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Cutting out arithmetic Teichmiiller curves
in genus two via Theta functions

Andre Kappes* and Martin Möller*

Abstract. We compute the class of arithmetic genus two Teichmiiller curves in the Picard group
of pseudo-Hilbert modular surfaces, distinguished according to their torsion order and spin
invariant. As an application, we compute the number of genus two square-tiled surfaces with
these invariants.

The main technical tool is the computation of divisor classes of Hilbert Jacobi forms on the
universal abelian surface over the pseudo-Hilbert modular surface.

Mathematics Subject Classification (2010). 14G35, 11F27, 32G15.
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1. Introduction

The aim of this paper is to contribute to the classification of arithmetic Teichmiiller
curves and the computation of their basic invariants. The extension of the bundle of
Jacobi forms to the universal family of abelian surfaces over pseudo-Hilbert modular
surfaces and the computation of its class will be our main technical tool.

Arithmetic Teichmiiller curves. Square-tiled surfaces are covers of the square torus,
ramified over at most one point. Affinely deforming the squares into parallelograms
yields a curve in the moduli space of curves, called arithmetic Teichmiiller curve.
Non-arithmetic Teichmiiller curves, which are generated by flat surfaces that do not
arise via branched coverings of the torus, have been classified in genus two ([14,15]),
and in higher genus there is a growing number of partial results. For Teichmiiller
curves generated by square-tiled surfaces, the classification problem is solved only
for genus two surfaces with a single ramification point ([6] for prime degree coverings
and [14] in general). They are classified by two invariants, the number of squares
and the spin.

*The authors are partially supported by the ERC-StG 257137.
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Genus two, two ramification points. Genus two square-tiled covers with two
ramification points come with three obvious invariants. One is the spin invariant, the

number of integral Weierstraß points. The other two are the torsion order of the two
branch points in a minimal intermediate torus covering and the degree of this covering
(see Section 2). It is conjectured (and well-supported by computer experiments of
Delecroix and Lelievre) that these are the only invariants, i.e. that the set TdtM,e

of genus two degree d covers of the torus with torsion order M and spin s is

irreducible. For one ramification point, both [6] and [14] solved the irreducibility
question combinatorially by exhibiting prototypes for the flat surfaces and connecting
any two of the same invariants by a change of direction. This approach might work
for two ramification points as well, but the combinatorial complexity is challenging.

This paper does not contain any picture of a flat surface. Instead we propose
to tackle the classification problem by first computing the class of Td,M,s in the

(rational) Picard group of a pseudo-Hilbert modular surface and in the second step
to argue that this class is not too divisible and that potential summands cannot be

Teichmüller curves.

Counting square-tiled surfaces. In this paper, we complete the first step in this

program for odd d. As a result, we can solve the following counting problem. For
M 1 this has been conjectured by Zmiaikou [22, p. 67].

Theorem 1.1. The number td,M,e of reduced square-tiled surfaces ofgenus two, two

ramification points, odd degree d, torsion order M and spin invariant s is given as

follows.

• If M > 1 is odd, then, with Ad as defined in (3.1),

ld,M,e=3 — 1)^4 • td,M,e= 1 — 0^4
24 M 8 M

• If M is even, then there is no spin invariant and

1 Am
td,M 2(d-l)Ad-£.

6 M

• If M 1, then

td,M=\,e=3 ^r.{d-3){d-5)^-Ad and tdM=x,e=i \(d-\)(d-3)^-Ad.
24 d 8 d

Remark 1.2. In principle, the same program can be carried out for even d, but it
requires performing similar computations as we present them for covering surfaces

with an extra level of two (see Section 9.4). The conjectural values for the counting
problem are as follows. For M > 1 and d even we have

td,M,e=0 24^ _ ')^4 > ld,M,E=2 1)^4 ^
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and for M 1 and d is even the values are

td,M= i ,e=o ^7 (d - 2) Ad and td<M= i j£=2 ^ (d - 2)(d - 4) ^ Ad
24 8 d

The sum of contributions of the two spin structures appeared in [9, Theorem 3]
and in [4], see Proposition 9.9 for the conversion of the two methods of counting.

Classes in the Picard group. The above counting result is a consequence of the

following statement that gives the class of the (union of) Teichmüller curves Td^M^E

generated by the square-tiled surfaces of degree d, with torsion order M and spin e

on the compactified pseudo-Hilbert modular surface Xdi, whose open part X°2
parametrizes abelian surfaces with multiplication by a pseudo-quadratic order. See

Section 3 for the definition of Xd2 and the Hodge bundles A

Theorem 1.3. Let d be odd. The class ofTdtMt£ in V\cq(Xdi) is given as follows.

• If M > 1 is odd, then

[Td,M,e=3] \ d —— ((1 — ^-)Ai + (2 — J)A2),

a <10
[Td,M,e=\\ | d ((1 — j)Ai + (2 — f )A2).

• If M is even then

[TdM] - i)A, + (2 - f )A2). (1.2)

• If M 1, then

\Td,M= l,£=3] — ~ 3)(c/ — 5))Ai + (d — 3)(d — 5)A2) + Jd,
^

[Td,M= i,e=i] Ifäid - 1 ){d - 3))A! + (d- 1 ){d - 3)A2) - Jd

for some Jd in the orthogonal complement of (A1, A2).

The undetermined class Jd enters here since we use the computation of the

locus of genus two square-tiled covers with a double ramification point from [1],
see Section 8.2. It was already conjectured in loc. cit. and should follow from the

methods given here that Jd 0. Due to the orthogonality statement, the class Jd
does not affect any of the counting results.

Remark 1.4. The conjectural classes for the case d even are given as follows.

• If M > 1 is odd, then

[Td,M,e=0] \ — ^)Xi + (2 — J-)A2),
¥ (1.4)

[Td,M,e=i] — — ^)X\ + (2 — f-)A2).
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• If M is even then

[T<i,M\ — — 2^1 + — 2 )^2)- (1.5)

• If M — 1, then

[Td,M=i,e=o] — (j(d — 2)X\ + (d — 2)X2),

[7rf,Ar=i,«=2] 2(1^ ~ 2)(d — 4)Ai + (d — 2){d — 4)A2).
(1.6)

Strategy of the proof. Instead of locating a Teichmüller curve inside Xd2, we
locate the branch points of the covering map from the flat surface to the torus inside
the universal family A°2 of abelian surfaces over the open subset X°2. The points
that we want to single out lie on image of the flat surface in its Jacobian (i.e. on
the theta divisor), they are branch points (i.e. the derivative of the theta function
vanishes in some direction), and they have the property that their image in a certain
intermediate elliptic curve is M-torsion. Theorem 8.3 expresses that the image of
this intersection of three divisorial conditions in Xd2 is the Teichmüller curve. The
basic idea to use theta functions builds on that in [18], but there one could work

entirely in the two-dimensional base, while most of the difficulties here come from
performing the triple intersection in the four-dimensional total space. Of course, for
intersection theory calculations, we need to work on a reasonable (normal, at most

quotient singularities) compactification Ad2 of A°2. We recall the background on
toroidal compactifications and construct Ad2 in Section 5. The family Ad2 comes
with some obvious divisors (boundary components, Hodge bundle, zero sections),
whose intersection product is readily computed. The goal is hence to express the

ingredients of the triple intersection in these terms.

Jacobi forms for pseudo-Hilbert modular surfaces. Hilbert Jacobi forms are

functions on the universal covering H2 x C2 of A°d2 whose transformation law

combines the elliptic behavior on C2 and the modular behavior on H2 in the usual

way as for elliptic Jacobi forms. The precise definitions are given in Section 6.3.
The basic example of a Jacobi form is the theta function, both in the elliptic and in
the pseudo-Hilbert modular case. We would like to express the divisor class of a

Jacobi form on Ad2 in terms of the natural divisors mentioned above. We stress that,
however, this question is not even well-defined. Only after making some artificial
choice at the boundary (our choice is (6.8) in Section 6.3) we can determine the class

of a Jacobi form in Theorem 6.1.

At the end of the day, we are only interested in the class of a divisor (the
Teichmüller curve) generically lying in X°2. Consequently, we have to determine
and subtract in Section 9.2 the spurious boundary components, thereby compensating
the arbitrariness in the boundary extension of Jacobi forms.
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Finally, in the case of M 1, the analogous statement of Theorem 8.3 is

Theorem 8.4, and there two other spurious summands occur. One contribution is

from the reducible locus in Xd2, whose class we determine in Section 7. The other
contribution stems from square-tiled surfaces with only one branch point. The classes

of the corresponding Teichmüller curves have been determined in [1],

Notation. The notation around pseudo-Hilbert modular surfaces is summarized in
Section 10.

Acknowledgements. We thank the referee for helpful comments and suggestions.

2. Origamis, square-tiled surfaces and their spin structure

Let QMg be the moduli space of flat surfaces (X, co) and for any partition k of 2g — 2,

let QMg (/c) be the stratum, where the divisor of co has type k. In this paper (A, co)

will always be an arithmetic Veech surface of genus g > 1. This is equivalent to

requiring the existence of an origami map, a covering p : X —> E to an elliptic
curve E such that p is branched over only one point and co — p*coe The map p
is unique only up to isogeny and translation on E. The latter can be dispensed
with by translating the unique branch point to the origin. We call p reduced, if it
does not factor over an origami map p' : X —>• E' that has strictly smaller degree.

Equivalently, p is reduced, if and only if the lattice of generated by relative periods

is equal to Per(<D#) {f ode ' y H\ (E, Z)}, where Z(co) C X is the set of zeros

of CO.

If E is the particular elliptic curve with j(E) 1728, then X is called square-
tiled surface. In this case, Per(cu) c Z © / Z.

A covering q : X -> E' to an elliptic curve E' is called minimal or optimal, if it
does not factor over an isogeny of degree > 1. A covering is minimal, if and only if
the induced map q* on the first absolute homology is surjective.

From now on we restrict to the case of genus two surfaces. Let E'[2]
{P0,Pi,P2,P3} denote the set of 2-torsion points of E', where Po 0, and let

a Aut(A, co) denote the hyperelliptic involution. Let Wx denote the divisor of
Weierstraß points on X.

Proposition 2.1. For any arithmetic Veech surface of genus 2, there is a reduced

origami map p : X —> E and a decomposition p — t o q into a minimal covering

q : X E' of degree d and an isogeny t : E' E of degree M > 1.

y
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The map q, and a fortiori p, is uniquely determined by the requirement that

w \2(pt + p2 + P3), if d 0 mod 2,
q*Wx — s

(3P0 + P1 + P2 + Pi, if d 1 mod 2.

We call the origami map p with a factorization and location of branch points as in
this proposition normalized. We use this term also for the minimal covering q, if 1 is

clear from the context.

Proof. By [8, Proposition 2.2], there is a uniquely determined minimal, normalized

covering q : X —> E'. Moreover, this covering satisfies

[— 1] o q q o ct

and since the ramification points of q are not fixed by ct, their images P, Q satisfy
[-1 ]Q P. Let 1 : E' -> E be an isogeny with i(P) — i(Q) — [-l]t(P), or
equivalently t([2]/>) 0. Such an isogeny exists since (X,co) is a Veech surface,
and hence P — Q is of finite order. The minimal such is given by the quotient map
E' —> E'/T, where T is the subgroup generated by [2]P.

It is possible that M 1. In this case, the branching divisor is non-reduced,
i.e. P Q e E'[2}. The integers d and M are uniquely determined by the Veech

surface. We call d d(X,co) the degree and M M(X,to) the torsion order
of (X, co).

2.1. Spin structure. Let (X, a>) QM2 be an arithmetic Veech surface with
reduced, normalized covering p : X —> E. A Weierstraß point P is called integral,
if p(P) is equal to the branch point of p. The number of integral Weierstraß points
is an invariant of the SL2(R)-orbit of (X, u>), called the spin invariant e(X,co).
Depending on the parity of d and M, we determine when it distinguishes orbits.

Let p : X —»• E factorize as p 1 o q with a minimal, normalized covering q
and an isogeny 1 of degree M > 1. Let P e E' denote one of the branch points of q.
Then i(P) e E[2\. We determine e(X,co) in terms of the location of i(P).
Proposition 2.2. IfM 1 mod 2, then for d s 1 mod 2

e{X,(ti)

while for d 0 mod 2, then

e(X. to)

ifi(P) 0,

ifi(P)? 0,

|0, ifi(P) 0,

(2, ifi(P)^ 0.

//' M 0 mod 2, then

e{X,ai) 0
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Proof. If M 1 mod 2, then the induced map t[2] on the 2-torsion points is an

isomorphism and the previous proposition implies the claim.

If on the other hand, M= 0 mod 2, then P is a 2M-torsion point since i(P) e £[2],
and it is, more precisely, a primitive 2M-torsion point: Indeed, its torsion order is

at least M, since p is reduced and if the torsion order were exactly M, then the

composition of q and an isogeny of degree M/2 would also map the two branch

points of p to the same point, contrary to p being reduced. Moreover, the fiber of i
over i(P) does not contain a 2-torsion point of E', since if there was such a point,
then we had M(P — P,) 0 in the cyclic subgroup of order 2M generated by P
and the parity of M implies MP 0, contradicting the preceding statement. Thus
in this case s(X, co) 0, as claimed.

