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Plane algebraic curves of arbitrary genus
via Heegaard Floer homology

Maciej Borodzik? Matthew Hedden** and Charles Livingston*

Abstract. Suppose C is a singular curve in CP2 and it is topologically an embedded surface
of genus g; such curves are called cuspidal. The singularities of C are cones on knots K,-. We

apply Heegaard Floer theory to find new constraints on the sets of knots {K,} that can arise
as the links of singularities of cuspidal curves. We combine algebro-geometric constraints with
ours to solve the existence problem for curves with genus one, d > 33, that possess exactly
one singularity which has exactly one Puiseux pair (p\q). The realized triples (p,d,q) are

expressed as successive even terms in the Fibonacci sequence.

Mathematics Subject Classification (2010). 14H50; 57R58, 57M25.

Keywords. Complex plane curves, d -invariants, Heegaard Floer homology.

1. Singular curves

Let C be an irreducible algebraic curve in CP2, defined as the zero set of a

homogeneous polynomial / of degree d. Such a curve is called cuspidal if the singular
points of C are all unibranched; that is, the singular points are isolated and the link
of each singularity is a knot in S3 (such knots are often called algebraic knots).

Cuspidal curves form a natural family of algebraic curves that are topologically
embedded surfaces.

The theory of cuspidal curves of higher genus has not drawn as much attention
as the case of rational cuspidal curves, those of topological genus zero. One of the

inherent difficulties in the higher genus setting is that the complement of a curve is not
a rational homology ball (in the language of algebraic geometry, a Q-acyclic surface,

see [12]). The effect of this is that one of the main tools in studying rational cuspidal

curves, namely the "semicontinuity of the spectrum," which is a main ingredient of
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Research Fellowship.
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Foundation Grant 278755.
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a classification result in [10], becomes considerably less restrictive if the genus is

greater than zero. Section 10 presents a more detailed discussion of these issues.

Notice, however, that in [20] the classification result of [10] was proved using only
the semigroup distribution property of [4,11],

The goal of this paper is to investigate the singularities of cuspidal curves. To state

the main results, we need some background. To each singular point one associates
the (»-invariant and the Milnor number /r, which for unibranched singular points are

related by /r 28. By definition, 8 is the 3-genus of the associated linking circle K.
The genus g of C and the (»-invariants, {5,}, of the set of singular points, [z*}"_}, are

related by the genus formula'.

{d — \){d — 2) ^g(C) 2_^8i.
;=i

Our goal is to find constraints on the possible sets of singularities beyond those

given by the genus formula. The basic idea is topological. We suppose that a curve
C C CP2 with some collection of singularities exists. Let Y(C) denote the three-
manifold which arises as the boundary of a closed regular neighborhood N(C) of C.
The homeomorphism type of this three-manifold depends only on the degree, genus,
and the links of the singularities of C. The complement CP2 — Int((V(C)) is a

smooth four-manifold with particularly simple algebraic topology; in particular, its
intersection form is identically zero. To show that C cannot exist, then, it suffices

to show that Y(C) cannot bound a four-manifold with trivial intersection form. For

this, we use invariants derived from the Heegaard Floer homology of T(C) [29],
These invariants are a generalization of the influential "correction terms" associated

to rational homology three-spheres used in the study of homology cobordism groups
and knot concordance. Among the many important references, we mention just
one, [14], which informed our original work on this paper.

In the present situation, two particularly useful invariants derived from the

Heegaard Floer homology complexes associated to Y(C) present themselves, which

we refer to as the "bottom" and "top" correction terms. They depend on a choice

of Spinc structure whose Chern class is torsion. The key feature of these invariants is

that their values bound the characteristic numbers of smooth negative semi-definite
four-manifolds bounded by Y(C), where negative semi-definite means that the self-
intersection of any closed surface is non-positive. Notice that CP2 — Int((V(C)) is

negative semi-definite with either of its orientations.
One must have means to compute the correction terms. As a first step, we show

that Y(C) has a simple description as surgery on a knot in the connected sum of
copies of S1 x S2. With this, along with the fact that the links of the singularities
are all L-space knots [15] (in particular, their knot Floer homology complexes are

determined by their Alexander polynomials), the computation of the correction terms
becomes algorithmic by way of a surgery formula [30].
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Our main result, Theorem 1 can be seen as a higher genus generalization of [4,
Theorem 6.5], or as a proof of an analogue of [11, Conjecture 2]. Its statement
uses the notion of the semigroup of a singularity. This semigroup of Z>o is defined

precisely in Section 7.1; in the special case that the link of the singularity is a

