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Cutting out arithmetic Teichmiiller curves
in genus two via Theta functions

André Kappes™ and Martin Méller*

Abstract. We compute the class of arithmetic genus two Teichmiiller curves in the Picard group
of pseudo-Hilbert modular surfaces, distinguished according to their torsion order and spin
invariant. As an application, we compute the number of genus two square-tiled surfaces with
these invariants.

The main technical tool is the computation of divisor classes of Hilbert Jacobi forms on the
universal abelian surface over the pseudo-Hilbert modular surface.

Mathematics Subject Classification (2010). 14G35, 11F27, 32G15.

Keywords. Square-tiled surface, pseudo-Hilbert modular surfaces, Jacobi forms.

1. Introduction

The aim of this paper is to contribute to the classification of arithmetic Teichmiiller
curves and the computation of their basic invariants. The extension of the bundle of
Jacobi forms to the universal family of abelian surfaces over pseudo-Hilbert modular
surfaces and the computation of its class will be our main technical tool.

Arithmetic Teichmiiller curves. Square-tiled surfaces are covers of the square torus,
ramified over at most one point. Affinely deforming the squares into parallelograms
yields a curve in the moduli space of curves, called arithmetic Teichmiiller curve.
Non-arithmetic Teichmiiller curves, which are generated by flat surfaces that do not
arise via branched coverings of the torus, have been classified in genus two ([14,15]),
and in higher genus there is a growing number of partial results. For Teichmiiller
curves generated by square-tiled surfaces, the classification problem is solved only
for genus two surfaces with a single ramification point ([6] for prime degree coverings
and [14] in general). They are classified by two invariants, the number of squares
and the spin.

*The authors are partially supported by the ERC-StG 257137.
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Genus two, two ramification points. Genus two square-tiled covers with two ram-
ification points come with three obvious invariants. One is the spin invariant, the
number of integral Weierstrall points. The other two are the torsion order of the two
branch points in a minimal intermediate torus covering and the degree of this covering
(see Section 2). It is conjectured (and well-supported by computer experiments of
Delecroix and Leli¢vre) that these are the only invariants, i.e. that the set Ty ar ¢
of genus two degree d covers of the torus with torsion order M and spin ¢ is
irreducible. For one ramification point, both [6] and [14] solved the irreducibility
question combinatorially by exhibiting prototypes for the flat surfaces and connecting
any two of the same invariants by a change of direction. This approach might work
for two ramification points as well, but the combinatorial complexity is challenging.

This paper does not contain any picture of a flat surface. Instead we propose
to tackle the classification problem by first computing the class of Ty ar, in the
(rational) Picard group of a pseudo-Hilbert modular surface and in the second step
to argue that this class is not too divisible and that potential summands cannot be
Teichmiiller curves.

Counting square-tiled surfaces. In this paper, we complete the first step in this
program for odd d. As a result, we can solve the following counting problem. For
M =1 this has been conjectured by Zmiaikou [22, p. 67].

Theorem 1.1. The number ty4 ;¢ of reduced square-tiled surfaces of genus two, two
ramification points, odd degree d, torsion order M and spin invariant ¢ is given as
follows.

» If M > 1isodd, then, with Ay as defined in (3.1),
1 AM 1 AM
t 3=—d-1DA;—, t —1==-(d-1)Az;—.
d.M.e=3 24( )Ag ¥ d.Me=1 8( )Ad o
* If M is even, then there is no spin invariant and
1 Ap
t =—-(d-1DAz—.
d.M 6( )Ag Y
e If M =1, then

1 | 1 1
ldM=1,=3 = ﬁ(d—3)(d—5)gﬁd and 1gpy=1,e=1 = g(d—l)(d—?’)EAd-

Remark 1.2. In principle, the same program can be carried out for even d, but it
requires performing similar computations as we present them for covering surfaces
with an extra level of two (see Section 9.4). The conjectural values for the counting
problem are as follows. For M > 1 and d even we have

1 AM 1 AM
fd Me=0 = ﬂ(d - 1Ay SR tdMe=2 = g(d — 1Ay "
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and for M = 1 and d is even the values are
t = —l (d —2)A d 1t = ](d 2)(d —4) 1 A
=1.=0 = an —1e=2 = —(d — —4)— )
d.M=1,e=0 24 d d.M=1,e=2 3 p d

The sum of contributions of the two spin structures appeared in [9, Theorem 3]
and in [4], see Proposition 9.9 for the conversion of the two methods of counting.

Classes in the Picard group. The above counting result is a consequence of the
following statement that gives the class of the (union of) Teichmiiller curves T y;
generated by the square-tiled surfaces of degree ¢, with torsion order M and spin ¢
on the compactified pseudo-Hilbert modular surface X;2, whose open part X7,
parametrizes abelian surfaces with multiplication by a pseudo-quadratic order. See
Section 3 for the definition of X ;2 and the Hodge bundles ;.

Theorem 1.3. Let d be odd. The class of Ty ¢ in Picg(X42) is given as follows.
* If M > 1isodd, then

>

¥ (- A+ 2 - 2)A),

[Tame=3] = 3d —
oM (1.1

>

Tamem1] = 3d 7 (1= PAs+ Q2= o).
* [f M is even then
A
rm =2aIVM((1—§)Al + 2 - 2)12). (1.2)

* [fM =1, then

[Tam=1,e=31 = 3(5(d —3)(d —5)A1 + (d —3)(d — 5)A2) + Ja.

1.3
Tameromt] = 3@ - D@ —A +@=Dd-Dh) =dag )

for some J; in the orthogonal complement of (A, A;).

The undetermined class J; enters here since we use the computation of the
locus of genus two square-tiled covers with a double ramification point from [1],
see Section 8.2. It was already conjectured in loc. cit. and should follow from the
methods given here that J; = 0. Due to the orthogonality statement, the class Jg4
does not affect any of the counting results.

Remark 1.4. The conjectural classes for the case d even are given as follows.
e If M > 1is odd, then

FZ((I — D+ 2-3)h),
h (1.4)

(- Has + @2 - D).

[Tame=0] = 7d

[Td,M,£=2] = %d
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e If M is even then

A
[Tam] = 2dﬁM((1 — Dy + 2 - Hny). (1.5)

e [f M =1, then

[Tam=1,6=0] = (3(d —2)A1 + (d —2)A,),

(Tam=1.e=2] = 3(3(d = 2)(d = HA1 + (d =2)(d —4)A2). o
Strategy of the proof. Instead of locating a Teichmiiller curve inside X;2, we
locate the branch points of the covering map from the flat surface to the torus inside
the universal family Azz of abelian surfaces over the open subset X ;2. The points
that we want to single out lie on image of the flat surface in its Jacobian (i.e. on
the theta divisor), they are branch points (i.e. the derivative of the theta function
vanishes in some direction), and they have the property that their image in a certain
intermediate elliptic curve is M -torsion. Theorem 8.3 expresses that the image of
this intersection of three divisorial conditions in X ;2 is the Teichmiiller curve. The
basic idea to use theta functions builds on that in [18], but there one could work
entirely in the two-dimensional base, while most of the difficulties here come from
performing the triple intersection in the four-dimensional total space. Of course, for
intersection theory calculations, we need to work on a reasonable (normal, at most
quotient singularities) compactification A ;2 of A;z. We recall the background on
toroidal compactifications and construct A ;2 in Section 5. The family 4,2 comes
with some obvious divisors (boundary components, Hodge bundle, zero sections),
whose intersection product is readily computed. The goal is hence to express the
ingredients of the triple intersection in these terms.

Jacobi forms for pseudo-Hilbert modular surfaces. Hilbert Jacobi forms are
functions on the universal covering H? x C? of A?, whose transformation law
combines the elliptic behavior on C? and the modular behavior on H? in the usual
way as for elliptic Jacobi forms. The precise definitions are given in Section 6.3.
The basic example of a Jacobi form is the theta function, both in the elliptic and in
the pseudo-Hilbert modular case. We would like to express the divisor class of a
Jacobi form on A ;2 in terms of the natural divisors mentioned above. We stress that,
however, this question is not even well-defined. Only after making some artificial
choice at the boundary (our choice is (6.8) in Section 6.3) we can determine the class
of a Jacobi form in Theorem 6.1.

At the end of the day, we are only interested in the class of a divisor (the
Teichmiiller curve) generically lying in X3,. Consequently, we have to determine
and subtract in Section 9.2 the spurious boundary components, thereby compensating
the arbitrariness in the boundary extension of Jacobi forms.
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Finally, in the case of M = 1, the analogous statement of Theorem 8.3 is
Theorem 8.4, and there two other spurious summands occur. One contribution is
from the reducible locus in X2, whose class we determine in Section 7. The other
contribution stems from square-tiled surfaces with only one branch point. The classes
of the corresponding Teichmiiller curves have been determined in [1].

Notation. The notation around pseudo-Hilbert modular surfaces is summarized in
Section 10.

Acknowledgements. We thank the referee for helpful comments and suggestions.

2. Origamis, square-tiled surfaces and their spin structure

Let Q2 .M be the moduli space of flat surfaces (X, w) and for any partition k of 2g —2,
let Q2.Mg (k) be the stratum, where the divisor of @ has type «. In this paper (X, w)
will always be an arithmetic Veech surface of genus g > 1. This is equivalent to
requiring the existence of an origami map, a covering p : X — E to an elliptic
curve E such that p is branched over only one point and @ = p*wg. The map p
is unique only up to isogeny and translation on £. The latter can be dispensed
with by translating the unique branch point to the origin. We call p reduced, if it
does not factor over an origami map p’ : X — E’ that has strictly smaller degree.
Equivalently, p is reduced, if and only if the lattice of generated by relative periods

Per(w) = {] wl|y € H(X,Z(w),Z)} CC
Y

is equal to Per(wg) = {fy wg :y € Hi(E,7Z)}, where Z(w) C X is the set of zeros
of w.

If E is the particular elliptic curve with j(£) = 1728, then X is called square-
tiled surface. In this case, Per(w) C Z @ i Z.

A covering ¢ : X — E’ to an elliptic curve E’ is called minimal or optimal, if it
does not factor over an isogeny of degree > 1. A covering is minimal, if and only if
the induced map g4 on the first absolute homology is surjective.

From now on we restrict to the case of genus two surfaces. Let E'[2] =
{ Py, P, P», P3} denote the set of 2-torsion points of E’, where Py = 0, and let
o € Aut(X,w) denote the hyperelliptic involution. Let Wy denote the divisor of
Weierstral3 points on X.

Proposition 2.1. For any arithmetic Veech surface of genus 2, there is a reduced
origami map p : X — E and a decomposition p = ( o q into a minimal covering
q: X — E' ofdegree d and an isogeny  : E' — E of degree M > 1.
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The map q, and a fortiori p, is uniquely determined by the requirement that

_\2(P1 + P2+ Ps), ifd =0 mod 2,

q=Wx = :
3P0+P1—+—P2+P3. ldelm0d2

We call the origami map p with a factorization and location of branch points as in
this proposition normalized. We use this term also for the minimal covering ¢, if ¢ is
clear from the context.

Proof. By [8, Proposition 2.2], there is a uniquely determined minimal, normalized
covering g : X — E’. Moreover, this covering satisfies

[-1]eg=goo

and since the ramification points of ¢ are not fixed by o, their images P, Q satisfy
[-1]Q = P. Lett: E’ — E be an isogeny with ((P) = «(Q) = [—1]¢e(P), or
equivalently ¢([2] P) = 0. Such an isogeny exists since (X, w) is a Veech surface,
and hence P — Q is of finite order. The minimal such is given by the quotient map
E' — E'/T, where T is the subgroup generated by [2] P. O

It is possible that M = 1. In this case, the branching divisor is non-reduced,
i.e. P = Q € E’[2]. The integers d and M are uniquely determined by the Veech
surface. We call d = d(X,w) the degree and M = M(X, w) the torsion order
of (X, w).

2.1. Spin structure. Let (X,w) € QM5 be an arithmetic Veech surface with re-
duced, normalized covering p : X — E. A Weierstrall point P is called integral,
if p(F) is equal to the branch point of p. The number of integral Weierstrall points
is an invariant of the SL,(R)-orbit of (X, w), called the spin invariant (X, w).
Depending on the parity of d and M, we determine when it distinguishes orbits.

Let p : X — FE factorize as p = ¢ o g with a minimal, normalized covering ¢
and an isogeny ¢ of degree M > 1. Let P € E’ denote one of the branch points of ¢.
Then ¢((P) € E[2]. We determine (X, @) in terms of the location of ¢(P).

Proposition 2.2. If M =1 mod 2, then for d =1 mod 2

(X, ) = %3, ifl(P) =0,
L, ifu(P) #0,
while for d =0 mod 2, then
S i) = 0, l{fl(P)=0,
2, ifu(P)#0.

If M =0 mod 2, then
eX,w)=0.
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Proof. If M =1 mod 2, then the induced map ([2] on the 2-torsion points is an
isomorphism and the previous proposition implies the claim.

