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Transverse foliations on the torus T2 and partially
hyperbolic diffeomorphisms on 3-manifolds

Christian Bonatti and Jinhua Zhang

Abstract. In this paper, we prove that given two C1 foliations 3? and # on T2 which
are transverse, there exists a non-null homotopic loop }re[o.l] in DifF'fT2) such that

3>;(.!F) rh ~§ for every t [0,1], and tî>o Oj Id.

As a direct consequence, we get a general process for building new partially hyperbolic
diffeomorphisms on closed 3-manifolds. Bonatti et al. [4] built a new example of dynamically
coherent non-transitive partially hyperbolic diffeomorphism on a closed 3-manifold; the example
in [4] is obtained by composing the time t map, t > 0 large enough, of a very specific non-
transitive Anosov flow by a Dehn twist along a transverse torus. Our result shows that the same

construction holds starting with any non-transitive Anosov flow on an oriented 3-manifold.
Moreover, for a given transverse torus, our result explains which type of Dehn twists lead to

partially hyperbolic diffeomorphisms.

Mathematics Subject Classification (2010). 37D30, 57R30, 37C05, 37C15.
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1. Introduction and statement of the main results

The main motivation of this paper is the construction of new examples of partially
hyperbolic diffeomorphisms on closed 3-manifolds, initiated in [4]. More precisely,
our main result is a topological result which was missing for [4] getting a general
construction instead of a precise example. Nevertheless, this topological result deals

with very elementary objects and is interesting by itself. We first present it below

independently from its application on partially hyperbolic diffeomorphisms.

1.1. Pair oftransverse foliations on T2. The space of 1-dimensional (non-singular)
smooth foliations on the torus T2 has several connected components which are easy to
describe: such a foliation is directed by a smooth line field, which can be seen as a map
X : T2 -¥ MP1 ~ S1; such a map induces a morphism X* : tz\(T2) Z2 — Z
and two foliations can be joined by a path of non-singular foliations if and only if
the induced inorphisms coincide. The group Diffo(T2) of diffeomorphisms of T2

isotopic to the identity map has a natural action on the space of foliations.
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In this paper, we consider pairs (J7, ~§) of transverse foliations on T2. For any
such a pair (!F, H) of transverse foliations, we consider the open subset of Diff0(T2)
of all diffeomorphism <p so that (p(!F) is transverse to H. Our main result below
shows that this open subset contains non-trivial loops.

Theorem A. Let !F and § be two C1 one-dimensionalfoliations on T2 and they are
transverse. Then there exists a continuous (for the C1 -topology) family {4>( }fg[o,i]
o/C1 diffeomorphisms on T2 such that

• <î>o 4>i — Id;

• For every t 6 [0,1], the C1 foliation 4>f (IF) is transverse to § ;

• For every point x 6 T2, the closed curve A>t (x) is non-null homotopic.

Our main theorem is implied by the following two theorems, according to the two
cases described in Definition 1.1 below:

Definition 1.1. We say that two foliations J7 and £ of the torus T2 have parallel
compact leaves if and only if there exist a compact leaf of J7 and a compact leaf of ~§

which are in the same free homotopy class.

Otherwise, we say that !F and ü have no parallel compact leaves or that they are
without parallel compact leaves.

Theorem 1.2. Let !F and § be two C1 one-dimensional transverse foliations
on T2, without parallel compact leaves. Then for any a 7Ti(T2), there exists

a C1 -continuous family he[o,i] °f C1 diffeomorphisms on T2 such that

• 4>o <t> l Id;

• For every t [0,1], the C1 foliation (J7) is transverse to § ;

• For every point x e T2, the closed curve d>t(x) is in the homotopy class ofa.

The proof of Theorem 1.2 consists in endowing T2 with coordinates in which the

foliations (F and ^ are separated by 2 affine foliations (i.e. !F and ^ are tangent to

two transverse constant cones). Thus in these coordinates every translation leaves J7

transverse to ~§, concluding.

Theorem 1.3. Let !F and § be two C1 one-dimensional foliations on T2 and they

are transverse. Assume that !F and if have parallel compact leaves which are in the

homotopy class a e 7Ti(T2). Then, for each ß e 7ri(T2), one has that ß e (a) if
and only if there exists a C1 -continuous family {4h }re[o,i] of Cl diffeomorphisms
on T 2 such that

• 4>0 3>i Id;

• For every / e [0,1], the C1 foliation 4>r (!F) is transverse to S;

• For every point x T2, the closed curve 4>/(x) is in the homotopy class of ß.
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One easily checks that, if 3< and § are transverse C1 foliations having compact
leaves in the same homotopy class, then every compact leaf Lr of !F is disjoint from

every compact leaf of H. If {Or }re[o,i] is an isotopy so that <3>o is the identity
map and QtifF) is transverse to then $t{Lr) remains disjoint from L^\ this

implies the if part of Theorem 1.3. The only if part will be the aim of Section 6. The

proof consists in endowing T2 with coordinates in which T2 is divided into vertical

adjacent annuli in which the foliations are separated by affine foliations: now the

vertical translations preserve the vertical annuli and map !F on foliations transverse
to ~§.

Remark 1.4. First notice that every continuous path (for the C1-topology) of
C1 diffeomorphisms can be approached, in the C1-topology, by a smooth path
of smooth diffeomorphisms.

Now, as the transversality of foliations is an open condition, any loop {^^[0,1]
of diffeomorphisms C^-close to the loop {<3»/ }/e[o,i] (announced in Theorems A, 1.2,

and 1.3) satisfies that fl/t (3r) is transverse to ~§ for every t.
Therefore, in Theorems A, 1.2, and 1.3, one can choose the loop t <ï>/ so that

the map (t,x) d>,(x), for (t, x) G S1 x T2, is smooth.

Definition 1.5. Let (F,~§) be a pair of transverse foliations of T2. We denote by

G^^ C JTiCir2) the group defined as follows:

• if & and ~§ have no parallel compact leaves, then Gjr^§ — Z2 jri(T2);
• if 3? and ~§ have parallel compact leaves, let a e n\(Z) be the homotopy class of

these leaves. Then Gjr^ (a) — Z - a C 7Ti(T2).

1.2. Dehn twists and pairs of transverse 2-foliations on 3-manifolds. The aim of
this paper is to build partially hyperbolic diffeomorphisms on 3-manifolds by
composing the time f-map of an Anosov flow by a Dehn twist along a transverse tori.
In this section we define the notion of Dehn twists, and we state a straightforward

consequence of Theorems 1.2 and 1.3 producing Dehn twists preserving the

transversality of two 2-dimensional foliations.

Definition 1.6. Let u (n.tn) e Z2 — 7Ti(T2). A diffeomorphism x// : [0,1] x
T2 —>• [0, 1] x T2 is called a Dehn twist of[0,1] x T2 directed by u if:

• \j/ is of the form (t,x) i->- (t,\j/t(x)), where x//t is a diffeomorphism of T2
depending smoothly on t.

• i/T is the identity map for t close to 0 or close to 1.

• the closed path t m>- xf/,(0) on T2 is freely homotopic to u (where O (0,0) in
T2 M2/Z2).

Definition 1.7. Let M be an oriented 3-manifold and let T : T2 e-> M be an

embedded torus. Fix u e n\(T). We say that a diffeomorphism \j/ : M -> M is a
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Dehn twist along T directed by u if there is an orientation preserving diffeomorphism
V : [0. 1] x T2 <-» M whose restriction to {0} xT2 induces T, and so that:

• is the identity map out of <p([0,1] x T2). In particular, leaves invariant
<p([0.1] x T2);

• The diffeomorphism (p~l o o (p : [0,1] x T2 —» [0,1] x T2 is a Dehn twist
directed by u.

Proposition 1.8. Let F ,~§ be a pair of 2-dimensionalfoliations on a 3-manifold M,
and let 8 be the 1 -dimensional foliation obtained as 8 F D ~§. Assume that
there is an embedded torus T c M which is transverse to 8 (hence T is transverse
to 3- and § J. We denote by Ft. #r the 1 -dimensional foliations on T obtained as
intersection of IF and~§ with T, respectively.

Then for every u e GTt 6t C ni (T), there is a Dehn twist f along T directed
by u so that f(F) is transverse to S.

1.3. Building partially hyperbolic diffeomorphisms on 3-manifolds. In order to
state our main result, we first need to define the notions of partially hyperbolic
diffeomorphism and of Anosov flow.

1.3.1. Definition of partially hyperbolic diffeomorphisms. A diffeomorphism /
of a Riemannian closed 3-manifold M is called partially hyperbolic if there is a

Df - invariant splitting TM Es ® Ec © Eu in direct sum of 1-dimensional bundles
so that

(PI) There is an integer N > 0 such that for any x M and any unit vectors
u Es(x), v e Ec(x) and w e Eu(x), one has:

\\DfN(u)\\ < inf{ 1. ||D/>)||} 5 sup{l, ||Z)/^(v)||} < ||D/"(u;)||.

A diffeomorphism / of a Riemannian closed 3-manifold M is called absolute

partially hyperbolic if it is partially hyperbolic satisfying the stronger assumption

(P2) There are 0 < A < 1 < a and an integer N > 0 so that for any x,y,z e M
and any unit vectors u e Es(x), v e Ec(y) and w e Eu(z), one has:

\\DfN(u)\\ <X< ||D/"(v)|| < a < IID/^uOH.

We refer the readers to [2, Appendix B] for the first elementary properties and 117J

for a survey book of results and questions for partially hyperbolic diffeomorphisms.

1.3.2. Definition of Anosov flows. A vector field X on a 3-manifold M is called an

Anosov vectorfield if there is a splitting TM — Es © M • X © Eu as a direct sum of
1-dimensional bundles which are invariant by the flow of ar)d so that the
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vectors in Es are uniformly contracted and the vectors in Eu are uniformly expanded

by the flow of A.
Notice that X is Anosov if and only if X has no zeros and if there is t > 0 so

that Xt is partially hyperbolic.
The bundles Ecs Es © M • X and Ecu M • X © Eu are called the weak stable

and unstable bundles (respectively). They are tangent to transverse 2-dimensional
foliations denoted by !FCS and Fcu respectively, which are of class C1 if A is of
class at least C2.

The bundles Es and E" are called the strong stable and strong unstable bundles,
and are tangent to 1-dimensional foliations denoted by Fss and IF1'" which are called
the strong stable and the strong unstable foliations, respectively.

