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A generalization of the Oort conjecture

Andrew Obus*

Abstract. The Oort conjecture (now a theorem of Obus—Wewers and Pop) states that if k is
an algebraically closed field of characteristic p, then any cyclic branched cover of smooth
projective k-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture,
which states that all cyclic extensions of k[¢] lift to characteristic zero. We generalize the local
Oort conjecture to the case of Galois extensions with cyclic p-Sylow subgroups, reduce the
conjecture to a pure characteristic p statement, and prove it in several cases. In particular, we
show that Dg is a so-called local Oort group.

Mathematics Subject Classification (2010). 14H37, 12F10; 11G20, 12F15, 13B05, 13F35,
14G22, 14H30.

Keywords. Branched cover, lifting, Galois group, metacyclic group, KGB obstruction, Oort
conjecture.

1. Introduction

This paper concerns the local lifting problem about lifting Galois extensions of
power series rings from characteristic p to characteristic zero. In particular, in Con-
jecture 1.9 we state a generalization of the Oort conjecture on lifting of cyclic
extensions, now a theorem of Obus—Wewers [24] and Pop [28]. Our main result
reduces the generalized conjecture to an easy-to-understand, pure characteristic p
assertion about existence of certain meromorphic differential forms on P!. We prove
this assertion in several cases, exhibiting the first positive cases of the local lifting
problem for a nonabelian group with cyclic p-Sylow subgroup of order greater than p.
In particular, we show that Dg is a so-called local Oort group, and we completely
solve the “inverse Galois problem” for the local lifting problem for groups with cyclic
p-Sylow subgroups. See §1.5 for specifics.

1.1. The local lifting problem. For our purposes, a finite extension B/ A of rings is

called I'-Galois (or a I'-extension) if A and B are integrally closed integral domains
and Frac(B)/Frac(A) is I'-Galois.

*The author was supported by an NSF Mathematical Science Postdoctoral Research Fellowship, as
well as NSF FRG Grant DMS-1265290.
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Problem 1.1 (The local lifting problem). Let k be an algebraically closed field of
characteristic p and T a finite group. Let k[z]/k[s] be a ['-Galois extension. Does
this extension lift to characteristic zero? That is, does there exist a DVR R of
characteristic zero with residue field & and a I"-Galois extension R[Z]/R[S] that
reduces to k[z]]/k[s]? In other words, does the I'-action on R[Z] reduce to that
on k[z], if we assume that Z reduces to z?

We will refer to a I'-Galois extension k[[z]/ k[s] as a local T-extension.

Remark 1.2. Suppose k is an algebraically closed field, and B/A is any I'-Galois
extension of k-algebras with the Galois group acting by k-automorphisms. Then, if
either B or A is isomorphic to a power series ring in one variable over k, the other
is as well. That is, B/ A is a local I'-extension.

Remark 1.3. Basic ramification theory shows that any group I" that occurs as the
Galois group of a local extension is of the form P x Z/m, with P a p-group and

ptm.

The main motivation for the local lifting problem is the following global lifting
problem, about deformation of curves with an action of a finite group (or equivalently,
deformation of Galois branched covers of curves).

Problem 1.4 (The global lifting problem). Let X/k be a smooth, connected,
projective curve over an algebraically closed field of characteristic p. Suppose a
finite group I" acts on X. Does (X, I') lift to characteristic zero? That is, does there
exist a DVR R of characteristic zero with residue field £ and a relative projective
curve X g/R with I"-action such that X g, along with its I"-action, reduces to X ?

It is a major result of Grothendieck [ 1, XIII, Corollaire 2.12] that the global lifting
problem can be solved whenever I acts with tame (prime-to- p) inertia groups, and R
can be taken to be the Witt ring W(k). In particular, it holds when I is trivial.
The wild case is much more subtle, and cannot always be solved. For instance,
the group Z/p x Z/ p acts faithfully on IP’Ig whenever k is algebraically closed of
characteristic p, but there can be no lifting of this action to a genus zero curve when p
is odd. However, the local-global principle states that the global lifting problem holds
for (X,I") (and a complete DVR R) if and only if the local lifting problem holds
(over R) for each point of X with nontrivial stabilizer in I'. Specifically, if x is such a
point, then its complete local ring is isomorphic to k[z]. The stabilizer I, C T acts
on k[z] by k-automorphisms, and we check the local lifting problem for the local
I.-extension k[z]/ k[z]x. Thus, the global lifting problem is reduced to the local
lifting problem.

A proof of the local-global principle for abelian I' is already implicit in [31].
Proofs for arbitrary I" have been given by Bertin and Mézard [4], Green and
Matignon [16], and Garuti [13].

The author’s paper [21] is a detailed exposition of many aspects of the local lifting
problem.



Vol. 92 (2017) A generalization of the Oort conjecture 553

1.2. Local Oort groups and the KGB obstruction. The Oort conjecture (as men-
tioned above, now a theorem), states that the local lifting problem holds for all cyclic
extensions. In [11], Chinburg, Guralnick, and Harbater ask which finite groups I" of
the form P x Z/m, with P a p-group and p } m, have this same property. That
is, given a prime p, for which groups I" is it true that all local I"-actions (over all
algebraically closed fields of characteristic p) lift to characteristic zero? Such a group
is called a local Oort group (for p). The paper [11] also investigates the notion of
a weak local Oort group (for p), which is a group I' for which there exists at least
one local I"-extension that lifts to characteristic zero. Characterizing the weak local
Oort groups has been referred to as the “inverse Galois problem” for the local lifting
problem in [20], where it was proved that elementary abelian p-groups are weak
local Oort.

In [11], Chinburg, Guralnick, and Harbater introduce the so-called KGB
obstruction to local lifting (this is related to the earlier Bertin obstruction from [3]).
Roughly, given a local I'-extension, the KGB obstruction vanishes if there is a
["-extension of certain characteristic zero power series rings for which the different
behaves in the same way as for the original local I"-extension. A lift to characteristic
zero gives such an extension, and thus causes the KGB obstruction to vanish. Using
this obstruction, Chinburg, Guralnick, and Harbater were able to greatly restrict the
possible local Oort groups.

Theorem 1.5 ([11, Theorem 1.2]). If a group I is a local Oort group for p, then T’
is either cyclic, dihedral of order 2p", the alternating group A4 (p = 2), or a
generalized quaternion group (p = 2).

In fact, Brewis and Wewers [9] showed that the generalized quaternion groups
are not local Oort, so the list of possible local Oort groups consists only of the cyclic
groups, Dpn, and A4. The cyclic case is the Oort conjecture, and the A4 case has
been claimed by Bouw (see [6]) and written up by the author [22]. Thus only the D ,n
have unknown “local Oort status,” and showing that the local lifting problem holds
for these dihedral groups has been referred to as the “strong Oort conjecture” [10].
We propose a somewhat different generalization (Conjecture 1.9) below.

1.2.1. Cyclic p-Sylow groups. Recall that a I"-extension L, /k|[s] gives rise to a
higher ramification filtration F;;O for the upper numbering on the group I" [32, IV].
If ' = Z/p™, then the breaks in this filtration (i.e. the values i for which I'! 2 T'/
for all j > i) will be denoted by (uy,us, ..., Uy). One knows that u; € N and

Ui = puj—q,

fori =2,...,n (seee.g.[14]).
The higher ramification filtration gives us all the data we need to check the KGB
obstruction in the case where I has a cyclic p-Sylow subgroup.



554 A. Obus CMH

Proposition 1.6 ([21, Proposition 5.9]). Let I" be a semi-direct product of the form
Z. ) p"xZ/m, with p ¥ m. Suppose I is not cyclic (thus not abelian). Let L, [ k[s] be
a I'-extension whose 7./ p" -subextension has upper ramification breaks (uy, ..., up).
Then the KGB obstruction vanishes for L, [ k[s] if and only ifu; = —1 (mod m).

Remark 1.7. By [23, Theorem 1.1], knowing that u; = —1 (mod m) and I is non-
abelian implies that I" is center-free (in particular, m|(p—1))and u; = —1 (mod m)
foralli.

Remark 1.8. One can also phrase the KGB obstruction in terms of the higher
ramification breaks for the lower numbering. In this case, the criterion for vanishing is
the same — that the first break for the lower numbering is congruentto —1 (mod m).

Our generalization of the Oort conjecture is the following:

Conjecture 1.9. For local T -extensions where I' has a cyclic p-Sylow subgroup
(that is, I' is of the form 7L/ p" x Z/m), the KGB obstruction is the only obstruction
to lifting.

Remark 1.10. Note that, if I' = D,» with p an odd prime, then all u; as
above are odd (see, e.g. [23, Theorem 1.1]). Thus Conjecture 1.9 (combined
with Proposition 1.6) implies that I" is a local Oort group for p. So for p odd,
Conjecture 1.9 is somewhat stronger than the “strong Oort conjecture” mentioned
above. However, Conjecture 1.9 says nothing about D,». We currently have no
opinion as to whether Dj» is a local Oort group. The only results toward this end are
that D, == Z /2 x Z /2 is a local Oort group ([26], or [27] for a special case) and D4
is a weak local Oort group [8].

1.3. Some history leading to Conjecture 1.9. The first major result on the local
lifting problem was the 1989 paper [31] of Sekiguchi-Oort—Suwa, which showed
that Z/pm is a local OQort group when p + m. That Z/p?m is a local Qort group
was proven in 1998 by Green—Matignon [16]. The full Oort conjecture was proven
in 2014 by Obus—Wewers and Pop [24,28].

The local lifting problem for I" is much more difficult when I' is non-abelian,
even if we assume its p-Sylow subgroup is cyclic. Indeed, it was not until a 2006
paper that D, (for odd p) was proved to be local Oort by Bouw—Wewers [6], and
this proof is significantly more intricate than the Z/ p case. In fact, it was proven in
the two papers [6] and [7] that Conjecture 1.9 holds when p exactly divides the order
of I'. However, other than this, up until this paper, there was essentially nothing
known when I'" is non-abelian. Namely, if the p-Sylow subgroup of I' is cyclic of
order greater than p and I" is non-abelian, then there was no local I'-extension with
vanishing KGB obstruction that was known either to lift or not to lift to characteristic
zero. In particular, it was not known if such I" were weak local Oort groups. We show
that they in fact are (Corollary 1.20). Furthermore, our main result (Theorem 1.14)
brings the full solution to the local lifting problem for such I" within reach.
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1.4. The (isolated) differential data criterion. While we are not yet able to present
a full proof of Conjecture 1.9, we are able to prove it conditionally on certain
meromorphic differential forms on IP’,: existing with special properties. We describe
this condition briefly now (for more details, see §7.2).

Consider quadruples (p,m,u, N1) of natural numbers where:

* pis a prime number.
* m > 1 divides p — 1.
* u=—1 (mod m).

* N, is divisible by m.

Write 1 = up” with u prime to p. Let k be an algebraically closed field of
characteristic p. We say that (p,m,u, Ny) satisfies the differential data criterion
(with respect to k) if there exists a polynomial f(t) € k[t™] of degree exactly N;
in 7, such that the meromorphic differential form

dt i
@ = oyt € Skork

satisfies i
C(w) = o +ut ¥ dt.

Here € is the Cartier operator on differential forms. Note that w has a zero of order
Ni+u—1att = oo.

If (p,m,u, Ny) satisfies the differential data criterion with notation as above, the
basic properties of the Cartier operator imply that

w=dg/g—u Zt_“pi_ldt,

i=0

for some g € k(t), well-defined up to multiplication by pth powers. We say that
(p.m,u, Ny) satisfying the differential data criterion satisfies the isolated differential
data criterion if there are f and w as above such that no infinitesimal deformation g
of g gives rise to a differential form & :=dg/g—ud.;_, t~4P' =14t having a zero
of order at least Ny + u — 1 at t = oo (as will be seen in §7.2, this is equivalent to
invertibility of a “Vandermonde-like” matrix constructed from the roots of /). This
is readily seen to be independent of the choice of g, once f is chosen.

1.5. Main results. Throughout this section, m € N is not divisible by p. First
we adapt an argument of Pop [28] to reduce Conjecture 1.9 to the case where the
successive upper jumps do not grow too quickly.

Proposition 1.11. Let L, / k[s] be anon-abelian T = 7./ p"™ xZ / m-extension whose
7] p" -subextension has upper ramification breaks (u},..., uy). For1<i<n,
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define w; inductively to be the unique integer such that u; = u; (mod mp)
and pui—; < u; < puj—; + mp (by convention, set ug = 0). If, for every
algebraically closed field k of characteristic p, every T -extension L, /x[s] whose
Z ] p"-subextension has upper ramification breaks (uy, ..., up) lifts to characteristic
zero, then so does L),/ k[s].

Thus we need only consider I'-extensions whose upper ramification breaks satisfy
u; < puj—1 + mp. We say that these extensions have no essential ramification.

Example 1.12. For instance, if we have a Z /5% x Z /2-extension with (1}, ..., u}) =
(11,79,433,2165), then we would have (uy,...,us) = (1,9,53,265).

Remark 1.13. Note the similarity between this definition and [28, Rmk./Defn. 3.1(2)].
In fact, if we consider the upper jumps for the entire G-extension, as opposed to just
the Z/p"-part, then our assumption is exactly that of “no essential ramification”
from [28]. Indeed, Proposition 1.11 in the abelian case is equivalent to the main
result of [28].

Our main result is the following:

Theorem 1.14. Ler L,/ k[s] be a non-abelian Z./ p" x Z,/ m-extension whose 7./ p" -
subextension has upper ramification breaks (uy, . . ., un). Suppose that L, [ k[s] has
vanishing KGB obstruction and no essential ramification. Suppose further that for
all 1 < i < n, the quadruple (p, m,u;—1, N; 1) satisfies the isolated differential data
criterion, where Ni1 = (p — Duj—1 ifu; = puj—y and N;;y = (p — Duj—y —m
otherwise. Then the extension L,/ k|[s] lifts to characteristic zero.

Remark 1.15. Our lifts correspond to certain covers of the non-archimedian open
disk. We discuss the geometry of the branch locus of these covers in §7.9.

Remark 1.16. Proposition 1.11 and Theorem 1.14 reduce Conjecture 1.9 for
the group Z/p" x Z/m (nonabelian) to realizing the isolated differential data
criterion for quadruples (p,m,u, (p — 1)u) and (p,m,u, (p — 1)ii — m) such that
i = —1 (mod m), that p"~1 } i, and that it < m(p"~! + p"~2 + ...+ p). Thus,
once the group is fixed, one need only realize the isolated differential data criterion
for finitely many quadruples. Our proof of Corollary 1.18 below proceeds by this
method.

If one believes, for a particular group I' = Z/ p" x Z /m, that there is a particular
finite field IF; such that the isolated differential data criterion in the above cases can
always be realized using a polynomial f(t) € Fy[t], then proving Conjecture 1.9
for I" is reduced to a finite search.

Example 1.17. In order to show that all extensions as in Example 1.12 lift to
characteristic 0, we would have to realize the isolated differential data criterion
for (5,2.1,2), (5,2,9.34), and (5,2, 53, 212).
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By realizing various instances of the isolated differential data criterion, we are
able to prove the following corollaries, which are special cases of Conjecture 1.9.

Corollary 1.18 (Theorem 8.6). The dihedral group Dg is a local Oort group for
p=3
Corollary 1.19 (Theorem 8.7). If p is an odd prime, and L/ k [s] is a D ,2-extension

whose 7./ p?-subextension has first upper ramification break u; = 1 (mod p), then
L/ k[s] lifts to characteristic zero.

Corollary 1.20 (Theorem 8.8). If L/ k[s] is a Z/ p" x 7./ m-extension whose Z [ p" -
subextension has upper ramification breaks congruent to

(m—=1,pm—=1),....,p" Y (m—=1)) (mod mp),

then L/ k[s] lifts to characteristic zero. In particular, Z.) p" x Z/ m is a weak local
Qort group whenever the conjugation action of Z./m on 7./ p" is faithful.

Remark 1.21. For each non-abelian Z/ p" x Z /m, Corollary 1.20 includes the case
with the smallest possible ramification breaks causing the KGB obstruction to vanish
(these breaks are in fact (m — 1, p(m —1),..., p"~1(m — 1))).

Remark 1.22. By Proposition 1.6 and Remark 1.7, the action of Z /m on Z/ p" must
be faithful for I" to be a weak local Oort group (unless I' is cyclic). Corollary 1.20
says that this condition suffices as well, and thus solves the “inverse Galois problem”
for the local lifting problem for groups with cyclic p-Sylow subgroups.

Remark 1.23. The proof of Theorem 1.14 follows the same basic outline as the
analogous assertion for cyclic groups in [24]. However, we never invoke the Oort
conjecture itself in the proof. To emphasize this point, note that any lift of a local
non-abelian I" := Z/ p™ x Z / m-extension necessarily yields an “equivariant” lift of
its unique local Z / p"-subextension (see §6.2.2). However, none of the cyclic lifts
constructed in [24] are equivariant, so they cannot possibly occur inside a lift of a
local I'-extension. Thus the lifts from [24] are “useless” for constructing non-abelian
lifts as in Theorem 1.14.

1.6. Outline of the paper. In §2, we recall the explicit parameterization of local
Z/p" x Z [ m-extensions, and the relationship between the parameterization and the
higher ramification filtration. In §3, we prove Proposition 1.11, which allows us to
consider only extensions with no essential ramification. Then, §4-§7 are devoted
to the proof of Theorem 1.14. In §4, we set up the induction on n that we will use
(which is essentially the same framework used in [24]), and in §5, we prove the base
case n = 1. In §6, we recall the language of characters that was used in [24], and
adapt it to our new situation of non-abelian groups. The main part of the proof is
in §7, and we give a further, more detailed outline in §7.3. We remark that, although
the basic idea of the proof is the same as in [24], the execution is quite different and
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more complicated. To enhance the flow of the paper and clarify the main argument,
we postpone the proofs of two particularly technical results to §9.

In §8, we give some examples of when the isolated differential data criterion
(§1.4) is realized, and derive consequences for the local lifting problem.

1.7. Conventions. The letter K will always be a field of characteristic zero that is
complete with respect to a discrete valuation v : K* — Q. We assume that the
residue field k of K is algebraically closed of characteristic some fixed odd prime p.
We also assume that the valuation v is normalized such that v(p) = 1. We let | - | be
an absolute value on K corresponding to v (it does not matter how it is normalized).
The ring of integers of K will be denoted R. The maximal ideal of R will be
denoted m. The notation R{T} refers to the ring of power series Z?io ¢; T such
that lim; o |¢;| = 0. We write m{T'} to refer to the subset of R{T} for which all ¢;
lie in m.

We fix an algebraic closure K of K, and whenever necessary, we will replace K
by a suitable finite extension within K, without changing the above notation.
Furthermore, we fix once and for all a compatible system of elements p” € K
forr € Q, such that p”' p"2 = p"1 772, The letter m will always refer to a prime-to- p
integer. The symbol ¢, denotes a primitive nth root of unity. A curve is always
(geometrically) connected.

These are the same conventions used in [24].

Acknowledgements. | thank Ted Chinburg, Johan de Jong, Bob Guralnick, David
Harbater, and Florian Pop for useful conversations. I especially thank Stefan Wewers
and Irene Bouw, not only for useful conversations, but also for providing hospitality
in Ulm when some of this work was done. Some of the computations were done in
SAGE, and I thank Julian Riith for assistance. Lastly, I thank the referees for helpful
expository improvements.

2. Z[p"™ x Z/m-extensions in characteristic p

In this section, we recall the cyclic theory of local extensions in characteristic p,
and then show how to adapt it to the metacyclic case considered in this paper. Let
Fr=2Z/p"xZ/m.

If L/k[s] is a T-extension, then, after a possible change of variables, we may
assume that the subextension corresponding to the normal subgroup Z/p" C T can
be written as k[[t]/k[s], with t”" = s. Let M = Frac(L). Since Gal(M/k((t))) =
Z/ p™, Artin—Schreier—Witt theory states that M/ k ((¢)) is given by an Artin-Schreier—
Witt equation

POV Yn) = (f1o-00 fo)s
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where (f1,..., fn) lies in the ring W, (k((t))) of truncated Witt vectors, F is the
Frobenius morphism on W, (k((¢))), and g(y) := F(y) — y is the Artin—Schreier—
Witt isogeny. Then L is the integral closure of k[[z] in M. Adding a truncated Witt
vector of the form g(g1.....,gn)) to (f1....., fn) does not change the extension, and
adjusting by such Witt vectors, we may assume that the f; are polynomials in 7!,
all of whose terms have prime-to- p degree (in this case, we say the Witt vector is in
standard form). If

ui = max{p'Vdeg,~1(f;)|j=1.....i} 2.1)

then the u; are exactly the breaks in the higher ramification filtration of M/k((t))
[14, Theorem 1.1]. From this, one sees that p + uy, that u; > pu;—y for2 <i <n,
and that if p|u;, then u; = pu;_;.

