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Plane algebraic curves of arbitrary genus
via Heegaard Floer homology

Maciej Borodzik* Matthew Hedden** and Charles Livingston*

Abstract. Suppose C is a singular curve in C P2 and it is topologically an embedded surface
of genus g; such curves are called cuspidal. The singularities of C are cones on knots K;. We
apply Heegaard Floer theory to find new constraints on the sets of knots {K;} that can arise
as the links of singularities of cuspidal curves. We combine algebro-geometric constraints with
ours to solve the existence problem for curves with genus one, d > 33, that possess exactly
one singularity which has exactly one Puiseux pair (p;¢g). The realized triples (p,d,q) are
expressed as successive even terms in the Fibonacci sequence.

Mathematics Subject Classification (2010). 14H50; 57R58, 57M25.

Keywords. Complex plane curves, d -invariants, Heegaard Floer homology.

1. Singular curves

Let C be an irreducible algebraic curve in C P2, defined as the zero set of a homo-
geneous polynomial f of degree d. Such a curve is called cuspidal if the singular
points of C are all unibranched; that is, the singular points are isolated and the link
of each singularity is a knot in S (such knots are often called algebraic knots).
Cuspidal curves form a natural family of algebraic curves that are topologically
embedded surfaces.

The theory of cuspidal curves of higher genus has not drawn as much attention
as the case of rational cuspidal curves, those of topological genus zero. One of the
inherent difficulties in the higher genus setting is that the complement of a curve is not
a rational homology ball (in the language of algebraic geometry, a Q-acyclic surface,
see [12]). The effect of this is that one of the main tools in studying rational cuspidal
curves, namely the “semicontinuity of the spectrum,” which is a main ingredient of

*The first author was supported by Polish OPUS grant No 2012/05/B/ST1/03195.
**The second author was supported by NSF CAREER grant DMS-1150872 and an Alfred P. Sloan
Research Fellowship.
*The third author was supported by National Science Foundation Grant 1505586 and Simons
Foundation Grant 278755.
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a classification result in [10], becomes considerably less restrictive if the genus is
greater than zero. Section 10 presents a more detailed discussion of these issues.
Notice, however, that in [20] the classification result of [10] was proved using only
the semigroup distribution property of [4,11].

The goal of this paper is to investigate the singularities of cuspidal curves. To state
the main results, we need some background. To each singular point one associates
the §-invariant and the Milnor number ¢, which for unibranched singular points are
related by ;= 2§. By definition, § is the 3-genus of the associated linking circle K.
The genus g of C and the §-invariants, {d; }, of the set of singular points, {z; }"_ ., are
related by the genus formula:

=1

g(C) = md

_Zg

i=1

Our goal is to find constraints on the possible sets of singularities beyond those
given by the genus formula. The basic idea is topological. We suppose that a curve
C C C P? with some collection of singularities exists. Let ¥(C) denote the three-
manifold which arises as the boundary of a closed regular neighborhood N(C) of C.
The homeomorphism type of this three-manifold depends only on the degree, genus,
and the links of the singularities of C. The complement C P? — Int(N(C)) is a
smooth four-manifold with particularly simple algebraic topology; in particular, its
intersection form is identically zero. To show that C cannot exist, then, it suffices
to show that Y(C') cannot bound a four-manifold with trivial intersection form. For
this, we use invariants derived from the Heegaard Floer homology of Y(C) [29].
These invariants are a generalization of the influential “correction terms™ associated
to rational homology three-spheres used in the study of homology cobordism groups
and knot concordance. Among the many important references, we mention just
one, [14], which informed our original work on this paper.

In the present situation, two particularly useful invariants derived from the
Heegaard Floer homology complexes associated to Y (C) present themselves, which
we refer to as the “bottom” and “top” correction terms. They depend on a choice
of Spin®structure whose Chern class is torsion. The key feature of these invariants is
that their values bound the characteristic numbers of smooth negative semi-definite
four-manifolds bounded by Y (C), where negative semi-definite means that the self-
intersection of any closed surface is non-positive. Notice that C P? — Int(N(C)) is
negative semi-definite with either of its orientations.

One must have means to compute the correction terms. As a first step, we show
that Y(C) has a simple description as surgery on a knot in the connected sum of
copies of S x S2. With this, along with the fact that the links of the singularities
are all L-space knots [15] (in particular, their knot Floer homology complexes are
determined by their Alexander polynomials), the computation of the correction terms
becomes algorithmic by way of a surgery formula [30].
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Our main result, Theorem 1 can be seen as a higher genus generalization of [4,
Theorem 6.5], or as a proof of an analogue of [11, Conjecture 2]. Its statement
uses the notion of the semigroup of a singularity. This semigroup of Zx is defined
precisely in Section 7.1; in the special case that the link of the singularity is a
(p, g)-torus knot, the semigroup is generated by p and ¢. If we are given a finite

collection of semigroups S1,...,S,, we can define a function R : Z>o — Z> as
follows:
n
R(it) = i #{S; N[0, k;)}.
() M+T£Fm?;{' [0, k:)}
ki >0 =

Note that if k; = 0 for some 7, then the number of elements in {S; N [0, k;)} is 0.

Theorem 1. Suppose C is a cuspidal curve of genus g and degree d in C P2. Let

Z1,...,Zn denote its singular points, S, ..., S, the corresponding semigroups, and

R the function defined above. Then forany j = 1,...,d —2andanyb =0,...,g,

we have LT D

EIIED thas. (1.1)
Unpacking the left inequality in (1.1) yields that forany j = 1,...,d —2and b =

0,..., g, and for any non-negative k1, ..., k, suchthatk; +---+k, = jd +1—-2b

0<R(jd—2b+1)—

G+DG+2)

> b. (1.2)

Y #Sin[0.ki)} =

i=1

Inequality (1.2) depends on the genus g of the curve only through the possible
range h. Stated this way, (1.2) bears a strong resemblance to [11, Proposition 2];
in fact, the case b = 0 of (1.2) is exactly [11, Proposition 2], which was proved
using an elementary dimension counting argument for projective curves. Indeed, the
expression y ., #{S; N [0, k;)} can be interpreted as a number of linear constraints
which is sufficient to ensure that an algebraic curve, viewed as an element in a vector
space of homogenous polynomials, intersects C at z; with multiplicity k;. This
interpretation leads directly to the left-hand inequality in the case b = 0. It would be
interesting to know if algebro-geometric techniques could be used to prove (1.2) for
any other values of b (the argument of [11] would need to be altered to incorporate
the genus) or, for that matter, if algebraic geometry could shed light on the right-hand
inequality in our theorem. Regardless, it is important to stress that while Theorem 1
is stated for algebraic curves, our techniques lie in the realm of smooth topology; that
is, our inequalities are satisfied for C® maps f : C < C P? of surfaces which are
topological embeddings, and for which there are a finite collection of points z; € C
satisfying df(z;) = 0 near which f appears holomorphic (that is, within local
charts). It is also worth pointing out that our result can be generalized to surfaces in
any smooth 4-manifold with the rational homology of C P2. In particular, there are
direct analogues of Theorem 1 which restrict the cuspidal curves in fake projective
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planes (slight care is needed to account for the image of the inclusion map on the first
homology of C); for a description of the 50 distinct complex algebraic surfaces with
the same Betti numbers as C P2, see [8,24,34]).

Theorem 1 appears to be a useful tool for studying cuspidal curves and can
effectively obstruct many configurations of singularities from arising on curves of
fixed genus and degree (we give some examples in Section 8). Combining Theorem 1
with tools from algebraic geometry yields even better results. For instance, we can
classify singularities of simple form that can occur on a genus one curves possessing
a single singularity. From the perspective of algebraic geometry, the theorem is
most naturally stated in terms of Puiseux pairs; we note that a singularity has one
Puiseux pair (p, g) precisely when its link is a (p, g)-torus knot (or, equivalently, it
is equisingular to z” + w9 = 0). Here p and ¢ are positive, coprime integers.

Theorem 2. Suppose that C is a cuspidal curve of degree d > 33, genus 1, possessing
a single singularity with one Puiseux pair (p,q). Then there exists j > 0 such that
d = ¢4j and (p,q) = (Paj—2.Paj+2), where ¢o, Py, ... are the Fibonacci numbers
(normalized so ¢g = 0, ¢p; = 1).

In fact, the above is a simplified statement of Theorem 9.1, which additionally
provides a finite list of possible triples (p, ¢; d) with d < 33. The proof of this result
uses Theorem 1 in conjunction with a multiplicity bound, expressed in Theorem 9.9.
The latter bounds from above the degree of a cuspidal curve under consideration
by a linear function of the multiplicity of its singular point (here, the multiplicity is
the minimum of p and ¢). The multiplicity bound, in turn, comes from a general
bound on certain numerical invariants of the singular points, the so-called Orevkov
M -numbers. These numbers are derived from the cohomology of a minimal good
resolution of the singular points, and the bound which they satisfy is a consequence of
the Bogomolov—Miyaoka—Yau inequality. Note that Theorem 2 is only an obstruction:
it says nothing about whether the triples (¢4, 2, ¢4;1+2; ¢4;) are realized by algebraic
curves. As counterpoint, however, we can explicitly construct genus one curves of
degree ¢4; with one cusp and one Puiseux pair using a technique of Orevkov [26]:

Theorem 3 (Proposition 9.14 below; cf. [26, Theorem C]). Forany j = 1,2,...
there exists a curve of genus 1 and degree ¢4; having a unique singularity with one

Puiseux pair (¢p4j—2. Paj+2).

One can also produce curves realizing some of the exceptional cases (all of which
satisfy d < 33) described in Theorem 9.1. Taken together, we solve the geography
problem for cuspidal curves with one singularity and one Puiseux pair (modulo a few
low degree cases where curves have yet to be constructed).

Computer experiments suggest that the only instances of Puiseux pairs (p, ¢) and
degrees d that satisfy all the criteria from Theorem 1 but fail the BMY multiplicity
bound are those in the family (p,q) = (a4,9a + 1) and d = 3a. It would be
interesting to know whether these are indeed the only additional cases passing the
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criteria of Theorem 1, and whether they can be realized by embedded surfaces in
the C*° category.

In [2] Bodnar and Némethi restated [4, Theorem 6.5] in the language of lattice
homology. A natural question to ask is the following:

Question 4. Is there a reformulation of Theorem 1 in the language of lattice
homologies?

Acknowledgements. The authors would like to thank Karoline Moe, Andras Némethi
and Andrds Stipsicz for fruitful discussions. The authors are grateful to the referee
for providing valuable comments and for drawing their attention to the article of
Tono [36]. Similar results to those presented here have been obtained independently
by Jozef Bodnar, Daniele Céloria, and Marco Golla; see [3].