Notice that being an Anosov vector field is an open condition in the set of C1 -

vector fields and that the structural stability implies that all the flows C1-close to

an Anosov flow are Anosov flows topologically equivalent to it. Therefore, for our

purpose here we may always assume, and we do it, that the Anosov flows we consider

are smooth.

The most classical Anosov flows on 3-manifolds are the geodesic flows of
hyperbolic closed surfaces and the suspension of hyperbolic linear automorphisms
of T2 (i.e. induced by an hyperbolic element of SL(2, Z)). In 1979, [8] built the

first example of a non-transitive Anosov flow on a closed 3-manifold. Many other

examples of transitive or non-transitive Anosov flows have been built in [1,3].

1.3.3. Transverse tori. If X is an Anosov vector field on an oriented closed 3-

manifold M and if S C M is an immersed closed surface which is transverse to X
then

• S is oriented (as transversely oriented by A);

• S is transverse to the weak foliations Fcs and Fcu of A and these foliations
induce on S two 1-dimensional C1 -foliations Fj and F", respectively, which are

transverse.

• as a consequence of the two previous items, 5 is a torus.

A transverse torus is an embedded torus T : T2 M transverse to A and

we denote by Fj and Fj the 1-dimensional C1 foliations induced on T obtained

by intersections of T with Fcs and with Fcu, respectively. These foliations are

transverse. Therefore Theorem A associates to (Fj, Fj) and a subgroup G s

of n\(T) which is either a cyclic group if Fj. and Fj have parallel compact leaves

or the whole n\('T) otherwise.

Let T\,..., Tk be a finite family of transverse tori. We say that A has no return
on (J;- 7] if each torus 7) is an embedded torus, the {7]} are pairwise disjoint and

each orbit of A intersects [J; 7) in at most 1 point.
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A Lyapunov function for X is a function which is not increasing along every orbit,
and which is strictly decreasing along every orbit which is not chain recurrent.

In [5] Marco Brunella noticed that a non-transitive Anosov vector field X on an
oriented closed 3-manifold M always admits a smooth Lyapunov function whose

regular levels separate the basic pieces of the flow; such a regular level is a disjoint
union of transverse tori 7j,..., 7/t. One can check the following statement:

Proposition 1.9. Let X be a (non-transitive) Anosov vector field on an oriented
closed 3-manifold M. Then the two following assertions are equivalent:

(1) 7j,... ,Tk are transverse tori so that X has no return on (J(- 7j-.

(2) there is a smooth Lyapunov function 0 : M —»• M of X for which the 7j,
i {1 k are (distinct) connected components of the same regular level
9~l (t) for some t M.

We are now ready to state our main result.

1.4. Statement of our main result.

Theorem B. Let X be a smooth (non-transitive) Anosov vectorfield on an oriented
closed 3-manifold M, and let T\ be transverse tori so that X has no return
on 7j We endow each Tj with the pair (fFf. of transverse I-dimensional
C1 foliations obtained by intersections of Ti with the weak stable and unstable

(respectively) foliations of X; let

Gi — Gps Tu C rc\(Ti)

denote the subgroup associated to the pair (Ff, F") by Theorems 1.2 and 1.3.

Then for any family u\ e G\ u^ e there is a family fl*,- of Dehn twists
along Ti directed by Uj, and whose supports are pairwise disjoint and there is t > 0

so that the composition

f Vpj o Vp2 o • • • O o Xt

is an absolute partially hyperbolic diffeomorphism of M.
Furthermore, f is robustly dynamically coherent, the center stablefoliation lFj-s

and center unstable foliation T'j" are plaque expansive.

In a forthcoming work with a different group of authors, one will remove the

hypothesis that the 7j- are connected components of a regular level of a Lyapunov
function. We state this result here with this restrictive hypothesis in order that this
result is a straightforward consequence of Theorems 1.2 and 1.3. Removing this

hypothesis will require further very different arguments.

Acknowledgements. We would like to thank Rafael Potrie whose questions motivate
this paper. Jinhua Zhang would like to thank China Scholarship Council (CSC) for
financial support (201406010010).
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2. Preliminary: foliations on the torus and its classification

In this section, we give the définitions and results we need. We denote by S1 the

circle S1 M/Z and by T2 the torus M2/Z2 S1 x S1.

2.1. Complete transversal.

Definition 2.1. Given a Cr (r > 1) foliation F on T2. We say that a C1 simple
closed curve y is a complete transversal or a complete transverse cross section of the

foliation F, if y is transverse to F and every leaf of F intersects y.

Lemma 2.2. Consider a C1 foliation 8 on T2. Assume that there is a simple smooth

closed curve y which is transverse to 8 and is not a complete transversal of 8. Then

there exists a compact leafof 8 which is in the homotopy class of y.

This lemma is classical. As the proof is short, we include it for completeness.

Proof. Cut the torus along y : we get a cylinder C endowed with a foliation transverse

to its boundary. Furthermore, by assumption, this foliation admits a leaf which
remains at a uniform distance away from the boundary of C.

Hence, the closure of that leaf is also far from the boundary of C. By the Poincaré-
Bendixson theorem, the closure of this leaf contains a compact leaf, thus this compact
leaf is disjoint from the boundary C. Furthermore, as the foliation is not singular, this
leaf cannot be homotopic to 0 in the annulus, hence it is homotopic to the boundary

Figure 1.

components.

Definition 2.3. Given two Cr foliations F and F' on manifolds M and M',
respectively. F and F' are Cr conjugate if there exists a Cr diffeomorphism

/ : M —y M' such that f{F) — F'.
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2.2. Reeb components.

Definition 2.4 (Reeb component). Given a foliation F on T2, we say that F has a

Reeb component, if there exists a compact annulus A such that

• the boundary 3.4 is the union of two compact leaves of F ;

• there is no compact leaf in the interior of A;

• first item above implies that F is orientable restricted to A, so let us choose

an orientation. We require that the two oriented compact leaves are in opposite
homotopy classes.

Figure 2. Reeb component.

By using the Poincaré-Bendixson theorem, one easily checks the following
classical result:

Proposition 2.5. Let F and 8 be two transverse foliations on T2. Assume that F
admits a Reeb component A. Then 8 admits a compact leafcontained in the interior
of A. Thus F and 8 have parallel compact leaves.

We state now a classification theorem which can be found in [13]:

Theorem 2.6 ([13, Proposition 4.3.2]). For any Cr foliation !F on T2, we have the

following:

• Either !F has Reeb component; or

• !F is Cr conjugated to the suspension ofa Cr diffeomorphism on S1.

In general the union of the compact leaves of a foliation may fail to be compact.
But, for codimension 1 foliations we have the following theorem due to A. Haefliger.

Theorem 2.7 ([10]). For any Cr (r > 1) codimension onefoliation IF on a compact
manifold M, the set

{x 6 M I The F-leaf through x is compact}

is a compact subset of M.
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2.3. Translation and rotation numbers. In this section we recall very classical
Poincaré theory on the rotation number of a circle homeomorphism. We refer to [ 11 ]

for more details.
We denote by homeo+(R) the set of orientation preserving homeomorphisms

on M which commute with the translation t t + 1. Recall that the

elements of homeo+ (K) are precisely the lifts on E of the orientation preserving
homeomorphisms of §1.

Let H homeo+(E) be the lift of he Homeo+(§1). Poincaré noticed that the
ijn (x\ xratio —^— converges uniformly, as n — ±00, to some constant r(//) called the

translation number of H. The projection p(h) ofr(//)onE/Z does not depend on
the lift H and is called the rotation number ofh.

We can find the following observations in many books, in particular in [11],

Remark 2.8. The rotation number is rational if and only if h admits a periodic point.

Proposition 2.9 ([11, Proposition 11.1.6]). r (•) varies continuous in C°-topology.

Proposition 2.10 ([11, Proposition 11.1.9]). Let H, F e homeo+(E). Assume

that t(H) is irrational and H(x) < F(x), for any x G E. Then we have that

r (H) < t (F).

Poincaré theory proves that a homeomorphism h of the circle with irrational
rotation number is semi-conjugated to the rotation Rp(h)', but h may fail to be

conjugated to Rp(h) even if h is a C '-diffeomorphism (Denjoy counter examples).
However the semi-conjugacy is a C°-conjugacy if/; is a C2-diffeomorphism (Denjoy
theorem). In general, if h is a smooth circle diffeomorphism with irrational rotation
number, the conjugacy to the corresponding rotation may fail to be a diffeomorphism.
However M. Herman proved that there are generic conditions on p(h) ensuring the

smoothness of the conjugacy:

Theorem 2.11 ([14]). Let f G Di If (S1) (r > 3) be a diffeomorphism of the circle.

If the rotation number off is diophantine, then f is Cr~2 conjugated to an irrational
rotation.

2.4. Foliations without compact leaves on the annulus. Let F be a C foliation
on the annulus S1 x [0.1] so that

• F is transverse to the boundary S1 x {0. 1};

• F has no compact leaves in the annulus.

Thus Poincaré-Bendixson theorem implies that every leaf entering through S1 x {0}
goes out through a point of S1 x {1}. The map Pjr : S1 x {0} —> S1 x {1}, which
associates an entrance point (x. 0) of a leaf in the annulus to its exit point at S1 x {1},
is called the holonomy of F.

Consider the universal cover E x [0,1] -> S1 x [0,1]; we denote by F the lift
of F on E x [0.1] and by Fjr the holonomy of F. Note that Fjr is a lift of IPjr.
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We will use the following classical and elementary results:

Proposition 2.12. Let F, F be Cr-foliations, r > 0, on the annulas S1 x [0, 1] so

that:

• The foliations F and F are transverse to the boundary S1 x {0,1} and have no

compact leaves in the annulus;

• The foliations IF and F coincide in a neighborhood of the boundary S1 x {0.1};
• The foliations F and F have same holonomy, that is IFjr .Fg.

Then there is a Cr diffeomorphism (p : S1 x [0, 1 ] —* S1 x [0,1] which coincides
with the identity map in a neighborhood of the boundary S1 x {0.1} and so that

<p&) F.

Iffurthermore the liftedfoliations F and Fi have same holonomies, that is Fjr
.Fg, then (p is isotopic (relative to a neighborhood of the boundary) to the identity
map.