Proposition 2.1. The extension L/ k [[s] is T-Galois if and only if the degrees (int~!)
of all terms appearing in the polynomials f; are in the same congruence class
(mod m).

Proof. This follows from [23, Proposition 4.3]. O

Thus we can, and will think of I"-Galois extensions L/k[s] as corresponding to
Witt vectors (f1,.... fn) € Wy, (k((t)) such that the f; are polynomials in t~! with
all degrees of all terms of all f; congruent to each other (mod m). By (2.1), this
implies that all u; belong to this congruence class.

Recall Proposition 1.6, which states that, for non-abelian I", the KGB obstruction
vanishes for L/k[s] if and only if u; = —1 (mod m). By Remark 1.7, this is true
for all 7, and this implies that I" is center-free. For the rest of the paper, we only
consider local I'-extensions of this form.

3. Reduction to the ‘“‘no essential ramification’ case

In this section, we prove Proposition 1.11. Recall that L/ /k[s] is a non-abelian
' = 7Z/p" x Z/m-extension whose Z/p"-subextension has upper ramification
breaks (B, s u),), and u; is defined inductively to be the unique integer such that
uj = u; (mod mp), with uy < mp and pu;—; < u; < puj—y +mp fori > 1.
We may, and do, assume that L) /k[s] has vanishing KGB obstruction, i.e. that
all u; and u; are —1 (mod m). Write L), = k[z], and write M = k[t] € L,
where " =s, so that M is the subextension of L /k[s] corresponding to
Z/p"™ < T. Our proof follows [28]. The key is to make a deformation in
characteristic p so that the generic fiber has no non-abelian essential ramification, in
some sense (cf. [28, Key Lemma 3.2]).
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Proposition 3.1 (Generalized characteristic p Oort conjecture). Let A = k[w, s] 2
k[s], and let XX = Frac(A). There exists a I -extension £ /X, with £ 2 L), having
the following properties:

(i) The Z/m-subextension M /K corresponding to the subgroup Z./p" < T is

givenby M = K[t] € £.

(ii) If B is the integral closure of A in £, we have B = k|[w, z]. In particular,
(B/(@))/(A/(w)) is T-isomorphic to the original extension L), [ k(s].

(iii) Let € = A[t] C M. Let R = Alw™), let 8§ = B[lw™'], and let T =
Clw™!. Then 8T is a Z]p™-extension of Dedekind rings, branched at
m + 1 maximal ideals. Above the ideal (t), the inertia group is Z./ p", and the
upper jumps are (uy, ..., uy). The other m branched ideals are of the form
(£t — ), where ju can be chosen arbitrarily in @ ?"° k [z P"°] for some high
enough 8o, and o ranges from 1 to m.

(iv) The only branched ideal of 8 /R with noncyclic inertia group is (s).

Proof. As in [28], we will prove Proposition 3.1 by deforming a standard form
classifying Witt vector (fi...., fu) of the extension L/ /k[s]. We must take
care to do everything equivariantly. By Proposition 2.1, each f; can be written
as t!7"g;(1~™), where g; is a polynomial of degree < (u; 4+ 1 — m)/m over k.
Equality holds if p 4 u}. Choose a factoring

fi =t it (17,

where i ,
degpi < ST "™ and degq; < LM
m m
It = ug, then take ¢; = 1. Note that if p { u;, then we must have equality in both

inequalities above. Factoring, we can write

m
g™y =c [ jimt™),
a=1
where ¢ € k and the j; are monic polynomials of degree deg(g;). Lastly, factor j;

completely to write
degg;

Jie™y =Tl =r).
v=1

Now, let 4 € wk[w]\{0}. We lift the Witt vector ( f1,..., fn) € Wu(k(?)) to
a Witt vector (Fp,..., F,) € W,(M). We choose

m degg;

Fo=ct"p; ™[] [T (@t —mw™" = rui).

a=1 v=1
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Let us make some observations:

» F; (viewed as an element of # (4)) reduces to f; modulo .
* All terms in F; are of degree —1 (mod m) in p=1,

* F; has a pole of order < u; att = 0, and, foreach @ € {1,..., m}, a pole of
order < (u; —u;)/matt = % .

Let £/M be the Z/p"-extension classified by (Fy,...,F,). By the second
observation above and the discussion in §2, this extends to a I'-extension £/.K,
which will be the extension we seek. In order to prove this, we must show that the
degree §g/ of the different of §/7 is bounded above by the degree 87/ /i, of the
different of L) / k[[t]. Then (i), (ii), and (iii) follow exactly as in the proof of [28, Key
Lemma 3.2] (in fact, the argument is marginally easier, as our Witt vectors have
no constant terms, so there is no need for Pop’s notion of “quasi standard form”).
And (iv) follows immediately from (iii), since (s) is the only branched ideal of 7 /R.

Using Hilbert’s different formula ([36, p. 311] or [32, IV, Proposition 4]) and the
definition of the upper numbering, we obtain

n
Spp kg = Z(“; +(p' = p' ).

i=1

For § g,7, we add up the contributions from the different branched ideals separately.
For the ideal (¢), we consider the extension of complete discrete valuation fields given
by tensoring 8 /T with k(= ))(¢)) over 7. Let (Py,..., P,) be the standard form
(relative to (7)) of the Witt vector (Fy, ..., Fy,) classifying this extension. Then the
degree of the pole of P; at r = 0 is bounded by u;, and the upper jumps are bounded
By U8y ;5 s up). Thus the contribution §(;) from the ideal (¢) to 85,7 satisfies

Sy < Y (ui + D(p' = p'7Y).

i=1

For each ideal (¢t — i), we consider the extension of complete discrete valuation
fields given by tensoring & /7 with k(@ ) ({;,t — i). Let (P g, ..., Py o) be the
standard form of (Fy,..., Fy) relative to (¢ — p). Then the degree of the pole
of P;jq is bounded above by (u; —u;)/m. In fact the inequality is strict, because
u; —u; is divisible by p. So the contribution 8, from the ideal (t — {5 pn) to 85,7
satisfies

Sa < i (ug;"" —1+1)(p = p),

i=1
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We conclude:

8s/7 =8u)+ Y _ ba

a=1

<Y+ DG - P +m Y () - p

i=1 i=1

n
=D @+ D@ - p'™) =81k O

i=1

We omit the proof of the following proposition, which follows from Proposi-
tion 3.1 exactly as [28, Theorem 3.6] follows from [28, Key Lemma 3.2].

Proposition 3.2. Let Y — W be a branched T"-cover of projective smooth k-curves.
Suppose that the local inertia at each ramification point with non-abelian inertia
group has vanishing KGB obstruction. Set W = W xy k[w]. Then there is a
[-cover of projective smooth k[ w]-curves ¥ — W with special fiber the T -cover
Y — W such that the ramification points on the generic fiber ¥, — W, with
non-cyclic inertia have no essential ramification.

Proof of Proposition 1.11. Let Y — W = P! be the Harbater-Katz—Gabber cover
associated to L) /k[s] (this is called an HKG-cover in [28]). This is a I'-cover
that is étale outside s = 0, oo, tamely ramified above s = 00, and totally ramified
above s = 0 such that the formal completion of ¥ — W ats = 0 yields the
extension L/ /k[s]. Let ¥ — ‘W be the I'-cover guaranteed by Proposition 3.2, and
let ¥, — W, be its generic fiber. Recall that we assume that every local I"-extension
L, /k[s] with no essential ramification lifts to characteristic zero. Furthermore, by
the (standard) Oort conjecture, every cyclic extension of k[s] lifts to characteristic
zero. So if we base change ¥, — W, to the algebraic closure of k((=)), the
local-global principle tells us that this cover lifts to characteristic zero. Then, [28,
Proposition 4.3] tells us that there is a rank two characteristic zero valuation ring @
with residue field k such that the I'-cover ¥ — W has a lift over . Note that this
process works starting with any I'-extension with upper jumps (u, ..., u},), and that
such extensions can be parameterized by some affine space A" (with one coordinate
corresponding to each possible coefficient in an entry of a classifying Witt vector in
standard form).

To conclude, we remark that [28, Proposition 4.7] and its setup carry through
exactly in our situation, with our AV playing the role of A/ in [28]. Indeed, we
have that the analog of X, in that proposition contains all closed points, by the
paragraph above. Thus we can in fact lift ¥ — W over a discrete characteristic zero
valuation ring. Applying the easy direction of the local-global principle, we obtain a
lift of L),/ k[[s]. This concludes the proof of Proposition 1.11.
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4. The induction process

Let L,/k[s] be aT = Z/p" x Z/m-extension, with k[t]/k[s] the intermediate
7/ m-extension, and assume without loss of generality that t”* = s. As in [24], the
local-global principle thus shows that solvability of the local lifting problem from
Ly /k[s] is equivalent to the following claim, which will be more convenient to work
with:

Claim 4.1. Given a I'-Galois extension L, /k[s], then after possibly changing the
uniformizer s of k5], there exists a I'-Galois cover Y, — W := Py (where K is
the fraction field of some characteristic zero DVR R with residue field k) with the
following properties:

(i) The cover Y,, — W has good reduction with respect to the standard model PP 11-‘,
of W and reduces to a '-Galois cover ¥, — W = lP’,: (with s as coordinate
on W) which is totally ramified above s = 0, tamely ramified above s = oo,
and étale everywhere else. In other words, Y, — W is the Harbater—Katz—
Gabber cover for L,/ k[s].

(ii) The completion of ¥, — W ats = 0 yields L, /k[s].

We write ¥, — X (resp. ¥, — X) for the unique Z/ p"-subcover of ¥,, = W
(resp. Y, — W). Then the quotient covers X — W and X — W are both tamely
ramified Z/m-covers of P1’s, and we choose coordinates 7 on X and S on W
such that T" (resp. S) reduces to ¢ (resp. s) on X (resp. W), and such that X — W
identifies S with 7.

If R is a characteristic zero DVR with residue field k and fraction field K, set
D(r) = {T € K | v(T) > r}, where v is the unique valuation on K (with value
group Q) prolonging the valuation on K. We think of this disk as lying in X.

We prove Theorem 1.14 (in the context of Claim 4.1) by induction using the
following base case (Lemma 4.2) and induction step (Theorem 4.3).

Lemma4.2. Let L, /k[s] be a Z/ p X Z | m-extension whose Z ] p-subextension has
upper ramification break uy. Suppose that L,/ k|s] has vanishing KGB obstruction.
Then there existsa Z./ pxZ/m-cover Y — W satisfying Claim 4.1 for L,/ k[s], such
that Y — X = P! is étale outside the open disk D(ry), where ry = 1/ui(p —1).

Theorem 4.3. Suppose n > 1, and let L,/k(s]| be a Z/p" »x Z/m-extension
with vanishing KGB obstruction whose 7./ p"-subextension L,/k[t] has upper
ramification breaks (uy, ..., uy). Let Ly—1/k[s] be the unique 7./ p"~' x Z./m-
subextension. Suppose there exists a 7./ p"~' x 7/ m-cover

Z/pt—! Z
v, 2P x B2y

satisfying Claim 4.1 for L,_1/k[s], such that Y,—1 — X is étale outside the open
disk D(rp—1), where rp—1 = 1/upn—_1(p —1). Assume that (p,m,u,—_1, N1) satisfies
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the isolated differential data criterion, where Ny = (p — Dup—1 if un = pup—1,
and N1 = (p — 1)uy—1 — m otherwise. Lastly, assume u, < puy—, + mp. Then
there is a ZL/ p" x Z/ m-cover Y, — W satisfying Claim 4.1 for L,/ k[s], such that
Y, — X is étale outside D(ry), where r, = 1/u,(p —1).

Theorem 1.14 now follows immediately from Lemma 4.2 and Theorem 4.3 by
induction. After we prove Lemma 4.2 in the next section, we devote most of the rest
of the paper to proving Theorem 4.3.

5. The base case

In this section, we prove Lemma 4.2. Maintain the notation of §4, and assume that
we are in the situation of Lemma 4.2. Let I’ = Gal(L,/k[s]). By [7, Theorem 2.1],
the local lifting problem holds for L /k[s], so there is a '-cover Y — W satisfying
Claim 4.1 as desired (the vanishing of the KGB obstruction is exactly the condition in
the theorem in [7]). So we need only check that the branch points of the Z / p-subcover
Y - X =Plliein D(r;) = D(1/ui(p — 1)). We start with a lemma.

Lemma 5.1. In order to prove Lemma 4.2 for L/ k[s], it suffices to prove it for any
[-extension L'/ k(s] with the same ramification break.

Proof. By [29, Lemma 2.1.2], there is a k-automorphism ¢ of k [s] giving rise to an
isomorphism from L’ to L, making the diagram below commute:

L’—~>L1

]

k[s] —2 k[s]

Write ¢(s) = a,s + azs? + ---, where all a; € k and a; € k*. Now,
say f :Yy —> X — W satisfies Lemma 4.2 for L’/k[s] with all branch points
of Y1 — X lyingin D(ry). Considerthe cover f xw Spec R[S]. Let ® € Aut(R[S])
be any R-automorphism lifting ¢p. Identifying points of MaxSpec R[S ] with (Galois
orbits of) points of K of absolute value < 1, we have that ®* preserves absolute
values, because |41 S + A28% +---| = |S| whenever all 4; € R with A; € R* and
|S| < 1. Thus, the branch points of ®*(f xw Spec R[S]) have the same absolute
values as those of f xw Spec R[S], and ®*(f xw Spec R[[S]) is a local lifting for
Ly/k[s]. Clearly, if @ is extended to Aut(R[7']), where T™ = §, then ®* preserves
absolute values as well. Applying the local-global principle gives Lemma 4.2.  [J]

We are reduced to showing that, givenu; = —1 (mod m)and p + u;, Lemma4.2
holds for some L’/ ks whose Z / p-subextension L’/ k [[t] has ramification break u .
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We will freely use the terminology of Hurwitz trees for the rest of this section (see [6,
§3], especially Definition 3.2), as they are the key to the proof of [7, Theorem 2.1].

In particular, for any possible u; (called % in [7] and [6]), a Hurwitz tree is
constructed in [6] that gives rise to a lift of some L’/k[s] whose Z/ p-subextension
has ramification break u;. The valuations of the branch points of the lift (in terms of
the coordinate T') can be read off from this Hurwitz tree. This is done in the local
context in [6], but the local-global principle allows us to conclude the global result
of Lemma 4.2. We split the proof up into the two cases u; < p and u; > p.

If u; < p, then the Hurwitz tree is irreducible [17]. Thus the underlying
combinatorial tree consists of two vertices: a root vertex vy and a vertex vy. The
points in the set B of [6, Definition 3.2] all lie on v;. Since the points in B represent
the specializations of branch points of ¥ — X, the valuation of each of these branch
points is equal to p times the thickness € of the edge connecting to vo and v; (the
factor of p comes from [30, Proposition 2.3.2]). Since the conductor of the Hurwitz
tree is u1, we see that | B| = u; + 1. Since the differential form w, on vy has simple
poles at the points of B and no other zeroes or poles aside from a zero at the point z
corresponding to the unique edge e, this zero has order u; — 1. Then the definition
of Hurwitz tree implies that

l=(p—Due, or e€=1/ui(p—1).

Since r; < pe = p/ui(p — 1), this case is proved.

If u; > p, then [6, Theorem 4.3] gives a construction of the appropriate Hurwitz
tree when m = 2, splitting the construction into two cases. In both cases, the
underlying combinatorial tree has a root vertex vg, a vertex vy, and several other
vertices. Furthermore, in both cases, the different 5::1 can be any rational number
in (0, 1). Again, the valuation of each of the branch points is pe, where € is the
thickness of the edge connecting vg to v. The definition of Hurwitz tree implies that

61)1 = (p - l)uléq

and taking 6,, > 1/p ensures that pe > r;. As is mentioned in [7, Proof of
Theorem 2.1], this can be generalized easily to the case m > 2. One has the same
freedom for §,, and e in this case. This completes the proof of Lemma 4.2.

Remark 5.2. The global context of §4 was simply an encumbrance in this section,
but it will be helpful later on.

6. Characters and Swan conductors

In this section we recall the tools of characters and Swan conductors from [24, §5].
Characters will serve as a substitute for Galois covers, as they are more convenient to
manipulate algebraically. We will also relate equivariance of characters to metacyclic
extensions.
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6.1. Geometric setup. Let X = P }< We write K = K(T') for the function field
of X. Fix a smooth R-model Xg of X, corresponding to the coordinate 7. We
let X := Xg xg k denote the special fiber of X, and we let X®" denote the rigid
analytic space associated to X. We write 0 for the K-point T = 0 and 0 for its
specialization to X .
Let
D :=]0[x,C X

be the open unit disk around 0, that is, the set of points of X* specializing to
0 € X [5]. Then Oy, 5 = R[T], and via T, we make an identification

D=x={xe(Ak)™|v(x) >0}
For r € Q5o we define

Dlr]:={xe D |v(x)>r}
and, as in §4,
D(r):={xeD|v(x)>r}.

We have D(0) = D. For r > 0 the subset D[r] C D is an affinoid subdomain.
Let v, : K* — Q denote the “Gauss valuation” with respect to D[r]. This is a
discrete valuation on K which extends the valuation v on K and has the property
v-(T) = r. It corresponds to the supremum norm on the open subset D[r] C X",

Let «, denote the residue field of K with respect to the valuation v,. For r = 0,
we have that kg is naturally identified with the function field of X . After replacing K
by a finite extension (which depends on r) we may assume that p” € K. Then D|r]
is isomorphic to a closed unit disk over K with parameter 7, := p~"T. Moreover,
the residue field «, is the function field of the canonical reduction D[r] of the
affinoid D[r]. In fact, D[r] is isomorphic to the affine line over k with function field
kr = k(t), where ¢ is the image of 7, in x,. We make this identification of ¢ with
the reduction of 7, throughout, whenever it is clear which r we are dealing with.

For a closed point ¥ € DJ[r], we let ords : k) — Z denote the normalized
discrete valuation corresponding to the specialization of ¥ on D[r]. We let ordeo
denote the unique normalized discrete valuation on «, corresponding to the “point at
infinity.”

Notation 6.1. For F € K* and r € Qx¢, we let [F], denote the image of p~r(F) F
in the residue field «, .

6.2. Characters. We fix n > 1 and assume that K contains a primitive p”th root
of unity {,» (this is true after a finite extension of K'). For an arbitrary field L, we set

Hyw(L):= H'(L.Z/p"Z).
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In the case of K, we have
HL.(K) = H'(K.Z/p"Z) =~ K*/(K*)*"

(the latter isomorphism depends on the choice of {,n). Elements of H ;n (K) are

called characters on X. Given an element F € K*, welet R,(F) € H ;,, (K) denote
the character corresponding to the class of F in K*/(K*)?".

Fori = 1,...,n the homomorphism
Z/p'Z - Z)p"Z, aw— p"a,

induces an injective homomorphism H;,. (K) = H,(K). Its image consists of all

characters killed by p’. We consider H;,- (K) as a subgroup of H;,, (K) via this
embedding.

A character y € H ;,, (K) gives rise to a branched Galois cover ¥ — X. If
1 = R,(F) for some F € K*, then Y is a connected component of the smooth
projective curve given generically by the Kummer equation yP" = F. If x has
order p' as element of H ;,, (K), then the Galois group of ¥ — X is the unique
subgroup of Z/ p"Z of order p'.

A point x € X is called a branch point for the character y € H,,(K) if it is
branch point for the cover Y — X. The branching index of x is the order of the
inertia group for some point y € Y above x. The set of all branch points is called the
branch locus of y and is denoted by B(y).

Definition 6.2. A character y € H ;,, (K) is called admissible if its branch locus B( x)
is contained in the open disk D.