2. Overview and Notation

Let N(C) be aclosed regular neighborhood of C, having three-manifold boundary Y .
The complement of the interior of N(C) in C P2 is a smooth four-manifold X with
boundary —Y . In the next section we study the algebraic topology of X. In particular,
we verify that the intersection form on H,(X) is identically zero, and study the
restriction map H?(X) — H?(—Y). Taken together, this information serves as the
topological input for the analytic obstructions we consider.

2.1. d-invariants. Heegaard Floer homology provides obstructions to a Spin© three-
manifold bounding a negative semi-definite Spin® four-manifold. These obstructions
are often referred to as d -invariants. To define them, recall that if s is a Spin® structure
on Y, then Heegaard Floer theory yields a chain complex C F*°(Y, 5), freely generated
as a module over F[U, U] (we use F = Z, throughout). The complex is equipped
with a Z filtration, and the filtered homotopy type of CF*°(Y, s) is an invariant of the
pair (Y, s). In the case that s has torsion first Chern class, the complex has a grading
by rational numbers. Acting by U in the base ring lowers the filtration level by one
and the grading by two. See [31] for the definition of CF°(Y,s) (as a relatively
Z-graded complex), and [29] for the definition of its absolute Q-grading.

The complex CF*°(Y,s) supports an action by H;(Y )/ Torsion which is well
defined up to filtered chain homotopy, and therefore the homology HF°°(Y,s)
inherits an action by H;(Y)/ Torsion (in fact the action on homology extends to
the exterior algebra on H,(Y )/ Torsion [31, Section 4.2.5]). Using this action, we
can define two associated groups, HF*°(Y, s)p and HF*°(Y, s); the “b” and “t” are
shorthand for “bottom”™ and “top.” To define them, one simply considers the kernel
and cokernel, respectively, of the H;(Y )/ Torsion action. In the case that ¥ is a
rational homology sphere, the action is zero, so that both groups equal HF°°(Y, s).
In the case that all triple cup products on H!(Y) vanish (a necessary and sufficient
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condition that HF*°(Y) be “standard” [19]) HF°°(Y,s), and HF*(Y,s), are
isomorphic to F[U, U~1].

There is a subcomplex CF™(Y,s) = CF*(Y,s){; <oy consisting of elements of
filtration level less than 0, and the corresponding homology group H F~ (Y, s) inherits
an H,(Y)/ Torsion action. Thus there are groups HF (Y, s), and HF (Y, s), and
homomorphisms induced by inclusion: HF (Y, s)x — HF*(Y,s)s, where x = b
or t. These top and bottom complexes were first defined in [29]. One useful reference
is [33]. Since then a general theory has been developed in [18]. Using these
complexes, invariants can be defined as follows.

Definition 2.1. The top and bottom d -invariants of the pair (¥, s), denoted dy(Y, s)
and d,(Y, s), are defined by the property that (d«(Y,s) — 2) is the maximal grading
among all elements in HF (Y, 5) that map nontrivially into HF*°(Y, s)«, where
* =bort.

The analysis of the restriction map H?(X) — H?(Y) in the next section
determines the Spin® structures on Y whose d-invariants we must compute
(to ultimately obstruct the existence of X). To enumerate these Spin® structures,
we will use the following notation.

Definition 2.2. Suppose g is a positive integer. Define §, to be the set of numbers

—(g-1/2,—(g-1)/24+1,...,(q—1)/2.

So, forexample, §5 ={—2,—1,0, 1,2} and §¢={-5/2,-3/2,—-1/2,1/2,3/2,5/2}.
The following theorem is a restatement of a Theorem 4.2, proved in Section 4. Itis a
consequence of the fact that X = C P2 — Int(N(C)) is negative semi-definite with
either orientation, together with the fact that the d -invariants of the boundary of such
a four-manifold are bounded by a function determined by its intersection form.

Theorem 2.3. Suppose that C is a cuspidal curve in C P? with Y = ON(C). Then
there is an enumeration of torsion Spin® structures on Y, {sp,}, by integers in the
range [:‘i;—‘HJ <m< L%J With respect to this enumeration, for all k € 84,

the following inequalities are satisfied.

do(Y,54%) > —8&
and d(Y,5qx) < g

In order to compute the invariants dy,(Y,s) and d,(Y,s) we need to understand
the geometry of Y. Perhaps the most elegant description of Y is as a graph manifold
obtained by splicing the circle bundle over the surface of genus g(C) with Euler
number d? to the complements of the links of the singularities of C. For the
purposes of computing its Floer homology, however, it is more useful to have a
description of ¥ as obtained by d? surgery on a knot K¢ in Y, := #2¢ ST x §2.
We provide such a description in Theorem 3.1. Indeed, K¢ can be described as the
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connected sum B#K #K>#---#K,,, where B C Y, is a simple knot which depends
only on the genus of C, and K; C S3,i = 1,...,n are the links of the singular
points of C.

2.2, Computing d -invariants. Let K be a null-homologous knot in a three-mani-
fold M and let My (K) denote the manifold constructed by k surgery on K. For each
Spin¢ structure s, the complex CF*° (M (K), s) is determined by a Z & Z-filtered
chain complex CFK*(M, K, t) called the knot Floer homology chain complex,
associated to K and some Spin® structure t on M. In general, the “surgery formula”
relating the knot Floer complex to the complexes of the surgered manifolds can be
rather complicated. For the manifolds arising in this article, however, it will simplify
considerably due to the fact that the surgery coeflicient is large with respect to the
genus of the knot. Indeed, for our purposes it will suffice to understand the homology
of subcomplexes of a single doubly filtered chain complex CFK* (Y., K¢, 50)
associated to K¢ and the unique Spin® structure on #2¢ S! x S? having trivial first
Chern class.

A key to efficiently understanding this latter complex is that the knots K; that
occur as links of singularities are so-called L-space knots. For such knots the
complexes CFK>(S3, K;) are determined by the Alexander polynomials, Ak, (¢).
Moreover, knot Floer complexes obey a Kiinneth principle under connected sums:
CFK*®(M#N, K#J) ~ CFK*(M, K)QCFK*(N, J); see[30, Section 7]. Using
this, and the relation (Yag, K¢) = (Yag, B)#(S3, K1)#---#(S3, K,,) established in
Theorem 3.1 below, we have

CFK®(Yay.Kc) ~ CFK® (Y2, B) ®"_, CFK®(S?, K;),

and CFK®(Y2g, B) has been fully described [30, Proposition 9.2]. Making
the connections between these complexes, the Alexander polynomials, and the
d-invariants, leads to the following result. Details are presented in Section 6.

Theorem 2.4. There exist invariants y,, determined by the Alexander polynomi-
d?-1

als Ak, (t) with the following property. If L#J <m < |“5—], then
(g —2m)* —gq
dp(Y,sm) = A + g —2 max {Ymta—p +a}
q a,b>0
atb=g
and
(g —2m)* —¢q .
di (Y, 5m) = 1 +g—2 min {ymtq—b +a}.
q a,b>0

atb=g

The Alexander polynomial of an algebraic knot can be interpreted in terms of
the semigroup of the associated singularity. Transferring this interpretation to the
invariants y,, and combining it with Theorem 2.3 and some algebraic manipulation
yields Theorem 1.
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3. Properties of a neighborhood of C, its boundary, and its complement

We continue to let N(C) denote a closed regular neighborhood of C. Let ¥ =
dN(C), a closed oriented three-manifold. The complement of Int(N(C)) in C P2 is
a smooth four-manifold X with boundary —Y . In this section we provide a surgery
description of Y and homological properties of the pair (X, —Y).

3.1. A geometric description of N(C) and Y. To describe N(C), we begin with
a surface of genus g having a single boundary component. We denote this surface
by Fg. The product Fy x D? has boundary #2¢ S! x §2. Contained in its boundary
is the knot B = dF, x {0}. Notice that B is null homologous in #*¢ §' x §2.

Theorem 3.1. If a cuspidal curve C of degree d has singular points with links K;,
then N(C) is built by adding a two handle to Fg x D? along the knot B #; K; with
framing d?. In particular, IN(C) =Y is built from #*¢ S x S? by performing d?
surgery on B #; K;.

Proof. The neighborhood N(C) is constructed in steps as follows. Let D; denote
a ball neighborhood of the singular point z;. Joining D, to each D;, i > 1 with
a one-handle, each a tubular neighborhood of an arc on C, yields a four-ball D.
The boundary of D is a three-sphere S with § N C = #; K;. The complementary
region C — D is diffeomorphic to the surface Fy with neighborhood D’ = F, x D?
having the knot B in its boundary. Thus, we have N(C) = D U D’, with the union
identifying a neighborhood of #; K; with a neighborhood of B.

The union D U D’ can be formed in two steps. First, neighborhoods of a point
on#; K; and a pointon B are identified. Since D is a ball, this produces a manifold D"
diffeomorphic to D’. The union of the two knots becomes B#; K;. The remainder
of the identification is completed by adding a 2-handle to D" along B#; K;. The
framing is d 2, that is, the self-intersection of C. O

Corollary 3.2. H,(Y) = Z ;2 & Z*¢ and H,(Y) = 7°8. O

3.2. Thecomplement X = CP*—Int(N(C)). The following theorem summarizes
elementary homological calculations.

Theorem 3.3.

(1) Hi(X) = Zg4 and Hy(X) = Z?8.

(2) The image of the map Tors(H?(X)) — H?(Y) is isomorphic to Z.g C 7 4>.
(3) The map H?*(X)/ Torsion — H?(Y )/ Torsion is an isomorphism.

(4) Tmage(H?(C P?) — H?(X)) = Tors(H?(X)).

(5) The intersection form on H,(X) is identically 0.
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Proof. The map Z =~ H»(C) — H,(CP?) = Z is given by multiplication by d.
Using this, the long exact sequence of the pair (CP?,C) and excision yields
H{(X,Y)=0, Hy(X,Y) = Z, ® Z?8 and H3(X,Y) = 0.
Applying Poincaré duality and the universal coefficient theorem yields: H;(X) =
Zg, Hy(X) = Z?¢, and H3(X) = 0. In particular, we have part (1) of the theorem.
The long exact sequence of the pair (X, Y') includes the exact sequence

J bl
— H3y(X.Y) 2> Hy(Y) —> Hy(X) —2> Hy(X.Y) —>
2 H(7) e () 2 B (X, T) 0

which can be written as
%) ) 2) d> t
02 S TR 52,675 32,878 55 Ey— 0,
We next observe that the map d, must be nonzero on the Z; summand. If not,
there would be an exact sequence

2?8 5 7. ® L% - Zy — 0.

Clearly this is impossible: the image of the initial Z2¢ would have to be of rank 2g.
This implies that no element in the image of Z?¢ is torsion. The quotient would then
contain elements of order d2. It immediately follows that the map p» is the 0 map.