(p, </)-torus knot, the semigroup is generated by p and q. If we are given a finite
collection of semigroups Sj,..., Sn, we can define a function R : Z>o —»• Z>o as

follows:
n

R(u) min #{S, fl [0,/:,)}.
k\H bk„=u

k,> 0 l~1

Note that if kl =0 for some i, then the number of elements in {Sj D [0, kl)} is 0.

Theorem 1. Suppose C is a cuspidal curve of genus g and degree d in CP2. Let

2\.... ,zn denote its singular points, S\,, Sn the corresponding semigroups, and
R the function defined above. Then for any j 1,..., d — 2 and any b 0,..., g,
we have

0 < R(jd - 2b + 1) - iJ +
X)(2j

+2) +b<g. (1.1)

Unpacking the left inequality in (1.1) yields that for any j — I,... ,d — 2 and b —

0,..., g, and for any non-negative k\,...,kn such that k\ -\ b kn jd + 1 — 2b

n [tu,)} > U +
1}2°

+2) -b. (1.2)

i=i

Inequality (1.2) depends on the genus g of the curve only through the possible

range b. Stated this way, (1.2) bears a strong resemblance to [11, Proposition 2];
in fact, the case b 0 of (1.2) is exactly [11, Proposition 2], which was proved

using an elementary dimension counting argument for projective curves. Indeed, the

expression YTi l bl [0, kL)} can be interpreted as a number of linear constraints
which is sufficient to ensure that an algebraic curve, viewed as an element in a vector

space of homogenous polynomials, intersects C at z, with multiplicity kt. This

interpretation leads directly to the left-hand inequality in the case b 0. It would be

interesting to know if algebro-geometric techniques could be used to prove (1.2) for

any other values of b (the argument of [ 11 ] would need to be altered to incorporate
the genus) or, for that matter, if algebraic geometry could shed light on the right-hand
inequality in our theorem. Regardless, it is important to stress that while Theorem 1

is stated for algebraic curves, our techniques lie in the realm of smooth topology; that

is, our inequalities are satisfied for C°° maps / : C C P2 of surfaces which are

topological embeddings, and for which there are a finite collection of points z, C

satisfying df(zt) — 0 near which / appears holomorphic (that is, within local

charts). It is also worth pointing out that our result can be generalized to surfaces in

any smooth 4-manifold with the rational homology of CP2. In particular, there are

direct analogues of Theorem 1 which restrict the cuspidal curves in fake projective
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planes (slight care is needed to account for the image of the inclusion map on the first

homology of C); for a description of the 50 distinct complex algebraic surfaces with
the same Betti numbers as CP2, see [8,24,34]).

Theorem 1 appears to be a useful tool for studying cuspidal curves and can

effectively obstruct many configurations of singularities from arising on curves of
fixed genus and degree (we give some examples in Section 8). Combining Theorem 1

with tools from algebraic geometry yields even better results. For instance, we can

classify singularities of simple form that can occur on a genus one curves possessing
a single singularity. From the perspective of algebraic geometry, the theorem is

most naturally stated in terms of Puiseux pairs', we note that a singularity has one
Puiseux pair (p, q) precisely when its link is a (p, g)-torus knot (or, equivalently, it
is equisingular to zp + wq 0). Here p and q are positive, coprime integers.

