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Equidistribution, ergodicity and irreducibility
associated with Gibbs measures

Adrien Boyer® and Dustin Mayeda™**

Abstract. We generalize an equidistribution theorem a la Bader—Muchnik for operator-valued
measures constructed from a family of boundary representations associated with Gibbs measures
in the context of convex cocompact discrete group of isometries of a simply connected connected
Riemannian manifold with pinched negative curvature. We combine a functional analytic tool,
namely the property RD of hyperbolic groups, together with a dynamical tool: an equidistribution
theorem of Paulin, Pollicott and Schapira inspired by a result of Roblin. In particular, we deduce
irreducibility of these new classes of boundary representations.

Mathematics Subject Classification (2010). 37A25, 37A30, 37ASS5, 37A60, 22D40; 43A90,
47A35.

Keywords. Gibbs densities, boundary representations, ergodic theorems, irreducibility, equi-
distribution, property RD.

1. Introduction

Viewing the group SL(2,R) as a group acting by isometries of the hyperbolic
plane we have an induced action on the geometric boundary of the hyperbolic plane
which is identified with the circle. The Lebesgue measure is quasi-invariant under
this boundary action (i.e. the sets of Lebesgue measure zero are preserved under
the action) and so there is a naturally associated unitary representation of SL(2,R)
on L2(S') called the quasi-regular representation. The quasi-regular representation is
irreducible and is part of a family of irreducible unitary representations of SL(2, R)
on L2(S") called the principal series which forms one of the families composing
the unitary dual. For a general locally compact group G, especially when G is
a discrete countable group, there is no hope of computing its unitary dual so we
will restrict ourselves to the problem of determining when the associated quasi-
regular representation of a G quasi-invariant action is irreducible. From a dynamical
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viewpoint the associated quasi-regular representation is interesting because it reflects
the ergodic theoretic properties of the action such as ergodicity and mixing.

Early on, Furstenberg [24] showed that when G is a semisimple Lie group the
space G/ P equipped with Haar measure where P is a minimal parabolic subgroup,
nowadays called the Poisson-Furstenberg boundary, can be realized as the Poisson
boundary of a random walk on a lattice in G. Motivated by these results we
further restrict the problem which we state as the following conjecture of Bader
and Muchnik [10]:

Conjecture 1.1. For a locally compact group G and a spread-out probability
measure |L on G, the quasi-regular representation associated to a jt-boundary of G
is irreducible.

For the rest of the paper we will restrict ourselves to the case when G is a discrete
countable group. Analogously to the case of SL(2, R) the action of the free group [,
on its boundary is quasi-invariant with respect to the Patterson—Sullivan measure
class and thus there is the associated quasi-regular representation. Figa-Talamanca
and Picardello (see [25] and [27]) construct the analog of the principal series which
are unitary representations of I, on L?(dF,) and show they are all irreducible.
For homogeneous trees Figa-Talamanca and Steger [26] show similar irreducibility
results for lattices in the automorphism group. Kuhn and Steger [36] have also
constructed different examples of irreducible representations of the free group. The
conjecture has also been solved for some actions of simple algebraic groups by Bekka
and Cowling in [11]. When G is a lattice in a Lie group Cowling and Steger [21]
showed that the irreducible representations of the ambient semisimple Lie group
restricted to G remain irreducible. In particular the quasi-regular representation
of SL(2,R) on L?(S') restricted to lattices is irreducible. Later on in the context
of CAT(-1) spaces for which a discrete group of isometries G acts cocompactly,
Connell and Muchnik (see [18] and [19]) proved when the geometric boundary is
equipped with a certain class of Gibbs measures that it can be realized as the Poisson
boundary of a random walk in G. This result led Bader and Muchnik [10] to prove
the conjecture for the action of the fundamental group of a compact negatively curved
manifold on the geometric boundary of the universal cover of the manifold, endowed
with the Patterson—Sullivan measure class. Recently the first named author has also
generalized the main theorem of Bader and Muchnik in [10] to the context of CAT(-1)
spaces and so irreducibility of boundary representations associated with Patterson—
Sullivan measures. Moreover Garncarek [29] has generalized the irreducibility result
of [10] for the action of a Gromov-Hyperbolic group on its geometric boundary
endowed with the Patterson—Sullivan measure class. He has also deduced thanks to
the work of [13] that if a symmetric random walk on a Gromov-Hyperbolic group has
finite exponential moment with respect to a word metric and such that the associated
Green metric satisfies the Ancona inequality then the action on the Poisson boundary
with respect to the harmonic measure is irreducible thanks to the work of [13]. It is
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not clear at all to us if any of the measures constructed in [19] have finite exponential
moment and satisfies the Ancona inequality and therefore it is not clear at all that
our result of irreducibility would follow from an application of these two results.
Hence it legitimates our dynamical approach to prove irreducibility of quasi-regular
representations associated with the class of measure arising as conditional measures
of the Gibbs measures, called Gibbs streams in [19] or also called Patterson densities
in [43]; generalizing the Patterson—Sullivan measures class.

Bader and Muchnik prove in [10, Theorem 3] an equidistribution theorem for
some operator-valued measures associated with Patterson—Sullivan measures. This
theorem can be thought of as a generalization of von Neumann’s ergodic theorem
for quasi-invariant measures for fundamental groups acting on the geometric
boundary of universal covers of compact negatively curved manifolds endowed
with the Patterson—Sullivan measures. These quasi-regular representations are
called boundary representations. It turns out that the irreducibility of boundary
representations follows from this generalization of von Neumann’s ergodic theorem.

We generalize the results of Bader and Muchnik to the action of a convex
cocompact discrete subgroup of isometries of a pinched negatively curved manifold
on its boundary endowed with the Gibbs streams measure class rather called in this
paper Patterson densities measure class. The Patterson densities are constructed by
first assigning a weight to each element of the orbit and then proceeding as in the
construction of the Patterson—Sullivan measures which we think of as the unweighted
case.

Historically it was Sinai who first merged the field of equilibrium statistical
mechanics from which the concept of Patterson density is imported from with the field
of hyperbolic smooth dynamical systems. Given a Holder-continuous potential /' on
the unit tangent bundle of a compact negatively curved manifold, the pressure of I
associated with the geodesic flow is given by

P(F) = sup {hm — f de},

where the supremum is taken over all measures on the unit tangent bundle which
are invariant under the fundamental group of the manifold and the geodesic flow
and #,, is the metric entropy of m associated with the geodesic flow. Bowen [7]
proved for negatively curved manifolds that there exists a unique measure called
the Gibbs measure which achieves the supremum and is in fact the eigenmeasure
associated to the transfer operator of F. As we said, the Patterson densities arise as
conditional measures of the Gibbs measure and when ' = 0 the Patterson densities
are the Patterson—Sullivan measures and the Gibbs measure is the Bowen—-Margulis—
Sullivan measure that maximizes the entropy.

The main tools of this paper are the property RD (Rapid Decay) that hyperbolic
groups satisfy (see [32] and [33]) combined with a spectral characterization
of the amenability of the action on the boundary (see [35] and [5]) together
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with an equidistribution theorem of Paulin—Pollicott—Schapira inspired by Roblin’s
equidistribution theorem which is itself based on the mixing property of the geodesic
flow. Indeed this idea of using the mixing property of the geodesic flow goes back
to Margulis [38] who used it in order to count the closed geodesics on compact
negatively curved manifolds. However, the first object to understand is the Harish-
Chandra function associated with Patterson densities. This function plays a major
role in harmonic analysis of spherical functions and in the theory of irreducible
representations of semismple Lie groups, see for example [28].

Notation. Let M be a complete connected Riemannian manifold with pinched neg-
ative curvature. Let X = M, let q : X — M be a universal Riemannian covering
map with a covering group I" viewed as a non-elementary discrete group of isometries
of X, denote the sphere at infinity by X and endow X = X U dX with the cone
topology.

The limit set of I" denoted by Ar is the set of all accumulation points in X of
an orbit. Namely Ar := Tx N 90X, with the closure in X. Notice that the limit set
does not depend on the choice of x € X. We denote by QI the subset of 71X of
tangent vectors to the geodesic lines in X whose endpoints both lie in Ar. Following
the notation in [18], define the geodesic hull GH(Ar) as the union of all geodesics
in X with both endpoints in Ar. The convex hull of Ar denoted by CH(Ar), is the
smallest convex subset of X containing GH(Ar). In CAT(-1) spaces we always have
CH(Ar) = GH(Ar). We say that I is convex cocompact if it acts cocompactly
on CH(Ar).