Observe also that ¢; must be nontrivial on the Z ;2 summand: there is no element
in Zg @ 728 that 9, could map to an element of order 2. Given an element of
infinite order in Z ;> @ Z?¢, by adding an element from Z 4> to it we can assume it
is in the kernel of ¢, and thus in the image of d5.

By duality, the map H?(X) — H?(Y) corresponds to the map d5: Z g ® Z*¢ —
7,42 ® 7.*8 , which we have now seen is nontrivial on torsion and injective on the free
summand. Statements (2) and (3) follow quickly.

To prove (4), we consider a portion of the long exact sequence for the pair
(CP2, X}

H2(CP?) 2 H2(X) > H3(CPYX).
We have H2(CP?) = Z and H*(X) = H,(X.,Y) = Z4 ® Z?8. For the last
term we have by excision and Lefschetz duality, H3(CP2,X) = H3(N(C),Y) =
H,(N(C)) = H,(C) = Z?%. Thus, our sequence becomes

7% 7, 07% 3 72

Clearly v, vanishes on the Z; summand, so this summand must be contained in the
image of vy. Since the domain of v; is of rank one, the Z; summand is precisely the
image of v;. The proof of (4) is complete.

For statement (5), we recall that the intersection form on H>(X) is given by
a composition H,(X) — H>(X.Y) — H?*(X) — Hom(H,(X).Z). But the
map H,(X) — H,(X,Y) (previously called p,) has already been shown to equal
zero. O
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4. Bounds on the d -invariant

Bounds on the d-invariants of ¥ depend on the relationship between Spin® structures
on Y and those on the complementary space X. We begin with an examination of
this relationship and then apply results of [29] to attain our desired bounds on the
d-invariants.

4.1. Spin® structures on X and Y.

Theorem 4.1. If C is a curve of degree d and X = CP? —Int(N(C)), then the
torsion Spin® structure s,, on 0X extends to X if m = kd for k € 8;. Here sy,

is the Spin® structure on 0X which extends to a structure t, on N(C) satisfying
(c1(tm),[C]) + d? = 2m.

Proof. This result is proved in [5] in the case that C is rational. Here is an outline of
the argument, identifying why it generalizes to the nonrational case.

There is a Spin® structure t on C P? having ¢ (t) the generator of H?2(C P?).
Denote its restriction to X by t'. By Theorem 3.3, ¢ (t') is a torsion class in H?(X)
mapping to an element of order  in H?(Y'). (In the rational case, H?(Y') is torsion,
so the work of Theorem 3.3 was not required.)

We have seen that H?(X) = Z?*% @ Z4. Since this cohomology group acts
effectively on the set of Spin® structures, the orbit of t’ under the action of the torsion
in H?(X) is a set of Spin® structures on X with d elements, all that restrict to give
torsion Spin® structures on Y. The map Tors(H?(X)) — H?(Y) is injective, so
these structures are distinct.

The enumeration of Spin® structures as the s,, is described in more detail in [5].

O

4.2. Bounds. The following result provides bounds on the bottom and top d -invariants.

Theorem 4.2. If the complex curve C has degree d and topological genus g, then
fork € 84,

dv(Y,541) > —g
and di(Y,s4x) < g

Proof. This is an application of [29, Proposition 9.15], which says that if W is
a negative semi-definite four-manifold for which the restriction map H'(W) —
H'(0W) is trivial, then we have the inequality:

c1(s)? + by (W) < 4dy(0W, s

aw) + 261 (W),

where b5 (W) is the dimension of the maximal subspace of H(W') on which the
intersection form is non-degenerate and b (dW) is the rank of the first cohomology.
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We apply this proposition to —X. The restriction map H'(—=X) — H(Y) is
trivial since H'(X) = 0 and, just as for X, the intersection form on —X is zero.
Hence —X is negative semi-definite. Now triviality of the intersection form implies
by (—X) = 0and ¢;(s5)*> = 0 for any s € Spin®(—X). Note that ¢ (s)? is defined by
lifting a multiple of ¢;(s) € H*(—X) to H*>(—X,Y) where the intersection form is
defined. Such a lift exists only when ¢ (s|y) is torsion, but the Spin® structures we
consider on Y all satisfy this assumption. Thus the left hand side of the inequality is
zero for all s € Spin®(—X). Since by (Y) = 2g, the inequality becomes:

0 < 4dy (Y, sly) + 2(2¢).

This says that d, (Y, s) > —g for any Spin® structure on Y that extends to —X. But
Theorem 4.1 determined exactly which Spin® structures on Y extend: they are those
of the form s4; where k € &§,. This proves the first inequality of the theorem.
To prove the second inequality, we apply the same analysis to the pair (X, —Y),
arriving at
dp(—Y,s) = —g.

Now it suffices to show that d,(—Y,s) = —d,(Y,s). But this follows easily
by observing that the filtration and grading reversing duality isomorphism [32,
Proposition 2.5]:

CF®(—Y,s5) ~ (CF*®(Y,s))*

is compatible with the H{(Y )/ Torsion action, in the sense that if y € H; acts
on CF*(Y) by the chain endomorphism a,, then y acts on CF*(-Y) by the
adjoint a;. Thus the kernel of the H; action on HF*(-Y) is identified, by a
filtration and grading reversing isomorphism, with the cokernel of the action on
HF(Y,s). The stated relationship between d}, and d, follows immediately. O

5. The Heegaard Floer homology of V>, = #2851 x §2

Given that Y is built as surgery on a knot in Y5, we begin by reviewing the structure
of the complex CF*°(Y,¢). In particular, in this section we describe an explicit
basis for this complex and its homology, and describe the H;(Y>g)/ Torsion module
structure in terms of this basis. We then describe the “top” and “bottom” Floer
homology groups. This description will be used in the next section in conjunction
with the knot Floer homology filtration of K¢ to compute the Floer homology of Y.

5.1. Case of Yy. For Y; = S! x §2 and Spin® structure so with first Chern class
c1(s9) = 0, we have CF*®(Y;,s0) ~ F[U, U] @ F[U, U '], where the element 1
has grading 1/2 in the first summand and —1/2 in the second. The boundary operator
on the complex is trivial, and thus we can identify CF*°(Y;) with HF*(Y)).
Let x* € H;(S' x §?) 2 Z be a generator. Then x* acts F[U, U ~!]-equivariantly
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on HF*(Y7), taking the element 1 in the first F[U, U '] to the element 1 in the
second. Thus we can identify

CF™®(Y1) ~ A*(H' (1) ® FU, U],

where classes in H;(Y7)/ Torsion act, via the duality pairing between H;/ Torsion
and H', on elements in the exterior algebra A*(H'(Y7)).

5.2. From Y; to Y,. There is a Kiinneth principle for the Floer homology of
connected sums of three-manifolds [32, Theorem 6.2], stating that:

CF®(M#N, sptsy) ~ CF®(M,sy) Qpp.y—1] CFX(N, s). (5.1)

This homotopy equivalence respects the A*(H;/ Torsion) module structure, in the
following sense: there is a natural isomorphism

Hi(M#N) =~ H{(M) & H\(N)

with whichaclassy € H;(M#N) can be identified with yps @ yny € H1(M)D H,(N).
Then y acts on CF®(M#N) as yy ® Idy +1dps ®yn under the homotopy
equivalence (5.1).

Using this, together with our description of the Floer homology of ¥; above,
allows us to conclude that

CF®(Y,) ~ A*(H'(Y,)) @ F[U, U]

as A*(H,/ Torsion) ® F[U, U~ ']-modules, where H;/ Torsion classes act by the
duality pairing, as above.

5.3. A useful change of basis for Y,. While the module structure on CF*°(Yy)
is completely described above, it will be useful to have an alternate description for
CF*°(Y2¢) which will be compatible with the filtration of CF*°(Y>,) induced by
the knot B and, ultimately, K¢. Our description is determined by a change of basis
for the Heegaard Floer homology of Y, = Y;#Y;, and the Kiinneth principle above.
Thus we begin with Y,. Denote the generators of the first cohomology of the two
connect summands of Y, = Y #Y; by x and y. Thus, A* H'(Y;) has basis

{1,x,y,x Ay}

We denote the hom-dual generators of H;(Y>) as x*, y*. We have the following
alternative description [30, Theorem 9.3] of the action of H;(Y>) on the chain
complex; recall that the action of H;(Y>) commutes with the action of U. We will
call the complex equipped with this action the knot adapted complex.
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Theorem 5.1. CF®(Y;.50) =~ A*H 1 (Y2)®QF[U. U] as a module over F{U, U 1].
The rational gradings of 1, x, y,and x Ny are —1,0,0, and 1, respectively. All these
elements are at filtration level 0. The ¥[U, U ~']-equivariant action of H(Y2) on
CF®(Y,,80) is given by:

s xTxAy)=y
e x*(x)=14U(xAYy)
* x*(y)=0
« x*(1) = Uy.
The action of y* is analogous; see Figure 1 for a graphical presentation of the action

of x*.

Proof. As a graded module over F[U,U™!], the above description is clearly
isomorphic to our previous description. To obtain the non-standard (i.e. not induced
by the hom-pairing) action of H;/ Torsion, we perform the (equivariant, filtered)
change of basis

l->14+UxAy, x—x, y—=>)y, XAYy—=>XAY. [

Utany) (U ‘2(1)
\

Y
TN

/ \
1 xAy (G
\

o
P

=1 uxay) (1

k’ Uy v—)
/’ Ux 1
-3 Ux A y) ’ U(l) )
A
)
—3 —2 —1 0 1 2

Figure 1. The action of x* on the CF°°(Y>, s0). The horizontal coordinate shows the filtration
level, the vertical coordinate shows the grading.
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Remark 5.2. Recall that the action of U lowers filtration levels by one and gradings
by two. Thus, the grading of U?(x A y)is 1 —2i. The gradings of U'x and U'y
are —2i. The grading of U’ (1) is —1 — 2i.

5.4. Caseof Y2g. Applying the Kiinneth principle to the knot adapted complex gives
rise to a model for CF*°(Y,,) which we will use throughout the article. In terms
of this complex, we will now compute the “bottom™ and “top” knot Floer homology
groups. That is, we will find all possible chains in the knot adapted complex which
are homologous to generators for these groups (both of which are a priori isomorphic
to F[U, U 1]). First, we recall the following definition.

Definition 5.3. Suppose an abelian group G acts on a second abelian group H; that
is, there is a homomorphism G — Hom(H, H). We define Hypoom to be the kernel
of the action; that is, all elements # € H such that g(h) = O forall g € G. We
define H,,, to be the cokernel of the action; that is, the quotient of H by the subgroup
generated by elements of the form g (/) for some g € G and h € H. Usually we will
abbreviate “bottom™ and “top” by “b” and “t,” respectively.