Theorem 2. Suppose that C is a cuspidal curve ofdegree d > 33, genus 1, possessing
a single singularity with one Puiseux pair (p, q). Then there exists j > 0 such that
d (p4j and (p,q) (047-2. 04y+2), where 0o, 01,... are the Fibonacci numbers

(,normalized so 0o 0, <p\ 1).

In fact, the above is a simplified statement of Theorem 9.1, which additionally
provides a hnite list of possible triples (p, q\d) with d < 33. The proof of this result

uses Theorem 1 in conjunction with a multiplicity bound, expressed in Theorem 9.9.

The latter bounds from above the degree of a cuspidal curve under consideration

by a linear function of the multiplicity of its singular point (here, the multiplicity is

the minimum of p and q). The multiplicity bound, in turn, comes from a general
bound on certain numerical invariants of the singular points, the so-called Orevkov
M-numbers. These numbers are derived from the cohomology of a minimal good
resolution of the singular points, and the bound which they satisfy is a consequence of
the Bogomolov-Miyaoka-Yau inequality. Note that Theorem 2 is only an obstruction:
it says nothing about whether the triples (04/-2- 04/+2; 04/) are realized by algebraic
curves. As counterpoint, however, we can explicitly construct genus one curves of
degree 047- with one cusp and one Puiseux pair using a technique of Orevkov [26]:

Theorem 3 (Proposition 9.14 below; cf. [26, Theorem C]). For any j 1,2,...
there exists a curve of genus 1 and degree 04j having a unique singularity with one
Puiseux pair (<p4j-2,04/+2)-

One can also produce curves realizing some of the exceptional cases (all of which

satisfy d < 33) described in Theorem 9.1. Taken together, we solve the geography
problem for cuspidal curves with one singularity and one Puiseux pair (modulo a few
low degree cases where curves have yet to be constructed).

Computer experiments suggest that the only instances of Puiseux pairs (p, q) and

degrees d that satisfy all the criteria from Theorem 1 but fail the BMY multiplicity
bound are those in the family (p,q) (a, 9a + 1) and d 3a. It would be

interesting to know whether these are indeed the only additional cases passing the
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criteria of Theorem 1, and whether they can be realized by embedded surfaces in
the C°° category.

In [2] Bodnär and Nemethi restated [4, Theorem 6.5] in the language of lattice
homology. A natural question to ask is the following:

Question 4. Is there a reformulation of Theorem I in the language of lattice
homologies?

Acknowledgements. The authors would like to thank Karoline Moe, Andräs Nemethi
and Andräs Stipsicz for fruitful discussions. The authors are grateful to the referee

for providing valuable comments and for drawing their attention to the article of
Tono [36]. Similar results to those presented here have been obtained independently
by Jözef Bodnär, Daniele Celoria, and Marco Golla; see [3],

2. Overview and Notation

Let N{C) be a closed regular neighborhood of C, having three-manifold boundary Y.
The complement of the interior of N(C) in C P2 is a smooth four-manifold X with
boundary — Y. In the next section we study the algebraic topology of A. In particular,
we verify that the intersection form on H2{X) is identically zero, and study the

restriction map H2(X) —r H2(—Y). Taken together, this information serves as the

topological input for the analytic obstructions we consider.

2.1. d -invariants. Heegaard Floer homology provides obstructions to a Spinc three-
manifold bounding a negative semi-definite Spinc four-manifold. These obstructions
are often referred to as d-invariants. To define them, recall that if s is a Spinc structure

on Y, then Heegaard Floer theory yields a chain complex CF°°(Y, s), freely generated
as a module over F[t/, U~l] (we use F Z2 throughout). The complex is equipped
with a Z filtration, and the filtered homotopy type of CF°°(Y, s) is an invariant of the

pair (T, s). In the case that s has torsion first Chern class, the complex has a grading
by rational numbers. Acting by U in the base ring lowers the filtration level by one
and the grading by two. See [31] for the definition of CF°°(Y, s) (as a relatively
Z-graded complex), and [29] for the definition of its absolute Q-grading.