Let p : T'X — X be the base point projection map from the unit tangent bundle
to X. Let g = (g;):er be the geodesic flow on T'M and g = (g;);cr the one
on T' X and equip the unit tangent bundle with the following metric

1 2
dpix(ow) = —= fR d(p(g: (), plg: (w))e~"/2dt,

where we use the notation v for an element in 7' X (and v for an element of 9.X).
Let F : T'M — R be a Holder-continuous map, called a potential, and let
F=Fo g be the I'-invariant potential associated on 71X . In this work, as it has
been suggested by Kaimanovich, we assume that Fis symmetric, that is F is invariant
by the antipodal map
LiveT X r» —veTHX, (1.1)

Forall x, y € X, let us define

y __ d(x,y) _
f P f F@ (v)di
X 0

where v = (x, Uy y) € T'X and Uy,y is the unit tangent vector at x to a geodesic
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from x through y. Set:
y

d¥ (x,y) ;=[ F. (1.2)

A priorid F is not non-negative and is far to be a distance, nevertheless the symmetry
of F implies
dF(x.y)zdF(y.x)‘ (1.3)

Define the Gibbs cocycle as

—+o00

U[N UIN
CF(x,y):= lim / F—[ F= lim df(y.v)—df(x,v), (1.4
t y x —>-+o00

where v, is any geodesic ray ending at a point v in X . Observe that if F = —1 the
Gibbs cocycle is nothing else than the Busemann cocycle, that is the horospherical
distance from x to y relative to v.

The foundations of Patterson—Sullivan measures theory are in the important papers
[42,50]. See [14,16], and [44] for more general results in the context of CAT(-1)
spaces. These measures are also called conformal densities. In this paper we are
dealing with the Patterson density of (T', F') where F is the potential function defined
above and I" a discrete group of isometries of X.

Recall that y,v means y,v(B) = v(y 'B) where y is in " and B is a Borel
subset of some measure space. More specifically we say that v is a Patterson
density of dimension o € R for (I', F) if vF is a map which satisfies the following
conditions:

P F

isamap fromx € X — vf e M(X),ie. vy

LIV is a positive finite measure.

* Forall x and y in X, vF and vf are equivalent, and we have

F
de (v) - erF_“(x,y)
dvf
 Forally € T, and for all x € X we have y,vf = vfx.

In this context define the critical exponent of (I, ') for ¢ > 0 large enough as

1 F
or,F := limsup — Z ed (x,yx)_

n—c<d(yx,x)<n

Even if the construction of a Patterson density was not done in this general
context with a potential function, the technic is exactly the same. We attribute the
following proposition to Patterson in his seminal paper [42], ensuring the existence
of a Patterson density:

Proposition 1.2 (S.-J. Patterson). If or p < 00, then there exists at least one
Fatterson density of dimension o g with support exactly equal to Ar.
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A Patterson density v of dimension o gives rise to a unitary representations
(Jrvf)xex defined for x € X as:

m,f T — U(L2(8X, vE))
(s (E) ) = 3607 g1, (1.5)

where £ € L2(dX,vI) and v € 0X.
The representations (7, F)xeX are unitarily equivalent. Let x be in X and
denote 7, r by mx. The matrix coefficient

¢x : T — (mx(¥)lgx. 1ox) € RT, (1.6)

is called the Harish-Chandra function, where 15y denotes the characteristic function
of 0X.

Construction of ergodic operator-valued measures. The Banach space of bounded
linear operators from the Banach space of continuous functions on a locally compact
space Z to the Banach space of bounded operators on a Hilbert space # will
be denoted by £(C(Z), B(H#)). The Banach space £(C(Z). B(H)) is naturally
isomorphic to the dual of the Banach space C (Z)R@H®H where ® denotes the
projective tensor product: Thus £(C(Z), B(JH )) will be called the space of operator-
valued measures.

Pick x in X, and a positive real number p and define for all integers n > 1 the

annulus
Ca(x)={y el |n—1=<d(yx,x) <n}.

Let D, be the unit Dirac mass centered at a point y € X. Consider the sequence of
operator-valued measures defined for all integers n > 1 as:

L f € C(X) > eppe T Fn Y ed"ErIp (1) e (7) e B(L*(dX,vD)),
y€Cn (x) x(y)
(1.7)
with the normalization constant
__or,Fllmr| |
Cr,F = 1—_6—:(;]:::, (1.8)

where ||m g || is the mass of the so-called Gibbs measure associated with v . We refer
to Section 2.3 for definitions and properties of Gibbs measures. The normalization
constant cr, r ensures that for any x in X

+ E o] dF ’ — S F F
cr pe OrFn Z ed " (x )/x)Dyx ® Dy—ly vi ® v}
y€Cn(x)

as n goes to 400 with respect to the weak* convergence on C (X)*.
g p g
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If f € C(X), we denote by flax its continuous restriction to the space X .
Let m(f) be the operator in B(L?*(dX,vl)) acting on L2(3X,vE) by
multiplication and define the operator-valued measure M, as:

My f € C(X) > m(fi,)Pr,y € B(L*(0X,v])). (1.9)

X

where Py, denotes the orthogonal projection on the space of constant functions.

Main results. The main result of this paper is the following theorem:

Theorem 1.3 (Equidistribution a la Bader—Muchnik). Let I" be a convex cocompact
discrete group of isometries of a complete connected Riemannian manifold with
pinched negative curvature X. Let F : T'X — R be a Hélder-continuous
[-invariant potential and let v be a Patterson density for (I, F) of dimension OT,F.

Assume that F is symmetric and assume that the Gibbs measure associated
with vF is mixing with respect to the geodesic flow. Then for each x in CH(Ar) we
have

MY — My

as n — 400 with respect to the weak™ topology of the Banach space

£(C(X). B(L*(0X,v]))).
In other words we have for all f € C(X) and all &, n € L*(3X, vf).‘

. n o F -3 F
Jim g = ([ et ) ([ fmand),

With the same hypotheses of the above theorem, we deduce immediately an
ergodic theorem a la von Neumann for the Patterson density (I", F') associated with v f
on dX.

Corollary 1.4 (Ergodicity a la von Neumann). Forall x € CH(Ar)

F T
r pe T En 3 d G0 ) P,

y€Cn(x) x(7)

asn — oo with respect to the weak operator topology on B(L?(dX, vE)).
In the same setting of Theorem 1.3 we have:

Corollary 1.5 (Irreducibility). Assume that F is cohomologous to a symmetric
potential and assume that the Gibbs measure is mixing. For all x € X, the
representations my : I’ — U(L?(3X, vf)) are irreducible.

Remark 1.6. The assumption of mixing of Gibbs measures with respect to the
geodesic flow is automatic in the case of constant curvature, hence all boundary
representations of convex cocompact groups associated with a Patterson density
with a Holder-continuous potential F cohomologous to a symmetric potential is
irreducible. Note that this property does not depend on the base point.
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We obtain also the following theorem which classifies the unitary representations
associated with a Patterson density. We refer to Subsection 2.2 for the definitions
concerning items (3) and (4).

Theorem 1.7. Let I" be a convex cocompact discrete group of isometries of X, pick
a point x in X and let vE and vG be Patterson densities associated with Holder-
continuous I"-invariant symmetric potentials F and G on T'X. Assume that the
Gibbs measure is mixing with respect to the geodesic flow. Then the following
assertions are equivalent:

(1) The unitary 7t r and 7 G are equivalent as unitary representations.
X x

(2) The measures vE and vC are in the same class.
(3) The potentials F and G have the same periods.

(4) The Gibbs cocycles associated with F and G are cohomologous in restriction
to QI.

The method of the proof of Theorem 1.3 consists of two steps: given a sequence
of functionals of the dual of a separable Banach space, we shall prove:

Step 1: The sequence is uniformly bounded: existence of accumulation points (by
the Banach—Alaoglu theorem).

Step 2: Identification of the limit using equidistribution theorems (only one
accumulation point).

Structure of the paper. In Section 2 we remind the reader of some standard facts
about the geometry in negative curvature, Gibbs cocycles and about Gibbs measures
generalizing the Bowen—Margulis—Sullivan measures on the unit tangent bundle to
provide the generalization of Roblin’s equidistribution theorem by Paulin, Pollicott
and Schapira. In Section 3 we prove fundamental estimates on the Harish-Chandra
function. In Section 4 we prove uniform boundedness for the sequences of operators
using property RD of de la Harpe et Jolissaint and the amenability of the action on the
boundary, thus concluding Step 1 of the proof of Theorem 1.3. In Section 5 we use
Paulin—Pollicott—Schapira’s equidistribution theorem to achieve Step 2 of the proof
of Theorem 1.3. In Section 6 we prove our Theorem 1.3 and its corollaries as well as
Theorem 1.7.
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Uri Bader for useful discussions and criticisms. We would like to thank Vadim
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2. Preliminaries

2.1. Geometry of negative curvature and potential functions. Recall that X is
a complete simply connected Riemannian manifold with dimension at least 2 and
pinched sectional curvature —h?> < K < —1 with b > 1, equipped with its
Riemannian distance denoted by d. The geometric boundary or the boundary at
infinity, also called Gromov boundary is denoted by dX. We consider I" a non-
elementary discrete group of isometries of X.