We establish some notation for elements in the complex CF*° (Y5 ):

Definition 5.4. Denote the generators of H'(Y2,) = H'(#5 Y>) in their natural
order by {x, y1,Xx2,....Yg}, and let w; = x; A y;. Let A denote the set of subsets
of {1,2,...,g}. Foreacha € A we set wy, = Ajeqw;. For o € A we let n(x)
denote the number of elements in .

Theorem 5.5. CF® (Y4, 5¢) is isomorphic to the F[U, U] module A* H' (Y25) ®
F[U, U™]. The bottom homology is given by

HF*®(Y2g,50) = F[U, U‘1]|: > U"(“’—gwa].

aeA

Furthermore, the top homology HF®(Yag,50) is generated by any of the
UM O=8y,. and any two such UM ® 8wy are equivalent in the quotient. These
elements are all of grading level g.

In this statement, the brackets around the summation indicate the homology class
represented by the cycle.

Proof. For Y,, the statement is easily verified from our description of the knot
adapted complex given in Theorem 5.1. The general case follows immediately from
the Kiinneth principle for connected sums. O

Example 5.6. The group HF,>°(Y4, s0) is generated over F[U, U '] by

(XL AVIAX2AY2) + U (xp Ay) + U (x2 A ya) + U3(1).
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The group HF°(Ya,, 50) is generated over F[U, U] by either
(X1t Ayi AxaAya), UM (xi A1), U (xa Aya) or UT3(D),

which are equal in the quotient group.

6. Knot Floer homology and d -invariants of surgery

6.1. Description of CFK*°(Y3¢, B). A null homologous knot in a three-manifold
M induces a second filtration on CF*°(M, s¢), called the knot filtration or Alexander
filtration. In our case we have the doubly filtered complex CFK*° (Y24, B, s¢). This
complex was computed in [30] and is described as follows:
(1) As a graded, Zfiltered chain complex CFK*(Y2g., B,s¢) = CF* (Y24, 50).
(2) The knot filtration of an element U' - ¢, with ¢ € Ak(Hl(ng)) is given by
—g+k—i.
(3) The H,(Y)/ Torsion action is given as in the knot adapted complex.
The following is immediate.
Theorem 6.1. [fwy is a product of distinct w; (according to our labeling convention
from Definition 5.4) then w,U8™® ¢ CFK®(Ya,. B.so) has bifiltration level
(g —n(a),n(a)), where the value of the second coordinate, n(«), represents the knot
filtration level.

6.2. Homology of (Y24, B#K). Given a knot K C S3, we can form the knot
B#K C Y»,. We will denote this knot by K¢, since the case of primary interest will
be that arising from a cuspidal curve, whereby K is given as the connected sum of the
links of the singular points. Much of what we say here, however, applies to a general
knot in S3. Like the Heegaard Floer complexes of closed three-manifolds, the knot
Floer complexes behave naturally with respect to connected sums, see [30, Section 7].
We have the following.
Theorem 6.2. CFK*(Y2,.Kc.50) =~ CFK®(K) ® CFK*®(Y24, B.5¢), where
the bifiltration is additive under tensors. Moreover, under this equivalence, a class
y € Hi(Yag) acts on the knot complex of K¢ by Id ® ay, where ay is the action of y
on the complex for B.

Recall that H,(CFK*®(K)) = F[U,U~']. From the previous theorem along
with Theorem 5.5 we have the following.

Theorem 6.3.

(a) We have HFK® (Y24, Kc,50)y = F[U, U~Y. Furthermore the generators of
grading g are represented by sums

Z dy ® U"(“)_gwa,
aEA

where the ay are arbitrary cycles of grading 0 in CFK®°(K), each representing
a generator of HFK*°(K).
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(b) Similarly, HFK®(Yag, K¢, 50) = F[U, U1, where generators of grading g
are represented by elements of the form

gy @ UM @&y .

Here aq is an arbitrary cycle of grading 0 in CFK®(K) representing a
generator of HFK®°(K).

6.3. Computing d -invariants of d 2-surgery on (Y24, Kc). We consider d? sur-
gery on K¢ in Yzg. The resulting manifold, Y,, 42(Kc¢), has Hy(Y,, 42(K¢)) =
728 @ Z 4. There are thus d? torsion Spin® structures on Yyq.42(Kc); these
come with a natural enumeration by integers m, {S;}_42/2<m<q2/2- as given in [30,
Section 3.4] and described below. We now present a surgery formula describing the
Heegaard Floer homology of these surgered manifolds in terms of the knot Floer
complex of K¢.
Recall, for a manifold M with Spin® structure s we define

CF (M,s) = CFOO(M,S){,'<()},

the elements of filtration level less than 0. The homology of this complex is denoted
HF~(M,s). There is a natural map HF~(M,s) — HF*(M,s).

Theorem 6.4 (see [30, Section 4]). For d?> > 2g(K) + 2g — 1 and for —d?/2 <
m < d?/2, there is an isomorphism of pairs of F[U] modules,

(CF®(Yag.q2(KC) 5m), CF~ (Yag 42 (KC).5m))
= (CFK®(Yag, Kc.50). CFK®(Yag. K. 50) (i <0,j <my)[5].

The grading shift [s] is given by

_ Zm n)? —n
N 4n '

If a class is at bi-filtration level (i, j) in CFK* (Y24, Kc.50) then it represents a
class at filtration level max (i, j —m) in CFK*(Y,, 42(Kc), $m).

Remark 6.5. In [30, Remark 4.3] the bound given would be presented as d? >
2¢(Kc) — 1. We used here the fact that g(K¢) = g(K) + g. Notice that for
the knots we are considering, g(K) + g = (d—_—l)z(d—_z). Thus, the inequality d? >
2g(K) +2g — 1 becomes d? > (d — 1)(d — 2) — 1, which holds for all d > 1.
Let € — D be a map of graded F[U] modules. We denote by y(€, D) the
maximal grading of an element in € that maps nontrivially to O, if defined.

Our principal example is the following. For a manifold M with Spin® structure s,
there is a natural map HF~(M,s) - HF*(M,s).
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Definition 6.6. For M a rational homology sphere and s a Spin® structure, we define
d(M,s) =y(HF (M,s), HF>*(M,s)) + 2.
Remark 6.7. The d-invariant is often defined in terms of HF1t(M,s). The
equivalence with our definition is elementary.

For general M, a similar definition applies to define bottom and top d -invariants.

Definition 6.8. For general M and s a torsion Spin® structure, we define

dv(M,s) = y(HF~(M,s),, HF™(M,s),) + 2
and di(M,s) = y(HF~(M,s)., HF*®(M,s),) + 2.

Note that while our definition makes sense for any manifold, it is not as clear what
the geometric meaning of ¢, and d}, are when the three-manifold has non-trivial triple
cup products.

For any knot K for which C FK*°(K) is well understood, Theorem 6.4 provides
sufficient information to compute dy,(Y,, 42(Kc)) and di(Y,, 42(Kc)). The result
is best described in terms of an auxiliary function.

Definition 6.9. Let 7 be a set of ordered pairs of integers. For any integer m we
define

7)= min (max{i, ] —m}).
Ym(T) (z',j)efi'( {i,j —m})

In brief, v, measures the minimum diagonal distance from an element in 7 to the

lower left quadrant with top right vertex (0, m). The following result is essentially a
corollary of Theorem 6.4.

Theorem 6.10. For the complex € = CFK™®(K), let T(€) be the set of all
filtrations levels (ordered pairs) of cycles of grading O that represent generators of
HFK>(K). For large surgery,

d(SHK),5m) = —2ym(T(€)) + (2m —n)> —n)/4n.

Example 6.11.

(a) If K is a negative trefoil, then 7 = {(1,1)}; if K is a positive trefoil, then
T ={(1,0), (0, I)}.

(b) More generally, suppose that K is a positive L—space knot. Then the complex
CFK®(K) is what is called a staircase complex, generated by so-called type A
elements of grading 0 and type B elements of grading one. The set 7 is the set
of all type A vertices of the staircase complex of K. Details are presented, for
instance, in [5].

(¢) If K is a connected sum of L-space knots Kj,..., K, and 77,..., T, are the
corresponding sets 7; = 7 (CFK®(K;)), then 7 is a set of sums 7y + - -+ + 1,
where t; € J;; see also [5].

Items (b) and (c) of the above example are the most important in our applications.
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To state the corresponding result for the bottom and top d -invariants, we introduce
additional notation. For a set 7 of ordered pairs of integers, we let 7 {a, b} be the
same set shifted by (a, b). Applying Theorem 6.3 we have the following.

Theorem 6.12. For the complex € = CFK®(K), let T(€) be the set of all
filtrations levels (ordered pairs) of cycles of grading 0 that represent generators of
HFK®(K). Let n be a large integer.

(1) dy(Y2g,n(Kc).5m) = =2 max {ym(T (€)ia. b})j + g + .
a+b=g
(2) di(Yagn(Kc), 8m) = —2 min {ym(T (€)a,b}} + g+,
a+b=g
where s = ((2m —n)* —n)/4n.
An elementary calculation restates Theorem 6.12 in somewhat simpler terms,
using the same notation as in Theorem 6.12.
Theorem 6.13. For the complex € = CFK*(K),
(1) db(Y2g,n(KC)s5m) =-2 an}f;xo {Vm—b+a(7(€)) ot a} + g+,
at+b=g
(2) di(Yagn(Kc),5m) = =2 Jnin Wm-b+a(T(€)) +a} + g +35,
a+b=g
where s = ((2m —n)? —n)/4n.
Combining Theorems 4.2 and 6.13, we have the following.

Theorem 6.14. If C is a cuspidal curve of degree d, genus g, then for all k € 8,4,
gnd € = CFK™®(K),;

do (Yo a2(Kc),5ka) = =2 max {yra—p+a(T(€)) +a}+g+5>—g

a,b>0
at+b=g
and
d(Yyq.42(Kc). 5ka) = —2 min {Yka-p+a(T(E)) +a} +g+s5s=g,
a%E;g
where s = W and K is the connected sum of the links of the singularities
of C.

7. Semigroups, Alexander polynomials, and the d -invariant

The computation of the obstructions to a set of knots occurring as the links of
singularities has been reduced to computing y,, (C FK°(K)) for particular knots K.
We will now summarize an interpretation of the value of y,, (K) in terms of classical
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invariants of the singular points and in terms of the Alexander polynomial of K.
The material is presented in greater detail in [5]; further references include [16]
for a discussion of the Heegaard Floer theory and [38] for the relationship between
semigroups and Alexander polynomials.