Note that the preceding discussion applies both to arithmetic Veech surfaces in
£2 M2(1, 1) and to arithmetic Veech surfaces in Q. M2(2). In the second case M 1

of course.

Next we consider the case that X is a reducible genus two surface but with
compact Jacobian, i.e. X E\ U £2 is the union of two elliptic curves joined at

a node S. In this case an origami map /? : A' —> £ is simply defined to be a map
that is non-constant on both factors, or equivalently co p*co is non-zero on both

components. This implies that E\ and £2 (and £) are isogenous. If di — deg(/?|£;)
then obviously d deg(/>) d\ + d2. We call Weierstraß divisor Wx on X the set

of fixed points different from S of the elliptic involutions on E\ and £2 with respect
to the zero 5. Obviously | | 6 as in the smooth case. This notion is justified
since one easily checks that for any family of flat surfaces (Xt,cot) degenerating
to (V. co), the Weierstraß divisor Wx, converges to Wx Again we let e(X, co) be the

number of integral Weierstraß points, i.e. the number of points in Wx with image
equal to p(S).

There are no integral Weierstraß points on a component £,• iff d, is odd. If d, is

even, there is three or one Weierstraß point, depending on whether p | e, factorizes

through multiplication by two or not. The latter can happen only if d, is divisible by
four. For d 1 mod 2 consequently

£(JT,£u) G {1.3},

since precisely one of the d, is odd. If d is even, then both d, might be odd, resulting
in no integral Weierstraß points. If both d, are even and one of the maps p, factors

through multiplication by two, then p factors through a two-isogeny. Consequently,
if p is a reduced origami map and d 0 mod 2, then

e(X,co) e {0,2}.

where e(X, co) 0 corresponds to both d, odd.
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3. Pseudo-Hilbert modular surfaces

In this section we introduce the surfaces containing the Teichmüller curves we are

interested in. These are moduli spaces for Abelian surfaces with multiplication by
pseudo-quadratic orders that we call pseudo-Hilbert modular surfaces Xd2. They
admit a finite cover, which is a product of two modular curves. Consequently,

many line bundles on Xd2 arise from line bundles on the modular curves and we
summarize the main properties. Next, we introduce the Teichmüller curves on Xd2
and fix notation for all the divisors on Xd2 that we need. See also [1,5] or [16] for
basic properties of pseudo-Hilbert modular surfaces.

3.1. Modular curves and modular forms. We let T(<7) c SL2(Z) be the principal
congruence group of level de N and X(d)° M/T(d) be the (open) modular
curve. Its smooth compactification is denoted by X(d). If d > 3, the curve X(d)
has Voo)rf [r(12,j W]

CUSPS Rdj and genus g(X(d)) 1 + |SL2(Z/o?Z)|,
see e.g. [17, Chapter 4] for background on congruence groups.

We record that X(d) —> X(l) is a covering of degree

Ad := |SL2(Z/dZ)| [T(1) : T(rf)] d3 ]J(l - p~2) (3.1)

p\d

if we consider these curves as quotient stacks. (In terms of coarse moduli spaces,

if we let T(ü?) denote the image of T(J) in T(l) PSL2(Z), the covering is of
degree [T(l) : T(<a?)], which is half the degree above for d > 3.)

The Hodge bundle on X(d) is A Tn*(cOE(d)/X(d)), where w : E(d) -> X(d)
is the (compactified) universal family (see Section 5). We also write Ax{d) if we

want to emphasized the level. Global sections of A®£^ are modular forms of

weight k for T(<i). Moreover, A®^ Kx(d)(Rd)^ where Rd is the divisor of
cusps and Kx(d) is the canonical bundle (see e.g. [10, Al.3.17]).

The discriminant /a is a modular form of weight 12 for T(l). It is non-zero
on X(d)° and vanishes to the order d at each cusp Rdj (j 1,..., Voo.d) of X(d).
Thus

12A x(d) d-Rd- (3.2)

The principal congruence group of level d is conjugate to another congruence

group

T(d)d diag(d, 1) • T(<i) • diag(uf_1,1).

Consequently, the action of T(d)d and F(t/) on H are equivariant with respect to
the multiplication map by d on H and there is an isomorphism

X(d)° M./r(d) s M/T(d)d =: X(d)°d.
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This conjugation by diag(d, 1), omnipresent in this paper, is denoted subscript d
throughout. The reason for this conjugation becomes visible in the next section where

we define pseudo-Hilbert modular groups as subgroups of T(l)^. This definition
will turn out to be natural, since the principal polarization of the lattice can be written
easily in these coordinates, see (4.4).1

3.2. Pseudo-Hilbert modular surfaces. Let d e N and D d2. Following the

conventions for Hilbert modular surfaces, we let A" Q © Q, whose subring

°d2 {* (x',x") Z ® Z : x' x" mod d) C K

will be called a pseudo-quadratic order of discriminant D. Let o^2 ^ ^ 0^2 be

the inverse different. The pseudo-Hilbert modular group

Td2 SL(O^2 © 0^2)

is the group of 0^2-linear maps of determinant one of the module od2 © o^2 considered

as column vectors with left multiplication or, equivalently, of o^2 © 0^2 considered

as row vectors with multiplication from the right. We will use the latter viewpoint
throughout. The pseudo-Hilbert modular surface is the quotient2

x°2 M2/rd2.

It is the moduli space parameterizing abelian surfaces with multiplication by the

pseudo-quadratic order of discriminant d2 as we will see in Section 4. The pseudo-
Hilbert modular group can be squeezed in between two self-products of modular

groups
r(d)2 crd2cr(\)2.

The total inclusion is normal, and thus the leftmost inclusion defines a normal

subgroup with quotient group SL2(Z/<iZ). The other inclusion is not normal, also

of degree |SL2(Z/c?Z)|, since the total inclusion has quotient group SL2(Z/t/Z)2.
The pseudo-Hilbert modular surface admits a useful Galois covering given by

r : (X(d)°ä)2 ^ X°2

and a (non-Galois) quotient map given by

ß:X°2^ (1(1 )°d)2.

The factor group T{\)2d/ Y{d)2d, and thus a fortiori Vd2/ Y(d)2d, acts on the smooth

compactification X(d)2d of (X{d)°d)2. In the sequel we work with the (normal, but

not smooth) compactified pseudo-Hilbert modular surface

xd2 x(d)2/(rd2/r(d)2).
Alternatively, one can work with SL2(o^2) acting on H x (—H).
2Topologically, but not as a quotient stack, see Section 3.3.
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In fact, Xd2 is the Baily-Borel compactification of X°2. The quotient maps r and ß
extend to quotient maps

r :X(d)2d^Xä2 and ß : Xd2 X{\)2.

We now list the divisors on Xd2 that will be important in the sequel.

Boundary divisors. Let H H U Pq be the upper half plane with cusps. The

image of (H \ H) x H is a curve Rc Xd2 and the image of H x (H \ H) is

a curve c Xd2. Their closures are denoted by R^'\ The curves /?b)>° are
irreducible and isomorphic to H/ Fi [1, Proposition 2.4],3

The Hodge bundles. The next important divisor classes on Xd2 are the Hodge
bundles

A, (prt o ß)*XX(i).

Here and throughout we useprt to denote product projections on spaces like X(\)2
or X(d)2, without reflecting the domain of the map in the notation. We let

A^ pr*XX(d) be the pullback of the Hodge bundle to the product. By definition

r*A, Ag.
In the same way, we define R^ pr* Rd as the pullback of the boundary divisors

to X{d)2d. They consist of virreducible components R^}, j 1, •..,
Pulling back (3.2) to the product X(d)2d and then taking its r-push forward we

obtain the important relation

R{1) -jA, (3.3)
d

in PicQ(3frf2).

The product locus. We denote by P°2 the product locus, the locus of abelian
surfaces that split as a polarized surface. We will determine the class of this locus
in Section 7. The complement X°2 \ P°d2 consists of principally polarized abelian
surfaces that are Jacobians of genus two curves.

The Teichmüller curves. The projection of an SL2(M)-orbit of a square-tiled surface

(X, to) is a Teichmüller curve C in M2. If q : X —> E is a minimal torus covering of
degree d, then the kernel of Jac(g) : Jac(Z) —> E is a connected abelian subvariety of
exponents? (cf. (4.3)) by [2, Lemma 12.3.1, Corollary 12.1.5 and Proposition 12.1.9],

Consequently, by Proposition 4.1 below, a square-tiled surface that factorizes through
such a map q defines a point in Xd2 and the corresponding Teichmüller curve C is a

curve in Xd2.

3There are different indexing conventions for the boundary divisors in [1] and in [5]. As mnemonic
for our convention, keep in mind that ' and A, are pulled back via prt.
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We let Wo (D d2) be the union ot Teichmuller curves generated by reduced

square-tiled surfaces of degree d where u> has a double zero By the results in the

preceding section, Wq decomposes into spin components Wp The topology of Wp
is completely determined by the work ot [1,14], and [19] In particular the spin
components are irreducible

We let TdM be the union of Teichmuller curves generated by reduced square-tiled
surfaces of degree d such that a> has two simple zeros and (X, co) has torsion order M
By the preceding section, Td>M decomposes into its spin components Td^MyE

3.3. On quotient stacks. Since we suppose d > 3 throughout, the stack discussion

on A(l) in the beginning of this section was inessential The group Fd2 however

contains for all d an element of finite order that acts trivially on H2, namely —I
embedded diagonally. We want the main object of our studies, the pseudo-Hilbert
modular surface Xdi to be a variety, rather than a stack with global non-trivial

isotropy group ot order two. For this purpose we consider Xd2 as the quotient stack

H2/PT^2 As a set, X°2 H2/r^2, as introduced above, but the morphism r
is of degree |PSL2(Z/r/Z)| Ad/2 throughout this paper In particular, it is also

possible to define the Hodge bundles "from above" without invoking the orbifold
bundles on A(l) by the relation A, ^-t#A^ The equation (3 3) holds with this

convention (and with the reduced scheme structure on R^)
The reason for this discussion is that the diagonally embedded —I does no longer

act trivially when considering the universal family, see (4 6) in the next section So

there is no choice but to let the universal family 4° 2 and its compactification be really
the quotient stack by the group Td2 In particular, the mapT is of degree Add2 This
has the irritating consequence that the map of the universal family n° rf°2 —» X°2

is the composition of the forgetful map H2 x C2/Fd2 —> M2/Td2 composed with
a (pointwise identity) map H2/ Vd2 -> Xd2 of degree | This factor has to be taken

into account in push-forwards, see Section 8

4. Abelian surfaces with multiplication by pseudo-quadratic orders
and modular embeddings

Here, we sketch how X°2 parametrizes abelian surfaces with multiplication by odi
and describe the universal family

7t° A°d2 M2xC2/rd2^ X°2 (4 1)

where

rd2 SL(<V2 © ovd2) k(o^2 © 0^2) C SL2(/0 x K2 (4 2)

One should be aware that 4°2 —> X°2 is the universal family only when considered

as a quotient stack The fibers of the underlying variety are Kummer surfaces,
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and in particular singular. Nevertheless, the open family and its compactification,
introduced in Section 5, are both quotients of smooth varieties by finite groups and

thus smooth when considered as stacks.

It will be convenient to compare this family to the universal family of all principally
polarized abelian surfaces via a map jr : H2 x C2 —> H2 x C2 that is equivariant
with respect to a group inclusion : Td2 -» Sp(4, Z) x Z4. Such a pair (i/r, 4^) is

sometimes called modular embedding and it will be used in the next section to pull
back theta functions.

Recall that the exponent e(Y) of an abelian subvariety Y of dimension r in a

principally polarized abelian variety (A, 0) is defined as

see [2, Section 1.2 and 12.1].

Proposition 4.1. The pseudo-Hilbert modular surface surface X°2 is the moduli

space of all pairs (A,p), where A is a principally polarized abelian surface and

p : od2 —>• End(/1) is a choice ofmultiplication by od2.

Equivalently, X°2 is the moduli space of all pairs consisting of a principally
polarized abelian surface A together with a projection q : A —> E to an elliptic
curve E such that ker(g) is a connected abelian subvariety ofexponent d.

For the convenience of the reader and to fix notations, we provide a sketch of the

proof the first statement, following [1, Theorem 2.2], The second statement follows
from [2, Proposition 12.1.1 and Proposition 12.1.9] after unwinding the definitions.

We want to provide o^2 0 od2 with a polarization. For this purpose we define
the "Galois conjugation" on 0^2 by (x',x")a (x",x'). With the usual definition
of trace the pairing

on o^2 0 0^2 is unimodular, alternating and Z-valued, hence a polarization.