2.1.1. Busemann functions, Bourdon’s metric. Let x be in X, let r be a geodesic
ray and define the Busemann function associated with the geodesic ray r as

belx) = tir&d(x,r(t)) —t.

Let x and y be in X and consider the unique semi-infinite geodesic [xy) passing
through x and y, starting at x. Define w3} as the unique point at the boundary so that

wl = [xy) 13X, (2.1)

The limit lim, o d(x,r(t)) — d(y, r(t)) exists, is equal to b,(x) — b, (y), and is
independent of the choice of r. The horospherical distance from x to y relative to v
is defined as

Bu(x,y) = [l_1>r(r>10 d(x,r()) —d(y,r()). (2.2)
Recall that the Gromov product of two points a, b € X relative to x € X is
1
(@,0)x = (d(x,a) + d(x,b) — d(a,])).
Let v, w be in dX such thatv # w. If a, —> v € X, b, —> w € dX, then
(v, w)x = lim (an, bn)x
n—oo

exists and does not depend on the sequences a, and b,. If r is a geodesic ray
representing v we have:

1
(v, y)x = 1@00 E(d()a r(t)) +d(x,y)—d(r(),y)),

P

then we obtain:
Buv(x,y) = 2(v, y)x —d(x,y). (2.3)

Thus, if z € X is a point on the geodesic connecting v and w, then

(v w)x = 5 (Bulx. 2) + Pux,2)).
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The geometric boundary is endowed with the Bourdon metric which defines
the same topology on the boundary as the cone topology (see [17, Chapitre III.H,
Proposition 3.7 and Proposition 3.21]. Indeed the formula

dy(v, w) = e~ @Wx (2.4)

defines a metric on dX when we set dy(v,v) = 0. This is due to Bourdon and we
refer to [14, Théoréme 2.5.1] for more details. We have the following comparison
formula:

dy(v. w) =e% (,Bv(x»y)+,Bw(x.~Y))dx(U~w)_ (2.5)

If x and y are points of X and R is a positive real number, we define the shadow
ORr(x, y) to be the set of v in X such that the geodesic ray issued from x with limit
point v hits the closed ball of center y with radius R > 0.

The Sullivan shadow lemma is a very useful tool in ergodic theory of discrete
groups, and it has been generalized to the context of Gibbs measure by Moshen
in [39], see also [43, Proposition 11.1].

Lemma 2.1. Let T' be a discrete group of isometries of X and v be a Patterson
density of dimension o for (I', F). For all o > or,r and for any compact subset
K C X there exists a positive contant C > 0 such that for all x and y in 'K C X:

%edF(x,y) —od(x,y) = vf(OR(qu)) < CedF(x,y) _ad(x.y)'

Assuming that I" is convex cocompact we will use the above lemma with K C
CH(Ar) being the closure of a fundamental domain of the action of I' acting
on CH(Ar). If I is cocompact, then the limit set is the entire geometric boundary
and the shadow lemma holds everywhere on X.

We say that X is a §-hyperbolic space if we have the following inequality: for all
x,y,z,teX

(x,z); = min{(x, y), (y,2):} — 6, (2.6)

see [17, 3.17 Remarks (4), p. 433]. Using the Bourdon metric on the boundary
we can compare a shadow to certain balls. More precisely we have the following
proposition. This lemma, rather easy and well known, will be very useful since the
boundary admits the structure of a metric space.

Lemma 2.2.

(1) Let R > 45. Then
B(w;’,e_d(x’y)) C Og(x,y).

(2) Letany R > 0, and set C = e20+t R Then

Or(x,y) C B(w), Ce &),
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Proof. We first prove the first inclusion. Let v such that (v, w})), > d(x,y). We
let z be on [xv) such that d(x, z) = d(x, y). We have

d(y,z) =d(x,y) +d(x,z) —2(y,2)x.
We have

(y.2)x = min{(y, wY)x. (z, wy)x} — 8
= min{d(x, ), (z, w})x} — 8
> min{d(x, y), (z, v)x, (v, wy)x} — 26
> min{d(x, y),d(x,z),d(x,y)} — 26
=d(x,y)—26,
it follows that d(y, z) < 44.

We now prove the second inclusion. Let v € Og(x,y) such that [xv) N
Bx(y,R) # @ and let z € [xv) so that d(y, z) < R. We have

(v, w}c’) > min{(v, y)x, (¥, w,{)x} — 4
= min{(v, y),d(x,y)} —§
> min{(v, 2)x, (2, y)x. d(x, y)} — 28
= min{d(x, 2), (z, Y)x, d(x, y)} — 28
> min{d(x,y) — R,d(x,y)— R,d(x,y)} — 25
= d(x,y) — R—25. -

2.1.2. Gibbs Cocycle and some geometric properties. Given F:T'X > Ra
['-invariant Holder-continuous potential we define, as in 1.4 from the Introduction,
the Gibbs cocycle CF (x,y) where v € dX and x,y € X. We shall give some
properties of the Gibbs cocycle but first of all note that if F = —1 then

CF(x,y) = Bulx,v).

Hence, for every s € R we have:
C/ 7, y) =€) (x, ) + sBu(x. ). 2.7)

Observe that if x belongs to the geodesic ray from y to v then
y

X

The Gibbs cocycle satisfies the following cocycle property: for all x, y,z € X and
v € dX we have

CFx,zy=CcF(x.y)+CF(y,z) and CF(y,x)=-CF(x,y)., (2.8)
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and the following I"-invariance property: forall y € I',all x, y € X and v € 0X:

Clilyx vy) = €5 (. %) (2.9)

We now provide a lemma stating some useful properties and local estimates of the
Gibbs cocycle.

Lemma 2.3. Fix R > 0 and assume that F is bounded on p Y (CH(Ar)) C T'X.
There exists positive constants C(R), D(R) and E(R) so that:

(1) For all x € CH(Ar) and for all y € X such that d(x,y) < R and for all
v € 0X we have
G (x.¥)] < C(R).

(2) Forall x in X, forall y € CH(Av) and for all v € Og(x, y) we have
€ (x. y) +d" (x, y)| < D(R).

(3) Forall x € CH(Ar) and for all y, z such that d(y,z) < R we have
dF (x,y) = d (x,2)| < E(R).

For a proof of items (1) and (2) see [43, Lemma 3.4] and for item (3) see
[43, Lemma 3.2].

2.2. Gibbs Cocycles, cohomology, periods and unitary representations. Follow-
ing [37], we recall some fundamental correspondences between potential functions,
Holderian cocycles, and periods. We complete theses fundamental observations by
adding a correspondence dealing with unitary boundary representations.

We say that a function defined on the boundary dX is Holder-continuous if it is
Holder-continuous with respect to Bourdon’s metric associated with some base boint
in X. Note that this definition does not depend on the choice of the base point. We
say that a cocycle C : I' x dX — R is a Holderian cocycle if for all y the map C(y, -)
is Holder-continuous and if it satisfies the cocycle equality

C(y1y2.v) = C(y1,y2v) + C(y2,v),

for all y;.y, € I' and for all v € dX. We say that two cocycles C and C’ are
cohomologous if there exists a function H : dX — R such that

C(.§) — C'(y.§) = H(y§) — H(E). (2.10)

Let y be a hyperbolic isometry, also called a loxodromic element, and denote by y
its attractive fixed point. Observe that the quantity

Cly.y")



Vol. 92 (2017) Boundary representations associated with Gibbs measures 361

depends only on the conjugacy class of y. Let x be on the axis of y and consider the
cocycle
C:(pv) €T xdX > CF (x, yx).

Observe that

X
Cy.y+) = f F
yx
and by assumption on the symmetry of F we have also
yx _
Clr.y+) = / F.
X

We call the quantity | xy *F the period of y and we denote it by Per(,). The set
Per(’ﬁ) := {Per(,) with y a loxodromic element}, (2.11)

is called the periods of F. Observe that if F =1 then Per(,) is nothing but the
translation length of y and Per(F) is the length spectrum of M.
Remark 2.4. Observe also that this definition of periods of F coincides with the
definition of periods of a Holderian cocycle in [37].

Let F* = T'X — R be another Holder-continuous T'-invariant function. We

say that F*is cohomologous to F if there exists a function differentiable along every
flow line G : T'X — R such that

F*(v)— F(v) = 4

Zi_[“:()G(gtv). (212)

Consider the cocycle
Cf:(yv)— CUF(x, yX).