7.1. Semigroup of a singular point. Suppose that z is a cuspidal singular point
of a curve C and B is a sufficiently small ball around z. There exists a local
parameterization v of C; that is, a holomorphic map ¥ (t) = (x(¢), y(¢#)) mapping
a neighborhood of 0 € C bijectively to a neighborhood of z € C, with ¥ (0) = z.
For any holomorphic function F(x, y) defined near z we define the order of the zero
of F at z to be the order of the zero of the analytic map t — F(x(¢), y(t)) € C at 0.
Let S be the set integers which can be realized as the order for some F. Then §
is clearly a semigroup of Z>o, which we call the semigroup of the singular point.
The gap sequence, G := Zsq \ S, has precisely /2 elements; the largest is . — 1,
where p is the Milnor number.

The following two lemmas appear in Lemma 2.4 and a subsequent discussion
in [5]. Further detail can be found in [38].

Lemma 7.1. The Alexander polynomial of the link of a singular point can be written
as Axg(t) =14+ @ —-1) Z’j-:l 18/, where g1, ..., gy is the gap sequence of the
semigroup of the singular point. In particular k = #G = /2 = gx (K).

If one expands the Alexander polynomial further, the following arises.

Lemma 7.2. If K is the link of an isolated singularity of a curve C and Ak (1) is

expanded as
n—2

Ag(t) =1+ —Dg(K)+(t—1)>Y kjt/,
=0

thenk; =#m > j:m ¢ S}.
Example 7.3. Consider the knot 7'(4, 7). Its Alexander polynomial is

(1> =1t = 1)
3 =17 -1

it S T O 13 1417 I8
=1+@¢-D+2+2+02+1 4+ +10 417 1Y)
=14+90¢ -1+ —D*9+8 + 7% + 617 + 6%
+ 56° 4 4¢5 + 4¢7 4 418 + 317 + 2610 4 241
+2[12+l‘13+114+[15+[16).

The semigroup is (0,4.7,8,11,12,14,15,16,18,19,20,21,22,23,...). The gap
sequence is 1,2,3,5,6,9,10,13,17.
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Definition 7.4. For any finite increasing sequence of positive integers G, we define
Ig(m) =#k € G UZ<o: k = m}, (7.1)

where 7 - is the set of the negative integers. We call /g the gap function, because
in most applications G will be a gap sequence, that is the complement of some
semigroup.

Notice that k,, = Ig(m + 1), where k,, is defined in Lemma 7.2.

7.2. Expressing y,,(K) in terms of the semigroup. We now wish to restate
Theorem 6.14 in terms of the coefficients of the Alexander polynomial, properly
expanded. For the gap sequence for the knot K;, denoted G, let

Ik, (s) =#lk > 5:k € Gk; U Z<o}.

Earlier we defined for a Heegaard Floer complex € = CFK®(K) the set of
integer pairs 7 (€) of filtration levels of cycles in € which represent generators of
HFK®(K). By definition we have y, (7 (€)) = ming, jyeg (max{i, j —m}). We
have already seen that computing y,, is the main step in computing d-invariants of
manifolds built by surgery on K (or by surgery on K# B C Y,,). We have the
following results.

Theorem 7.5 ([4, Proposition 4.6]). If the knot K is the link of a singularity on a
cuspidal curve, then Yy, (K) = Ig,(m + h), where Gk is the gap sequence of K
and h is its genus.

For two functions 7, I': Z, — 7 bounded below we define the following operation:

Fol'(s)= mi%{l(m) + I'(s —m)}. (7.2)

Theorem 7.6 ([4, Theorem 5.6]). For K = #K; with the K; the links of the
singularities on a cuspidal curve, we have vy, (CFK*(K)) = I(m + h), where
[ =1,¢---¢1I,, and h is the genus of K.

7.3. Proof of Theorem 1. We need some preliminaries. For a semigroup S C Zxg
we introduce another function.

R(m) =#{SN[0,m)}. (7.3)

The function R is closely related to /(m) defined above, in fact in [5, Lemma 6.2] it
is proved that

R(m) =m —h + I(m),

where h = #(Z>o \ S). If S is a semigroup of a (unibranched) singular point, then A
is the genus of the link of the singularity.
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Given two semigroups S and S, we can consider two gap sequences G, G,
and the corresponding gap functions /; and /5. Then

R10R2=m—h+11<>12,

where h = #(Zso \ S1) + #(Z>0 \ S2).

The proof of Theorem 1 is now a direct application of the above results. By
Theorem 3.1, the manifold Y is a surgery on B # K, where K is a connected sum
of the links of singular points of C. We use now Theorem 6.14 together with
Theorem 7.5 to see that for k € §; we have

max  {I(kd —b+a+h)+a)—> <g
a,b>0,a+b=g 2
5 (7.4)
' I(kd —b h e S (],
a,bzg?gib:g { ( Eials ) T a} 2~
where
2kd —d*)? —-d?> (d—-2k-1)d—-2k+1)
5§ = =
4d? 4
and h is the genus of the connected sum of links of singularities; that is
d—1)(d -2 d-3

Substituting a = g — b yields

d—-3
kd—b+a+h=(k+7)d—2b—l—l.

We write j = k + % and notice that k € 85 if and only if j = —1,..., d—2.
Then (7.4) takes the following form

Osl(jd—l—l—zb)—l—g—b—%fg, forallb =0,...,g.

Expressing s /2 in variables j and d yields (j_d+1)2(j—d+2). Now we replace / by R.
After straightforward simplifications, we obtain

=107 +2
0< R(d +1-2b)+b—Y )2” ) <
Note that the cases j = —1, 0 are excluded in the statement of our theorem, as they
contain no information.
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8. Examples

We will present here several applications of the results of the previous sections, along
with detailed computations. More substantial applications in algebraic geometry will
be presented in Section 9 and especially in Section 9.4.

8.1. A degree 21, genus one example. Consider the case of d = 21. If a degree d
curve is of genus one and has a single singularity of type (p, ¢), then one would have

d-Dd-=2) (p—Dg-1) _
5 2 N

1.

This simplifies to (p — 1)(g¢ — 1) = 378. There are eight relatively prime pairs
(p. q) that satisfy this equation: (2, 379), (3, 190), (4, 127), (7, 64), (8, 55), (10, 43),
(15,28), and (19, 22).

For each possibility, Theorem 1 provides 38 two-sided inequalities that must be
satisfied by the associated function R. (The value of j ranges from 1 to d — 2 and b
ranges from O to g = 1.) The first of these inequalities, with j = 1 and b = 0, is:

3 < R(22) < 4.

The semigroup generated by {2, 379} contains 11 elements in the interval [0, 22),
and thus R(22) = 11 does not satisfy this inequality. Similarly, the semigroup
generated by {3,190} contains eight elements in the interval [0,22), and thus
R(22) = 8 does not satisfy the inequality. The semigroup generated by {4, 127}
contains six elements in the interval [0, 22), and thus R(22) = 6 does not satisfy the
inequality.

In the next two cases, (7, 64) and (8, 55), all these inequalities are satisfied. In
Section 9 we will discuss the realization of these curves and place the example
d =21, (p,q) = (8,55) in a general sequence of realizable curves, related to the
fact that 8, 21, and 55 are the Fibonacci numbers ¢¢, ¢, and ¢ .

For the pair (10, 43), we need to consider a different value of j to find the first
obstruction. Here we let j = 2 and b = 0, giving the inequality

6 < R(43) <7.

The semigroup generated by (10, 43) contains five elements in the interval [0, 43), and
thus R(43) does not satisfy the inequality. Finally, we can rule out the possibilities
of (15,28) and (19, 22) by returning to the inequality 3 < R(22) < 4. In both cases,
R(22) = 2.

8.2. A degree seven, genus three example. As a second example, we consider
a singular curve of genus 3, showing that there is no degree seven curve with one
singular point, whose Puiseux pair is (4, 9).
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A generic curve of degree d = 7 has genus 15 and the (4, 9)-torus knot has
genus 12. Thus a degree seven curve with one singular point, whose Puiseux pair
is (4, 9) would have genus 3. Theorem | provides 20 two-sided inequalities; the value
of j is between 1 and 5 and the value of b is between 0 and 3. Of these inequalities,
exactly two provide obstructions. For j = 1, b = 0and j = 3, b = 3, we have the
constraints:

3 < R(8) <6,
7 < R(16) < 10.

The semigroup generated by {4, 9} has two element in [0, 8), so R(8) = 2 does
not satisfy the first inequality. This semigroup contains six elements in the interval
[0, 16) (these elements are {0,4,8,9, 12, 13}) and thus R(16) = 6 does not satisfy
the second inequality.

8.3. A degree nine, genus eight example. The obstructions given by Theorem 1
become weaker as the genus increases, necessarily so, since more singularity types
can be realized. We present here one more example, one in which the obstruction
remains effective despite the genus being large relative to d. We consider the case
of d = 9 and the curve having a singular point, whose Puiseux pair is (5, 11).

Since the generic genus of a degree nine curve is 28 and the (5, 11)-torus knot
has genus 20, a curve of degree nine and having one singular point whose Puiseux
pair is (5,11) would have genus eight. Thus, Theorem 1 provides 63 two-sided
inequalities, as j ranges from 1 to 7 and b ranges from 0 to 8. Precisely one of these
provides an obstruction. In the case j = 5,b = 8 we get inequalities

13 < R(30) < 21.

The semigroup generated by {5, 11} contains 12 elements in the interval [0, 30), and
thus the inequality is not satisfied.

8.4. A singularity 7(4,7) on a degree six curve. The singularity was discussed
briefly in Example 7.3. Since a generic degree six curve has genus 10 and the
(4, 7)-torus knot has genus nine, a degree six curve having one singular point, whose
Puiseux pairis (4, 7), is of genus one. There are eight constraints given by Theorem 1.
Two of these are

3<R(7) <4
and 5 < R(11) <6.

Since for (4,7), R(7) = 2 and R(11) = 4, these inequalities are violated.

This example is of special interest. We will see in Example 10.1 that another
important criterion, semicontinuity of the spectrum, is insufficient to obstruct this
case.
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9. Genus one curves with one singularity having one Puiseux pair

In the section we prove our classification result for genus one curves with a single
singular point with one Puiseux pair. The bulk of the work lies in the obstruction
of curves, for which we use Theorem 1 together with the multiplicity bound from
Section 9.3 below. For the sake of exposition, we introduce some (non-standard)
terminology. Throughout the section, we will call a curve C of type (p,q), if it
has precisely one singularity and that singularity has one Puiseux pair (p,q). Let
¢o, P1, ... be the sequence of Fibonacci numbers such that ¢9 = 0, ¢y = 1 and
bn+1 = ¢n + Pp—1. The main theorem of this section is the following.

Theorem 9.1. Suppose C C C P? is an algebraic curve of genus one, degree d, and

of type (p.q). Then either: (A)d = Pan, p = Pan—2, 4§ = Pan+2 for some n > 0;
or (B) the values of (p, ¢g) and d are on the following list.

(@) (p.q) =(2.,5),d =4

(d) (p.q) =(2,11),d =5;

(©) (p.q) = (3,10),d = 6;.

