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Vanishing of cohomology with coefficients in representations
on Banach spaces of groups acting on buildings

Izhar Oppenheim

Abstract. We prove vanishing of cohomology with coeflicients in representations on a large
class of Banach spaces for a group acting “nicely” on a simplicial complexes based on spectral
properties of the 1-dimensional links of the simplicial complex.
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1. Introduction

The study of group actions on metric space is a broad topic in which one studies
the interplay between the group structure and the structure of the metric space on
which it acts. When considering a group action on Hilbert spaces, property (FH) is
an imporant notion which is defined as follows: a group G has property (FH) if every
isometric action of G on a Hilbert space admits a fixed point. Property (FH) can be
rephrased in a cohomological language as follows: a group has property (FH) if and
only if H'(G,m) = 0 for any unitary representation of G on a Hilbert space (the
proof of this fact can be found for instance in [3, Lemma 2.2.6]).

Recently there have been much interest in studying the generalization of
property (FH) for group actions on Banach spaces (see [16] for a survey of
recent developments regarding this question). In order to state a generalization
of property (FH) in the Banach setting, we recall the following facts taken from
[16, Section 2.2]:

* Any affine action 4 on a Banach space X is of the form Ax = T'x + b where T
is a linear map and b € X.

* As aresult of the previous fact, if p defines an affine action of G on X, then

YVgeG, p(g)x=rmn(g)x+b(g),
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where 7 : G — B(X) is a linear representation of G on X called the linear part
of pand b : G — X is a map which satisfies the cocycle condition:

Vg.he G, b(gh)=nr(g)bh)+ b(g).

* For a group G and a linear representation  on a Banach space X, H'(G,7) =0
if and only if any affine action with a linear part 7 admits a fixed point.

Thus the vanishing of the first cohomology reflects a rigidity phenomenon. In
this article, we will explore a generalization of this phenomenon and we will prove
vanishing of higher cohomologies for groups acting on simplicial complexes. The
idea is that given a “nice enough” group action on a simplicial complex %, one can
show vanishing of cohomology with coefficients in representations on Banach spaces
under suitable assumption on the norm growth of the action and on the geometry of
the simplicial complex. This is done by using the interplay between the geometry of
the Banach space and the geometry of the simplicial complex as it is reflected in the
angles between couples of subgroups of G stabilizing top-dimensional simplices in
the simplicial complex (see definition below).

The definition of angle between subgroups in the Hilbert setting is as follows:
let G be a group, m by a unitary representation of G on a Hilbert space H and
let K1, K> < G be subgroups of G. The angle between K; and K, with respect
to r is defined as the (Friedrichs) angle between H7™ K1) and H7™K2) The angle
between K; and K, is then defined as the supremum with respect to all unitary
representations of G.

This idea of angle was used in the work of Dymara and Januszkiewicz [8] to prove
property (T) (which is equivalent to property (FH) in this setting) and vanishing of
higher cohomologies with coefficients in representations on Hilbert spaces for groups
acting on simplicial complexes. Dymara and Januszkiewicz further showed how to
bound the angle between the two subgroups using the spectral gap of the Laplacian
on a graph generated by these subgroups.

At first glance, this idea seems very much related to the so called “geometrization
of property (T)” (this term was coined by Shalom [23]), since it uses the spectral gap
of a Laplacian to deduce property (T) in a way similar to Zuk’s famous criterion for
property (T) (see [2,27]). However, at its core, the idea of angle between subgroups
is much stronger than Zuk’s criterion, because it better captures the behaviour of
the group G. In [17] the author generalized this idea of angle to the setting of
Banach spaces, considering angle between projections instead of angle between
subspaces. This new notion of angle was used by the author it to show a strengthened
version of Banach property (T) for a large class of Banach spaces. This in turn
implies the vanishing of the first group cohomology with coeflicients in the isometric
representations on this class of Banach spaces.

The aim of this paper is to generalize the vanishing of cohomologies theorem of
Dymara and Januszkiewicz in [8] to coefficients in representations on Banach spaces.



Vol. 92 (2017) Cohomology with coefficients in Banach space representations 391

A major problem with transfering the results of Dymara and Januszkiewicz to Banach
space setting was that the angle computations of [8, Section 4] heavily relied on the
idea that in Hilbert spaces the angle between two subspaces is equal to the angle
between their orthogonal complements. However, this idea of computing the angle
by passing to the orthogonal complement does not seem to work in our definition of
angle between projections.

The technical heart of this paper is devoted to attaining results regarding angles
between projections in Banach spaces that are similar to the results of Dymara and
Januszkiewicz (but without passing to the orthogonal complemet). In order to attain
these results, we first explore the idea of angle between more than two projections
(this was inspired by the ideas of Kassabov in [13]).

After obtaining these technical results, the vanishing theorem can be reproved for
coeflicients in representations on Banach spaces by the same arguments given in [8].

In order to apply these results in concrete examples (such as groups groups
coming from a BN-pair), we need to bound angles between pairs of subgroups
K,. K> < G with respect to representations on Banach spaces. Given a pair of
subgroups K, K, < G, this is done by bounding this angle between these subgroups
in the Hilbert setting and then (if this angle is large enough to begin with) using this
bound in order to get a bound on the angles between these subgroups with respect to
representations on Banach spaces that are “close enough” to a Hilbert space. Being
“close enough” to a Hilbert space involves a several step process of deforming a
Hilbert space that will be explained in detail below.

1.1. Deformations of Hilbert spaces. We will consider Banach spaces which are
deformations of Hilbert spaces. In order to explain which deformations we consider,
we need to introduce several ideas from the theory of Banach spaces.

1.1.1. The Banach—-Mazur distance and Banach spaces with “round” subspaces.
The Banach—Mazur distance measures a distance between isomorphic Banach spaces:

Definition 1.1. Let Yy, ¥> be two isomorphic Banach spaces. The (multiplicative)
Banach—Mazur distance between Y; and Y is defined as

dpm (Y1, Y2) = inf {|T||T7"|| : T : ¥; — Y, is a linear isomorphism}.

This distance has a multiplicative triangle inequality (the proof is left as an
exercise to the reader):

Proposition 1.2. Let Yy, Y>, Y3 be isomorphic Banach spaces. Then
dpm (Y1.Y3) <dpm (Y1, Y2)dpm (Y2, Y3).

We will be especially interested in the Banach—Mazur distance between n-dimen-
sional Banach spaces and ¢7. A classical theorem by F. John [12] states for every
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n-dimensional Banach space Y, dpp (Y, £5) < /n and the classical cases in which
this inequality is an equality are €7 and £Z_. Later, Milman and Wolfson [15] proved
that these classical cases are in some sense generic: [15, Theorem 1] states that if

dpm (Y. €5) = /n, then there is k > 211':1((';?2) such that Y contains a k-dimensional

subspace isometric to Z’l‘ :

In this paper we will concern ourselves with Banach spaces whose finite
dimensional subspaces are sufficiently “round”, i.e. sufficiently close to £,-spaces.
Given a Banach space X and a constant k € N, we use the following notation d (X)
taken from the work of de Laat and de la Salle [7]:

di(X) = sup {dBM(Y) (Y C X, dim(Y) < k}.

We further introduce the following notation: given a constantr > 2 and a constant
Cy > 1, we denote &, (r, Cy) to be the class of Banach spaces defined as follows:

€1(r,C1) = {X : Vk € N, dp(X) < C1k7}.

The reader should note that for every choice of r > 2, C; > 1, the class &;(r, Cy)
always contains the class of all Hilbert spaces, since for every Hilbert space H we
have that di (H) = 1 for every k.

An example of Banach spaces contained in & (r, Cy) are spaces of bounded type
and cotype. The definitions of type and cotype are given in the background section
below, but for our uses, it is sufficient to state the following theorem due to Tomczak-
Jaegermann [24, Theorem 2 and the corollary after it]: if X is a Banach space of
type p1, cotype p2 and corresponding constants Tp, (X), Cp,(X) (see definitions

below), then dy (X) < 4T, (X)Cp, (X )k o P_.
This theorem yields that for every r > 2, every % and every C; > 1, the class

&1(r, Cy) contains all Banach spaces X with type p;, cotype p, and corresponding
constants 7, (X), Cp, (X) such that % - é < 1 and 4T, (X)Cp,(X) < Cy.

1.1.2. Interpolation. Two Banach spaces Xy, X; form a compatible pair (Xo, X;)
if there is a continuous linear embedding of both X and X in the same topological
vector space. The idea of complex interpolation is that given a compatible pair
(Xo, X1) and a constant 0 < 6 < 1, there is a method to produce a new Banach space
[Xo, X1]g as a “combination” of Xy and X;. We will not review this method here,
and the interested reader can find more information on interpolation in [5].

We will introduce the following notation: let & be a class of Banach spaces and
let 0 < 6, < 1 be a constant. Denote &,(&, ) the class of Banach spaces defined
as follows

6,(6.6,) = {X :3X; € &,3X, Banach, 36, < 6 < 1 such that X = [Xp, X1]s}-.

We will be interested with composing this definition with &; (r, Cy) defined above
and considering (&, (r, Cy), 6>).
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As noted above & (r, C;) contains the class of all the Hilbert spaces. This brings
us to consider the following definition is due to Pisier in [19]: a Banach space X is
called strictly #-Hilbertian for 0 < 6 < 1, if there is a compatible pair (X, X1) such
that X is a Hilbert space such that X = [X, X1]g. Examples of strictly &-Hilbertian

spaces are L? space and non-commutative L? spaces, where in these cases 6 = %

if2<p<ooand § =2 — % if 1 < p < 2 (a reader who is not familiar with
non-commutative L7 spaces can find a detailed account in [20]).

Another source of examples for strictly #-Hilbertian spaces are superreflexive
Banach lattices. Recall that a Banach space X is called uniformly convex if

X~
sup{HTyH Vx,ye X, |xll=yII=1x—y|=> 8} < 1 for every ¢ > 0.

Further recall that a Banach space X is called superreflexive if all its ultrapowers
are reflexive, which is equivalent by [4, Theorem A.6] to X being isomorphic to a
uniformly convex space. A Banach lattice is a Banach space with a “well-behaved”
partial order on it - the definition is rather techincal and we will not recall it here (for
the exact defition of a Banach lattice and further properties of it, the reader is referred
to [4, Appendix GJ).