6.2.1. Reduction of characters. Let y € H ;,, (K) be an admissible character of
order p", and let Y — X be the corresponding cyclic Galois cover. Let Yg be
the normalization of Xz in Y. Then Yg is a normal R-model of Y and we have
Xr=YR/(Z/P").

After enlarging our ground field K, we may assume that the character y is weakly
unramified with respect to the valuation vy, see [12]. By definition, this means that
for all extensions w of vg to the function field of Y the ramification index e(w/vg)

is equal to 1. It then follows that the special fiber ¥ := Yr ®g k is reduced (see
e [2,82.2)).

Definition 6.3. We say that the character y has érale reduction if the map Y — Xis
generically étale. It has good reduction if, in addition, Y is smooth.

In terms of Galois cohomology the definition can be rephrased as follows. Let Ko

be the completion of K at vy. The character y has étale reduction if and only if the

image XI]KO of yin H ;n (Ko) under the restriction morphism induced by the inclusion
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GalK0 — Galg is unramified. The word “unramified” means that Xllﬁ{o lies in the
image of the cospecialization morphism

H pn (ko) — Hpn (Ko)

(which is simply the restriction morphism induced by the projection Gal]f(0 — Galy,).
Since the cospecialization morphism is injective, there exists a unique character
X € H;,, (ko) whose image in H;n (Ko) is XIKo' By construction, the Galois
cover of X corresponding to jy is isomorphic to an irreducible component of the
normalization of Y.

Definition 6.4. If y has étale reduction, we call jy the reduction of y, and y a lift
of x.

Remark 6.5. Assume that y is an admissible character with good reduction. The
condition that y is admissible implies that the cover Y - X corresponding to
the reduction ¥ is étale over X — {0} (the proof uses Purity of Branch Locus, see
e.g. [33, Theorem 5.2.13]). Thus we may speak of the ramification breaks of y, by
which we mean the ramification breaks above the point 0.

6.2.2. Equivariant characters. In the context of §6.1, consider a Z /m-action on K
fixing K, given by t(7T) = ({,, T for T a generator of Z/m. This gives rise to a
Z/m-action on Xg, and we set Wg (resp. W, W) equal to Xg/(z) (resp. X/(t),
X /(z)). The action of Z /m on K naturally gives rise to a Z /m-action on H;,, (K) =~
K*/(K*)?. Lety : Z/m — Aut(Z/p™) be a homomorphism. Any automorphism
of Z/p™ is given by multiplication by an element of (Z/p™)*, and we use this to
identify Aut(Z/p") with (Z/p")*.

Definition 6.6. A character y € H ;,, (K) is called ¥ -equivariant if t(y) = )("”(’—1).

Remark 6.7. Since y is an element of a p”-torsion group, the expression X"’(T—]) is
well-defined.

Proposition 6.8. Ler ' = Z/p" x Z/m via the conjugation action  : Z/m —
(Z/p")* = Aut(Z/p™). The Z/p™-branched cover Y — X given rise to by x
extends to a I'-branched cover Y — W if and only if y is a \-equivariant character.

Proof. Letting S = T™, proving the proposition is the same as showing that
K(Y)/K(S) is a I"-extension if and only if y is y¥-equivariant. Say I' is generated
by 7 and o of orders m and p”", respectively, with 7o = o¥®z. Since K(Y)/K is
a Kummer extension, there exists a Kummer generator f € K(Y) suchthato(f) =
Cpn f. Now, x being y-equivariant is equivalent to (f7") = (fp")(‘/’(’_l))gp",
for some g € K* (here we abuse notation and think of ¥ (r™!) as any representative
of (1) in Z). This is in turn equivalent to the possibility of extending the action
of t fromKto K(Y)viat(f) = f‘/’(’—l)g. Suppose this is possible. One calculates

20 (f) = Lo SV Vg = a¥D(z(f)).
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Since |Aut(K(Y)/K(S))| < mp", we see that the automorphism group is in fact
generated by t and o subject to 7o = 0¥ P 1. Thus, K(Y)/K(S) is a I'-extension.
On the other hand, if K(Y)/K(S) is a I'-extension, then using oV = o1,

we have 70V () = 4 Ve(f) = 0 (2(f)). 50

a(z(f)) §;/f(r 1
o(f) '

Kummer theory tells us that 7(f) = f"’(’_l) times an element of K*, which is
exactly what we need to prove. ]

Note that a Z/ p"-cover of IP’kl, unramified outside 0, is uniquely determined by
its germ above the branch point (see, e.g. [19]). Thus, with the above notation, and
in light of §2, Claim 4.1 may be reformulated as follows.

Claim 6.9 (cf. [24, Conjecture 5.7]). Let y € Hp,, (ko) (note kg =~ k(t)) be a

character of order p”, unramified outside of 0, such that the corresponding Witt vector
(f1..... fn) is given by polynomials in ! with all degrees of all terms congruent
(mod m). Then (after replacing K by a finite extension, if necessary) there exists a
homomorphism ¢ : Z/m — (Z/p™)™ and an admissible, y-equivariant character
X € H1 (K) with good reduction lifting y.

By abuse of language, we will say that x has vanishing KGB obstruction if
the completion at 0 of the _composite cover Y > X —> W has vanishing KGB
obstruction, where ¥ — X is the cover corresponding to ¥ and X — W is the
quotient morphism from the beginning of §6.2.2.

Remark 6.10. In the case where j has vanishing KGB obstruction, the corresponding
homomorphism  will be injective.

The following lemma follows from an easy calculation, and will be useful in §7.1.

Lemma 6.11. Under the identification H),(K) = K*/(K*)?", a character is
W -equivariant if and only if it can be identified with

m .

[ @)?™

i=1
for some g € K*.
Lemma 6.12. If y has vanishing KGB obstruction, ©(T) = {,,T, and n = 1, then
y(th) = §,;£ as elements of (Z/p)* = F .

Proof. This follows from [23, Lemma 4.1(iii)], using the fact thatu; = —1 (mod m).
In particular, our {,, 11, and ¥(t) are the same as {~!, j, and «, respectively,
in [23]. O
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It will at times be useful to measure how far an element of K (in a special form)
is from giving rise to a y-equivariant character of order p. To this end, we make the
following definition:

Definition 6.13. Let r € Q. Recall that 7, = p~™"T. An element
FeKn(l+T'm{T '}

has r-discrepancy valuation > o if there exists
FeKn(l+T'm{T '}

such that & (F") is ¥-equivariant and v, (F — F') > o. If & (F) is ¥-equivariant,
we may say that the r-discrepancy valuation is oo.

Definition 6.14. Let r € Qx¢. Suppose F = > o a; T, € R{T; '} ®g K. Then
we extend the valuation v, from K to R{7,”'} ® g K (and any subring) by setting
vr(F) = min; (v(e;)). Furthermore, we write v, (F) = min;es (v(e;)), where S is
the set of indices either divisible by p or congruent to —1 (mod m).

Lemma 6.15. Fix r € Qso. Let F € KN (1 + T, 'm{T1}) with £,(F)
V-equivariant. Write [F — 1], = Y 2, cit™, where t is the reduction of T,
inky. If v,(F—1) < p/(p—1), then ¢c; = 0 unless pli ori = —1 (mod m).
Ifv,(F—1) = p/(p—1) and c; = 0 whenever p|i, then ¢c; = 0 unless i = —
(mod m).

Proof. Suppose v.(F —1) = y < p/(p — 1), and if equality holds, that ¢; = 0
for pli. Write

o o]
F=14) aT//=1+A4+B,
i=1
where A consists exactly of the terms a; 7, such that v(a;) = y, and v,(B) > y.

Recall that 7 is a generator of Z/m such that (7)) = {,,T. By equivariance and
Lemma 6.12,

t(F)=(1+A+B)" =1+¢uA+ B (mod (KX)?),

where v, (B’) > y. On the other hand, t(F) = 1 4+ t(A) + ©(B).

Assume, for a contradiction, that A has some term aiTr‘i such that i is neither
congruent to —1 (mod m) norto 0 (mod p). In particular, t(A4) # {mA. We must
show that

Q:=0+&A+ B)/(1 +t(A) + t(B))

is not a pth power in K (in fact, we will show that it is not even a pth power
in 1 + T, 'm[77!]). The power series expansion of Q in 7,7! is of the form
1+ >72,di T, with v(d;) > y forall i. Since t(A) # {mA, there exists i € N
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such that p i and v(d;) = y. If y = v,(Q — 1) < p/(p — 1), then Q can only
be a pth power if the d; such that v(d;) = y all have p|i, giving a contradiction.
If y = p/(p—1) and A has no terms of degree divisible by p, then Q can only be a
pth power if there is some i with p|i such that v(d;) = y, again a contradiction. [J

The discrepancy valuation of a power series sheds light on the valuation of its
coefficients.

Corollary 6.16. Letr € Q. Suppose F € KN(1+ T, 'm{T~'}) has discrepancy
valuation > o. Then v, (F — 1) > min(o, p/(p — 1), v.(F — 1)).

Proof. Pick F' € K N (1 + T, 'm{T,~'}) such that & (F’) is ¥ -equivariant and
v, (F — F’) > o. It suffices to prove that v, (F' —1) > min(p/(p — 1), v,.(F' —1)).
But this follows from Lemma 6.15. O

6.3. Swan conductors. We recall some properties of the depth and differential
Swan conductors of characters. For proofs, see [24, §5]. Let y €¢ H ;,, (K) be a
character. As in [24, §5.3], we define the depth Swan conductor §,(r), which is a
continuous, piecewise linear function

The kinks in §,(r) (i.e. non-differentiable points) occur only at rational values of r.
As part of the definition, 6, (r) = 0 if and only if y is unramified with respect to v,.
If this is the case then the reduction y, € H ;,, (k,) is well defined.

Let us now assume that §,(r) > 0, and thatr € Q. Then, again as in [24, §5.3],
one defines the differential Swan conductor of y with respect to v,,

wy(r) € SZ,‘Cr,

which we think of as a meromorphic differential on IP’,& (perhaps more accurately,
on D[r]). The slopes of §, are determined by the orders of zeroes and poles of wy:
Proposition 6.17 ([24, Corollary 5.11]). If r > 0 and §,(r) > 0O, then the left and
right derivatives of 8y at r are given by ordeo(wy(r)) + 1 and —ordg(w,(r)) — 1,
respectively.

We now recall how the function §, determines whether y has good reduction.

We fix an admissible character y € H ;,, (K) of order p" and let Y — X denote the
corresponding Galois cover.

Proposition 6.18. Let y € H ;,, (K) be an admissible character of order p". Then
the character y has good reduction with upper ramification breaks (uy, ..., uy) if
and only if §,(0) = 0, the right slope of §, at 0 is u,, and

l{x € B(x) | ramification index of x is exactly p" ™' T} = u; — ui_,.

where we set ug = —1.
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Proof. By definition, y has étale reduction if and only if §,(0) = 0. By [24,
Corollary 5.13(i) and Proposition 5.10(i)], y has good reduction if and only if the
right slope of 6, at 0 is equal to |B()| — 1, in which case [24, Remark 5.8(i)] shows
that this right slope is u, (note that [24, Proposition 5.10(i)], is not stated as applying
to r = 0, but from its proof referencing [34], it is clear that the right slope statement
does apply). Now the proposition follows from [24, Corollary 5.13(ii)]. U

Proposition 6.19 ([24, Corollary 5.15]). Let y € H p‘,,, (K) be an admissible character
of order p", let r € Qx¢, and let X be a point on the canonical reduction of D|r].
Suppose 5y (r) > 0. Then

ordz(wy(r)) = —|B(x) N U(r, x)|,

where U(r, X) is the residue class of X on the affinoid D|r]. Equality holds if x has
good reduction.

The depth and differential Swan conductors behave in the following way under
addition of characters:

Proposition 6.20 ([24, Proposition 5.9]). Let x1, x2 € H;n (K), and let y3 = y1x2.
Fori € {1.2,3}andr € Qxo, set §; = 8y, (r). If §; > O then we set w; := wy, (r).
If §; = O then y; € le,,, (k,) denotes the reduction of y; with respect to v,.

(i) If81 75 52 then 63 = max(51. 82) If81 > 82 then w3 = w;.
(ii) Assume 8§, = 8, > 0. Then

a)1+a)2#0 = § =6 = 83, w3 = w1 + ws
and

W +wy=0 = 3 <.

(iii) Assume 8y = 8, = 0. Then 83 = 0 and y3 = }1)>2.
Lastly, we relate differential Swan conductors with equivariance.

Lemma 6.21. Let v and ¥ be as in §6.2.2. If y € H;n (K) is ¥-equivariant and

r € Qso such that §,(r) > 0, then wy(y)(r) = l,b(r—l)a)x(r), where ¥ (t™1), by
abuse of notation, is identified with its image under the “reduction mod p” map
(Z/p")* - F, k™

Proof. Since t(x) = X“’(‘_l), this follows from Proposition 6.20(ii). O
6.4. Characters of order p. We will now describe in the special case n = 1

how to determine the function &, explicitly in terms of a suitable element F € K*
corresponding to the character y € H; (K) = K*/(K*)?.
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Proposition 6.22 (cf. [24, Proposition 5.17]). Let F € K*\(K*)?, let y := &1(F) €
H)(K), and let r € Qxo. Suppose that v,(F) = 0, and that g = [F], ¢ kP
Suppose, moreover, that y is weakly unramified with respect to v, (which is always
the case if K is chosen large enough).

(i) We have

() =~ = e ().

(ii) If8,(r) > O, then

dg/g ifdy(r)=p/(p—1),

=V 0e 0 <8, < p/(p— 1)

If, instead, §,(r) = 0, then ¥ corresponds to the Artin-Schreier extension
given by the equation y? —y = g.

7. Proof of Theorem 4.3

7.1. Plan of the proof. We continue with the notation of §6. Recall that D is the unit
disk in (A}()"’“‘ centered at 0, and D(r) and D|[r] are, respectively, the open and closed
disks of radius | p|” centered at 0. We are given a character y, € H ;,, (ko) of order
exactly p”, unramified outside 0, with upper ramification breaks (u1.u2, ..., un),
corresponding to a non-abelian I' := Z/p" x Z /m-extension as in Claim 6.9. We
assume that y, has vanishing KGB obstruction (see after Claim 6.9). We further

assume that n > 2. For 1 <7 <n,setr; = 1/u;(p —1). Recall that p } u, that
Uy =-+=u, =—1 (mod m), and that

PUui—1 = Ui < pui—1 +mp,

fori = 1,...,n, where we set up = 0. It is automatic that if the first inequality
n—i

above is strict then p 4 u;. Fori = 1,...,n weset j; := yb € H;I-(Ko).
By assumption, for each 1 < i < n, there is a compatible sequence of injective
homomorphisms ¥; : Z/m — (Z/p")* (i.e. ¥; reduces to ¥; for j > i), and
a Y;-equivariant character y; lifting ;. We assume that B(y,—;) lies in the disk
D(rp—1). Assume that

(p’mv Up—1, Nl)
satisfies the isolated differential data criterion (§1.4), where Ny = (p — Duy,
if u, = pup—y, or Ny = (p — Du, — m if u, > pu,—,. In order to prove

Theorem 4.3 (using Claim 6.9 in place of Claim 4.1), we must show that, for the
unique ¥, : Z/m — (Z/p™)* compatible with the ;, there exists an admissible



574 A. Obus CMH

Yu-equivariant character y, € H ;,, (K) with (good) reduction y,. Furthermore, we
must show B(y,) € D(rn). We will construct y, such that y& = y,_;.
We may assume that y,—; corresponds to an extension of K given by a system of
Kummer equations
y;”:yi_lG,-, izl,...,n—l

1

pn(K) such that y” = y,_p is given by an

with yo :=1land G; € K. Any y € H
additional equation

y§ = ya1G. (7.1)
Since we must have B(y) € D, we will search for G of the form
N
G=]]a-z1hH%, (7.2)
ji=1

wherea; € 7, (aj, p) = 1, and z; in the maximal ideal m of R are pairwise distinct
(the ability to restrict our search to rational functions without worrying about missing
anything is one benefit of working in the global context). We will say that the rational
function G gives rise to the character y.

Remark 7.1. Note that multiplication of G by an element of (K*)? does not change y,
so when it is convenient, we will think of G as an element of K* /(IK*)?.

Lemma 7.2. [t is possible to replace G,— by its product with an element of (K*)?
so that G = 1 gives rise to a Y,-equivariant character y.

Proof. ldentifying H;,, (K) with K*/(K*)?", we have that choosing G = 1
corresponds to a character y given by
n—2

A:=GGF...G"" "

Let T be a generator of Z/m. Since y,—; is assumed to be ,_;-equivariant,

Lemma 6.11 tells us that
m
n—1

A= l_[(rj(g))wn_l(rj) (mod (K*)?" )

ji=1
for some g € K*. Since ¥, is compatible with ¥,—;, we have that
m
A= ]G @) BP"™"  (mod (K*)*"),
F=1

for some B € K*. Replacing G,—; by its product with ]—[3";11 (t/ (B))P¥n(@’)
replaces A by

m .
1_[ (rj (ng”_l ))wn(tj)'
=1

which is 1, -equivariant by Lemma 6.11. O
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Note that performing the replacement of Lemma 7.2 does not change the
character y,—;. Thus, for the rest of the paper, we assume that G,—; is chosen
in accordance with Lemma 7.2.

Proposition 7.3. Suppose a generator v € Z/m sends T to {, T. If G in the form

of (7.2) gives rise to y, then in order for x to be Y,-equivariant, it is necessary and
sufficient that G be of the form

N/m m ;
G=[][]a-¢&tzr e (7.3)
j=1¢=1

after a possible reindexing. Here we are viewing Y1 (t%) as an element of F*, which
makes G a well-defined element of K> /(IK*)?.

Proof. 1dentifying H ), (K) with K*/(K*)?" via R, we have that

n—2 n—1

X:_ﬁn(GlGiD...Gf_l GP )'

Since £, (G1G5 -+ G,fjf) is assumed to be 1, -equivariant, we have that y being
Y, -equivariant is equivalent to &, (G? " ) being r,,-equivariant, which is equivalent
to R1(G) being ¥;-equivariant. By Lemma 6.11, this is equivalent to G having the
desired form. O

Remark 7.4. We say that G € K* is “of the form (7.3)” if its residue class as an
element of K> /(K*)? is.

Let us assume that none of the z; is a branch point of y,_;. If this is the case,
then Proposition 6.18 shows that a necessary condition for good reduction of y is that
N = u, —up—1. We assume this. Note that N = [B(})\B(xn-1)|.

We will try to find a choice G, for G of the form (7.3) giving rise to a character y,
whose (good) reduction is y,. In §7.2, we give some contraints that G, will have to
satisfy. In §7.3, we give our strategy in more detail.

7.2. The critical radius. We continue with the setup of §7.1. In particular, recall
that y; is a lift of ; for 1 < i < n, and y is the character arising from G. The
number r,—; = 1/u,—;(p — 1) will be of the utmost importance, and we will refer
to it as the critical radius, or r. From [24, Eq. (15)], we know that

P
8y (Ferit) = ——, 7.4

x(r t) p—1 (7.4)
regardless of our choice of G (this is, essentially, why the critical radius is “critical.”
It is the minimal r such that G does not affect §,(r)). For this section, we let u

be the minimal upper ramification break u; such that u,—; is a power of p times u.
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Thus u is prime to p (see §2, just before Proposition 2.1). Set v = n — 1 —{, so that
Up—1 = up”.

We start with a proposition that is not necessary for the proof of Theorem 4.3, but
it guides some of our choices about how we construct G. Namely, we already know
that G is of the form (7.3), and that N = u,, — u,—;. Our first decision is how many
of the branch points of y to place at the critical radius. That is, how many of the z;
in (7.3) should have valuation rgs;,?

Proposition 7.5 ([24, Proposition 6.4]). If x has good reduction then the following
hold.

(i) Forall j we have v(z;) < Ferit.
(ii) Fori,j with v(z;) = v(zj) = rem we have X; # Xj (where X denotes the
reduction of xj := zjp~ "),

(iii) Write N = N + Nz, where Ni/m is the number of z; in (7.3) with
v(z7) = rerieo Ifun = pun—1then Ny = up—1(p—1) and N = 0. Otherwise,
N1 < u,,_l(p = 1) and N2 > 0.
Lett = [Ty ]r... Since 37, ¥1(tt) = 0in Fp, it follows from (7.3) that, up
to reordering the z; and up to a constant factor that we may eliminate by rescaling 7,

we have
Ni/m m

(Gl = g =1 [ J]1 - &tx, e y¥a s, (7.5)

j=1 t=1
where p|ay.
Corollary 7.6. In the notation of Proposition 1.5, if y has good reduction and
5= [G]rcril’ then

cdt

tun—1+t1 l—[jV;/lm(Im _ X‘:;") ’

d : i
wy(rei) = £ —u Y ladr = (7.6)
g 5s=0

where c is a nonzero constant. In particular, ordeo (wy (rerit)) = N1+ up—1 — 1.