(d) (p,q) = (6,37).d = 15;.

() (p.q) = (9,64),d =24;.

) (p,q) =(10,73),d =27,

(8 (p.q) = (12,91),d =33,

(h) (p.q) = (p.9p+1),d =3pforp=2,...,10.

Remark 9.2. (a) Theorem 9.1 does not state that any of these cases can be
realized as an algebraic curve, nor does it state in how many ways each case can
be realized if some realization exists. In Proposition 9.14 and Proposition 9.15 we
clarify that cases (a)—(d) can be realized by an algebraic curve and that the main case
(pan—2, Pan+2) can be realized.

(b) All the special cases have degree at most 33.
We begin with the following simple result.
Proposition 9.3. If a degree d curve is of genus one and has one singularity with

one Puiseux pair (p,q), then (p — 1)(g — 1) = d(d — 3).

Proof. This is an immediate corollary of the genus formula, restating the condition
that (d — 1)(d —2)/2=(p—1)(g—1)/2 + 1. O

The rest of this section is devoted to proving Theorem 9.1.
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9.1. Preliminary bounds. Assuming that C satisfies the assumptions of Theo-
rem 9.1 and the d, p, and ¢ are as in the statement of that theorem, we begin by
developing some basic bounds.

Lemma94. Ifd > 5, then p <d —3andq > d + 3.

Proof. First observe that p < d — 1: since p <gand (p —1)(g — 1) = (d — 3)d,
it immediately follows that p — 1 < d — 2.
We now improve this to show that p < d — 2. By Theorem 1, setting j = 1 and
b =1, we find
2<R(d-1)=<3.

If p = d — 1, then 0O is the only element of the semigroup generated by p and ¢
that is in the interval [0, d — 1), in which case R(d — 1) = 1, giving a contradiction.
Finally, we consider the case that p = d — 2, which we writeas p — 1 = d — 3.
Clearlyg — 1 =d and g = d + 1. By Theorem 1, setting j = 2 and » = 1 we find

5<R2d-1)<e6.

The following integers are the first six elements in the semigroup generated by d — 2
and d + 1 in increasing order:

{0.d =2,d +1,2(d —=2).(d —=2) + (d + 1).2(d + 1)}
=1{0,d —2,d +1,2d —4,2d — 1,2d + 2}.

Thus, R(2d —1) < 4, withequality wheneverd > 5, giving the desired contradiction.
(If d = 4, then the element 3d — 6 would also be an element in the semigroup that
is less than 2d — 1.)

For the lower bound on ¢, we observe that the minimum value of ¢ would occur
if p = d — 3. Solving for q yields g = d + 2 + ﬁ. Since ¢ is an integer and
d > 4, it follows that ¢ > d + 3. O

We now place a stronger upper bound on p and a lower bound on q.

Lemma 9.5. Suppose C satisfies the conditions of Theorem 9.1. If d > 6, then
p<%dandq22d—1.

Proof. First observe that by Theorem 1 with j = l and b = 0,
3<Rd+1) =<4

If p > %d then there are at most two elements (0 and p) in the semigroup
generated by p and ¢ in the interval [0, d + 1), giving a contradiction.
_ 1 A=A =2)—2 vy .
If p = 5d, then one computes ¢ — | = ==—;=-—=—=, which is not an integer
since d > 4.
Given that p < %d , elementary algebra shows that ¢ > 2d — 1 — ﬁ. Since
d > 6 and q is an integer, ¢ > 2d — 1 as desired. (|
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For bounds in the reverse direction, we have the following lemma.
Lemma 9.6. Ifd > 8, then p > “3% and q < 3d + 16.

Proof. Again applying Theorem 1 with j = 1 and b = 1, we have

R(d —1) <3.
That is, at most two positive multiples of p are in the interval [0,d — 2]. Thus,
p > d;z as desired.
Simple algebra now yields that ¢ < 3d + 7+ 2% < 3d + 17. O

9.2. A Bogomolov—-Miyaoka-Yau based inequality. We begin with a summary
of a result of Orevkov [26] which is based on the Bogomolov—Miyaoka—Yau
inequality [23].

Associated to each singular point on a curve C there is an Orevkov M -number,
defined in full generality in [26]; we note here that in the case of singularities having
link a (p, g)-torus knot, that is, having a single Puiseux pair (p, ¢), the value is

M =p+q—Iq/p]-3.

We have the following consequence of the Bogomolov—Miyaoka—Yau inequal-
ity [23]; because the details are fairly technical, we delay presenting them until
Section 9.6.

Theorem 9.7. If C C CP? is a cuspidal curve of genus g > 0 and degree d with
singular points zy . . ., zy and corresponding M numbers M {, ..., M, then

n
> M; <3d+4g-5. 9.1)

i=1

Example 9.8. Theorem 1 does not prohibit the existence of a curve of degree 3p
(p =1,2,...) with genus I and a singularity (p; 9p + 1). One can indeed check that
this case satisfies (1.1) for all j. Nevertheless it does not satisfy (9.1) if p > 11. In
fact, wehave M = p+9p+1—-9—3 = 10p — 11 and theboundis M < 3d —1 =
9p — 1. This is satisfied only when p < 10.

9.3. The multiplicity bound. We will now prove a multiplicity bound similar to
one given by Orevkov in [26, Theorem A]. We restrict to the case of interest, g = 1
and one singular point, but with care the argument extends to arbitrary genus and
multiple singularities. In the case of a singular point with one Puiseux pair (p, q),
the multiplicity is the minimum of p and ¢ which, since we assume throughout
that p < ¢, is given by p.

Theorem 9.9. Suppose that C is a cuspidal curve of degree d, genus g = 1, and
with one singular point of multiplicity m. Thend < am + f3, where « = %(3 +4/5)
and g = % - % 5.
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Proof. By [6, Proposition 2.9] we have the Milnor number p and M number satisfy
nw < m(M —m + 2) (this is immediate for a singularity with one Puiseux pair).
Therefore, by the genus formula

(d —1)(d—-2)—2g <m(M —m +2).
Using the assumption that g = 1 and Theorem 9.7, it follows that
d?>—3d <mQ3d —1—m + 2).
This can be rewritten as
—3(1 +m)d + (m*>—m) <0.

Viewing this as a quadratic polynomial in d yields

2d <3(1 +m)+ \/9(1 +m)? — 4(m? = m).
This simplifies to

9

2d53+3m+\/§m\/1+—+——,
5m  5m?

which we can rewrite as

2d§3+(3+x/§)m+\/§m(\/1+£+i_1)

5m?

The proof is completed by showing that for m > 2,

m(\/1+22+ ’ 1) =
5m = 5m? 5

This is an elementary exercise in calculus, perhaps most easily solved for substituting
m = % to consider

\/1+%x+§x2—1

X

on the interval (0, %] The first derivative of this function is easily seen to be negative,
and L' Hopital’s rule determines the limit at O to be 1—51— O

9.4. Classification theorem. Theorem 9.1 will be deduced from the multiplicity
bound (Theorem 9.9) along with a technical result, Lemma 9.11, which follows the
proof of a sequence of simpler lemmas. Throughout the rest of this section we
assume C is a curve of degree d and genus one, with exactly one singular point, and
that singular point is of type (p, g). We remind the reader that p < g.
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We need to introduce some notation. Let ¢, ¢, . .. be the sequence of Fibonacci
numbers such that ¢p = 0, ¢; = 1 and ¢, +1 = ¢, + Pp—1. Most elementary texts
on number theory include the necessary background, for instance regarding such
facts as gcd(¢n, Pn+1) = 1 = ged(¢y, Ppn+2) as well as nonlinear relations, such as
Cassini’s Identity ¢n—1¢n+1—¢> = (—1)", and its generalization ¢y, P4, — P2 =
(_ l)n—r+1¢r2_

Our next step is to rule out some special cases of possible values of p.

Lemma 9.10. Suppose C is as in the assumptions of Theorem 9.1 and is not one of
the exceptional cases (p,q) = (2,5),(2,11), (3, 10), or (6,37). Then p # gﬁd
Jorall j > 0.

Proof. Suppose that p = (‘;’j’_ﬁd for some j. Since ¢hy;—1 is coprime to ¢ 4+1, we
J
see that d is an integer.
$2/ 41

Since (p — 1)(g — 1) = d(d — 3), we have

(¢2j—1d —2j+1)(q — 1) = dp2j41d(d —3).

The left hand side can be rewritten using the identity ¢2; 11 = 3¢2;—1 — ¢2j—3 to
give
[(d =3)p2j—1 + ¢2j-3](g — 1) = $2j41d(d - 3).

Taking these equalities modulo d and d — 3, respectively, we arrive at

$2j+1(g —1) = 0 mod d
and ¢2j-3(q —1) = 0 mod (d — 3).

Thus d divides ¢2j+1(q — 1), d — 3 divides ¢5;_3(¢ — 1) and so lem(d,d — 3)
divides lem(¢p2; 41, ¢2;-3)(¢ — 1). The value of lcm(d,d — 3) is either d(d — 3)
or d(d —3)/3, depending upon whether or not d is divisible by 3. In either case, we
have

d(d —3)|3¢2j—3p2+1(q — 1).

Since (p — 1)(g — 1) = d(d — 3), if follows that

(p—1)|3¢2j-3¢2j+1. (9.2)

Notice that in the case that d is not divisible by 3, we have the stronger constraint

(p—Dlp2j—3¢2j+1-

Denote x = ¢ and y = 4

b2/ 41
4’%;—1 + 1 = ¢2j-3¢2;+1, which follows from the basic identities satisfied by the
Fibonacci numbers. By (9.2) xy — 1 divides 3(x? + 1); that is, there exist ¢ > 0

such that

€ Z, so that xy = p. Notice that x> + 1 =

c(xy — 1) = 3x2 4 3.
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Taking both sides modulo x, we infer that ¢ = kx — 3 for some integer & > 0.
Substituting this, after simplifications we obtain

(ky —3)x = 3y + k. (9.3)

This equation has only a finite number of positive integral solutions, which we now
enumerate. First, if x = 1, then

=1+ 0
= =0
and the only solutions for the triple (x, y, k) are {(1, 2, 9), (1, 3,6), (1,4,5), (1,7, 4)}.
Similarly, the only solutions with y = 1 are {(2,1,9),(3,1,6),(4,1,5),(7,1,4)}. If

X > 2and y > 2, we write
x +
k= 3( > )
xy—1
An easy calculus exercise shows that on the domain {x > 2,y > 2} the maximum

of the right hand side is achieved at (2, 2), with value k = 4. For k = 1,2, 3, and 4,
one finds the only solutions for (x, y, k) are

{(4,13,1),(5.8,1),(8,5,1), (13,4, 1),(2,8,2).(8,2.2),
(2,3.3),(3,2,3).(1,7.4),(2.2,4), (7. 1,4)}.