If on the other hand, M= 0 mod 2, then P isa2M -torsion point since t(P) € E[2],
and it is, more precisely, a primitive 2M -torsion point: Indeed, its torsion order is
at least M, since p is reduced and if the torsion order were exactly M, then the
composition of ¢ and an isogeny of degree M/2 would also map the two branch
points of p to the same point, contrary to p being reduced. Moreover, the fiber of ¢
over t(P) does not contain a 2-torsion point of E’, since if there was such a point,
then we had M(P — P;) = 0 in the cyclic subgroup of order 2M generated by P
and the parity of M implies M P = 0, contradicting the preceding statement. Thus
in this case (X, w) = 0, as claimed. W

Note that the preceding discussion applies both to arithmetic Veech surfaces in
QM5 (1, 1) and to arithmetic Veech surfaces in 2.M>(2). In the second case M = 1
of course.

Next we consider the case that X is a reducible genus two surface but with
compact Jacobian, i.e. X = E; U E; is the union of two elliptic curves joined at
anode S. In this case an origami map p : X — [ is simply defined to be a map
that is non-constant on both factors, or equivalently @ = p*w is non-zero on both
components. This implies that £y and E> (and E) are isogenous. If d; = deg(p|E;)
then obviously d = deg(p) = d + d>. We call Weierstral} divisor Wy on X the set
of fixed points different from S of the elliptic involutions on E; and E, with respect
to the zero S. Obviously |Wx| = 6 as in the smooth case. This notion is justified
since one easily checks that for any family of flat surfaces (X;,®;) degenerating
to (X, w), the Weierstrall divisor Wy, converges to Wy . Again we let ¢(X, w) be the
number of integral Weierstrall points, i.e. the number of points in Wy with image
equal to p(S).

There are no integral Weierstraf3 points on a component E; iff d; is odd. If d; is
even, there is three or one WeierstraB3 point, depending on whether p|g, factorizes
through multiplication by two or not. The latter can happen only if d; is divisible by
four. For d = 1 mod 2 consequently

(X, w) € {1, 3},
since precisely one of the d; is odd. If d is even, then both d; might be odd, resulting
in no integral Weierstral points. If both d; are even and one of the maps p; factors

through multiplication by two, then p factors through a two-isogeny. Consequently,
if p is a reduced origami map and d =0 mod 2, then

e(X,w) € {0,2}.

where (X, w) = 0 corresponds to both d; odd.
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3. Pseudo-Hilbert modular surfaces

In this section we introduce the surfaces containing the Teichmiiller curves we are
interested in. These are moduli spaces for Abelian surfaces with multiplication by
pseudo-quadratic orders that we call pseudo-Hilbert modular surfaces X ;2. They
admit a finite cover, which is a product of two modular curves. Consequently,
many line bundles on X ;> arise from line bundles on the modular curves and we
summarize the main properties. Next, we introduce the Teichmiiller curves on X ;2
and fix notation for all the divisors on X ;> that we need. See also [1,5] or [16] for
basic properties of pseudo-Hilbert modular surfaces.

3.1. Modular curves and modular forms. We let I'(d) C SL,(Z) be the principal
congruence group of level d € N and X(d)° = H/I'(d) be the (open) modular
curve. Its smooth compactification is denoted by X(d). If d > 3, the curve X(d)
has v g = E(—l%mi)—] cusps Ry ; and genus g(X(d)) = 1 + % |SL(Z/d 7)),
see e.g. [17, Chapter 4] for background on congruence groups.

We record that X(d) — X (1) is a covering of degree

Ag=|SLa(Z/dZ)| = [T () : T(d)] = d* [ [(1-p7?) 3.
rld

if we consider these curves as quotient stacks. (In terms of coarse moduli spaces,
if we let I'(d) denote the image of I'(d) in T'(1) = PSL,(Z), the covering is of
degree [["(1) : T'(d)], which is half the degree above for d > 3.)

The Hodge bundle on X(d) is A = w«(wE @)/ x)), where w : E(d) — X(d)
is the (compactified) universal family (see Section 5). We also write Ax(q) if we
want to emphasized the level. Global sections of l?i‘ 4y are modular forms of
weight k for T'(d). Moreover, l?}%d) = Kx@)(Rg), where Ry is the divisor of
cusps and K y(z) is the canonical bundle (see e.g. [10, A1.3.17]).

The discriminant fa is a modular form of weight 12 for I'(1). It is non-zero
on X(d)® and vanishes to the order d ateachcusp Ry ;j (j = 1,...,v00,4) of X(d).
Thus

12Ax@) = d - Rg. (3.2)

The principal congruence group of level d is conjugate to another congruence

group
I'(d)g = diag(d,1)-T'(d) - diag(d "', 1).

Consequently, the action of I'(d)s and I'(d) on H are equivariant with respect to
the multiplication map by ¢ on H and there is an isomorphism

X(d)° =H/T(d) =~ H/T(d)g =: X(d)3.
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This conjugation by diag(d, 1), omnipresent in this paper, is denoted subscript d
throughout. The reason for this conjugation becomes visible in the next section where
we define pseudo-Hilbert modular groups as subgroups of I‘(l)é. This definition
will turn out to be natural, since the principal polarization of the lattice can be written
easily in these coordinates, see (4.4).!

3.2. Pseudo-Hilbert modular surfaces. Letd € N and D = d?. Following the
conventions for Hilbert modular surfaces, we let K = Q @ Q, whose subring

o2 ={x=0x"NVeZB®Z:x'=x"modd} C K

will be called a pseudo-quadratic order of discriminant D. Let 022,’2 = ﬁodz be
the inverse different. The pseudo-Hilbert modular group

Fdz = SL(Odz S5 0:;2)

is the group of 0 42 -linear maps of determinant one of the module o ;2 690;,’2 considered
as column vectors with left multiplication or, equivalently, of 021’2 @ o042 considered
as row vectors with multiplication from the right. We will use the latter viewpoint
throughout. The pseudo-Hilbert modular surface is the quotient?

X3, = H?/T .

It is the moduli space parameterizing abelian surfaces with multiplication by the
pseudo-quadratic order of discriminant 42 as we will see in Section 4. The pseudo-
Hilbert modular group can be squeezed in between two self-products of modular
groups
['(d); C Tz CcT(1);.

The total inclusion is normal, and thus the leftmost inclusion defines a normal
subgroup with quotient group SLy(Z/dZ). The other inclusion is not normal, also
of degree |SL,(Z/d7)|, since the total inclusion has quotient group SL,(Z/d Z)?.
The pseudo-Hilbert modular surface admits a useful Galois covering given by

T (X(d)y)* = X5,
and a (non-Galois) quotient map given by
B:X5 = (X()9)2

The factor group I'(1)3 /" (d)Z, and thus a fortiori I'y2/ I'(d)3, acts on the smooth
compactification X(d)fi of (X(d);)z. In the sequel we work with the (normal, but
not smooth) compactified pseudo-Hilbert modular surface

Xg2 = X(d)g/ (Tg2/T(d)7).

! Alternatively, one can work with SL (0,2) acting on H x (—HI).
2Topologically, but not as a quotient stack, see Section 3.3.
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In fact, X ;2 is the Baily—Borel compactification of X 7,. The quotient maps 7 and 8
extend to quotient maps

T:X(d)5 = X2 and B Xz — X(1)3.
We now list the divisors on X 42 that will be important in the sequel.

Boundary divisors. Let H = H U Pctl) be the upper half plane with cusps. The
image of (H \ H) x H is a curve RM° € X ;> and the image of H x (H \ H) is
a curve R®° C X,». Their closures are denoted by R¥). The curves R®° are
irreducible and isomorphic to H/ I'; (d)* [1, Proposition 2.4].3

The Hodge bundles. The next important divisor classes on X ;2 are the Hodge
bundles

Ai = (pri o B)*Axq).

Here and throughout we use pr; to denote product projections on spaces like X (1)?
or X(d)?, without reflecting the domain of the map in the notation. We let

lg) = priAx(q) be the pullback of the Hodge bundle to the product. By definition
r*3; =A% |

In the same way, we define Rl(:") = pr’ Ry as the pullback of the boundary divisors
to X(d)fi. They consist of v, 4 irreducible components Rg)j, J=1...,v04.

Pulling back (3.2) to the product X(d )fi and then taking its t-push forward we
obtain the important relation

.
RY = =3, 3.3
7 (3.3)

in PiCQ (Xdz).

The product locus. We denote by P;z the product locus, the locus of abelian
surfaces that split as a polarized surface. We will determine the class of this locus
in Section 7. The complement X 7, \ P7, consists of principally polarized abelian
surfaces that are Jacobians of genus two curves.

The Teichmiiller curves. The projection of an SL; (R )-orbit of a square-tiled surface
(X, w) is a Teichmiiller curve C in M». If g : X — E is aminimal torus covering of
degree d, then the kernel of Jac(q) : Jac(X) — E isaconnected abelian subvariety of
exponent d (cf. (4.3)) by [2, Lemma 12.3.1, Corollary 12.1.5 and Proposition 12.1.9].
Consequently, by Proposition 4.1 below, a square-tiled surface that factorizes through
such a map ¢ defines a point in X ;2 and the corresponding Teichmiiller curve C is a
curve in X z2.

3There are different indexing conventions for the boundary divisors in [1] and in [S]. As mnemonic
for our convention, keep in mind that R“) and A; are pulled back via pr; .
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We let Wp (D = d?) be the union of Teichmiiller curves generated by reduced
square-tiled surfaces of degree d where w has a double zero. By the results in the
preceding section, Wp decomposes into spin components W},. The topology of Wp
is completely determined by the work of [1,14], and [19]. In particular the spin
components are irreducible.

We let T;; 5, be the union of Teichmiiller curves generated by reduced square-tiled
surfaces of degree d such that @ has two simple zeros and (X, @) has torsion order M.
By the preceding section, T j decomposes into its spin components 7 ps ¢.

3.3. On quotient stacks. Since we suppose d > 3 throughout, the stack discussion
on X (1) in the beginning of this section was inessential. The group I';2 however
contains for all d an element of finite order that acts trivially on H?, namely —/
embedded diagonally. We want the main object of our studies, the pseudo-Hilbert
modular surface X ;2 to be a variety, rather than a stack with global non-trivial
isotropy group of order two. For this purpose we consider X ;2 as the quotient stack
H?/PT 2. As a set, X = H?2/T 42, as introduced above, but the morphism ©
is of degree |PSL,(Z/d7Z)| = Ag4/2 throughout this paper. In particular, it is also
possible to define the Hodge bundles “from above” without invoking the orbifold
bundles on X (1) by the relation A; = ﬁr*lg). The equation (3.3) holds with this

convention (and with the reduced scheme structure on R¢ )).

The reason for this discussion is that the diagonally embedded —/ does no longer
act trivially when considering the universal family, see (4.6) in the next section. So
there is no choice but to let the universal family A°, and its compactification be really
the quotient stack by the group Fdz. In particular, the map 7 is of degree A;d?. This
has the irritating consequence that the map of the universal family 7° : A%, — X s
is the composition of the forgetful map H2 x C2/T ;> — H2/T'y> composed with
a (pointwise identity) map H?/ T ;2 — X 42 of degree % This factor has to be taken
into account in push-forwards, see Section 8.

4. Abelian surfaces with multiplication by pseudo-quadratic orders
and modular embeddings

Here, we sketch how X ;2 parametrizes abelian surfaces with multiplication by 0,2
and describe the universal family

7°: A% =H? x C?/Ty2 — X, (4.1)
where ~
42 =SL(0g2 @ 0Y,) (0}, @ 042) C SLa(K) x K2, (4.2)

One should be aware that A%, — X 7, is the universal family only when considered
as a quotient stack. The fibers of the underlying variety are Kummer surfaces,
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and in particular singular. Nevertheless, the open family and its compactification,
introduced in Section 5, are both quotients of smooth varieties by finite groups and
thus smooth when considered as stacks.

It will be convenient to compare this family to the universal family of all principally
polarized abelian surfaces via a map 1,!/ H? x C? — Hj x C? that is equivariant
with respect to a group inclusion U Fdz — Sp(4,Z)x Z*. Such a pair (W \IJ) is
sometimes called modular embedding and it will be used in the next section to pull
back theta functions.

Recall that the exponent e(Y) of an abelian subvariety ¥ of dimension r in a
principally polarized abelian variety (A, ®) is defined as

e(Y)=d,, ifO|y hastype(dy,...,d;), (4.3)

see [2, Section 1.2 and 12.1].

Proposition 4.1. The pseudo-Hilbert modular surface surface X ;2 is the moduli
space of all pairs (A, p), where A is a principally polarized abelian surface and
p : 042 — End(A) is a choice of multiplication by 0 ;2.

Equivalently, Xd°2 is the moduli space of all pairs consisting of a principally
polarized abelian surface A together with a projection q : A — E to an elliptic
curve E such that ker(q) is a connected abelian subvariety of exponent d.

For the convenience of the reader and to fix notations, we provide a sketch of the
proof the first statement, following [1, Theorem 2.2]. The second statement follows
from [2, Proposition 12.1.1 and Proposition 12.1.9] after unwinding the definitions.

We want to provide 0 » @ 0,42 with a polarization. For this purpose we define
the “Galois conjugation” on 042 by (x',x")? = (x”, x"). With the usual definition
of trace the pairing

((x1.91), (x2, y2)) = Tr(x1y2 — x291). (4.4)

on o , @ 042 is unimodular, alternating and Z-valued, hence a polarization.