Proof. The first equality follows from [24, Lemma 6.3]. This middle expression
shows that w, (i) has no multiple poles outside of = 0, where there is a pole of
order up’ + 1 = u,_; + 1. Furthermore, Proposition 6.19 shows that @, (r.) has a
simple pole at each of the N, points £ X j, no zeroes outside of = oo, and no other
poles outside of t = 0. It follows that @y (rcri¢) has the form in the third expression,
from which ordes (wy (rrit)) can be read off. O

Remark 7.7. Notice that 790 from (7.5) disappears in the logarithmic derivative.
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Recall (§1.4) that (p,m,u,—1, Ny) satisfies the differential data criterion with
respect to k if there exists a polynomial f(¢) € k[t™] of degree exactly N; in ¢, such
that the meromorphic differential form

. dt 1
@ = 1 € Sk

satisfies €(w) = @ + ut~“n=171dt, where u is the prime-to-p part of u,—;. Note
that this implies f(0) # 0, otherwise the order of the pole of w at t = 0 will be
too large compared to that of €(w) and ¢ *7—1~1dt. We will suppress k when it is
understood.

Proposition 7.8. Suppose p, m, un,—y are as in this section, and N, is as in
Proposition 7.5. The following are equivalent:

(i) There exists G of the form (7.3) such that g := [G],,, satisfies (7.6).
(ii) The quadruple (p, m,u,—1, N1) satisfies the differential data criterion.

(iii) There exists a solution to the following system of equations:

3 a7 = s =" (1.7)

I 0, otherwise,

where the Xj € k, the a; € ]F;, and q ranges over those numbers from 1 to
N1 + up—y — 1 that are congruent to —1 (mod m) and not divisible by p.

Proof. We first prove (i) implies (ii). Suppose g is a solution to (7.6). Taking
w = wy(re) and f(1) = ¢! ]‘[j";/{" (t™ —%""), and noting that the Cartier operator
preserves logarithmic differential forms, it is clear that € (w) = @ + ut *»—171dt.

Now we prove (ii) implies (i). Suppose (p, m.u,—1, N1) satisfies the differential
data criterion via a differential form w = dt/f(¢)t¥»—1+1. By the properties
of the Cartier operator, w is equal to a logarithmic differential form minus
ud l_ot7“P*~1dt. Since +P"~1 has trivial residues, the residues of @ are the
same as those of a logarithmic differential form. In particular, they lie in F,
([7, Lemma 1.5]).

Factor f as ¢! ]_[iv;/lm (t™ — X""). Let a; be the residue of w at X;. An easy
calculation shows that the residue of @ at C,;E)'cj is C,;Eaj, which is 1//1(1'5)61,-, by

Lemma 6.12. Since m|(p —1) (see Remark 1.7), all of these residues lie in F,. Now,
take

Ny
g= [] [T -gtx;r e, (7.8)

/m m
j=1 £=1
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where by abuse of notation we take an arbitrary lift of each v ( Ha ;j and consider it
as an element of Z. Then dg /g has the same residues at the simple poles é’,‘;)‘cj as w.
So

v
Bi=dg/g—u) 177 ldt—
5=0

is a logarithmic differential form with no poles outside of 0. Since a nonzero
logarithmic differential form has only simple poles, and at least two of them, we
conclude that 8 = 0. So g is a solution to (7.6). Let xy,...,Xn,/m be lifts
of X1....,Xn,/m to R. Then we take G to be anything in the form (7.3) such that
zi = prx; forl <i < Ny/mand v(z;) < regq fori > Nyj/m.

Lastly, we prove that (i) and (iii) are equivalent (cf. [24, p. 266]). We identify the
choices of the a; and X; in (i) and (iii). If G is of the form (7.3) with g = [G],...
then differentiating logarithmically, we obtain

Ny/
= 2 2. =
Jj=1 (=1

Since ¥, (¢%) = g;’f by Lemma 6.12, we obtain

o0 Ni/m m
Z( Z Ztmq s, )’cq)t“’“dt. (7.9)

g g=1 i=1 €é=1

Thus all terms in the expansion (7.9) disappear unless ¢ = —1 (mod m). In
particular, w,(rei) = dg/g — u Z;’:Ot—“P“_ldt has a zero of order at least
Ny + up—1 — 1 at oo if and only if, for all ¢ = —1 (mod m) between 1 and
N1 + up—1 — 1 inclusive, we have

N]/m

=u,up,..., u ,
Za, _{"/m 1 Preee P (7.10)

otherwise.

Now, if an equation in (7.10) holds for ¢, then it also holds for pgq, as replacing ¢
with pg simply raises both the left hand and right hand sides of the equation to the pth
power. So wy (rrit) has a zero of order at least Ny + u,—1 — 1 at oo if and only if (iii)
holds. But wy (ri) cannot have a zero of order greater than Ny + u,_; — I at 0o, as
it has at worst a pole of order u,,—; + 1 at 0 and N; simple poles at the é’,‘;,ij. So (iii)
is equivalent to @, (rrit) having a zero of order exactly Ny + u,—1 — 1 at co, poles in
the aforementioned places, and no other zeroes. That is, (iii) is equivalent to (i). [J

Remark 7.9. From its proof, it is clear that Proposition 7.8 is not just an existence
result. In particular, any f realizing the differential data criterion gives rise to a g
satisfying (7.6), which in turn gives rise to a solution to the system (7.7) (the x;
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in (7.7) are representatives from the u,,-equivalence classes of roots of f(¢)). The
definition of realizing the differential data criterion (Proposition 7.8(ii)) is easier to
state than the criterion in Proposition 7.8(iii), and is also usually easier to work with
computationally, but it is the criterion of Proposition 7.8(iii) that we will mostly use
in our proofs.

Remark 7.10. One checks that (7.7) is a system of N;/m equations in Ny/m
variables if and only if if up,—1(p — 1) —mp < Ny <u,—1(p —1).

Remark 7.11. The choice of thea; € IF; in (7.3) is known as the “type” (cf. [6,7,24]).
One of the advantages of phrasing the differential data criterion in terms of the Cartier
operator, rather than in terms of the equations (7.7), is that this phrasing is “type
independent.” That is, one does not have to determine the a; separately — they fall
out automatically as the residues of @, which is determined solely in terms of the
roots of f (which correspond to the X;). In the papers mentioned above, one of the
difficulties is guessing the correct type in an analogous situation.

Furthermore, since the problem is naturally symmetric in the X, it makes sense
to “symmetrize” things by thinking in terms of f instead. The coefficients of f will
in general lie in smaller fields than the X ;.

In §7.4, it will become important not only to be able to satisfy the equivalent
criteria of Proposition 7.8, but to do so in an “isolated” fashion, that is, to choose
the a@; and x; as in Proposition 7.8(iii) such that no infinitesimal deformation of
the X; yields a solution to (7.7). For fixed a, the Jacobian matrix of (7.7) at a
solution (X;); is the Ny/m x Ny/m matrix

(qaj)_cjl-_l)q’j (7.11)

over k, where j ranges from 1 to N;/m and ¢ ranges over those numbers from 1 to
Ny 4 up—; — 1 that are congruent to —1 (mod m) and not divisible by p. Thus, in
light of Remark 7.9, we make a definition (cf. [24, Assumption 7.2]).

Definition 7.12. Suppose p, m, u,—; are as in this section, and N; is as in
Proposition 7.5. The quadruple (p, m,u,—1, Ny) satisfies the isolated differential
data criterion if there is a polynomial f € k[t™] realizing the differential data
criterion for (p,m,u,—1, N1) (equivalently, a g € k() satisfying (7.6)) that gives
rise to a solution to the system of equations (7.7) for which the matrix (7.11) is
invertible over k (or is empty).

Remark 7.13. Dividing by (nonzero) constants, one sees that the isolated differential
data criterion holds if the matrix (¢~ )q ; (for the same ¢ and j as in (7.11)) is
invertible.

Remark 7.14. The differential data criterion is analogous to [24, Assumption 7.1]

in the cyclic case, and the isolated differential data criterion is analogous to [24,
Assumption 7.2].
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Definition 7.15. If g € k(¢) is a solution to (7.6) realizing the isolated differential
data criterion, then we define 9., ¢ C K to be the set of all G of the form (7.3) (but
with N; replacing N) with [G],., = &.

To sum up, we have shown that a G of the form (7.3) can only give rise to a
character with good reduction if it lies in ¢, for some g solving (7.6).

7.3. Plan of the proof, part II. Maintain the notation of §7.1 and §7.2. Recall that
we are searching for G, of the form (7.3) giving rise to a character y, with good
reduction j,. The proposition below follows immediately from Proposition 6.18 and
the discussion at the beginning of §7.1.

Proposition 7.16. If G is of the form (7.3) such that all z; satisfy v(z;) > r, =
1/uy(p — 1), such that §,(0) = 0, and such that the right slope of &, at 0 is uy,
then G gives rise to a Yrn-equivariant character y with good reduction ¥ having
ramification breaks (uy, ..., uy), and such that B(y) € D(ry).

The argument outlined in the remainder of this section is the most important
difference between this paper and [24].

Recall that pu,—y < u, < pun—; + mp (in fact, since all u; are congruent
to —1 (mod m), we have u, < pu,—y + m(p —1)). As was mentioned before
Proposition 7.5, we must decide how many of the z; to choose such that v(z;) =
Terit = Fn—1 = 1/(p — 1Du,—1. Recall that there are N/m z; in total. Let N and N,
be two multiples of m such that Ny + N = N = up —up—1. lf uy, = puy—q,
we choose N; = u, — uy—; and N, = 0. Otherwise, we take some N; such that
(p—Duy—y—mp < Ny < (p—1)up—;. This gives 0 < N < 2mp — 2m, with the
first equality holding if and only if u, = pu,—;. Note that Ny + u,—, is divisible
by p if and only if u, = pu,—;. We will construct G and a rational number ryyp
such that Ny/m of the z; satisfy v(z;) = rei and the other N /m of the z; satisfy
v(z;) = ro. If up = pu,—1, we declare rpy, = 0. Otherwise, 0 < ruyy < Ferit 18
defined by the following proposition.

Proposition 7.17. In the notation above, suppose v(z;) = e for Ny/m of the z;
and v(z;) = ra for No/m of the zj. Suppose further that Ny > 0 and y has good

reduction. Then
1 Ny

Ny (p— Dupi Ny’

Thub =
Furthermore, r, < rup < Ferit-

Proof. Under the assumptions in the proposition, B(y) has N, points with
valuation r,, and another N; points with valuation r;. Using Proposition 6.18
along with the fact that y,—; has good reduction, B(y) has exactly u,—; + 1 other
points, all of which have valuation greater than r;. Since y has good reduction,
Propositions 6.17 and 6.19 imply that the right slope of &, is Ny + Na +up—1 = u,
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for 0 < r < rhub and Ny + up—y for ryyy < r < reqe. Furthermore, 8y (reri) =
p/(p —1) by (7.4),and §,(0) = 0. Thus we obtain the equation

(N1 + N2 + up—1)rnuw + (N1 + up—1)(Ferit — Thup) = ;{*—1
This yields rpy, = 1/N2—N;/(p—1)u,—1 N2, proving the first part of the proposition.
Since (p—1)up—1—N1 < up—up—1—N1 = N,, it follows easily that royp < Ferit.
On the other hand, we know

Nry=up—up—1— Ny <(p—Dup—y — Ny +m(p —1).

So
(p— Dup—1 — Ny
Thub = .
(p — Dup—1((p — Dup—1 — N1 + m(p — 1))

Now, since (p — l)u,—1 — N1 = m, we have

(p —Dup—1 — Ny - l
(p—Dup—y — Ny +m(p—1) ~ p’

Putting everything together, we obtain

1 |
Thub = > = i O
"= = Duprp T (p—Du, "

From the proof of Proposition 7.17, it is clear that if y has good reduction, then

8y (Thub) = UnThub = ;{— — (N1 + tn—1) (Ferit = Thub) =: Shub. (7.12)
regardless of whether u, = pu,_;.

We will work under the running assumption that (p,m,u,—,, N1) satisfies the
isolated differential data criterion. Thus, we let g be a solution to (7.6) realizing the
isolated differential data criterion, and we define &, as in Definition 7.15. Our
first step, to which §7.4 is devoted (and which parallels [24] very closely), is to find
Gerit € Gerir,g such that Gy, gives rise to a character ycr; With 84, (Fhub) = Shub-

If uy = pup—1, then Ny = N, so G is already of the form (7.3). In this
case, we set G = Gy, from which y =y satisfies §,(0) = 0, and the right
slope of 8, at 0 is u,. Since G is already in the form (7.3), Proposition 7.16 shows
that y has good reduction y with upper ramification breaks (u;....,u,). We then
show quite easily that G can be replaced by some G, € i, (and thus still of the
form (7.3)) such that G, gives rise to a character y, with good reduction y, and
B(xn) € D(ry). By Proposition 7.3 and the discussion at the beginning of §7.1, this
proves Theorem 4.3 (using Claim 6.9 instead of Claim 4.1) when u,, = pu,—i.
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If u, > pu,—1, our next step (§7.5) is to construct a space &, € K consisting
of certain functions whose images in K* /(K*)? have the form

N/m m

[T TT0-gesrymeos,

J=Ni/m+1£{=1

where v(z;) = rpu for all j. To do this, we will need to assume N, < mp. This
assumption will always be satisfied if Ny = (p —1)u,—1 —m. Now, &y, will have the
property that if Gy, € Ghup, then the character y given rise to by GGy satisfies
85 (rhub) = Shub, and the left slope of §, at ryp is u,. This puts us on the right track
for having the right-slope of &, at 0 be u,. Furthermore, G Gnu will be of the
form (7.3).

In §7.6, in the case u, > pu,—;, we will construct a particular function Gy, €
Ghub and modify our original choice of Gerit € erir,g Such thatif G = Gy G gives
rise to x, then §,(0) = 0, and § is linear of slope u, on the interval [0, ry). Since G
is in the form (7.3), Proposition 7.16 shows that y has good reduction y with upper
ramification breaks (u#1,....,uy).

In §7.7, still in the case u, > pun—;, we replace G with G,, where G, is still
a product of an element of &, and one of &, (and thus still of the form (7.3)),
such that G,, gives rise to a ¥, -equivariant character y, with good reduction y, and
B(xn) € D(ry) (recall that having good reduction specifically equal to j, is what
we seek, whereas §7.6 only gives us some good reduction). This is analogous to
what happens in the case u, = pu,_;, but a little more difficult. In particular, it
is tricky to deal with the coefficient of 7" in the last component of the standard
form Witt vector corresponding to y, (no such issue arises in the u, = pu,—; case
because this coefficient is always zero). The underlying calculations concerning this
coefficient are deferred to §7.8.

By Proposition 7.3 and the discussion at the beginning of §7.1, we obtain a proof
of Theorem 4.3 (using Claim 6.9 instead of Claim 4.1) in the case u, > pu,—;.
In §7.9, we summarize the geometry of the branch locus for the lifts we construct.

Remark 7.18. In [24], the construction in the case u#, = pu,—; is used to obtain
the proof of lifting in the case v, > pu,—;. Our technique here is different, in that
it proves both cases independently. In fact, our method here can be used to give an
alternate proof of [24, Theorem 1.4], and thus (combining with [28]) of the Oort
conjecture.

7.4. Controlling &, between rc and rpy,. Maintain the previous notation. In
particular, g is a solution to (7.6) realizing the isolated differential data criterion,
and G, ¢ is defined as in Definition 7.15.

Recall that any G € 9.y, gives rise to a character y of order p” lifting y,—;.
by adjoining the equation y} = y,—1G. By (7.6) and Proposition 6.17, we know
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that the left derivative of &, at rer is N1 + u,—1. Recall also from (7.4) that

8X(rcrit) = p/(p—1).
Let A(G) be the minimal A in the interval [ruyp, rerit] Such that

8y(r)=p/(p—1) = (N1 + ttp—1) (Ferit — 1)

forall r € [A,rert). Inother words, A(G) is the largest element in [Fpyp, erit) Where &
has left slope less than Ny + u,—; (or is ryyp if there is no such point). Since
G € Grit,g, we have A(G) < reqi. Note that

5 (A(G)) = =L — (e = DNy + ) < —F—
p—1 p—1
Lemma 7.19. Suppose G € Gerir,g with A := A(G) > rnu. Identify k; with k(t).
Then wy(A) can be written in the form

@il

where ¢ € k™ and f € t'™"k[t™™)] has degree less than Ny + u,_y int™ 1,

Proof. If u, = pup—; then the same argument as in the proof of [24,
Proposition 6.13] shows that w,(4) is as in (7.13) for some ¢ € k™ and f € k;,
with f a polynomial in t~! of degree < N + u,—; and without constant term.

If uy, > puy—i, so that Ny < (p — u,—; (see the beginning of §7.3), then
8y(A) > péy,_,(A) = Apup_; (the equality is due to [24, Lemma 6.1]). Thus
€(wy(A)) = 0 (also from [35, Proposition 4.3(ii)]) and p + Ny + un—1. Since the
differential form in (7.13) is exact in this case, (7.13) holds as well, with the same
conditions on the terms of f.

By Lemmas 6.12 and 6.21, the t-equivariance of y implies that t(df) = {ndf,
where 7 acts on ¢ and dt by multiplication by ¢,,. That is, we may assume that f
only has terms of degree t =4 where ¢ = —1 (mod m). O

The following proposition is crucial, and will be proved in §9.

Proposition 7.20 (cf. [24, Corollary 7.5]). Let G € §ir g, let r € [Fhup, Ferit) N Q,
andlet f € t'™™k[t™™] be a polynomial of degree less than Ny +un—y int~", which
we regard as the reduction of T, in k, (§6.1). Assume f has no terms of degree
divisible by p. Let B = (N1 4+ up—1)(rerit — ). After a possible finite extension of K,
there exist G' € Geri,g and F € K with v, (F) = 0 and [F], = f such that

Gl
o =1- pPF  (mod (K¥)P).
We now show that A can be reduced.

Proposition 7.21 (cf. [24, Proposition 6.13]). Suppose G € Gir,g with A(G) > Fnyp.
Then there exists G' € G, g with A(G') < A(G).
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Proof. This follows from Lemma 7.19 and Proposition 7.20 exactly as in the proof
of [24, Proposition 6.13] with N; + u,_; playing the role of m,, there. O

Proposition 7.22 (cf. [24, Proposition 6.15]). The function G +— A(G) takes a
minimal value on & g.

Proof. Recall that g = ]—[7;/1'" [Tre, (1 — C;fij[—l)wl(f‘)aj, with the ¥ (t%)a;
viewed as lying in Z (7.8). Let U’ < AN1/™(k) be the open subset consisting
of those (¥1....,VN,/m) such y" # j;;?’ ifi # j,andlet V C A,Icv‘/m be the
subvariety such that the y; and a; give a solution to (7.6). Since g realizes the
isolated differential data criterion, the point X = (Xy,..., XN, /m) is an isolated point
of V. In particular, V' := V\{x} C Af'/m isclosedand U = U'\V’' C A,"cv‘/m is
open.
Let .. . 2 Feri,g be the set of G € K such that

crit,g =

Ni/m m .
6= T1 [la-gteyrmem,
Jj=1 é=1

where if y; = z; p~"e*, then the reductions y; give a point (y1....,Vn,/m) € U.
By identifying each G € §_; , with (y1,...,¥n,/m). we identify &, . with the

rigid analytic space
Ute = {y e (AN/myn | 5 € U},

where ¥ is the canonical reduction of y. Since U is open, U"# is a finite union
of open affinoid subdomains of (A¥1/™)a In particular, it is quasi-compact and
quasi-separated.