Pisier [19] proved that any superreflexive Banach lattice is strictly §-Hilbertian
and suggested that this result might by true even for superreflexive Banach spaces
which are not Banach lattices.

1.1.3. Passing to a isomorphic space. The last deformation we want to consider
is passing to an isomorphic space. We introduce the following notation: let & be a
class of Banach spaces and let C3 > 1 be a constant, denote by &3(&, C3) the class
of Banach spaces defined as

€3(6,C3) = {X 13X’ € & such that dgpy (X, X') < C3}.

1.1.4. Passing to the closure. Our criterion for vanishing of cohomology relies
on geometric properties of a Banach space that are stable under certain operations.
Therefore, we can enlarge our Banach class by passing to the closure under these
operations: for a class of Banach spaces &, denote by & the smallest class of Banach
spaces containing & that is closed under passing to quotients, subspaces, /,-sums and
ultraproducts.

1.1.5. Composing the deformations. The class of Banach spaces we will want to
consider is the composition of the all the deformations described above, i.e. we start
with a Hilbert space and use & (r, C;) to consider deformations of it, on that class we
consider interpolation, then pass to isomorphic spaces with bounded Banach—Mazur
distance and finish by passing to the closure. To put it all together, we start with
constants r > 2, C; > 1,1 > 6, > 0 and C3z > 1 and consider the class

E3(E2(81(r, C1), 62), C3).
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1.2. The main theorem for BN-pair groups. Following Dymara and Januszkiewicz,
our vanishing of cohomology results are true for groups acting on simplicial
complexes given that certain conditions are fulfilled (conditions (B1)-(8B4)
and (Bs ) stated below). However, currently, our only examples of groups acting
on complexes satisfying these conditions are groups with a BN-pair (e.g. classical
BN-pair groups acting on Euclidean buildings or 2-spherical Kac—-Moody groups).
Therefore, in this introduction we will state our main result only for BN-pair groups
(the more general Theorem 4.7 is given below).

In order to state the main theorem, we recall some generalities regarding BN-pair
groups (a reader not familiar with BN-pair groups can find and extensive treatment of
this subjectin [ 1, Chapter 6]) and introduce a few notations regarding representations.

Let G be a BN-pair group and let X be the n-dimensional building on which it acts.
Then G acts on £ cocompactly and A = £/G is a single chamber of £. We assume
that n > 1, i.e. that X is not a tree and denote A (k) to be the k-dimensional faces
of £/G. We assume further that there is some / € N such that all the /-dimensional
links of ¥ are compact. Be this assumption, for every t € A(n — 2), the isotropy
group G, = Stab(r) is compact and G is generated by UteA(n—Z) G.. Let & be a
class of Banach spaces and let so > 0 be a constant. Denote ¥ (&, G, sg) to be all
the continuous representations (7, X') of G such that X € & and

sup |7 (g)|l < e'.

geUtEA(H—Z) Gr

Note that ¥ (&, G, 5¢) contains all the isometric representation of G on some X € &,
but is also contains representations which are not uniformly bounded. Indeed, if G
is taken with the word norm |[.| with respect to ( ;¢ (y—2) Ge. then F (&, G, s0)

contains all the representations 7 such that ||z (g)| < e*0/¢! for every g € G. Denote
further ¥4 (&, G, 5¢) to be

Fo(€,G,s0) = {JT € F(€,G,s) : 7™ is a continuous representation},

where 7* is the dual representation of 7.
After all these notations and definitions, we are ready to state our main theorem:

Theorem. Let G be a group coming from a BN-pair and let X be the n-dimensional
building on which it acts. Assume that n > 1 and there is some | € N such that
all the l-dimensional links of ¥ are compact. Denote by q + 1 the thickness of the
building X.

Letr >20,C;y > 1,1> 0, >0, C3 > 1 be constants. Then there are constants
so = so(n) and Q = Q(n,Cy, 65, C3) such that if ¢ > Q, then for every

€ Fo(€3(E2(E1(r, C1),02),C3), G, 50),

we have that

HY(G,n)=0, i=1,...,1
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Remark 1.3. In the above theorem, when considering &;(r, C) we took r > 20.
In many cases, this choice can be improved, i.e. r can be taken to be smaller, if the
codimension 1 links of the building ¥ are known. For instance, if % is known to
be an Z;, building, then we have the same theorem above with r > 4. The precise
statement of this fact is given in Corollary 4.8

1.3. Examples of Banach spaces for which the theorem holds. In the main theo-
rem above, we considered only representations whose dual is continuous. This might
seem to be a major restriction, but we will show below that the class of representations
that we are considering is still very rich. We will do so by showing that there are
interesting examples (families of) of Banach spaces in &3(&2(&;(r, Cy), 62), C3)
with r > 20 for which each continuous representation has a continuous dual.

Indeed, [14, Corollary 6.9] states that if X is an Asplund Banach space then for
every continuous representation 7, the dual representation 7™ is also continuous.
The exact definition of Asplund spaces in given in the next section (along with a
good reference regarding these spaces), but for our needs, it is enough to recall that
any reflexive Banach space is an Asplund space. Using this fact, we will show
that £3(82(&1(r, Cy), 62), C3) contains many interesting reflexive spaces.

First, for a Banach space X, we recall that X is called uniformly non-square
if there is some & > 0 such that for every x,y € X with in the unit ball of X,
min{[| X522, 5521} < 1—e. James [11, Theorem 1.1] showed that every uniformly

non-square space is reflexive. An easy exercise shows that if d»(X) < +/2 then X is
uniformly non-square. Therefore, for every X € &1(r, Cy), if d(X) < V2, then X
is reflexive, i.e. every X € &;(r, C;) whose 2-dimensional subspaces are not too
distorted is a reflexive space.

Second, since & (r, C;) contains all Hilbert space, we have that &>(&1(r, C1), 62)
contains all 6-Hilbertian spaces with 6 > 6,. As noted above this includes L? spaces
and non commutative L7 spaces with ﬁ <p= % By [20, Theorem 5.1] these
spaces are uniformly convex and therefore superreflexive (hence reflexive). Also,
E2(E1(r,Cy), 0,) also includes a subclass of the class of superreflexive Banach
lattices (as noted above, for any superreflexive Banach lattice X, there is & > 0 such
that X is @-Hilbertian).

Third, reflexivity of Banach spaces is preserved under isomorphism and therefore
E3(E2(81(r,Cq), 02), C) contains isomorphic spaces to the reflexive Banach spaces
contained in &,(&1(r, C1), 62).

Last, reflexivity is preserved under passing to a closed subspace, taking a
quotient by a closed subspace and countable />-sums. Ultrapowers does not preserve
reflexivity, but by definition, if X is superreflexive, then all its ultrapowers are
reflexive. Therefore passing to the closure &3(&2(&1(r, C1), 62), C3) provides more
examples of reflexive Banach spaces constructed from £3(&2(&1(r, C1), 62), C3) by
these operations.
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Remark 1.4. Above we have a list of families of Banach spaces (e.g. L? spaces or
uniformly non-square spaces in & (r, C;) when r > 20) for which our main theorem
holds for every representation in which the norm doesn’t grow too fast with respect to
the word norm (in particular, for every isometric representation). As far as we know,
for each one of these families our vanishing of higher cohomologies results are new
even in the classical case of BN-pair groups acting on Euclidean buildings.

Structure of this paper. Section 2 includes all the needed background material.
Section 3 is devoted to proving the main technical result regarding angles between
projections in Banach spaces. In Section 4, we formulate and prove our main results
regarding vanishing of cohomologies for groups acting on simplicial complexes. The
appendix contains technical results regarding angles between projections under a
weaker assumptions that the ones used in Section 3, that may be of independent
interest.

2. Background

2.1. Groups acting on simplicial complexes. Here we present the set up needed
for our results of groups acting on simplicial complexes. We start by recalling some
definitions given by Dymara and Januszkiewicz in [8, Section 1].

Let 2 be a countable pure n-dimensional simplicial complex with n > 2. The
top dimensional simplices of ¥ will be called chambers and ¥ will be called gallery
connected if for any two chambers o, o’ there is a sequence of chambers

0 =01,02,...,0 =0,
such that for every i, 0; N 0j4+ is a simplex of co-dimension 1 in .
Denote by Aut(X) the group of simplicial automorphisms of . On Aut(X) define
the compact-open topology whose basis are the sets U(K, gg) where go € Aut(X),
K € ¥ compact and U(K, go) is defined as

U(K.go) = {g € Aut(2) : g|lk = golk}-

Let G < Aut(X) be a closed subgroup of Aut(X).

Given a continuous representation w of G on a Banach space, one can define
H*(G,n) and H*(Z, ). We will not review these definitions here and a reader
unfamilier with these definitions can find them in [8, Section 3] and reference therein.
The main fact that we will use is that one can compute H *(G, ) based on H* (X, 7):

Lemma 2.1 ([6, X.1.12]). Let ¥ be a simplicial complex, G < Aut(X) be a closed
subgroup and m be a representation of G on a Banach space. Assume that % is

contractible and locally finite and that the action of G on X is cocompact, then
H™YG,m) = H*(Z, ).
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The above lemma assumes that X is locally finite (i.e. that the link of every vertex
is compact). In order to compute the cohomology of G in cases where X is not
locally finite, Dymara and Januszkiewicz introduced the following definition of the
core of X:

Definition 2.2 ([8, Definition 1.3]). Let X be a simplicial complex such that every
link of X is either compact or contractible (including ¥ itself, which is the link of the
empty set) and such that the 0-dimensional links of X are finite. Denote X’ to be the
first barycentric subdivision of X. The core of X, denoted X p, is the subcomplex
of ¥’ spanned by the barycenters of simplices of X with compact links.

Lemma 2.3 ([8, Lemma 1.4]). Let X be an infinite simplicial complex such that every
link of X is either compact or contractible (in particular X is contractible, because
it is the link of ¥) and such that the 0-dimensional links of ¥ are finite. Then X p is
contractible.