Moreover, we let /D = (d,—d) € K. Then, a symplectic basis of od2 @ 0,2
is

a1 = (F515.0), az=(—5u7.0). bi=0On). b=,

where 71,72 is an arbitrary oriented basis of 0,2, i.e. with ’(:}, Z%)}z d. For
1

z =(21,22) € HZ2, define the embedding

\ 2 x'z1+y’
Odz ®0d2_>(c 3 (X,y)i—> (x//22+y//)-

The image is a lattice in C? spanned by the columns of

1.7 1.7 / /

z —5N:Z

Hz-—("7721 At A 77%)=(z"‘-AT,B)
d'7222 aMZ2 M M
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where z* = (Z’ 0) and where B = (Z:', n%) and A = B~!. We will work

0 zZ2 | 7"2
throughout with the choice

F={r3): leiged= (_} ;).

The quotient A2 , = C2/T1,Z*is aprincipally polarized abelian surface (ppas),

polarized by the hermitian form with matrix Im (z*)~! and the columns of I1, are a

symplectic basis for the pairing with matrix (_(}2 ';)2) The associated point in [,

is Z = A-z*- AT, with the convention that Z € H corresponds to the ppas with
lattice spanned by the columns of (Z, /). It admits multiplication by 0,2 via the
diagonal action on the embedding 0:1’2 @ 042 — C?2. This justifies the claims made
in Section 3.2.

Since both eigenspaces of multiplication by K are defined over (), the abelian
surface is isogenous to a product of elliptic curves with an isogeny of degree d?. We
give an explicit basis of the sublattice corresponding to the product decomposition.
It is generated by the columns of

0. (B" 0 Y_(n 0 40
‘ 0 d-A) \0 z2 0 d)-
For an R-basis (w;, w2) of C, define the elliptic curve Ey, w, = C/(wi1Z + w2 Z).
Then the isogeny between abelian varieties
Ezl,d X Ezz,d — Adz,z

is induced by the identity on the universal cover. The coordinate projections
pi:C?—C,i = 1,2 induce the dual isogeny

Ag2; —> Ez 741 X Ezyyd

which after composition with the isomorphism covered by C? — C2, z +> d - z
becomes multiplication by d on E;, 4 X E, 4.
This completes the sketch of the proof of Proposition 4.1.

Modular embeddings. The universal family is now easily obtained by pullback of
the universal family of principally polarized abelian surfaces over H> via a modular

embedding. For o« = (a1, a3) € C?, seta* = ("8 aoz )
Lemma 4.2. The embedding

¥V iH?2xC? - HyxC2,  (z,u) > (4z* AT, Au)
is equivariant with respect to

U:T . — Sp4,Z) x Z*,

B Aa*B  Ab*AT
(M.r)—S-(M*.r)-S 1=((Bl"c*3 BTe*AT)'(“B’”AT))

where M* = (a: ‘Z: ) r = (r1,r2) and S = (diag(A, BT),0) € Sp(4, Q) x Q*.

c
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Note that the induced map X3, — s, does not depend on the choice of the
matrix B. If B’ is another basis, A’ = B’~!, and (y/, V) is the embedding
associated with B’, then

Y/ =goy and W =g -W.g"

where g = diag(A’'B, BT AT) e Sp(4,7) .

The proof of Lemma 4.2 is a straightforward calculation, once one fixes the
precise definition of the group actions on source and target. We define the semidirect
products Sp(2g, R) x R?¢ by the rule

(My,r1) - (M3, 1r2) := (M M3, r1 M5 + 7).
This semidirect product acts on the product H, x C# by
(Z,v) = (M(Z),((CZ + E)T) " (v + (Z, I)rT)) (4.5)

where M = (2 8)andr € Z?8,and M(Z) = (AZ + B)(CZ + E)~'. The action
is compatible with the projection on the first factor and standard action of Sp(2g, R)
on H,.

Next, we explicitly write out the action of T g2 on H2 x C2, or more generally
of SL,(R)? x R* on H? x C2, which is implicitly already given by (4.5) and the
modular embedding. Then (M, r) € SL2(R)? x R* acts via

(z,u) = (M(2), (c*z* + ) " (u + (27, Iz)rT)) (4.6)
where M = (28),r = (r1,r2),and rT = (r], r{, 5. r)T and where

a'zi +b a’z, + b”)

M(z) = (az + b)(cz g .
(z) = (az + b)(cz + e) (6,21+e, I

5. Compactifying the universal family over X ;2

We will compute the classes of the curves T s . as the image of a locus cut out in the
universal family of abelian surfaces over the pseudo-Hilbert modular surface. Over
the open pseudo-Hilbert modular surface, this family is described as the quotient (see
Section 4)
m°: A =H2 x C?/T g2 > X5, .

To perform intersection calculations, we need to work on a compact space and the
aim of this section is to describe explicitly such a compactification of A;z. Our
strategy is as follows. The universal family over the modular curve has a simple
compactification, by adding an “m-gon” of rational curves at every cusp, the simplest
instance of a toroidal compactification. In order to reduce from A°, to such a
situation, we have to pass from X 7, to a finite cover where this surface is a product,
as explained in the previous section, and then to pass fiberwise to an isogenous abelian
variety.
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The aim of this section is to exhibit a compactification of A‘;z by describing the
action of the 2-step covering group on the product of two compactified universal
elliptic curves. We thus present a compactification of Azz as a quotient of a
smooth compact variety by a finite group action. Along with this, we introduce
local coordinates at the boundary that will be used to define bundle extensions in the
next section.

For this purpose we note that Fdz has a normal subgroup that is equal to a
product I'(d )(21 , where

T(d)y = diag(d, 1) - (T'(d) x d Z?) - diag(d ", 1).
The quotient H? x CZ/F(d)fi is a product family
w° x @ (E(d))? — (X(d))*.

in fact of two copies on a universal family of elliptic curves.
As a general guide to the notation in the sequel, groups I' act on H or H?, while
groups with a tilde are semidirect products acting on H x C or (H x C)?2.

Theorem 5.1. There exists a proper, smooth 4-dimensional stack A 42 containing AZZ
as a Zariski open subset such that

(a) The canonical projection n° extends to a flat, proper morphism

. Adz = Xdz.

(b) The map 7T° : (E(d)z,)2 — A%, induced by the inclusion (FI:(a’)d)2 C Fdz
extends to a finite morphism of degree A d?

T (E(d)q)? = Ay
over T : (X(d)q)? — Xgo.

(¢c) The scheme underlying the stack Ag2 has at most quotient singularities.
The following diagram gives an overview of the spaces and maps involved.

T

(E(d)a)* — Ag2
wxwl Jn (5.1)

(X(d)a)* —= X2

In order to prove this theorem, we employ the usual toroidal compactification
of a family of elliptic curves. For £ € N we define the twisted level subgroup
['(0)y = diag(d,1) - T'(£) - diag(d ™', 1). We let

T(); = diag(d, 1) - (T'(0) x £Z?) - diag(d ", 1).
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The quotient X(d)3; = H/I'(d)y4 is the moduli space of d-polarized elliptic curves
with a level d-structure and

w°: E(d)y =HxC/T(d)g — X(d)5 (5.2)

is the universal family over itif d > 3. (Here and everywhere in the sequel we do not
discuss the supplementary stack issues arising when d = 2.) In particular, E(d),
and X (d )3 is smooth.

The following statement is the point of departure for the compactification. It is
well known (see e.g. [7, Section 1.2]), but we give its proof below since we need the
coordinates introduced there later on.

Proposition 5.2. There exists a compactification of E(d) to a smooth, projective
surface E(d)g with the following properties.

(a) The projection w° has an extension to a flat, proper morphism

w:E(d)s — X(d)a.

(b) The boundary 0E(d ), consists of d - veo g rational curves D¢ y, where C is a
cusp of I'(d)g and k € 7Z./dZ.. We have

(¢c) There is an action of F(l)d/F(d)d =~ SL,(Z/(d))x(Z/(d))? on E(d)4
extending the action on E(d)?.

Proof of Theorem 5.1. Thanks to the last item, we can define quotients of E(d )2 by
all subgroups of (F(l)d /T (d )d)2. Therefore, setting

Ag> = (Ed)a)* / T2 /T(@)7)
immediately yields the claims of Theorem 5.1. O

We also obtain a description of the boundary of the compactification A4,2. As
for X ;2 there are boundary components where the first resp. the second elliptic
curve degenerates. While for each of them there is a d-gon over every cusp in the
E(d)g % E(d)g4, there are only two boundary components D® fori € {1,2}on A>.

More precisely, let S be the set of equivalence classes of cusps of I'(d)4. For
CeS, k=0,...,d—1, we define the following divisors

D& = Dex x E(d)a. D& = E(d)a x Dcyk

in E(d); x E(d)gs. Then the boundary components are as follows, as we show in
Section 5.2.
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Corollary 5.3. The boundary of A,2 consists of the two irreducible components of

codimension one _ _
DO =%(DY)), .i=1,2

where C € S, k € Z/dZ are arbitrary.

5.1. Toroidal compactification of families of elliptic curves. Here, we describe
the compactification of the universal family E(d); of elliptic curves, and thereby
prove Proposition 5.2.

Let T = (C*)? with coordinates ¢ and ¢. For each integer k we define an
inclusion 7 — Ty, =~ C2, given by

(&.q) = Ckoqi) = (Lg 5. 07 g" . (5.3)

Inside each 75, we define the openset Tg, , = {qx # 0} = D(qgx) and we consider

this as an open subset of 75, | via

Teerr = Torgrs (Ckoqi) = Crgra de+1) = (G5 Skdp) -

Gluing 7, to Ty
Djy1.
The line Dy, is covered by two affine charts. It is given by

along the open set 7, , | gives an infinite chain of rational lines

V(tk-1) C Top, and  V(gi) C T, .

which are glued along D(qe—1) < D(5) by et = &' As Gemt = 4% ke
this is indeed well-defined, and moreover Dy has self-intersection —2. (In fact, we
described a partial toroidal compactification of 7', using the collection 6 = {0y }xez
of rational polyhedral cones in R? defined by

ok =Roo-(k, 1) +Ruo-(k +1,1), keZ,

but we will not need this viewpoint. See [7] for details.)

We now compactify E(d);; by adding suitable d -gons over the cusps of T'(d ).
We can carry this out for one cusp at a time, and in fact, it suffices to describe a
compactification for the cusps oo, since I'(d )y is normal in I'(1);, which has only
one cusp.

Compactification over co. We carry out the standard construction of a toroidal com-
pactification.

The stabilizer P = Pyo(d)q4 of a small neighborhood in E(d)7; of the preimage
of the cusp oo will have a normal subgroup P" = PJ (d)4 such that the quotient
map by P" is given by a suitable coordinate-wise exponential map and such that the
image is isomorphic to 7. On the partial compactification of 7" defined above the
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factor group P9 = P/P" acts, e.g. on the boundary curves by a shift of indices.
For each of the cusps these quotients are glued to the family over the open curve to
obtain a compact space. In the sequel we need the precise form of the coordinates, in
particular (5.4) and (5.5). In the sequel, it will be convenient to represent elements
of the semidirect product Sp,, (R) x R2¢ in matrix form via

(M, r) > ((1) A’/I) .

More precisely, let N = {Imz > 1} be a neighborhood of co € H not fixed by
any element outside the stabilizer of oo in ['(d)g. The preimage Poo(d)q of the
stabilizer of N in I'(d)4 is equal to

1 Z dZ
P=Py(dg={l0 1 d?Z|}.
0 0 1
It contains the normal subgroup
1 0 dZ
P*=PZ(d)a={|l0 1 d?Z}}.
0 0 1

that acts on the @ -preimage of N, which is isomorphic to N x C. The quotient map
N xC — N x C/P" is given by

(2, 1) = (Goor Goo)  With {oo = €(FU), goo = €(572), (5.4)

(where e(-) = exp(2mi-)) and identifies N x C/P" with an open set X, in 7. We
compactify 7" as above and take X x to be the interior of the closure of X.,. The
boundary

aXoo,Z? - Xoo \ Xoo,Z

is an infinite chain of rational curves D .

The group P acts on X through the factor group P9 = P/P" and the
compactification is compatible with this action. In fact, the bigger group Ps(1)4,
the preimage of the stabilizer of N in T'(1)y4, acts on T, and thus on Xoo,x, as the
following lemma shows. Its proof is a straight-forward calculation. Letny = e(1/d).

Lemma 54. Forb € Z, s; € Z and ¢ € {%1}, let

I 51 1 3Z Z
T=36152.6b) =10 & bd]|ePo(g={0 1 dZ]|}.
0 0 & 0 0 I
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Then

(a) ‘g acts on the coordinates (£, q) = ({oo. Goo) bY
s g g, N

g q-n. o

(b) g acts on the coordinates (., k) = (Coo ks Gook) bY

—bk
Ckmsy NG s e=1,
Cie > o bk—s, .
Gosi—k-1-1g %, &=—1,
k+1)b—s>
qkl—> qk—S] .r’fi+) Sha &= ls
—(k+1)b
By~ 'T}ff Db e = 1,

(c) g acts on set of rational curves Dy i (k € 7) by

Do o = Doo,s(k-i—sl)-

In particular, the action of Poo(1)g on { D i} is transitive.

The action of P? on X x is properly discontinuous and free. Let Yoo x =
Xoo,z/ P47 be the quotient. The action of P4 identifies Do g With Do k44r, 1" € Z,
whence the boundary of the quotient Y, x consists of a d-gon of rational curves,
which we also denote by Doy (k € Z/d 7).