Extend the domain of A from it ¢ to G, ., keeping the definition the same. The
family of Z / p™-covers of PP 11< parameterized by U via taking the Kummer extensions
given rise to by points in U is a good relative Galois cover in the language of [25, §5].
By [25, Corollary 5.3(ii)] (taking ro = rerqe and msyan = Ny + up—y + 1 in the
notation of that corollary), A (= Aswan) achieves its minimal value on ﬁc’m,g after a
possible extension of K. On the other hand, our construction of §_; , shows that

AMG) = reit if G € Gl o \Geritg and A(G) < Terit if G € Gerir,g. Thus our minimal
value must be achieved on Gy g . O

Corollary 7.23.

(i) There exists Gy € Gerit,g 8Iving rise to a character o such that

8 xerx (Thub) = Ohub.

(ii) If up = pun—, then y.i has good reduction.
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Proof. Proposition 7.21, combined with Proposition 7.22, shows that there exists
Gerit € Gerit,g giving rise to a character ¢ such that A(xcrit) = hub. In other words,
8 er (Thub) = Ohub. This proves (i).

If up = pup—y, then rpy, = 0, and A(Gey) = 0. That is, 8y, is linear of slope
Ny 4+ up—1 = pun—; onthe interval [0, ro ], with 8, (0) = 0. Part (ii) then follows
from Proposition 7.16. O

Definition 7.24. We let C € k* be the coefficient of t =N +¥n—1+D gt in @, . (Fhub).

In fact, C is independent of the choice of Grit € Gerit,g. This is the statement of
Proposition 7.47, whose proof will be deferred to §7.8.

7.5. Controlling @ y at rpy,. The material in this section is only necessary if u, >
pUn—1. Sowenow assume that pu,—1 < u, < pup—;+mp (thisis the assumption of
no essential ramification). Recall that this means that p + u,, that (p—Dup,—1—mp <
Ny < (p — Dup—1, and that Ny = uy, —up—1 — Ny < 2mp — 2m. Throughout this
section, let s = (N1 + up—1)(Terit — Tnub), and let ¢ = [T'],, . We have constructed
a rational function Gy € &.rir,g (Corollary 7.23) giving rise to a character yr; such
that (see (7.12))
5 = Spup = = __7
Xerit (Thub) = Shub = UnThup = —— — (Nl + un—l)(rcrit — b)) = —— — &.
p—1 p—1
(7.14)

Let C € k™ be the constant from Definition 7.24.

For the rest of this section, we will make a further assumption.

Assumption 7.25. N, < mp.

Note that Assumption 7.25 is always satisfied when Ny = (p — 1)u,—1 —m (and
that for any other choice of Ny, there will be values of u, leading to a violation of
Assumption 7.25).

As mentioned in §7.3, our eventual goal is (after possibly modifying Gerit), to
construct a rational function Gy, € K with N, zeroes and poles away from 7" = 0,
all of which have valuation ry,, so that if we let G,, = GpypGerit, then G, gives rise to
a character y, with good reduction j,. In this case, §,, would be linear of slope u,
on the interval [0, ryy] and linear of slope Ny + u,—; on the interval [rpyp, reri]. In
particular, the differential form w,,, (rhup) would have to have a zero of order u,, — 1
at t = oo and a pole of order Ny + u,—1 + 1 at t = 0 (Proposition 6.17). By
Proposition 6.19, there can be no zeroes away from co. By Lemma 6.21, wy,, ("hub)
must transform equivariantly under ¢ + {,,t. So we will search for Gy, such that
G := GhuvGeri can give rise to a character y, such that §,,, (rhub) is still Spup and

cdt
(tm _ &m)Nz/thl +uy—1+1°

(7.15)

Wyn (rhub) ==

where ¢ and & are in k. Proposition 7.33 will show how a valid Gy, arises.
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Lemma 7.26. The differential form on the right hand side of (7.15) has a zero of
order u, — 1 at oo, a pole of order Ny + up—1 + 1 at 0, no zeroes away from oo,
transforms as in Lemma 6.21, and is exact for all choices of ¢ and a.

Proof. Once we note that m|(Ny + u,—; + 1), all assertions become trivial except
the last one. Multiplying a differential form by a pth power does not change its
exactness, so it suffices to show that
(™ — &m)p—Nz/mdt
tN1+u,—1+1

is exact. By Assumption 7.25, the numerator is a polynomial in 7. Expanding
everything out, ¢ occurs to degrees —(Nj 4+ u,—1 + 1) through mp —u,, — 1, counting
bym’s. Since —(N; +uy—1+1) > —pup—1j—landmp—u,—1 < —pu,_1+mp—1,
and since all the degrees in question are divisible by m, we see that none of the
above degrees is congruent to —1 (mod p). This means that the differential form is
exact. (]

Lemma 7.27. Let w be the differential form on the right hand side of (7.15). Then
W — Wy (Fhub) Is exact. Furthermore, we can write

a)—a)xcm(rhub)=( a0 __ __b0) )dt, (7.16)

(tm _&m)Nzlm tNi+up—1+1

where both fractions are proper, a(t) and b(t) are in k[t™], and each of the two
summands is exact. Lastly, choosing ¢ = C(—a™)N2/™ on the right hand side
of (7.15) results in b(t) having no constant term.

Proof. The exactness of w — wy,, (") follows from Lemmas 7.19 and 7.26,
noting that p + Ni + up—j. Since wy,, (rnp)/dt is a proper fraction in ¢ with
denominator N1 T¥n—1+1 and & # 0, the theory of partial fractions gives the desired
decomposition into the two summands. The polynomials a(¢) and b(¢) lie in k[t"]
by Lemma 6.21, combined with the fact that y.q iS T-equivariant. Each of the two
summands is exact because their sum is, and a sum of two proper fractions (times d't)
with relatively prime denominators can only be exact if each one is. Lastly, in order
for b(t) not to have a constant term, we need only ensure that when @ — @y, ("hub)
is written as f(t)dt/(t™ — a@™)N2/mNi+un—1+1 that £(¢) has no constant term.
This is accomplished by taking ¢ = C(—a")¥2/", where C is the coefficient of the
dt/tN1Fun—1+1 term of wy, (Fhub)- O

Proposition 7.28. Let w be the right hand side of (7.15), with ¢ chosen as in
Lemma 7.27 and C chosen as in Definition 7.24. By modifying G within Geivg,
we can ensure

a(t)dt
(tm — &m)Nzlm ’

W — Wy (rhub) =

with a(t) as in Lemma 7.27.
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Proof. By our choice of ¢, we may assume that b(¢) has no constant term in the
notation of Lemma 7.27. Thus we can write

b(t)dt
Mtur = 4

where f € t17"[t™™"] has degree less than Ny + u,_ in t~!. By Proposition 7.20,
there exists G, € Gerir,g Such that

crit

/
Geri =14 p'F (mod (K*)?),

Gcrit
where v, (F) = 0, where [F]; = f. As in the proof of [24, Proposition 6.13],
replacing G by G/, has the effect of adding df to wy,,, (hub), Which in turn has
the effect of subtracting df from the right hand side of (7.16). This proves the
proposition. O

By Proposition 7.28 we may, and do, assume that h(t) = 0 in (7.16). We do a
further partial fractions decomposition on the other term to obtain

a(t)dt _’"X‘:‘ Be(t)dt

(tm _&m)Nzlm - = (Cﬁzt _&)Nz/m ?

where By(t) is a polynomial of degree less than N,/m. Using equivariance under
t > {mt, it is not hard to check that B¢(¢) = ,Bo(tﬁzt) for all £.
The following definition is the key idea of §7.5.

Definition 7.29. Let @ € k*. Let Ty, = p~™®T and s = p/(p — 1) — Spup. For
any lift o of @ to R and fixed lifts of é‘,f, from [F, to Z (denoted again by é‘,‘; by abuse
of notation), let G5« S K™ be the set of all rational functions of the form

m—1

[T (1 + p* AGE Th) ™.

£=0

such that

B(Thub)
(Thup — a)N2/m=1"
where B(Thp) is a polynomial of degree at most N»/m — 2 and v, (4) = 0 with
d([Aln,)/dt = Bo(0)/(t = )N/
Definition 7.30. Let b = |y c g% Ghube-

Remark 7.31. By Lemma 7.27, a(t)dt /(1" —&™)N2/™ is exact. It is straightforward

then to show that Bo(t)dt /(t —&)™2/™ is also exact. In particular, Ghub, 1S NONEMpty
for all « € R*.

A(Thyp) is of the form (7.17)
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The following definition will be useful in the proof of Proposition 7.39.

Definition 7.32. For « € R*, define &, , 2 $hub,« exactly as in Definition 7.29,
except that we impose the condition v, , (4) > 0 instead of v, , (4) = 0, and we
place no condition on d([4],,,)/dt.

We prove the major result of this section.

Proposition 7.33. If Gpy € Ghub,a and G is chosen as in Proposition 7.28, then
Grit Ghub gives rise to a character y such that 8y (ryub) = Shub, and @ := @y (Fpyy) is
the right hand side of (7.15) with ¢ chosen as in Lemma 7.27. Consequently, the left
slope of 8 at ray is Up.

Furthermore, Gejt G is of the form (7.3).

Proof. The product
m—1 -,
[T+ P A Tw)™
{=0

can be written as
m—1

L+ p* Y &t AG o) + D,
£=0

where v,,, (D) > s. By the definition of A, the derivative of 3} [¢-€ A (¢ Thub) ] res
is

’"i‘ Bo(Lh 1) _”’f Be) a()de

(Gt —@)Na/m e (gl —@)Nelm (e — gm)Na/m”

{=0 {=0

By Propositions 6.20 and 7.28, we get that 8 (rhub) = Shup and @y (1) = .

Since w has a zero of order N, + Ny +u,—; —1 = u, — 1 at oo, Proposition 6.17
shows that the left slope of §, at ryyp is up.

Showing that Gy, Gy is of the form (7.3) is equivalent to showing that 1 +
p* A(Thup) is, up to multiplication by a pth power, a polynomial in 7! with constant
term 1 and at most N, /m distinct roots. In order to do this, we multiply 1+ p* A(Tjub)
by (Thw — @)?/T,F,, and we leave it to the reader to verify that everything works
(the roots will be the No/m — 1 roots of (Thup — a)N2/m=1 p* B(Thw), along
with «). O

Remark 7.34. Let Gy, € ﬁ,ﬁub,a\ﬁhub,a and Geriy € Gerir,g. By the discussion above,
if Gerit Grub gives rise to a character y, then it is not the case that both 8y (7hub) = Shub
and the left slope of §, at rpp, is un.
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7.6. Controlling &, between ry,, and 0. We maintain the assumption of §7.5 that
pun—1 < Up < pup—1 + mp, as well as all the notation so far. Fix@ € R* and g a
solution to (7.6) realizing the isolated differential data criterion. By Proposition 7.33,
there exists Gerit € Gerit,g such that, for any Ghup € Ghub,«» the character y given rise
to by GhubGerie has 8y (rhuw) = Shub and §, has a left slope of uy at rpy,. The goal of
this section is to find a particular Gt € ﬁcm g and Giub € Ghub,o Such that G Grexit
gives rise to a character y with §,(0) = 0. Since Spyp = U, Thup by definition, one can
test this by seeing if &, is linear of slope u, on the interval [0, rhyp). Let G o be the
(nonempty) subset of Ghyp,o Gerit,g coOnsisting of elements giving rise to characters y
with 8, (rhub) = Shub and such that the left slope of &, at ruu, is u,. Note that every
G € G4 is of the form (7.3). If G € G, o gives rise to x, then we define u(G)
to be the minimal element of [0, ryyb) such that 8, (1 (G)) = u,u(G) (that is, u(G)
is the largest element of [0, r,,] where 8, has left slope less than u,, or 0, if no
such element exists). This is analogous to the definition of A(G) in §7.4. For any
G € Ggo, we have u(G) < rpyp. The goal of this section is to prove the existence
of G € §4 such that (G) = 0. Then G will give rise to a character with good
reduction and upper jumps (¥, ...,u,). The argument is parallel to that of §7.4.

Lemma 7.35. Suppose G € G4 o with 1 := u(G) > 0. Identify k,, with k(t). Then
wy (i) can be written in the form

cdt
tu}1+1 + d‘f.

where ¢ € k* and [ € t'"™k[t™™] has degree less than uy int™'.

Proof. After noting that

Sy() =p/(p—1) =5 —up(rhw — 1) = LUp > Upuy—1.

where s is as in Definition 7.29, the proof is exactly the same as the u, > pu,—
case of Lemma 7.19. O

As in §7.4, we also postpone the proof of the following crucial result to §9.

Proposition 7.36. Suppose Ny = (p — )uy,—1 — m (this is consistent with
Assumption 7.25). Let Grit, Ghub € Gerit,g » Shub,ar respectively. Letr € [0, o) NQ,
and let f € t'™™k[t™™] have degree less than uy in t~', which we regard as the
reduction of T, in k, (§6.1). Assume f has no terms of degree divisible by p.
Let B = p/(p — 1) —uur. After a possible finite extension of K, there exist
Glit Grup € Gerit,g» Hhuv,a respectively, and F € K with v, (F) = 0and [F), = f
such that

Gcl:mGlflub

GcntGhub
Remark 7.37. The proofs of Propositions 7.20 and 7.36 are the only places where
the isolatedness in the isolated differential data criterion is used.

=1-pPF (mod (K¥)?).
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This has the following consequence:
Proposition 7.38. Suppose G € G4 o with L(G) > 0. Then there exists G’ € §g o
with u(G') < u(G).

Proof. The proof is exactly the same as the proof of Proposition 7.21, using
Lemma 7.35 and Proposition 7.36 in place of Lemma 7.19 and Proposition 7.20,
and taking B = p/(p — 1) —upp instead of B = (N + up—1) (Ferit — A). O

Proposition 7.39. The function G — u(G) takes a minimal value on G4 4.

Proof. Weidentify &, , withtherigid (N2/m—1)-dimensional closed unit polydisc
corresponding to the coefficients of A in Definition 7.32. This is an affinoid space.

Let G . be as in the proof of Proposition 7.22, and let §; , = & G, , S K. It
is easy to see that &, , = §; . X G, ,»and is thus identified with a quasi-compact,

quasi-separated rigid-analytic space.

Extend the domain of p from %, o to &, ,. keeping the definition the same.
The family of Z/p"-covers of P parameterized by G, o Vvia taking the Kummer
extensions given rise to by points in §,  is a good relative Galois cover in the language
of [25, §5]. By [25, Corollary 5.3(ii)], u achieves its minimal value on 36’,,“, after
a possible extension of K. On the other hand, suppose G = GG € ﬁé’,’a\ﬁg,a
with G € c’m,g and Gnyp € 9y, - We claim that the left-slope of §y at ryyp is
less than u,, which means that 4(G) = ryw. Since u(G) < rmp when G € G, 4,
this means that the minimal value of u on G, , must be achieved on §, 4, thus
completing the proof.

To prove the claim, first assume that 8y (rhus) # Shup. Then 8 (rhub) > Shub-
Since 8, is concave up on [Fhyp. Ferit) (combine Propositions 6.17 and 6.19 with the
fact that G has no zeroes or poles with valuation in (ryp, 7erit)), We have that the
right-slope of § at ryp is less than Ny +u,—1. Since Gy, has at most N5 zeroes and
poles with valuation ry, the left-slope of 6, at ryyp, is less than Ny +Na+up—1 = u,
at ryp (again, combine Propositions 6.17 and 6.19).

Now, assume 8y (rhup) = Shub. Then the left-slope of 8, at rep is Ny + u,—1, and
Gerit € erit,g- Remark 7.34 shows that, if Guy, € Gy o \hub,a» then the left-slope
of 8, at ryyp is less than u,. So assume Gpyp € Ghup,o- The definition of G¢ o shows
that if G € Gé,a\Gg,a, then the left-slope of §, at ryyp is less than u,. The claim,

and thus the proposition, is proved. O

Corollary 7.40. Suppose u, > pu,—1. Then there exists G € §4 4 giving rise to a
character y having good reduction.

Proof. Proposition 7.38, combined with Proposition 7.39, shows that there exists
G € 5; o giving rise to a character y such that u(y) = 0. That is, 8,(0) = 0. The
corollary then follows from Proposition 7.16. O
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7.7. Ensuring the correct reduction on the boundary. In this section, we prove
Theorem 7.43, which will complete the proof of Theorem 4.3. Maintain all notation
from the previous sections, including C as the constant from Definition 7.24. First,
we prove two lemmas.

Lemma 7.41. If G| € 9,4, gives rise to a character y with good reduction )
that corresponds (after completion at t = 0) to the Witt vector (fi,...,[fy) €
W, (k(t)), and G, € K is such that G,/ G, = 1 + pP/@=DF (mod (K*)?), with
vo(F) =0and[Flo = f ink(t) C k((t)), then Gy gives rise to a character y' with
étale reduction ' that corresponds (after completion at t = 0) to the Witt vector

(froeoo nm1 S + ) € Wa(k(@)).
Proof. Replacing G; by G has the effect of multiplying y by
Un o= R ((G2/G)?") € HL (K).

This is just the image of ¥ := R1(G2/G1) € H,(K). Proposition 6.22 shows that
8y, (0) = 0 and the reduction r, corresponds to the Artin—Schreier extension given

by y? —y = f. Consequently, 8y, (0) = 0 and its reduction v, corresponds to the
extension encoded by the Witt vector (0,...,0, f).

By Proposition 6.20(iii), we conclude that the reduction of ¥ = j¥n
corresponds to the sum of the Witt vectors (f1,..., fy) and (0,...,0, ). This
is (f1,..., Jn—1, fx + f), as desired. O

The proof of the following lemma relies on Lemma 7.48, proven in §7.8.

Lemma 7.42. Suppose u, > pu,—y, and let &y € R* with reduction &, € k*.
Suppose G € &4 4, gives rise to a character y with good reduction ). Then if
(fi...., Ja—1. fy) is the Witt vector in standard form corresponding to y (after
completion att = 0), the t ™" coefficient of fy is —Cu;,! (—&’I”)NZ/’".

Proof. Let y be the (nonzero) ™" coefficient of f,, and assume for a contradiction
that y # —Cu;; ' (—a@™)N2/™ Let @, be such that
Cuy ' (- — (—af)™2/™) = —y.

n

By our assumption, @, # 0. Let @y € R be alift of @,. Using Corollary 7.40, choose
G> € 5y, giving rise to a character y’ with good reduction j’. Since y # 0, we have

a{v 4 o aév %, so Lemma 7.48 applies. In particular, Lemma 7.48 implies that
G2/Gy =1+ pP/P~DF  (mod (K*)?),

where F € K satisfies vo(F) = 0 and [F]o is a polynomial in t~! = [T™!],
of degree u, with leading term —yt~%7. By Lemma 7.41, replacing G; with G,
replaces f, in the Witt vector for x with f;, + [F]o, which has degree less than u,
in 1=, This means that the nth higher ramification jump for the upper numbering
of y' is less than u, (§2), which contradicts Proposition 6.18. O
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If up = pup—1,let § = G,g. Otherwise, let § = | J,cgx Fg,«- Note that all
elements of & are of the form (7.3). Recall that y,, is our original character, with upper
ramification breaks (uq,.... u,). Furthermore, we saw in §2 that y, corresponds
(upon completion at ¢+ = 0) to a (truncated) Witt vector w, := (f1,..., fa) €
W, (k((t)), and we may assume that each f; € t!™™k[t~"], and all terms of f; have
prime-to-p degree.

If u, = pu,—;, Corollary 7.23 shows that there exists G € § giving rise to
a character y with good reduction y corresponding (after completion at t = 0) to
the Witt vector wy := (fi,..., fu—1, fy), Where f, € t1™™k[r~™] has degree less
than u, in ¢!, and all terms of prime-to-p degree. If u, > pu,—_,, Corollary 7.40
and Lemma 7.42 guarantee (after a possible finite extension of R) the existence
of @ € R* and G € %, 4 such that G gives rise to a character y with good
reduction y corresponding (after completion at 1 = 0) to the Witt vector w, :=
(fi..... fn—1. fy), where fy € t'™™k[t™™] has degree u, in t~!, all terms of
prime-to- p degree, and the coefficient of 77 in f, is the same as thatin f,. In both
cases, fy and f, differ by a polynomial of degree less than u,, in t~!.

Theorem 7.43. There exists G, € § giving rise to a (Vy-equivariant) character
with good reduction jp.