Moreover, we let y/~D — (d,—d) e K. Then, a symplectic basis of °d2 © °d2
is

e(Y) dr, if 0|y has type {d\,..., dr), (4.3)

{(xi,yl),(x2,y2)) Yr(xly2-x2yi). (4.4)

where r]i,r]2 is an arbitrary oriented basis of 0^2, i.e. with d. For

z (z\, Z2) e H2, define the embedding

The image is a lattice in C2 spanned by the columns of



Vol. 92 (2017) Cutting out arithmetic Teichmüller curves 269

where z* ^z0' z°2 j and where B (^}, ^,2, ^ and A B~l. We will work

throughout with the choice

B (}»), hence A (_£

The quotient Adi^z — C2/ FIzZ4 is a principally polarized abelian surface (ppas),
polarized by the hermitian form with matrix Im (z*)_1 and the columns of Tlz are a

symplectic basis for the pairing with matrix ^_°2 702 The associated point in H2

isZ A • z* • AT, with the convention that Zei2 corresponds to the ppas with
lattice spanned by the columns of (Z, /2). It admits multiplication by 0^2 via the

diagonal action on the embedding o^2 © 0^2 C2. This justifies the claims made

in Section 3.2.

Since both eigenspaces of multiplication by K are defined over Q, the abelian
surface is isogenous to a product of elliptic curves with an isogeny of degree d2. We

give an explicit basis of the sublattice corresponding to the product decomposition.
It is generated by the columns of

n (ßT 0 \ /zj 0 d 0\
z '

V 0 d- A J ^0 z2 0 d) '

For an R-basis (uq, w2) of C, define the elliptic curve EWltU>2 C/(w\Z + w2Z).
Then the isogeny between abelian varieties

Ezi,d x Ez2,d ^d2,z

is induced by the identity on the universal cover. The coordinate projections

Pi: C2 —» C, i 1.2 induce the dual isogeny

^d2,z * EZl/d,l x EZ2/dA

which after composition with the isomorphism covered by C2 -> C2, z H' J z
becomes multiplication by d on EZud x EZ2^d.

This completes the sketch of the proof of Proposition 4.1.

Modular embeddings. The universal family is now easily obtained by pullback of
the universal family of principally polarized abelian surfaces over H2 via a modular

embedding. Fora (ai,a2) e C2, seta* a°2

Lemma 4.2. The embedding

i/f : H2 x C2 -> H2 x C2, (z, u) i->- (4z* AT, Au)

is equivariant with respect to

\fd2 Sp(4, Z) x Z4,

(M,r)»S-(M*,r)-S-1 (pfJB
where M* (ac* b**)> r (ri, r2) and S (diag(/l, BT), 0) e Sp(4, Q) x Q4.
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Note that the induced map X°2 —>• A2 does not depend on the choice of the

matrix B. If B' is another basis, A' B'~l, and (\j/',A>') is the embedding
associated with B', then

i/z' g o \j/ and g ^ g~l,

where g diag(A'B, B'T AT) e Sp(4, Z)
The proof of Lemma 4.2 is a straightforward calculation, once one fixes the

precise definition of the group actions on source and target. We define the semidirect

products Sp(2g, E) x E2g by the rule

(M\, ri) • (M2, r2) := (M\ M2, r\ Mi + r2).

This semidirect product acts on the product Hg x Cg by

(Z, u) i-> (M(Z), ((CZ + E)t)'1 (u + (Z, Ig)rT)) (4.5)

where M (^ |) and r e Z2g, and M(Z) — (AZ + B)(CZ + E)~l. The action
is compatible with the projection on the first factor and standard action of Sp(2g, E)
on Hg. ^Next, we explicitly write out the action of T^2 on H2 x C2, or more generally
of SL2(E)2 x E4 on H2 x C2, which is implicitly already given by (4.5) and the

modular embedding. Then (M, r) e SL2(E)2 x E4 acts via

(z, u) (M(z), (c*z* + e*)_1 (u + (z*, I2)rT)) (4.6)

where M — ^be), r — (r\, r2), and rT (r[, r", r'2, r2 )T and where

_j fa'z\ + b' a"z2 + b'
M(z) (az + b)(cz + e)

c'z 1 + e' c"z2 + eh

5. Compactifying the universal family over Xd2

We will compute the classes of the curves as the image of a locus cut out in the

universal family of abelian surfaces over the pseudo-Hilbert modular surface. Over
the open pseudo-Hilbert modular surface, this family is described as the quotient (see

Section 4)
jz° : A°d2 H2 x C2/T> - X°d2

To perform intersection calculations, we need to work on a compact space and the

aim of this section is to describe explicitly such a compactification of A°2. Our

strategy is as follows. The universal family over the modular curve has a simple
compactification, by adding an "m-gon" of rational curves at every cusp, the simplest
instance of a toroidal compactification. In order to reduce from A°2 to such a

situation, we have to pass from X°2 to a finite cover where this surface is a product,
as explained in the previous section, and then to pass fiberwise to an isogenous abelian

variety.
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The aim of this section is to exhibit a compactification of 2 by describing the
action of the 2-step covering group on the product of two compactified universal

elliptic curves. We thus present a compactification of /1°2 as a quotient of a

smooth compact variety by a finite group action. Along with this, we introduce
local coordinates at the boundary that will be used to define bundle extensions in the

next section.
For this purpose we note that Td2 has a normal subgroup that is equal to a

2
d'product F(d)d, where

F(d)d diag(d, 1) • (T(d) x dZ2) • diag(eT\ 1).

The quotient H2 x C2/F(d)d is a product family

m° x zu° : (E{d)°d)2 -* (X(d)°d)2,

in fact of two copies on a universal family of elliptic curves.
As a general guide to the notation in the sequel, groups T act on H or H2, while

groups with a tilde are semidirect products acting on i x C or (i x C)2.

Theorem 5.1. There exists a proper; smooth 4-dimensional stack Ad2 containing A°d2

as a Zariski open subset such that

(a) The canonical projection n0 extends to a flat, proper morphism

n : Ad2 -» Xd2.

(b) The mapE° : (E(d)d)2 —>• /4°2 induced by the inclusion (F(d)d)2 C Td2

extends to a finite morphism ofdegree Add2

T:(E(d)d)2^ Ad2

over x : (X(d)d)2 —> Xd2.

(c) The scheme underlying the stack Ad2 has at most quotient singularities.

The following diagram gives an overview of the spaces and maps involved.

(E(d)d)2^^Ad2

(5.1)

(X(d)d)2 Xd2

In order to prove this theorem, we employ the usual toroidal compactification
of a family of elliptic curves. For I e N we define the twisted level subgroup

T(i)d diag(d, 1) • T(£) diag(rf_1,1). We let

f{l)d diag(d, 1) • (T(£) x IZ2) diag(d~l, 1).
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The quotient X(d)°d H/ Y{d)d is the moduli space of d-polarized elliptic curves
with a level d -structure and

m° : E(d)°d ix C/T(d)d -> X(d)°d (5.2)

is the universal family over it if d >3. (Here and everywhere in the sequel we do not
discuss the supplementary stack issues arising when d 2.) In particular, E(d)°d
and X(d)°d is smooth.

The following statement is the point of departure for the compactification. It is

well known (see e.g. [7, Section 1.2]), but we give its proof below since we need the

coordinates introduced there later on.

Proposition 5.2. There exists a compactification of E(d)°d to a smooth, projective
surface E(d)d with the following properties.

(a) The projection m° has an extension to aflat, proper morphism

w : E(d)d X{d)d.

(b) The boundary 3E(d)d consists of d Voo,rf rational curves Dc,k> where C is a

cusp ofF(d)d and k e Z/dTL. We have

1—2, i j,k I,

Dc,,k-Dcj,l jl- i=j,k l± 1,

(0, else.

(c) There is an action of T(\)d/T{d)d ^ SL2(Z/(r/)) \x.(Jj/{d))2 on E(d)d
extending the action on E(d)d.

Proofof Theorem 5.1. Thanks to the last item, we can define quotients of E{d)2d by

all subgroups of (r(l)^/T(r/)^)2. Therefore, setting

Ad2 (E(d)d)2 / (Td2/T(d)2d)

immediately yields the claims of Theorem 5.1.

We also obtain a description of the boundary of the compactification Adi. As
for Xd2 there are boundary components where the first resp. the second elliptic
curve degenerates. While for each of them there is a d-gon over every cusp in the

E(d)d x E(d )d, there are only two boundary components D^ for / e {1,2} on Ad2.
More precisely, let S be the set of equivalence classes of cusps of Y{d)d. For

C e S, k 0,... ,d — l,we define the following divisors

Dc]k °c,k X E(d)d Dgi E(d)d X Dc,k

in E(d)d x E(d)d. Then the boundary components are as follows, as we show in
Section 5.2.
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Corollary 5.3. The boundary of Ad2 consists of the two irreducible components of
codimension one

D(,) =7(0^), i 1,2

where C e S, k e Z/are arbitrary.

5.1. Toroidal compactification of families of elliptic curves. Here, we describe
the compactification of the universal family E(d)d of elliptic curves, and thereby

prove Proposition 5.2.

Let T (C*)2 with coordinates £ and q. For each integer k we define an

inclusion T ->• Tak s C2, given by

(£> <?) ^ (&>?*) r1?^1)- (5-3)

Inside each Tak we define the open set T$k+l {qk 0} D(qk) and we consider
this as an open subset of To/c+i via

7>*+1 -+Tak+X, {fk,qk) ^ (fk+l.qk+x) (ql\l;kql).

Gluing Tak to Tak+X along the open set Tgk+l gives an infinite chain of rational lines

Dk+\.
The line Dk is covered by two affine charts. It is given by

F(tit-i) C Tak_x and V(qk) C Tak

which are glued along D(qk_x) ** D{fk) by qk-X As qklxqk,
this is indeed well-defined, and moreover Dk has self-intersection —2. (In fact, we
described a partial toroidal compactification of T, using the collection a {<7k}kez

of rational polyhedral cones in M2 defined by

ok — M>o * (k, 1) M>0 * {k -j- 1, 1), k se

but we will not need this viewpoint. See [7] for details.)

We now compactify E(d)°d by adding suitable cf-gons over the cusps of T(d)d-
We can carry this out for one cusp at a time, and in fact, it suffices to describe a

compactification for the cusps oc, since T(d)d is normal in T(l)^, which has only
one cusp.

Compactification over oo. We carry out the standard construction of a toroidal
compactification.

The stabilizer P Poo(d)d of a small neighborhood in E(d)d of the preimage
of the cusp oo will have a normal subgroup P" Pg0(d)d such that the quotient

map by P" is given by a suitable coordinate-wise exponential map and such that the

image is isomorphic to T. On the partial compactification of T defined above the
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factor group Pq P/Pn acts, e.g. on the boundary curves by a shift of indices.
For each of the cusps these quotients are glued to the family over the open curve to
obtain a compact space. In the sequel we need the precise form of the coordinates, in

particular (5.4) and (5.5). In the sequel, it will be convenient to represent elements

of the semidirect product Sp2^ (M) tx M2g in matrix form via

«)•
More precisely, let N {Imz 1} be a neighborhood of oo e i not fixed by

any element outside the stabilizer of oo in T{d)d- The preimage Poo(d)d of the

stabilizer of N in T (d)d is equal to

/l Z dZ \
P Pcc(d)d { 0 1 d2Z }.

Vo 0 1 J

It contains the normal subgroup

/I 0 dZ\
Pn P^(d)d { 0 1 d2Z J}.

\0 0 1

that acts on the m-preimage of N, which is isomorphic to N x C. The quotient map

NxC-^-NxC/P" is given by

(z,w) (too^oo), with ^oo e(^M), <7oo e(j2z)' (5-4)

(where e(-) exp(2;r/-)) and identifies N x C/Pn with an open set X^ in T. We

compactify T as above and take Zqo.e to be the interior of the closure of X^. The

boundary

3*oo,e XOO \*oo,S

is an infinite chain of rational curves D00^.
The group P acts on X^ through the factor group Pq P/Pn and the

compactification is compatible with this action. In fact, the bigger group PooCOrf»

the preimage of the stabilizer of N in T(l)rf, acts on T, and thus on as the

following lemma shows. Its proofis a straight-forward calculation. Let^ e(\/d).
Lemma 5.4. Forb e Z, j,- e Z and s 6 {±1}, let

/I s2\ Z1 TZ Z\
g g(sus2,e,b) 0 s W Poo(l)d { 0 ±1 dZ }.

Vo 0 s V° 0 ±l)



Vol. 92 (2017) Cutting out arithmetic Teichmiiller curves 275

Then

(a) acts on the coordinates (£, q) (too. ^oo) by

-riT'
q^q- qf.

(b) ~g acts on the coordinates ((T, dk) (too,A:. doo.k) by

tfc l_>

qk >-*

so—bkti-Ji'l/ £=1-
bk—sj iq-si-k~\-qd £ -i.

i (A:+ 1)6—S2 1\qk-srid ' e 1<

(5.5)

o 5*2—(Ar + l)i>
(t-^i-fc-l "V £ -1.

(c) acts on vor of rational curves Doo.it (k e X) by

Doo,k ^oo,s(A:+Ji)

/« particular, the action of /Joc(l o« Dco^} A transitive.