Compactification over an arbitrary cusp. Let S be a system of representatives of
the cusps of ['(d)4. For C € §, choose an element

Mc = (‘;g gg) eT(l);  suchthat T'(d)yMc(c0) = C.
The neighborhood N¢ = M¢(N) of C in H is not fixed by an element outside the
stabilizer of C. We define Pc = Pc(d)y as the preimage of the stabilizer of N¢
in F(d)d. We let Pi C Pc be the normalizer in F(d)d of the stabilizer of Nc¢.
As above, Pl is a normal subgroup of P¢ and we define Pl = Pc/PE. The
coordinates on the quotient N¢ x C/Pg. are

(e =e((—ycz +ace) 'y, ge =e(MGE). (5.6)

As before, the image of N¢ x C is an open set X¢ in the torus 7 = Spec C[é‘é:. qét]
and, using the same torus embedding as above, we compactify it by taking X¢ x to be
the interior of the closure of X¢ in Tx. Againlet Yoy = Xc,g/Pg be the quotient.
Let Yc¢ be the image of X¢ in Yc 5. Then the map ic : Y¢ — E(d); that sends an
orbit of Pc to its F(d)d-orbit is an embedding.
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The space E(d); is now obtained by taking the disjoint union

E(d)y U UCESYC,Z

and dividing out the equivalence relation generated by identifying x € E(d); with
vy € Yc ific(y) = x. This completes the proof of Proposition 5.2.

5.2. Description of the boundaries of A ;2. In this section, we analyze the action
of the quotient group H 2 = T 42/(I'(d)4)? on the set of boundary components
of E(d )‘zi, showing the claims of Corollary 5.3. Secondly, we determine local

coordinates of a neighborhood of D by showing that the isotropy group of a
generic point is trivial.
Recall the group isomorphisms

red") : Hy2 — SLy(Z/dZ) x(Z/dZ)?, i=1,2
induced by
red? : T ;2 — SL,(Z/dZ)x(Z/dZ)?,
(A, s) — diag(d—',1)- (4D s@) . diag(d, 1).

where * denotes the reduction modulo d.
Lemma 5.5. The group H ;> acts transitively on {D )k | C € S,k € Z/dZ} for

eachi = 1,2. The stabilizer ofD( )0 is given by

red" (Stabyr , (D)) = {[(3! 2,).(0.9)]} C SLo(Z/d Z) (Z/d L)
and is of order 2d?. Moreover the pointwise stabilizer
Stabyr , (D%
is trivial.

Proof. By symmetry, we may focus on i = 1. The group I'y2 acts transitively on
the set {C x X(d)q | C € S}, so it suffices to show that Fdz N (Poo(1)g % I‘(l)d)

acts transitively on {Dg)k | k € Z/d}. We have

[1,((,=3).0)] € Ty2 N (Poo(Da x T(1)g),

(1)
co.k+1°

Concerning the stabilizer group of pY

which maps D(l)k to D

oo 0, we have

red” (Stabyy , (DL),)) = red® (T2 1 (Stabp 1), (Do) x T(1)a)).

Using this observation and Lemma 5.4, one can easily determine the stabilizer and
the pointwise stabilizer. ]
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Local coordinates at the boundaries. We describe local coordinates in the neigh-
borhood of a point x € D® (i = 1,2). These will be used to extend the line bundles
in the next section.
Fori = 1,2 and k € Z, we introduce, following (5.3) and (5.4), the notations
G = e(gui),  qi = e(gzzi), (5.7)
Sie = Giafs  qik=a (5.8)

It will be helpful to keep in mind the relations
G=80F a5 @ =ik (5.9)

Note also that we work throughout over the cusps oo, but we suppress this from the
notation.

Lemma 5.6. Let x € DY be a generic point and let X be a lift of x in Doy xHxC

incasei = 1, respectively in H x C x D g in casei = 2. Then
(C1ks G1k0 225 u2), =1,
(z1, U1, Loks G2k), 1 =2

are local coordinates at x, in the sense that there exists an open neighborhood U
of X such that the canonical projection U — A2 is a homeomorphism.

In particular, the generic point of D@ is smooth.

Proof. By symmetry, we may restrict to the case i = 1. Since the action is properly
discontinuous, it suffices to show that a generic X is not fixed by any element
gE Fdz \ (PL(d)g x{1}). Letus write g = (M,r), M = (258), r = (r1.72)
and suppose that it fixes X. As x is generic, z; is not a fixed point of M” and thus
M" = +1. For the same reason, U5 is not a half-integral lattice point ﬁ'EzZ + %Z,
and thus us — a”(u +zor{ +r5)) does not fix a neighborhood of 1, unless a” = 1,

r{ =ry = 0. Since M fixes a point in X ¥, it is of the form

1 i r;
M =0 ¢ b
0 0 ¢
The congruence condition together with a” = 1 forces ¢ = 1. Since »” = 0 and

ri =0, we have b’ € d?Z and r}, € dZ. Moreover, M’ has to fix the component
Dy C Xoo,x, which according to Lemma 5.4 entails r; = 0. Altogether, this shows
M € P (d)g x {1}.

Alternatively, one can argue that (q; k.1 k.22, u2) provide local coordinates
about Dgﬁo on E(d )4, and that the pointwise stabilizer Staby , (Dfxlgo) istrivial. [
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6. Divisors and line bundles on A4 ;2

On the universal family over an (open) pseudo-Hilbert modular surface there is a
natural collection of line bundles, the common generalization of the pullback of
Hilbert modular forms and classical elliptic Jacobi forms. These are the called
Hilbert Jacobi-forms. Theta functions will be the main instances of sections of these
line bundles. Our aim is to express the classes of these line bundles in the rational
Picard group Picg(A,2) in terms of line bundles that are good for intersection theory
calculations: the Hodge bundles, the boundary divisors and the pullbacks N @ of the
Zero sections.

The main result of this section is the following. The notation will be explained in
the rest of this section.

Theorem 6.1. Let f be a Hilbert—Jacobi form of weight k € (%Z)Z, indexm € %Odz
and a multiplier of order € for the group T 42. Then the class of div( f') in Picg(A,2)
is

(k1 + ZBE)m*A1 + (o2 + Z)n* Ay + ZEND L 282 NGB (6.1)

Note that it is almost meaningless to speak of the class of a line bundle defined
by giving explicit automorphy factors on the open family. If J, ,, is one extension
to the compactification, any twist 5(,C,m(rzD(i)) for any integral n and a boundary
component D@ will also be an extension. The theorem becomes meaningful only
together with the description of the behavior at the boundary (in terms of Laurent
series in local coordinates) given in (6.8). For practical purposes, any other boundary
conditions would work as well: we have to correct by the vanishing order at the
boundary and the difference is independent of any choices, see Theorem 9.2 for our
application.

6.1. Divisors in the Picard group of the universal family: The boundary and
torsion sections. In this section we list some important divisor classes in the
compactified universal family Picg(A,2) over the pseudo-Hilbert modular surface.
The classes of a Hilbert modular forms can be expressed in these bundles. For later
use we also define the divisors corresponding to zero sections and compare it to the
divisor of torsion sections.

Recall from Section 3.2 the definition of the Hodge bundles A; = (pr; o B)* A x(1),
where 8 : X2 — X(l)ﬁ, is the projection and A is the Hodge class on X(1)4. There,
we also defined the boundary curves R that obey the relation R® = ldg)q.

In Corollary 5.3 we gave a description of the boundary with two components D,
mapping surjectively to R%) respectively for i = 1,2. The discussion in Section 3.3
implies that 7* R®) = D® _ In particular, we have the relation

. 12
DO = z*R® = ?n*li. 6.2)
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Fori =1,2let NS ) be the pullback of the zero section Ny (4) of the compactified
universal family £ (d )4 of elliptic curves via the i -th projection to E(d )[21,. We denote
by

NO =z(nD) (6.3)

the image of these zero sections in 442. Note that N® = A%j?,,, Ng)).

With the same letter and the additional subscript £-tor we denote the corresponding
divisors of the multi-section of primitive £-torsion points on the family over X(d),
over X(d)? and over X ;2 respectively. Their classes are related as follows.

Proposition 6.2. /n CH' (A ;2), we have for £ > 1

MO = SO 4R
Proof. All the quantities involved are pull backs from the universal family E£(1) (we
calculate in Picg of a quotient stack) over X (1) and we prove the relation there. The
rational Picard group of an elliptic fibration is generated by the zero section N, the
class F of a fiber and the components of the singular fibers, with the relation that the
sum of all the components are equal to a smooth fiber. Since all the singular fibers
are irreducible here we can disregard the singular fibers.

Consequently, we write Ny, = a N + bF. Intersecting with another fiber shows
thata = %. Intersecting with N showsthath = —aN? = adeg(A)[11,Eq.(12.6)].
Since the fiber classes are pulled back from X(1), where any two points are linearly
equivalent, we may write b = %z‘v*k, where @ : E(1) — X(1) is the map of the
universal family. U

6.2. Elliptic Jacobi forms. In this section we recall the classical theory of elliptic
Jacobi forms for F( 1) (see e.g. [3]), specify a bundle they are sections of and use this
to determine the class of the divisor where the Jacobi form vanishes. Our method
follows [12], but we redo this case as preparation for the case of Hilbert Jacobi forms
in the next section, to include non-integral weight and index as well as non-cusp
forms, and clarify the imprecise statement in [12, Proposition 2.4].

We start with the standard definition (see e.g. also [3]) and recall the notations in
more detail in the pseudo-Hilbert modular case below.

Definition 6.3. An elliptic Jacobi form of weight k € %Z and index m € ﬁZ for the
group T(d)g = T(d)g x(Z & dZ) and the multiplier y is a holomorphic function
f :H x C — C such that
@) f oM. r](z.0) = x(M.r) f(z,u) forall (M, r) eT(d)a.
(ii) For each cusp C with M¢, gc and {¢ as defined in Section 5.1, f has a Fourier
development

. —1 —1 Z E :
f(zau).jK,m(MC ‘Z’u) = CC,S,I qf:.é.tc.
0<s€Z (€L

for some cc s, € C, which vanish unless 4sm — t? > 0.
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The divisor div f of a Jacobi form is well-defined as a subset of E(d);,, since the
exponential factors in the transformation rule (see (6.4)) do not change the vanishing
order of the function. However, div f does not define a class in Pic(E(d);), since
the boundary contribution is not well-defined. Later (compare Theorem 9.2) we are
interested in the class of the topological closure div f in Pic(E(d)y;). This class
however is not determined by the parameters (weight, index, multiplier) of the Jacobi
form, as one can easily see already for modular forms. We will talk about divisor
classes once we introduced the bundle of Jacobi forms.

Note that condition (ii) is for historical reasons only. It holds for the most important
examples (theta functions introduced below, and also Fourier—Jacobi coeflicients of
Siegel modular forms) and guarantees the finite-dimensionality of the space of Jacobi
forms for fixed parameters. However, many other (cone) conditions would do as well
and fixing the bundle g, m(E(d)4) is independent of this choice.

The slash operator for r (d)gq. Inorder to define the slash operator we let

c(u + riz + r2)?
cz +e

Jem(Viz,u) = (cz +e)7" -e(—m ) . e(m(rfz + 2riu)),

where y = ((4 2),(r1,r2)) € T'(d)y. For « integral, the function jg,, is an
automorphy factor for y € I'(1) called classical automorphy factor, i.e.

JemV1¥2,2,u) = jem(V1, v2(2,u)) * Jiem (Y2, 2, U).

and we define

[leml?]@u) = fly(zuw) - jem(y.z,u). (6.4)

In this case y : F(d )a — C* is just an abelian character. For general x, the
map x is a multiplier, i.e. a map so that j, ,,(-)x ' (-) is an automorphy factor for a
fixed choice of the determination of (cz + ¢)*. In any case, y is supposed to be
finite, i.e. Y™ = 1 for some M € N,

Let d > 3, ¢ be integers. Recall that

Ty =TO)yx(5Z @ L2) = diag(d, 1) - T(£) x (Z? - diag(d ", 1).

Lemma 6.4. Fork € 7, m € Z, the function j ,,q/¢2 s an automorphy factor for
the twisted group I'(£)4.

Proof. Consider themap ¢ : HH x C — H x C, (z,u) + (dz, fu). It is equivariant
with respect to the map ® : I'({) x Z? — T'(£)4 x(%Z ¢ {Z) given by

((22).rr)) > (o %) (Gra ).
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Since by pullback
Jem o (@ x @) Ny z.u) = (cd % + e)_Ke(m(%;rlz-Z- +2

= Jimd/e2(y,z,u),

the classical automorphy factor j restricted to I'(£) x Z? with m € Z and k € Z is
transformed into an automorphy factor for I"(£)4 x(%Z SWAR U

A bundle of elliptic Jacobi forms. It is well known that an automorphy factor
like jy, m){_l for a group like F(d)d defines a line bundle ¢ m(E(d)3) on
H x (C/I‘(a’)d = E(d);. We specify an extension of gp’,cm(E(d)d) to £(d)y4. For
simplicity, let us first assume that j ,, is already an automorphy factor. We consider
the line bundle induced on the open set X¢ introduced in Section 5.1; in fact, it
suffices to work over the cusp oo and carry the arguments over to any other cusp C
using the elements M¢. As the slash operator is trivial on PZ (d )4, so is the line
bundle induced by ji , on Xo. We extend it to a line bundle on X, x by declaring
on Ty, the Laurent series

—mk2 s—m(k+1)? [ o)
PR P > e japtd
i,j=0

to be holomorphic. Since by Lemma 54, f; = _’”kzé‘_m(kH) is mapped to

fr |K’m [2] = fk—s, - & for some d-th root of unity & by the element g(s1. s2. €. b) €
Poo(1)4, it follows that this extension descends to a well-defined line bundle on Y 5.
Performing this extension over all cusps, we obtain a well-defined line bundle
Fem(E(d)g) on E(d)g that restricts to $e m(E(d)5;) on the open family.