First note that if 7 is bounded then C ¥ is Holder-continuous . Then observe that if F*
is cohomologous to Fthen CF and CF” are cohomologous (see [43, §3.3 Remarks
and Proposition 3.5] for more details). The periods are an invariant of the cohomology
class of potentials and also of cocycles. We have

Proposition 2.5. Ler F and G be two Hélder continuous T-invariant functions on
the unit tangent bundle of X. Pick x € X. The following assertions are equivalent

(1) vxF and vf are in the same class.
(2) The functions F and G have the same periods.

(3) The Gibbs cocycles CF and CY associated with F and G are cohomologous in
restriction to Q1.

Proof. Thanks to Remark 2.4 we refer to [37, §1II, Proposition 1] for the equivalence
between (1) and (2) and between (1) and (3). For (2) implies (3) we refer to [43,
Remark 3.1]. O
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At the level of unitary representations we say that T, F and 7 ¢ are equivalent if
X X
there exists a unitary operator U : L2(dX,vl) — L2(dX, vf) such that:

Ur,r = m,gU. (2.13)

* ., . . . .
Lemma 2.6. Let v and vF™ be two Patterson densities of dimension o. Pick x
in X and consider the unitary representations T, F and w px. If F and F* are
= X
cohomologous then 7w, and 7t r+ are equivalent.
J X

Proof. Since F and F* are cohomologous then the cocycles
Cf:(p,v) > CvF(x,yx) and CF": (v,v) CUF*(x.yx)

are cohomologous. Thus the multiplication operator by e2H from L%(0X, Uf
to L?(dX, vf ") intertwines the unitary representations s, and m g+ where
H : 0X — R satisfies the identity (2.10). ' O

2.3. Gibbs measures and Roblin-Paulin—Pollicott-Schapira’s
equidistribution theorem.

2.3.1. Hopf parametrization. Let us now recall a parametrization of 7! X in terms
of the boundary at infinity of X.

If v.= (x,?) is an element of 7! X, consider the unique geodesic defined by v
represented by an isometry r : R — X such that 7(0) = ¢(v) and %lt:or = U
We denote by v_ and v4 the endpoints of the geodesic such that r(—o0) = v_ and
r(4+00) = vy.

Let us define 92X = 0X x 0X — A, where A is the diagonal of X x dX. For
every base point xq in X, the space 7' X may be identified with 3*X x R, by the
map which maps a unit tangent vector v to the triple (v—, v4, ) where ¢ represents
the algebraic distance on the image of the geodesic represented by r between r(0)
and the closest point of the geodesic to x¢. This parametrization, depending a priori
on X, differs from the one defined by another base point x; only by an additive term
on the third factor (independent of the time ).

2.3.2. The potential gap. For all x in X and for all v, w € dX define the gap map

a5 1 w,~ w,N x~
Dy r(v,w) :=exp (—(f F—[ F +[ F))
2 X Uy Uy

We observe that D, r generalizes Bourdon’s metric d, since for F = —1 we obtain
Dy r = dx. Note the I" invariance property Dyx r(yv.yw) = Dy r(v, w) for all
y € I''and for all v, w € 0X.
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2.3.3. The Gibbs states of (I', F'). Let o be a real number and let (vf )xex be a
Patterson density of dimension o for (I", F'). Once we have fixed a base point xy € X
and used the Hopf parametrization, define the Gibbs measures on T'X associated
with (] )xex as

dvxy(V_)d vy, (v4)dt

dm(v) =
D%_g,x(,(v—, v4)

(2.14)

The groups I' and R act on 3°X x R via y(v—,v4,1) = (yv—_, yv4.t) and via the
goedesic flow s(v—,v4,f) = (v—,v4+,t + 5). Observe that both actions commute.
Thus define mp on T\T'X = T M, and we call m g the Gibbs measures on T' M
associated with (Uf)xex. If |lmp| < oo we say that mg is finite. The finiteness
of the Gibbs measures will always be satisfied when we consider convex cocompact
groups.

2.3.4. Mixing property of Gibbs measures. We say that g, is mixing on I'\7'' X
with respect to mp if for all bounded Borel subsets A, B C TI'\T'X we have
limy s 40omp (AN gi(B)) = mp(A)mp(B).

There exists a condition which guarantees that the geodesic flow on 71X
is mixing: it is related to the non-arithmeticity of the spectrum of I', see [9].
More precisely: the translation length of an element y € [I' is defined as
t(y) := inf{d(x,yx),x € X}. The spectrum of I' is defined as the subgroup
of R generated by #(y) where y ranges over the hyperbolic isometries in I'. We
say that I" has an arithmetic spectrum if its spectrum is a discrete subgroup of R.
We refer to [43, Theorem 8.1] for a proof of the fact that the non-arithmeticity
of the spectrum implies the mixing property of the geodesic flow with respect the
to the Gibbs measures. The non-arithmeticity condition is verified in the following
cases: forisometries group of Riemannian surfaces, hyperbolic spaces and isometries
groups of CAT(-1) spaces with a non-trivial component in their limit set. We refer
to [22] and to [44, Proposition 1.6, Chapitre 1] for more details.

We have finished the preparations to state Theorem 1.3 and its corollary which
will be one of our main tools. The main idea of these equidistribution results goes
back to the pioneering work of Margulis [38] who made a connection between the
mixing property of the geodesic flow with the counting of closed geodesics on a
compact negatively curved manifold. The form of the following equidistribution
results, due to Paulin, Pollicott and Schapira [43, Theorem 9.1], is inspired by the
results of T. Roblin in [44, Théoréeme 4.1.1]. We refer also to [8] for an introduction
to Roblin’s equidistribution theorem.

Theorem 2.7 (Paulin, Pollicott and Schapira). Let I" be a discrete group of isometries
of X and assume that or p is finite and positive. Assume that m g is finite and mixing
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under the geodesic flow on TYM. Then for all x,y € X and for all ¢ > 0:

JF’F||mF|| e_UF.Fn
1] —e€or.F

F
Z e? (x’yy)D},—lx ® Dyy — vf ® vf
{reln—c<d(x,yy)<n}

as n — 400 with respect to the weak* convergence of C(X x X)*.

As a corollary we obtain the following result that we shall use in the Step 2 of the
computation of the limit in Section 5.

For a subset A in X with a vertex x, denote by €,(A) that is the union of the
geodesic rays or lines starting from x and ending at A, and this a subset of €, (4) C X
so that €,(A4) N dX = A.

Corollary 2.8. Let ' be a discrete group of isometries of X. Assume that mp is
finite and mixing under the geodesic flow on T'M. If U and V are two Borel sets,
then for all x,y € X and for all ¢ > 0:

. or,Flmrel _ F
lim sup me TR Z ed (x,yx)(Dyx b Dy—lx)(xifx(U) ® XE.\'(V))

s Cn (x)
Fan. . F
< vy (U)v, (V).
We recall that we have defined the normalization constant cr g as

R or,Flmr|
LE =1 _e-orr"

3. The Harish-Chandra function

The goal of this section is to prove the following estimate on the Harish-Chandra
function.

Proposition 3.1 (Harish-Chandra’s estimate). Let vF = (Uf )xex be a Patterson
density of dimension or r. There exists a constant R > 0 and a constant C > 0
(depending on R) such that for all y € T satisfying d(x,yx) > R withx in CH(Ar)
we have

C'd(x, yx)e%dF(x’ yx) — sor,Fd(x,yx)
< ¢x(y) < Cd(x, yx)e%dF(x’ yx) — %Ur,pd(x, yx).

Remark 3.2. It would be probably more appropriate to call these estimates Harish-
Chandra Anker’s estimates because Anker has improved estimates established by
Harish-Chandra in the setting of semisimple Lie groups. He improved notably the
lower bound by adding a polynomial, see [6].



Vol. 92 (2017) Boundary representations associated with Gibbs measures 365

3.1. Some technical lemmas. The following lemma is due to S. Alvarez in [3].
Since our methods are rather analytical and since our conventions are different, we
give another shorter proof.

Lemma 3.3. For any R > 48, there exits r > 0 such that for all x, y, z aligned in
this order we have for all v € 01X\ Ogr(x, y):

Bu(y.z) <r—d(y.z).

Proof. We have B,(y,z) = 2(v,z), —d(y,z). The hyperbolic inequality (2.6)
implies that (v,z), < (v, w;)y + §. An upper bound of the quantity (v, wf,)y is
equivalent to a lower bound of d, (v, w}). We have f,,z (x,y) = d(x,y) (because
wj = wy) and By (x,y) = 2(v, y)x — d(x, y). Thus the hyperbolic inequality (2.6)
implies

Pol(x.y) + ﬁwi (x,y) = 2(v, y)x = 2min{(v, wy)x, (Wy, y)x} — 26
= 2min{(v, wy)x, d(x, y)} — 23.