Proof. Let f = f, — fy € t'™™k[t™™], which has degree less than u, in t~'. By
Proposition 7.20 (in the case u, = pup,—;) or 7.36 (in the case u, > pu,—), there
exists G, € § such that

G, _

& =1+ pP/P=VE  (mod (K*)?),
for some F € K satisfying vo(F) = 0 and [F]o = f. By Lemma 7.41, replacing G
by G, gives rise to a character y, whose reduction corresponds to the Witt vector
(fiveoosfo—1s Sy + ) = (fi..... fu=1, Ju). In other words, the reduction of y,
is yn. Since G,, by virtue of being in §, is of the form of (7.3), Proposition 7.16
shows that y, has good reduction and is ¥/,-equivariant. U

Since the G, guaranteed by Theorem 7.43 lies in §, all the zeroes and poles of G,
have valuation r., or (in the case u,, > pu,—;), valuation ry,,. By Proposition 7.17,
we conclude that B(y,) € D(r,). In particular, y, is admissible. Thus, we have
proven Theorem 4.3, using Claim 6.9 in place of Claim 4.1. Since Lemma 4.2 was
proven in §5, we obtain Theorem 1.14.

7.8. Calculations. Maintain the notation of the previous sections. The purpose
of this section is twofold: to prove Lemma 7.48, which is used in the proof of
Lemma 7.42, and to prove Proposition 7.47, which shows that C as defined in
Definition 7.24 depends only on g. Propositions 7.20 and 7.36 have much more
complicated proofs, and are deferred to §9.
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Lemma 7.44. Suppose &1,a,,C € k*. Fori = 1,2, write

C(—am)N2/m g4y

w; = .
. (l'm _&m)Nz/th1+u,1_1+l

Then, when expanded out as a power series in t ™', one obtains
Wy — W] = (C(—&;")Nz/m - C(—'T)Nz/m)t_(“”"'l)dt + higher order terms.

Proof. This is a straightforward computation, using the fact that u,, = Ny + N +
Up—1. O]

Corollary 7.45. Let a1, € k™ with 0-1{‘12 £ &évz. Choose lifts a; of the a; in R.
If Gerit € Gerir,g and Guub,i € Shuv,e; (I = 1,2) are chosen as in Proposition 7.28
such that G Gnyy,i gives rise to a character y; such that w; .= wy,; (ra) (1 = 1,2),
then 8y, (rhup) = Shub and the expansion of Dyoxi? (rhub) as a power series int~1 is
Wy — W) = (C(—&;")NZ/'" - C(—d’l")NZ/m)t_("”H)dt + higher order terms.
Proof. This follows from Lemma 7.44, using Propositions 6.20 and 7.33. O

Lemma 7.46. Suppose F1 = 1 + 3 22 a;T " and F, = 1 + Y52, b;T~" lie in
K N (R{T™1}Y ® K). Suppose that for some 0 < a@ < p/(p —1) and M > 0
not divisible by p, we have v(a;) > o for all i > 0 (with strict inequality holding
when pli), and that v(b;) > « for all i > M (with strict inequality holding for
i > M). Lastly, suppose that F1H? = F; for some H € K*. Then v(a; — b;) > «
foralli > M.

Proof. Wemay assume H = 1+ 70, ;T and H? = 1+ 72, d; T~ as power
series expansions. It suffices to show that v(d;) > « foralli > M. If v(c;) > a/p
for all i, then we are done. If not, let ip be the maximal i such that v(c;) < «/p
(such an ip must exist). If ig < M/p, then v(d;) > a foralli > M. If ip > M/p,
then v(dpi,) < @, and Fy H? = F, then shows that v(bp;,) < «, contradicting our
assumptions on F. O

We now show that the value of C from Definition 7.24 only depends on g. Recall
from (7.14) that s = p/(p — 1) — Spub = UnThub-

Proposition 7.47. Assume u, > pup—1. When wy_, (rww) is expanded as a Laurent
series in t, the coefficient of t~ M1 +un=1+Ddt does not depend on the choice of
Gcrit € gcrit,g» SO lOng as SXcri: (rhub) = Shub'

Proof. For i = 1,2, suppose Geiti € erir,g gives rise to a character ycrir,i with

8rvus (Xeriti) = Onub- Proposition 6.20 shows that SXszX‘_.Il(rhub) > Spup.  If

Yeraxol, > Shub» then by Proposition 6.20, we have @y . | (Mub) = @yeie 2 (b))
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and we are done. If Sx g ke (Fhub) = Ohubs then Proposition 6.20 shows that
crit, Cl’ih
we must prove that Oeneaxml (7hup) does not have a nontrivial term of the form
ent, 2 A erit,
CI_(Nl +upy—1 +1)dt_
Now,

_ n—1
Xerit,2 Xcrilt,l = Ry ((Gcrit,Z/Gcrit,l)p )’
which is identified with 81 (Gerit,2/ Gerit,1). By Proposition 6.22, we can write

Gerit2/Gerit = 1+ p*F - (mod (K™)”)

for some F € K with v, (F) = 0. If wewrite 1 + p*F = 1+ /2, b; T, then by
multiplying by a pth power, we may assume that v(b;) > s whenever p|i. According
to Proposition 6.22, we must show that either p[(N1 + up—1) or v(bN, 4u,_,) > .
So we assume p + (Ny + up—1).

On the other hand, since both G, lie in Gir,g, we may assume that the Gy i
are chosen in K such that the quotient Grit2/ Gerir,1 lies in 1 + chitl m{ Tc‘r‘itl}. If we
write Gerit2/ Gerit1 = 1 + Y ooy @i Tiol, then

U(ai) > (N1 + Up—1)(Ferit — Tub) = 8 (7.18)

foralli > Ny + up—1.
The proposition now follows from Lemma 7.46, taking M, «, F}, and F, to be
Ny + up—1,5, Gerit2/ Gerie1, and 1 4+ p® F, respectively. O

Let C € k* be the coefficient of ¢t~ (NM+¥—1+D gt from Proposition 7.47
(equivalently, Definition 7.24).
Lemma 7.48. Suppose u, > pun—y. Let &y, € k™ with o'tiv2 ek dévz. Choose
lifts a; of the &; to R. Fori = 1,2, suppose G; € §g 4, gives rise to a character
with good reduction. Then we can write

G2/Gi =1+ pP/P~DF  (mod (K*)?),

where F € K satisfies vo(F) = 0 and [F)o is a polynomial in t=! = [T~']y of
degree u, with leading term

Cu,

- 1 ((_&rln)NQ/m _ (_ag’!)Nz/m)t—un )

Proof. Since G, and G, both give rise to characters with étale reduction,

Proposition 6.20 shows that K, ((G>/ GI)P"_I) has étale reduction as well. In
particular, 81 (G2/G1) has étale reduction. By Proposition 6.22, we can write

G2/Gy =1+ pP/P=VF  (mod (K*)?)

for some F € K with vo(F) > 0. Furthermore, by multiplying by a pth power, we
may assume that when F is expanded out as a power series in 7!, no terms with
valuation 0 have degree divisible by p.
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On the other hand, Corollary 7.45 and Proposition 6.22 show that we can write
G2/Gy =1+ p*® (mod (K™)P),
where v, (®) = 0 and [®],,, has derivative
C((—&’Z”)NZ/’” — (—&T)NZ/m)t_(“"H) + higher order terms)dt

when expanded out as a power series int~! = [T71],, ..
Write 1 + pS® = 1+ Y72, a;T™". Then v(ay,) = s + unrmw = p/(p — 1)
and v(a;) > p/(p — 1) wheni > u,. Also,

[au" T—un]O — Cu;l((—&T)NZ/m _ (—&’zn)NZ/m)t_un-

The lemma now follows from Lemma 7.46, taking M, «, F;, and F; to be u,,
p/(p—=1),1+ p*® and | + pP/(P=DF respectively. O

7.9. Geometry of the branch locus. In this section, we briefly summarize the
geometry of the branch locus of the lifts our method gives for extensions as in
Theorem 1.14. We only sketch the arguments. Recall that we start with a I"-extension
k[z]/k[s] whose Z/p™-subextension has upper ramification breaks (uj,...,un)
and no essential ramification. We have shown that we can lift this to a I"-extension
R[Z]/R[S]. Let k[¢t]/k[s] and R[T]/R[S] be the respective intermediate
subextensions. The generic fiber of Spec R[Z] — Spec R[T] — Spec R[S]
corresponds to a tower of branched covers of non-archimedean disks. Since
Spec R[T] — Spec R[S] is simply a Z/m-cover totally branched at S = 0, we
describe the branch locus of the Z/ p™-cover Spec R[Z] — Spec R[T].

Foreachl < j <mn,leti =n +1— j,and let N;; be as in Theorem 1.14. For
J < n, there are u; — u;—; branch points of index pj arranged as follows: N;; of
these branch points are equidistant from each other and from the origin, at a mutual
distance of | p|"i.erit, where 7 ¢rit = 1/ui—1(p — 1). f welet N; o = u; —u;j—1—Ni1,
then the other N; 5 branch points lie at a distance of p"i.mb from the origin, where

1 N,-’l
Nip  (p—Dup_1Ni2

Fihub =

(assuming N;» > 0). This all follows from the discussion before Proposition 7.17
and the inductive nature of the proof of Theorem 1.14. The N; branch points at a
distance of p"ihb from the origin come in m families, with any two points in distinct
families at a distance of exactly | p|" > from each other. Within a family, the distance
between any two of them is not easy to calculate exactly, but it cannot be more than
|p\’f.hub“i/(Nf-Z/""”, where s; = p/(p — 1) — ujripw. This follows from (7.14)
and Definition 7.29 via a Newton polygon argument, along with the inductive nature
of the proof of Theorem 1.14.
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The u; + 1 branch points of index p” are arranged as in §5. Specifically, if
u1 < p,then all these points are equidistant from the origin and from each other, at a
mutual distance of | p|'/*1(P=D_Ify; > p, then these points all lie at a distance | p|?
from the origin, where € can be chosen in the interval (1/puy(p — 1), 1/ui(p —1)).
We refer the reader to [6, Theorem 4.3] for the finer geometry of this situation when
m = 2, and leave the generalization to m > 2 as an exercise.

Since any two branch points of distinct indices lie at distinct distances from the
origin, the ultrametric inequality determines their distance from each other uniquely.

8. Examples of lifting

In this section, we write down several examples where the isolated differential data
criterion holds, and we derive consequences for the local lifting problem.

8.1. Instances of the isolated differential data criterion. Because of Theorem 4.3,

the quadruples for which the isolated differential data criterion (Definition 7.12) is

of interest to us are those of the form (p,m,u, Ny), where Ny = (p — 1)u or

Ny = (p—1)ui—m. Recall that we always assume m|(p—1) and i = —1 (mod m).
We begin with some small examples:

Proposition 8.1. The quadruples (3,2,1,2), (3,2,1,0), (3,2,5,8), and (3,2, 5, 10)

satisfy the isolated differential data criterion.

Proof. The first two cases are covered under Proposition 8.2, which does not depend
on this proposition, so suppose we are in the third or fourth cases.

Let fg = t8 +t°+ 1, and let fip = 2¢'° + 1% + 1% + 1. We claim that fy,
realizes the isolated differential data criterion for (3,2, 5, Ny) with N; € {8, 10}. Let
wn, = dt/fn,t°. The assertion that

dt

‘C(w):w—t—6

can be checked using a computer algebra system, for instance SAGE (it is easier to
verify that
S dt
C(f7,0) = fio - .

as no power series are necessary — indeed, the computation is small enough to be
checked by hand). Thus fy, realizes the differential data criterion for (3, 2,5, Ny).

Let X1....,Xn,/2 be a complete set of representatives of the p»-equivalence
classes of the roots of fy,. We note that the )Ef are pairwise distinct. Then fy,
realizes the isolated differential data criterion if the matrix in Remark 7.13 is invertible
over k. That is, we must show that the matrix

AN, = ((ff)t)”
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with j € {1,...,Ny/2}andi € {0,2,3,5}(N; = 8)ori € {0,2,3,5,6} (N1 = 10)
is invertible. Heinemann’s formula for generalized Vandermonde determinants ([18,
Theorem IV] — take n = 4 and s = 3 in the formula if Ny = 8 and n = 5 and
s = 4 if Ny = 10) shows that

D det (e3 e“) Ny =8
€np €1

det(Ay,) =

Ddet(e4 65) Ny =10
ey én

where

» D is an integral power of the (standard) Vandermonde determinant corresponding
to x? ¥
1 0.y Nl /2-

« For all s, the number e; is the sth elementary symmetric polynomial in the )'C?’s.

Since the standard Vandermonde determinants are invertible, we need only show that
eie;] — egeq is invertible when N; = 8, and that eqe, — ese; is invertible when
N; = 10. If Ny = 8, then ]_[jle(t —X%) =1t* 4+ + 1, and thus eze; —egeo = —1.
If N; = 10, then ]_[5’-21(1‘ —%%) =17 +2t* + 2% 4+ 2, and eqe; —ese; = —1. We
are done. O

Proposition 8.2. For any (odd) prime p, the isolated differential data criterion holds
for (p,2,1,Ny), when Ny = p—1or Ny = p—3.

Proof. Using Proposition 7.8, we may realize the differential data criterion by
solving the system of equations (7.7). If Ny = O there is nothing to do, so
assume otherwise. Let X; = j for all j € {1,2,...,N;/2}. The square
matrix (%7 ), ; for j € {1,2,...,Ni/2}andg € {1.3,..., Ny — 1} is Vandermonde
(up to multiplication of each column by a nonzero scalar). Since Ny < p, the X;
all have distinct squares and thus the columns of this Vandermonde matrix are all
distinct. So the system (7.7) has a unique solution for the a ; with the a; € k. Since
the )E;‘.' in fact lie in IF 5, so do the a ;. We must show that no a; is zero.

For a contradiction, assume, after possibly renumbering the x;, that ay, ;2 = 0.
If N1 = 2, this is clearly a contradiction, and we are done. Assume otherwise. Since
u = 11in (7.7), we must have

Ni/2-1
2 4% =0
J=1
forallg € {3,5,..., Ny — 1}. Since X; # 0, we once again have (up to rescaling) a
Vandermonde system of linear equations for the a;, j € {1,2,..., N1/2—1}. Thus

all a; are zero, which is a contradiction. This gives the differential data criterion.
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To prove isolatedness, we remark that the matrix ( ¢~ )q jforge{l,3,....Ni—1}
andj € {1,2,..., N1/2}inRemark 7.13 is, up to scaling, Vandermonde with distinct
columns. So it is invertible. O

Lemma 8.3. The quadruple (p, m,u, (p—1)u) satisfies the differential data criterion
for all odd primes p, all m|(p — 1), and all u = —1 (mod m).

Proof. As in Proposition 8.2, we will realize the differential data criterion by solving
the system of equations (7.7). Write i = up”, with p t u. Note that the set S of
u(p” 1 —1)th roots of unity whose —uth powers have trace zero (under TrF 41 /F))

has cardinality u(p" — 1). Thus, we have

v+ —pn\S| = u(p* = p").

Furthermore, multiplication by mth roots of unity (which all lie in IF,,) preserves S
and py, (pv+1-1)\S. We take the X; to be any complete set of orbit representatives for
the multiplicative action of 1, on pt,,v+1-1)\S. Note that there are

v+1

u(p’ = p¥)/m=(p—Di/m

of these orbits, so we have the correct number of x;. Furthermore, for each x;, let
the associated a ; be given by the formula

v
"
aj = -Tr(x;") = —Z)’cjup ,
!

where for simplicity, we write Tr for Trg ., /. This is a nonzero element of I ,.
We then have, for any ¢ = —1 (mod m):

N/m N/m

Z a5 = Z —Tr(x;*)x?
J=1

J=1
1 B 1 _
= — _S_ —Tr(x )x? = — _S_ —Tr(x *)x?
m m
xe!’vu(pv-H_l)\S xeuu(pv"'l—l)
1 _ » _ipl
= — d (x4 xTTHP 4 x T
m
xe.u’"(pv-f-l_])

u/m, q=u,up,..., up’  (mod u(p*+! —1)),
0, otherwise.

The second equality above comes from the fact that u = —1 (mod m) and g = —1
(mod m), so multiplying any X ; by any mth root of unity leaves Tr(i;“)fc? invariant.
This solves system (7.7) when we restricttothecase | <g <(p—Du+u—1=
up’*' —land p ¢ gq. O
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Proposition 8.4. In the situation of Lemma 8.3, if u = (m — 1) p" for some v > 0,
then (p,m,u, (p — 1)u) satisfies the isolated differential data criterion.

Proof. Letthe a; and X; be as in Lemma 8.3. Recall that each X is in (4, (pv+1_1).
For any set & C Z, let T be its image as a subset of Z/u(p”*! — 1). Write

u=m-—1. Let
A= (ig—l)q,j

with j ranging from 1 to (p — )up”/m and ¢ ranging from 1 to up**! — 1 over
those numbers congruent to —1 (mod m) and not divisible by p. By Remark 7.13,
it suffices to show that A is invertible.

We first claim that the set

B :={q | q corresponds to a row of A}

and the set
C:={m-1+ imp}05i<%

satisfy B = C. To prove the claim, note that if
! 5
C = {m — 1 + lmp}05i<ug2v'-’+;1_1) 5

then C’ is exactly the set of elements of Z /u(p**! — 1) congruent to —1 (mod m)
(this abuse of language is justified since m | (p — 1) | u(p"*! —1)). Furthermore, a
straightforward computation shows that

C\C = {up,u+m)p,....up**! —mp}.

Now, by the Chinese Remainder Theorem, the set

v+

fup—1,w+mp—1,...,up*™ —mp —1},

viewed as a subset of Z, is exactly the set of integers between 1 and up” ! — 1 which
are congruent to —1 (mod m) and to 0 (mod p) (this is where we use u = m — 1).
Thus C'\C = C’\B. Since B C C s clear, we have B = C, proving the claim.
The claim shows that the elements of B, arranged appropriately, form an
arithmetic progression with common difference mp. If A’ is the matrix obtained
by rearranging the rows of A to correspond to this ordering, then the definition
of A shows that the jth column of A" is a geometric progression with common
ratio )_CT‘D . The common ratios of the columns are pairwise distinct, as the x; are
all u(p¥*! — 1th roots of unity lying in pairwise distinct multiplicative ft,,-orbits,
and p + u(p"*t! —1). We can scale each column to make a new matrix 4” where
the first entry in each column is equal to 1. Then A” is a Vandermonde matrix with
pairwise distinct column ratios. So A” is invertible, which means A is invertible. [
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Remark 8.5. It is not hard to show, in the context of Lemma 8.3, that if u is not
a pth power times (m — 1), then the proposed solution in Lemma 8.3 will never
realize the isolated differential data criterion. Indeed, the matrix A from the proof of
Proposition 8.4 can be shown to have at least two identical rows.

8.2. Affirmative local lifting results.

Theorem 8.6. The dihedral group Dg is a local Qort group for p = 3.

Proof. By Proposition 1.11, we need only consider Dg-extensions whose Z/9-
subextension has upper jumps (1,3), (1,5), (1,7), (5,15), (5,17), or (5,19).
By Theorem 1.14, it suffices to show that the isolated differential data criterion
holds for (3,2,1,2), (3,2,1,0), (3,2,5,10), and (3,2,5,8). This follows from
Proposition 8.1. O

Theorem 8.7. If p is an odd prime, and L/k[s] is a D ,2-extension whose Z/ p*-
subextension has first upper ramification break u; = 1 (mod p), then L/ k[s] lifts
to characteristic zero.

Proof. Since u; is odd, we have that u; = 1 (mod 2p). By Proposition 1.11, we
need only consider D ,2-extensions whose Z / p?-subextension has first upper jump 1.
By Theorem 1.14, it suffices to show that the isolated differential data criterion holds
for (p,2,1, p—1)and (p, 2.1, p — 3) This follows from Proposition 8.2. U

Theorem 8.8. If L/ k[s] isa Z/ p™ x Z ]/ m-extension whose Z/ p" -subextension has
upper ramification breaks congruent to

(m—1,p(m—=1),..., p"Y(m—=1)) (mod mp),

then L/ k[s] lifts to characteristic zero. In particular, Z/ p" x Z/m is a weak local
Qort group whenever the conjugation action of Z./m on Z ] p" is faithful.