In the presence of a non-trivial multiplier y, the line bundle induced on X,
may not be trivial. Still it is a local system, which means that the sections in
two trivializations are transformed into each other by multiplication by a non-
zero constant. This entails that we can use the same definition as above for the
extension. Note also that the arguments show in fact that the extension 5(5,,,, (E(d)q)
is a F(d)d/F(l)d—equivariant bundle (as long as the automorphy factor ji,x ! is
well defined on T'(1)4).

In order to make the connection with Jacobi forms, we rewrite the Fourier
expansion of a Jacobi form f at the cusp oo using

oo = §k+lqk« Goo = Ckqks

and obtain

flz,u) = Z Con qootl, = Z Cstqs+kt s+(k+l)t‘

s,teZ,s>0, s,t€Z,s>0,
4sm—12>0 4sm—t2=>0
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It is easy to check that the smallest g -exponent appearing is
min{s + kt | s, € Z,4sm — 1> > 0,5 > 0} > —mk?,

and that a similar statement holds for the smallest {-exponent. Thus, f is a
holomorphic section of the bundle extension J, » (£ (d)g).

With this choice of extension, the class of div( f) is well-defined and has been
calculated in [12, Proposition 2.4]. The result is not needed in the sequel, but we will
follow his method in the next subsections very closely to prove Theorem 6.1.

6.3. Hilbert Jacobi forms. In this section, we define Jacobi forms for the pseudo-
Hilbert modular surfaces analogously to the elliptic case by an automorphy factor
and a condition on the Fourier development at the boundary. Then we describe
an extension of the line bundle induced by the automorphy factor on A%, to the
compactification A;2, whose global sections will include all Hilbert Jacobi forms.
Again, we first give the well-known definition and explain notation afterwards.

Definition 6.5. A Hilbert Jacobi form of weight x = (k1,k2) € %ZZ and index

m= (m',m") e %Odz for the group I' ;2 and multiplier y is a holomorphic function
f : H? x C? — C such that

(i) fUM.r)(z0) - Tem((M.r),2,u) = x(M.r) f(z.u) forall (M.r) € T .
(i) f has Fourier developments

f(z,u) = Z Z Cs (22, Uz) lefﬁf

s'e€Z t'el

s// f//
et Z Z Cs"',t”(zlwul)qZ §2

s"eZ t’el

(6.5)

in the local coordinates
Z u;
g =e(Z5). & =e(¥).
where ¢y 7, cg7 4 are holomorphic functions, which vanish unless

4sm—1t*>>0 and s>0.

In this definition,

2
Tem(y:z.u) = e(trg o(m(riz + 2r1w)) @z + W)™

i=1

ce(—trg/g(m(cz +e) teu + z*rl +r1)?) (6.6)

and one checks that for « integral the function (z,u) +— Jem(y,z,u) is an
automorphy factor for I';2. In the general case, for k¥ not necessarily integral,
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a multiplier is defined to be a map y : Fdz — € such that for a fixed determination
of Je.m the product 7y ,» x ! is an automorphy factor for Fdz. We suppose throughout
that y(y) has finite order for y € Fdz. We will not need more details, since the
multipliers trivialize after taking tensor powers and so they do not effect a statement
on the rational Picard group as Theorem 6.1.
Note also that

T = Jerwi~ Jeun (6.7)

)

where j.” o, (7.2.4) = jig, m (v ©. 21 ui).

A bundle of Hilbert Jacobi forms. We denote by 4. ,, (A7) the line bundle defined

by the automorphy factor Ty, x ™!

on the open variety A°,. In order to extend it
to a bundle g% ,,(A42) on Agz2, we proceed as in the elliptic case. We work local
coordinates near a boundary divisor, say D! and suppose first that y = 1. The local

coordinates are given by Lemma 5.6 by

@1,k~f11,k~22,u2,

and the line bundle induced by 7y, is trivial. Again, we declare sections to be
holomorphic if they are of the form

k2 e—m' (k 2
T T (6.8)

for a holomorphic function f = f({; k. 41k, 22, u2). For a non-trivial multiplier y,
we have to pass to local systems, but this definition still makes sense, since it is
independent of the chosen trivialization of the local system.

Alternatively, we can construct the extension (for y = 1) by using (6.7), which
translates into

?*gk,m(A:}z) — pr’fg,q ,m’(E(d)ji) ®pr;0((K2,m"(E(d)?1)'

and the fact that the latter bundle has an extension, which is in fact H ;2-equivariant
and thus induces a bundle on the quotient. (Note that for m € dZ?, it is even
F(l)fl /F(E' )3~equivariant, but for general rational index m, j is not an automorphy
factor for I'(1)4.)

From the Fourier development (6.5) and the coordinate transformations (5.9) we
deduce that a Hilbert Jacobi form has near the boundary divisors ng given by
q1.x = 0 a Fourier development

"+(k+1) s 2
f(z,u) = Z Csl,tlé-‘:’;_( +1)t qi,]:_kt ) (69)
st

4s'm;—1"2>0

The same estimate as for elliptic Jacobi forms yields that Hilbert Jacobi forms are
indeed holomorphic sections of §7,,(A2).
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6.4. Theta functions. We recall the definition of the classical (Siegel) theta-functions.
We use the convention that x = (x, x») and y; are row vectors while and v = (v, v2)7
is a column vector. Let
H, xC# — C
o[71]: (Z,v) —~ Z e(%xeT+x(v+%y2T)) (6.10)

er&’Jr%yn

be the theta function with half-integral characteristic y = (y1,y2) € Z*. The
evaluation of a theta-function at v = 0 is called theta constant. The theta-function
(and the characteristic (y1, ¥2)) is called odd if y; sz is odd and even otherwise. Odd
theta constants vanish identically as functions in Z. The theta constants are modular
forms of weight 1/2 for the subgroup I'(4, 8) of Sp(2g, Z), non-zero if and only if
(v1,y2) is even.

For a matrix M = (2 2) € Sp(2¢.Z) and a vector A = (X1,1,) € Z?*® the
theta function transforms (see [2]) as

Ol Gl JM(Z),(CZ + E)Tv)

=0[J1](Z.v) - xo(M)-det(CZ + E)?e(2v"(CZ + E)~'Cv), (6.11)
[ 1(Z.v+ ZAT + A7)
=0[1](Z,v)-e(BAT —2aT — 10, zAT —vTA]). (6.12)
Here, yp is a multiplier, which takes values in the 8-th roots of unity, and M acts on
the characteristic by

(My); = Eyl —Cyl + (CET),,
(My), = =Byl + Ayl + (ABT),,

where (S)o = (511, ...,8gg) denotes the diagonal vector of a matrix S € R&*&,

We are interested in Hilbert theta functions (with half-integral characteristics),
the pullback of the Siegel theta-function for g = 2 to H? x C? via the modular
embedding 117 defined in Section 4. Concretely, these theta functions are given as the
power series

?9[’;%](2,“) = W*Q-}]g (Z,u) = Z e(%xAZ*ATxT +X(Au + %sz))

erz-i-]j,Z—1
— Z e(%xz*xT + x(u + %ByZT))
xe(z2+8h4

- Z e(trg/q (3 (xz + 2x(u + 372))))

—~

v YL
X€o >+5

Vv

42> and Y, = ygBT € 0,42. We first analyze the action of I'y2

where v, = y14A € 0
on characteristics.
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Lemma 6.6. The set of even theta characteristics decomposes under the action of T ;2
into two orbits

Eo = {[G0)-[6H] [Go] (6]}
Ex={{wol [an)[En] (0ol [60] D]}
for d even and into O3 = {[ E?é; ]} and

for d odd.

The labeling of the orbits is consistent with the notation for spin structures for the
reducible locus, as we will see in Section 7. The odd theta characteristics form two
orbits for d odd and one orbit for d even, but we will not need this fact.

Proof. Recall that in ¢ = 2 an even theta characteristic can be written as a
sum of three (out of six) odd theta characteristics, and that this representation
is unique up to passing to the complementary triple (e.g. [21], Section Illa.6, in
particular p. 3.104). Odd theta characteristics correspond to Weierstrall points and
they have been normalized in Proposition 2.1 globally, i.e. in a way that is invariant
under I'y>. For d odd the alternating sum of the three Weierstrass points in one
fiber is the distinguished even theta characteristic. For d even there are two kinds of
triples: four triples (and their complements) can be formed by picking one Weierstral3
point out of each pair from Proposition 2.1. Six triples (and their complements) can
be formed by picking both Weierstrall point from such a pair and a third point. These
correspond to the orbits £y and E; respectively.

It is easy to show that these orbits do not decompose further by exhibiting
appropriate elements of I';2 and the transformations

V1> (MP) =F1e* —=Vac* + (BT c*e*B)T A,
Vo > (M7), = —71b* + Vaa* + (Aa*b*AT)T BT,

where M = (‘CZ ’g) € Fdz that follow from (6.11) and the definition of the modular
embedding. (]

Proposition 6.7. The Hilbert theta functions are Hilbert ’{Jacobi forms of weight
(%, %) and index (%, %) for some subgroup of finite index in I" ;2.
For ¢ d odd, one of the Hilbert theta functions is a Hilbert Jacobi form for the full

group I yo. With our choice of B and the modular embedding, this is ﬁ[g?’ég ]
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Proof. The group Fdz acts on ¥ by

(MY,

WM. (e + )+ 25T +T))

ﬁ[%](z,u) = 19[

(cDz; + @)~ /2

:N

(%trK/Q (rlzz - 2r1u))
’21 (6.13)

ce(—dtrgso((u + 2T +r]) (cz + o) te(u + 2] + D))

~

(WM - e(trg o (B — 2r1))

where (M, r) =((22),(r1,r2))e T ;2. This proves the claim on the weight and the
index. The second statement follows from the previous lemma. O

Last, we list the theta characteristics and their images under the transformation
V1 = y14, respectively 7, = y, BT . The first row is multiplied by d for convenience.

[7:] | [oo] [oo] [%0]  [00]  [87]
[ TI88] 101 1991 [9%] [99)
S I O ) I ) I B )
[T 18] [ [498'] %] [424)

Table 1. Even theta characteristics under base change

d _ i - =
[T T40) 194 L) [ou] [%4'] [ibh]
Table 2. Odd theta characteristics under base change

6.5. The divisor of a Hilbert Jacobi form. In this section, we determine the class
of the bundle of Hilbert Jacobi forms in terms of the pullbacks of the Hodge bundles
*X; and the zero sections N O, that is we complete the proof of Theorem 6.1.

The plan is to reduce the weight and index of any Hilbert Jacobi form to zero with
the help of the following two functions, whose divisor class we can compute.

Lemma 6.8. The function 190)[ |:H?xC? - C,i = 1,2, given by

0 [11Ew) = 3 e(3(x +3)°% + (x + §)(u: +3))

xX€eZ



Vol. 92 (2017) Cutting out arithmetic Teichmiiller curves 287

as a pullback of a one-variable theta function, is a Hilbert Jacobi form for Fdz of
weight k with k; = %8,-1- and index (m™, m®) where mY) = %8,-]-. Its divisor is

: ~d ..
divoP[1] = N® 4 =B,

Proof. One immediately deduces from the theta transformation formula that
19(’)[ ]((M r)(z.u))- ii((M r).z,u)
]
= e(3r5” = 3dr”) - xy (M) -9 (1] (2. ).

for (M,r) € T,2, where X(’)(M) = yg(diag(d !, )M @ diag(d, 1)), and
where yy denotes the multiplier introduced in the 1-dimensional theta transformation
formula (6.12).

For the divisor calculation we may focus on the case i = 1. At the boundary
divisor D", which in the local coordinates (C1.k+91,k, 22, u2) of Lemma 5.6 is given
by ¢1 x = 0, we have the Fourier development

?9(1) % qu/z(x+1/2)2é_d(x+1/2) (%(x+%))

X€Z

- d/2(x+1/2)24+kd(x+1/2) od/2(x+1/2)2+(k+1)d (x+1/2) 1 1
=) di% C1k -e(z(x + 3))-
XeZ

Thus, the vanishing order of 19( )[ ] at ¢y x = 0 as a function is given by

min §(x + 3)° +kd (x + 5) = §(min x> + (1+ 26)x + § +)
X X
= 4(min (x + 3+ k)" = (3 +4)° +§ +)
X
i 2
= §(min (x + 3 +&)” = &?)
=§ K%

Using (6.8), we see that the vanishing order as a section of the bundle of Hilbert
Jacobi forms is %. Thus,

¢ =divo{"[1]-4Dp®

is a divisor on A ;2, whose support is disjoint from the boundary.