Note that if the assumption that the O-dimensional links of X are finite implies
that X p is locally finite. Also note that any closed subgroup G < Aut(X) is also a
closed subgroup in Aut(X p). Therefore combining the above lemma with Lemma 2.1
above yields the following corollary:

Corollary 2.4. Let X be an infinite pure n-dimensional simplicial complex, G< Aut(X)
be a closed subgroup and 1 be a representation of G on a Banach space. Assume that
every link of X is either compact or contractible and such that the O-dimensional links
of X. are finite. If the action of G on X is cocompact, then H*(G, ) = H*(Xp, 7).

Following Dymara and Januszkiewicz, we will use the above corollary to show
vanishing of the group cohomology under additional assumptions on X and on the
action of G. In order to state our additional assumptions we recall the following
conditions on the couple (X, G) taken from [8]:

(8B1) All the O-dimensional links are finite.
(B2) All the links of dimension > 1 are gallery connected.
(8B3) All the links are either compact or contractable (including X itself).

(B4) G acts transitively on chambers and £ — X /G restricts to an isomorphism
on every chamber.

Let X be an infinite simplicial complex and G < Aut(X) be a closed subgroup
satisfying (B1)-(84) and let 7 a continuous representation of G on a Banach
space X. Fix a chamber A € X(n) and for every n € A, denote G, to be the
subgroup of G fixing 1 and also denote X7™(Gn) = Xy to be the subspace of X
fixed by G, (under the action of 7). One of the key ideas in [8] is that one can
deduce vanishing of cohomologies of G with coeflicients in 7 given that there are
projections on all the X,’s and nice decompositions of these X;’s with respect to
these projections. To make this precise:
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Theorem 2.5 ([8, Theorems 5.2, 7.1]). Let ¥ be an infinite simplicial complex,
G < Aut(X) be a closed subgroup satisfying (B1)—-(B4) and mw a continuous
representation of G on a Banach space X. Under the notations above, for every
n € A denote Dy 1o be the subcomplex of XLp spanned by the barycenters of
simplices of A that have compact links and do not contain 1.

Assume that for every n C A there is a projection Py : X — X on X,. For every
n € A, denote

X" =Tm(Py) N () Ker(Pr).

S

If for every n C A, the following holds

X, =Px-.

T

then _
H*(G.7m) = @ H* ' (Dy: X").
nCA

Moreover, if there is | > 1 such that all the [-dimensional links of £ are compact,
then for everyi = 1,...,1, H' (G, ) = 0.

Remark 2.6. In [8, Theorem 7.1] the assumptions of the theorem do not include
the decomposition X, = @rgn X7, but assumptions regrading the spectral gap in
the 1-dimensional links from which this decomposition is deduced. However, the
proof of the theorem only relies on the above decomposition, therefore the theorem
can be stated as above. Also, [8, Theorems 5.2, 7.1] are stated for continuous uni-
tary representations on Hilbert spaces, but the proof of [8, Theorem 7.1] and the
proof of [8, Theorem 5.2] based on [8, Theorem 7.1] pass verbatim to continuous
representations on Banach spaces.

We would like to add an additional condition on X that will be denoted (B; ,)
(replacing the condition (8Bjg) appearing in [8]):

(Bs.r) Forevery n € ¥(n —2), the link of 7, denoted X, is finite bipartite graph
with sides V1, Vy 2. For any n € X(n — 2) denote

Va2l

Vinin(7) = min {|V; 4

and denote (1) to be the smallest positive eigenvalue of the normalized
Laplacian of %,,, then

(1= k() Vein(m))T < 6.

Remark 2.7. We note that if condition (84) is fulfilled and if the I-dimensional
links of X are finite, then every 1-dimensional link has to be a bipartite graph.
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The main source of examples of (X, G) fulfilling (B1)—~(8B4) and (B; ) are
groups coming from BN-pairs (a reader unfamilier with the definition of a BN-pair
can find it in [1, Chapter 6]), when G is the group and X is the building on which it
acts. In [8] the following is proved:

Proposition 2.8 ([8, Propositions 1.6,1.7]). Let G be a group coming from a BN-pair
and let ¥ be the building on which it acts. Assume further that X is non compact and
has finite thickness. Then conditions (B1)-(B4) are fulfilled for (X, G) and Zp is
contractible.

In order to check the condition (B; ,) in buildings, we recall that if a building X
has finite 1-dimensional links, then these links are spherical building, i.e. they are
thick generalized m-gons withm = 2,3, 4, 6, 8 (a reader unfamilier with generalized
m-gons can find a good introduction in [25, Chapter 1]).

Proposition 2.9. Let ¥ be a building such that the 1-dimensional links of ¥ are
compact. Let m’ be the smallest integer such that all the links of 1-dimensional links
of T are generalized m-gons with m < m’. Then for every

4 m =3,
. 8 m' =4,
18 m' =6,
20 m' =8,

and every § > 0, if the thickness of the building is large enough, then (Bs ,) holds
for X.

Proof. Let (V, E) be a generalized m-gon of order (s,7) and assume without loss
of generality that s > ¢. Denote « to be the smallest positive eigenvalue of the
normalized Laplacian on (V, E£). If m = 2, then 1 — k = 0 and therefore this case is
of no interest to us.

For m > 2 the spectral gap « was explicitly computed by Feit and Higman [10]
for all generalized m-gons (the reader can find a summation of these results in [2,
Section 3]). We will not recall the exact values of x depending on (s, #), but only the
asymptotic behaviour of 1 — « as s and 7 tends to oo:

o) - o() n->
0(%+%) m=468.

We recall that generalized m-gons are always bipartite graphs. Denote Vi, V> to
be the vertices in the two sides of (V, E) and denote

|l — Kk ~

Vinin = min {|V;

Val}.

L)
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The exact value of |Vp,| depending on (s, ) is computed in [25, Corollary 1.5.5]
(recall we assumed that s > t):

24141 m =3,
(st+ 1D +1) m =4,
((st)* + st + D)+ 1) m =6,
((st)> + D(st+ D)t +1) m=38.

Vinin = <

In order to complete the proof, we will also need the following connections
between s and ¢ (see |25, Theorem 1.7.2]):

¥§=1 m= 3,
1

12 <s<t? m=4,8,
1

13 <s<t> m=6.

To conclude the proof, we combine all of the above in order to show that for r as
1 . v
above, (1 — k)| Vin|7 tends to 0 as ¢ tends to infinity.

~|—

-

(22 H+U
(st + D)7t + 1

p—
N

(ﬁ+ﬁ)
sr)2+st+1)) (t+1)r (f %) m = 6,
BW+UW+M(HMH%+%)m=&

(1 _K)|Vmin|']_. ~ <

Ji
z‘zt-i-l) (t+ 1r (% %) m = 4.
1

A

i )+It—|—)(l+l)( +)  m=6

(
(
(t2+t+ )IL m =3,
(
(G
((:20)* +1) (12 +1)7 (t+1)7(%+%) m =8,

~

—~
s[5 Yl TR YN

IA

o N B~ W
~
el

Stp= = = e

~
SN

and the conclusion follows. U

2.2. Averaged projections in a Banach space. Let X be a Banach space. Recall
that a projection P is a bounded operator P € B(X) such P? = P. Note that
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| P|| = 1if P # 0. For subspaces M, N of X, we will say that P is a projection on
M along N if P is a projection such that Im(P) = M, Ker(P) = N.

Given a family of projections Py,..., Py on My, ..., My in X, there is a well
known algorithm of finding a projection on N j.V:l M j, which is known as the method
of averaged projections. The idea is to define the operator 7" = W and to
take a limit 77 as i goes to infinity. The reader should note that in general 7' need

not converge in the operator norm. In [17], the author had established a criterion for
the convergence of 7" using the idea of an angle between projections.

Definition 2.10 (Angle between projections). Let X be a Banach space and let Py, P>
be projections on My, M, respectively. Assume that there is a projection P;» on
M1 N M2 such that P1’2P1 = P1,2 and P1’2P2 = P1,2 and define

cos (Z( Py, P2)) = max {|| Py (P> — P12)|. || P2(P1 — P1p)]l}

Remark 2.11. In the above definition, we are actually defining the “cosine’” of the
angle. This is a little misleading, because we do not know if cos(Z( Py, P;)) < 1
holds in general (although this inequality holds in all the examples we can compute
or bound).

Remark 2.12. We note that in the case where X is a Hilbert space and Py, P, are
orthogonal projections on M, M», the orthogonal projection P; > on M N M, will
always fulfill P1,2P1 = P1,2 and Pl,Z Py, = P1’2. Also, in this case, COS(A(Pl, Pz))
will be equal to the Friedrichs angle between M; and M, defined as

cos (Z(My. M>))
= sup {[(u, v)| : lu]l < L, lv]l < L,u € My N (M; N Ma)t, v € M),

Next, we recall the following theorems from [17]:

Theorem 2.13 ([17, Theorem 3.12]). Let X be a Banach space and let Py, ..., Py
be projections in X (N > 2). Assume that for every 1 < j1 < jo < N, there is a
projection Pj, ;, onIm(P; ) NIm(P},), such that

le,jz‘pjl = le,,izv le,jzpf = le,jz'

Denote T' = W and assume there are constants
1 11— 8N —-11)y
G d <1 ,
r<sv_mu Y Pty iGN oay
such that
max {|[Py|l,.... |1Pnl} < B
and

max {cos (£(Pj,,Pj,)) : 1 < j1<j2<N} <y.
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Then for

_ o 2
ot 2)ﬁ+(4 6)1+,B c_ @N-2)p

N N

1—y" “TTNO=-n

we have that r < 1 and there is an operator T, such that |[T>® — T'|| < Cri=\.
Moreover, T is a projection on ﬂ?;l Im(P;).

To avoid carrying messy constants, we note the following:
Corollary 2.14. In the notations of the above theorem, there are yy > 0 and By > 1

such that if

max {||P1|,..., | Pnl} < Bo

and

max { cos (£(Pj,. Pj,)) : 1 < j1 < ja < N} <y,

then | T — T1|| < (4N) (2¥=1) 7",

Proof. Note that in Theorem 2.13 above, r tends to Lj\jil_z)é as y tends to 0.