The complex CF°°(Y,s) supports an action by H\{Y)I Torsion which is well
defined up to filtered chain homotopy, and therefore the homology HF°°(Y, s)
inherits an action by H\ (T)/ Torsion (in fact the action on homology extends to
the exterior algebra on H\(Y)/Torsion [31, Section 4.2.5]). Using this action, we

can define two associated groups, HF°°(Y, s)b and HF°°(Y, s)t; the "b" and "t" are

shorthand for "bottom" and "top." To define them, one simply considers the kernel
and cokernel, respectively, of the Hi (Y)l Torsion action. In the case that Y is a

rational homology sphere, the action is zero, so that both groups equal HF°°{Y,s).
In the case that all triple cup products on HX(Y) vanish (a necessary and sufficient
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condition that HF°°(Y) be "standard" [19]) HF°°(Y,s)b and HF°°(Y,s)t are

isomorphic to F[t/, t/-1].
There is a subcomplex CF~(Y, s) CF°°(Y, s){;<0} consisting of elements of

filtration level less than 0, and the corresponding homology group HF~(Y, s) inherits
an H\(Y)I Torsion action. Thus there are groups HF~(Y,s)b and HF~(Y,s)t and

homomorphisms induced by inclusion: HF~(Y,s)* —> HF°°(Y,s)*, where * b

or t. These top and bottom complexes were first defined in [29]. One useful reference
is [33], Since then a general theory has been developed in [18]. Using these

complexes, invariants can be defined as follows.

Definition 2.1. The top and bottom d-invariants of the pair (T, s), denoted db(Y, s)
and dt(Y,s), are defined by the property that (d*(Y, s) — 2) is the maximal grading

among all elements in HF~(Y,s)* that map nontrivially into HF°°(Y,s)*, where

* b or t.

The analysis of the restriction map H2(X) —» H2(Y) in the next section
determines the Spinc structures on Y whose ^-invariants we must compute
(to ultimately obstruct the existence of X). To enumerate these Spinc structures,
we will use the following notation.

Definition 2.2. Suppose q is a positive integer. Define Sg to be the set of numbers

—(9 — l)/2, ~(q — l)/2 + I,... ,(q — l)/2.

So, for example, S5 {-2, -1,0, 1,2} andS6= {-5/2, -3/2, -1/2,1 /2, 3/2, 5/2}.
The following theorem is a restatement of a Theorem 4.2, proved in Section 4. It is a

consequence of the fact that X CP2 — Int(Ar(C)) is negative semi-definite with
either orientation, together with the fact that the d-invariants of the boundary of such

a four-manifold are bounded by a function determined by its intersection form.

Theorem 2.3. Suppose that C is a cuspidal curve in CP2 with Y dN(C). Then

there is an enumeration of torsion Spinc structures on Y, {sm}, by integers in the

range J <m< [d2fl J. With respect to this enumeration, for all k 6
the following inequalities are satisfied.

db(Y,sdk) > ~g
and dfY,sdk)<g-

In order to compute the invariants db(Y,s) and dt(Y,s) we need to understand
the geometry of Y. Perhaps the most elegant description of Y is as a graph manifold
obtained by splicing the circle bundle over the surface of genus g(C) with Euler
number d2 to the complements of the links of the singularities of C. For the

purposes of computing its Floer homology, however, it is more useful to have a

description of Y as obtained by d2 surgery on a knot Kc in Y2g := #2SS1 x S2.

We provide such a description in Theorem 3.1. Indeed, Kc can be described as the
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connected sum B#K\#K2# • #AT„, where B c Y2g is a simple knot which depends

only on the genus of C, and AT, c S3, i 1,..., n are the links of the singular
points of C.