The action of Pq on is properly discontinuous and free. Let Foo.e

X<x>,T,/Pq be the quotient. The action of Pq identifies D^k with D0Otic+dr, re X,
whence the boundary of the quotient consists of a d-gon of rational curves,
which we also denote by Doo,& (k e X/dX).

Compactification over an arbitrary cusp. Let S be a system of representatives of
the cusps of Y(d)d. For C e S, choose an element

Mc (;cc Sc e r0)(/ such that F(d)dMc(oo) C.

The neighborhood Nc Mc(N) of C in HI is not fixed by an element outside the

stabilizer of C. We define Pq Pc(d)d as the preimage of the stabilizer of Nq
in r(d)d. We let Pg C Pq be the normalizer in Y(d)d of the stabilizer of Nc-
As above, Pq is a normal subgroup of Pc and we define Pq — Pel Pq- The
coordinates on the quotient Nc x C/Pq are

Kc e((~ycz + ac)~l j), qc e(^r~) • (5-6)

As before, the image of Nc x C is an open set Xc in the torus T Spec C[^. q^\
and, using the same torus embedding as above, we compactify it by taking Xc,e to be

the interior of the closure of Xc in Ts- Again let Yc,s Xc,s/Pq be the quotient.
Let Yc be the image of Xc in Fc,s. Then the map ic ' Yc -> E(d)°d that sends an

orbit of Pc to its T{d)d-orbit is an embedding.
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The space E(d)d is now obtained by taking the disjoint union

and dividing out the equivalence relation generated by identifying x e E(d)d with

y Yc if ic(y) — x. This completes the proof of Proposition 5.2.

5.2. Description of the boundaries of Adi. In this section, we analyze the action
of the quotient group Hd2 Td2/{T{d)d)2 on the set of boundary components
of E(d)d, showing the claims of Corollary 5.3. Secondly, we determine local

coordinates of a neighborhood of by showing that the isotropy group of a

generic point is trivial.
Recall the group isomorphisms

7^d(l) : Hd2 SL2(Z/dZ)t<(Z/dZ)2, i 1,2

induced by

red(l) : fdi -> SL2(Z/ü'Z) x(Z/r/Z)2,

(T,5) i-> diag(<3?-1,1) • jl'l) • diag(c?, 1).

where7 denotes the reduction modulo d.

Lemma 5.5. The group EId2 acts transitively on {D^)k \ C S, k e Z/dZ) for
each i 1,2. The stabilizer of 0 is given by

^0)(Stab„rf2(Z)2o)) {[(V ±i).(0. *)]} C SL2(Z/dZ)x(Z/dZ)2

and is oforder 2d2. Moreover the pointwise stabilizer

Stab^2(D«0)

is trivial.

Proof. By symmetry, we may focus on i 1. The group Td2 acts transitively on
the set {C x X(d)d \ C S}, so it suffices to show that F^fl (PooO)d x T(l)d)
acts transitively on {D^k \ k e Z/d). We have

[*' ((?' -i)'°)] G fd2 n (Poc(Dd x f(i)rf),

which maps Dk to D^+1-
Concerning the stabilizer group of D^0, we have

red(,) (StabHd2(D^k)) red(l){vd2 n (StabPoo(i)rf(£>00,A:) x r(l)rf)^.

Using this observation and Lemma 5.4, one can easily determine the stabilizer and

the pointwise stabilizer.
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Local coordinates at the boundaries. We describe local coordinates in the
neighborhood of a point x G (i 1,2). These will be used to extend the line bundles
in the next section.

For i 1,2 and k e Z, we introduce, following (5.3) and (5.4), the notations

£I=e(£wI), qt e(^z,), (5.7)

£.,* U*. ?a rtf+1- (5-8)

It will be helpful to keep in mind the relations

& £«.*?«,*• (5-9)

Note also that we work throughout over the cusps oo, but we suppress this from the

notation.

Lemma 5.6. Let x e D *•'' be a generic point and letf be a lift ofx in D^k xHxC
in case i 1, respectively in HxCx Doc,k in case i — 2. Then

22, u2), i 1,

(z 1 Ml, t,2,k, qi,k), i 2

are local coordinates at x, in the sense that there exists an open neighborhood U

of 2c such that the canonical projection U —> Adi is a homeomorphism.

In particular, the generic point of is smooth.

Proof. By symmetry, we may restrict to the case i 1. Since the action is properly
discontinuous, it suffices to show that a generic lc is not fixed by any element

g e rd2 \ (P^(d)d x {1}). Let us write g (M,r), M (acbe), r (ri,r2)
and suppose that it fixes x. As x is generic, z2 is not a fixed point of M" and thus

M" ±/. For the same reason, u2 is not a half-integral lattice point jjZ2Z + |Z,
and thus u2 m- a"(u2 + z2r'( + r'f)) does not fix a neighborhood of u2 unless a" 1,

r" — r'f — 0. Since M' fixes a point in it is of the form

M'

The congruence condition together with a" 1 forces e 1. Since b" 0 and

r'2 0, we have b' e d2Z and r'2 e dZ. Moreover, M' has to fix the component
Dk C AToo.s, which according to Lemma 5.4 entails r[ 0. Altogether, this shows

M e P^rfxll}.
Alternatively, one can argue that (qi,k- tuk, z2,u2) provide local coordinates

about on E{d)d, and that the pointwise stabilizer Stabh.2 (^^o) is trivial.
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6. Divisors and line bundles on Adi

On the universal family over an (open) pseudo-Hilbert modular surface there is a

natural collection of line bundles, the common generalization of the pullback of
Hilbert modular forms and classical elliptic Jacobi forms. These are the called
Hilbert Jacobi-forms. Theta functions will be the main instances of sections of these

line bundles. Our aim is to express the classes of these line bundles in the rational
Picard group PicQ(/4^2) in terms of line bundles that are good for intersection theory
calculations: the Hodge bundles, the boundary divisors and the pullbacks of the

zero sections.

The main result of this section is the following. The notation will be explained in
the rest of this section.

Theorem 6.1. Let f beaHilbert-JacobiformofweightK e (^Z)2, indexm jOd2
and a multiplier oforder I for the group Td2. Then the class ofdiv(/) in PiCQ(H^2)
is

{kx + lf)n*Xx + (k2 + ^f)n*X2 + + *fN(2). (6.1)

Note that it is almost meaningless to speak of the class of a line bundle defined

by giving explicit automorphy factors on the open family. If is one extension

to the compactification, any twist $Kttn(nD^) for any integral n and a boundary
component will also be an extension. The theorem becomes meaningful only
together with the description of the behavior at the boundary (in terms of Laurent
series in local coordinates) given in (6.8). For practical purposes, any other boundary
conditions would work as well: we have to correct by the vanishing order at the

boundary and the difference is independent of any choices, see Theorem 9.2 for our
application.

6.1. Divisors in the Picard group of the universal family: The boundary and
torsion sections. In this section we list some important divisor classes in the

compactified universal family PiCQ(Hrf2) over the pseudo-Hilbert modular surface.

The classes of a Hilbert modular forms can be expressed in these bundles. For later

use we also define the divisors corresponding to zero sections and compare it to the

divisor of torsion sections.

Recall from Section 3.2 the definition of the Hodge bundles A, (prt °ß)*Xx(\),
where ß : Xdi —> X(\)2d is the projection and A is the Hodge class on 2^(1)^. There,

we also defined the boundary curves R^'\ that obey the relation — -^A,.
In Corollary 5.3 we gave a description of the boundary with two components D^l\

mapping surjectively to R^ respectively for 1 1,2. The discussion in Section 3.3

implies that n*R^ D^l\ In particular, we have the relation

£>« n*R(l) -^tt*A,
a

(6.2)
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For i — 1, 2 let be the pullback of the zero section Nx(d) °f the compactified
universal family E(d)d of elliptic curves via the z'-th projection to E(d)d. Wedenote
by

N(i) =7(N^) (6.3)

the image of these zero sections in Ad2. Note that x^r*(A^).
With the same letter and the additional subscript f-tor we denote the corresponding

divisors of the multi-section of primitive f-torsion points on the family over X(d),
over X(d)2 and over Xd2 respectively. Their classes are related as follows.

Proposition 6.2. In C¥ll(Ad2), we have for I > 1

K'l= !»"<" +

Proof. All the quantities involved are pull backs from the universal family £(1) (we
calculate in PicQ of a quotient stack) over Z(l) and we prove the relation there. The
rational Picard group of an elliptic fibration is generated by the zero section N, the

class F of a fiber and the components of the singular fibers, with the relation that the

sum of all the components are equal to a smooth fiber. Since all the singular fibers

are irreducible here we can disregard the singular fibers.

Consequently, we write Afy.tor — aN + hF. Intersecting with another fiber shows

that a ^4. Intersecting with N shows that b —aN2 a deg(A) [11, Eq. (12.6)].
Since the fiber classes are pulled back from A(l), where any two points are linearly
equivalent, we may write bF where m : £(1) —> A(l) is the map of the

universal family.

6.2. Elliptic Jacobi forms. In this section we recall the classical theory of elliptic
Jacobi forms for T(l) (see e.g. [3]), specify a bundle they are sections of and use this

to determine the class of the divisor where the Jacobi form vanishes. Our method
follows [12], but we redo this case as preparation for the case of Hilbert Jacobi forms
in the next section, to include non-integral weight and index as well as non-cusp
forms, and clarify the imprecise statement in [12, Proposition 2.4].

We start with the standard definition (see e.g. also [3]) and recall the notations in
more detail in the pseudo-Hilbert modular case below.

Definition 6.3. An elliptic Jacobiform of weight k fZ and index m e ^jZ for the

group T(d)d r(d)d k(Z © dZ) and the multiplier x is a holomorphic function

/' : H x C —> C such that

/Lm[M'rKz'M) for all (M, r) e T{d)d.
(ii) For each cusp C with Mc,qc and £c as defined in Section 5.1, / has a Fourier

development

f{z,u)-jK,m(Mc\z,uTl ^2cc,s,tqsc?c
0<seZ teZ

for some cc.s.t £ C, which vanish unless Asm — t2 > 0.
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The divisor div/ of a Jacobi form is well-defined as a subset of E(d)°d, since the

exponential factors in the transformation rule (see (6.4)) do not change the vanishing
order of the function. However, div/ does not define a class in Pic(E(d)d), since

the boundary contribution is not well-defined. Later (compare Theorem 9.2) we are

interested in the class of the topological closure div/ in Pic(E(d)d). This class

however is not determined by the parameters (weight, index, multiplier) of the Jacobi

form, as one can easily see already for modular forms. We will talk about divisor
classes once we introduced the bundle of Jacobi forms.

Note that condition (ii) is for historical reasons only. It holds for the most important
examples (theta functions introduced below, and also Fourier-Jacobi coefficients of
Siegel modular forms) and guarantees the finite-dimensionality of the space of Jacobi
forms for fixed parameters. However, many other (cone) conditions would do as well
and fixing the bundle $K,m(E(d)d) is independent of this choice.

The slash operator for T (</)</. In order to define the slash operator we let

jK,m(y,z,u) (cz + e)~K J-m C(M + r'z + rz) j e(w(r2z + 2rxu)),
V cz + e

where y — ((acbe) ,(r\,r2)j e T(d)d. For k integral, the function jK^m is an

automorphy factor for y e F(1) called classical automorphy factor, i.e.

jK,m(.Y\Y2,Z,u) j/c,m(Yl-Y2(z,u)) jlc,m(Y2, Z, u).

and we define

f\K,m[y](Z'U) := f(Y(Z'U)) • jK,m{y,Z,U). (6.4)

In this case x ' E(d)d —* Cx is just an abelian character. For general k, the

map x is a multiplier, i.e. a map so that jK,m{')x~X (') an automorphy factor for a

fixed choice of the determination of (cz + e)~K. In any case, x is supposed to be

finite, i.e. xM 1 f°r some Me N.
Let d > 3,1 be integers. Recall that

f(l)d T(l)d k(|Z ®tZ) diag(t/, 1) • T(f) x EL2 diag/T1, 1).

Lemma 6.4. For k e Z, m e Z, the function jK^mdii2 is an automorphy factor for
the twisted group T (l)d-

Proof. Consider the map f):BxC —» H x C, (z, u) (dz, £u). It is equivariant
with respect to the map O : F(I)kZ2 -> E(l)d k(J-Z © iE) given by

((;$).<r,.(F..«<-2))
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Since by pullback

A,m 0 x <P)~\Y^,U) (cd^ + + 2f/'tf))

J mcd(l + + Ir2)2\
V cd% + e

JK,md/e2(y,z,u),

the classical automorphy factor j restricted to T (£) ix Z2 with me Z and k G Z is
transformed into an automorphy factor for T(l)d tx( J-Z © Z).