Therefore, we can choose By > 1 and yy small enough such that r < 2]2\'1\71. Also
o 2

note that for such r, we have that C = (—ZN—?ﬂQ = (4N — 4)B}. Therefore, we can
2N

choose By > 1 small enough such that C < 4N. O

Last, we note that 7' converges to a “canonical” projection with respect to
Py, ..., Py if such projection exists.

Proposition 2.15. Let X be a Banach space and let Py, . .., Py be projections in X
(N > 2). Denote T = ﬂl‘*";\};”/\’ and assume that T converges in the operator norm
to T°° which is a projection on ﬂ?lzl Im(P;). If there is a projection P> . N on
(=1 Im(P;) such that for everyi, P, N Pj = Pia...n. then T® = Pia . .

Proof. Note that for every i, we have that P, n T = Py.....n and therefore 7°° =

,,,,, NT® = Py n. O
2.3. Type and cotype. Let X be a Banach space. For 1 < p; < 2, X is said to have
(Gaussian) type py, if there is a constant 7', such that for gy, ..., g, independent
standard Gaussian random variables on a probability space (€2, P), we have that for
every xp,...,x, € X the following holds:

(/; ﬂ Zgi(w)xi (zdP)i £ T, (Xn: Ix; ||p1)ﬂ_
=1 i=1

The minimal constant 775, such that this inequality is fulfilled is denoted T, (X).
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For2 < p, < oo, X issaid to have (Gaussian) cotype p», if there is a constant C,,

such that for gy,...,g, independent standard Gaussian random variables on a
probability space (€2, P), we have that for every x;,...,x, € X the following
holds:

.\
dp),

The minimal constant C,, such that this inequality is fulfilled is denoted C, (X).

We recall the following fact mentioned in the introduction regarding Banach
spaces with given type and cotype which is due to Tomczak-Jaegermann [24,
Theorem 2 and the corollary after it]: if X is a Banach space of type p;, cotype p»
and corresponding constants 7, (X ), Cp,(X) as above, then

Cps (2”: [ xi ||p2)p_2 = (/01 H Zgi(a))x:'
3=l

i=1

dy(X) < 4T, (X)Cp, (X)k 71 7.

Remark 2.16. We remark that the Gaussian type and cotype defined above are
equivalent to the usual (Rademacher) type and cotype (see [18, pp. 311-312] and
reference therein).

Remark 2.17. In [21], Pisier and Xu showed that for any p, > 2 one can construct
a non superreflexive Banach space X with type 2 and cotype ps.

2.4. Vector valued L? spaces. Given a measure space (2, ;) and Banach space X,
a function s : Q — X is called simple if it is of the form:

s(@) =) Xk (@),

i=1

where {E  RRP n} is a partition of {2 where each E; is a measurable set, y g, is the
indicator function on E; and v; € X.

Afunction f : Q — X iscalled Bochner measurable if it is almost everywhere the
limit of simple functions. Denote L?(2; X) to be the space of Bochner measurable
functions such that

1

Vf e LX:X), nfuLzm;X):(fQ |If‘(w)||§(du(w)) £ B,

Given an operator T € B(L?(Q, j)), we can define T ® idy € B(L*(Q2; X)) by
defining it first on simple functions.

For our uses, it will be important to bound the norm of an operator of the form
T ® idy given that X is derived by one of the deformation procedures given in the
introduction.
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We will start by bounding the norm of 7" ® idy given that X has “round” enough
finite dimensional subspaces. For this, following [7], we introduce the following
notation: for a Banach space X and a constant k € N denote

er(X) = sup{||T ®idx || 12(q.x) : T is of rank k with ||T[|¢, < 1}.

By a theorem of Pisier (see [7, Theorem 5.2]), this constant is connected to the
constant dy (X) defined in the introduction by the inequality e; (X) < 2dy (X) (there
is also a reverse inequality di(X) < ex(X) which we will not use). Next, we recall
the following definition:

Definition 2.18. For a Hilbert space H and a bounded operator 7" € B(H) and a
constant r € [1, o], the rth Schatten norm is defined as

r < 090, ||T||Sr = (Z (S,'(T))r) S

i=1

1T ||so0 = 51(T),

where 51(7) > s2(T) > --- are the eigenvalues of ~/T*7T. An operator T is said to
be of Schatten class r if ||T||sr < oc.

In [22] the following connection was between e (X)) and the norm of 7" ® idx:

Lemma 2.19 ([22, Proposition 3.3]). Let r € [2,00), r > r’ > 2 be constants and
assume there is a constant C’ such that ex (X) < C'k ; for every k. Denote

> r_’(L_L),-
M:ZZr’—l r oty

i=1
If (2, i) is @ measure space and T € B(L*(Q2, i) is of Schatten class r', then
IT ® idx [l pr2sx)y < MC'|IT | g

Remark 2.20. The statement of [22, Proposition 3.3] refers to Banach spaces with
specified type and cotype, but is only uses the fact that for these spaces e, (X') can be
bounded by some C’k 7. Therefore the proof of [22, Proposition 3.3] actually prove
the more general case stated above (this was already observed and used in [7]).

Combining the above lemma with the theorem of Pisier stated above gives the
following corollary:

Corollary 2.21. Letr €[2, 00), r > r’ be constants and assume there is a constant Cy

such that dip(X) < Clk% for every k. Then there is a constant C = C(Cy,r,r’)
such that for every measure space (2, ju) and every T € B(L?*(2, it)) of Schatten
class r’, we have that

IT ®idx || pr2:x) < ClIT |-
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Second, we will see that if X is given as an interpolation of two spaces Xg, X, the
norm of 7" ® idx can be bounded using bounds on the norms of 7" ® idy,, T’ ® idy, :

Lemma 2.22 ([22, Lemma 3.1]). Given a compatible pair (Xg, X1), a measure space
(2, 1) and an operator T € B(L?*(2, 1)), we have for every 0 < 6 < 1 that

IT ® idrxg,x116 | Bz2(Q:51x0,X110))

=< “T ® iqu HIB_(EZ(Q;XO))”T &® idX] ”%(Lz(Q;Xl))’

where [Xo, X1]g is the interpolation of Xo and X (see definition above).

Third, if X and X’ are isomorphic then the norm on 7' ® idy can be bounded
using the norm on 7" ® idy+ and the Banach-Mazur distance between X and X”.

Lemma 2.23 ([17, Lemma 2.7]). Let (2, jt) be a measure space and T a bounded
operator on L*(Q2, ). Given two isomorphic Banach spaces X, X', we have that

IT ®idx [l pr2:xy < dpm (X, X)|T ®idx- |.

Last, we need the following fact of regarding passing to the closure under
quotients, subspaces, /,-sums and ultraproducts:

Lemma 2.24 ([22, Lemma 3.1]). Let (2, i) be a measure space, C > 0 and T
a bounded operator on L*(Q2, ). The class of Banach spaces X, for which
IT ®idy || < C is stable under quotients, subspaces, l>-sums and ultraproducts.

Remark 2.25. The fact that the above class is closed under /, sums, did not appear
in [22, Lemma 3.1] and it is left as an exercise to the reader.

Combining all the results above yields the following:

Corollary 2.26. Let T € B(L*(Q, 1)) be an operator and let L > 1, r’ > 2
be constants such that ||T || g+ < 1 and such that for every Banach space X we
have that |T ® idx || g(r2(e:x)) < L. Then for every constants r > r', Cy = 1,
1 > 6, >0, C3 > 1, there is a constant C = C(Cy,r,r") such that for every
X € E3(62(8(r, Cy), 6), C3) the following holds

. 0
IT ® idx || prz:xy < C3L(CIT llg) ™.

Proof. By Corollary 2.21 there is a constant C = C(Cy,r,r’) such that for every
X € &1(r, Cy) the following holds:

17 ®idx | p2:xy) = CIT g

Combining this with Lemma 2.22 and our assumptions on 7" gives that for every
X € &(&(r,Cy), 67), we have that

. o
I7 ®idx [l r2gesxy < L(CITsr)
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Applying Lemma 2.23 yields that for every X € £3(&2(€1(r, Cy), 62), C3), we have
that

. _ 6
IT ® idx || pr2:xy < C3L' 2(CIIT |l gr) 7.

Last, Lemma 2.24 states that this inequality does not change when passing to the
closure. |

2.5. Group representations in a Banach space. Let G be a locally compact group
and X a Banach space. Let 7 be a representation 7 : G — B(X). Throughout this
paper we shall always assume 7 is continuous with respect to the strong operator
topology without explicitly mentioning it.

Denote by C.(G) the groups algebra of compactly supported simple functions
on G with convolution. For any f € C.(G) we can define 7(f) € B(X) as

VoeX, a(f)o= [G Flg)n(e)-vdul),

where the above integral is the Bochner integral with respect to the (left) Haar
measure  of G.

Recall that given 7 one can define the following representations:

(1) The complex conjugation of 7, denoted 7 : G — B(X) is defined as

7T(g)v =n(g)v, VgeG, v1eX.

(2) The dual representation 7* : G — B(X™) is defined as

(v, 7*(gu) = (n(g Hov,u), VgeG, veX, uelX*

Next, we’ll restrict ourselves to the case of compact groups. Let K be a compact
group with a Haar measure p and let C.(K) = C(K) defined as above. Let X be
Banach space and let 7 be a representation of K on X that is continuous with respect
to the strong operator topology. We shall show that for every f € C.(K), we can
bound the norm of 7( /) using the norm of A ® idy € B(L?*(K:; X)) (the definition
of L?(K: X) is given in Subsection 2.4 above).

Proposition 2.27 ([17, Corollary 2.11]). Let w be a representation of a compact
group K on a Banach space X. Then for any real function f € C.(G) we have that

2
I (Hllso = (S22 O 10 @ id) (Nllazckxy,

where A is the left regular representation of G.
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2.6. Asplund spaces.

Definition 2.28. A Banach space X is said to be an Asplund space if every separable
subspace of X has a separable dual.

There are many examples of Asplund spaces, for instance every reflexive space is
Asplund. A very nice exposition of Asplund spaces was given by Yost in [26]. The
reason we are interested in Asplund space is the following theorem of Megrelishvili:

Theorem 2.29 ([14, Corollary 6.9]). Let G be a topological group and let w be a
continuous representation of G on a Banach space X. If X is an Asplund space,
then the dual representation w* is also continuous.