Proof. By Proposition 1.11, we need only consider Z/ p™ x Z / m-extensions whose
7./ p™-subextension has upper ramification breaks (m—1, p(m—1), ..., p"~1(m—1))
(such extensions exist by [23, Theorem 1.1]). By Theorem 1.14, it suffices to show
that the isolated differential data criterion holds for

(p.m,(m—1)p" ' (p—1(m—1)p"™"

for 0 < v < n. This follows from Proposition 8.4. O
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9. Proof of Propositions 7.20 and 7.36

We use the notation of §6.1, §6.2 and §7 throughout. In particular, recall that

* puy—1 < uy < pup—1 + mp (no essential ramification).

e N =N; + N, =u, —uy—1, and both Ny and N, are divisible by m (Proposi-
tion 7.5).

* N; < (p — Duy,— with strict inequality unless u,, = pu,—; (Proposition 7.5).

* N> < mp (Assumption 7.25).

* reair = 1/(p — Duy—q (beginning of §7.2).

* rhp = 1/Na — N1 /(p — Dup—1 Na, or rpy, = 0 if N = 0 (Proposition 7.17).

¢ s = (Nl 4 un—l)(rcrit - rhub) == p/(p - 1) — Upthub = P/(P - 1) - 8hub
(Equation (7.14)).

o If r € Qxp,then T, = p~"T. For shott, Toyy = p~"T and Ty = p~ T
(beginning of §6.2).

v, and v; are defined as in Definition 6.14 (and v, is a valuation on R{ T,—l 1®r K).

* Guit,g and Ghyp o are defined as in Definitions 7.15, 7.29, respectively. Here g is
a solution to (7.6), corresponding to an f realizing the isolated differential data
criterion (Remark 7.9).

As a matter of notation, in the context of a congruence between two power series
or polynomials in 7,~!, the symbol = (resp. =") means that the congruence (resp.
equality) need only hold for terms of degree congruentto —1 (mod m) or0 (mod p)
in 771

While neither Proposition 7.20 nor Proposition 7.36 follows directly from
the other, their proofs are very similar, and we will prove them simultaneously.
Essentially, the proof of Proposition 7.20 is an easier version of the proof of
Proposition 7.36.

9.1. Preliminaries. We start by defining the ch (think “crit-hub”) “valuation,” which
is not actually a valuation, but has many similar properties.

Definition 9.1. For a power series

Ni+up—1—1

00
F= Z CqTert + Z P’cgThi € R{Tyy} ®r K,
q=0 q=N)+up_

we write v, (F) = ming v(cg). We define v, (F) in the same way, except we only
take the minimum over ¢ that are congruent either to —1 (mod m) or 0 (mod p).
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Definition 9.2.

(i) Anelement f € R{T, . }®Rr K is called hub-negligible if, forall r € [0, rpu|N
Q. we have v, (f) > p/(p—1) —u,r. If f € R{T, )} ®g K, then making a
hub-negligible adjustment to f means replacing it with some [’ € R{T, !} ®r
K where f’ — f is hub-negligible.

(ii) An element f € R{T;!} ®r K is called crit-negligible if, for all r €
[Fhubs Ferit) NQ, we have vy (f) > (N1 +up—1)(rere—r). If f € R{T,- 1} QR K,
then making a crit-negligible adjustment to f means replacing it with some
f' e R{T; !} ®r K where f’ — f is crit-negligible.

Lemma 9.3.
(i) Let
w .
f = ciTil € RITil ®& K.
i=0
Ifvo(ci Thzf)) > p/(p—1) fori < uyandven(f) > 0, then f is hub-negligible.
(ii) Let
w .
f=) ciTm € RTL) ®r K.
i=0
Ifvo(e; T > p/(p—1) fori < Ny + up—y and v, (f) > O, then f is
crit-negligible.

Proof. It suffices to check each monomial in f. In case (i), if i < u,, the definition
of hub-negligibility yields v, (c; Th';{;) > p/(p—1)—ir, proving the lemma for these
terms. When i > uy, the fact that vey(c; Tyyp) > O implies that vy, (c;Tiol) =
v(ci) > 5. Now,s = p/(p — 1) — uprnw. Thus, for r < ryyp,

Vr(ciTyge) > S+ i(rub = 1) = 5 + un (s — 1) = p/(p — 1) — upr.
In case (ii), if i < Ny + u,—1, then
vr(ciTom) > p/(p=1)—ir > p/(p—1) = (N1 +un—1)r = (Ny +tp_1)(Fesic —1).

because Ny + u,—1 < pup—1. This proves the lemma for these terms. If i >
Ny + uy—q, then

Ur(ciTC;:.) > i(rcrit - I‘) 2 (Nl + un—l)(rcrit - r),
and we are done. O

Remark 9.4. Lemma 9.3 shows that if f € R{T, '} ®g K and vey(f) > 0, then
removing the terms of f of degree at least u, in 7! is a hub-negligible adjustment.
Likewise, if f € R{T !} ® g K and v, (f) > 0, then removing the terms of f of
degree at least Ny + u,_; in T~ ! is a crit-negligible adjustment.
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Lemma 9.5. Suppose fi and f> are in R{T; !} ®r K.

(i) We have ven(f1 + f2) = min(ven(f1), ven(f2)), with equality if ven(f1) #
Veh(f2), and the same holds for vy,

(i) We have ven(f1/2) = ven(f1) + ven(f2).

Proof. Part (i) is obvious, and reduces part (ii) to the case of monomials. The only
non-obvious case is if f; = aTC;f’ and f, = cpsTh_ug, where b < Ny + uUp—1
and b +d > Ny + uy—;. Then v, (f1) = v(a) and veh(f1 f2) = v(a) + v(c) +
b(reit — ). If d > Ny + uy—q, then vy (f2) = v(c), which proves part (ii) since
Ferit > Thube If d < Np + up—1, then ver(f2) = v(c) + 5 — d(rerie — Thub)- SO
Uch(fl f2) - vch(fl) - Uch(fZ) = (b + d)(rcrit - rhub) —s. This is nOHnegative! since
b+ d > Ny + u,—y. This proves part (ii). O

Corollary 9.6. If f1 and f> are in R{T, !} ® g K with vey(f1) and ven(f2) > 0,
then vew(f1 f2 — 1) = min(ven(f1 — 1), ven(f2 — 1)).

Proof. Since fifo —1 = (fi—D(fa—=1) + (fi — 1)+ (f» — 1), the corollary
follows from Lemma 9.5. O

Remark 9.7. Of course, since v, is a valuation, Lemma 9.5 and Corollary 9.6 are

also true when applied to R{T,;'} ®r K, with v, and v, replacing ve, and Vghes

respectively.

Lemma 9.8. If f € R{T, !} ®r K, then va,(f) > max(vy, (), vry (f) — 5),

* / é !’
and the same is true when ven, v, and vy, are replaced by v),, v, ., and v, .

respectively. Furthermore, vy, (f) = ven(f) and vy, (f) = v, (f).

Proof. It suffices to prove the statements for v, applied to monomials f = T,;:b.

Then U,-hub(f) = 0 and Urcm(f) = [ (rhw — I‘Cm). If i > N; + up—1, then
ven(f) = —s, which is greater than i (rpy, — rerit) and nonpositive. If i < Ny +up,—1,
then ven(f) = 7 (Fhub—Terit), Which is greater than or equal to —s and nonpositive. [

Lemma 9.9.

(i) Let f,g € R{T, !} ®r K such that f is hub-negligible and v,(g) > 0. Then
fg is hub-negligible.

(ii) Let f.g € R{T;!} ®Rr K such that f is crit-negligible and v, (g) > 0. Then
fg is crit-negligible.

Proof. For part (i), since vep(g) > 0, we have v,(g) > 0 for all ¥ < ryyp. Thus

vr(f8) = vr(f) +vr(g) 2 0. (f) > p/(p—1) —uyr.

Part (ii) is similar and just as easy. O
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Lemma9.10. If f = 1 +h € 1 + T,;)R{IT5} @R K with vey(h) = B > 0, then

van(fT1=1) =B
Proof. Wehave f~' =1 =1/(1+h)—1=—h+ h?> —h3 + ... Now the result
follows from Lemma 9.5. O

Lemma 9.11. Assume that Ny = (p — 1)up,—1 — m, so that ryy, > 0. Let

L(N1+up—1-1)/p] l L(en—1)/p] ;
=1+ Y bTP+ Y punl
=1 I=[(Ny+up—-1)/p]

with all b; € m. Let

L(N1+upy— _1)/P]] [(un—1)/p]
1 — —
Hi=1+ ) b"Ta+ ) ()T,
I=1 I=[(N1+un-1)/p]1

for any choice of pth roots of the coefficients. Then each term ¢;T " in I — H? for
i > 1 satisfies

H UC I
Ven(ciT7") > 6; + h]f ),
where
-1 . .
6 — B (55 — i), i < Ni+up-,

—1 : ;
Lp—(};f—l—lrhub—S).- I =2 Ny +up-1.

The same holds when, instead of taking I — H?, we expand out I /H? — 1 as a
power series in T 1.

Proof. The terms in H? — [ are the cross-terms in H”. We consider the two
cases separately. Note that the multinomial coefficient in any cross-term of H? has
valuation at least 1.

Suppose i < Nj + u,—1. Then we must show that

Urerit (CiT_i) >1+ Uch(l)/p - i/pun—l‘

Each term in H can be written either as bll/pTC;f or as b;/ppsfpp‘l(””"_’h"b)chif.
Note that v(bll/ Py > va(I)/ p. If no terms of the second form factor into the given
¢; T, then the result is obvious. If at least one such term factors in, then

Uch(I) S i
-+ ; — i (Ferie — T'hub) -

vrmg (Ci T_i) 2 1 +

Since s = (N1 + un—1)(Ferit — b)), it suffices to show that

((Nl + un—l)/p - i)(rcrit - rhub) > _[/pun—l-
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Substituting in 7y = 1/(p— Dup—y and ryy, = m/Na(p —1)up,—1, and multiplying
both sides by —pu, 1, we are reduced to showing that

> (pi - N] —un_l)(jvjj(zT—_ml)“).

Since N, < mp, the right hand side is at most i — (N + u,—1)/ p (if it is positive),
from which the result follows.
Now suppose i > N; + u,—;. The we must show that

U@ T™) > 14 va(1)/p = L= i+ 5) + 5.
At least one term of the form b 11 /p p*/P T factors into ¢; T~ and all terms factoring
in have nonnegative valuation at ryy. So vy, (¢;T ') > 1+ ven(L)/p + s/p. The
desired inequality follows immediately.

To prove the statement for //H? — 1, note that I /H? —1 = (I — HP)H™".
By Lemma 9.10, we have ve,(H 7)) = 0. Write (//H? — 1) = Y .72, d;T™". By
Lemma 9.5,

Uch(I) _

Ven(1)

b
Remark 9.12. If we take 9, to be any number less than 1, then Lemma 9.11 also
holds for I € 1 + T,.”m[T..F] and Urcm replacing vg,. In particular, if we assume /

has degree less than Ny + u,—; in T~!, then we may define 6; (fori < Ny + un—1)
as in Lemma 9.11.

Ve (di T_i) > min veh (¢ ]
j<i

6; +

9.2. The underlying Hensel’s lemma calculation. For each of Propositions 7.20
and 7.36, we get most of the way to a proof via an application of Hensel’s lemma.
For Proposition 7.20, the necessary result is as follows.

Lemma 9.13 (cf. [24, Lemma 7.4(i)]). Let G € Gi g, andlet J € 14T, Cm Im{T.- Cm

There exists a unique G’ € ﬁcm,g and a unique polynomial I € 1 + T, .Pm[T_;? of
degree < Ny + up—y in T_; ! such that

crit

G’ -
o1 =7 (mod T Nitun—1)y

IfJ =1 (mod pf, TN+ for B € Quo, then vy, (G'/G — 1) > B and
vrcri[(l - 1) = ﬁ
Proof. By assumption we have

Ni/m m

G = H n(l_ m ‘xJ cnt)wl(r()aj

J=1 {=1

where x; € R isalift of X;, where the X ; are a solution to (7.7) corresponding to g.
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We set
N1/m m

r —{ 7 —lw(r()a~ B )
G —l_[ l_[(l'“mijcm) 1 7, Xji=Xx5+¢€j,
j=1 t=1
and where the €; are for the moment considered as indeterminates. We also set

L(Ny+up—1—-1)/p] ;
=1+ 3 BTy
=1

for another system of indeterminates b;. Write
G’ =
_ -q
—G—I =1+ Zchcril ’
g=1

where ¢4 is a formal power series in (¢;,b;). One computes, using ¥ (t¢) = ¢
(Lemma 6.12), that

deg “
— —{g+1)L , . 41
?jhj:b]:o_zgm a]xj

=t 9.1)
acq| )L g=pl
b, == T o, g # pl.
In particular, when ¢ = —1 (mod m), we have
dcg -1
E’e,:bFo:man? ;
and otherwise dc, /de; = 0. The congruence
G’ (N1 +ty-1)
— Up—
E o J (mOd Tcril I 1 ) (92)

corresponds to a system of equations in the indeterminates (¢, b;), one equation for
each ¢, 7,1 forq = —1 (mod m) or g = 0 (mod p), with I < g < Ny + up—;.
The Jacobian matrix M, of this system of equations is invertible over R if and only
if its reduction is invertible over k. From (9.1) it is easy to see that this is true iff the
matrix from (7.11) is invertible (One obtains the matrix in (7.11) from the Jacobian
matrix by eliminating all of the columns corresponding to the b;, which are standard
basis vectors, along with the rows corresponding to equations for which p|g). The
matrix from (7.11) is invertible because we are assuming that g realizes the isolated
differential data criterion for (p,m,u,—1. N1). By Hensel’s lemma, we conclude
that (9.2) has a (unique) solution with €, b; € m, proving the first statement of the
lemma. In fact, by the effective Hensel’s Lemma, the second statement holds as

well. O
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The analogous result toward Proposition 7.36 is the following:

Lemma 9.14. Suppose u, > pun—1. Let Gt € Gerit,g, and Guyp € Ghuv,a, and let

Ni+uy—1—1 [e9)
J=1+ ciT Ty + TP
4q ~ crit P 4 < hub
g=1 q=Ni+uu—1

with all ¢g € m and limy_, o cq = 0. There exists a unique G.;, € §.pir,g, a unique
Gt € Fhub,e and a unique polynomial

L(NT +up—1—1)/p] ; Lwn—1)/p] ;
I'=1+ Y T " + > puTd
I=1 I=T(N1+u,—1)/pl
such that -
crit hub —u
271 ="J (mod T,_"). (9.3)
GcrltGhub fhub

If for some B € Qxo, we have v(cg) > B for all ¢ < up, then

Vrei (Glit/ Gere = 1) = B, van(I —=1) = B, and vp, (Gryp/Grv—1) = s + B.
Proof. Asin Lemma 9.13, we have

Ni/m m

Gt = I—[ l_[(l _ C”)Cm aj.

j=1 £=1
Furthermore, by Definition 7.29, we have
N2/m—1

m—1 = b= b
=1 Yilm T, \*™
Ghub=|](1+pszf1 o h")

=0 (1 =yt Ty YN2/m—1

with y; € R (divide the numerator and denominator in (7.17) by Thﬁf/ ”=1). Here,

we are thinking of {, as an integer given by taking some arbitrary lift of {,, € F,
toZ.

We look for potential solutions for G/, and G|, in the forms

crit
Ni/m m

Ghau= [ TTQ - &5 Tah57 e, ) i=x; +¢; (9.4)

j=1 €=1

and

3 I s (AN
r = g . |
hub ™ E}(l+p (1_ g £T I)Nz/m 1) s yj = Y¥j +'}/J’ (9‘5)

where the €; and y; are considered as indeterminates.
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Write
G! / Nitup—1—1
GhUchml =1+ Z Cchrl + Z p Cq hub (96)
hubYcrit g=1 a=Ny+up—1

where ¢, is a formal power series in (€;,y;.b;). By (9.6), the congruence (9.3)
expresses the ¢, relevant to ='-congruence for ¢ < u, in terms of formal power
series in the indeterminates (e€;,y;,b;). We take M to be the Jacobian of this
system of equations at 0. More specifically, let M be the Jacobian matrix (at €; =
y; = by = 0 for all j,I) of the following outputs and inputs: For the outputs, we
take the variables ¢, for ¢ < u,, where either ¢ = —1 (mod m) or p|q. For the
input variables, we take the €;, the b; for p/ < Ny + u,—1, the y;, and the b;
for p/ > Ny + u,—1, in that order. The matrix M will be shown to be invertible
over R in Proposition 9.16. We conclude by Hensel’s lemma that (9.3) has a (unique)
solution with €;,y;,b; € m. In fact, by the effective Hensel’s Lemma, (¢;), v(y;),
and v(by) are all at least as large as ming <,,, v(c¢g). Given the forms in (9.4) and (9.5),
this proves the lemma. O

Remark 9.15. The reason we rescale some of the ¢, and the b; by p* is to force M
to be invertible. Our scaling of the ¢, motivates the definition of v¢, in §9.1.

The rest of this section is dedicated to proving that the matrix M in the proof of
Lemma 9.14 has entries in R and is invertible over R.

Let us calculate the entries of M, using the notation of the proof of Lemma 9.14.
To do this, we calculate the partial derivatives of the ¢, with respect to the €, y;,
and b; at the point €; = y; = b; = 0 (all partials calculated below are evaluated
at this point, and we suppress the point in the notation). For ¢ = —1 (mod m), as
in (9.1), we have

deg majqu_ . g < Ni+up_y, 9.7)
86] ma]x? p(rcrit_fhub)q_s’ q Z N]. + un_l. :
Also, we have
0 1, = pl
el B 9.8)
ab; 0, q # pl.

To calculate dc, /0y;, first set Ghup,0 and Gl’mb,o equal to the £ = 0 factors of Gy
and Gy, respectively. Then

N 1 j
Ghub,0 —1+p b '3/1m Y5 T
Ghub,0 (1 —aT HyN2/m=1 4+ psC(Thw)

When this is expanded out as a power series in 7, !, the coefficient of 7, { is
N2/m—1 R
—j+ Ny/m =2
q=J s
( Z yio ( No/m -2 | TO@).

where O(p®) represents terms with valuation at least s.
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A computation now yields that

s 1 (s—(g+D g—i (g—j+Noy/m—
p= et T (g, @D e~ (172 + 0(pY)),

9¢q g<Ni+u
—_— 1 n—1;
Y ; T i _
J ?201 (gm(q+1)ﬁaq—1 (q 5\;’2—;\2/—’; 2) + 0(})5))’ g > Ni+un_1.
9.9)
In particular, when ¢ = —1 (mod m), we have
5 mp’ = et =Than)g (oﬂ“j (IThENm=2) + O(p‘)), q < Ny +un-1,
=
dy; oo
o el (N2 - 0p), 4> Ny +ttnr.
(9.10)

It is clear from the above formulas that the entries of M lie in R. Write

_( My | M,
M_(M3 M4) 9.11)

as a block matrix, with the columns of M; corresponding to the variables x; and b;
for pl < Ni+un—1, and the rows of M; corresponding to the ¢, forg < Ny + up—1.
Then one checks that M, is a square matrix of size Ny/m + (N1 + up—1 — 1)/ p|
(cf. Remark 7.10), and My is square as well as will be seen in the proof of
Proposition 9.16 below. In particular, M is a square matrix.

Proposition 9.16. The matrix M is invertible over R.

Proof. 1t suffices to show that the reduction M = ( gl AA;Z ) of M has nonzero
3 4

determinant. From (9.9), the valuation of dc,/dy; for ¢ < Ny + u,—1 is at least
s — (rcrit - rhub)q, which is (rcrit - rhub)(Nl + up—1 — q) > 0. Also, va/abl
for pI > Ny + tp_y and ¢ < Ny + 1,y is 0 by (9.8). Thus M, = 0. So M is
block lower triangular, and det(M) = det(M;) det(My). But M, is just the Jacobian
matrix for the system in (9.2), where it was shown that M is invertible over R. Thus
det(M;) # 0. So we are reduced to showing that M, is invertible.