A bundle of elliptic Jacobi forms. It is well known that an automorphy factor
like jK,mX~l f°r a grouP 'ike T{d)d defines a line bundle &£,m(E(d)°d) on
HI x <C/T{d)ci E{d)°d. We specify an extension of $K,m{E(d)°d) to E(d)d- For

simplicity, let us first assume that jK,m is already an automorphy factor. We consider
the line bundle induced on the open set Xc introduced in Section 5.1; in fact, it
suffices to work over the cusp oo and carry the arguments over to any other cusp C

using the elements Mc• As the slash operator is trivial on P^d)^, so is the line
bundle induced by jK^m on X^. We extend it to a line bundle on Xby declaring
on TUk the Laurent series

ir4V<i+"! E
i,j >o

to be holomorphic. Since by Lemma 5.4, fk q~^mk2js mapped to

fk\K,m[g] fk-s, • a for some d-th root of unity a by the element g(si. S2, e, b) e
Poo(1 )d > it follows that this extension descends to a well-defined line bundle on Eoo,e•

Performing this extension over all cusps, we obtain a well-defined line bundle

^K,m{E{d)4) on E(d)d that restricts to $Ktm(E(d)d) on the open family.
In the presence of a non-trivial multiplier /, the line bundle induced on Aqq

may not be trivial. Still it is a local system, which means that the sections in
two trivializations are transformed into each other by multiplication by a nonzero

constant. This entails that we can use the same definition as above for the

extension. Note also that the arguments show in fact that the extension #K,m(E(d)d)
is a r(a')£//r(l)rf-equivariant bundle (as long as the automorphy factor jK,mX~l is

well defined on T(l)^).
In order to make the connection with Jacobi forms, we rewrite the Fourier

expansion of a Jacobi form / at the cusp oo using

Coo "7oo Kkdk-

and obtain

Az,u)= J2 c',t foot J2 cs,tisk+kt^+(lc+>)t-
s,teZ,s>0, s,teZ,s>0,
4sm—t2>0 4sm—t2>0
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It is easy to check that the smallest -exponent appearing is

min{s + kt \ s, t e Z, Asm — t2 > 0, i > 0} > —mk2,

and that a similar statement holds for the smallest ^"exP°nent. Thus, / is a

holomorphic section of the bundle extension $Ktm(E(d)d).
With this choice of extension, the class of div(/) is well-defined and has been

calculated in [12, Proposition 2.4]. The result is not needed in the sequel, but we will
follow his method in the next subsections very closely to prove Theorem 6.1.

6.3. Hilbert Jacobi forms. In this section, we define Jacobi forms for the pseudoHilbert

modular surfaces analogously to the elliptic case by an automorphy factor
and a condition on the Fourier development at the boundary. Then we describe

an extension of the line bundle induced by the automorphy factor on 4°2 to the

compactification Ad2, whose global sections will include all Hilbert Jacobi forms.

Again, we first give the well-known definition and explain notation afterwards.

Definition 6.5. A Hilbert Jacobi form of weight k (K\,K2) £ 5Z2 and index

in — (/«'. m") e ^od2 for the group Tdi and multiplier % is a holomorphic function

/ : H2 x C2 —» C such that

(i) f{(M,r)(z,u)) - r),z,u) *(M, r) f(z, u) for all (M, r) Yd2.

(ii) /' has Fourier developments

f(z,u)=YJ
s'eZ t'eZ

(6.5)

in the local coordinates

qi — ^(d2)' £1 — e( d)'

where cs'd', cs»d" are holomorphic functions, which vanish unless

Asm — t2 > 0 and s > 0.

In this definition,

2

JK,m(y. Z,u) e(trK/Q(m(r^z + 2riu))) ]~[(c(')zi + e(l)) K'

1 1

• e(-tr*/Q (m(cz + e)
1

c {u + z*r( + rj )2)) (6.6)

and one checks that for k integral the function (z,n) i->- jK,m(y< z>M) is an

automorphy factor for Yd2. In the general case, for k not necessarily integral,
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a multiplier is defined to be a map / : T^2 —>• Cx such that for a fixed determination

°f77,m theproduct77,m/_1 is an automorphy factor for Tdi. We suppose throughout
that x(y) has finite order for y e Td2. We will not need more details, since the

multipliers trivialize after taking tensor powers and so they do not effect a statement

on the rational Picard group as Theorem 6.1.

Note also that
~r _ :U) ,-(2) (6 7)

where

A bundle of Hilbert Jacobi forms. Wedenote by the line bundle defined

by the automorphy factor7K,mX~l on the open variety A^2. In order to extend it
to a bundle #*m(Arf2) on Ad2, we proceed as in the elliptic case. We work local
coordinates near a boundary divisor, say and suppose first that x 1 The local
coordinates are given by Lemma 5.6 by

y,k< z2, U2,

and the line bundle induced by 77,m is trivial. Again, we declare sections to be

holomorphic if they are of the form

-m'k2 y-m'(k + \)2 r (f_1\,k Si,A; •/ (D-8)

for a holomorphic function / z2, w2). For a non-trivial multiplier/,
we have to pass to local systems, but this definition still makes sense, since it is

independent of the chosen trivialization of the local system.

Alternatively, we can construct the extension (for / 1) by using (6.7), which
translates into

r $K,m(A°d2) ^ pr*aKum,(E(dyd) ®prl$K2,m„{E{dyd).

and the fact that the latter bundle has an extension, which is in fact //^2-equivariant
and thus induces a bundle on the quotient. (Note that for m e dZ2, it is even

r(l)^/r(öf)^-cqirivariänt, but for general rational index m, j is not an automorphy
factor for T(l)t;.)

From the Fourier development (6.5) and the coordinate transformations (5.9) we

deduce that a Hilbert Jacobi form has near the boundary divisors D^k given by

qitk — 0 a Fourier development

ft -T ti\ \ 1

^ ySfjr(k+\)t' s'+kt' Q\j(z,u)= cs',tAulc qx,k (6-9)

4s'm 1 —r'2>0

The same estimate as for elliptic Jacobi forms yields that Hilbert Jacobi forms are

indeed holomorphic sections of (Ad2).
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6.4. Theta functions. We recall the definition of the classical (Siegel) theta-functions.
We use the convention that x {x\, X2) and y,- are row vectors while and v (uj, V2)T

is a column vector. Let

LxC8->C
9[£h (Z, v) 1—> ^2 e(jxZxT + x(v + jy!)) (6.10)

+2^1

be the theta function with half-integral characteristic y (yi,y2) G Z2. The
evaluation of a theta-function at v 0 is called theta constant. The theta-function
(and the characteristic (yi, 72)) is called odd if y\yj is odd and even otherwise. Odd
theta constants vanish identically as functions in Z. The theta constants are modular
forms of weight 1 /2 for the subgroup T(4, 8) of Sp(2g, Z), non-zero if and only if
(y 1, 72) is even.

For a matrix M (£ §) 6 Sp(2g, Z) and a vector A (Ai,A2) e Z2g the

theta function transforms (see [2]) as

e[{%ry]l2](M(Z),(cz + e)~tv)

0[&](Z, v) • xo(M) -det(CZ + E)l/2e(2vT(CZ + £)"'Cu), (6.11)

ö[ yj ](Z, v + ZX[ + X[)

0[& ](Z, v) • e(^-A[ - fA[ - \XxZX[ - vTXTx). (6.12)

Here, XB is a multiplier, which takes values in the 8-th roots of unity, and M acts on
the characteristic by

(My)! Eyf -CyJ + (CET)0,

(Myh -By{ + Ayl + (ABT)0,

where (S) 0 (in,..., sgg) denotes the diagonal vector of a matrix S e Mgxg.
We are interested in Hilbert theta functions (with half-integral characteristics),

the pullback of the Siegel theta-function for g 2 to H2 x C2 via the modular

embedding x/r defined in Section 4. Concretely, these theta functions are given as the

power series

~ ](z, u) := xf*d ^ (z, u) ^2 e(\xAz*ATxT + x(Au + ^yj))y 1

Y2

X eZ2+^-

^2 e(jXZ*xT + x{u + AByl))
*e(Z2+y~>a

J2 e(trKf®(l(x2z + 2*(" + jyi))))
X<E0ü2+]2~

where 7i y\A e o^2, and 72 yiBT e 0^2. We first analyze the action of Td2

on characteristics.
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Lemma 6.6. The set ofeven theta characteristics decomposes under the action of Yci 2

into two orbits

for d even and into O3 {[ 0 0) ]}' an'^

oi {[S:S].[i:2L[?:S].[S:S].[S:?].[i:?].[i:i].[?:?].[!:!]}

for d odd.

The labeling of the orbits is consistent with the notation for spin structures for the

reducible locus, as we will see in Section 7. The odd theta characteristics form two
orbits for d odd and one orbit for d even, but we will not need this fact.

Proof Recall that in g 2 an even theta characteristic can be written as a

sum of three (out of six) odd theta characteristics, and that this representation
is unique up to passing to the complementary triple (e.g. [21], Section llla.6, in

particular p. 3.104). Odd theta characteristics correspond to Weierstraß points and

they have been normalized in Proposition 2.1 globally, i.e. in a way that is invariant
under T^2. For d odd the alternating sum of the three Weierstrass points in one
fiber is the distinguished even theta characteristic. For d even there are two kinds of
triples: four triples (and their complements) can be formed by picking one Weierstraß

point out of each pair from Proposition 2.1. Six triples (and their complements) can
be formed by picking both Weierstraß point from such a pair and a third point. These

correspond to the orbits E0 and E2 respectively.

It is easy to show that these orbits do not decompose further by exhibiting
appropriate elements of Ydi and the transformations

yt (My) 1 =Yie* — y2c* + (BTc*e*B)lA,

y2 (My)2 —y\b* + y2a* + (Aa*b*Ar)lBT,

where M (^) 6 ^2 that follow from (6.11) and the definition of the modular

embedding.

Proposition 6.7. The Hilbert theta functions are Hilbert Jacobi forms of weight

(j, and index (j, ^) for some subgroup offinite index in Y^2.
For d odd, one of the Hilbert theta functions is a Hilbert Jacobi form for the full

group Yd2. With our choice of B and the modular embedding, this is [ (?'o) ]•
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Proof. The group Yd 2 acts on b by

V[~2](Z>U) (C*Z + e*)~l (U + Z*rf + rD)

• Y\ (c(°z( +e(i))_1/2 -e^ttK/oirfz + 2rxu))

• e(-^trA:/Q((M + z*r( + r£)T (cz + e)~xc(u + z*r( + rj)))
• •e(tr^/Q(^-r2 - ^rj))

where (M, r) (ac be), (m, r2))e Td2. This proves the claim on the weight and the
index. The second statement follows from the previous lemma.

Last, we list the theta characteristics and their images under the transformation
7i yi d, respectively*}^ Yi^T The first row is multiplied by d for convenience.

[&] r001L 0,0 J [2:2] [?:2] [2:2] [2:?]

[-1]L Y2 J [2:2]

[2:?]

[2:2]

[?:2]

[?:?]

[2:2]

ito]
[?:?]

[o°J]

[1:1]

[ ~1 ]1 Y 2 J as] [ti1] t^1] [Ä] tu+i]
Table 1. Even theta characteristics under base change

[1:2] [1:2][%]

[-'] [ft] ['u'1]

[1:?] [2:1] [2:1] [?:!]

r d'° 1
L\,d+1J [oV] [ M'1] [1-Ll ]

d +1 J

Table 2. Odd theta characteristics under base change

6.5. The divisor of a Hilbert Jacobi form. In this section, we determine the class

of the bundle of Hilbert Jacobi forms in terms of the pullbacks of the Hodge bundles

n*Xl and the zero sections N^'\ that is we complete the proof of Theorem 6.1.
The plan is to reduce the weight and index of any Hilbert Jacobi form to zero with

the help of the following two functions, whose divisor class we can compute.

Lemma 6.8. The function } ] : H2 x C2 —>• C, i — 1,2, given by

!^!)[|](z,n) - Xle(2(x + + (x + l)(M' + 5))
xeZ
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as a pullback of a one-variable theta function, is a Hilbert Jacobi form for Y d2 of
weight k with k} ^<5,7 and index nf2^) where m1-7' ^8tJ. Its divisor is

divfl<°[}] NU) +

Proof One immediately deduces from the theta transformation formula that

r^z<")) ' J'fd r)-z'")
2> 2

e(lr2 } - Iü?rt')) xf(M) t?J}[! ](z, u),

for (M,r) e Trf2, where /^(M) := /g(diag(t/_1, \)M^ diag(tf, 1)), and

where xe denotes the multiplier introduced in the 1 -dimensional theta transformation
formula (6.12).

For the divisor calculation we may focus on the case / 1. At the boundary
divisor D^\ which in the local coordinates (£i,/fc> z2> "2) of Lemma 5.6 is given
by q 1 ^ =0, we have the Fourier development

V,m Elf/2<'+,/2)7f'+"2>-e(ih + i))
xeZ

_ Y2^d/2(x+l/2)2+kd(x+l/2)^d/2{x+l/2)2 + (k+l)d(x+l/2) +

Thus, the vanishing order of [ {] at qx^ 0 as a function is given by

min 4(x + i)2 + kd(x + \) 4(minx2 + (1 + 2k)x + \ + k)
XZ Z Z' 2/2 \JceZ 4

1 (n {x + \+kf-{\+kf + \+ k)

f(?g}(* + I+ *)2 ~k2)

k:
xt

d i,2 rf
2 •

Using (6.8), we see that the vanishing order as a section of the bundle of Hilbert
Jacobi forms is f. Thus,

C=div^1)[j]-fD(1)
is a divisor on Adi, whose support is disjoint from the boundary.