3. Angle between more than 2 projections and space decomposition

The aim of this section is to show that given several projections on a Banach space,
this space can be decomposed with respect to these projections, given that the angle
between every two projections is large enough. The main motivation for establishing
such a decomposition is applying it to deduce vanishing of cohomology relying on
Theorem 2.5. In order to prove this decomposition, we define and study the notion
an angle between several projections.

Following our main motivation, we will think about our projections as defined by
faces of a simplex:

Definition 3.1. Let X be a Banach space and let A = {0,....n} be a simplex with
n + 1 vertices. Fork = —1,0, ..., n, denote by A(k) the k-dimensional faces of A,
i.e. the subsets of A with cardinality k + 1.

Let P, be projections defined for every 0 € A(n) U A(n — 1) such that

Vo e A(n—1), PyPp = P,.
For every T C A define an operator 7, as follows:

PA T = A,
Tr = ZaeA(n—l),rgc PU
T % A
AN 7]

Fixt G A If Tti converges to a projection on the space Ngean—1),rce IM(Py)
as i — oo, then we define P; = lim 7. In this case we say that P exists.

Remark 3.2. We note that the above setting is general for any n + 1 projections
Po,..., P,. Indeed, given any such projections, we can always denote P; = Pa\(;)
and take Po = [ (the reason we define the operator P above is that in the setting
we will consider, such an operator appears naturally).
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Remark 3.3. By the definition of Pa, we have for every t € A and every i that
TIPp = TIPp =TV,
Therefore for every v C A, if P; exists, then P Po = P;.

Using this notations, we will define the cos of an angle between more than 2
projections:

Definition 3.4. Let X and P, for 0 € A(n — 1) be defined as in Definition 3.1

above. Fix 1 < k < n. Denote Sym(0, 1, ..., k) to be the group of all permutations
of {0,1,...,k}.
For 0y, ...,0r € A(n — 1) pairwise disjoint, denote t = ﬂfzo o;. If P; exists,
define cos(Z(Pqy,, ..., Py, )) as
cos (£(Poy, - -+ Poy)) = ﬂesyrgﬁ)’f"_,k) 1 Poriy Poraty "= Porao I — Poll.

Theorem 3.5. Let X, A, Py for o € A(n — 1) be defined as above and assume
n > 1. Assume that for every n € A(n — 2), the projection Py, exists and that

Yoe An—1), nSo= PyP; =P,

Also assume that maXgeamn—1) | Poll < Bo, where Bo > 1 is the constant of
Corollary 2.14.
Then for every ¢ > 0 there is y > 0 such that if

max { cos (£(Po, Pyr)) 1 0,0" € An—1)} < y.
then for every t C A, Py is well defined and for every pairwise disjoint oy, . ..,0 €
A(n — 1) the following holds:
cos (£(Poy, - - - Poy)) < e
Proof. Let yp > 0 and Bg be the constants of Corollary 2.14 and fix ¢ > 0. Note

that Bp < 2. Fix 1 <k <mandoy,...,or € A(n—1). Denote 1 = ﬂlj‘-:()aj.

Assume first that y < yy, then by Corollary 2.14, we have that Tt" converges to Py
and

. o & 1j=1%1 2 Iy=1%""
||PI—T;||54(k+1)(%) s4<n+1)(%) ERD

Without loss of generality, it is enough to show that there is y such that
||P0'0 e Po'k(] - P'E)H S E.

By (3.1), we can choose i large enough such that

: €

and this iy can be chosen independently of k.
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Therefore
| Pog++ Pay (I = PO)I| < [[Pog++ Pay (I = TEO)|| + || Py -+ P (T2 — Py))|
< N Poy - Po (1 = T + I Pooll -+ 1P | 55

£

<Poy++ Poy (I =T + B+ 5

; £
< Poy -+ Po I = T + .
We are left to show that by choosing y small enough, we can ensure that
, €
1Py Poy (I = T < 5.

— Py )t (I—
Denote 7, = I — T, = (=5 0):+T( Poy)

I— Trio - T;((io)] - (io) T)+ -+ (_l)io—l (10) (Tr/)io_l).
‘ 1 2 Lo

Recall that by our assumptions || 7% | < Bo and therefore that | 7}| < 1+ By < 3.
This yields that

. Note that

| Poy -+ Po (I — THO))||

O )1+ ot 1) (1)
1 2 1o
i iy .
< ||Pao---PakT£||(IIIII+ (;)IIT£!I+---+ (io)llTéll’0 1)
1 [ [ . 410
< |\ Poy- P Tol = | 3+ | )32 4+ ]3] < 1Poy-+ Po Tl —
3 2 N 3

Therefore it is enough to show we can choose y small enough such that

< || Poy - P T |

(o) S 4

||Pcro"'Posz’|| = 2i0 2

(note that 7 is independent of y as long as y < yp). We will finish the proof by
showing that
| Pog - -+ Poy T;” = ”2n+1)’- {3:.2)

By the definition of 77, we have that

PUQ"'PUk(I_POk)
k+1

Po “'Pc (IHPO')
[Pay - P Ty < | P = P

-
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Therefore, in order to prove inequality (3.2), it is enough to show that for every j, k
such that kK > j > 0, we have that

| Pog - Poy, (I = Poll < (k = j)2¢Fy.
We will show this by inductionon k — j. If k — j = 0,i.e. if k = j then
PUQ"'PGk(]_POk):Os

and we are done. Assume that k > j and that the inequality holds for k — 1, j,
i.e. assume that

|Pog -+ Poy_ (I — Po,)|| < (k —1— j)2ky.
Then for k and j we have that
PGQ"'PO’k(I_PUj)
=PO'()'”PO','(_](PO']‘-_PO';(PO'_]')

:PU()"'PUk_l(PUk_PGjPGk)—l_PUQ"'PO‘k_I(PO‘jPO‘k _PUkPOj)
= PUU"'PUk_l(I_PO'j)PO'k "_PO'()"'P(I,k_l(PG'jPU;c —PURPUJ')-

Therefore
”PUO"'PGk(I - PU;)H
= ”PO‘() e PUk_l ff = PGj)Pok | + ”Pg»0 vee PUk—l (Po.j Pok — PO'kPo'j)”'
Note that
“Poj For = Fo Po, = ”Pof Poy. — Poyna, I+ [ Poy Ps; = Poyno, | <2y,
and therefore
1 Poo - Poy—y (Po; Poy — Poy POJ‘)“ < || Pog*** Por_, 12y < 2k+1y_
Also, note that by the induction assumption
| Pog Py (I = Po) Py I| < (k = 1= )2y || P || < (k — 1 — j)2¥F1y.
Combining the two inequalities above yields
| Pog *+ Poy (I — Po;)|| < (k — j)2ktly,
as needed. 0

Definition 3.6 (Consistency). Let X, A, P, foro € A(n — 1) defined as above. We
shall say that the projections P, for o € A(n — 1) are consistent, given that for every
TS & A, if Py and Py exist then P P, = P;.
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Remark 3.7. If the projections P, for 0 € A(n — 1) are consistent and P, exists
for every © € A, then for every 7,7/ C A, we can define cos(Z( Py, P/)) as in the
background section, i.e.

cos (£(Pg, Py)) = max {|| P; Py — Prny

|,

Proposition 3.8. Ler X, A, P, for o € A(n — 1) defined as above. Assume that for
every T € A, P exists. Then the projections Py for o € A(n — 1) are consistent if
and only if for

|Pt’Pt“ Prﬂr’”}-

ViG A, VoeAn—-1), 1S0= PPy =P

Proof. One direction is trivial: assume that the projections P, foro € A(n — 1) are
consistent, then forevery t € n & A, we have that P, P, = P, and in particular this
holds for every n € A(n —1).

In the other direction, fix some 7 € n & A. By our assumptions, we have for
everyo € A(n — 1), t € o that P, P, = P;. Therefore, by the definition of 7,

Vi, P(Ty) = Py,
which in turn implies that P P, = P, as needed. [

Proposition 3.9. Let X, A, P, for o € A(n — 1) defined as above. Assume that
for every t C A, P exists. If for every T & A there is a projection P on
NoeAn—1),cco IM(Py) such that

Yo e An—1), TS0 = P.P,= P,

then the projections Py for o € A(n — 1) are consistent and for every 1 & A,
Py = P

Proof. By Proposition 2.15, we have that 7 converges to P! for every t & A and
the consistency follows from Proposition 3.8. 0

The main tool that we will use to decompose the space X is the following theorem
stating that bounding the angle between each P,, P, where 0,0’ € A(n — 1) gives
a bound on the angle between P, Py where 7, t/ are any faces of A.

Theorem 3.10. Let X, A\, Pa and Py for o € A(n — 1) defined as above. Assume
the following:

(1) The projections Py for o € A(n — 1) are consistent.
(2) Foranyn € A(n — 2), the projections Py exist.

(3) maxgeam-1)uam) | Poll < Bo. where Bo > 1 is the constant of Corollary 2.14.
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Then for every ¢ > O there is y > 0 such that if
max { cos (£(Py., Py1)) 1 0,0" € A(n— 1)} <.

then the following holds:
(1) Foreveryt C A, Py existsand | P|| <4(n+ 1) + 2.
(2) Forevery t,t' C A and every n € A such that t Nt/ C 1 we have that

”PrPr’([ - Pn)” = &

In particular, cos(£L( Py, Pyr)) < e.

Remark 3.11. Variations of the above theorem were proven in the setting of Hilbert
spaces in [8], [9] and [13]. However, all these proofs use the fact that in a Hilbert space
the following equality holds for any two subspaces U, V: Z(V,U) = Z(V+,U"L),
where the angle here is the Friedrichs angle. In our setting, we do not know if such
equality holds, namely if cos(£ (P, Py)) = cos(£(I — P, I — P;/)) (we don’t even
know if cos(Z(I — P;, I — Py)) is well defined). This limitation required us to give
a more direct proof using the idea of angle between several projections.