Thus, the values of (x, y) to consider are

((1,2),(1,3), (1,4, (1,7),(2,2), (2,3), (2,8), (4, 13), (5,8))

and their symmetric pairs.

Recall that we have x = ¢ 1,y = qszﬁ’ and p = xy. The only possibilities
for x are x = 1,2, 5, and 13, in which case y = %. %, 1‘1—3, and 3‘14, respectively. The

possible pairs (x, y) are thus
{(1,2),(1,3),(1,4).,(1.7),(2,1),2,2),(2,3),(2,8), (5, 8), (13, 4)}.
An immediate calculation yields the following possibilities for (p, d):

((2,4),(3,6), (4,8), (7, 14), (2,5), (4, 10), (6, 15), (16, 40), (40, 104), (52, 136)}.

For most of these, the corresponding value of ¢ = 1 + d(d 13) is not an integer. The

values of (p, ¢, d) that can arise as integer triples are
{(2,5,4).(3,10,6), (2, 11,5), (6,37, 15)}. O

Lemma 9.11. Suppose C is as in the assumptions of Theorem 9.1 and is not one of

the exceptional cases. If d > ¢pp—1 +2and d > 6, then p < 2557:4; d
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Proof of Lemma 9.11. We proceed by induction over k. The base case, k = 1, is
that p < 1d, which is the statement of Lemma 9.5.
Notice that the sequence

$P2k—1

¢2k+1

ap =

is decreasing, converging to

3+2 75 So suppose we have already proved that p <
gg’,‘f}d for some k and assume that p > %:ld (by Lemma 9.10 we do not have to
consider the possibility that p = (‘g—;:i'l-d 1
Assume momentarily that

$ak—1
$ok-3
Then the number of the elements in the semigroup generated by p and ¢ in the
interval [0, ¢ox—d] is the number of lattice points in the triangle

q > d.

V4 q
+ <1l
bokrd ) brerd !

This is at most the number of the lattice points in the triangle

{(x.y) e Ry 0 x

| 1
T =1(x,y) eR2, : x += ¥ < 1§
{ 20 okt $2k—3 }

notice that since p > fﬁzt Ld and ¢ > 4’2’]: 22—l 4 we replaced the inequality < 1 with
the strict inequality < 1, essentlally deletxmI the hypothenuse of the triangle.
Counting lattice points in a polygon with lattice points as vertices can be done
using Pick’s theorem. In our situation, though, the triangle is especially simple so
we can use an elementary argument, which can be found for instance in [35, p. 64],

to conclude that the number of lattice points in 7" is

(Pok41 + D(Pak—3 + 1)
2

Finally, elementary properties of Fibonacci numbers permit us to rewrite this as

(h26—1 + D(d2x—1 +2)
2

R= — 1.

R = — L.

To summarize, under the assumptions that p > d’z" . d and g > gi’; 22k—1 d we have
that the number of elements in the semigroup generated by p and ¢ in the interval
[0, p2x—1d] is at most R. However, Theorem 1 with j = ¢ox—, and b = 0 states
that
(P21 + D(par—1 +2) _ {

5 =

0 < R(pak—1d + 1) —
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and in particular,

(P26—1 + D(P2k—1 +2)
5 .

Noting that R = R(¢ox—1d + 1) yields a contradiction. (We have used here that
d > ¢ox—1 + 2, since Theorem 1 requires that j < d —2.) Thus, (1.1) is not satisfied
for j = ¢pop—1 and b = 0.

With this contradiction, we can now conclude that under the assumption p >

R(pog—1d + 1) =

$2k—1 P2k—1
ot d we must have g < Sk
Recall that our induction hypothesis is that p < %d . That p is an integer
implies that
_ 1
< Pak—3 ; .
$2k—1 Pak—1

We can use these inequalities to conclude

(p—l)(q—l)s(¢2k‘3d 1 —1)(¢2k*1d_1).

Pk —1 k-1 hok—3
This can be written as

(p—l)(q—l)sdz—(¢2k_3 +¢2k—1 1

d+1-— + .
h2k—1 ¢2k—3) Gak—3  Pak—1

The term in parenthesis can be rewritten as

(9.4)

Pok—3 | Pak—1 _ P2k—3 | P2k—1 | Pakt1 Dokt
Pok—1  Pauk—3  Pauk—1 P2ak—3  Prk—1 Pak—1

Using the facts that ¢og 3+ ¢k 41 = 3ok —1 and ¢og_3dak+1—¢3,_, = 1, the first
and the third term yield 3, while the second and the last give —m so0 (9.4)
can be rewritten as o

| d 1
—1 —l)sdz—(3——)d—|—1— — . (9.5)
=B Pk 3Pk ok | P
which can be rewritten as
d d 1
—Dg-1)<d*-3d+—-—+—+1- + :
(p i Dok—102k—3 bok—3  Pak—1
Since (p — 1)(g — 1) = d? — 3d, this implies that
d d |
+ > (.

e g [ >
P2k —1P2k—3 Pok—3  Prk—1

This is equivalent to

d < ¢2k_3(¢2k_1 4 1).

Pak—1 — 1
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The conditions of the theorem include d > ¢,r—1 + 2, so this equality implies

bak—1 + 1)
Pok—1 — 1)

Clearing the denominator and writing ¢, 3 = Por—1 — Pox—» yields

Pof—1 +2 =< ¢2k—3(

(P2k—1 — D(P2x—1 + 2) = (P2k—1 — P2k—2) (P26—1 + 1).

Expanding, this becomes

G + bok—1 —2 < P3| + Pok—1 — Prk—20P2k—1 — Pak—2-

Finally, this can be rewritten as

Pok—202k—1 + P2k—2 < 2,

which is false for k > 1.
With this final contradiction we see that p < i—;{"i‘l—d must hold, so the induction
step is accomplished. ]

We shall need another result.

Lemma9.12. [fd > 6 and p +q > 3d, then p < %d,' equivalently, if p > %d then
p+q=3d.

Proof. Suppose that p + ¢ > 3d and 8p > 3d. The eight multiples ap with
a=0,...,7,are possibly in [0, 3d], but 8 p is not. The conditions imply that p + ag
is not in the interval for any @ > 0. It is possible that ¢ is in the interval, but 2¢ is
not, since in Lemma 9.5 we showed that ¢ > 2d — 1. This gives a maximum of 9
elements in S N [0, 3d], while (1.1) for j = 3 and & = 0 implies that there must be
at least 10. ]

Proof of Theorem 9.1. We suppose d > 6; for d < 6 the result is a straightforward
computation.

We consider three cases. The first case is p < %d . Combining this with the result
of Theorem 9.9, which states that d < ap + B, yields (% —a)p < B. This places an
upper bound on d; performing the arithmetic and using simple bounds on « and 8
yields d < 300. All of these can be analyzed with a computer search, which yields
the exceptional cases (a)—(h) of Theorem 9.1. Notice that the only examples having
degree more than 33 are in item (h) of that list, but the BMY inequality rules these
out: see Example 9.8 following Theorem 9.7.

Suppose now that p > %d. By Lemma 9.12, p + g < 3d. The second case is
that p + ¢ < 3d — 1,s0q < 3d — 1 — p. Substituting this into (1.1) we obtain

(p—1)@d —p—2)=d(d—3).
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We proceed as in the proof of Theorem 9.9. The inequality can be rewritten in terms
of a quadratic polynomial in d:

d* —3pd + (p>*+p—2) <0.

Applying the quadratic formula yields

4 8
2d <3p+ /5p2 —4p+8=3p+5p 1 - — + —.
5p 5p?

This in turn can be written

2d§3p+~/§p+\/§p(\/1—-si+i—1).

p  5p?

The term in parenthesis equals 0 for p = 2 and is negative for p > 2. Thus, in
general, we have d < ap.

Forsome k, d € [¢pax—1 + 2, P2k +1 + 1]. By Lemma9.11 we have p < ;‘Zil’\f—;:d.

Combined with d < ap we find

d
Pak+1 < — <a. (9.6)
$2k—1 P
The sequence ‘;—i’l‘:—: are the even convergents of the continued fraction expansion

of @. As such, they form an increasing sequence converging to «, offering the closest
lower approximations for given denominators. More precisely, (9.6) implies that
P > ¢ar—1. (See, for instance, [25], for these results concerning continued fractions.
In particular, Theorem 7.13 of [25] states the required result concerning the sense in
which convergents of continued fractions provide the best rational approximations to
an irrational number.)

We now have ¢y < p < b2k—1 g implying that d > ¢or 41, and thus

G2k +1
d = ¢por4+1 + 1. We now have

P2k 11 - Pak+1 + 1

Pak—1 p
SO
$ak—1
p < $ak-1+ :
b2k +1
Since p is an integer,
P = 2k,

a contradiction.

The last case is p + ¢ = 3d. Expanding (p — 1)(¢ — 1) = d(d — 3), we find
p+q = pg+3d —d? + 1. Combining these gives that pg = d? — 1. Writing
(¢ — p)* = (q + p)* — 4pq yields (g — p)* = 5d* + 4.
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We need to find all the integers d such that 52 + 4 is a square. This problem
is a case of Pell’s equation. One accessible reference is [10, Section 5.1], where
this precise problem is solved. The result states that 5d2 + 4 is a square if and only
if d = ¢; for some integer i. For a more general number theoretic discussion, a
good reference is the discussion of the Unit Theorem in [21].

As a brief aside, we include here a summary of the argument.

Lemma 9.13. If (x, y) is an integer solution to 5y* + 4 = x? then y = +¢, for
some n.

Proof. This equation can be rewritten as (5 + %ﬁ)(% - %\/5) = 1. Notice that x

and y must have the same parity, and thus solutions correspond precisely to units
1++/5

of norm one in the algebraic number ring Z[—5">]. (Units have norm either plus
or minus one.) For a real quadratic number ring, the set of units forms an abelian
group isomorphic to Z, & 7 (see, for instance, [21] or [9]). In our case, the infinite
summand is generated by an element of the form 5 + §\/§, where a and b are positive
and have the same parity. Clearly, a generator of this form will have the minimum
possible value of a. Since y = % + %\/5 does have norm —1, this is the generator
of the set of units modulo torsion.

The first five powers of y are % + %\/5 % + %\/3 g + %\/5 % + % 5 and
% + %\/5 Notice the numerators of the coefficients of +/5 in y" are the Fibonacci
numbers, ¢, and the numerator of the rational parts can be expressed as 3¢, —1 + ¢, —».
For instance, 11 = 3 -3 4 2. That this pattern continues is an easy inductive
argument using the defining recursion relation for Fibonacci numbers. Finally, since y
has norm —1, only even powers of y have norm one, and thus only the Fibonacci
numbers ¢, appear as solutions for y in our original equation 5y? 4+ 4 = x2. [

Solving the pair of equations p +¢ = 3d and (p — 1)(¢ — 1) = d(d — 3) for p
and g, with g > p, yields

3 1
P —d—§v5d2+ = ¢2i—

2
3 1
q = Ed + 5\/5d2+ = $2i+2.