An important step for proving Proposition 2.12 is the next classical result that we

will also use several times:

Proposition 2.13 ([13, Lemma 4.2.5]). Let F be a Cr (r > I) foliation on the

annulus S1 x [0. 1], transverse to the boundary and without compact leaf. Then there

is a smooth surjection 6 : S1 x [0. 1] —> [0,1] mapping S1 x {0} on 0 and S1 x {1}
on 1 and so that F is transverse to the fibers of 6.

As we did not find a reference for the precise statement of Proposition 2.12, we

explain its proof below.

Hintfor the proofofProposition 2.12. One first notices that the surjection 6 given
by Proposition 2.13 can be chosen so that 6{x, t) t for t close to 0 or to 1.

Let us fix such surjections 63? and 6g associated to F and F by Proposition 2.13.

We get a map <py : S1 x [0, 1] -» S1 x [0, 1] defined as

cpr(x,t) (y,0F(x,t)),
where (y, 0) is the intersection of the leaf of F through (x,t) with S1 x {0}. We

define a map tpg in the same way.
As F coincides with F in a neighborhood of the boundary and F, F have the

same holonomy map, and as 9$- coincides with 9g close to the boundary, one easily
checks that <pp coincides with tpg in a neighborhood of the boundary. Now the

announced map y is just
(p <pgl o (pp.

One easily checks that cp satisfies all the announced properties.

A classical consequence of Proposition 2.13 is that a foliation on T2 admitting a

complete transversal is conjugated to the suspension of the first return map on this
transversal.
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3. Existence of a complete transversal for two transverse foliations
without parallel compact leaves

In this section, we consider two foliations F, ^ on the torus T2 which do not
have parallel compact leaves (see Definition 1.1). According to Proposition 2.5, the

foliations F and ^ have no Reeb component. In particular, F and ^ are orientable.

By Theorem 2.6, for each of them, there exist complete transverse cross sections.
In this section, we prove that any two transverse foliations without parallel compact
leaves share a complete transverse cross section.

Proposition 3.1. If two C1 foliations F and § are transverse on T2 and have no

parallel compact leaves, then there exists a smooth simple closed curve y which is a

complete transversal to both !F and id.

Proof As noticed before the statement of Proposition 3.1, the foliations F and id

have no Reeb component and therefore F and are orientable. Thus there exist

two unit vector fields X, Y such that X and Y are tangent to the foliations !F and id

respectively.
Since X and Y are transverse, the vector field \ X + ^ Y is transverse to both IF

and id. Let Z be a smooth vector field C° close enough to j X + \ Y so that Z is

non-singular and transverse to both foliations F and id. Furthermore, up to perform a

small perturbation, we can assume that Z admits a periodic orbit y which is a simple
closed curve transverse to both F and id.

According to Lemma 2.2, if y is not a complete transversal of one of the

foliations F or id, this foliation admits a compact leaf homotopic to y. As F
and fi have no parallel compact leaves, this may happen to at most one of F and §.
In other words, y is a complete transversal for at least one of the foliations, thus we

assume that y is a complete transversal for F. If y is a complete transversal for id,

we are done.

Thus we assume that it is not the case. Therefore Lemma 2.2 implies that # has

compact leaves which are in the homotopy class of y. We denote by a compact
leaf of id, and we denote by L a segment of a leaf of F with endpoints p, q on y and

whose interior is disjoint from y ; furthermore, if F has a compact leaf, we choose L
contained in a compact leaf of F. We denote by a C y the (unique) non trivial
oriented segment so that

• o joins the final point q of L to its initial point p;
• the interior of a is disjoint from {p, q}\
• the orientation of cr coincides with the transverse orientation of the foliation id,

given by the vector field X directing F.
Thus the concatenation yo L • a is a closed curve (which is simple unless p q
in that case p q is the unique and non topologically transverse intersection point)
consisting of one leaf segment and one transverse segment to F. A classical process
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allows us to smooth yo into a smooth curve y transverse to F (see Figure 3 for
the case p ^ q and Figure 4 for the case p — q), and the choice of the oriented

segment a allows us to choose y transverse to §. Furthermore, we have that

• y cuts the compact leaf CG of ß transversely and in exactly one point;

•if !F has compact leaves, then y cuts the compact leaf containing L transversely
and in exactly 1 point;

• y is a closed simple curve (even in the case p q).

Figure 3. In the first figure: the dash line is the transversal y; the dash and real arrows on the

circle pointing outside give the orientations of ß and F respectively. The second and the third
figure show the good choice of curve and bad choice of curve respectively.

Figure 4. The dash line is the transversal y. The dash and real arrows on the circle pointing
outside give the orientations of F and F respectively.

Now y is a simple closed curve transverse to ß and has non-vanishing intersection
number with a compact leaf of ß, and therefore y is not homotopic to the compact
leaves of ß. Lemma 2.2 implies therefore that y is a complete transversal of ß. The
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same argument show that, if F has a compact leaf, then y is a complete transversal

of F. Finally, if F has no compact leaves, any closed transversal is a complete
transversal, ending the proof.

4. Deformation of a foliation along its transverse foliation

For any C1 foliation 8, we will denote by 8X the leaf of 8 through v. For any two
points x, y on a common leaf of 8, we denote dg (x, y) as the distance between x, y
on the g-leaf.

Proposition 4.1. Let S M x [0,1] be a horizontal strip on R2. Assume that 8, F
and § are C1 foliations on S satisfying that

• the foliation § is transverse to F and 8, that is, 8 fh § and F rh § ;

• the foliations 8, F and ß are invariant under the map (r, s) i->- (r + 1, s);

• the foliations 8 and F have the same holonomy map from R x {0} tolxfl};
• Each leaf of each foliation intersects the two boundary components of S

transversely.

Then there exists a continuousfamily Id1; }/e[o,i] ofC1 diffeomorphisms on M x [0,1]
such that

• d>0 Id;

• <Di(S) - F ;

• d>;(ë) rh ß, for every t e [0,1];

• Or commutes with the map (r, s) i—>• (r + 1 ,s),for any t [0,1];

• coincides with the identity map on M x {0, 1}, for any t e [0,1].

Iffurthermore 8 and F coincide in a neighborhood of the boundary M x {0,1}
of S then we can choose the family {O, [^[o. i] ofdiffeomorphisms so that there is a

neighborhood ofR x {0, 1} on which the coincides with the identity map, for any
t [0. 1],

Proof. By assumption, for each x R x {0}, the leaf 8X and the leaf Fx have the

same boundary.

Claim 4.2. For each y e 8X, the leaf §y intersects Fx in a unique point.

Proof. Since £ and Fjwt transverse to §, one can prove that every leafof ß intersects

every leaf of£ and F in at most one point. If y is an end point of 8X, it is also an

end point of Fx, concluding. Consider now y in the interior of 8X.
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Recall that §y is a segment joining the two boundary components of S. Thus

S\~§y has two connected components. Moreover each connected component of S \§y
contains exactly one end point of 8X. As Fx has the same end points as 8X, it
intersects ~§y.

Now, we can define a map /zg- from S to itself. For each x e S, there exists

a unique leaf of F which hasjhe same boundary as 8X, by the claim above, ~§x

intersects that unique leaf of F in only one point and we denote it as /zg-(jc) (see

Figure 5 below).

Since 8, F and ^ are C '-foliations, /zg- is a C1 map, and its inverse hg is

obtained by reversing the roles of 8 and F, proving that /Zg is a diffeomorphism.
Since each foliation is invariant under horizontal translation (r, s) (r + l,s), the

diffeomorphisms /zg- and hg commute with the map (r, 5) i-> (r + l,s).
Since x and hg-(x) are on the same ~§ leaf, the map d^{x, /Zg(x)) is well defined

from S to M and one can check that it is a C1 map which is invariant under the

translation (r, s) >-> (r + 1,5).
Now, for each t eJO, 1], we define <Jv(x) as the point, in the segment joining x

to /Zg(x) in the leaf ~§X, so that

dg(x, <&,(*)) t d~{x,hg(x))
and dg($>t(x),hg(x)) (1 -t)-d~(x,h-g(x)).

Then, we have that d>0 Id, <î>i hg and O, commutes with the horizontal

translation (r,5) i->- (r + l,s) and preserves each leaf of the foliation One

easily checks that O, is of class C1 and depends continuously on t. Furthermore,
its derivative along the leaves of ~§ does not vanish, so that <3^ is a diffeomorphism
restricted to every leaf of H. As <3>, preserves every leaf of §, one deduces that <J>, (8)
is transverse to ~§ and is a diffeomorphism of S. Thus, {<Fr}fe[o,i] is the announced

continuous path of C1 diffeomorphisms of S.

For any C1 simple closed curve y on T2 whose homotopy class is non-trivial,
we can cut the torus along y to get a cylinder. The universal cover of the cylinder is
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a strip denoted by Sy and diffeomorphic to R x [0.1]. For any C1 foliation 8 on T2

transverse to y, one denotes by 8 the lift of 8 on Sy.

Corollary 4.3. Let 8, F and ~§ be three C1 foliations on T2. Assume that:

• 8 rh i/ and IF fh

• there exists a C1 simple closed curve y such that

(1) the curve y is a complete transversal of the foliations 8, F and § ;

(2) the liftedfoliations 8 and F have the same holonomy map definedfrom one

boundary component of Sy to the other;

Then there exists a continuous family of C1 diffeomorphisms jffir }f6[o, i] C

Diff!(T2) such that

• <î>o — Id.'

• <I>r(S) fh i/, for every t G [0,1];
• d>i(g) F.

Sketch ofproof. If we just apply Proposition 4.1, one obtains a family of home-

omorphisms of T2 which are C1 diffeomorphisms on the complement of y and

which coincide with the identity map on y and satisfy all the announced properties.
Thus the unique difficulty is the regularity along y. For that we check that the

construction in the proof of Proposition 4.1 can be done on the whole universal cover
of T2 commuting with all the deck transformations, leading to diffeomorphisms
onT2.

5. Deformation process for transverse foliations without parallel compact leaves:

proof of Theorem 1.2

5.1. Separating transverse foliations by two linear ones and proof ofTheorem 1.2.

Theorem 5.1. Let F and § be two transverse C1 foliations on T2 without parallel
compact leaves. Then there are two affine foliations M and â on T2 and a

diffeomorphism 9 : T 2 —> T2 so that

• the foliations 9(F), 9(§ F and S are pairwise transverse;

• there are local orientations of the foliations at any point p G T2 so that

- 9(F) and 9(~§) cut X with the same orientation;

- 9(F) and 9(§) cut â with opposite orientations.