The divisor ofthe classical theta function 0[} ] on E[d]° HxC/(r(ö() x.(dZ)2)
is equal to d2-times the zero-section. This relation persists under passing to the

quotient by the conjugate group Y(d)d via the equivariant isomorphism (z,w) k>

(f, w). Thus

&(E(d)°)2id2Nx(d)2)'
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Therefore,

deg(r)C =7*7*C

)2 (div^°[ 1 ]) - deg(r)f D(1)

d27*N^d)2 -deg(r)f Z)(1)

d2AdN{1) -deg(r)f £>(1),

which together with deg(r) r/2A^ implies the claim.

Lemma 6.9. The pullback of the one-variable rj-function rf'l : H2 x C2 —> C, given
by

00

rii'\z,u)=e(£3) Ol1 ~e("f?-)).
n 1

A a Hilbert Jacobi form for Vdi of weight (k\ k2), where k} and index

(0,0) with divisor

di\n^ —.' 24

Proof From the well-known one-dimensional transformation formula one deduces

rl{l)\K,o[M>r] Xv{mU)) 1(°

where the multiplier Xv takes values in the 24-th roots of unity. At D^k, the

function //') can be written as

OO 00

i<"=«f24 n c - if)=no-n=1 n=1

and the rightmost term does not vanish at q, ^ =0.

Proofof Theorem 6.1. Let / be a Hilbert-Jacobi form of weight k (k\,k2) and

index m (/«', m"). Let g^'\ i 1, 2 be the pullback via prt of a modular form
form of weight 24dlKt for r(l)^. The function

((»<»[! ])2>f [! ])»"(,<'>)-2"'(,<2))-2")24V",S<2)

has trivial automorphy factor. Hence, it descends to a meromorphic function on A°2,
and one checks that its extension to Ad2 is also meromorphic. Therefore, we can
obtain an explicit divisor linear equivalent to / by computing the divisors of the

different factors of the product.
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Using the above lemmas, we have

div/ ~ ^(2m'(N(l) + f Z)(1)) + 2m"(N{2) + f D(2))

— 2m'— 2m" + dK\it*X\ + dK2n*X2j

K\7t*X\ + K27t*x2 + ^yv(1) + ^yv(2) + ^D(1) + ^D(2)

Applying D^ — ^7r*A,- yields the claim.

7. The reducible locus

Let P°2 C X°2 be the reducible locus, i.e. the locus of points corresponding to
abelian surfaces that are isomorphic to a product of elliptic curves. We show the

following.

Proposition 7.1. The closure Pd 2 of the reducible locus has the divisor class

[Pd*] (5 - f )(At + A2)

in CH1 XIfd 1 mod 2, its spin components have the divisor classes

[Pd2,e=3\ (k~£l)(A1+A2),

lPd2,s= l] (|-^)(^l+A2).
If d 0 mod 2, its spin components have the divisor classes

[Pd2,e=0] - f )(^1 + ^2).

\Pd2,e=2] 3(Ai + A2) •

Corollary 7.2. The spin components of the reducible locus have Euler characteristic

X{Pd2,E=l) _288^ ~~ ^~d~'

ifd is odd, and

xhh,„o) -X<i-})¥-
X{Pd2,e=l) ~ 48^'

ifd > 2 is even.

This fits with the total count X(Pdi) ~— obtained by several

authors, see e.g. [1, Formula (2.23)].
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Before embarking on the proof, we need several lemmas. Given a theta function
with characteristic, we write

*[§]<*, 0)

for the corresponding theta constant. Mumford shows [20, §8] that the reducible
locus is cut out by the product of all even theta constants and this product vanishes

to order one there.

If d 1 mod 2, we define

lVe=3 and *V£=[ - If Mtb-
[£]">

These functions are, by the description of the action of Tdi on characteristics in
Section 6.4, modular forms for the full group Td2 of weight (^, P), respectively of
weight (|, |). If d 0 mod 2, define

*Ve=0 Fl ^°[k2] and $0,e=2 f~[

[ri\&Eo [k2]s£2

Again by the calculations in Section 6.4 these four functions are Hilbert modular
forms of weight (2, 2) in the first case and (3, 3) in the second. The zero loci of these

modular forms correspond to the spin components of the reducible locus.

Lemma 7.3. In the open part X°2 the components ofthe reducible locus are vanishing
loci of the modular forms

Ph,e=s {^<>,£=3 °}> respectively, P°2 e=1 {d0,e=i 0}

for d odd, and

Pd2,e=o {^o,£=o 0), respectively, Pd2 e=2 {^0,6=2 °}

for d even.

Proof. In the case of a smooth genus two curve, the function § $ [ ] vanishes

at all odd 2-torsion points, since translating d by such a point gives a theta function
with odd characteristic. Consequently, the odd 2-torsion points are the Weierstrass

points. This identification extends to reducible curves.
A 2-torsion point [ ] is integral, i.e. has the same image under the origami map

as the node, if and only if its base change [d~l ] has [J]] as first column. So the

number of integral Weierstrass points in the vanishing locus of do [ number

of odd theta characteristics that have [ 0 ] as first column after adding \ d~{ ] •

The claim now follows from inspecting Table 2.
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Lemma 7.4. For d 1 mod 2, we have

Pd2.£=z \{Xl+X2)-\{R^ + R^),
Pd2_s=l §(A, + A2)-§(/?(1) + tf(2)).

For d 0 mod 2, we /rave:

Prf2,e=0 2(Ai + A2)-±(tf(1) + fl(2)),

^d2,e=2 3(Ai + A2) •

Proof. Let #o[y2] t>e an even theta constant. Using the Fourier development, we
have

a ryil / \\ i/2(j'+4y'|)2 l/2(i"+d y',')2 / y2N,My, J e(trji:/Q(y,y2)) 2^ <?2 e(trU^)) •

By symmetry, we may concentrate on the first boundary, which is locally given by

q\ 0. The minimal t/i-exponent appearing is

• 1 / ,~/,2 U> if df/\ si mod 2,
min kV + d y\ )2 {8 ffs'eZ |0, if t/y j 0 mod 2.

Thus, t?0[ Y2 ] vanishes at R^ to the order |£(y), where for y e ^Z, we set e(y) 1,

if dy 1 mod 2 and e(y) 0 else. The claim now follows using Table 1.

Proofof Proposition 7.1 and Corollary 7.2. Proposition 7.1 follows from the

preceding lemmas and formula (3.2). Since the components of the reducible locus are

all Kobayashi geodesies, the Euler characteristic can be computed by integration
against cui. Consequently,

A(^°2,£=1) [-CO
1 -£(§ - £) f U>\ A (i)2

d2 .e— \ d2

-\(\--h)X&d*) -Ud- 1)^
since xi^d2) J2&d- The calculation for the other spin components and for d

even is the same.

8. Arithmetic Teichmüller curves in S2 M 2

In this section we describe loci in the universal covering of A°2 in terms of theta

functions, their derivatives and the torsion sections with the following properties.
First, they are invariant under the covering group and hence they descend to loci
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in A°d2. Second, their images in the pseudo-Hilbert modular surfaces are the

Teichmüller curves we are interested in, or rather a union of these.

For this purpose we take for d odd the unique even Hilbert theta function &

;?[ °'q] whose characteristic is invariant under Td2 (see Section 6.4), and for d even

we take one of the Hilbert theta function with even characteristic in the orbit E0, say
# We let

U : B2 x C2 -) A°d2 (8.1)

be the universal covering map.

8.1. The stratum S2M2(1,1). We fix a torsion order m e N and define Om{\, 1),

the lifted origami locus for the stratum £IM2( 1, 1). These are points on the theta

divisor, where the derivative of theta in the «2-direction vanishes and whose first
coordinate projects to an m-torsion point. Formally,

Om( 1,1) j(z,w) etfxC2: §{z,u) 0,

— (z,u) 0, (z,m) e (8-2)

The transformation properties of theta functions imply that the images of the lifted
origami loci are closed (in fact algebraic) subsets of the (open) universal families.

Lemma 8.1. Theimages 0^(\, 1) \))foranym e N are closed subsets

ofA°d2.

We are ultimately interested in their closures in the compactified universal family.

Definition 8.2. The origami locus Om( 1, 1) is the closure in Ad2 of 0^(1, 1)).

In this section, we show that the jr-push forward of Om( 1,1) is a union of
arithmetic Teichmüller curves in Q.M2{\, 1) plus possibly some spurious parts of the

reducible locus and of arithmetic Teichmüller curves in QM2(2) if m 1,2.

Theorem 8.3. Let m N, m > 1. lfm 0 mod 2, then

Jt*02m(\, 1) 2Td^M=m.

Ifm \ mod 2, then

tt*02m(l, 1) 2Td M—m g=\, 7t*Om( 1, 1) — 27rfjM=mjg=3, for d odd,

zt*02m{\, 1) 2TdtM=m<e=2, n* Om(\, 1) — 2TdM—me—(), for d even.

The case m 1 is special in that we also hit Teichmüller curves in Q,M2(2) and

parts of the reducible locus by 7r* 0\(1, 1).
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Theorem 8.4. The push-forward of the origami locus decomposes as

1) 2[Td,M=\,e=i] + 3[H/^2 £=3] + [T3d2,E=3\ d °dd,

jt*02(L 1) 2[Td,M=\,e=\\ + 2>[Wd2j£=i] + [Pd2,E=\\ d odd,

7r*0i(l, 1) 2[Td,M=i,E=o\ + [Pd2,e=o] d even,

tr*O2(1, 1) 2[Td,M=\,E=i\ + 3[W^2ie=2] + [T3d2,E=z\ d even.

We start the proofs with the closedness lemma.

ProofofLemma 8.1. The vanishing locus of a Hilbert Jacobi form is closed, since
it is a closed subset of H2 x C2 and since the automorphy factor is a product of
non-zero terms. This applies for the full group Td2 for d odd, and for a subgroup
of finite index in T^2 that stabilizes the characteristic (see Section 9.4) for d even.

Arguing for this subgroup is sufficient since the image of a closed set under a finite

map is again closed.
The torsion condition is also closed. It remains to treajfthe derivative of the theta

function. We define /(M, r) /^(^'(M, r))e(tr^/(Q(^-r2 — ^n). Restricted
to points (z,u) where d(z,u) — 0 (and hence also d((M,r)(z,u)) we obtain
for all (M,r) e T^2 by differentiating the equation defining modularity (see

Proposition 6.7) and using the definition of the action in (4.5) that

dd
-—((z-, M))
ÖU2

0

7— {ti((M,r)(z,u))J 1 1 i 1 ((M,r),z,u) x(M,r))
OU2 ' 2 ' 2 2 ' 2 '

7^((M,r)(z,u))(c(2}z2 + e(2))~l ((^, r), z, u) /(M, r)

^~((M'r)(z'")) iy(2 L){(M>r),z,u)x(M,r). (8.3)

Consequently, the automorphy factor here is again a product of non-zero terms and

the vanishing locus is well-defined and closed as a subset of A°2 for both parities
of d.

As first step towards the theorems of this section, we show that the origami maps
are normalized in the sense of Proposition 2.1 for the two theta functions we need.

Let prt be the projections associated with the isogeny Adia —> EZl/d,i x Ez2/d,\
from Section 4.

Lemma 8.5. For fixed z e H2, let 6)z [ y2 ] denote the curve in Ad2 2 given by
® [ Y2 ] 0- 77?e covering

Pri '• ®z[z2] * E(zj/d,l)
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is normalized, ifand only if

[y2] £ E0, ifd 0 mod 2 resp., [ yv\ ] [ j'q ], ifd 1 mod 2.

Proof. The function d #[o'o] vanishes at all odd 2-torsion points, since

translating d by such a point gives a theta function with odd characteristic. Since
r y 1 1

0Z 0Z[~ J is a symmetric divisor with respect to [—1], the translates by

z*Y[ + of the odd 2-torsion points are precisely the 6 Weierstraß points on 0Z.
The claim now follows by inspecting Table 2.

ProofofTheorems 8.3 and 8.4. A point z e X°2 lies in the support of n* Om (1, 1) if
and only if it has a preimage y e Ad2 z such that y e 0Z, such that y is a ramification
point of p\ : 0Z -»• EZl/d,i, or alternatively a zero of the first eigendifferential
0)\ — n*a>E, and such that y is mapped to a w-torsion point in EZl/d,i-

If y is a ramification point of order 2, then it is a fixed point of the hyperelliptic
involution, so it is a Weierstraß point. Consequently z e W^2 and such a point has a

unique preimage in Om( 1, 1).