Proof. Let yo > 0 and B¢ be the constants of Corollary 2.14 and let & > 0 be a
constant to be determined later. By Theorem 3.5, there is a constant y; > 0 such
that if

max { cos (£(Pgy. Py1)) 1 0,0 € A(n — 1)} <y,

then forany k = 1,...,n and for any n € A(n — 1 — k), we have that
cos (£(Poys -+ -+ Poy)) < €,

where 0g,...,0r € A(n — 1) are all the n — 1 faces of A that contain n. Choose

y = min {yo. y1}.
If t € A(n — 1)U A(n), then Py exists and || P;|| < Bo <2 <4(n+ 1)+ 2.
Assume next |t| < n, then by Corollary 2.14 we have that P, is exists and

[Pl <d4(n+ 1)+ ||[Te]| <4(n+ 1)+ Bo <4(n+1)+ 2.

This concludes the proof of the first assertion of the theorem.
Let 7,7/ € A and n € A such that T N " C 5. First, we note that by the
consistency assumption Pz (I — P,) = 0 and therefore

”PrPr’(l - Pn)“ = ”PtPt’(I - Ptﬂr’)([ - Pn)“
< ¢0s (L(Pg, P)) I — Pyl < (4(n + 1) + 3) cos (L( Py, Pr)).

Therefore, it is enough to show that for y small enough
€

P Py (I — Pipo)|| < ,

for any 7,7’ C A.
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Note thatif t = t/ or t = A or t/ = A, then cos(Z(P;, Py/)) = 0 and there is
nothing to prove. Therefore, we can assume that tNt’ € A(n—1—k)forl < k < n.
Let 0g,...,0r € A(n — 1) be all the pairwise disjoint simplices that contain t N 7’.
Without loss of generality we can assume that

1C0g,...,1Co; and ' Cojyq,..., T Cop.
We note that by the consistency assumption

Pr:PrPJO"'Poj’
al'ld Pt’:PUj+]"-PO'kPT,'
Therefore

”PtPr’(I - Prﬂr’)” = ”PrPoo"'Pcrth’(I - Prﬂr’)”
:”Prpoo"'Pok([_Ptﬂr’)Pr’”
< || P|||| P || cos (L(P(7 e Pok))
< (400 + 1) +2)°¢.

O

. ! &
We conclude by choosing ¢ = GOT DR GGI D"

Remark 3.12. Theorem 3.10 can be proven without the assumption that the
projections P, with 0 € A(n — 1) are consistent. However, we could not
prove Theorem 3.13 below without this assumption (see remark after the proof
of Theorem 3.13). Our motivation for proving Theorem 3.10 was deducing
Theorem 3.13 and therefore we assumed consistency in the proof (this assumption
simplifies the proof considerably). For completeness, we added a proof of
Theorem 3.10 in the appendix that does not rely on the consistency assumption.

Assuming that P, exists for each n € A, we denote X, = Im(P;) and

X@ T]=@,

X7
X, N nrgn Ker(P;) n# 0.

The next theorem states that under suitable bounds on the angles between the Py’s
foro € A(n — 1) and the norms of the P,’s foro € A(n — 1) U A(n) , we have that

X, =px-.

Theorem 3.13. Let X, A, Pa and Py for o € A(n — 1) defined as above. Assume
the following:

(1) The projections Py for o € A(n — 1) are consistent.
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(2) Forevery t € A(n —2), the projection P exists.
(3) maxgeam-1)uam) || Poll < Bo, where Bo > 1 is the constant of Corollary 2.14.

Then there is y > 0 such that if
max { cos (£(Po, Py’)) 10,06’ € An— 1)} <,

then for every n € A, Py exists and

X, =px".

<

The proof of this theorem is based on a theorem similar to our Theorem 3.10 that
appears in [8, Section 11] and the proof given there applies almost verbatim is our
setting. We will repeat the proof below for completeness, but we claim no originality
here.

Lemma 3.14. Let X, A, Pa and Py for 0 € A(n — 1) defined as above. Assume
that the projections Py for o € A(n — 1) are consistent and that for every t C A,
P exists.

Fix 0 <1 < n + | and assume that for every t C A with |t| < i there is a
projection Ry : X — X on X7 such that Ry = R{ P;. Then for every n € A with
|n| = i the following holds for every v € X:

veX"& Ve sy, Rov=0.

Proof. Assume first that v € X", then by definition for every © & 1, v € Ker(P;).
By assumptions of the lemma R; P; = R; and therefore R;v = R; P;v = 0.

In the other direction we will use induction on |5|. For |n| = 0, X? = Xy and
therefore the assertion of the lemma holds. Fix 0 <i < n + 1 and assume the lemma
is true for every t € A with 7] < i. Fix n € A with || =i and fix v € X,, such
that for every © & 7, R;v = 0. Let © & n arbitrary. By the assumptions of the
lemma for every " & 7 the following holds:

R P,y = RePpi Peu.
By the consistency assumption (and Remark 3.3), P P, = P/ and therefore
RtfPrU = RTfPTfU = RIIU == {},

By the induction assumption, we conclude that P,v € X*. We also assumed that
R P;v = R,v = 0, therefore this yields that P,v = 0. We showed that for every
T & 1, v € Ker(P;) which implies that v € X", O
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We will use the above lemma to prove Theorem 3.13:

Proof. Let e > 0 to be determined later and let y > 0 be the constant corresponding
to € > 0 given by Theorem 3.10.

We shall prove that if ¢ > 0 is small enough, then foreach 0 <i < (n + 1), there
is a constant C; such that the following holds:

(1) Foreach n € A with [n| < i, there is a projection R, : X — X on X7 such that
R, Py = R, and | R, | £ GC;.

(2) Forevery0 < j <i,C; = Cj.

(3) Forevery n,n’ € A suchthatn # n" and |n|, [n’| <1i, we have that || R, R/ || <
(Ci)zs.

(4) Foreachn C A with |n| =i, X = @,c, X*.

The cases i = 0,i = 1 are straightforward: For i = 0, we have that if || = 0, then

n = @. Take Ry = Py and Cy = 4(n + 1) + 2. We will check that for this choice

conditions (1)—(4). hold:

(1) Note that

e

RgPg = PgPg = Py = Rp.

Also by Theorem 3.10, | Rg| < Cp.
(2) Holds vacuously.
(3) Holds vacuously.
4) Xg = X2,

For i = 1,forn C A with|n| = 1,take R, = P,—Pgand C; = 2(4(n+1)+2).
We will check that for this choice conditions (1)—(4) hold:
(1) Note that

Ry=Py—Pyg=(1—Pg)P, = — Pg) Py, Py = Ry Py.
Also, by Theorem 3.10,
| Ryl < [[Pyll + | Pall < Ci.

(2) Cy =2Cy = Co.

(3) Let n,n” € A such that |n[,|n'| < 1and n # n'. If n = @ or o’ = @, then
RyR,y =0.1If [n| = |n| = 1,thenn Ny’ = @ and

IRy Ry || = |(Py = Pg)(Py — Pg)|| = || Py Py — Py | < & < CTe,

as needed.
(4) Forevery n C A, such that [n| = 1, P, — Py is a projection on X7 and therefore
Xy =X"% X4,
We proceed by induction. Leti > 1 and assume that (1), (2), (3), (4) above hold
forevery j <.
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Step 1: proof of conditions (1) and (2). Let n € A with |n| = i. We will show
that X, is a sum of X * with ¢ C n and in doing so, we will find a projection operator
R; : X — X such that Im(R,) = X" and R, P, = Ry.

Let d = 2/ —2 and consider the (d + 1)-valent tree such that each edge is labelled
by some © & 7 and no two edges with the same label meet at a vertex. Fix a vertex xq
to be the root of this tree. Then for every vertex x; with distance j > 0 from xq
there is a path labelled 7y, ..., t; from xq to x;. For such x;, define and operator
R(x;) = (—l)fR,j --+ R¢, and define R(xo) = I. Denote the vertices of the tree

by V' and define
Ly= )Y R(x).

xeV
Let x; be a vertex with distance j > 0 from x¢. By the induction assumption (3) we
have that | R(x)|| < (C2 &)/ ~'Ci_;. Therefore if we choose & < W, then for

i—1

every v € X,, > R(x)v is absolutely convergent:

SCIRE] = (14 (@ + 1)Cit Y (@C2 )7 o]
% ji=l1

< (1+2d + DCi—y)|vll.
Therefore L, is well defined if ¢ is sufficiently small. For every © & 7, denote

B, = {x € V '\ {xo} such that the path from x( to x begins with r},
By = {x € V' \ {xo} such that the path from x, to x ends with t}.

Then for a every © & 7, we have that

Ly=Y Rx)+ Y R(x)= —Rr( 3 R(x)) + 3 R(x).

x€E; xeV\E; xeV\E; xeV\E;

Therefore, forevery t & n, R; L, = 0 and therefore by Lemma 3.14 above, for every
v € Xy, Lyv € X". This shows that Im(L,) € X". To see that Im(L,) = X",
notice that for every v € X7 and for every © & 71, R;v = 0 and therefore by the
definition of Ly, Lyv = v.

We will take L, P, as our candidate for R; and take

Ci=@dm+1)+2)(1+2(d+ 1Ci)

as a bound on ||R,|| (we showed above that ||L,| < 1 + 2(d + 1)Ci—;). Notice
that C; was chosen such that C; > C;_ as needed. Itis clear that taking R,, = L, P,
implies that R, P, = R,,.

To show that R,, is indeed a projection, notice first that for every & 7, we have

that
Ly=Y Rx)+ Y R(x)= —( > RO)R: + Y R().

x€B; xeV\B¢ xeV\B¢ xeV\B;
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Therefore, for every t & n, L, R, = 0. Second, notice that
Ly=I+) Y Rx)=I-) R:) R().
tSn x€E; 1Sn  xeV\E;
Therefore

(I—Z ZR(x))—L —ZL R Y R(x) =

XEV\E XEV\EI
This yields that R; = R,.

The same computation also shows that X, is a linear sum of X* with T C 7.
First, for every v € X, we showed that L,v € X". Second, if we denote for every

(=
=R: Y R(x)v.
xeV\E;
then v* € X*. Last, we showed above that

Ly=1-> R > R(x).

