7.7 (Kifer [39]). If K is a closed subset of the set of ¢* -invariant probability
measures (equipped with the weak™-topology), then

1
limsup — log f{er | 8o € K, T(a) <t} < sup hy,
t—+o00 t HeKXK

where h,, is the measure-theoretic entropy of |i.

Proof of Corollary 7.6. Let U be an open neighborhood of u pas and write U€ for its
complementary set. Since gy is the measure of maximal entropy and it is unique,
there exists &9 > 0 such that sup,,¢/e hy < heop — 0.



Vol. 92 (2017) Counting orbits in free homotopy classes 705

Recall that f;0p > hy, for any ¢‘-invariant probability measure . Hence, by
Kifer’s result, for ¢ big enough

#{ Cl(h) | CI(h) € CCL(t) and 8ueyy € U} <o | 8o € U® and T'(er) < ¢t}

< et(ktop_eo/z)_
Now, recall from Theorem 7.4, that for ¢ big enough,

{ &
f CCI() > W?e—T’log“/*‘h)u{a | T(@) < t},
6

so, since the flow is transitive, for ¢ big enough,
L fiiog(t/ A7)t (huop—e0/10) o it (hiop—£0/5)
f CCl(t) = ——=e™ 72 8/ A7) hop™80/ T > o Wlhtop™80/ =),
6

These two equations imply that

1
#CCI(r)

#{ Cl(h) | CI(h) € CCI(r) and 8¢,y € UC} < e730/10,

for ¢ big enough. Consider the sum

1 1
Z ‘Saccm) + Z 806cc1(t)
gCCl(z) gCCl(¢)
Cl(h)eCCl(t)NU Cl(h)ecCl(z)NU¢

By the above, the total mass of the second sum tends to zero when ¢ — oo. Hence
any weak*-limit of the sum of the two terms has to be in U since the first sum is in U
and the second part will converge to the zero measure.

Since U is arbitrary, this shows that any weak limit of the original total sum has
be the Bowen Margulis measure. ]

8. Quasigeodesic behavior and R-covered Anosov flows

Letus first recall that a quasigeodesic is a quasi-isometric embedding of the real line or
a segment of the real line into an open complete manifold. A quasi-isometry between
metric spaces (X,d), (Y,d’) is a map f:X — Y such that there are constants
k,c > 0 so that for any a, b in X,

sd(a,h) —c <d'(f(@), f() < kd(@.b) +c.

The map f need not be continuous. A flow on a compact manifold M is quasigeodesic
if the orbits of its lift to the universal cover are quasigeodesics with universal constants,
that is, independent of the particular flow line. The metric in the domain is the path
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metric along the flow lines. The quasigeodesic question for flows is particularly
important if the manifold is hyperbolic, because in H? a quasigeodesic is a bounded
distance from a minimal geodesic, with the bound depending only on the &, ¢ of the
associated quasi-isometry [33,53]. As such quasigeodesics are extremely important
and useful in the whole theory of hyperbolic 3-manifolds.

Surprisingly enough the quasigeodesic question for flows in closed hyperbolic
3-manifolds is easier to deal with for certain classes of pseudo-Anosov flows, rather
than the more restrictive Anosov flows. In particular there is a huge amount of
examples of pseudo-Anosov quasigeodesic flows in closed, hyperbolic 3-manifolds.
For example, suspensions of pseudo-Anosov diffeomorphisms on surfaces [55].
In addition any transversely oriented, R-covered foliation in a closed hyperbolic
3-manifold admits a transverse quasigeodesic pseudo-Anosov flow [16,24,25]. The
quasigeodesic property is then used to study the asymptotic behavior of the leaves of
the foliation lifted to the universal cover H3 [17,25].

As for the “supposedly” much simpler case of Anosov flows, the only examples of
Anosov flows that are known to be quasigeodesic are geodesic flows and suspensions
of Anosov diffeomorphisms, and in each case the underlying manifold is not
hyperbolic. The second author proved 20 years ago, in [19], that R-covered Anosov
flows on hyperbolic manifolds cannot be quasigeodesic. We prove here that the only
R-covered Anosov flows that could possibly be quasigeodesic are on graph-manifolds.

Theorem 8.1. Let ¢* be an R-covered Anosov flow on a 3-manifold M. If M admits
an atoroidal piece in its JSJ decomposition, then ¢! is not quasigeodesic.

It seems likely however that R-covered Anosov flows on graph-manifolds are
indeed quasigeodesic, so we make the following:

Conjecture 8.2. Ler ¢’ be an R-covered Anosov flow on a 3-manifold M. The flow
is quasigeodesic if and only if M is a graph-manifold.

Remark 8.3. Note that many flows, for instance contact (a.k.a. Reeb) flows, are
geodesible, i.e. there exists a metric making the flow-lines geodesics. So any
contact Anosov flow on a 3-manifold admitting an atoroidal piece is geodesible,
but, according to Theorem 8.1, not quasigeodesic. This is not a contradiction as
being geodesible is a local property, while being quasigeodesic is a global one: it is
measured in the large scale when lifted to the universal cover. What we can deduce
is that the flow-lines are non-minimizing geodesics, in fact they are unboundedly bad
at measuring distances in the universal cover. Another consequence is that a metric
making the flow-lines geodesic must have positive curvature.