The two affine foliations X and â divide the tangent space TPM at each point

p G T2 into four quadrants, and Theorem 5.1 asserts that the tangent lines at p
of 9(F) and 9(~§) are contained in different quadrants.

The proof of Theorem 5.1 is the aim of the whole section. Let us first deduce the

proof of Theorem 1.2
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Proofof Theorem 1.2. We consider two transverse C1 foliations IF and § on T2
without parallel compact leaves, the diffeomorphism 6 and the affine foliations M
and d given by Theorem 5.1. Consider any vector u e M 2 and let Tu be the affine
translation of T2 directed by w, that is Tu(p) p + u.

Claim 5.2. For any u e R2, the foliation TU(6(.F)) is transverse to 0(H)

Proof. The foliations M and d are invariant by Tu, and the quadrants defined by M
and d are preserved by Tu so that Tu (9(!F)) is still transverse to both Jt and d and its

tangent bundle is contained in the same quadrants as 0(!F), and therefore TU(9(!F))
is not contained in the same quadrants as the tangent bundle of 0(H).

Thus TU(9(!F)) is transverse to 9(H), concluding.

Consider (m,n) e Z2 Hi(T2, Z) and let u (r, s) be the image of (m,n) by
the natural action of 0 on Hi (T2, Z). Then the announced loop of diffeomorphisms
is {(p, 9~xTtu9}te[o,\]- Then (pt(lF) is transverse to H for every t e [0,1],
(p0 cp1 idT2, and the loop t m>- pt(p) is in the homology class of (m,n) for

every p T2.

Therefore, it remains to prove Theorem 5.1. The proof is divided into two main

steps corresponding to the next subsections.

5.2. Separating transverse foliations by a circle bundle. In this section, consider
two transverse foliations !F and H without parallel compact leaves. We first choose a

coordinate to make H in a "good position", then we apply Proposition 4.1 to deform IF
in "good position", keeping H invariant.

By Lemma 3.1, there exists a smooth simple closed curve y which is a complete
transversal of IF and H. The aim of this section is to prove next result which can be

seen as the first step for proving Theorem 5.1.

Theorem 5.3. Let !F and H be two transverse C1 foliations on T2 and assume that

they share the same complete transversal y. Then there exists 9 Diff1 (T2) such

that

• 9(y) S1 x {0};
• Both 9(!F) and 9(H) are transverse to the horizontal circle S1 x {t}, for any

t e S1.

Up to now, !F and H are two transverse foliations on T2 which share the same

complete transversal y. In particular, H is conjugated to the suspension of its

holonomy (first return map) on y. In other words, we can choose an appropriate
coordinate on T2 S1 x S1 such that:

• the circle y S1 x {0} is a complete transversal for IF and H\

• the foliation H is everywhere transverse to the horizontal circles;

• the foliation H is vertical in a small neighborhood of S1 x {0}.
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Under this coordinate, we cut the torus along y and we get a cylinder S1 x [0,1],
Thus T2 is obtained from S1 x [0,1] by identifying (x, 0) with (x, 1), for x S1.

Now, we take a universal cover of that cylinder, we get a strip S M x [0,1].
The foliations F and can be lifted as two foliations F and ^ on S, respectively.
Moreover, § is everywhere transverse to the horizontal direction.

The proof of Theorem 5.3 has two steps: first we build a foliation S on T2
transverse to 1/ and to the horizontal foliation, so that 8 has the same holonomy as F.
Then we push F on 8 by a diffeomorphism preserving ~§, by using Proposition 4.1.

Thus the main step of the proof is:

Proposition 5.4. With the notations above, there exist e > 0 and a C1 foliation 8
transverse to § on T 2 such that thefoliation 8 induced by 8 on the strip S R x [0. 1 ]

satisfies:

• the foliation 8 is transverse to the horizontal direction;

• For any x e M x {0}, we have that

8X n(lx ([0, e] U [1 — e, 1])) Fx D (M x ([0. e] U [1 - e, 1])).

Remark 5.5. The last item of Proposition 5.4 means that

• the foliations 8 and !F coincide in a neighborhood of y
• the holonomy maps from R x {0} to R x {1} associated to 8 and !F are the same.

Proof. We denote by
/, g : R x {0} i-> R x {1}

the C1 holonomy maps of F and ~§ respectively.
As F is transverse to ~§, we have that /(x) g(x), for any x R x {0}. Hence,

we can assume that /(x) > g(x) for any x e R x {0) (the other case is similar).
We denote by gt : R —» M the holonomy of ~§ from R x {0} to R x {f}. In

particular, g0 is the identity map and gi g. Our assumption that is vertical close

to the boundary, implies that gt is the identity map for t small enough and g, g
for t close to 1.

Let fio : S —> S be defined by (x, t) (gt (x), t). Then fio is a diffeomorphism
which commutes with the translation T\ : (x,t)j->- (x + 1 ,t).

Consider the foliations anc^ ~ N°w we have:

• -§0 is the vertical foliation;

• Fo is a C1 foliation transverse to the vertical foliation and transverse to the

boundary of S, and invariant by the translation T\. We denote by Fo its quotient
on the annulus S1 x [0,1],

• every leaf of Fo goes from R x {0} to R x {1} so that the holonomy map f° is well
defined and f° g-1 o/. Our assumption /(x) > g(x) means that /°(x) > x
for every x.
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As !Fo is transverse to the boundary of S1 x [0,1], there is 8 > 0 so that Fo
is transverse to the horizontal foliation on M x [0.5] and on M x [1 — 5,1], Thus
the holonomy ft° : M x {0} —> R x {t} of the foliation Fo is well defined for
t e [0, 5] U [1 — 5, 1] and satisfies:

• ft°(x) > x for t > 0, and moreover f,°x(x) < ft2(x) for t\, f2 [0,5] U [1 — 5, 1]

and t\ < Î2-

• The map (x,t) I-* ft°(x) is C1 and > 0 (because Fq is transverse to the

vertical foliation).

Consider s > 0 so that:

e < in£ {/i°-sM ~ fs°(x)> forx e M}-

£ < inf 1-^-^—for x e M and t e [0.5] U [1 — 8,1]|.
°t

With this choice of s, one can easily check the following inequalities.

Claim 5.6.

• For any t e [0, 5] and x R, one has

/,%(*) + fs°(x)n /, A*) + A(X) \\ft\X) < l~S
2

' + ~ 2JS'

• For any t e [1 — 8,1] and rel, one has

Jt,(x) + fs°(x)

Let a : [0,1] —* [0,1] be a smooth function so that:

• a(t) 1, for t close to 0 and close to 1;

• a(t) 0, for t e [|, 1 — |];
• 5 0 on [0,5] and ^ > 0 on [1 — 8,1],

For ret and t e [0, 1], we define ht (x) as follows:

• If t e [0.5] U [1 — 8,1], then

rOt-\ n + fl-tWht(x) a(t)ft (x) + (1 -a(0)( — + £| - -

if t [5,1 — 5], then

4>fP(x) + /.° o(x)
ht(x) + e t

(5.1)

+ - < /"(*)• (5.2)
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Claim 5.7. The map fix : (xj) i-»- (h,(x), t) is well defined and is a C1 diffeo-
morphism of S such that:

• fix preserves the horizontal foliation and commutes with the translation T\;
• dht{x)

8t
> 0, for every (x, f) 6 S.

Proof One easily checks that fix is continuous and of class C1. The formula gives
also that fix commutes with Tx- Now

3ht(x)
dx

and

1 fdfS°(x)
+ W-bW) >0 iff [5.1-5]

2 V dx dx J

2 V dx dx

3ht(x) ^dft°(x)— of(f) +
dx ox

>0 if t f [5, 1 — 5].

This shows that ht is a diffeomorphism of M for every f e [0,1],
It remains to prove the last item of the claim. One can observe that:

e>0, iff [5,1 -5]3f

and if f ^ [5,1 — 5] the derivative is equal to:

da(Q
df V

dt

+0l^^r + (1 ~a^s-

The last two terms of this sum are positive, as product of positive numbers.
For f e [0,5], the first term is product of two negative numbers, as the derivative

of a is negative and (5.1) implies:

ft°(x) ~ \ +

Forf e [1—5, 1], the first term is product of two positive numbers, as the derivative
of a is positive and (5.2) implies:

f,°(x) ~ ^/j°W + fx°-s(x) + e(/_^))>0-

Thus dh£x) > 0 for every (x, f).

Now the foliation 31 defined as the image of the vertical foliation by fix satisfies:

• M is transverse to the horizontal foliation.
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• JC is transverse to the vertical foliation (that is, to 8q).

• its holonomy from M x {0} to M x {?} is ht In particular, it coincides with ft for
t so that aft) 1, that is, in the neighborhood of M x {0} and M x {1}.

• as a consequence of the previous item, the foliation 31 coincides with !Fo in the

neighborhood of E x {0} and E x {1}.

We can now finish^the proof of Proposition 5.4: the announced foliation on the

strip S is 8 \fo(3b). This foliation is invariant under the translation T\, so it
passes to the quotient in a foliation 8 on the annulus S1 x [0,1], As 8 coincides
with y in a neighborhood of the boundary of S, one gets that 8 coincides with y
on the boundary of the annulus, and therefore this foliation induces a C1 foliation,
still denoted by 8 on the torus T2.

Next remark ends the proof of Theorem 5.3:

Remark 5.8. According to Proposition 4.1, there is a continuous path of
diffeomorphisms {^s}je[o,i] of S so that:

• <ps commutes with the translation T\ : (x, t) h> (x + 1,0'»

• (po is the identity map;

• for every s e [0. 1], the diffeomorphism <ps coincides with the identity map in a

neighborhood of the boundary of S ;

• (ps(8) — $ for every s\ in particular <ps(!F) is transverse to 8 for every 5;

• cpffy) 8.

We now state a small variation of the statement of Theorem 5.3 which follows
(exactly as Theorem 5.3) from of Propositions 5.4 and 4.1, and that we will use in a

next section.