2.2. Computing d -invariants. Let K be a null-homologous knot in a three-manifold

M and let Mk(K) denote the manifold constructed by k surgery on K. For each

Spinc structure s, the complex CF°°(Mk(K), s) is determined by a Z © Z-filtered
chain complex CFK°°(M, K,t) called the knot Floer homology chain complex,
associated to K and some Spinc structure t on M. In general, the "surgery formula"
relating the knot Floer complex to the complexes of the surgered manifolds can be

rather complicated. For the manifolds arising in this article, however, it will simplify
considerably due to the fact that the surgery coefficient is large with respect to the

genus of the knot. Indeed, for our purposes it will suffice to understand the homology
of subcomplexes of a single doubly filtered chain complex CFK°°(Y2g, Kc,so)
associated to Kc and the unique Spinc structure on #2g Sl x S2 having trivial first
Chern class.

A key to efficiently understanding this latter complex is that the knots Ki that

occur as links of singularities are so-called L-space knots. For such knots the

complexes CFK°°(S3, A", are determined by the Alexander polynomials, A^. (/).
Moreover, knot Floer complexes obey a Künneth principle under connected sums:

CFK°°(M#N, K#J) ~ CFK°°(M, K)®CFK°°(N, /);see [30, Section7], Using
this, and the relation (Y2g, Kc) (Y2g, B)#(S3, ATi)#- • •#(53, Kn) established in
Theorem 3.1 below, we have

CFK°°(Y2g. Kc) ~ CFK°°(Y2g, B) ®?=1 CFK°°(S3, AT,-),

and CFK°°(Y2g, B) has been fully described [30, Proposition 9.2], Making
the connections between these complexes, the Alexander polynomials, and the

d-invariants, leads to the following result. Details are presented in Section 6.

Theorem 2.4. There exist invariants ym determined by the Alexander polynomials

Af(i (t) with the following property. If |_; <m< L^J, then

(q — 2m)2 — q
db(Y,sm) h g - 2 max {ym+a-b + a}

4q a,b> 0
a+b=g

and
(q — 2m)2 — q

dt(Y,sm) \-g- 2 mm {ym+a-b+a}.
4q a,b> 0

a+b=g

The Alexander polynomial of an algebraic knot can be interpreted in terms of
the semigroup of the associated singularity. Transferring this interpretation to the

invariants ym and combining it with Theorem 2.3 and some algebraic manipulation
yields Theorem 1.
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3. Properties of a neighborhood of C, its boundary, and its complement

We continue to let N(C) denote a closed regular neighborhood of C. Let Y

dN(C), a closed oriented three-manifold. The complement of Int(iV(C)) in CP2 is

a smooth four-manifold X with boundary —Y. In this section we provide a surgery
description of Y and homological properties of the pair (X,—Y).

3.1. A geometric description of N(C) and Y. To describe N(C), we begin with
a surface of genus g having a single boundary component. We denote this surface

by Fg. The product Fg x D2 has boundary #2g 51 x S2. Contained in its boundary
is the knot B 3Fg x {0}. Notice that B is null homologous in #2g S1 x S2.

Theorem 3.1. If a cuspidal curve C of degree d has singular points with links Ku
then N(C) is built by adding a two handle to Fg x D2 along the knot B #, Kt with

framing d2. In particular, 3N(C) Y is built from #2g S' x S2 by performing d2

surgery on B #, K,.

Proof The neighborhood N{C) is constructed in steps as follows. Let D, denote

a ball neighborhood of the singular point z,. Joining D\ to each D,, i > 1 with
a one-handle, each a tubular neighborhood of an arc on C, yields a four-ball D.
The boundary of D is a three-sphere S with S n C #, Kt. The complementary
region C — D is diffeomorphic to the surface Fg with neighborhood D' Fg x D2

having the knot B in its boundary. Thus, we have N(C) D U D', with the union

identifying a neighborhood of #, Kt with a neighborhood of B.
The union DUD' can be formed in two steps. First, neighborhoods of a point

on#j K, and a point on B are identified. Since D is a ball, this produces a manifold D"
diffeomorphic to D'. The union of the two knots becomes B#tK,. The remainder
of the identification is completed by adding a 2-handle to D" along B#tKt. The

framing is d2, that is, the self-intersection of C.

Corollary 3.2. Hx (Y) Zdi ® Z2g and H2(Y) Z2g.

3.2. The complement A CP2—Int(A(C)). The following theorem summarizes

elementary homological calculations.