In order to prove Theorem 8.1, we will first need to prove that there always exist
periodic orbits in the interior of an atoroidal piece.

Proposition 8.4. Ler ¢’ be a R-covered Anosov flow on a 3-manifold M. Let P be
a piece of a modified JSJ decomposition of M. Then there exists periodic orbits in
the interior of P.
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A different proof than the one we are going to present would show that the above
result holds for any transitive Anosov flow, not only the R-covered ones. But since
we do not need the more general result, and the proof in the R-covered case is much
nicer, we only present this one here.

We stress that the whole point of this proposition is that the periodic orbit is
contained in the interior of P as opposed to the boundary of P. Since dP is made
up of Birkhoff tori, there are always periodic orbits contained in dP.

Proof. Let T be a quasi-transverse boundary torus of P and A be an open Birkhoff
annulus (i.e. transverse) of 7' such that orbits through A enter the piece P. We
are going to show that there exist orbits through A that stay in the interior of the
piece P and do not accumulate on the boundary. For any such orbit, there must exist
a subsegment of the orbit in the interior of P that comes back close to itself. We
can then apply the Anosov closing lemma to it and get a periodic orbit in the interior
of P.

Recall that, since the flow is R-covered, each leaf space is homeomorphic to R and
the orbit space is homeomorphic to a diagonal band in £° x £¥ (see Proposition 2.4).
We will be using this fact in all the proof.

The annulus A lifts to a lozenge in the orbit space O that we denote by A. What
we mean by that is that if V' is a lift of A to the universal cover M then the set of orbits
intersected by the interior of V' is a lozenge in . Let « be an orbit intersecting A4, «
leaves the piece P if and only if it intersects one of the exiting annuli of P. Lifting
that to the orbit space, it means that, if o is a lift of & in A, then « exits P if and only
if o is also inside one of the lozenges in @ that projects to one of the exiting annuli.
Moreover, a accumulates on one of the boundary tori of P if and only if it is on the
stable leaf of one of the periodic orbits of the boundary tori.

In the same way let {E—},— be the (countable) set of lozenges in ( that are all the
lifts of the exiting annuli of P. We are going to show that A~ U; B; is an uncountable

set in (9, that is an uncountable set of orbits. In addition the set A~ UiE, where
we remove also the sides of the lozenges, is still uncountable, so any orbit in that
set projects to an orbit of ¢! that enters P through A4 and never leaves P, and never
accumulates on dP.

Since we are interested in the set 4 ~ U; E, we can already remove all the § that
do not intersect A from our considerations. So from now on, {B }ien is the set of
all the lifts of the exiting annuli of P such that AN B #= 0.

The first thing to remark is that AN B;isan open set in @ and it cannot contain
one of the corners of 4 or B,. Indeed, the corners of A and B, are periodic orbits
on the boundary tori, so in particular when projected to M these closed orbits do
not intersect any of the open Birkhoff annuli contained in the boundary tori of P —
entering or exiting. This same remark applies to B; N B forany i # j.

Therefore, either E intersects all the stable leaves in Z or it intersects all the
unstable ones (see Figure 10). We say that E is vertical if it intersects all the stable
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leaves of A (as the red (dark gray) lozenge B ;j in Figure 10), and horizontal otherwise
(as the blue (mid gray) lozenge B; in Figure 10).

IS

A
gl 5
0 BJ.
; ] g
u
Iz 7 z

Figure 10. The lozenge A with a vertical and an horizontal intersecting lozenges.

Since the intersection E NB j cannot contain any of their corners, then, up to
switching 7 and j, we have:

(1) either E is horizontal and B. ;j is vertical, (see Figure 10)

(2) or E NACB j M A, in particular E’; and B ;j are both vertical or both horizontal
(see Figure 11a)

(3) or E’; and B ;j are disjoint, and E and §J are both vertical or both horizontal (see
Figure 11b).

It turns out that there are no vertical lozenges in {E} (vertical lozenges would
appear if we were considering A as an exiting Birkhoff annulus of some other piece
and took the intersection with some entering Birkhoff annulus). However, we do not
really need this fact and continue as if there were some, since it saves us some work.

Let /3 and /3 be the stable sides of Z, and let /§f and [} be the unstable sides. Note
that, if /® is the stable side of any horizontal lozenge B;,then [ € . {1 Cc £ =R
(see Figure 10). And, similarly, if [* is the unstable side of any vertical lozenge, then
I* & lig . 131

We claim that for any E,-, there are at most finitely many j such that E NAC
B~’j M A: Suppose that this is not the case. Then we can suppose that {E j N A}is
an increasing sequence. Call 5? and 3} their corners. The sequence {8]1.} stays in a
compact part of the orbit space (see Figure 11a). More precisely, {5}} stays in the
compact rectangle delimited by the stable and unstable leaves of §; and of the top
corner of 4. Hence, {811-} admits a converging subsequence. But this is impossible
since the 8} are lifts of a finite number of periodic orbits.
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(a) Case (2) E NAC Ej NnA (b) Case (3) E and §j are disjoint

Figure 11. Possible types of intersections of the lozenges E (blue (mid gray)) and B j (red
(dark gray)) with A (black).