Since v € IX\ORr(x, y) we have dx (v, w}) > e 4x)) by Lemma 2.2, equivalently
(v.w})x < d(x,y). Thus

-5 =

e%(ﬁv(xvy)Jf_lei(xay)) > 2 — &
T dx(v,wy)  dx(v,w3)

By the conformal equivalence of the metric on the boundary we have:
dy(v.w2) = dx(v, w;)e%(ﬁu(x, )+ Buws (x, ¥))

hence
—6 z
e’ <dy(v,wy),

and we set r = 44 to conclude the proof. (]

Before proceeding we will need to set up some notation. We follow the
decomposition used by Alvarez in [3].

Definition of A; g(y). Fix R > 0 such that Lemma 2.2 is available. Let y be in I'
such that d(x, yx) > R and consider the geodesic [xw}") starting at x and passing
through yx and ending at w}™ € 0X. Let z; fori = 0,..., N be a finite sequence of
points belonging to [xw™) aligned in the following order: zy, ..., zo, with zp = yx
and so that the choice of zy satisfies d(x,zny) < R/2, and d(z;,zi+1) = R/2.
Observe that d(x, yx) = d(x,zn) + N%.
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Fori = 1,..., N notice that Or(x,z;—1) C Og(x,z;). Indeed, let & be in
Ogr(x,zj—y) and thus (§,z;—1)x > d(x,zj—1) — R. We have

(§.zi)x = min{(§,zi—1)x, (zi, Zi—1)x} — 6
= min{(§, zi—1)x,d(x,2;)} — 8
> min{d(x,zj—1) — R,d(x.z;)} — 8
= min{d(x,z;) — R/2,d(x,z;)} —§
=d(x,zj)— R/2-6
>d(x,z;) — R,

where the last inequality follows from the fact that R > 24.
We set

Ai,r(y) = Opr(x,zi)\ORr(x, zi—1).

Observe that Ay g = 0X\ORr(x,zN—-1).
We can decompose the boundary as the following disjoint union

90X := UN A; r(y) U Ogr(x, yx). (3.1)

Proposition 3.4. We suppose here that F is symmetric. Let vF be a Patterson
density of dimension o > or,f so that the estimates in Moshen’s Shadow lemma hold
(Lemma 2.1). There exists a constant C > 0 such that forally € I', v € A; gr(y),
and 1 <i < N we have that

187 @i yx) —0d(zi,yx) < (CF (21, %) < ced ¥ (21 yx) —0d(zi yx),

Proof. Recall that CvF“" (zi,yx) = CUF (zi, yx) + oBy(zi, yX).

If By(zi, yx) = 0 then Lemma 3.3 implies that d(z;, yx) < r for some positive
real number r. Therefore the estimates follow from Lemma 2.3(2). Now we call z’
the point of the intersection of the horosphere centered at v passing through yx and
the geodesic passing through v and yx. If 8,(z;, yx) < 0, then yx,z" and v are
aligned in this order. Thus we can write

vy z! vy
lim f F = F+ lim F.
—>+00 yx yXx t—>400 =/

Since B, (yx,z") = d(yx, z’) we have

Zl

CF=o(z,yx) = CF(z,2) +f F —o,
yx

besides, the symmetry of F implies

CF=o(z,yx) = CF(z:,2) + (dF (2, yx) — 0d(Z', yx)). (3.2)



Vol. 92 (2017) Boundary representations associated with Gibbs measures 367
Notice that

d(z;,z") <d(zi,yx) +d(yx,z")
= d(zi, yx) + Bu(yx,2')
= d(zi, yx) + Bu(yx, i)
<d(z,yx)+r—dyx,z)
i
Thus, the fist term on the right hand side equality (3.2) is bounded by Lemma 2.3(1).
In the second term on the right hand side equality (3.2) the quantity d ¥ (z/, yx) <

d¥ (zi,yx) + E(r), for some positive constant E(r) by Lemma 2.3(3); and the
triangle inequality implying d(z’, yx) < d(z;, yx) + r completes the proof. O

Proposition 3.5. There exists a positive constant C > Qsuchthatforalli =1, ..., N
and for all v € A; r(y) we have:

C_le—%od(x,zi)eaa’(x,zi) < o3 Bu(x, i) < Ce—%ad(x,z,-)ead(x,zi).

Proof. The proof is based on the hyperbolic inequality (2.6).
Let us prove the right hand side inequality. We have

Buv(x,zi) = 2(v, zi)x — d(x, z;).

We shall just control the Gromov product (v, z;)x for v € A; gr.
For all i, for all v we have:

(v, wr*) = min{(v, z;)x, (zi, wr*)x} — 6
= min{(v, z;)x. d(x,z;)} — 6
= (U,Z,’)x — 4.

Therefore,
= %oa’(x y 2 )

e%ﬂv(x9zl) Eegge 7E .
dg (v, wy")

If v € A; g then v is not in Og(x,z;_;), and thus v is not in B(w}*, e 9%%i-1))
hence by Lemma 2.2 we have dy (v, w}) = e 4™:7i-1) = e~dx.z)-5  We deduce

e%ﬁv(X, zi) < 60(8 + R/Z)e—%O'd(x,Z,‘)ecrd(x,zi).

We prove now the left hand side inequality. To do so, write B,(x,z;) =
Bv(x,zi_1) + Bv(zi—1, z;). Note that for all v € 0X we have By(z;—1,2;) > —R/2.
Now write again

Bu(x,zi—1) = 2(v,zi—1)x — d(x,Zi—1).
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We have

(v, Zi—1)x = min{(v, W)y, (WI*, zi—1)x} — 0
= min{(v, wr™)x.d(x,zi—1)} — .

If v is in A; g, then v is not in B(w}™, e~¥®2i-1)). Hence (v, w}™)x < d(x,zi-1).
It follows that
(v,2i)x = d(x,zi—1) — 8.

We deduce that

e3Pv(x.2) S oG-R/4—30d(x.2i1) 0d(x, 2i-1).
Since we have d(x,z;—1) = d(x, z;) + R/2 it follows that
e3Bv(x.2i) 5 o8, —30d(x.2i) 0d(x,2;),
Hence, we set C = e +R/2) 1o conclude the proof. O

3.2. Proof of estimates. We are ready to establish the Harish-Chandra estimates.

Proof. We only prove the upper bound, the lower bound follows by the same method.
Pick x € CH(Ar) and write the Harish-Chandra function as a sum of integrals
over the partition (3.1) as follows:

N
loF—o¢. 1~ F—o
e (y) = Z[ e2Cv (X ¥X) gy F (p) 4 [ e2Cv (X1 ¥X) gy F (),
i=1"A4iR OR(x,yx)
To prove the proposition we will show that each integral is comparable to

e%afF(x. yX) — %Ud(x, yx).
The upper bound over Og(x, yx).

1 ~F—
f e2Co (X V%) g F ()
ORr(x,yx)

< CvF (Og(x, yx))e—%dF(x, yx) + 1od(x, yx)

< Ce%dF(x, yx) — 30d(x, yx),

where the first inequality follows from Lemma 2.3(2) since yx is in CH(Ar), and
the second inequality follows from the upper bound of Mohsen’s shadow Lemma
(Lemma 2.1), the compact K being the closure of a fundamental domain of the
action of I' on CH(Ar).
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The upper bound over A; g (y). Wehave established two useful inequalities dealing
with the terms we shall control: the first one follows from Proposition 3.4. There
exists C > 0 such that we have for all i, for all v € A; r(y):

e%Cf_J(zi, ¥X) < Ce%dF(Z,-, yx) — %Od(zis Vx). (3.3)
The second one is from Proposition 3.5. There exists C > 0 so that
e%ﬁv(X,Zi) < Ce—%ad(x,z,-)eod(x,zi)_ (3.4)

Combining these two estimates will yield the bound over A; g(y). We will use a
constant C' which absorbs the other constants. Now estimating over 4; g(y) we get,

[e%Cf—G(x,yx)dvf(v) _ fe%CvFHU(Zi‘yx)e%C{(x’Zi)

Ai, Aj,

R()’) r) 'C%O'ﬁv(.x, Zz)dvf(v)
L(JF

Inequality (3.3) < Cez(d (zi yx) —0d(z;, yx))

f e3C (0. 20)  50Bu (X, 20) 4 F ()
AI.R(V)
Lemma 2.3(2) < Ce3 (@7 (@i yx) —0d(zi. yx)) ;—3d " (x,2:)

[ e%gﬂv(x’zi)dvf(v)
A

i.R(Y)
Inequality (3.4) < Ce%(dF(zi’ yx) —od(zi, yx))e—%dF(x, Zi)
1

. e—iad(x, Zi)ead(x’zi)vf(Ai,R(}/))

_ CerdF Giyx)—30d(x,yx) —3d" (x, 2:)
42DV (45 ()

1d¥ (zi,yx) — Lod(x,yx) —2dF (x,z)