Lemma5.9. Let !F and 8 be two transverse C1 -foliations on the annulus S1 x [0. 1],

Assume that

• § is transverse to every circle S1 x {?}>'

• y is transverse to the boundary S1 x {0. 1} and has no compact leaf in S1 x (0,1).

Then there is a C1 diffeomorphism 9 of S1 x [0,1] which coincides with the

identity map in a neighborhood of the boundary and which preserves every leafof 8,
so that 9(!F) is transverse to every circle S1 x {t\.

5.3. Building the second linear foliation: end of the proof of Theorem 5.1.

Proposition 5.10. Let !F and 8 be two transverse C1 foliations on T2 without
parallel compact leaves. Assume that both y and 8 are transverse to the horizontal
foliation. We endow y and 8 with orientations so that they cut the horizontal
foliation with the same orientation.
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Then there exists a smooth (C°°) foliation 8 on T2 such that:

• the circle S1 x {0} is a complete transversal to 8;
• the holonomy map induced by 8 on y has a diophantine rotation number;

• the foliation 8 is transverse to the foliations 3-, it and to the horizontal direction.
We endow it with an orientation so that it cuts the horizontal foliation with the

same orientation as F and §.

• the foliation 8 cuts F and § with opposite orientations.

Proof. As already done before, we cut the torus along S1 x {0}, getting an annulus,
and we denote by F and ~§ the lift of !F and ~§ on the strip R x [0. 1] which is

the universal cover of the annulus. We denote by / and the holonomy maps
from R x {0} to R x {1} associated to the lifted foliations F and §, respectively.
By transversality of F with we have that either fix) < g(x) for any x, or

f(x) > g(x) for any x. Without loss of generality, we assume that fix) < g(x).
Let r(/) and r (g) be the translation numbers of / and g.

Claim 5.11. r (/) ^ r(g).

Proof. We prove it by contradiction. Assume that r(/) r(g), then r(/) r(g)
is either rational or irrational. When they are irrational, since fix) < g(x), by

Proposition 2.10, we have that r(f) < x (g), a contradiction. When they are both
rational, then there exist m.n eN such that r (/) r(g) ~i. Hence, there exist
two points xo, yo £ such that

fm(xo) x0 + n and gm(y0) y0 + n,

which implies that there exist compact leaves of F and ~§ that are in the homotopy
class of (m.n), contradicting the non-parallel assumption.

We endow F and £ with orientations such that they point inward the strip S

at R x {0} and point outward at R x {1}, and F and § are endowed with the

corresponding orientations. Let X and Y be the unit vector fields tangent to F and ^
respectively, pointing to the orientation of the corresponding foliation, and X and Y
be their lifts on S.

Claim 5.12. There are smooth vector fields U and V onT2 so that

• at each point x T the vertical coordinates of U(x) and Vix) are strictly
positive. In particular, U and V are transverse to the horizontal foliation. We

denote by U and V the lifts ofU and V on the strip S.

• let h and k be the holonomies ofU and V, respectively, from R x {0} to R x {1}.
These holonomies commute with the translation T\, and let x{h) and x(k) denote

their translation numbers. Then

*(/) < t(A) < x (k) < x (g).
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Proof. Just consider a small enough e > 0 and consider smooth vector fields U
and V arbitrarily C° close to X + sY and sX + Y, respectively.

Now the vector fields Ut (1 — t)U + tV, t e [0,1], are all transverse to both
foliations T, 8 and to the horizontal foliation, and they cut !F and 8 with opposite
orientations. We denote by Ut the lift of Ut on the strip S. Let xt denote the

translation number of the holonomy of Ut from M x {0} to M x {1}. According to

Proposition 2.9, the map t it is a continuous monotonous function joining x(h)
to t(k). As r (h) < x(k), there is t e (0,1) for which xt is an irrational diophantine
number, ending the proof.

We end the proof of Theorem 5.1 by noticing that Theorem 2.11 implies

Lemma 5.13. Let 8 be a smooth foliation on T2 transverse to the horizontalfoliation
and so that its holonomy on §1 x {0} is a dijfeomorphism with an irrational
diophantine rotation number. Then there is a dijfeomorphism 9 of T2 which

preserves each horizontal circle S1 x {/}, for any t e §', and satisfies that 9(8) is

an affine foliation.

6. Deformation process of parallel case and proof of Theorem 1.3

We dedicate this whole section to give the proof of Theorem 1.3. We state a definition
which is only used in this section.

Definition 6.1. Given a C1 foliation 8 on the annulus [0,1] x S1 [0,1] xi/Z
without compact leaves such that 8 is transverse to the vertical circle {t} x S1, for

any t e [0,1]. The leaves of such a foliation 8 are called

- not increasing (resp. not decreasing), if the lifted foliation 8 on [0,1] x M satisfies
that every leaf of 8 is not increasing (resp. not decreasing);

- non-degenerate increasing (resp. non-degenerate decreasing), if the lifted folia¬

tion 8 on [0. 1] x M satisfies that every leaf of 8 is strictly increasing (resp. strictly
decreasing) and transverse to the horizontal foliation {[0,1] x {f}},6R.

6.1. Normal form for two transverse foliations with parallel compact leaves and

proof of Theorem 1.3. The aim of this section is the proof of Theorem 1.3. The

main step for this proof is the following result which puts any pair of transverse C1

foliations in a canonical position.

Theorem 6.2. Let !F and 8 be two transverse C1 foliations on T2 admitting parallel
compact leaves. Then there are an integer k, a set ofpoints {ti}iez/kz in S1 which

are cyclically ordered on S1, and a dijfeomorphism 9 : T2 —> T so that

• the foliations 9(!F) and 9(8) are transverse to {f,-} x S1, for any i e Z/kZ;
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• for each i e Z/kZ, the restrictions of thefoliations 9(F and 9(8) to the annulus

Ci [ti. h +1 ] x S satisfy one of the six possibilities below

(1) 9(F) coincides with the horizontal foliation on Ci and 9(8) admits compact
leaves in Ci ;

(2) 9(8) coincides with the horizontal foliation on Ci and 9(F) admits compact
leaves in Ci ;

(3) the foliations 9(F) and 9(8) are transverse to the vertical foliation on Ci.
Furthermore, every leaf of 9(IF) (resp. of 9(1/)) on Ci is non-degenerate

increasing (resp. not increasing);

(4) the foliations 9(F) and 9(8) are transverse to the vertical foliation on Ci.
Furthermore, every leaf of 6(F) (resp. of 9(1/)) on Ci is not increasing
(resp. non-degenerate increasing);

(5) the foliations 9(F) and 9(8) are transverse to the vertical foliation on Ci.
Furthermore, every leaf of 9(F) (resp. of 9(H)) on Ci is non-degenerate
decreasing (resp. not decreasing);

(6) the foliations 9(F) and 9(8) are transverse to the vertical foliation on Ci.
Furthermore, every leaf of 9(F) (resp. of 9(H)) on C{ is not decreasing
(resp. non-degenerate decreasing).

The proof of Theorem 6.2 will be done in the next subsections. We start below
by ending the proof of Theorem 1.3.

Proofof Theorem 1.3. Let F and H be two C1 foliations of T2 admitting parallel
compact leaves, and let a e 7Ti(T2) be the homotopy class of the compact leaves

of F and 8. Let k > 0, {f/}j6z/fcz and 9 be the integer, the elements of S1 and the

diffeomorphism given by Theorem 6.2, respectively.
One easily checks that there is at least one annulus of the type (1) or (2). As a

consequence, the compact leaves of 9(F) are isotopic to the vertical circle {0} x S1.

Consider any vertical vector (0, t), for (el, and let V, be the vertical translation
defined by (r.s) i-> (r,t + s). Then Vt preserves each annulus C;. Now one can
check, on each annulus C;, that Vt(9(F)) is transverse to 9(H).

Consider now ß e (a), so that ß — na for some n Z. Then the announced

loop of diffeomorphisms is {0_1 o Vnt o 0}f[o,i].

6.2. First decomposition in annuli. By Theorem 2.7, the sets of compact leaves

of F and 1/ are all compact sets. We denote the unions of compact leaves of F and 8
as Kp and Kg respectively. Note that every compact leaf of F is disjoint from any
compact leaf of 8, because they are in the same homotopy class, and by assumption,
F and 8 are transverse. Thus Kg and Kf are disjoint compact sets.

The aim of this section is to prove Proposition 6.3 below which is an important
step for proving Theorem 6.2.



536 C. Bonatti and J. Zhang CMH

Proposition 6.3. Let F and S be two transverse C1 -foliations on T 2 having parallel
compact leaves. Then there are ko and a family {Bi }ieZ/4k()Z ofannuli so that

• each Bi is an annulas dijfeomorphic to [0,1] x S1 and embedded in T2 whose

boundary is transverse to both foliations F and S.

• Bi is disjoint from Bj if j £ {i — 1, i, i + 1}, and Bi fl 5j+i consists in a

common connected component of the boundaries dBj and dBj +1. In particular,
the interiors of these Bi are pairwise disjoint;

• each annulas B2j+1 is disjointfrom the compact leaves of IF and of'S, that is

By+i n (Kf u Kg) 0:

• each annulus B^ contains compact leaves of !F and is disjointfrom the compact
leaves ofS ;

• each annulus B^i+i contains compact leaves ofS and is disjointfrom the compact
leaves of IF.

We say that a compact set C is a F-annulus (resp. a S-annulus) if we have the

following:

- the compact set C is diffeomorphic to either S1 or S1 x [0,1];

- the compact set C is disjoint from Kg (resp. of Kf);
- the boundary of C consists of compact leaves of F (resp. of S).

We say that two compact leaves L\, L2 of F (resp. of S) are Kc-homotopic
(resp. Kf-homotopic) if L\ U L2 bounds a iF-annulus (resp. a S-annulus).

Remark 6.4. • The union of two non-disjoint lF-annuli is a JF-annulus.

• two compact leaves of F are Kg-homotopic if and only if they are contained in
the same lF-annulus.

• there is 8 > 0 so that any two compact leaves of F passing through points x, y
with d(x,y) < 8 are ATc-homotopic.

As a direct consequence of Remark 6.4, one gets

Lemma 6.5. 1 The relation of Kg -homotopy (resp. of Kf -homotopy) is an equiv¬
alence relation on Kf (resp. of Kg).

(2) there are finitely many Kg-homotopy classes (resp. Kf-homotopy classes).