Therefore from the family {§ }ieN, We can extract a subfamily {E }ier such that
the intersection of B; with A is maximal fori € . So, for any i # j € I, either B;
and B ; are not of the same type, or they are disjoint. In fact for any B of the original
family, the intersection B N A is contained in some B; N A, where i € I.

For any vertical lozenge Bl, i € I, weset I} to be the closed interval consisting
of the closure of the set of unstable leaves of E, And for any horizontal lozenge, we
set I’ to be the closed interval consisting of the closure of the set of its stable leaves.
We claim that, if { # j in [ are two indices such that I?, and E’J are both vertical,
then 7} N I}‘ = @. If not, then E-, B ; must share a side. If this is true then they
also share a corner orbit as they are lozenges with periodic corners. But, because of
the structure of skewed R-covered Anosov flows, there are no adjacent lozenges: a
contradiction.

The above implies that each of [[§, [{] ~ Nier I} and [[§, [{'] ~ N;er I} is either a
Cantor set or contains an open interval. Hence,

AU B = (15, 8]~ Nier IF) x (¥, 1¥] ~ Nier 1Y),

is uncountable, which finishes the proof.

In fact, the above set is a Cantor set times an interval. Indeed [/3, /7] ~ Nier I?
cannot contain an open set because the flow is transitive, so for each exiting annulus
there is a lift of a dense orbit that intersects A and this exiting annulus. U

Proof of Theorem 8.1. Suppose that the flow is quasigeodesic, but M is not a graph-
manifold. Up to taking a double cover we may assume that F° is transversely
orientable. Then either M is hyperbolic or there exist an atoroidal piece in its JSJ
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decomposition. The first case was already dealt with by the second author in [19].
More specifically, if ¢ is an R-covered Anosov flow in M hyperbolic, then ¢’ is not
quasigeodesic.

So we suppose that there exists an atoroidal piece P that is not all of M. By
Proposition 8.4, there exists a periodic orbit « in the interior of P. Since the flow
is R-covered, P is atoroidal, and « is not on the boundary tori, Theorem 4.2 shows
that @ has an infinite free homotopy class. Let {¢; };ez be the infinite free homotopy
class of «, indexed so that g is the shortest, and let ¢&; be coherent lifts to the
universal cover.

The idea now is to use what we did in the proof of Proposition 6.10: We showed
in that proof that the length of the &; grows at least quadratically in the distance
between &; and a certain geodesic cg, but since &; is a quasigeodesic, its length
cannot grow more than linearly in that distance, and we obtain a contradiction. As
before, by length of @, we actually mean the length of a fundamental domain.

Let us be more precise. We use the same notations as in the proof of
Proposition 6.10. In particular, P is equipped with a neutered metric d,, and P
can be seen inside the hyperbolic space H>. We use an n subscript to refer to the
neutered distance and / subscript for the hyperbolic distance.

Let g € 7r;1(P) be the stabilizer of the &;. Since P is a neutered manifold, we
can think of g as a hyperbolic isometry. Let ¢ be the geodesic in H? associated
to g. Let x be a point on ¢, which projects to a point inside P, and let H, be the
hyperbolic hyperplane through x and orthogonal to c,. Finally, let x; be the closest
point on &; N H,. Using Lemma 6.6, we get

B B PACED
In (@) = 1n(@) = I(ce) —5—

And, using Lemma 6.12, we have
e@nxi:%)/2 > g (X, x).

So, we have

R T ) (i, ). @®.1)

Now, since we assumed that ¢! is a quasigeodesic flow, the orbits & are
quasigeodesics and since they stay in the atoroidal piece P, they are quasigeodesics
for the neutered distance. So there exist constants C; > 1 and C, > 0 such that

(@) < Crdn(xi, 8 - xi) + Ca.
And the triangle inequality gives that

dn(xi, g %) < dn(xi, x) +dn(x,g-x) +dn(g-x,8Xi)
= 2d,(xi,x) + dn(x, g - x).
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So, setting C3 = C1dy(x, g - x) + C2, we get

ln(a;) < 2Cidy (Xi,X) + Cs.

Together with equation (8.1), this gives, for all ¢

lh(Cg)
2

2C1dy (xi,x) + C3 = T (8.2)

But d, (07, c9) > Ai for some uniform A > 0, thanks to Lemma 2.28. So

dn(xi, x) > Ai — duaus (o, cg), hence the equation (8.2) cannot hold for big 7, and
we obtained our contradiction. O
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