The divisor of the classical theta function 0[ } ] on E[d]° = HxC/(T'(d) x(dZ)?)
is equal to d?-times the zero-section. This relation persists under passing to the
quotient by the conjugate group T(d)g via the equivariant isomorphism (z,u)
(%.u). Thus

. (1)
Oe@)2 ([divig [ 1]) = Ok )2 (@ NX(d)z)
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Therefore,
deg(7)C =7T47°C
=705y (divd g [1]) — deg@ 4 D™
= d*TuNyly, — deg @S DY
= d*AgND —deg@ LDV,
which together with deg(7) = d?A implies the claim. O

Lemma 6.9. The pullback of the one-variable n-function n¥) : H? x C? — C, given
by

o0
(’)(z u)—e—g l—[ l—e

15, i, and index

is a Hilbert Jacobi form for Fdz of weight (k1,k2), where kj = 3

(0, 0) with divisor

Proof. From the well-known one-dimensional transformation formula one deduces
1 olM.r] = an(M©) - 1@

where the multiplier y;, takes values in the 24-th roots of unity. At ng) o the

function 77(“ can be written as

o0 oo
: d/24 d/24.d/24
1D =g [T (=af") = a2 TT (1 - afieit).
n=1 n=1
and the rightmost term does not vanish at g; x = 0. U

Proof of Theorem 6.1. Let f be a Hilbert—Jacobi form of weight k = (x1,k7) and
index m = (m’,m"). Let g®, i = 1,2 be the pullback via pr; of a modular form
form of weight 24d {«; for I'(1),;. The function

(T T @2 @y g g po2s

has trivial automorphy factor. Hence, it descends to a meromorphic function on A° 42>
and one checks that its extension to A2 is also meromorphic. Therefore, we can
obtain an explicit divisor linear equivalent to f by computing the divisors of the
different factors of the product.
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Using the above lemmas, we have

1
divf ~ E(2m’(Nm +4DpW) 4 2m"(N®@ + £ p@)
— 2m’%D(1) — 2m”%D(2) +drim*h + dsz'r*)Lz)
= KT Ay + ket dy + ZEND 2 N @) o p() o mE p @)

Applying D@ = 127*2; yields the claim. O

7. The reducible locus

Let P;z C X;z be the reducible locus, i.e. the locus of points corresponding to
abelian surfaces that are isomorphic to a product of elliptic curves. We show the
following.

Proposition 7.1. The closure Py> of the reducible locus has the divisor class
[Ps2] = (5— %) (A1 + 22)
in CH' (X 42)- If d =1 mod 2, its spin components have the divisor classes

[Pa2e=3] = (3 — 53) (A1 + A2),
[Pg2 =] = (% - %)(Al + Az).

If d =0 mod 2, its spin components have the divisor classes

[Pa2e=0]l = (2= §)(A1 + A2),
[Pz e=2] = 3(A1 + A2).

Corollary 7.2. The spin components of the reducible locus have Euler characteristic

X(Pg2,_s) = —35(d —3) 5,
X(Pac,"z,s:I) _3_12(d B 1)%’

if d is odd, and

A,
—L(d —3)4¢,

X(Pdc’2,6=0)
PS,._,) =—2xA
X( d2.e=2 a8 2d>»
ifd > 2is even.

This fits with the total count x(P3,) = —1;—4(551 — 6)% obtained by several
authors, see e.g. [1, Formula (2.23)].
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Before embarking on the proof, we need several lemmas. Given a theta function
with characteristic, we write

~

bo[ ! ](2) =9 ]z.0)

for the corresponding theta constant. Mumford shows [20, §8] that the reducible
locus is cut out by the product of all even theta constants and this product vanishes
to order one there.

If d =1 mod 2, we define

0,1
Do,e=3 = ?90[ 1’0] and Do e=1 = 1_[ 190[ 5;’12] ’
y
[73 |0,
These functions are, by the description of the action of I'j2 on characteristics in

Section 6.4, modular forms for the full group I';2 of weight (%, %), respectively of
weight (%, %). If d =0 mod 2, define

290,5=0 = l_[ 290[ 55 ] and 290,8=2 = l_[ 190[ )}g ] F
33 ]eEo 33 ]eE2
Again by the calculations in Section 6.4 these four functions are Hilbert modular

forms of weight (2, 2) in the first case and (3, 3) in the second. The zero loci of these
modular forms correspond to the spin components of the reducible locus.

Lemma7.3. Inthe openpart X 3, the components of the reducible locus are vanishing
loci of the modular forms

Pjs oy = {D0,e=3 = 0}, respectively, P> ,_, = {f,e=1 = 0}
for d odd, and

Pdoz,s=0 = {Po,e=0 = 0}, respectively, P£2,£=2 = {Pj.e=3 = 0}
for d even.

Proof. In the case of a smooth genus two curve, the function ¥ = 15‘[8:8] vanishes
at all odd 2-torsion points, since translating ¢ by such a point gives a theta function
with odd characteristic. Consequently, the odd 2-torsion points are the Weierstrass
points. This identification extends to reducible curves.

A 2-torsion point [ % ] is integral, i.e. has tkE same image under the origami map

as the node, if and only if its base change [a:;«yl | has [ §] as first column. So the
2
number of integral Weierstrass points in the vanishing locus of [ L ] is the number

of odd theta characteristics that have [8] as first column after adding [‘%“ ]
2

The claim now follows from inspecting Table 2. U
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Lemma 7.4. Ford =1 mod 2, we have

Py2ez = 5(A1 +A2) — %(R(l) + R(2)).
Py2emt = 3001 +22) — 3(RV + R®).

For d =0 mod 2, we have:

Pd2,8=0 =2(A1 + A2) — %(R(]) il R(2)).
Py2 ey = 3(A1 + A2).

Proof. Let U] }! | be an even theta constant. Using the Fourier development, we
have

~

s '+ d 77 )2 "4 d 72 ~
D[ 2] = e(rgo(7i72) 3 a0 T P e(u(s2))

s/ =—g

By symmetry, we may concentrate on the first boundary, which is locally given by
¢1 = 0. The minimal ¢g;-exponent appearing is

L ifdy, =1mod 2,
min%(s’—l—d'f/”l)zz 8 1 ,}:,1 e
s'eZ 0, ifdy|=0mod?2.
Thus, ¥ }} | vanishes at R® to the order g&(y), where fory € JZ, wesete(y) = 1.
if dy =1 mod 2 and &(y) = 0 else. The claim now follows using Table 1. O

Proof of Proposition 7.1 and Corollary 7.2. Proposition 7.1 follows from the pre-
ceding lemmas and formula (3.2). Since the components of the reducible locus are
all Kobayashi geodesics, the Euler characteristic can be computed by integration
against . Consequently,

X(P;z,£=1)=f—w1 :_%(%_%)fwlsz
Py2 =1 X2
= 3G — 2 1(Xg2) = —55(d = DT

since y(X42) = 7—12Ad. The calculation for the other spin components and for d
even is the same. O

8. Arithmetic Teichmiiller curves in .M >

In this section we describe loci in the universal covering of A7, in terms of theta
functions, their derivatives and the torsion sections with the following properties.
First, they are invariant under the covering group and hence they descend to loci



292 A. Kappes and M. Maller CMH

in A‘;z. Second, their images in the pseudo-Hilbert modular surfaces are the
Teichmiiller curves we are interested in, or rather a union of these.

For this purpose we take for d odd the unique even Hilbert theta function ¢ =
0 [ ?:(1)] whose characteristic is invariant under I' ;2 (see Section 6.4), and for d even
we take one of the Hilbert theta function with even characteristic in the orbit Ey, say

¥ = ﬁ[gzg]. We let
U:H>xC>—> A5, (8.1)

be the universal covering map.

8.1. The stratum 2 .M 5(1,1). We fix a torsion order m € N and define 5m(1, 1),
the lifted origami locus for the stratum Q.M (1, 1). These are points on the theta
divisor, where the derivative of theta in the u,-direction vanishes and whose first
coordinate projects to an m-torsion point. Formally,

Om(1.1) = {(z,u) e H2 x C2: ¥(z,u) = 0,

a1 B —1 (77 (D)
WZ(Z,M) =0, (z,u)eU (Nm-tor)}' (8.2)

The transformation properties of theta functions imply that the images of the lifted
origami loci are closed (in fact algebraic) subsets of the (open) universal families.

Lemma 8.1. The images O,,(1,1) = U(5m(1, 1)) forany m € N are closed subsets
of A%,
We are ultimately interested in their closures in the compactified universal family.

Definition 8.2. The origami locus O (1, 1) is the closure in A2 of O, (1, 1)).

In this section, we show that the m-push forward of O (1,1) is a union of
arithmetic Teichmiiller curves in Q.M (1, 1) plus possibly some spurious parts of the
reducible locus and of arithmetic Teichmiiller curves in QM,(2) if m = 1, 2.

Theorem 8.3. Letm € N, m > 1. [fm =0 mod 2, then
Tx Oam(1; 1) = 2T 4 jg—m:
If m=1 mod 2, then

w00 (1,1) = 2Tg pp—m o=1, TxOm(1,1) = 2T gpr—m =3, ford odd,
s O2m(1,1) = 2T p=m.e=2, 7« Om(1,1) = 2Ty py=m =0, ford even.

The case m = 1 is special in that we also hit Teichmiiller curves in 2.M»(2) and
parts of the reducible locus by 7, O (1, 1).
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Theorem 8.4. The push-forward of the origami locus decomposes as

e O1(1, 1) = 2Ty prmi em3) + 3 Wazos) + [Pazoes] d odd.
e 02(1, 1) = 2Ty =1,e=1) + 3Wy2 o] + [Pazoey]  d odd,
7« O1(1,1) = 2[Ty y=1,6=0] + [Py2 =] d even,
7 02(1, 1) = 2[Tg m=1,e=2] + 3[Wy2 o—5] + [Pg2,—>] d even.

We start the proofs with the closedness lemma.

Proof of Lemma 8.1. The vanishing locus of a Hilbert Jacobi form is closed, since
it is a closed subset of H? x C? and since the automorphy factor is a product of
non-zero terms. This applies for the full group Fdz for d odd, and for a subgroup
of finite index in fdz that stabilizes the characteristic (see Section 9.4) for d even.
Arguing for this subgroup is sufficient since the image of a closed set under a finite
map is again closed.

The torsion condition is also closed. It remains to treat the derjvative of the theta
function. We define y(M.r) = yo(W(M.r))e(trg (5 r> — £r1). Restricted
to points (z,u) where ¥ (z,u) = 0 (and hence also ¢ ((M,r)(z,u)) we obtain
for all (M,r) € Fdz by differentiating the equation defining modularity (see
Proposition 6.7) and using the definition of the action in (4.5) that

o
M((z- u))

9
= — (M. WT 11, 0 1,((M.r).z,u) x(M, r)

duo (3.3):(3.

= jﬁ—((M Nz Pz +e@) 7 T 1y 1 0y (M, r), z,u) x(M,r)
Oy (22)3:3)
aﬁ (M, r)(z,u) T 1y (M), z,u) (M, r). (8.3)
" oy 1(3.3).(3.3)

Consequently, the automorphy factor here is again a product of non-zero terms and
the vanishing locus is well-defined and closed as a subset of A7, for both parities
of d. O

As first step towards the theorems of this section, we show that the origami maps
are normalized in the sense of Proposition 2.1 for the two theta functions we need.
Let pr; be the projections associated with the isogeny A;2 , — E; /4.1 X Ez,/q,1
from Section 4.

Lemma 8.5. For fixed z € H?, let 62[%] denote the curve in Ag> , given by
?[ 71 ] = 0. The covering

pri O] = E¢an
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is normalized, if and only if

[73] € Eo. ifd=0mod2 resp., [}}] = [(1)(1)] ifd =1 mod 2.

Proof. The function ¥ = &[] vanishes at all odd 2-torsion points, since
translating ¥ by such a point gives a theta function with odd characteristic. Since

Yiq . . .
0, = 6, [7;] is a symmetric divisor with respect to [—1], the translates by

g ’)71”" + 72T of the odd 2-torsion points are precisely the 6 Weierstrall points on ®.
The claim now follows by inspecting Table 2. OJ

Proof of Theorems 8.3 and 8.4. A pointz € X, lies in the support of 774 O (1, 1) if
and only if it has a preimage y € A2 , suchthat y € ©_, such that y is a ramification
point of py : ®, — E; /4,1, or alternatively a zero of the first eigendifferential
w1 = ] wg, and such that y is mapped to a m-torsion point in E;, /4 1.

If y is a ramification point of order 2, then it is a fixed point of the hyperelliptic
involution, so it is a Weierstrall point. Consequently z € W;> and such a point has a
unique preimage in Oy, (1, 1).

Suppose that y is a ramification point of order 1 and that ®, is a smooth curve.
Then two zeros of w; are exchanged by the hyperelliptic involution o, and o descends
to the elliptic involution (see Proposition 2.1). Hence the images of the ramification
points differ by a torsion point on £, /41 and z lies on some 7y ;.. The torsion
order of the corresponding minimal covering is m or m/2, depending on m mod 4,
on d and &, as explained in Section 2.1. This implies the set-theoretic assignment of
the various Ty 5. to the push-forwards of the O, (1, 1). In each of the cases there
are two possible points y for the same z.