Theorem 3.3.

(1) Hx(X) Zd andH2(X) ss Z2g.

(2) The image of the map Tors(//2(W)) H2(Y) is isomorphic to Zd C Zd2.

(3) The map H2(X)/ Torsion —> H2(Y)/Torsion is an isomorphism.

(4) Image(//2(CP2) -> H2(X)) Tors(//2(A)).

(5) The intersection form on H2(X) is identically 0.
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Proof. The map Z S H2(C) —> H2(CP2) ^ Z is given by multiplication by d.
Using this, the long exact sequence of the pair (CP2,C) and excision yields
Hi(X, Y) 0, H2(X, Y)oa Zd ® Z2g and H3(X, Y) 0.

Applying Poincare duality and the universal coefficient theorem yields: H\(X) s
Zd, H2(X) ^ Z2g, and H3(X) 0. In particular, we have part (1) of the theorem.

The long exact sequence of the pair (A, Y) includes the exact sequence

— H3(X, Y) ^ H2(Y) H2(X) H2(X, Y) A-
H\ (F) —^ Hi(X) Hi(X, Y) ^0

which can be written as

o - z2s X Z2g ^Zd® Z2g X Zd2 ® Z2g ^Zd ^0.
We next observe that the map d2 must be nonzero on the Zd summand. If not,

there would be an exact sequence

Z2* -* Zd2 © Z2^ Zd -+ 0.

Clearly this is impossible: the image of the initial Z2g would have to be of rank 2g.
This implies that no element in the image of Z2g is torsion. The quotient would then

contain elements of order d2. It immediately follows that the map p2 is the 0 map.
Observe also that i\ must be nontrivial on the Zd2 summand: there is no element

in Zd © Z2^ that d2 could map to an element of order d2. Given an element of
infinite order in Zd2 © Z2g, by adding an element from Zd2 to it we can assume it
is in the kernel of t\, and thus in the image of d2.

By duality, the map H2(X) —> H2(Y) corresponds to the map 32: Zd®Z2g —>

Zdi © Z2g, which we have now seen is nontrivial on torsion and injective on the free
summand. Statements (2) and (3) follow quickly.

To prove (4), we consider a portion of the long exact sequence for the pair
(CP2, X):

H2(CP2) H2(X) H3(CP2,X).
We have H2(CP2) s Z and H2(X) sz H2(X,Y) ss Zd © Z2^. For the last

term we have by excision and Lefschetz duality, H3(C P2, X) ^ H3(N(C), T) s
H\(N(C)) S Hi(C) ^ Z2g. Thus, our sequence becomes

z zd ®z2g ^ z2^.

Clearly v2 vanishes on the Zd summand, so this summand must be contained in the

image of v\. Since the domain of v\ is of rank one, the Zd summand is precisely the

image of v\. The proof of (4) is complete.
For statement (5), we recall that the intersection form on H2(X) is given by

a composition H2(X) -» H2(X,Y) —>• H2(X) —> Wom(Pl2(X),Z). But the

map H2(X) —» H2(X, Y) (previously called p2) has already been shown to equal

zero.
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4. Bounds on the d -invariant

Bounds on the ^-invariants of Y depend on the relationship between Spinc structures
on Y and those on the complementary space X. We begin with an examination of
this relationship and then apply results of [29] to attain our desired bounds on the

J-invariants.

4.1. Spine structures on X and Y.

Theorem 4.1. If C is a curve of degree d and X CP2 —lnt(N(C)), then the

torsion Spinc structure sm on dX extends to X if m kd for k e -8^. Here sm

is the Spinc structure on dX which extends to a structure tm on N(C) satisfying
(ci(tm), [C]) + d2 2m.

Proof This result is proved in [5] in the case that C is rational. Here is an outline of
the argument, identifying why it generalizes to the nonrational case.