1Gn  xeV\E;
and this yields that for every v € X,
¥ = Z v® + Lyv,
&

as needed.

Step 2: proof of condition (3). We will show that for every n,n° € A, with
Inl, || <i and n # n', we have that | R, R,/ || < (Ci)?s. We'll split the proof of
this fact into several cases.

In the case that n N n" & 7', notice that Im(P,) N Ker(Pyny) € Im(R,) and
therefore

RyRy = RyPyPy(I — Pyry)Ry.
This yields that
IRy Ry || < IRy || Ry || cos (£(Py. Py)) < CiyiClyrie < (Gi)3e,

as needed.
In the case that n € 5/, we have that Im(R,) € Ker(/;) and therefore

In the case that € pand |n| <i —1,|n'| <i — 1, the inequality follows from
the induction assumption.

We are left with the case in which || = i and " C 7. In this case, by Step 1
above, L, R, = 0 and therefore R, R,y = 0 and we are done.
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Step 3: proof of condition (4). We will finish by showing that given that ¢ > 0 is

small enough,
X, =px-.

(28]
We already showed in Step 1, that X, is a linear sum of X * such that T C 7. Assume
there are v* € X* such that
Z u” =10

Cn

Let 7/ be such that for every t C o, o7 || = [|[v7]||. Then Re (3., v™) = 0. Using
the bound on the norm of || Ry R || established in Step 2, this yields

o= (o) 21| £ wer

Cn tCrn,

t#71’
’
> o7 = 3 | Re Rev"|

TCn,

t#17’
> ([0 || = (Ci)2ellv™ || = o™ ||(1 = 2 — 1)(Ci)3e).

1

Therefore, if & is chosen such that ¢ < @2 e gt that ||vf']| = 0 and
therefore v* = 0 for every t € 5. This yields
X, =P x-.
T<n
as needed. O

Remark 3.15. Note that in the above proof, the consistency assumption is crucial in
the proof of Lemma 3.14 which in turn was crucial for Step 1 of the above proof.

4. Vanishing of cohomology

Let £ be a pure n-dimensional infinite simplicial complex and let G < Aut(X)
be a closed subgroup. Assume that (X, G) satisfies conditions (B 1)—(8B4) defined
in Subsection 2.1 above. Assume further that all the 1-dimensional links of X
are compact. Fix a chamber A € X(n). Let u be the Haar measure on G.
For —1 < i < n, denote A(i) to be the i-dimensional simplices of A. For
o€ (A(n)UAn—1)U A(n —2)) define kg € C.(G) as

XG
o — 2 .,
7 w(Gy)

where yg, is the indicator function on G, (note that by our assumptions G, is a
compact group).
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Observe that:
* Foro,te (A(n)UA(n—1)U A —2)),if t C o, then k ks = k.

* For any continuous representation 7 of G on a Banach space X and any
o€ (A(n)U A —1)U A(n —2)), (ko) is a projection on the X 7(Go) (recall
that X7(Go) s the subspace of vectors fixed by G).

These observations yields that for any two 0,6’ € A(n — 1) and any represent-
ation w of G, we can define the cosine of the angle between 7 (k,) and 7 (k,) as in
Definition 2.10 above:

cos (L(m(kq), (k)
= max {||ﬂ(kg)7t(kgf) — n(kono) . I (ko) (ko) — ”(kaﬂo’)”}
= max {“ﬂ'(koko’ - koﬂa’)”’ “N(kﬂ’kcr - kUnU')”}‘

Therefore we are in the setting of Theorem 3.13. Applying Theorem 3.13 comb-
ined with Theorem 2.5 yields the following:

Theorem 4.1. Let ¥ be a pure n-dimensional infinite simplicial complex and let
G < Aut(X) be a closed subgroup. Assume that (¥, G) satisfy conditions (B1)-
(B4) and that there is | € N such that all the [-dimensional links of ¥ are compact.
Then there are constants y = y(n) > 0, B = B(n) > 1 such that for every
representation w of G on a Banach space, if

sup || (kq)|l < B, sup cos (£(n (ko). 7 (ko)) < v,

geA(n—1) o,0'€A(n—1)

and the projections m(ky) with o € A(n — 1) are consistent, then

H*(G.n)= P H*'(Dy: X",
ncA
and H (G,m)=0, fori=1,...,1.

Proof. Denote P, = m(ky)foro € A(n—=2)UA(n—1)UA(n). Let B = o > 1
and y as in Theorem 3.13. The assumptions on 7 grantee that the P,’s fulfil the
conditions of Theorem 3.13.

Therefore for every n € A, X, = @
follows from Theorem 2.5.

Note that the constants ¥, B depend only on the dimension » (and not on any
other characteristics of X). O

Cn X*. The vanishing of cohomology

We will show that there are sufficient conditions that grantee the fulfilment of the
conditions of the theorem above in a class of representations

Fo(E3(E2(E1(r, C1). 62). C3), G, 50)
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defined in the introduction for suitable choices of 5o > 0 and r. We start by recalling
the following result from [17] that connects the Schatten norm of the projection
operators to condition (Bg ;) defined above:

Lemma 4.2 ([17, Corollary 4.20]). Let X be a pure n-dimensional infinite simplicial
complex and let G < Aut(X) be a closed subgroup. Assume that (X, G) satisfy
conditions (B1)—(B4) and condition (Bs ), then for every 0,0’ € A(n — 1),

lM(kaka’ - kaﬂa’)“S" <94,

where A € B(L*(Gynor, j1)) is the left regular representation.

Using the above lemma, we are able to deduce arbitrary small angles between all
the projections w(ky) and 7 (o) given the condition (Bs ,-) is fulfilled:

Lemma 4.3. Let ¥ be a pure n-dimensional infinite simplicial complex and let
G < Aut(X) be a closed subgroup. Assume that (X, G) satisfy conditions (B1)—
(B4) and that the 1-dimensional links of X are finite.

Letr >2,C; > 1,1 >0, >0, C3 > 1 be constants. For everyy > 0, 59 > 0,
2 <r' <r, thereisad > 0 such that if (£, G) satisfies condition (Bs ,), then for
every T € ?(83(82(81(1’, Cl)’ 92)» C3)’ G» SO)’

sup cos (Z(x (ko). w(ker))) < 7.

o,0’eA(n—1)

Proof. Fix n € ¥ (63(€2(81(r,C1),0,),C3),G,s0). Leto, o’ € A(n — 1) be any
two different (n — 1)-dimensional faces of A and assume without loss of generality
that

By Proposition 2.27, we have that
[ (kokor —kono') | < ezsonl(kaka’ —kono) ® idx ||B(L2(Ganof§X))'
Note that for any Banach space X, we have that

IM(kcrkcr’ - kaﬂa’) ® idy ||B(L2(GJOOI;X)) = ”)L(koka’ - kaﬂo’)”B(LI(G
< 2.

ona’))

Assuming that § < 1 and applying Lemma 4.2 and Corollary 2.26 (with L. = 2)
yields that

”)L(ko-ko-/ - ka'ﬁov/) ® idy ||B(L2(GUQGJ;X)) < C32(C8)92,

where C = C(Cy, r,r’) is the constant given in Corollary 2.26. Therefore, we have
that for every i € ?(83(82(81 (r, Cl). 92), C3), G, So),

oS (L(Tr(ka), ]T(ko-/))) < e2%0C,2(C8)%2,

1
and choosing § = & ( = C3) %2 yields the needed inequality. O
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The implication of the above lemma is that when applying Theorem 4.1 on a class
of representations of the form ¥ (E3(&2(&1(r, C1), 62), C3), G, s¢), one can replace
the condition

sup  cos (Z£(n(ke), m(kor))) < v,

og.o’eA(n—1)
by the condition (Bs ) for suitable values of § and r’:

Theorem 4.4. Let ¥ be a pure n-dimensional infinite simplicial complex and let
G < Aut(X) be a closed subgroup. Assume that (X, G) satisfy conditions (B1)—
(B4) and that there is al > 1 such that all the [ -dimensional links of £ are compact.
Letr >r'>2 C;y >1,1=> 06, >0, C3 > 1 be constants. Then there are
so = so(n) > 0 and
8= S(n,r, r’,Cl,Gz,C3) >0
such that if (X, G) fulfil condition (Bs ,) and if the projections n(ks) with 0 €

A(n — 1) are consistent, then

H*(G.m)= @ H*'(Dy: X7).
ncA
and H (G, n)=0, fori=1,...,1,

fJorevery m € ¥ (E3(&2(E1(r, Cy), 6,),C3),G, s9).

Proof. LetB > 1, y > 0 be the constants given by Theorem 4.1. Choose so = In(f),
by this choice the inequality

max ||7(ko)| < sup (@ = sup (@)l e =p
O'EA(H—I) gereA(nml) GG geUreA(n—2) Gl’

is satisfied for each m € ¥ (63(62(E1(r, C1), 02), C3), G, 59).
By Lemma 4.3, we can choose § > 0 small enough such that the condition (85 )
we imply that
sup cos (£( (ko). 7 (ko)) < .

og,0'eA(n—1)

for every mw € .?7(83(82(81 (I’. Cl), 92), C3), G, S()).
Therefore for this choice of so > 0 and § > 0, the conditions of Theorem 4.1 are
fulfilled and the conclusion follows. O

The unsatisfactory part of the above theorem is the assumption of con-
sistency of the projections m(ky). We will show that when passing to the
class Fy(E3(E2(E1(r, C1),03),C3), G, s9) (in which the dual representations are
continuous) this always assumption holds.




422 I. Oppenheim CMH

Lemma 4.5. Let ¥ be a pure n-dimensional infinite simplicial complex and let
G < Aut(X) be a closed subgroup. Assume that (X, G) satisfy conditions (8B1)-
(B4).

Let 7 be a continuous representation on a Banach space X such that

sup || (ko)ll < Po. sup cos (£(n(kq), 7(ko))) < yo,

geA(n—1) o,0’eA(n—1)

where Bo > 1, yo > 0 are the constants given by Corollary 2.14.
If the dual representation n* is continuous, then the projections nw(ky) for o €
A(n — 1) are consistent.