Suppose that y is a ramification point of order 1 and that 0Z is a smooth curve.
Then two zeros of a>i are exchanged by the hyperelliptic involution a, and a descends

to the elliptic involution (see Proposition 2.1). Hence the images of the ramification
points differ by a torsion point on EZi/d,\ and z lies on some Td,M,e- The torsion
order of the corresponding minimal covering is m or m/2, depending on m mod 4,

on d and e, as explained in Section 2.1. This implies the set-theoretic assignment of
the various T^^.e to the push-forwards of the Om( 1, 1). In each of the cases there

are two possible points y for the same z.

If 0Z is a singular curve, then it is reducible, and its components are two elliptic
curves E\, E2 joined at anode, since 7T*Om(l, 1) is the closure of a subvariety in X°2
for any m, and hence the Jacobian of a generic point of its support is compact. On
each Ei (i — 1,2), the projection p\ is still non-constant (since p\ and the projection
to the kernel of p\ deform over all of X °2, otherwise the splitting as product of elliptic
curves would deform to all of X°2), and thus an unramified covering. Consequently,

O a^ never vanishes at a smooth point of 0Z, while it does vanish at the singular point
of 0Z (even both partial derivatives of d vanish).

The node y is a 2-torsion point different from the six odd Weierstraß points, i.e. it
is an even 2-torsion point. Consequently, its p\-image is a 2-torsion point and there

is no contribution from the reducible locus, except for m 1 and m 2.

Suppose first that d is odd, hence d i'Ö](z). If the node is mapped to zero,

then it is an even two-torsion point with the property that after translating by [,'q ] its

pi -image is zero, i.e. in the eigenform coordinates of the second row of the Table 1

the first column of the point is zero. By inspecting the table we see that there is only
one possibility, [ ®'q ] itself. This implies that y 0 and that z is in the vanishing
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locus of the corresponding theta constant, i.e. i?o[ i'o](z) 0- By Lemma 7.3 this
is the defining equation of Pd2jE=3.

Similarly, precisely the odd theta characteristics in O9 are mapped after translation
by [ i'o] to a primitive 2-torsion point. By Lemma 7.3 this implies that Pd2j£=3 is

contained in n(02(l, 1)).

Suppose next that d is even and & #[q'q](z). Precisely the odd theta

characteristics in E0 are mapped (after translation by zero and base change) to a

first column equal to zero, while those in £2 are mapped to a primitive 2-torsion

point. Together with Lemma 7.3 this explains the setwise distribution of the reducible
locus among 7r(Oi(l, 1)) and tr(02( 1, 1)).

It remains to determine the multiplicities of Om( 1, 1) at the components lying
over the curves TdtM>£, Wd2 e and Pd2 s. We start with Wd2 e. Fix q\, an M-torsion
point u 1 and shift the remaining coordinates, so that in the new coordinates the

goint will be at Z2 J) and tT2 0. The fiber of the^origami locus is cut out by
t?(z2, M2) 0 and dU2d(z2, «2) 0 for some function d, which is odd as a function
of u~2- This implies that the multiplicity of the fiber is two, hence the multiplicity
of the component is a multiple of two. Now we consider the fiber with (zi,Mi)
varying, choosing locally (Z2, u2) so the the first two conditions of the origami locus

are satisfied. Since locally near the critical point three branches of the map p\ come

together, the multiplicity of the component is divisible by three. Taking the factor 1/2
from the quotient stacks into account, this implies that the multiplicity of Wdi E

is

three.4

Near Td<M<e the branching argument for p\ gives multiplicity two. Two preimages
and the stacky factor 1 /2 give in total the coefficient two in Theorem 8.4.

Near Pd2 e the fiber is singular near the preimage point z, hence besides dU2d

also dUld vanishes there. This implies multiplicity at least two, hence at least one,
with stacky factor 1 /2 taken into account.

8.2. The stratum fi«4f2(2). We need the following theorem from [1] to subtract
the contribution of the curves Wd that appear in Theorem 8.4.

Theorem 8.6. The classes in CH1 (3f^2) of the Teichmüller curves generated by
reduced square-tiled surfaces in Q.M2(2) are for d odd given by

[^2=3] |(1 " + Id - 1)^2 + Jd

and [W°Tl] |(1 - £)Ai + Id - ^)A2 - Jd

for some Jd in the orthogonal complement of (A 1, X2), and

WdA [^2=2] 3(1 - %)Xi + 9(1 - f )A2

4A priori,this argument shows that the multiplicity is at least three Similarly, the arguments in the

subsequent paragraphs show that the coefficients on the right hand sides are at least what is written
in Theorem 8 4 resp. Theorem 8.3. Since we know the total count by an independent argument, see

Proposition 9.9, the multiplicities cannot be larger.
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for d > 2 even. Consequently, the number wEd of reduced square-tiled surfaces in
QM 2(2) with spin s is

f6(d- uA-

where the first line corresponds to d odd and the second to d > 2 even.

The counting part of this theorem was proven in [13], the class in CH1 (Xd2) was
first determined in [1],

We sketch how one could prove this theorem, at least without distinguishing the

components, with a similar setup as for the stratum £2,1). We dehne 0(2), the

lifted origami locus for the stratum Q.M 2(2) to be

— - 9 dd d2§ 1

0(2) <(z, m) e H x C : #(z, w) 0, -—(z, u) — 0, —~ 0>.
1 0U2 0U2

'

The transformation properties of theta functions imply again that 0°(2)
0(0(2)) is closed in 4°2. The origami locus 0(2) is defined as the closure in Ad2
of 0°(2). With similar arguments as above one can show that the push-forward of the

origami locus O2 is supported on WE2 • To prove Theorem 8.6 from here it remains to
determine the multiplicity of this push-forward and compute the class of rr* 0(2) as

a triple intersection, following the proof for 7r*(Om(l, 1)) given in the next section.

A more detailed analysis along these lines is likely to separate the components and

to show that Jd 0, as conjectured in [1].

9. Intersection products

We now can complete the proof of Theorem 1.3. For this purpose we prove in
Theorem 9.2 how to subtract from a triple intersection of divisors on Aä2 suitable

boundary components in order to compute the class of the pushforward of the origami
locus Om( 1, 1). As technical steps it remains to actually perform triple intersection
of the geometric divisors appearing on the right hand side of the class computation
in Theorem 6.1 (see Proposition 9.3) and to compute these boundary contribution.

In this section, we restrict to the case d odd. The additional computations
that have to be performed for even d are briefly discussed in Section 9.4. We

continue to denote by ü the unique Hilbert theta function with even characteristic
fixed by F^2. It gives rise to a section of the Hilbert-Jacobi bundle Td2)
with k m (1/2,1/2), and therefore to a Cartier divisor divtf on Ad2. The
associated Weil divisor [div#] can be written as

[divfl] 0 + B{d),

where B(d) is a linear combination of boundary components and 0 has no support
at the boundary. We view 0 as element of CH1 Ad2)
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Let |©| denote the support of 0 and let / : |©| -»• Ad2 be the inclusion. We can

compare the intersection numbers on 0 and Ad2 since 0 is a reduced (and in fact

irreducible) subvariety.
The next condition in the definition of the origami locus is the vanishing of the

theta derivative. On 0 this function is a section of the restriction of a bundle on Ad2,
whose class we already computed. Recall the definition of U from (8.1).

Proposition 9.1. The function restricted to U~l (|0|) descends to a well-defined
global meromorphic section 3$ ofi*$M, where $3# is the bundle ofHilbert Jacobi

forms $K,m(Tä2) with k (5, §),m (±, ±).

Proof. This follows immediately from the calculation in (8.3).

To the Cartier divisor div3# we associate the Weil divisor [div3#]. It is a sum

[div3$] D0 + B{dü)

where B{3$) e CH'd©!) is a linear combination of boundary components of 0,
and D 0 has no support on the boundary.

Finally, in the definition of the origami locus, we have to intersect with the torsion
condition. This may also result in components, that lie entirely in the boundary. We

have to subtract this contribution, that is, in CH*(|0|), we can write

i*[Om( 1,1)] D@.i*(N^}lor) - Bm(N)

where Bm(N) is supported in the boundary of |D0| since by definition Om( 1, 1)

has no support on the boundary.

Theorem 9.2. For d odd, the class of the origami locus in CH*(/lrf2) can be

computed as

[Om (1, 1)] Cj ($#). Ci ($3$).Nm\0r ~ B(fi).C 1 ($3i?)-(Vm.tor

-N^.ivBm-UB^N). (9.1)

Proof. Since 0 is reduced, the pushforward of D0 by i is

UD® cl(fo»).®-uB{d-d).

by the projection formula. Thus,

[Om( 1, 1)] + UBm(N) iAi*Nil)tor.D@)

a£Lci (&*).© - N^UBm-
Now plug in 0 — B(&) to obtain the claim.
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9.1. Triple intersections. The divisors of Jacobi forms have been expressed in
term of the zero section divisors N^'\ the pullbacks of Hodge bundles n*A,.
The evaluation of intersection products of those divisors and with the boundary
divisors Z)h) is manageable since many triple intersections have 7r-pushforward
equal to zero.

Proposition 9.3. The n-pushforward of a triple intersection between any of N(l\
n*Xl, and D' is given by

n*{N(l).N(-2\n*Xl) d2Xt, 7T*(Ar(1).yV(2).D(,)) d2R(l\

n*((N(1))2.N{2)) -d2Ai, n*(N(l).(N{2))2) -d2X2,

and is zero for all triples that do not agree with any of the above up to permutation.

Proof. The divisors Jt*X, and D ^ are vertical, i.e. their 7r-images are divisors, while
the are horizontal, i.e. n | w( is surjective. Consequently, any intersection of three

divisors meeting properly, among which two are vertical, consists of 1-cycles along
which it is of relative dimension > 1, hence their ^--pushforward is zero. We may
use linear equivalence in the base to ensure that the proper intersection hypothesis
holds for any of the intersections N^.n*Xj .7t*Xi( for i,j,k e {1,2}.

The intersection N^.N^ is the closure of the projection of

{(z, u) e H2 x C2 | u e diag(^-, ^f)Z2 + Z2}

to Ad2. In each fiber, this is a group of order d2, the kernel of the projection
to C/($zu 1)Z2 x C/(jjZ2.1)Z2. Thus, 7r*(iV(1)./V(2)) d2n*N d2[Xdi],
where N is the zero section of ji : Ad2 Xdi. This gives all the intersection

products with n-pullbacks as stated.

It remains to treat intersections of ^--pullbacks with (N^)2. Since (N^)2 is

represented by the pullback via prl of a zero-cycle E(d)d, its intersection with any
of the vertical divisors is a cycle on which n is of relative dimension one, hence again
its 7r-pushforward is zero.

For the remaining two cases stated in the last line of the lemma we start with

tu*(Nx(d)) as in the proof of Proposition 6.2. This directly implies that

(m x rtr)*((N^f.N^) -Ap\

using the commutativity of the diagram

CH^(£(J)rf)<g>CH^(£(^) CR*Q(E{d)2d)

it) * & (V * (zcrxm)*

CH*Q(X(d)d)®CH*Q(X(d)d) CH^(X(d)2)
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(2)and the fact that N^ is the pullback of a section the second elliptic fibration. The

same argument gives

(m x

for any translates by torsion sections /x and v. Now

7T*((V(1))2.JV(2)) —— Tr*7*((7*/V(1))2.7*JV(2))
a2 Ad

*N$d))' • v*N$d))
"a V.^Tncr 7d

fi&T v&T

d 2

-r*(-0 -^"»

where T o^2 ® o^2/(Z2 ® tfZ2) is a torsion subgroup of order d2 and where we

used that for ß,/i'eT we have (ß*^x(d) <t)) ® un'ess F F'• ^

9.2. Boundary contributions. In this section we collect all the boundary
contributions that appear in Theorem 9.2. Together with the results from Section 8 this
allows us to conclude the proof of the main Theorem 1.3 for d odd. The proofs of
the boundary statements appear in the next section.

Proposition 9.4. For d odd the boundary contribution of divt? in CH1 (A ^2) is

B(d) i(D(1) + D(2)).

Proposition 9.5. For d odd the boundary contribution of div9# in CH2(/1^2) is

equal to

B(dd) |(D(1) + D(2)).Cl(^). (9.2)

Proposition 9.6. For d odd the push-forward of the boundary contribution Bm(N)
is equal to

(tf(2), ifm 1,
tt*Bm(N) {

J
(9.3)

/O, else.
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Proofof Theorem 1.3. There are several cases to be discussed.

CMH

Case: M > 1 odd, spin e 3. In this case 2[TdtM,e=3\ — [x*Om{ 1, 1)] by
Theorem 8.3. The first contribution to this is, according to Proposition 6.2 and

Theorem 9.2, equal to

n-*(ci(&0-ci

TT* (((I + z)x*2-\ + + \N{X) +

((-2 + + + + ^(1) + ^(2)) + A,))

d ^"(0 + 1)^1 + (2 + l)^2) (9.4)

Next,

7T*(ß(t?).Ci(^).iV^tor)

+ j)n*Xx + (| + j)^*A2 + j(V(1) + jN(2))

(yv(1) + Xi).^(D(1) + ö(2)))

i d (tf(1) + tf(2))

(^1 + ^2). (9-5)

By Proposition 9.5 we get

MNJL-w» *.(A£-»-ci<#<>.JP)<,) + °(a))

Since jt*(Bm(N)) 0 for M > 1 we find altogether

[n*Om(1, 1 )] d%- ((1 - ^)Aj + (2 - f )A2),

and this completes the first case.