Moshen’s shadow Lemma < Ce?2 Zin Y 2 VX2 2L

Le0d(x, z,—)edF(x. zi) —od(x, z;)

_ CokdF (xyx) = Gd(x.yx)

Combining the upper bound over Og(x, yx) with the upper bound over A; g(y)
foralli = 1,..., N leads to

¢x(y) = C(N + 1)e%dF(x- yx) = 5d(x,yx),

Since N % = d(zy.,yx) < d(x,yx) we obtain the left hand side inequality of
Harish-Chandra’s estimates. ]
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Remark 3.6. In particular we prove that there exists C > 0 such that for all i =
l,...,N:

s F
LG%C)UF D) g F ) < cezd” Foy) = 30dyx) 35
i.R\Y

4. Uniform boundedness via RD

4.1. Quasi-regular representations. Let " be a discrete countable group acting on
a measure space (5, v) with a I'-quasi-invariant measure v. This action gives rise
to a unitary representation after correction by the square root of the Radon Nikodym
derivative of the action:

my i T — U(L2(S,v))

defined for £ € U(L?(S,v)) and for s € S as

dysv
dv

1
2
(o (1)§)(5) = ( ) ()E(ys). 4.1
This unitary representation is called the quasi-regular representation associated with
I' ~ (S, v) (also called Koopman representation).
In the following we will denote by Ar : I' — UW?(I")) the left regular
representation.
Recall that a unitary representation m is weakly contained in a unitary
representation p if for all functions f € £!(I") we have

(O = NeCHI- (4.2)

We refer to [12, Appendix F] and to [23, Section 18] for more details.
Let p be a unitary representation of I" and let u be a bounded measure on I' and
define the operator p(u1) as:

p() =Y u()p(y).

yel

and observe p(1t) € B(L?(S,v)).

4.2. Spectral characterization of amenable action. The ideas of this subsection
are related to the ideas of Nevo in [40] where we can find that for hyperbolic groups
it is possible to bound operator norms of unitary representations which are weakly
contained in (a tensor power of) the regular representation using property RD, and the
resulting effective ergodic theorem. Moreover in [41], it is shown that the operator
norm of any probability measure on a group, acting in the unitary representation
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associated with any of the Poisson boundaries, is equal to the convolution norm in
the regular representation. The same results holds for the operator norm in the unitary
representation associated with any quasi-invariant measure on the boundary.

It is well known that the amenability of a discrete group can be characterized
by the fact that the trivial representation is weakly contained in the left regular
representation. Kuhn was probably inspired by this property to prove an analog
result for quasi-regular representations associated with ergodic amenable actions in
Zimmer'’s sense in [35]. We describe briefly which notion of amenable action we
shall consider.

We know since Spatzier in [47] that the action of 771 (M), the fundamental group of
a compact manifold with negative sectional curvature M, on the geometric boundary
of the universal cover of M is amenable in Zimmer’s sense with respect to the standard
measure class. Eventually, Spatzier and Zimmer showed in [48, Theorem 3.1] that
this action is amenable with respect to any quasi-invariant measure. Later, after the
work of Adams [1], Kaimanovich [34] proved that the action of a closed subgroup of
isometries of a hyperbolic space with a finite critical exponent (-critical exponent- in
the usual sense without a potential function) is topologically amenable. In this paper,
we consider the action of a discrete group of isometries on the geometric boundary
as a topological space. The notion of topological amenability is the more appropriate
notion we shall consider since the space appears naturally as a topological space
rather than only as a measurable space.

Definition 4.1. Anaction I' ~, S on a topological space S is topologically amenable
if there exists a sequence of continuous maps

W' s €S ul e Prob(I")
of probabilities on I" such that

lim sup [[y«ps — pygll — 0

n->+ooseS
asn — oQ.

It turns out that in the case of a topological space topologically amenable and
amenable in Zimmer’s sense are equivalent, see [5]. Therefore we will not have to
pay attention to any quasi-invariant measure on the geometric boundary.

It is shown in [2] that for a locally compact group G acting on (S, x) that
the definition of amenable action in Zimmer’s sense is equivalent to the existence
of a G-equivariant conditional expectation from L*°(G x §) to L*°(S). Hence
if I' is a discrete group of isometries of a complete simply connected pinched
negatively curved Riemannian manifold X, with a finite critical exponent, we have
that (I" x dX, dX) is a ["-pair in the sense of [4].
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We deduce from [4, Corollary 3.2.2] the following.

Proposition 4.2. Let I" be a discrete group of isometries of X a complete simply
connected Riemmanian manifold with pinched curvature, with a finite critical
exponent. For any quasi-invariant measures v on the geometric boundary 0X we
have for any bounded | measure on I"

o (I < AT ()II-

Remark 4.3. Indeed, by [46, Lemma 2.3] due to Shalom with the same hypothesis
we have the other inequality and thus we obtain for any bounded p« measure on I" an
equality

llwo 1 = AT ).

4.3. Property RD. The property RD comes from the theory of C*-algebras and has
been introduced in the important paper [31] by Haagerup.

A length function |-| on a discrete countable group I' is a function || : I' — R,
satisfying |e| = O where e is the neutral element of ", |[y~!| = |y| and |y1y2| <
|¥1] + |y2].- Lets > 0 and define the Sobolev space associated with I" denoted by
H?*(I") as the space

H* () = {f :T — Csuch that | £[3 := Y [f)PA + yD* < oo}.
r

Given a discrete countable group equipped with a length function | - | we say
that I" satisfies property RD with respect to | - | if the space H® convolves
H3 (") % £2(I") C €*(T") in the following way:

3C, s > O such that forall f € H*(I"), & € £3(I),
we have || f * &2 < C| fllas|€]-2.

In terms of operator norm, property RD means that there exist two positive
constants C and s > 0 such that the multiplication operator by convolution by a
function in H*(I") is continuous:

3C, s > 0 such that for all f € H*(T"), we have |[Ar (/)| < C| fllas.

This inequality means, in operator algebraic terms that we have the continuous
inclusion
H*(I') — CX(I). (4.3)

Remark 4.4. If we specialize the property RD to the abelian group Z (with its
standard word length function) we obtain the well known fact, using the Fourier
transform, that an element in L2(S!) with Fourier coefficients “Rapidly Decreasing”
to 0 define a continous function on the circle S1.
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It is obvious that convex cocompact groups in CAT(-1) spaces are Gromov
hyperbolic. Hence they have RD and the next proposition follows. We extract the
following inequality expressed in norm of convolution operators established in [33].
Proposition 4.5. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let I" be a convex cocompact discrete group of
isometries of X. Pick a point x in X and recall the definition of an annulus
Cp = C,(x). Let x, be the characteristic function of Cy, then

1A Cfan)ll < Call f 2.

Proof. In [33, Proposition 3.2.4], Jolissaint proves that there exists a positive
constant ¢, depending only on the action of I' on X, with the following property:
Letk,l,m € N. If k,[ and m satisfy |k — | <m < k + [ with f, g are in the
group algebra CI" are supported in C and C; respectively, then
I * @ xmll2 < cll fll2llgll2-

If k,[ and m satisfy |k — | > m orm > k 4 [, then
I(f * &) xmll2 = 0.

Following the techniques in [31, Lemma 1.3, Lemma 1.4] and in [33,
Proposition 1.2.6] we have: for f supported in Cy and for all g supported in C;
that

ICf * @) xmll2 < D IS * gxD)xmll2

(>0
k+m
<Clflz2 ) lgxilz
I=|k—m)|
2 min (k,m)
<Clflla 3 lgkmrtnillz
[>0
; 2 min (k,m) 1
2
<CIAIKE (Y Igsmanil) ™

[>0

Thus
If * gl =D I(f *&)xml>

m>0
2 min (k,m)

<Y (Y Neamerail)

[>0
< C2| f13gl3-
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Thus we obtain for f supported in Cy and for all g € ¢2(I") that

sup ||f * gl = Ckll .12,

lgll2=<1

with some positive constant C > 0. [

We use the equality on operators norms given by the amenability of the
action on the boundary and we express the inequality of norm operators given in
Proposition 4.5 in its dual form with the matrix coefficients associated with the
boundary representation. We obtain:

Proposition 4.6. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let I" be a convex cocompact discrete group of
isometries of X. Let v be a I"-quasi-invariant measure on 0X and consider mw, its
associated quasi-regular representation. There exists C > 0 such that for all unit
verctors £, € L*(0X,v) we have

> Um()E ) < Cn?.

yeCy

Proof. Observe that it is sufficient to prove the above inequality only for positive
vectors £, in L?(0X, v).

Using Proposition 4.2 and Proposition 4.5 we have for a positive function f
supported in the annulus C,

lzo (ON = IAr (O = Cnll f2.