Proof. Let ¥ = {m, x*}. Note that for 7* the following holds:

sup || (ko) < Bo. sup cos (Z(n*(ks). 7" (ko)) < vo.
ceA(n—1) o,0’eA(n—1)

Therefore by Corollary 2.14, forevery 7 & A,
1 4
n+1—|t| 2 ko % ke,

cgeA(n—1),
tCo

where the convergence is in C¢ and 7 (k;) and 7*(k;) are projections on X7 ()
and (X *)" " (G0) respectively.
By Proposition 3.8, in order to prove consistency, it is enough to show that

ViS A, YoeAn—1), S0 = nalk)nlks) = m(ke).
We will prove the following condition which is actually stronger:
Vi G A, Vg e Gy, m(k)n(g)=m(ks).
Fix some 1 & A and g € G.. Forevery v € X, w € X* we have that
(m(ke)m(g).v,w) = (v, (g (ke).w) = (v, w7 (ko). w) = (mw(ke).v, w).
Therefore, n(k;)n(g) = n(k;) as needed. O

Remark 4.6. We note that if G is a discrete group, then the condition of 7 * being
continuous always holds (since it is vacuous).

As a corollary of the Lemma 4.5 we deduce the following theorem:

Theorem 4.7. Let 3 be a pure n-dimensional infinite simplicial complex and let
G < Aut(X) be a closed subgroup. Assume that (X, G) satisfy conditions (B1)—
(B4) and that there is | € N such that all the [-dimensional links of ¥ are compact.
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Letr >r'>2,Cy > 1,1 > 6, > 0,C3 > 1 be constants. Then there are
so = So(n) > 0 and
§=8(n,r,r',Cy,0,,C3) >0

such that if (X, G) fulfil condition (Bs ,), then
H*(G.m)= @ H* " (Dy: X").
ncA
and HY (G,m)=0 fori=1,...,1,

forevery m € Fo(E3(E2(61(r, Cy), 61), C3). G, s59).

Proof. By Lemma 4.5, the projections m(ks) with 0 € A(n — 1) are consistent
for every m € Fp(E3(E2(€1(r,C1),62),C3),G,sp) and therefore we can apply
Theorem 4.4. 0

We recall that by Theorem 2.29 stated above, for a continuous representation 77 on
a Banach space X, if X is an Asplund space then 7 * is continuous. We also recall that
all reflexive Banach spaces are Asplund spaces and it was shown in the introduction
that the subclass of reflexive Banach spaces of &3(&2(&(r, Cy), 62), C3) contains
several interesting families of Banach spaces.

As stated in Subsection 2.1 above, the main example of couples (X, G) satisfying
the conditions (B1)—(B4) are groups G with a BN-pair acting on a building . In
Proposition 2.9, we showed that the condition (85 ) can also be deduced for these
examples for suitable values of r. Therefore we can deduce the following corollary:

Corollary 4.8. Let G be a group coming from a BN-pair and let ¥ be the
n-dimensional building on which it acts. Assume that n > 1 and there is some
[ > 1 such that all the [-dimensional links of ¥ are compact. Denote by q the
thickness of the building ¥ and let m’ be the smallest integer such that all the links
of 1-dimensional links of T are generalized m-gons withm < m’.

Let

4 m =3,
r> i =,
18 m' =6,
20 m' =8,

and C; > 1,1 > 6, > 0, C3 > 1 be constants, then there are sg = so(n) > 0 and
Q == Q(n, r,m', C1, 92, C3,S0) e N
such that if g > Q, then

H*(G.n)= P H*'(Dy: X").
ncA
and Hi(G,JT)ZO fori =1,.. 1,

forevery m € F9(€3(E2(81(r, C1), 02),C3), G, 50).
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Proof. Fix
4—;—r m/ — 3,
o % m =4,
- 182+r m’ = 6.
ZO;-r m’ = 8,

and let so(n) > 0, § = 8(n,r,r’,Cy,602,C3,59) > 0 be as in Theorem 4.7. By
Proposition 2.9, there is a large enough Q such that for every ¢ > Q, ¥ fulfils the
condition (85 /) and we are done by Theorem 4.7. 0J

A. Angle between projections without the consistency assumption

Under the notations of Definition 2.10, given 7, 7" € A such that P;, P/, Pyny exist,
we can define cos(Z(P;, P/)) as

cos (L(Pt, Ptf)) = max {|| PPy (I — Piayr)

|3

We note that in this definition, we do not assume that P;ny Py = Prny or that
Pin P = Prqy. However, even without this assumption of consistency, we can
derive a theorem similar to Theorem 3.10:

Theorem A.1. Let X, A and P, € A(n — 1) U A(n) be as in Definition 3.1 above.
Assume that for every n € A(n — 2), the projection Py exists and for o € A(n — 1),
ifn C o then Py Py = Py,

Then there is B > 1 such that for every ¢ > 0 there is y > 0 such that if

max {||Po|| < B and max {cos (£(Ps, Py’) :0.0" € A(n—1)} <,
geA(n—1)

Pr’Pt([ - Prﬂr’)“}-

then Py exist for any t € A and for every t,7" C A,
cos (Z(Pr, Pp)) <e.
We will start with the following lemma asserting that under the assumptions of

the above theorems the projections are bounded and “almost” commute:

Lemma A.2. Let X, A and P, € A(n — 1) U A(n) be as in Definition 3.1 above.
Assume that for every n € A(n — 2), the projection Py exists and for o € A(n — 1),
ifn C o then Py Py = Py

Then there is B > 1 such that for every € > 0 there is y > 0 such that if

max {||Ps|| < B and max {cos (£(Ps, Py')) :0,0" € A(n—1)} <.
geA(n—1)

then the following holds:
(1) Foreveryt C A, Py existsand || P.|| <4(n + 1) + 2.
(2) Foreveryt,t' C A, ||Pt Py — Py Pe|| < e



Vol. 92 (2017) Cohomology with coefficients in Banach space representations 425

Proof. Take B = min {fy, 2(2"(;1"—31“;1—} and y < yo. The proof of the first assertion
is identical to the one given in the proof of Theorem 3.10 above (note that the
consistency assumption was not used in this proof).

We are left with proving the second assertion. Fix ¢ > 0 and assume that y < yy.

Then for every 7, 7" € A and every i € N the following holds:

| Pe Py — TETL|| < || Po(Py — TE)| + (P = THTL||
< 1P| Per = TL|| + || Pe — T2 T ]l

Note that | T/ | < B < 2504, and that || Pr|| < 4(n + 1) + 2. Combining these

bounds with Corollary 2.14 yields

2@4—0—1)F‘

|P: Py — T, T, < (4(/1 +1)+ 2)4(n -+ l)( 2+ 1)

qn+1ﬁ—1)F1

+@m+n+n(4m+nz

The right-hand side of the above inequality goes to 0 as / tends to oo and therefore
we can choose iq such that || Py Py — T¢° T;?ll < £ (note that this choice of ig holds

for every y < yp). Similarly, || P, P, — T;QTII'O” < £ and therefore
e . 3 -
| Pr Prr — Py Pel| < 2 + |TRT)? = TTR|.

We are left to prove that by choosing y small enough, we can assure that

. . : . £
ITET ~TETR) < 5,

when i is fixed. As in the proof of Theorem 3.5, we note that for any 0, 0" € A(n—1),
Therefore || T; Ty — Ty T || < 2y. By permuting pairwise 77 and T,» we get that

Hn+1)+l)m

io i i) i 2 io—1 i0—1 2
iWW%ﬂWWanwunst%(uﬁm

Recall that iy is fixed and therefore we can choose y small enough such that
; ; . ; g
HH“ﬁP—T?TPHSE,

and we are done. O
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After this, we are ready to prove Theorem A.1 above:

Proof. Let 8 be as in Lemma A.2 (note that § < By). Fix ¢ > 0 and let &; > 0,

€2 > 0 be constants that will be determined later. Let y; be the bound of the cosine of

the angles of Theorem 3.5 that correspond to &;. Similarly, let y, be the bound of the

cosine of the angles of Lemma A.2 that correspond to £5. Choose y = min {yl, yz}.
Let 7,7/ € A. Without loss of generality, it is sufficient to show that

”PtPr’([ - Prﬂr’)” = &.

Note that by the same arguments of the proof of Theorem 3.10, we can assume that
tNt e Aln—1—-k)with0 <k <n.

Let 0y, ...,0r € A(n — 1) be the pairwise disjoint simplices that contain t N 7’.
Without loss of generality we can assume that

tCop....,tCo; and v Coj4y,...,7 Cok.
We note that
Pt = PO‘()”'PO‘J'PI~
and P-[’=Po'j+1'°'Po'th/.
Therefore

P Py(I — Pynyr) = Poro"'PajPrP

0j+1

"'PakPr’(I _Ptﬂr’)-

We note that

I[PU()”'PGJ'PIPUJ'+1 "'PO']\-PI’(] _P‘Eﬁt’)”
= ”Pao"'Po_,'_l(Poth_PtPG_j)Pa,-+1 "'PakPr’(I - Ptﬂr’)“

+ ”Por()"'Paj_]PrPachrj.H "'PorkPr’(]_Prﬂr’)”
k

<@+ 1)+2) T (@40 + 1) +3)e,
_+_||PG()"'PUj_|PtPO‘jPO'j+;"'PO'kPI"(]—Ptﬂt’)'L

where the last inequality is due to Lemma A.2. Applying the same argument several
times, we get that

”PrPr’(] - Ptﬂr’)”
= | Pog -+ Po; PPo, sy - Poy Po(I = Penel)|

< +2@E0+ 1) +2) T @40+ 1) +3)e
+ ||PrPcm"'Pak(] — Penet) Pr||

dn+1) + 3)82

+ (4 + 1) +2)% cos (£(Pog. - - . Pay))
< (G +D@0+ D +2) T @0+ D +3)er + (40 + 1) +2)%,
< +2)@@+1D+2)"" @+ 1) +3)er + (401 + 1) +2) .

<(j + 20 + 1) +2)
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Therefore choosing

3 €
E1 = 5 = = 5
T2+ D+22 2T 2n+20@h+ )12 G+ 1) +3)
yields the needed inequality. U
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