(3) There are k N \ {0} and pairwise disjoint compact sets {Ai }jez/2kZ so that

• A2i is a F-annulus and A2jF\ is a §-annulus.

• For each Kg-homotopy class (resp. Kf-homotopy class) of compact leaves

ofF (resp. of'S there is a (unique) i so that the class is precisely the set of
compact leaves ofF (resp. ofS) contained in A2i (resp. in A2i+i
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• these {Ai} are cyclically ordered in thefollowing meaning:for any i e TLflkTL,
the set T2 \ {Ai-1 U A{ +1) consists precisely of two disjoint open annuli such

that one of them contains Ai and is disjointfrom Aj for j f i.

Proof The set {Aj} is defined as the set of the unions of all the 3r-annuli containing
compact leaves of !F in a given Kq homotopy class and the unions of all the ^-annuli
containing compact leaves of ^ in a given Kf homotopy class. Then {Ai} bound a

family of disjoint compact annuli (or circles) whose boundary are non-null homotopic
simple curves on T2. Thus these curves are in the same homotopy class and the

annuli are cyclically ordered on T2. Thus, up to reorder the annuli. we assume that
the order is compatible with the cyclic order. Finally if Ai is a IF annulus then Aj + i
cannot be a 3*-annulus, otherwise there would exist a !F-annulus containing both Ai
and Ai+i, contradicting to the maximality of A,•.

The annuli An and A2t+\ will be called the maximal 3r-annuli and maximal

8-annuli, respectively.

Lemma 6.6. With the hypotheses and terminology above, each maximal K-a?mulus

(resp. maximal §-annulus) A admits a base of neighborhoods {Bn }„gN which are

dijfeomorphic to [0.1] x S1 and whose boundaries are transverse to both 3r and S.

Proof Assume for instance that A is a maximal .F-annulus. Its boundary consists

of compact leaves of 5r, and in particular is transverse to §. Furthermore any
neighborhood V of A contains an annulus U which is a neighborhood of A and

satisfies that U \ A is disjoint from Kp and Kq. Now each connected component
of U \ A contains an embedded circle which consists in exactly one segment of leaf
of 3r and one segment of leaf of 8. Exactly as in Section 3, we get a simple closed

curve transverse to both !F and 8 by smoothing such a curve.
One gets the announced annulus by considering such a transverse curve to both 3r

and 8 in each connected component of U \ A.

ProofofProposition 6.3. The announced annuli /i4, and j94,+2 are pairwise disjoint
neighborhoods of the maximal .F-annuli and maximal ^-annuli, respectively, given
byLemma6.6. Each annulus B2j+\ is given by the closure of a connected component
0fT2\U-(#4/ Uß4i-+2).

6.3. In the neighborhoods of the maximal 3? annuli. The aim of this section is

to prove the following Proposition which implies that, in the neighborhoods of the

maximal 3r and ^-annuli, one can put F and 8 in the position announced by
Theorem 6.2.

Proposition 6.7. Let F and 8 be two transverse foliations on T2 having parallel
compact leaves. Let {Bj }ez/4/tZ be the annuli, which are built in Proposition 6.3

and whose boundaries are transverse to both F and 8, and A4; (resp. A4,-+2) be the

maximal 3* -annuli (resp. 8-annuli) contained in /?4; (resp. in Bm+2),fori Z//cZ.
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Then there exists 6 G Diff1 (T 2 such that for every j g Z/AkZ, one has

9(Bj) L J + 1

4k' 4k
xS l.

andfor every i G Z/A:Z, one has:

• the foliation 9(~§) coincides with the horizontal foliation {[|£, 4^x] x {Z}} f eg i

• there are < a4,- < b4i < ^p smc/z that 9(A4i) [04,-, 64,-] x S1. In
particular, {a4;} x S1 and {64,} x S1 are compact leaves of9(f);

• the foliation 9(f) is transverse to the vertical circle {r} x S1, for any r G

[iPk'a<ti) U (^4i, ^p]•
and similarly:
• thefoliation 9(f) coincides with the horizontalfoliation {[4^2,

o/z 6(B4i+2) [^p. x S1

• there are p < a4i +2 < ^4i+2 < sothat 9(A4i+2) [«4i+2, &4;+2] x S1.

In particular, {«4, 4-2} x S1 and {64;+2} x S1 are compact leaves of 9 (§);
• the foliation 9(§) is transverse to the vertical circle {r} x S1, for any r G

[*jjp,û4i+:2) U (b4i+2, ^p]-
Proposition 6.7 is a straightforward consequence of Lemma 6.8 below:

Lemma 6.8. Let f and § be two transverse C1 -foliations of the annulus [0,1] xS1
so that the boundary {0,1} x S1 is transverse to both f and §. Assume that S has

no compact leaves (in (0,1) x S1 and f admits compact leaves in (0, 1) x S1.

Then there exists 9 e Diff1 ([0. 1] x§') so that

(1) the foliation 9 (§ is the horizontal foliation {[0,1] x {f }}r6§i.

(2) there are 0 < a < b < \ so that {a} x S1 and {b} x S1 are compact leaves of
9(f) and every compact leafof 9(f) is contained in [a,b] x S1;

(3) the foliation 9(f) is transverse to the vertical circle {r} x §1 for r f [a,b\.

The proof of Lemma 6.8 uses the Lemma 6.9 below.

Lemma 6.9. For any continuous function : [0,1] (-> [0, +00) such that cp > 0

on (0, 1), and any interval (c,d) C (0.1) C §\ there exists 9 G Diff°°(E x S1)
such that

• the diffeomorphism 9 coincides with the identity map out of[0,1] x S1;

• 0([0,1] x {>>}) [0.1] x {j},-
• D9(jf) i + a(x>y)£;>-

• a(x, y) > 0,for any (x, y) G (0. 1) x (c.d);
• a(x, y) > —f(x), for any (x, y) G (0,1) x S1.
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Proof. We fix c < d and take a point e e (d. 1). We take

0(x,y) (x + cx(x)ß(y), y)

where a : M -> [0. +oo) and ß : S1 —* [0, 1] are smooth functions so that

• a(x) is defined on M and equals to zero in (—oo, 0] U [1, +oo);

• 0 < a(x) < <p(x) in the set (0,1) and a 0 out of [0.1] (the existence of such a

function is not hard to check);

• the derivative a'(x) is everywhere strictly larger than —1;

• ß{y) is equal to zero in the set [0, c] U [e, 1];

• the derivative ß'(y) is strictly positive for y e (c, d)\

• the derivative ß'(y) is larger than —1 everywhere.

With this choice, one gets that the restriction of 9 to any horizontal line has a

non-vanishing derivative, hence is a diffeomorphism. One deduces that 6 is a

diffeomorphism of [0,1] x S1. Furthermore, the function a(x. y) in the statement is

a(x)-ß'(y) which is strictly positive on (0, l)x(c, d) and larger than —a(x) > —<p(x)

for x (0.1), concluding the proof.

Remark 6.10. In the proof of Lemma 6.9, if we define 9, by

9t(x,y) (x + ta(x)ß(y),y), for any t e [0.1],

one gets a continuous family of diffeomorphisms for the C°° topology so that 90

is the identity map and every 9t, t 7^ 0, satisfies the conclusion of Lemma 6.9. In

particular, in Lemma 6.9 one may choose 9 arbitrarily C°° close to identity.

Proof ofLemma 6.8. As § is transverse to the boundary and has no compact leaves in
[0,1] x Sl, then as a simple corollary of Proposition 2.12 one gets that, up to consider
the images of T and § by a diffeomorphism of the annulus, we may assume that 6
is the horizontal foliation and that there are compact leaves {a} x S1 and {b} x S1,

0 < a < b < 1, so that the compact leaves of !F are contained in [a.b] x S1. In
other words, we may assume that items (1) and (2) are already satisfied. It remains

to get item (3), that is, to get the transversality of 3* with the vertical fibers out of
[a.b] x S1.

We first show:

Claim 6.11. There is a Cl foliation dt defined in a neighborhood of the compact
leaf {«(xS'io that

• the leaves of M are transverse to the horizontal foliation S ;

• {0} x S1 is a compact leaf of M ;
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• the holonomies h and f on the transversal [0,1] x {0}for the foliations M and M
are equal;

• the foliation M is transverse to the vertical circle {r} x §1, for r < a.

Proof. We fix 0 < e < 1/2 and a function a : [0, 1] —* [0,1] so that a 0 in [0, e],

a 1 in [1 — e, 1] and «'(.?) > 0 for s e (s, 1 — s).
Consider the foliation Mo, defined in a neighborhood of the compact leaf {a } x S1,

whose holonomy map hs : [0,1] x {0} —» [0,1] x {5}, for any s e S1, is defined by

r I-* a(s) f(r) + (1 — a(s))r, where / : [0.1] x {0} — [0, 1] x {0} is the holonomy
map of M.

As 3- has no compact leaves on [0,a) x S1, one gets that f(r)^r for every
r < a. Thus, by the choice of Mo, we have that:

• M0 is transverse to the horizontal foliation everywhere;

• Mo is transverse to the vertical foliation at each point (r,s) with r < a and

s 6 (s, 1 — e);

• Mo is vertical for s in the interval [0. e] U [1 — e, 1] [—e, e] C M/Z S1.

We fix an interval [e, /] c S1 disjoint from [—e, e]. The foliation Mo is directed

by vectors of the form ^ + S(r, s)^p, where the function 8 is continuous and non-
vanishing on [0,a) x [e. /]. We define cp(r) infi6[e>/] |5(r,s)|. By the absolute

continuity of 8, the map cp is continuous and positive for r < a. The map tp is only
defined on a small neighborhood of a, and we extend it to [0,a] as a continuous
function which is positive on (0,a).

Applying Lemma 6.9 to <p and to an interval (c, d) containing [—e, e] and disjoint
from [e, /], one gets a smooth diffeomorphism 60 of [0,a] x S1, preserving each

horizontal leaf, such that 9o(Mo) is transverse to the vertical foliation on [0, a) x S1,

concluding the proof of the claim.

The foliation M defined by the claim in a neighborhood of {a} x S1, is conjugated
to M by a diffeomorphism preserving the compact leaf {a} x §' and every horizontal

segment [0,1] x {5}. We can do the same in a neighborhood of the compact leaf

{b}x S1.