If ®; is a singular curve, then it is reducible, and its components are two elliptic
curves E1, E, joined at anode, since 7 Oy, (1, 1) is the closure of a subvariety in Xd"2
for any m, and hence the Jacobian of a generic point of its support is compact. On
each E; (i = 1, 2), the projection p; is still non-constant (since p; and the projection
to the kernel of p; deform over all of X 7, otherwise the splitting as product of elliptic

curves would deform to all of X ;’2), and thus an unramified covering. Consequently,

a% never vanishes at a smooth point of ®, while it does vanish at the singular point

of ®; (even both partial derivatives of ¥ vanish).

The node y is a 2-torsion point different from the six odd Weierstral points, i.e. it
is an even 2-torsion point. Consequently, its p-image is a 2-torsion point and there
is no contribution from the reducible locus, except for m = 1 and m = 2.

Suppose first that d is odd, hence ¥ = ¢ [ ?:(]) ](2). If the node is mapped to zero,
then it is an even two-torsion point with the property that after translating by [ ?:(1) ] its
p1-image is zero, i.e. in the eigenform coordinates of the second row of the Table 1
the first column of the point is zero. By inspecting the table we see that there is only
one possibility, [ g ] itself. This implies that y = 0 and that z is in the vanishing
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locus of the corresponding theta constant, i.e. 190[ (1):(', ](z) = 0. By Lemma 7.3 this
is the defining equation of P2 ,_j.

Similarly, precisely the odd theta characteristics in Qg are mapped after translation
by [(1)(1)] to a primitive 2-torsion point. By Lemma 7.3 this implies that P;2 .5 is
contained in (0> (1, 1)).

Suppose next that d is even and ¥ = 19[8:8](2). Precisely the odd theta
characteristics in £ are mapped (after translation by zero and base change) to a
first column equal to zero, while those in £, are mapped to a primitive 2-torsion
point. Together with Lemma 7.3 this explains the setwise distribution of the reducible
locus among 7 (04 (1, 1)) and 7 (O0,(1, 1)).

It remains to determine the multiplicities of O,,(1, 1) at the components lying
over the curves Ty p.e, Wy2 o and Py2 . We start with W2 .. Fix ¢, an M-torsion
point u; and shift the remaining coordinates, so that in the new coordinates the
point will be at z = 0 and uz = 0. The fiber of the origami locus is cut out by
¥ (22, u2) = Oand 9y, (23, u2) = 0 for some function ¥, which is odd as a function
of u3. This implies that the multiplicity of the fiber is two, hence the multiplicity
of the component is a multiple of two. Now we consider the fiber with (z;,u;)
varying, choosing locally (z3, u2) so the the first two conditions of the origami locus
are satisfied. Since locally near the critical point three branches of the map p; come
together, the multiplicity of the component is divisible by three. Taking the factor 1/2
from the quotient stacks into account, this implies that the multiplicity of W2 . is
three.4

Near T} . the branching argument for p; gives multiplicity two. Two preimages
and the stacky factor 1/2 give in total the coefficient two in Theorem 8.4.

Near P;2 , the fiber is singular near the preimage point z, hence besides 9y,
also 9, vanishes there. This implies multiplicity at least two, hence at least one,
with stacky factor 1/2 taken into account. O

8.2. The stratum £ .M >(2). We need the following theorem from [1] to subtract
the contribution of the curves W7 that appear in Theorem 8.4.

Theorem 8.6. The classes in CH' (X g2) of the Teichmiiller curves generated by
reduced square-tiled surfaces in QM (2) are for d odd given by

Wil =30 = Dhi+3(1= DAz + Ja
and W= 31— DA+ 30— A2 — Jy
for some Jg in the orthogonal complement of (A, A2), and

W2l = (W52 =3(1— $)A1 + 91 — )4z

4A priori,this argument shows that the multiplicity is at least three. Similarly, the arguments in the
subsequent paragraphs show that the coefficients on the right hand sides are at least what is written
in Theorem 8.4 resp. Theorem 8.3. Since we know the total count by an independent argument, see
Proposition 9.9, the multiplicities cannot be larger.
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for d > 2 even. Consequently, the number w¢ of reduced square-tiled surfaces in
QM4 (2) with spin € is

_ 3 _ 3
Wi = e d =35 Wi = ed = DI,

., 3
w52 = (- 2)24,

where the first line corresponds to d odd and the second to d > 2 even.

The counting part of this theorem was proven in [13], the class in CH! (X ;2) was
first determined in [1].

We sketch how one could prove this theorem, at least without distinguishing the
components, with a similar setup as for the stratum 2.M,(1, 1). We define 5(2), the
lifted origami locus for the stratum 2.M,(2) to be

2
00) = {(z.w) e B x C?: 9(z,u) = 0, o =1, = o}
Buz au%

The transformation properties of theta functions imply again that 0°(2) =
U(5(2)) is closed in AZZ. The origami locus O(2) is defined as the closure in A4 ;2
of 0°(2). With similar arguments as above one can show that the push-forward of the
origami locus O, is supported on W7,. To prove Theorem 8.6 from here it remains to
determine the multiplicity of this push-forward and compute the class of 7, O(2) as
a triple intersection, following the proof for 74 (O,,(1, 1)) given in the next section.
A more detailed analysis along these lines is likely to separate the components and
to show that J; = 0, as conjectured in [1].

9. Intersection products

We now can complete the proof of Theorem 1.3. For this purpose we prove in
Theorem 9.2 how to subtract from a triple intersection of divisors on 4,2 suitable
boundary components in order to compute the class of the pushforward of the origami
locus Oy, (1, 1). As technical steps it remains to actually perform triple intersection
of the geometric divisors appearing on the right hand side of the class computation
in Theorem 6.1 (see Proposition 9.3) and to compute these boundary contribution.

In this section, we restrict to the case d odd. The additional computations
that have to be performed for even d are briefly discussed in Section 9.4. We
continue to denote by ¥ the unique Hilbert theta function with even characteristic
fixed by I'y2. It gives rise to a section of the Hilbert—Jacobi bundle $3 = J«.m (Fdz)
with k = m = (1/2,1/2), and therefore to a Cartier divisor divi} on A,2. The
associated Weil divisor [divi}] can be written as

[divd] = © + B(9),

where B(1) is a linear combination of boundary components and ® has no support
at the boundary. We view © as element of CH' (4,2) .
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Let |®| denote the support of ® and let i : |®| — A ;2 be the inclusion. We can
compare the intersection numbers on © and A ;2 since ® is a reduced (and in fact
irreducible) subvariety.

The next condition in the definition of the origami locus is the vanishing of the
theta derivative. On © this function is a section of the restriction of a bundle on A2,
whose class we already computed. Recall the definition of U from (8.1).

Proposition 9.1. The function 3319 restricted to U™ (|®|) descends to a well-defined
global meromorphic section dv of i*Ja9, where $ay is the bundle of Hilbert Jacobi

forms 3’,cm(l“dz) with k = ( ) i = (2 2)
Proof. This follows immediately from the calculation in (8.3). U
To the Cartier divisor divdl¥ we associate the Weil divisor [divdd]. It is a sum
[divdd] = DO + B(d1)

where B(d1) € CH'(|®|) is a linear combination of boundary components of ®,
and D ® has no support on the boundary.

Finally, in the definition of the origami locus, we have to intersect with the torsion
condition. This may also result in components, that lie entirely in the boundary. We
have to subtract this contribution, that is, in CH* (|®]), we can write

i*[Op(1,1)] = DO (NS0 — Bm(N)

where B,,(N) is supported in the boundary of |D®| since by definition Op,(1, 1)
has no support on the boundary.

Theorem 9.2. For d odd, the class of the origami locus in CH*(Ay2) can be
computed as

[Om(1, )] = €1(59)- c1(539)-Nytor = BO)-€1(Fa9)- Nyt
~ NV i B(09) — ixBm(N). (9.1)
Proof. Since © is reduced, the pushforward of D® by i is
i+DO = c1(F39).© — i B(09).
by the projection formula. Thus,

[Om (1, D)] + is By (N) = in(i * Niror. DO)
= Nrgl—znr-cl(élal?)-(a - N,gzl?orl*B(aﬁ) .

Now plug in ® = ¢ (g (1)) — B(¥) to obtain the claim. O
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9.1. Triple intersections. The divisors of Jacobi forms have been expressed in
term of the zero section divisors N @), the pullbacks of Hodge bundles 7*2;.
The evaluation of intersection products of those divisors and with the boundary
divisors D@ is manageable since many triple intersections have m-pushforward
equal to zero.

Proposition 9.3. The m-pushforward of a triple intersection between any of N,
n*Ai, and DY is given by

(N NP 7*2) = d?2i, a(NONPD DDy = g2R®
(N NPy = —g2);, m (ND.(NP)2) = —d?),,

and is zero for all triples that do not agree with any of the above up to permutation.

Proof. The divisors 7*A; and D® are vertical, i.e. their -images are divisors, while
the N @ are horizontal, i.e. |v; is surjective. Consequently, any intersection of three
divisors meeting properly, among which two are vertical, consists of 1-cycles along
which 7 is of relative dimension > 1, hence their -pushforward is zero. We may
use linear equivalence in the base to ensure that the proper intersection hypothesis
holds for any of the intersections N .w*A ;. w* Ay fori, j,k € {1,2}.

The intersection N (). N ?) is the closure of the projection of

{(z,u) € H? x C? | u € diag(&}, %)Z* + Z*}

to Ay2. In each fiber, this is a group of order d?, the kernel of the projection
to C/(3z1,1)Z2 x C/(425,1)Z%. Thus, me(NW.N®) = d?m, N = d?[X 2],
where N is the zero section of w : A2 — X42. This gives all the intersection
products with -pullbacks as stated.

It remains to treat intersections of m-pullbacks with (N@)2 Since (N©)? is
represented by the pullback via pr; of a zero-cycle E(d)g4, its intersection with any
of the vertical divisors is a cycle on which = is of relative dimension one, hence again
its w-pushforward is zero.

For the remaining two cases stated in the last line of the lemma we start with
wi«(N )2{( d)) = —Ax(q), as in the proof of Proposition 6.2. This directly implies that

(@ x @) (N2 ND) = 29,

using the commutativity of the diagram

CHY(E(d)q) ® CHY (E(d)a) CHG(E(d)7)
Wy @ Wy (X))«
CHY (X (d)a) ® CHY (X(d) ) CHg (X(d)7)
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and the fact that Nélz) is the pullback of a section the second elliptic fibration. The
same argument gives

(o X ™)« ((u*N(l)) v*N(Z)) l(l)

for any translates by torsion sections p and v. Now

1
d?Ag4

I M 2 2)
:mr*(wxw)*(zz ,u,*NX(d) .v*NX(d)
d neT veT

(NP2 ND) = T ((T*ND) TN D)

d? (1) 214(1)
:A_d ( )LX(d))— —d"A

where T = 0%, ® 042/(Z* @ dZ?) is a torsion subgroup of order d* and where we

used that for ., u’ € T we have (M*N)((l(zj) ,UJ*N)((I(L)) = Ounless p = p'. O

9.2. Boundary contributions. In this section we collect all the boundary contri-
butions that appear in Theorem 9.2. Together with the results from Section 8 this
allows us to conclude the proof of the main Theorem 1.3 for d odd. The proofs of
the boundary statements appear in the next section.

Proposition 9.4. For d odd the boundary contribution of div} in CH' (A 42) is

B®) = (D" + D@).

Proposition 9.5. For d odd the boundary contribution of divd® in CH*(A;2) is
equal to

B@9) = L(DW + DP).ci(gy). 9.2)

Proposition 9.6. For d odd the push-forward of the boundary contribution B, (N)
is equal to

R ifm=1,

9.3
0, else. ©-3)

e Bm(N) =
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Proof of Theorem 1.3. There are several cases to be discussed.

Case: M > 1 odd, spin ¢ = 3. In this case 2[Ty are=3] = [7+Om(1,1)] by
Theorem 8.3. The first contribution to this is, according to Proposition 6.2 and
Theorem 9.2, equal to

7 (C1(F8)- ¢1(F09)-Nifor)
=m(((+ Dm0+ G+ Pm 22+ IV + N D)
(G + D70+ G+ Drtha + INO £ ING) B (VO 4 1)
=d 5 ((1+ 2+ 2+ D)4r,). ©4
Next,
72 (BO). c1(Fa0)- NP r)
= (3 + D)7"h + (G + D)avho + TN + AN)
AN+ 21) 400 + D))

W (G7h + 5742) ©.5)
By Proposition 9.5 we get
ro (NP B(3D)) = n*(NS_EOr.cl(g,y).l(D(” +D®))
=d A1 (A + 5 ha). (9.6)
Since m«(Bp (N)) = 0for M > 1 we find altogether
[T« O (1, D] = d 5% (1 = D)2 + (2= 2)42),
and this completes the first case.

Case: M > 1 odd, spin & = 1. Since in this case 2 [T7 pre=1] = [7xOam (1, 1)]
M otor = MTM N (D all the contributions are multiplied by three compared
to the previous calculation, and this proves the second case.

and since N(l)

Case: M even. Recall that there is no spin distinction in this case. Now 2[T pr. =0l =
[« O2pr (1, 1)] and for M even the number of primitive 2 M -torsion points is 4%‘”.
Hence all the contributions are 4 times larger than in the corresponding cases for M
odd and spin ¢ = 3, completing the discussion of this case.