Each column of M4 corresponding to a variable b; has a 1 in the row corresponding
to ¢ = pl and a 0 in each other position. Eliminating these columns and the rows
where 1’s appear, we are left with an (No/m — 1) x (No/m — 1) matrix M. The
entries of M, are the reductions of dc,/dy;, where 1 < j < N, — 1, and g ranges
from Ny + u,—; to u, — 1 over those numbers congruent to —1 (mod m1) and not
divisible by p. By (9.10), after multiplying rows and columns by units, the entry
of M} corresponding to (¢, j) is (q_fv';;vrﬁ/_ "2}, thought of as an element of F, C k.
We will view the binomial coefficients as integers, and show that the determinant is
not divisible by p.
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We will modify M}, without changing its determinant. For the first modification,
moving from left to right, we subtract the j = 2 column from the j = | column.
Then we subtract the j = 3 column from the j = 2 column. We continue until we
subtract the j = Nz/m — 1 column from the j = N;/m — 2 column. This gives
a matrix whose entry in the (g, j) slot is (q_fv"z'jvjf_'g_3), except in the last column,

where the entries are (q_jv“;?g/_ ';_2). For the second modification, we repeat this

process once more, except that we stop after subtracting the j = N, /m — 2 column
from the j = N,/m — 3 column. For the third modification, we repeat again,
stopping after subtracting the j = Np/m — 3 column from the j = Ny/m — 4
column. We continue repeating until the (N2 /m — 2)nd modification, which consists
only of subtracting the j = 2 column from the j = I column. All in all, the jth
column gets modified N, /m — j — 1 times. This leaves us with a matrix whose entry
in the (g, j )-slot is (‘j:i) We apply the formula given on [15, p. 308] (the “alternate
expression” when b = 0) to get that the determinant of this matrix is

[Ti<i<j<ny/m—-1bi —bj)

112! (No/m = 1)1’ Grila)

where the b; are the values of g corresponding to our ¢,.

It suffices to check that the numerator in (9.12) is not divisible by p (in any case,
the denominator is not divisible by p because N, < mp by Assumption 7.25). The
expression b; — b can only take on values m,2m, ..., Ny —m, as (u, —m)—(Ny +
Up—1) = N —m,and u, —m and N; + u,_ are the least and greatest values of ¢,
respectively. By Assumption 7.25, we have N> < mp, so the expression b; — b; is
never divisible by p. We are done. O

9.3. Completion of the proofs. The main task in completing the proofs is to turn
the / that occurs in Lemmas 9.13 and 9.14, and that is very close to a pth power,
into an actual pth power. This will be done through a series of results. In each
case, we will state and prove the result relevant to Lemma 9.14. Then we will
state the analogous result relevant to Lemma 9.13, and mention which modifications
are necessary for the proof to carry through. As a matter of fact, there are more
straightforward proofs of most of the “Lemma 9.13 versions,” but since we must
write the more complicated versions anyway, we omit the simpler versions to save
space.

Lemma 9.17. Suppose u, > pun—1. Let Ggit. Ghub € Geritg » Fhub,a respectively.
Let J € 1 + T 'm{T 1} such that ven(J — 1) > 0. Let ; be as in Lemma 9.11.
After a possible finite extension of K and hub-negligible adjustment to J, there exist
Gl Gl € Geritig s Gnub.a respectively, and a polynomial H € 1+ T~ m[T '] such
that if

3

00
=14+) T,
(Gl G{mb/GcritGhub)H‘D Z l

crit i=1
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then for 0 < i < uy, there exists € > 0 such that

min (van(J = 1) + 00, (] = 1), 6; + € + Lal=D “)
ven(ci T > p|1 ori =—1 (mod m),
. (J 1) ;
min (vch(J 1),6; + €+ 2 ), otherwise.

Ifv,(J —1) = B forsome 0 < B < p/(p — 1), then we can choose G, Gy .,
and H above such that vy, (Gl /Gerie — 1) = B, that vy, (G{ v/ Grw—1) = 5 + B,
and that ve,(H? — 1) = min(B, (p — D)7tub/ p).

Proof. Let G., G, and

crit?

(N1 +up—1—-1)/p] [(un—1)/p]

I —pl
I'=1+ Y bIgl + Y poTtl,
= I=[(N1+u,—1)/pl

be the unique solution guaranteed by Lemma 9.14. So (G!
(mod T, ") Set

Ghub/GcritGhub)] = J

crit

L(Nl+u71—1—'1)/P1J [(un—1)/p]
H=1+ Y 5P + Y (p*o)V?Tl,
=1 I=[(N1+up—-1)/p]

for any choice of pthroots. Let L = (G_;;G},/ GeritGhub) I . Then

J B :{) ]
(GcmGt,mb/GcritGhub)Hp \L H?r |’

Now, Lemma 9.14 gives us that ven(/ — 1) > v/, (J —1). Lemma 9.11 shows that, if

then forall 0 <i < uy,
ven( @ T™) > 6; + v, (J — 1)/ p. (9.13)

Additionally, Lemma 9.14, combined with Corollary 9.6 and Lemma 9.8, gives us that
Ven(L—1) > v/, (J—1) > 0. Now, J/L—1 = (J=L)/L = (J-L)(1+(L-1))"!
and vep(J — L) = ven(J =1 = (L — 1)) > vep(J — 1) by Lemma 9.5(i). Using
Lemmas 9.10 and 9.5(ii), we have

Veh (% - 1) > van(J — 1). (9.14)
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On the other hand, by construction, J — L hasno T~ term if i = —1 (mod m)
or pli and i < u,. Expanding L = 1 4+ (L — 1) out as a power series, and again
using Lemma 9.5, this implies

Ve (% - 1) > ven(J — L) + ven(L —1) =2 ven(J — 1) + 05 (J = 1).  (9.15)

Now, we note that 6; is a decreasing function of i. Letting ¢; be as in the lemma, and
using (9.13), this has the consequence that, for i < u,,
min (véh (£ -1).6; +e+ —‘M), pliori =—1 (mod m),
ven(e; T™7) >
min (vch (% —1),6 +€+ E‘m%) otherwise.
(9.16)
for some € > 0.

Combining (9.14), (9.15), and (9.16) proves the first part of the lemma. The
last statement about G, and Gy, follows easily from Lemma 9.14. Lemma 9.14
also shows that vy, (/ — 1) > B. Since 6; is nonincreasing in i, and H? and /
have degree less than u, in 77!, Lemma 9.11 (along with Lemma 9.5(i)) shows that
ven(H? —1) > min(B, 6y, —1). One calculates that 6,,,—1 = (p — 1)rnu/ p, and this
completes the proof. g

Lemma 9.18. Let Gy € Sivg. Let J € 1 + T Im{T 1Y Let 6; be as in
Remark 9.12. After a possible finite extension of K and Crtt-neglzgible adjustment
to J, there exist G, € Gerir.g and a polynomial H € 1 + T~ m[T Y] such that if

crit

/ =1+ ic-T‘f
Gérit/Gcrit)Hp jime] l ’

then for 0 <i < Ny + uy+1, there exists € > 0 such that

J
min (v, (J = D + v, (F = 1), 6 + e + D),
Up (i T > pliori =—1 (mod m),
(J-1)

min (v,m,(J —1),6; + €+ Eﬂ?ﬂ‘—p——), otherwise.

Ifv, (J—1) > B forsome0 < B < p/(p—1), then we can choose Gl and H
above such that
v"crit((;él‘i[/c;crit - 1) Z ﬁ'
and that
Urcr'u(Hp - 1) = min(ﬁ- (P - l)rcrit/p)'
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Proof. The proof is the same as that of Lemma 9.17, replacing Lemma 9.14 by
Lemma 9.13, Lemma 9.11 by Remark 9.12, Lemma 9.5 and Corollary 9.6 by
Remark 9.7, v, and vy by vy, and v, ., “hub-negligible” by “crit-negligible,”
omitting the second summations in / and H, replacing all u,’s by N; + u,—;’s, and
omitting all mentions of Gy, and Gy . O

Lemma 9.19. Let 0 <o < p/(p —1). Let Gerip, Gy € Gerit,g » Ghub,ar respectively.
Let J € 1 + T7'm{T ™'} such that ve,(J — 1) > 0. After a possible finite extension
of K and hub-negligible adjustment to J, there exist G, G,y € Ferit,g» Fhub,e

respectively, and a polynomial H € 1 + T~'m[T Y], such that

J
/ —-1)>o0.
vCh ((GéritG]{.ub/GcritGhub)Hp ) =7

We can choose G[,,, G, and H above such that

Uch((GéritGl,mb/GcritGhub)Hp - 1) > min (Uéh(J - 1)~ (P - l)rhub/p)'

Proof. We will build G, G} - and H through successive approximation. Let 6; be
asin Lemma9.11, and letn; = (p/(p—1))6;. We make the following observations.
First, 6y, = nu, = 0. Second, the 7n; form a decreasing sequence. Third,
if ven(c;T~") > n; for some ¢; € K, then vo(c;T™) = v(ci) > p/(p = 1).
Fourth, if x > n;, then 6; + x/p > n;.

By the first observation above, we know that v/ (J — 1) > n; for some
0 < j =< un. Let Ge,1, Ghub,1, and Hy be the G, Gy . and H guaranteed
by Lemma 9.17 (after making a hub-negligible adjustment to J), and set J; :=
(G::rit,lG},mb,l /GeritGrun) H f’ . It follows from Lemma 9.17, Corollary 9.6, and
Lemma 9.8 that ve,(Jy — 1) > 0. Thus vep(J1) = 0. Also, ver(J; ') = 0 as
a consequnce of Lemma 9.10, s0 ven(J/J1 — 1) = van((J — J1)(J71) > 0 by
Lemma 9.5(ii). Write J/J; = 1+ Y.72,d;T™". Fori > j and either p|i
ori = —1 (mod m), Lemma 9.17 and the second, third, and fourth observations
above show that vo(d; T~") > p/(p —1). Fori < j, there exists € > 0 such that

min (ven(J = 1) + v (J = 1), 6; + ¢ + 2E=D),

Ven(di T > pliori =—1 (mod m),

min (vch(J —1),6; + €+ %]—)) otherwise.

If Ay := Y ;.;diT™" where I C [j,o0) consists of those integers congruent
to 0 (mod p) or —1 (mod m), or greater than or equal to u,, then A; is hub-
negligible by Lemma 9.3(i) and Remark 9.4. Since v, (J;) = 0, Lemma 9.9(i)
shows that J; A; is hub-negligible. So we may (and do) replace J with J — J; A4,
and we assume thatd; = 0 fori € I.
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Since the 6; form a decreasing sequence, we have

J
U":h (_ = 1) 2 min (Uch(.] == I) -+ U::h(J s 1),91'_1 —+ € +

v, (J —1)
7 =)

p

and

/ J —l
Uch (Ji = 1) > min (Uch(J —1),60y,-1 +€+ L_)) '

1 P
For I > 1, define G, ;. Gy, ;- and H; inductively as the G_,, G}, and H
guaranteed by Lemma 9. 17 with J/Jl_l in place of J and Gi,;—1 and Gpyp ;-
in place of G and Gy, (note that, since ven(J;—1) = 0 for the same reason that
Ven(J1) = 0, Lemma 9.3(i) shows that the hub-negligible adjustment to J/J;_;
required for Lemma 9.17 can be achieved by making a hub-negligible adjustment

to J). Define

G . .G/
crit,/ " hub,/
J; = [—(H - Hp)P
GcrltGhub :
so that
F' J/Ji-1

7, P

Ji (Géml hub, I/Gcntl 1 hubl D H;

At each stage, we replace J with J — J; A;, where A; is the part of J/J; consisting of
terms of degree i in 7!, where j <i < u, — 1 andeither p|i ori = —1 (mod m).
As before, this is a hub-negligible adjustment. By Lemma 9.17, there exists € > 0

such that

e, , J N
Ush 71—1 = min { Vep T_l_l +vch E—l 5

8i—1+e€+

W (J/J1mt 1))
P

and

/ J LT T —1
e[ —=—1)=Zminfvg | — —1 'Qu”—l+€+vCh( /Ji-1 ))
Ji Ji-1 p

Since nj—1 = (p/(p—1))8;_1, there exists some [ ;_; for which véh(J/sz_l —-1) >
Nj-1-

Replacing j by j — 1, we can repeat the entire process again. Induction now
shows that, after further hub-negligible adjustments to J, we get down to the case
J = 1. That is, there exists /; such that v/, (J/J;, —1) > ;. Replacing J with
J — Ji, A;, as above, we obtain that v/, (J/J;, — 1) = oo. In particular, setting G_;,
and G{, equal to Gém’ll and Gl’mb,l1 respectively, and setting H = (Hy--- H},),
gives the desired solution.
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To prove the last statement, note that Lemma 9.17 shows that all H; satisfy
Ven(H; — 1) > min(v), (J — 1), (p — D/ p). By Corollary 9.6, ven(H — 1) has
the same property. Lemma 9.17 and Lemma 9.8 imply that vep (G / Gerie — 1) and
Veh (Gl y/ Ghub) also have this property. Combining all this with Corollary 9.6 proves
the last statement of the lemma. O

Lemma 9.20. Let0 < o < p/(p—1). Let Geit € Gerirg. Let J € 1+ T 1m{T_1}.

crit
After a possible finite extension of K and crit-negligible adjustment to J, there exist
Gl € Gerirg and a polynomial H € 1 + T 'm[T. 1], such that

crit crit

J
v, ( - 1) > 0.
i (G(’;m/Gcrit)Hp N
We can choose Gl;, and H above such that v, ((G../Gei) HP — 1) >

crit
min(v, . (/' —1). (p = Drene/ p).
Proof. The proof is the same as that of Lemma 9.19, replacing Lemma 9.17
by Lemma 9.18, Lemma 9.11 by Remark 9.12, Corollary 9.6 by Remark 9.7,
Lemma 9.3(i) by Lemma 9.3(ii), Lemma 9.9(i) by Lemma 9.9(ii), v, and véh by v,
and v;cm, “hub-negligible” by “crit-negligible,” u,, by Ny + u,_;, and omitting all
mentions of Gy, and G ;.. O

Lemma9.21. Let 0 <o < p/(p—1). LetJ € 1+T 'm{T 1} withvegy(J —1) > 0.
After a possible finite extension of K and hub-negligible adjustment to J, there exists
J el +T'm{T YYNK such J' =" J, and J' has ruw-discrepancy valuation at
least o. Furthermore, ven(J' — 1) > 0.

Proof. Suppose the ryy,-discrepancy valuation of J is at least o9 > 0. By
Lemma 9.19, after making a hub-negligible adjustment to J, there exist Gerit, Glyi,»
Gt G}’mb, and H (as in that lemma) such that

J
4 —1)>o0. 9.17
- ((Gl Gl,xub/GcriEGhub)Hp ) =7 ( )

crit

For shorthand, write G’ = GG} ;, and G = GcitGpub. Also, by Lemma 9.19,

Veh (%H” - 1) > B :=min (v, (J — 1), (p — 1)7hub/ p)- (9.18)

Equations (9.17) and (9.18) also hold with vy, and v;, in place of v, and vy, by
Lemma 9.8.

By Corollary 6.16, since (G’/G)H? has infinite r-discrepancy valuation, we
have v, (J/(G'/G)H? — 1) > min(o, 0p). Thus

/ G' ) J G’ .
(1= ) = v (7 =) G47) 2 oo ),
(2.19)
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Now, replace all terms of J of degree not congruent to —1 (mod m) or 0 (mod p)
in T—! with the corresponding terms of (G'/G)H?. Since £, ((G'/G)H?) is
Y -equivariant, (9.19) shows that our new J has ry-discrepancy valuation at least
min(o, op + B) and lies in K. By (9.18), we still have v, (J — 1) > B. Repeating
this process, we eventually obtain J with ry,,-discrepancy valuation at least o. This
is the J' we seek. O

Lemma 9.22. Let 0 < 0 < p/(p—1). Let J € 1 + T 'm{T_l}. After a
possible finite extension of K and crit-negligible adjustment to J, there exists
J el + T 'm{TYyNK such J' =" J, and J' has rey-discrepancy valuation
at least o. Furthermore, v, (J' —1) > 0.

Proof. The proof is the same as that of Lemma 9.21, replacing Lemma 9.19 by
Lemma 9.20, Veh, Uryyys Vi and vy by Uy, Vry, Uy and vy, respectively, “hub-
negligible” by “crit-negligible,” and omitting all mentions of Gy, and Gy .. O

We recall the main proposition to be proved:

Proposition 9.23 (Proposition 7.36). Suppose Ny = (p — Du,—y — m (this is
consistent with Assumption 7.25). Let Gerit, Ghub € Gerit,g s Ghub,ar respectively. Let
r € [0, rup) NQ, and let f € t'="k[t™™] have degree less than u,, in t ', which we
regard as the reduction of Ty ink, (§6.1). Assume f has no terms of degree divisible
by p. Let B = p/(p — 1) —uy,r. After a possible finite extension of K, there exist
Glres Grup € Ferit,g» Fhub,a respectively, and F € K with v, (F) = 0and [F), = f
such that L,
GcritGhub =1 __p,BF (mod (]Kx)p)_

GcritGhub

Proof. We first remark that if A € K such that v, (4) = 0, then [p? 4], is unaffected
by hub-negligible adjustments to A. Essentially, this is the reason for defining hub-
negligible as we do.

Let F’ be a polynomial in 7! of the same degree as f such that v,(F’) = 0,
that [F'], = f, and that F’ has no terms of degree divisible by p. Now,

ven(pP F') = min (B — deg(f) (roub — 1) — 5, B — (N1 + tn—1) (Feric — 7).

Since deg(f) < u, and r > 0, one calculates that ve,(pP F’) is positive.
Choose o such that B — (rpyy, — r) < 0 < p/(p —1). By Lemma 9.21, after
making an adjustment to F’ resulting in a hub-negligible adjustment to p# F’, there
exists F” € p™PT " 'm{T~'} such that pP F” =" pPF’, that 1 — p# F” has ry-
discrepancy valuation at least o, and that v (1 — pP F”) > 0.

Now, since 1—p# F” has ryu-discrepancy valuation at least o, it has r-discrepancy
valuation at least ¢ 4+ (r — rpp) > B. By Lemma 6.15 (noting that [p? F’],, and
thus [p# F”],, has no terms of degree divisible by p), we have that [p? F"], contains
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only terms of degree congruent to —1 (mod m) in t~!. Since the same is true by
construction for [p? F'],, we have [F"], = [pPF"), = [pPF']. = f.
Furthermore, Lemma 9.19 yields G/, Gy € Feritg» hub,e» respectively, and
H € 1 + T7'm[T™!] such that after making an adjustment to F” resulting in
a hub-negligible adjustment to pf F” (which does not change [p? F"], = f or

v (pP F") = B), we obtain

1 — pﬂ F"
Ué / / —1 > 0. (920)
' ((G Grup/ GeritGhun) H P )

crit

By Lemma 9.8, (9.20) also holds when v, is replaced by v;hub. Since the fraction
in (9.20) has rpy,-discrepancy valuation > o, Corollary 6.16 shows that v, can

Fhub
even be replaced by v, in (9.20). We conclude that

Gerit b
cri w P _ (1 — BFH >0
i (GcritGhub ( P )) =7

In particular,

G’ . G|
o ( crit - hub HP — (1 _ pﬁF”)) >0 + (rhub —_ r) - ﬁ (921)
GcritGhub

Finally, let F be such that (G, G! ,/ GeritGrup) H? = 1— pPF. Since [F"],=f,

we need only show that v, (F) = 0 and [F], = [F"],. This follows from (9.21) and
the fact that v, (p# F") = B. O

Remark 9.24. Being able to replace vy, . by vy, in (9.20) in order to clear
denominators is the essential reason why we need the concept of discrepancy

valuation.
Proposition 7.20, which we recall below, now follows easily.

Proposition 9.25 (Proposition 7.20). Let G € Gritq, let r € [Fuyb, Terir) N Q, and let
f € t'="k[t™™] be a polynomial of degree less than Ny + u,_y in t~', which we
regard as the reduction of T, in k, (§6.1). Assume f has no terms of degree divisible
by p. Let B = (N1 + up—1)(reic — ). After a possible finite extension of K, there
exist G' € Gyig and F € K with v,(F) = 0 and [F), = f such that

GI

c=1- pPF  (mod (K*)P).
Proof. The proof is the same as that of Proposition 9.23, replacing Lemma 9.21
by Lemma 9.22, Lemma 9.19 by Lemma 9.20, veh, vy, v.,, and vihub by VUr.s
Urey» Up.» and vy, respectively, “hub-negligible” by “crit-negligible,” choosing
B — (raic —r) <o < p/(p — 1), and omitting all mentions of Gy, and G{,. O
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