Thus there is a diffeomorphism 8\ of[0, 1] xS1 preserving the leaves {a} x S ' and

{b} x S1 and preserving every horizontal segment [0,1] x {5}, and there is e > 0 so
that 9\ (!F) is transverse to the vertical circles on [a — e, a) x §1 and on (b, b + e\ x S1.

For concluding the proof, it remains to put the foliation M transverse to the vertical
circles on the annuli [0, a — e] x S1 and [b + e, 1] x S1. On each of these annuli, we
have that

• *§ is a foliation transverse to the circle bundle;

• M is transverse everywhere to §\
• Both M and § are transverse to the boundary and have no compact leaf.
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Thus applying Lemma 5.9 to these annuli, one gets diffeomorphisms which preserve
each leaf of ß and equal to the identity map on the boundary, such that these

diffeomorphisms send J7 on a foliation transverse to the circle bundle, concluding
the proof.

Let us add a statement that we will not use, but it is obtained by a slight
modification of the proof of Lemma 6.8:

Corollary 6.12. Let 37 and § be two transverse C1 -foliations of the annulus [0,1] xS1

which are both transverse to the boundary. We assume that ß has no compact leaves

in the interior of the annulus. Then there is a diffeomorphism 9 of the annulus so
that 9{ß) is the horizontalfoliation {[0,1] x {.v}}s.e§i and Old* satisfies thefollowing
properties:

• every compact leafof 9 d7 is a vertical circle;

• every non compact leaf of 9(d7) is transverse to the vertical circles.

Furthermore, 6 has the same regularity as d and Li. Finally, if~§ is already the

horizontal foliation, then 9 can be chosen preserving every leafof~§ and equal to the

identity map in a neighborhood of the boundary of the annulus.

Proof. The unique change is that, in the last part of the proof, we will need to use

Lemma 6.9 in any connected component of the complement of the compact leaves

of d, that is, countably many times. For that we uses Remark 6.10 for choosing these

diffeomorphisms arbitrarily C°°-close to identity.

6.4. Between two maximal d and ß -annuli. The aim of this section is to end the

proof of Theorem 6.2 and therefore to end the proof of Theorem 1.3. We consider

two transverse C1 foliations d7, ß on T2 with parallel compact leaves.

According to Propositions 6.3 and 6.7, there is a diffeomorphism 0O of the torus T2

so that, up to replace J7 and ß by 9fid7) and 9o(ß), there is an integer k > 0 for
which J7 and ß satisfy the following properties

• both foliations d7 and ß are transverse to every vertical circle {^} x S1, for any

j Z/4kZ;
• both foliations d7 and ß have no compact leaves on the vertical annuli

xS1, for any / e Z/2kZ;
• the foliation ß coincides with the horizontal foliation on each vertical annulus

[f£- 1rir] x §1> forany > e TL/kiL-,

• there are < am < bm < such that

- {04, } x S1 and {^4, } x S1 are compact leaves of d ;

- every compact leaf of d7 in [|p ^gp] x S1 is contained in [am, b^i] x S1 ;

- d7 is transverse to the vertical circles on ([fpCU;) U (£4,-, ppp]) x S1!
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• the foliation F coincides with the horizontal foliation on each vertical annulus

[^.^xS'.ibranyieZ/JkZ;
• there are ^p < +2 < &41+2 < such that

- {<341+2} x S1 and {è4;+2} x S1 are compact leaves of

- every compact leaf of 12 in [^p, 44t3] x S1 is contained in

[04/+2- 641+2] x S1;

- ~§ is transverse to the vertical circles on ([^p, 04/+2) u (641+2. ^pp]) x S1.

leaves of Sj.

The following Proposition ends the proof of Theorem 6.2:

Proposition 6.13. With the hypotheses and notations above, for any i e Jj/lkJj,
there is a dijfeomorphism 0,- 0/T2 supported on (Z?2i

> 021+2) x § such that for the

restrictions Fi ofOi (F and §i of 9i (§) to [62i-, 021+2] x §1, we have the fallowings:

• the leaves of both Fi and §i are transverse to every vertical circle {r} x S1, for
any r [b2i, 021+2];
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• the leaves of Fj and §i satisfy one of the four possibilities below:

(1) the leaves of Fi (resp. of §i) are not decreasing (resp. non-degenerate

decreasing) on \p2i, b2,+"2,+2 j x S1 and are non-degenerate increasing

(resp. not increasing) on j^2'+°2'+2ifl,2|.+2] x S1;

(2) the leaves of Fi (resp. of ~§i) are not increasing (resp. non-degenerate

increasing) on \p2i, 2i+°2'+2] x S1 and are non-degenerate decreasing

(resp. not decreasing) on [ 2'+^2'+2, <321+2] x S1.'

(3) the leaves of ~§i (resp. of F are not decreasing (resp. non-degenerate

decreasing) on \p2i, b2l+"2,+2 ] x S1 and are non-degenerate increasing

(resp. not increasing) on [ 2l+°2'+2 .021+2] x S1;

(4) the leaves of §i (resp. of F are not increasing (resp. non-degenerate

increasing) on [^2/, 2,+°2,+2] x S1 and are non-degenerate decreasing

(resp. not decreasing) on [fc2'+22'+2,fl2,--t_2] x S1.

We start by using Proposition 6.13 to end the proof of Theorem 6.2.

Proofof Theorem 6.2. Let {de}tez/2kz be the sequence of diffeomorphisms on

annuli, which are given by Proposition 6.13. We take four sets of points {r/4/}/6z/ifcZ>
{c4/+2}iez/fcz> {d4i+2}i£Z/kz and {c4i+4}i&z/kz on S1 such that

J ^4/ + Ö4/+2
£>4, < Û4i < < C4/4-2 < «4; +2?

• 7 »
£>4i+2 + <24(i + l)

04,+2 < «4/4-2 < T < «4(/4-l) < «4(/4-l)l

• The set {C4/4-2, C4/4-4, dïi+2, d4i+2}iez/kZ is disjoint from the union of the

supports of all {Qi}uz/2kz-

C4i d4i C4i+2 dpi+2
I

Z-.
I

/-J L /. / I

Ii 1 i V 1

U ^4;+04/4-2 „ u ^4/4-2+04/4-4
Û4 ; b4i J O4/ 4-2 Ö4/4-2 -j

Figure 7. The thick segment denotes the support of some 61.

We choose the annuli {Cj}j&z/6kz as follows

• each annulus Cei is the vertical annulus [cuydu] x S1; notice that it contains
[fit4/, bu] x S1 in its interior;

• each annulus C^i + i is the vertical annulus [du, 5(^4/ + 04/4-2)] x S1;

• each annulus C6/4-2 is the vertical annulus [^(64/ + 041+2), £4/+2] x S1;
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• each annulus C^i+3 is the vertical annulus [c'4,+2. <^41+2] x S1 containing
[fl4i+2. ^41+2] x S1 in its interior;

• each annulus C^i+A is the vertical annulus [<f4,-+2, \ {bM+2 + 04(1 + 1))] x S1;

• each annulus C^i+s is the vertical annulus [i(&4;+2 + <24(1+1)), c4(;+i)] x S1.

It remains to prove Proposition 6.13.

Lemma 6.14. Let !F and ~§ be two transverse foliations on [0,1] x S1 so that:

• {0} x S1 is a compact leafof y ;

• {1} x S1 is a compact leafof ~§ ;

• y and § have no compact leaves in (0, 1) x §,
• there is a neighborhood Uq [0, £0] x S1 of{0} x S1 on which § coincides with

the horizontal foliation and !F is transverse to the vertical circles;

• there is a neighborhood U\ — [1 — £0, 1] of {1} x S1 on which f coincides with
the horizontal foliation and ~§ is transverse to the vertical circles.

Then for any 0 < e < £0 the holonomies of y and ~§ from Eo,e {e} x S1

to Si>e {1 - e} x S1 are well defined. Consider the lifts !F and § of T and § on

the universal cover [0,1] x K. The holonomies fE and gE ofy and i/ from {f } x M

to {1 -fjxB are well defined. Then for any e > 0 small enough one has:

(fe(x) - x) ige{x) - x) < 0. for every x 6 R.

Proof. On Uo \ {0} x S1, the foliation y is transverse to the horizontal segments
and to the vertical circles. Therefore its leaves are either non-degenerate increasing
or non-degenerate decreasing curves. Let us assume that they are non-degenerate

increasing (the other case is similar).
Notice that, on [go, 1 — £o] x S1, the foliations y and ~§ are transverse to the

boundary and are transverse to each other. We orient y and § from {so} x S1 to
{1 —£o} x S1. As y is increasing along {£o} x S1 and horizontal along {1 — £0} xS1,
and as ~§ is horizontal along {£0} x S1, one gets that ^ is decreasing along {1 —£0 } x §1.
Thus the leaves of ft are decreasing curves ont/i \ {1}xS'.

Let us denote by

fe,o : {£} x M -> {£0} x R,

/i>£ :{1-£O}x1 + {1-£}xK,
and ge>o :{s}xl + {£o} x R,

gi,s :{l-£o}xl-4-{l-£}xl
the holonomies of y and £ on the corresponding transversals. We consider them as

diffeomorphisms of M (that is we forget the horizontal coordinate).
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Then ge,o f\,e are equal to the identity map as they are horizontal foliations in
the corresponding regions.

Thus one gets that

fe — feo 0 fe,0 and ge — gl,s ° geç>-

Now Lemma 6.14 follows directly from the following claim:

Claim 6.15. fe,o(x) — x and gi,e(x) — x converge uniformly to +oo and — oo,

respectively, as s tends to 0.

The claim follows directly from the fact that the leaves of IF (resp. ~§) are non-
degenerate increasing (resp. non-degenerate decreasing) curves asymptotic to the

vertical line {0}xl (resp. {1} xB) according to the negative orientation (resp. positive
orientation).

One ends the proof of Proposition 6.13 by proving:

Lemma 6.16. Let F and'S be two transverse C1 foliations on the annulas [0, l]x§'
which are transverse to the boundary and do not have any compact leaf in the interior.
We denote by F and S the lifts ofF and S to [0,1] x E. Under that hypotheses, the

holonomies ofF and S from {0} xKto{l}xl are well defined and we denote them

as f and g, respectively (and we consider them as diffeomorphisms ofR). Assume

that:

- thefoliation S resp. F coincides with the horizontalfoliation on a neighborhood
of{0} x S1 (resp. {1} x S1);

- for every x e E, one has f(x)>x and g(x) < x.