It remains to discuss the subcases for M = 1.
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Case: M = 1, spin ¢ = 3. We compute as in (9.4), (9.5) and (9.6), taking into

account that N 1( t())r has no Ay-contribution (as N,f,lfor had it according to Proposi-

tion 6.2),
ma(e1(Fa)-c1(Fa9)-N{20) = d (A1 + 2+ 1)1a).
7x(c1(00)- Nior B®)) = d (3401 + 7ha),
r (VD BOD) = d (52 + Frha)

Since 7« (i« B1(N)) = R® = 122, we find
e 01(1,1) = (d =3)A1 + 2(d*> —d — 6),.

Subtracting the contributions from the reducible locus (see Proposition 7.1) and from
W4 =3 (see Theorem 8.6) according to Theorem 8.4 gives the claim.

Case: M = 1, spin ¢ = 1. Since Nz( I))r = 3(N® + A;) and since in this case
7« (B3) = 0 we get as in (9.4), (9.5) and (9.6), that

7 (02(1, 1)) = (3d — 3)A; + 6(d — 1)As.

Again, subtracting the contributions from the reducible locus (see Proposition 7.1)
and from Wy .—; (see Theorem 8.6) according to Theorem 8.4 gives the claim. [

9.3. Intersection with the boundary: proofs. We will deduce Proposition 9.4
from the following result. We compute the vanishing order of the theta function for
general k and general characteristics, and later specialize to the unique theta function
invariant under the whole group T:dz.

Proposition 9.7. The vanishing order at the boundary divisor DC(;) x Of the theta

~

o Y1 . : s . ; ;
Sfunction 1 [7 ] considered as a function on the infinite chain of rational lines
2

k2, ifd7" =1mod 2,
if d'fl(i) =0 mod 2.
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Proof. By symmetry, we may focus on the case i = 1 and compute the vanishing
order of 19[1;41 | as a function at ¢y = 0. In the second line, we use the substitution
2

s = dx, so that the summation is over all s € Z? with s’=—s” mod d. We let
1~
Ni = 3Vi-

19[}:1 ](z, u)

( trgyQ((x + 771)22 +2(x + ) (e + ’iz)))

e(L(s" +dn\)* 25 + (5" + dn) (% + )

L
" 2t

d
s =—s'(d)
1/2-(s"+dn/ / ’ .
= e(trK/Q(qlnz)) a0, (S "1) »19+d771 (S,rzi_z)
S'€Z
1/2(s” +dn" Iy 7
4, (S ﬂ)é_2+771(,,73_)
s"=—s'(d)
2
= e(trg/q(mn2)) Z ql/2 (v +d"l) (s +d”1)é.11’/k2'(~‘ +dn}) +k+D) (" +dn)
s'€ZL
'e(S/%é) q;/Z(s”—}—dn”) é_2”+a'771 (//TZZ).

§ = ’(d)

Note that dn| € %Z. We let e(dn)) = 1, if dn) is half-integral and O if it is integral.

7

In this notation, the smallest g, x-exponent appearing in the development of 19[ >
2

is given by

min{1 (s + dn’l)2 +k(s+dn))|seZ}

= %Is]élg [s + 2s(dny + k) + dny (2k + d’h)]

= Lmin| (s +d; + k)| = 3(dn +K)* + S (2k + dny)
= geldn)) = 5K

This implies the claim, once we have checked that the corresponding coefficient is
indeed non-zero. We may restrict to the chart k = 0. If e(dn}) = 0, then the
minimum is attained only once for s = —dn) and the coefficient is a power of
{1,0-power times a non-zero power series in ¢, and . This coeflicient does not
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vanish for generic (1,0, 92, ¢2). If e(dn}) = 1, then the minimum is attained twice,
for s’ + dn = £3. The coefficient is of the form

—k?/2—k —k2/2—k—
GUETERIN2 Y (g2, 8a) + CVETETHRT2 4 (43, 1)

for non-zero power series A; and A,. This coefficient does not vanish for generic
(21,0, 92, {2) either. -

Proof of Proposition 9.4. By Lemma 5.6 and (6.8), we can determine the vanishing
order of a Hilbert Jacobi form near D) by its Fourier development in the coordinates
(C1k-91,k>22,u2), 1€sp. (z1,u1, {2 k,92,k), and then compare to the definition of
local sections of Hilbert Jacobi forms in (6.8). Using this and plugging in the

characteristic [,;‘ ] invariant under I ;2 in the previous proposition yields the claim.
2

O

For the proof of Proposition 9.5, let again © denote the unique theta function

invariant under I' ;2. We develop ¢ and d,0 with respect to the boundaries. To this
end, we introduce for i € Z the functions

1, 1\ ,_1
f11i) = qu(s D) (2o (s + ) 9.7)
s’ =—i(d)
Ligrply? oyl ‘ -
02,111 = qu(s 2) & Ze(sh(s” +1)) - e(EF). (9.8)

s =—i(d)

With the above notation, we expand ¢ and its derivative near a divisor D(()L)k lying

over the first boundary D) as

1_k2 1 (k+1)?
d=qp, 23 * (0 Ot Oa—ksnlik T Oq1n)),
' ' (9.9)
1 k2 1 (kt+1)?
0 =qf 260 2 (Quaba k] + Qun b k4 1181k + O(q16)),
and near a divisor Dc(><23),k lying over the second boundary D(?)
1 k2 1 (k+1)?
9= 20 7 (Ouk—1) + Sk 01—k + O(q2,4)),
1_k2 1_(k+D)?
020 =q2, 28, 2 (= V0 -+ Lk a + 0G240)).
(9.10)

Proof of Proposition 9.5. We have to determine the boundary contribution of 9,9
on ®, which is locally (using the chart k = 0 and Proposition 9.7) given as the
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C . 1/8 .1/8 . /8 (1/8 .

vanishing locus of & /¢ ;¢ for j = 1.2. The factor ¢,/ gives, for both

boundaries, the contribution claimed in (9.2). So we have to argue that the constant

terms (in ¢ o) of the remaining factors of ¢ and d?% have no common factors. Since

these terms are linear in {; o, this holds if and only if

0> [0] 6, [1] 01 (0] 01 [1]
det) = ’ ’ #0 and det, = ’ ’ # 0.
0us02,10)  Vuz021) —30100 301
Since
1 1 1 2
B = o =(2d-1)
0 [0] = e(ﬁ)‘]; .3+ O(Cli:3 )
1 1 1
=(2d—1)2 =(—2d-1) =(2d+3)?
and b2,1) = e(255) 45 7 + 0(6128 )

the claim for det; is easily checked using the beginning of the g;-expansion and for
det, the claim follows similarly. ]

Proof of Proposition 9.6. Suppose that (z,u) € H? x C? projects to N;&I.zor under the
universal covering map U. Thisisthe caseiffu; = %21 +1, forsomet;,t, € %Z but
there is no way to represent the point with 7;, 7, € %Z for any k strictly dividing M.
Such a point is mapped to ({1,¢;) = (q'l‘ e(%}), q1).

Near the boundary D! we inspect the expansion (9.9) with this specialization.
Bearing in mind that {, o # 0, already to first order in ¢y o the only solution is
g2,0 = 0. Such a component vanishes under 4, as claimed.

Near the boundary D we inspect the expansion (9.10). With the substitution
r’ =5 — 1 we find

91,[_1](q;le(%),q1) = Z qi/z(r’_lfz)z—}-t](_r’+l/2)e(%(_rf_l__ %))(_])r’/d

r’'=0(d)

1 '—1/2)2 411 (—r 41 rify
_ Z ql/Z(r [2) 4t (=r /2)6(2%)(—1) la
r’'=0(d)

For 11 = 1; = 0 this expression is equal to 6 [g] (q’l' e(%). q1), hence det, vanishes at
(qvi1 e(%), ¢1). One checks that the next term in the expansion (corresponding to qll’o,

since qll/ 8 has been taken out) is non-zero, so that the multiplicity of this contribution
is one, as claimed. Hence this point #; = t; = 0 contributes a divisor to B{(N),
whose 7-pushforward equals R,

The substitution works for no other pair (¢;,72). In fact, one checks that
det, (qi' e(%), ¢1) has non-trivial ¢, -expansion for any non-zero (¢1, t,). This proves
the claim. U
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9.4. Modifications for d even. Let d > 2 be even. In this case none of the even
theta characteristics in Ey is fixed by I'j2. The vanishing locus of the product is a
well-defined subvariety of A°,, but using this product in the definition of the origami
locus in (8.2) does not quite work since when taking partial derivatives, the product
rule introduces a lot of spurious components.

Consequently, one has to work here with the subgroup l’”t’l,2 of I';> fixing
the characteristic [ ]. In fact, the subgroup r’, = diag(d,—d).1)-T"-
diag((%, —%), 1) where

I"={AeSLy(Z)? | A'=A"=1mod2, A'=A4"mod2d} C SLy(o).

of index 48 has this property. Again one can compactify the open family H? x

2/Fd2, where szz =TI/, x(0), ® 042) by employing a toroidal compactification
for a normal subgroup; in this case F; 2d) = (FQd)ax(Z & dZ))2 will do
the job. Unfortunately, the resulting morphism A:ﬁ — Ayg2 from this new
compactification A:ﬂ is not flat at the boundary; it maps a folded 2-gon to a folded
I-gon by contracting one of the curves. One thus cannot simply pull back the
relations obtained in Picg(A,2). Instead one has to rederive the formula for the
class of a Hilbert-Jacobi form (Theorem 6.1), of the section of primitive {-torsion
points (Proposition 6.2), and compute the vanishing orders of the theta-function and
its derivative (Section 9.2).

9.5. Intersection products and Euler characteristics. We first convert Theorem 1.3
into a statement about Euler characteristics.

Corollary 9.8. The Euler characteristics of the arithmetic Teichmiiller curve Ty p ¢
are as follows. If M > 1 is odd, then

Ay
X(Tame=3) = —m(d - 1)Adﬁ

A (9.11)
KTapomt) = =350d = )B4 22

If M is even, then x(Tapm) = —2(d — 1)Ag 8% If M = 1, then

X(Tapme=3) = —*'—(d—3)(61' 5)—-
e 144 (9.12)

X(Tame=1) = —@(d —1)(d — 3)7_

Proof. Pairing with @; and integration, as in Corollary 7.2. ]



306 A. Kappes and M. Moller CMH

Now we complete easily the proof of the counting theorem.

Proof of Theorem 1.1. Since y(H/I'(1)) = —1/6, the number of square tiled
surfaces is minus six times the Euler characteristic. (This also holds if the curve
is reducible.) O

For comparison we include the proof how to deduce the total count (i.e. without
separating the spin components) from two results in the literature.

Proposition 9.9 ([9, Theorem 3], [4]). The number of minimal degree d covers of
an elliptic curve E' branched over the divisor P + Q is

1
3@ —DAg, ifP#0,
(9.13)

1 11 |
&u—n—ﬁgmﬁwﬂm,¢P=Q.

Corollary 9.10. The number of square-tiled surfaces in QM (1, 1) of degree d and
torsion order M > 2 is given by

| 1
—(d — DA;— Ay
3( )d2M M

Proof. Each such surface arises as a composition of an isogeny of degree M with
a minimal cover with reduced branching divisor P + Q. There are four choices to
normalize it in such a way that P + Q becomes symmetric; they correspond to the
choice of a square-root of P — Q. After normalization, [2] P is of order M. Choose
a basis of H,(E’, Z) in order to make an identification with Z2. Thus the M-torsion
points of £’ are identified with (Z/MZ)?. Since SL,(Z/MZ) acts transitively on
points of order M in (Z/MZ)?, and the stabilizer of one of these is of order M, there
are A M% points of order M on E’. There are 4 choices of a square-root of [2] P, but
since P is determined by the covering only up to sign, this gives in total

1

1
s} o = Az s =(d — 1A

-
S

square-tiled surfaces of degree d and torsion order M. O
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10. Notations

We summarize the notation used for pseudo-Hilbert modular surfaces, the universal
families over these surfaces and their coverings.

K=QaQ,
og2={x='x")EZBZ:x'=x"modd} CK.

Modular groups and pseudo-Hilbert modular groups:

I'(¢) = ker(SL,(Z) — SL(Z/(£)) with £ € N,
M'(d)={AeSLy(Z) | A=(L9) mod d},
r'@d*=T'@u (3 4)r'@,
I'(€)y = diag(d,1)-T'(£) - diag(d ™', 1).

Semidirect products (actions are by right multiplication on row vectors):
T(0)y = diag(d, 1) - (T'(€) x LZ?) - diag(d ', 1),
T2 = SL(0g2 @ 02) X (072 B 042) .
Open modular varieties

X(d)° =H/T(d) the open modular curve with level-d -structure ,
X(d); =H/T'(d)q isomorphic to X(d)°, uniformizing group conjugated

X5 = H?/T 2 the open pseudo-Hilbert modular surface .

Open universal families:

Ed);=HxC /F(d )a  universal family of elliptic curves over X(d) .

A, = H? x C? /fdz universal family of abelian surfaces over X 35 .

Their compactifications are denoted by the same letter without °.
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