Consider
fC) = xc, () {m ()&, n),

with & and 7 two nonzero unit positive vectors in L2, and notice that f is a positive
function on I" supported on C,. We have

0< > (mWEN? = (m(En)
yeCn < [l (Ol
< Cnllfl2

<cn( Y tmnen?)”

yeCy

1/

Divide each term of the above inequality by (3_,cc, (7v(r)€, n)?) > and take the

square to obtain:

> (m(n)E.n)? < C?n. 0

yeCy
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4.4. Uniform boundedness. We shall consider the operator:

T; ‘= cFre —on Z aF(x, yx)”xg; (4.4)
X

y€Cp(x)

with cp,F given in (1.8) and recall that Cp,(x) = {n — 1 < d(x,yx) < n}. Observe
that 77 is nothing else than
T¢ = Mi(15),

where 15 denotes the unit function on the compact set X.

The Harish-Chandra estimates are fundamental to prove the uniform boundedness
of the sequence of operators defined above. The potential function F is always
assumed to be symmetric.

Proposition 4.7. We have sup,, | T} || < +oo.

Proof. Pick x € X, letv := v be a Patterson density of (I', ') of dimension o
and consider m, the quasi- reoular representation associated. Then Proposition 4.6
implies for all unit vectors £, € L?(0X, v) we have

Y HmE P < Cn.

yeCu(x)

Observe that Cauchy-Schwarz inequality implies that for all unit vectors
£.n.&.,n € L2(dX,v) we have

3 1w )E ) (DE 1) < Cn?.

y€Cn(x)

Therefore for all unit vectors &, n, &', n we have

22 Y (g i m (g )|

y€Cn(x)
_ Z | ﬂv()’)‘i‘-g (7[\;()’)5 )l(p;z(y)
y€Cu(x) x
d ¥ (x,yx) eClvl | (7rv (), ) (0 (Y)E', 1')|

Proposition 3.1 > C’ Z d?(x,yx)e
y€Cn(x)

¢z (v)

20'e—0N a'F(x yx)|(7Tv()/)§ m (o (Y)E' 1)
S yeg;(x) $z(v)

> C’ nz(CI",Fe_Jn Z dr(x, )'X)l(jfv(y)‘s ﬂ)(ﬂv(y)f' />|)

‘I, F y€Cp (x) ¢x (Y)
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Applying the above inequality for & = n’ = 1 we obtain for all unit vectors &
and 1 in L?(3X, v):

/

Cn?* = —n?[(TYE, ).

Cr,F
Hence
sup | 77']| < oo,
n

and the proof is done. O

Remark 4.8. Notice that Bader and Muchnik in [10] use a different method to prove
uniform boundedness of the sequence of operators. Our method combining the
property RD with the equality concerning the spectral radius gives another short
proof of the uniform boundedness when the quasi-invariant measure is the Patterson—
Sullivan measure class.

Remark 4.9. Notice also that this uniform bound for the Patterson—Sullivan measure
class gives a sharp estimate of the spectral gap of Ar () where w, is the probability
measure on the groups supported over an annulus C,

1
PL = —ch
"G

More specifically we obtain

_1 1
C'ne™ 29T < | A(un)|| < Cne™2°T",

for some positive constant C > 0 and where or is the usual critical exponent in the
Patterson—Sullivan theory, with a potential F* = 0.

5. Analysis of matrix coefficients

5.1. Technical tools. Let I be a discrete group of isometries of X and let vF be a
Patterson density of dimension o. Let (dx)xex be a family of visual metrics.

Let U be a subset of dX and @ > 0 be a positive real number and define Uy (a)
the subset of 0X as

Ux(a) = {v| inf dy(v,w) <e™@}. (5.1)
wel
We will write U(a) instead of Uy (a) once x has been fixed. Recall that
NasoU(a) = U.

In order to have Harish-Chandra’s estimates available we pick x € CH(Ar) for
the rest of this section. The following lemma generalizes Lemma 5.2 of [10].
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Lemma 5.1. Let a > 0 be a positive real number, let y be in T’ and let w)* € 3X.
Consider the ball X defined as B, = B(w!*,e %) and let U be a Borel subset of
0X \By. There exists C, such that we have

(nx(V)IBXvXU> = Ca
¢x(y) ~d(yx.x)

Proof. Define the following sets of indices

I = {i such that A; r(y) N 0X\B, # @},

and
J = {i such that e"¢®>7i-1) > g=@

Ifi isin 7, then A; r(y) isnotincludedin B,. Since A; r(y) C B(w)™, Ce=4(:7i-1))
then B(wl™, Ce=4™-Zi-1)) cannot be included in B, where C = e26+R (gee
Lemma 2.2). This means that i satisfies Ce ¢*:Zi—1) > ¢4,

There is only a finite number of i such that d(x,z;—;) < a + log(C) =
a + 28 + R. Hence by denoting N, := |J| the cardinal of J, we obtain
|I| = |{i suchthat A; r(y) N dX\Be # D} < |J| = Ng.

Since U is in X'\ B, we have:

N
{(m(y)ax. xu) < Z[A eCF-oo (X ¥X) gy F ()

i=1 YA, R(Y)NIX\ B

< Z[ eCr—on(X.¥X) g F ()
A

icg Y Ai. R(Y)NIX\Be
Remark 3.6 < CNae%(dF(x’ yx) —d(x,yx))

Left hand side inequality of C
. WY < =24 (). O
Proposition 3.1 d(x,yx)

It turns out that the following results are very close to the results of [ 10, Section 5].
We shall indicate all the minor modifications that we need to do to achieve Step 2.
Recall the notation of a cone of basis A C dX of vertex x in X:

€ (A).
Proposition 5.2. Pick x € CH(Ar) and let ju, € £Y(I) such that

sup [ pnller < +o00,
n

and which satisfies
lim p,(y) =0,
n—-+o00

forall y € T.
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Then for every Borel subset U C 0X we have for all a > 0

i sp Z o (mx ()1, xu)

n—-+o00 yerl

<limsup »  n(¥) Dyx (e, wia))-
5() T neten

Proof. LetU be a Borel subset of dX and let a be a positive number and consider U(a)
(see Definition (5.1)). Let Ny be nonnegative integer. Consider the following partition
of I':

F'=r,ululy

with

'y ={y € ['ld(x, yx) < No},

I'; ={y eT|yx € €,(U(a))} NI,
and I's ={y elyx ¢ €,(U(a))} NTY.

Note that yx ¢ €, (U(a)) is equivalent to wY™ ¢ U(a). Therefore
UNBwl* e %) =g

so that Lemma 5.1 is available. The proof follows now exactly the proof of [10,
Proposition 5.1] and [15, Proposition 5.1]. U

5.2. Application of Paulin—-Pollicott-Schapira’s equidistribution theorem. The
purpose of this section is to use Corollary 2.8 for computing the limit of the sequence
of operator-valued measures (M%), en+.

We assume here that v is a Patterson density of dimension or r and that the
Gibbs measure is mixing with respect to the geodesic flow. The following proposition
generalizes Proposition 5.5 of [10].

Proposition 5.3. Let U, V.W C 0X be Borel subsets such that vf (gL} =
Uf (V) = vf (0W) = 0. Then we have:

lim (M (e ) v xw) = vEWU nwpf ).

n—-+oo

We need some lemmas to prepare the proof of this proposition.
Lemma 5.4. Let U be a Borel subset of 0X with vE (0U) = 0 and let W be a Borel
subset of X such that Uf (W) = 0, satisfying U N W = @. Then we have

lim sup(M7 ,(re @) lax. xw) = 0.

n—»—+oo



Vol. 92 (2017) Boundary representations associated with Gibbs measures 379
Proof. For all integers n we have:
(M5 Crec))lax . xw)

g F
= cr pe o0 Z e? (x’yx)Dyx(Xt’:'x(U))
y€Cn(x)

(mx(P)ax, xw)
2 )

(mx(Y)Lox . xw)
$x(¥)

yel
where the inequality follows from the fact that m, preserves the cone of positive
functions, and where

—Ur.FnedF(x,Vx)

mn(y) :=cr,re XCn) V) Dyx(xe.«wn))-

Observe that Corollary 2.8 implies that

sup || pnller < +oo.
n
Proposition 5.2 implies for & > 0:

lim sup(M% (e, w)) lax, xw)

n—-+00

<limsup Y n(y) Dyx(Xe,wey)

n—+oo yel

_ F
= limsup cr pe” °T-F" E e? (x’yx)Dyx(Xt‘f_\~(U)m‘€_\-(W(b)))
n—+oo
y€Cn(x)

i _ F
= limsuper,pe™ " ) e YDy (e, wawey)-
=g yeCy(x)

Note the general fact 9(A N B) C dA U dB. Since all, but at most countably many
of the sets W(h) have zero measure boundary Corollary 2.8 implies that

lim sup(M7; (e, @) lax - xw) < vE (U N WD)).