Case: M > 1 odd, spin e 1. Since in this case 2 [TdtM,e=\\ [^*02m(1- 1)]

and since N^M-iot a" t'ie contributions are multiplied by three compared
to the previous calculation, and this proves the second case.

Case: M even. Recall that there is no spin distinction in this case. Now 2[7^ ,M,e=0] —

[7t*02a/(1, 1)] and for M even the number of primitive 2M-torsion points is 4^-.
Hence all the contributions are 4 times larger than in the corresponding cases for M
odd and spin e 3, completing the discussion of this case.

It remains to discuss the subcases for M 1.
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Case: M 1, spin e 3. We compute as in (9.4), (9.5) and (9.6), taking into
account that A^,. has no A i-contribution (as A^or had it according to Proposition

6.2),

Met(#!>)• Ci(#3#).^°^) d (A! + (2 + j)A2),
d (^Ai + £A2).

n.(NHl.Bm)=d{äA,+^A2).

Since (N)) R® -^A2 we find

jt*0,(1, 1) (d — 3)A r + j(d2 — d — 6)A2.

Subtracting the contributions from the reducible locus (see Proposition 7.1) and from
Wrf,e=3 (see Theorem 8.6) according to Theorem 8.4 gives the claim.

Case: M 1, spin e 1. Since (V^-tor 3((V^' + Ai) and since in this case

7Z*(B2) 0 we get as in (9.4), (9.5) and (9.6), that

n*(02(l 1)) (3d - 3)Aj + 6(d - 1)A2.

Again, subtracting the contributions from the reducible locus (see Proposition 7.1)
and from Wd<e=\ (see Theorem 8.6) according to Theorem 8.4 gives the claim.

9.3. Intersection with the boundary: proofs. We will deduce Proposition 9.4

from the following result. We compute the vanishing order of the theta function for

general k and general characteristics, and later specialize to the unique theta function
invariant under the whole group Tdi.

Proposition 9.7. The vanishing order at the boundary divisor D^k of the theta

v y 11function by— J considered as a function on the infinite chain of rational lines

\\~\k2, ifdy\l) 1 mod 2,

\ — jk2, if dy^ 0 mod 2.
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Proof. By symmetry, we may focus on the case i 1 and compute the vanishing
r y 1 iorder of i?[~ J as a function at qx^ =0. In the second line, we use the substitution

s dx, so that the summation is over all s e Z2 with s' —s" mod d. We let

%

-y i

X e(ltr*/Q((* + It)2* + 2(x + + ffiO))
xeoA,

X + ^l) + (J' + drl\)(^d + if))
j'eZ

• J] e((I(J" + + ('" + drfm + #)))
s" -s'(d)

j / U V-* l/2-(i'+dj)',) i'+rf?;, / I v'2\e(trjr/Q^itfe)) 2^ ?1 'e(j f)
s'eZ

j" s -s'(d)

e(tr?/Q(M2)) £ ?i/2.(I'+^)%t(I'W1)fh2.(,'+<i,'1)2 + (H.)(i'+«/,i)

s'eZ

•«(*'£) E £+'"f!<*"$)
s" -s'{d)

Note that J t/j ^Z. We let £(7/77,) 1, if r/j/j is half-integral and 0 if it is integral.
r Y I "iIn this notation, the smallest <71 ^-exponent appearing in the development of d[~ J

is given by

mmin{2{s + dq'x)2 + k{s + dq\) \ s e Z}

5 mm

min

s2 + 2s(drj'x + k) + drfx(2k + drj\)

(5 + dq'x + k)2 - \{dr}\ + k)2 + \dr(x{2k + dq\)

\s{Hx)~\k2.
This implies the claim, once we have checked that the corresponding coefficient is

indeed non-zero. We may restrict to the chart k — 0. If s(drj'x) 0, then the

minimum is attained only once for s — —dt]\ and the coefficient is a power of
£i,o-power times a non-zero power series in q2 and £2- This coefficient does not
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vanish for generic (£i,o, <?2, £2)- If e(dq\) 1, then the minimum is attained twice,
for s' + dt)\ ±|. The coefficient is of the form

(«2. h) +

for non-zero power series A\ and A2. This coefficient does not vanish for generic
(ti,o. <72, £2) either.

ProofofProposition 9.4. By Lemma 5.6 and (6.8), we can determine the vanishing
order of a Hilbert Jacobi form near Z)h) by its Fourier development in the coordinates

z2. «2), resP- (zi> Mi> and then compare to the definition of
local sections of Hilbert Jacobi forms in (6.8). Using this and plugging in the

r y ] -1

characteristic J invariant under Td2 in the previous proposition yields the claim.

For the proof of Proposition 9.5, let again d denote the unique theta function
invariant under Td2. We develop t? and d2d with respect to the boundaries. To this
end, we introduce for / e Z the functions

»,.[<]= E^hV^h' + O). (")
s' -i(d)

«2.H E </7(,"+hV'+')) • '(At) • <"-8)

s" -i(d)

With the above notation, we expand $ and its derivative near a divisor D^k lying

over the first boundary as

l _kf 1 (k+l)2
& dl,k

2
^\,k

2 "( ftl,[-k)+ 02,[-A: + l]£l,* + 0(?1,*)),

1_*£ 1 (fr+1)2 ' }

d2d q*k 2
£,8'k

2 (3U202,[-U + du28i,[-k+\]^\,k + 0(<7i,jt)),

and near a divisor D^k lying over the second boundary D^

l_kf 1 (£ + i)2
d — q2 k

2
{',2k

2
• (0i,[-jfc-i] + %2,k®i,[-k] + 0(q2^k)),

l_kf 1 (k +1)2

d2d q*k 2 t;*k 2
• - 1^K0l [_k_l] + l^k^k0h[_k] + 0(q2,k))

(9.10)

ProofofProposition 9.5. We have to determine the boundary contribution of d2ü
on 0, which is locally (using the chart k 0 and Proposition 9.7) given as the
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vanishing locus of & / q^^Q for j 1,2. The factor q'J^ gives, for both

boundaries, the contribution claimed in (9.2). So we have to argue that the constant
terms (in qJto) of the remaining factors of § and dti have no common factors. Since
these terms are linear in this holds if and only if

deti V2,[0] V2,[l]

3U2^2,[0] du262,[1]
^ 0 and det2

Cl,10]

'20i,[o] I0i,[i]
7^0.

Since

l l

92.[0]=e(ä)«!f!+ 0(,!(2"""2)

and y2,[l] _a,2d+ n |(2d-l)2 J(-2d-l)' £
/ i(2d +3)2\

+ 0(q28

the claim for deti is easily checked using the beginning of the (^-expansion and for
det2 the claim follows similarly.

ProofofProposition 9.6. Suppose that (z, u) H2 xC2 projects to N^}tor under the

universal covering map U. This is the case iffu\ ^-Zi +t2 for some t\, t2 e ^Zbut
there is no way to represent the point with t\J2 £ for any k strictly dividing M.
Such apoint is mapped to (q[] e(j-), qi)-

Near the boundary we inspect the expansion (9.9) with this specialization.
Bearing in mind that £2,o 7^ 0, already to first order in qij0 the only solution is

<(2,o 0. Such a component vanishes under jr*, as claimed.

Near the boundary D® we inspect the expansion (9.10). With the substitution
r' s' — 1 we find

r' 0(d)

-E«
r' 0(d)

l/2(r'-</2)2+ri(-r'+l/2)Q/ t2«(&)<-» 'la

For?i t2 0 this expression is equal to ^^[o] (<?5'e(^-),^i), hence det2 vanishes at

(qi' e(^)> <?i )• One checks that the next term in the expansion (corresponding to q\ 0,
[/gsince qx 0 has been taken out) is non-zero, so that the multiplicity of this contribution

is one, as claimed. Hence this point t\ t2 0 contributes a divisor to B\(N),
whose 7r-pushforward equals R^2\

The substitution works for no other pair (t\,t2)- In fact, one checks that

det^j'ej^), q\) has non-trivial q\-expansion for any non-zero (?i, t2). This proves
the claim.
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9.4. Modifications for d even. Let d > 2 be even. In this case none of the even
theta characteristics in Eq is fixed by Yd2. The vanishing locus of the product is a

well-defined subvariety of A°d2, but using this product in the definition of the origami
locus in (8.2) does not quite work since when taking partial derivatives, the product
rule introduces a lot of spurious components.

Consequently, one has to work here with the subgroup Y'd2 of Yd2 fixing
the characteristic [q'o]- fact' the subgroup Y'd2 — diag((t/, —d), 1) • T' •

diag((^,-^), 1) where

T' {A e SL2(Z)2 I A' A" / mod 2, A' A" mod 2d} c SL2(o).

of index 48 has this property. Again one can compactify the open family H2 x
C2/Y'd2, where F^2 Y'd2 k(o^2 © °d2) employing a toroidal compactification

for a normal subgroup; in this case Y'd(2d) (Y(2d)d x(Z © dZ))2 will do

the job. Unfortunately, the resulting morphism A'd2 —r Ad2 from this new

compactification A'd2 is not flat at the boundary; it maps a folded 2-gon to a folded

1-gon by contracting one of the curves. One thus cannot simply pull back the

relations obtained in PicQ(/4rf2). Instead one has to rederive the formula for the

class of a Hilbert-Jacobi form (Theorem 6.1), of the section of primitive £-torsion

points (Proposition 6.2), and compute the vanishing orders of the theta-function and

its derivative (Section 9.2).

9.5. Intersection products and Euler characteristics. We first convert Theorem 1.3

into a statement about Euler characteristics.

Corollary 9.8. The Euler characteristics of the arithmetic Teichmüller curve Td M s

are as follows. If M > 1 A odd, then

*(^=3) ~(rf-DA^.
(9.11)

IfM is even, then ^(7"dtM) —\{d — 1)A</A^. If M 1, then

X(Td,M,e=3) --^(d - 3){d - 5)^-,

X(Td,M,e=t) - 1 ){d -48 d

(9.12)

Proof Pairing with coi and integration, as in Corollary 7.2.
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Now we complete easily the proof of the counting theorem.

Proofof Theorem 1.1. Since /(H/r(l)) —1/6, the number of square tiled
surfaces is minus six times the Euler characteristic. (This also holds if the curve

For comparison we include the proof how to deduce the total count (i.e. without
separating the spin components) from two results in the literature.

Proposition 9.9 ([9, Theorem 3], [4]). The number of minimal degree d covers of
an elliptic curve E' branched over the divisor P + Q is

Corollary 9.10. The number ofsquare-tiled surfaces in Q.M 2(1, 1) ofdegree d and
torsion order M > lis given by

Proof. Each such surface arises as a composition of an isogeny of degree M with
a minimal cover with reduced branching divisor P + Q. There are four choices to
normalize it in such a way that P + Q becomes symmetric; they correspond to the

choice of a square-root of P — Q. After normalization, [2] P is of order M. Choose

a basis of H\ (E', Z) in order to make an identification with Z2. Thus the M-torsion
points of E' are identified with (Z/MZ)2. Since SL2(Z/MZ) acts transitively on

points of order M in (Z/MZ)2, and the stabilizer of one of these is of order M, there

are AMj^ points of order M on E'. There are 4 choices of a square-root of [2] P, but
since P is determined by the covering only up to sign, this gives in total

is reducible.)

-{d-\)Ad, ifP^Q,

ifP Q-

(9.13)

— id — 1) — Am.
3 ' 2M

square-tiled surfaces of degree d and torsion order M.
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10. Notations

We summarize the notation used for pseudo-Hilbert modular surfaces, the universal
families over these surfaces and their coverings.

K Q©Q,
od2 {x (x', x") e Z © Z : x' x" mod d} c K

Modular groups and pseudo-Hilbert modular groups:

T(f) ker(SL2(Z) SL2(Z/(f)) with I e N

TV) {A eSL2(Z) | ^ (io) modd},

rHd^ r\d)u(~0i ^)r\d),
T(t)d diag(d, 1) • T() * diag(z/_1, 1).

Semidirect products (actions are by right multiplication on row vectors):

T{t)d diag(r/, 1) • (r(l)t<lZ2) • diag(d~x, 1),

rd2 SL(orf2 © „£) X (ovd2 © od2).

Open modular varieties

X(d)° — H/r(J) the open modular curve with level-rZ-structure,

X{d)°d H/T{d)d isomorphic to X(d)°, uniformizing group conjugated,

X°d2 H2/ r^2 the open pseudo-Hilbert modular surface.

Open universal families'

E(d)°d H x C/T(d)d universal family of elliptic curves over X(d)°d

A°d2 H2 x C2/rd2 universal family of abelian surfaces over X°d2

Their compactifications are denoted by the same letter without °.
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