Then there is a diffeomorphism 6 of [0.1] x S1, equal to the identity map on a

neighborhood of the boundary, and isotopic to the identity relative to the boundary,
and so that (denoting by Fq and ~§q the lifts of 0(F) and 0(S) to [0,1] x E):
• the leaves of 6(F) and ofO(S) are transverse to the vertical circles;

• the leaves Fq are non-degenerate increasing on [0. j]xl and are not decreasing

on [^. 1] x E;

• the leaves of~ê$ are not increasing on [0, ^] x M and are non-degenerate decreasing

on [^,1] x E.

Sketch ofproof. We just need to choose a pair of transverse C1 foliations Fq and §q

so that, denoting by Fq and ~§0 their lifts on [0.1] x E, one has:

• Fq and §q are transverse to the vertical foliation;

• Fq and ^0 coincide with F and ü in a neighborhood of the boundary;

• the holonomies of Fq and ~§0 from {0} x M to {1} x E are / and g, respectively;
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• the leaves To are non-degenerate increasing on [0, |] x M and are not decreasing

on [j, 1] x M;

• the leaves of ~§o are not increasing on [0, ^]xl and are non-degenerate decreasing

on [j, 1] x M.

The fact that we can choose such a pair of foliations is similar to the proof of
Proposition 5.4.

Then the pair (3r, ~§) is conjugated to (To, ~§o) by a unique diffeomorphism equal

to the identity map in a neighborhood of the boundary. The lift 9 on [0,1] x M of
the announced diffeomorphism 9 is built as follows: consider a point p e [0, 1] x M

and let qF(p) and qc(p) be the intersections with {0} x M of the leaves !FP and §p

through p. The transversality of T" and ^ implies that qF(p) is below qc(p) and

/(qF (p)) *s over s(qc (p))- As and ~§o have the same holonomies as 3* and f?,

one gets that the leaves of To and of Hq through qF (p) and qG (p) have a unique

intersection point that we denote by 9(p).

7. Dehn twists, transverse foliations and partially hyperbolic diffeomorphisms

The aim of this section is to give the proof of Proposition 1.8 and of Theorem B.

7.1. Transverse foliations on 3-manifolds and the proof of Proposition 1.8. Let M
be a closed 3-manifold and T" and £ be transverse codimension one foliations of
class C1 on M. Thus !F and ^ intersect each other along a C1 foliation 8 of
dimension 1. We assume that there is a torus T embedded in M such that 8 is

transverse to T, and we denote by TV and ~§t the 1-dimensional C1 foliations on T
obtained by intersecting T with T" and ~§, respectively.

There is a collar neighborhood U of T and an orientation preserving
diffeomorphism 9 : U -» T x [0.1] inducing the identity map from T to T x {0},
so that 9(8) is the trivial foliation {{p} x [0. 1 ]}pzt- Then 9(3r) and 9(i/) are the

product foliations of !Ft x [0.1] and ~§t x [0,1], respectively (meaning that their
leaves are the product by [0, 1] of the leaves of and Sj, respectively).

Let u be an element of G3?T,pT C n\(T). By definition of GjrTt#T, there is a

loop {<^}/e[o,i] of G1 diffeomorphisms of T so that (po P\ is the identity map,

ipt (Ft) is transverse to and for any p T, the loop {q>t(p))te[o,i] belongs to the

homotopy class of u.
We consider the diffeomorphism Oonfx [0, 1] defined by (p, t) i-> (<pa(t)(p)< t),

where a : [0,1] —>• [0, 1] is a smooth function equal to 0 in a neighborhood of 0 and

to 1 in a neighborhood of 1. Then is a Dehn twist directed by u and is the

identity map in a neighborhood of the boundary of T x [0,1],
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Consider <E>(.Fr x [0.1]). It is a foliation transverse to any torus T x {?} and it
induces ^a(r)(-?T) on T x {;}. Therefore it is transverse to §r

This proves that x [0, 1]) is transverse to the foliation ~§j x [0,1],
Now the announced Dehn twist on M directed by u is the diffeomorphism x// with

support in U and whose restriction to U is 9~l o <1> o 9. By construction, x]/{3r) is

transverse to ~§, ending the proof.

7.2. Anosov flows, Dehn twists and partially hyperbolic difFeomorphisms. Let X
be a non-transitive Anosov vector field of class at least C2 on a closed 3-manifold M
and we denote by Xt the flow generated by X. According to Proposition 1.9, any
family of transverse tori on which X has no return, are contained in a regular level

of a smooth Lyapunov function.
Let L(x) : M M be a smooth Lyapunov function of the flow X,, and let c be a

regular value of L. Thus each connected component of L_1 (c) is a torus transverse

to X.
Let Ti,..., T/c be the disjoint transverse tori such that

uf=17) =L~\c).
Consider the set Mr L_1(c, +oc)and Ma L_1(—oo,c). ThenAf and Ma

are two disjoint open subsets of M and share the same boundary Uf=17). Since L(x)
is strictly decreasing along the positive orbits of the points in the wandering domain,
one gets that Ma and Mr are attracting and repelling regions of the vector field X.
We denote by A and 31, respectively, the maximal invariant sets of X in Ma and Mr.
Thus A is a hyperbolic (not necessarily transitive) attractor and 31 is a hyperbolic
(not necessarily transitive) repeller for X.

By [15, Corollary 4], the center stable foliation !F£S and center unstable

foliation of the Anosov flow X, are C1 foliations. For each i — 1 k, we
denote by and 3^3 the C1 foliation induced by !F^S and !F^U on Ti respectively.

As X has no return on (J;- 7), the sets {3G(7j)},6]R,..., {A/(7jt)}feR arepairwise
disjoint embeddings of Ti x M into M. As a consequence, for any integer N, the

sets {Xt(7j)}?6[o,Aq, • • •, {2fr(7jt)}tg[o,./v] are pairwise disjoint and diffeomorphic
toT2 x [O.V],

For each i, we define the diffeomorphism

Vfi'W : {2fr(7})},6[o,Aq Tt x [0.1]

by (Xt(p)) (p,t/N), for any p e Ti and t e [0. N}. Thus Dxj/i^iX) is

tangent to the vertical segment {p} x [0, 1], for any p e Ti.
We fix a smooth function a(s) : [0,1] [0, 1] such that a(s) is a non-decreasing

function on [0,1], equals to 0 in a small neighborhood of 0 and equals to 1 in a

small neighborhood of 1. For each i, the group G, Gjr.s ^u is the subgroup

of tz\(T2) associated to the pair of transverse foliations (.TyL Jy") by Definition 1.5.
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Given an element w, e G;, let {(p,}t<=[0,1] be the loop in Diff1 (7j) associated to u,- by
Theorem A.

Consider the map 4>, : 7/ x [0,1] i-> 7} x [0, 1] defined as

(*.s) (<PaM(x),s).

Hence, the map o <î>( o is a Dehn twist directed by w,-. Notice
that *1can be C '-smoothly extended on the whole manifold M to be the identity
map outside Xt(Tj).

The main part of Theorem B is directly implied by the following theorem:

Theorem 7.1. With the notations above, when N is chosen large enough, the

dijfeomorphism ^k,N 0 0 *Fi,jv 0 X^ is absolute partially hyperbolic.

Proof. We denote

^N ^k,N o o 4>lv/v.

Then 4W 0 Xjy coincides with Xjv on the attracting region Ma. Thus A
is the maximal invariant set of ° X^ in Ma and is an absolute partially
hyperbolic attractor. Furthermore the center stable bundle and the strong stable

bundle on A admit unique continuous and (4W o 2Gv)-invariant extensions EA
and ESA, respectively, on Ma which coincide with the tangent bundles of the center
stable and strong stable foliations Eff and Ef of the vector field X.

In the same way, (fiW o Ajv)-1 coincides with X~n on the repelling region Mr.
Thus -R is still an absolute partially hyperbolic repeller of 0 X^ and its center
unstable and strong unstable bundles admit unique continuous and (4w o X^)-
invariant extensions Ef and Ef on Mr which coincide with, respectively, the

tangent bundles of Efu and E%.
Notice that the center unstable and strong unstable bundles Ec<£ and Eof the

repeller R for 0 X^ extend in a unique way on M \ A, just by pushing by the

dynamics of o Xn
Thus the bundles Ec£, EEA and ESA coincide with the tangent bundles of

the foliations ^st(Efu), ^si(Ef), Efs, and Ef respectively, on the fundamental
domain (J,- ^[o.at](7;)-

One can easily check the following classical result:

Lemma 7.2. o X^ is absolute partially hyperbolic ifand only if
and ^N(Efu) rh E£.

Notice that {^(Ti)}?6R, {Xt(T^jteR are pairwise disjoint, the same

argument of Lemma 6.2 in [4] gives the following:

Lemma 7.3. With the notation above, we have thatfor each i — 1,..., k,

lim W} x W and >im ^i,N(Efs) {EiS}x{s}
N-*-+oo /V —>-+00

uniformly in the C1 -topology.
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As a consequence of Lemma 7.3, when N is chosen large, for each i 1 ,...,k,
we have that

h V x P. 1] and $, (V9,rh 3? x [0,1],

Now Theorem 7.1 follows directly from Lemma 7.2.

Now, we end the proof of Theorem B by proving that the (absolute) partially
hyperbolic diffeomorphism / 4W o Ajv is robustly dynamically coherent and

plaque expansive. We denote by Ej- the center bundle of /.
Recall that / coincides with Xjg on the repelling region X-n(Mk) and on the

attracting region Ma. Just as Lemma 9.1 in [4], we have that:

Lemma 7.4. There exists a constant C > 1 such thatfor any unit vector v e Ecp we

have the following:

< II Df"(v) || < C. for any integer n e Z.

As a consequence of Lemma 7.4, we have that / is Lyapunov stable and Lyapunov
unstable in the directions is" and Ec" respectively.

To show the dynamically coherent and plaque expansive properties, we follow the

same argument in [4, Theorem 9.4]:

- According to (17, Theorem 7.5], / is dynamically coherent, and center stable

foliation TV" and center unstable foliation Wy" are plaque expansive-,

- By [16], the center stable foliation TV" and center unstable foliation TV"' are

structurally stable, proving that / is robustly dynamically coherent.
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