Notice, that ged(p, q) = ged(pai—2, p2i+2) = Poeazi—2,2i+2)- If i is odd, then p
and ¢ are both divisible by 3, so they are not coprime, and the case is ruled out. We
are left with the case p = ¢4i—2, ¢ = ¢Pai+2 and d = ¢@q;. O

9.5. Construction of curves. We will now use Orevkov’s argument (see [26, Sec-
tion 6]) to construct curves with (p,g) = (¢a;—2.Paj+2) and degree ¢y, .

Proposition9.14. Forany j = 1,2, .. there exists a curve of genus | and degree ¢4;
having a unique singularity with of type (¢4j—2, Paj+2).
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Proof. Fix acurve N of degree 3 with one node. Let f: C P? — C P? be a Cremona
transformation as in [26]. Let F} be a cubic that passes through the node of N and is
tangent to one branch with the tangency order eight. Such curve exists by a parameter
counting argument; that is, the space of all cubics has dimension (3;2) —1 =09, we
need one parameter to make F; pass through the node, and each order of tangency
is one more condition, so we need altogether eight conditions. Notice that F; has

genus one and does not intersect N away from the node.

We define inductively F; = f(F;—1). Since f is biregular away from C P?\ N,
each curves F; has genus one and a single cusp. The characteristic sequence of
the point of F; which is tangent to N is (1, 8) (by this we mean that it is a smooth
point of F and the order of tangency is eight), and (1, 8) = (¢2, ¢¢). The image of
this point under the composite f o f o---o f is the singular point of F; and the
characteristic sequence becomes (¢4, 2, ¢4j+2) by the same argument as in [26].
The degree of F; is computed via the genus formula and the relation

(Paj—2 — D)(Paj+2 — 1) = paj(Pa; — 3). a

Proposition 9.15. Cases (a), (b), (¢) and (d) from Theorem 9.1 can be realized;
that is, there exists a curve of degree 4 with singularity (2;5), a curve of degree 5
with singularity (2;11), a curve of degree 6 with singularity (3;10) and a curve of
degree 15 with singularity (6;37).

Proof. In [36, Example 1] there is given a construction of curves (b) and (d). A
degree 4 curve with a (2; 5) singularity can be given by an explicit equation. We are
thankful to Karoline Moe for giving us an explicit construction of curve (c); we will
not present her proof here. U

The following result is well known to experts, we refer to [1] for a modern
approach.

Proposition 9.16. There exists a curve of degree 6 with a singularity (2;19). This is
case (h) from the list with p = 2.

9.6. The BMY inequality. Here we provide background for the proof of Theo-
rem 9.7. Our approach closely follows [7,26]. The Bogomolov—Miyaoka—Yau
inequality, see [17,23], is one of the main tools in studying curves in algebraic
surfaces.



250 M. Borodzik, M. Hedden and C. Livingston CMH

To formulate the BMY inequality we need some preliminaries. We let X be a
(closed) algebraic surface. Recall that a divisor on X is a formal sum ) _ «; D;, where
a; € Z and D; are closed algebraic curves on X. One of the main examples is the
canonical divisor K. This is a divisor which represents a class in H,(X; Z) that is
Poincaré dual to the first Chern class of the cotangent bundle of X .

Let D be a reduced effective divisor (that is, each irreducible component of D,
which is a reduced algebraic curve, has coefficient one) with the property that X \ D
is of log-general type. We refer to [22, Section I.1] for the definition of log-general
type and note that in our applications X \ D will always be of this type. There
exists a so called Zariski—Fujita decomposition of the divisor K 4 D; this is a unique
decomposition K + D = H + N, where H and N are rational divisors and H is
the numerically effective (in [22] this is called “arithmetically effective”) part and N
is the negative part of K 4+ D; see [13] or [22, Section [.3].

The two fundamental proprieties of this decomposition are that H - N = 0 and
N? < 0. The BMY inequality as given in [17] or [26, Theorem 2.1] says that
H? < 3y(X \ D), where y is the Euler characteristic; for our purpose the following
formulation is sufficient.

Theorem 9.17 (BMY inequality). Suppose X is an algebraic surface, K its canonical
divisor, and D a divisor on X such that X \ D is of log-general type (see [13]). Then

(K + D)> <3x(X\ D). (9.7)

If, in addition, in the Zariski—Fujita decomposition K + D = H + N we have
N # 0, then we cannot have an equality in (9.7).

Suppose that C C C P2 is a cuspidal curve of positive genus g > 0 with singular
points zy,...,z,, n > 0. For some m > 0, appropriately blowing up m points
resolves the singularities, providing what is called a good resolution (also known as
an SNC resolution, where SNC stays for “simple normal crossings™); in particular,
it constructs a curve C’, rhe strict transform of C, in a manifold X diffeomorphic
to C P2#,,CP .

The steps of forming the good resolution of C build a sequence of divisors in X,
Eq, ..., Eny, each of multiplicity one (they corresponds to the exceptional divisors of
the blow-ups constituting the good resolution). The reduced exceptional divisor E
is the sum ) E;; see [38, Section 8.1]. We set

D=C'+E.

This is a reduced effective divisor on X.

A result of Wakabayashi [37] states that the complement of a positive genus
algebraic curve in C P2 of degree d > 4 is of log-general type. By the genus formula,
any curve of degree 3 or less is either nonsingular or genus 0. In particular, C is of
degree four or more and Wakabayashi’s result implies that the complement C P2\ C



Vol. 92 (2017) Plane curves of arbitrary genus 251

is of log-general type [37]. Since CP?\ C = X \ D, we have X \ D is log-general
type, so Theorem 9.17 applies.

In order to show that the inequality in (9.7) is sharp, we use the following result
proved in [27]; see [28] for more detailed exposition.

Lemma 9.18. If C has n cuspidal singular points and K + D = H + N is the
Zariski-Fujita decomposition, then N? < —%. In particular, if C has at least one
cuspidal singular point, then N is not trivial.

Since X \ D = CP?\ C,wehave y(X \ D) = (2g + 1). Thus, (9.7) becomes
(K + D)* <32g+1).
This can be written as
K(K+ D)+ D(K + D) < 6g + 3.

By the adjunction formula D(K + D) = 2g — 2; see [37, Section 7.6]. Substituting
this, we obtain
K(K+ D) <4g+5.

The homology of X splits as an orthogonal sum, with one summand spanned
by L (representing a generator of H,(C P?)) and separate summands, one for each
singular point. Details are presented in [26, Section 2]. Accordingly, we write
K=Koy+Ki+---+K,and D = Dy + Dy + ---+ D,. Here Ky and D,
belong to the summands spanned by L and K;, and the D; belong to the summands
corresponding to the singular points z;. Note that Ko = —3L and Do = dL.

Using this decomposition, we can write the inequality as a summation:

n
Ko(Ko + Do) + > Ki(Ki + D;) < 4g +5.

1=1

Substituting the values of Ky and Dy we obtain.

n
9-3d + ) Ki(Ki + D) <4g +5.

i=1

&cording to [7, Proposition 4.1], K; (K; + D;) can be identified with the Orevkov
M -number (where it was called the codimension). Thus,

> M <3d +4g—4.
1>0

As both sides of the above inequality are integers, we have
Z-M_i §3d+4g—5.
i>0

Theorem 9.7 is proved.
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10. The semicontinuity of the spectrum

The spectrum X of a singular point of a plane curve is a collection of rational numbers
from the interval (0, 2), where each rational number can occur multiple times. The
count with multiplicity, #X, is the Milnor number of the singularity. It is one of the
strongest invariants of singularities. From a topological point of view, the spectrum
can be (almost) recovered from the Tristram—Levine signatures of the link. For a
singularity x? — y9 = 0 (that is a singularity whose link is 7'(p, ¢)), the spectrum is
the set

2, = ’_+é,15i5p—1,15j5q—1,

4
where if a number x can be presented in v different ways as a sum % + é, it means
that x appears in X, , with multiplicity v.

There is a property of semicontinuity of spectra. Following [10, Section 2.4] we
will formulate it as follows.

Suppose C is an algebraic curve in C P2 of arbitrary genus and not necessarily
cuspidal. Suppose deg C = d. Let zy,..., z, be the singular points and X4, ..., X,
the corresponding spectra. Let

i
Ed,d = %— +

|~

7 ,lsi,jgd—l}

be the spectrum of the singularity x4 — y¢ = 0. Then for any x € R we have
p y Y y

n

#(Zga N (x.x+ 1) =) #Z; N (x,x+1). (10.1)

=1

Equation (10.1), the spectrum semicontinuity property, is one of the strongest
obstructions to the existence of curves in CP? with prescribed singularities. It
is most effective if the total number of elements of the spectra ) #X; is close to
#X 44 = (d —1)?, that is, if the (geometric) genus of C is small. The spectrum was
effectively used in [10] to classify rational cuspidal curves with one cusp and one
Puiseux pair at that cusp. We will show it is of limited effectiveness in case of curves
of genus one.

Substituting x = —1 + 5. into (10.1), where [ = 1,...,d — 1 we obtain
. I 1
Z#(zj N (o, 5)) < U-DU-2). (10.2)
j=1

This equation in [10] is referred to as (S .S7). We shall examine how these inequalities
apply to the classification problem of cuspidal curves of genus one with one singular
point and one Puiseux pair, as in Theorem 9.1.
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Example 10.1. The case where C has degree 6 and is of type (4,7) (so its genus
is 1) satisfies all the S'S; inequalities, but cannot occur by discussion in Section 8. In
fact there is only one singular point with spectrum

11 13 18 19 23 25 26 27

28728°28728728728728° 28"

(the spectrum is symmetric around 1, so we give only elements in spectrum in the
interval [0, 1]). The values of #% N (0, 5) forl =1,...,6are0,0,1, 3, 6,9, which
are less than or equal to 0,0, 1, 3,6, 10, as given by the right hand side of (10.2).
Theorem 1, however, obstructs the existence of such curve, see Section 8.4.

Similarly, one can show that the property (S5 S;) admits, for example, a genus one
curve of degree 75 and with a singularity of type (28, 201).

Example 10.2. If C is a curve of type (p, ¢), then, according to [10, Example 2.4],
(SS4z—1) reads as

o=l o ). |80 < L=2E-0

Since (p — 1)(g — 1) = d(d — 3), this gives

%) a-34]2].

Writing pg = d(d —3) + p + g — 1 we arrive at

2=t |2 8]

This inequality is trivially satisfied whenever p > 1.
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