n—+00

With the hypothesis U N W = &, we have by letting b — +o00

lim sup(MZ%(xe,w))lox. xw) = 0. L

n—+00

Lemma 5.5. Let U be a Borel subset of 0X and let V' be a Borel subset of dX. For
a > 0 we have

lim sup{M3 (xe, @) xv, lax)

n——+oo

. — F
< limsupcr,pe o0 F" Z e? (x’yx)Dy—lx(){E’_r(U))Dyx(X‘e,\-(V(a)))-
e y€Cn (x)
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Proof. We have for all integer n:
(M (xe ) xv. lox)
= (xv, M3 (xe.w)) lax)

- F (mx (V) Lox, xv)
= cr,pe T-F" Z e (x’yX)Dy“lx(Xfx(U)) *

yeCp(x) ¢x (y)
= n 5
yer ¢x(y)
with .
tn(y) = cr,pe T Fmed” 5D y o () Dy—1,(rew)-

Applying Proposition 5.2 to j, defined above we obtain for all @ > 0:
lim sup (M3 (xe, w)) xv, lax)
n—+00

<limsuper,pe ™ " Y " D1 (xe, ) Dyx (Xe, (viay)- O

Bt yeCy(x)
Lemma 5.6. Let U, V., W C 90X be Borel subsets such that
vEF@u) =vF@v) =vF@w) =o.

Then

lim sup (M3 (xe, ) xv. xw) < Uf(U n W)VE(V)-

n—-400
Proof. Leta > 0 and b > 0, and consider V(a) and W(b) such that vf (OW(b)) =
0 = vE(@V(a)). Let W(b)¢ = 0X\W(b). Set Uy = U N W(b) and U, =
UNW(b)¢. Observethat Uy NW(h)¢ = @ = U, NW(b). Itis easy to see that we can
extend U; and U, to Yby Cx(Uy) and €5 (U,) such that €, (U) = €, (Uy) UEL(U,)
since U = U; U U,. We have:

(ME(xe.awoNxv, xw) = AME(e.awp)xv. xw) + {ME (e wn)xv, xw)
< (MEGreywp) xvs Lax) + (ME(re.wn)lox. xw)-

Applying Lemma 5.4 to the second term and Lemma 5.5 to the first term of the right
hand side inequality above, we obtain:

lim sup{M%(xe.«w)) xv. xw)
n—-4oo

< limsupcr,pe” 707" Z Dy (xe ) Dyx (e, (vi))-

SRR y€Cn(x)
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Then, since vE (3U;) = 0 = v (3V(a)), Corollary 2.8 leads to

lim sup(MZ Gre. @) xv. xw) < vE (U nwm))E (Via)).

n—+o0o

Because the above inequality holds for all but at most countably many values of a
and b, by letting them go to +o0c we obtain the required inequality. |

Proof of Proposition 5.3. By Lemma 5.6 it is sufficient to prove that
lim inf (A (e )y xw) = vf (U N W),
If B is a Borel subset of X, we set B = B and B! = 90X\ B. We have

= Z(M;(XB\-(U"))XVJ,XW’\’)

i,j,k
= (ME (e ) xvxw) + Y (Mi(re wiy) Xvi- Xwk)-
i,7,k##(0,0,0)
Since liminfy— 400 (M2 (1) 1ax, lox) = limy—joo (M2 (1) 1ox, Lax) = |[vE|?

we have:

vy 117 < lim inf (M e v, aw) + Y, Timsup(ME Gre, i) Xy Xwe)
i,j,k#(0,0,0) T

< limsup(M (re. ) xv. xw) + Z lim sup(M3 Gre, wiy) Xvis Xwk)
n—-4o0 i,j.k#(0,0,0) n—>+4oo

< Y WF Ui nwEwE i)
i,j,k

vl |12,

where the last inequality comes from Lemma 5.6. Hence the inequalities of the above
computation are equalities, so

lim{i_&f)(Mﬁ()(f_‘(U))XV, xw) =vi U NWpiy)

n—>r

= limsup(M% (xe.«w)xv. xw)

n—-+o0o

and the proof is done. U



382 A. Boyer and D. Mayeda CMH
6. Conclusion

6.1. Standard facts about Borel subsets of measure zero frontier. Recall two
standard facts about measure theory:

Lemma 6.1. Assume that (Z,d, jv) is a metric measure space. Then the o-algebra
generated by the Borel subsets with measure zero frontier generates the Borel
o-algebra.

Let y 4 be the characteristic function of a Borel subset A of d.X.

Lemma 6.2. Assume that (Z,d, 1) is a metric measure space such that | is a
finite Borel measure. Then the closure of the subspace spanned by the characteristic
functions of Borel subsets having zero measure frontier is

Span{ x| (@A) = 0}~ = L2(Z. ).

6.2. Proofs.

Proof of Theorem 1.3. Let v be a I'-invariant Gibbs conformal density of dimen-
sion or, F with F' a symmetric potential function and I" convex cocompact. Let x be
in the CH(Ar) and consider 7, associated with vxF . There are two steps.

Step 1: (M%) n>n is uniformly bounded. Note that the norm of operators of M7
is less or equal than the norm of M’ (1%). Recall that

Mi(ly) =T

where T is the sequence of operators defined in (4.4). Proposition 4.7 completes
the first step.

Step 2: Computation of the limit of (M7 ),en+. Asin[10]andin[15], the sequence
(M”)nen+ has actually one accumulation point that we denote by M$°. We shall
compute it:

Since we assume that the Gibbs measure is mixing it follows from Proposition 5.3
and from the definition (1.9) of M that for all Borel subsets U, V, W C 0X satisfying
vE@U) = vE(@V) = vE(0W) = 0 we have

(M (e ) xvs xw) = vEWU o wnE W) = (Mx(re,an)av. xw)-

Observe also that the above equality holds for all balls of the space X instead of C (U)
and everything is null in this case. Since {€x(U)|U C X such that v (3U) = 0}
together with the balls of X generate the Borel o-algebra of X and since the equality
holds for all Borel subsets having zero measure boundary Lemma 6.2 completes the
proof. ]
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Proof of Corollary 1.4. Observe that M, (1) is the orthogonal projection onto the
space of constant functions and apply the definition of weak™ convergence to the
triple (1, &, ) for &, € L2(0X,vF). O

Proof of Corollary 1.5. Since (nvf)xe x are unitarily equivalent, it suffices to prove
irreducibility for some m,r with x in X. We pick x in CH(Ar). Since F is
cohomologuous to a symmetric potential by Lemma 2.6 we can assume that F
itself is symmetric. Therefore Theorem 1.3 shows that the vector 13y is cyclic for
the representation 7, F by applying the weak™* convergence to the triple ( £, 1yx.7).
Moreover, Corollary "1.4 shows that the orthogonal projection onto the space of
constant functions is in the von Neumann algebra associated with T, F. Thus, a
classical argument [29, Lemma 6.1] completes the proof. |

Before giving the proof of Theorem 1.7 we say that an operator " € B(JH),
where # = L?(X,m) is a Hilbert space for some measure space (X,m), is a
positive operator if it preserves #7 the cone of positive functions. For example,
any quasi-regular representation is a positive operator as well as the operators we
consider in (4.4).

Proof of Theorem 1.7. The implications: (2) = (3) = (4) = (1) follow from
Proposition 2.5. We only have to prove (1) = (2). We follow a standard method,
see for example [29, Lemma 7.3]:

Lt er = JTU rand g := G be equivalent unitary representations associated

with v and v , with F and G two symmetric potentials. There exists U a unitary
operator from L2(8X vEF)to L2(0X,v9) satistying

Ungp = ngU.

The map
®:TeW, (I~ UTU € W/ (T

is a spatial isomorphism of von Neumann algebras. It follows from the irreducibility
of these representations (Corollary 1.5) that the von Neumann algebras

wr.() = B(L*(dX,v! )y and W;G (I') = B(L*(3X. uf)).
Consider now the maximal abelian von Neumann algebras
L2®@X,vF) c B(L20X,vE)) and L®0X,v%) c B(L*(X,v))
acting on L2 by multiplication. Now observe that the set of projections
{p e B(L*>(3X, vxF)) such that p and 1 — p are orthogonal positive projections}

is equal to the set
{xB where B is a Borel subset of 9. }.
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Since the isomorphism @ preserves the cone of positive operators and since
L>®(3X,vF) is generated by its projections yp with B Borel subsets, the
automorphism @ restricts to an algebra isomorphism from

& > L2BX, v?) = L2@X, vF).

It is well known that there exists ¢ : (3X, vF) — (30X, v©) ameasure class preserving
Borel isomorphism such that

O(f)=fop

forall f € L®(3X,v9). Therefore v¢ and v¥ are in the same class. O
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