There is a Spinc structure t on CP2 having ci(t) the generator of H2(CP2).
Denote its restriction to X by t'. By Theorem 3.3, c\(t') is a torsion class in H2(X)
mapping to an element of order d in H2(Y). (In the rational case, H2(Y) is torsion,
so the work of Theorem 3.3 was not required.)

We have seen that H2(X) Z2g ® Z^. Since this cohomology group acts

effectively on the set of Spinc structures, the orbit of t' under the action of the torsion
in H2(X) is a set of Spinc structures on X with d elements, all that restrict to give
torsion Spine structures on Y. The map Tors(//2(3f)) -» H2{Y) is injective, so

these structures are distinct.
The enumeration of Spine structures as the sm is described in more detail in [5],

4.2. Bounds. The following result provides bounds on the bottom and top d-invariants.

Theorem 4.2. If the complex curve C has degree d and topological genus g, then

fork e

db(Y,Sdk) > ~g
and dfY,sdk) < g.

Proof This is an application of [29, Proposition 9.15], which says that if W is

a negative semi-definite four-manifold for which the restriction map HX(W) -»•

H1 (3 W) is trivial, then we have the inequality:

ci(s)2 + bf(W) < 4db(dW,s\dw) + 2bx(dW),

where bf(W) is the dimension of the maximal subspace of H2(W) on which the

intersection form is non-degenerate and b\{dW) is the rank of the first cohomology.
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We apply this proposition to —X. The restriction map H1(—X) —> H1(Y) is

trivial since Hx{X) 0 and, just as for X, the intersection form on —X is zero.
Hence —X is negative semi-definite. Now triviality of the intersection form implies
b^i—X) 0 and c\(s)2 0 for any s G Spinc(— X). Note that ci(s)2 is defined by

lifting a multiple of Ci(s) H2(—X) to H2(—X, Y) where the intersection form is

defined. Such a lift exists only when ci (s| k is torsion, but the Spinc structures we
consider on Y all satisfy this assumption. Thus the left hand side of the inequality is

zero for all s G Spinc(—X). Since b\(Y) 2g, the inequality becomes:

0<4db(Y,s\r) + 2(2g).

This says that db(Y,s) > —g for any Spinc structure on Y that extends to —X. But
Theorem 4.1 determined exactly which Spinc structures on Y extend: they are those

of the form s^k where k e Sj. This proves the first inequality of the theorem.
To prove the second inequality, we apply the same analysis to the pair (X, — Y),

arriving at

db(~Y,s) > -g.
Now it suffices to show that db(—Y, s) —d{(Y, s). But this follows easily
by observing that the filtration and grading reversing duality isomorphism [32,

Proposition 2.5]:
CF°°(—Y, s) ~ (CF°°(Y,s))*

is compatible with the H\ (Y)/ Torsion action, in the sense that if y e Hi acts

on CF°°(Y) by the chain endomorphism ay, then y acts on CF°°(—Y) by the

adjoint a*. Thus the kernel of the Hi action on HF°°(—Y) is identified, by a

filtration and grading reversing isomorphism, with the cokernel of the action on

HF°°(Y, s). The stated relationship between db and dt follows immediately.

5. The Heegaard Floer homology of Y2g #2gS1 x S2

Given that Y is built as surgery on a knot in Y2g, we begin by reviewing the structure
of the complex CF°°(Y2g). In particular, in this section we describe an explicit
basis for this complex and its homology, and describe the H\ (T2g)/ Torsion module

structure in terms of this basis. We then describe the "top" and "bottom" Floer

homology groups. This description will be used in the next section in conjunction
with the knot Floer homology filtration of Kq to compute the Floer homology of Y.

5.1. Case of F|. For Y\ Sl x S2 and Spine structure So with first Chern class

d(so) 0, we have CF°°(T1.so) — F[(7, U~l\ © F[(7, U~x], where the element 1

has grading 1/2 in the first summand and — 1 /2 in the second. The boundary operator
on the complex is trivial, and thus we can identify CF°°(Yi) with HF°°(Y\).
Let x* G Hi(Sx x S2) ^ Z be a generator. Then x* acts F[(7, (7_1]-equivariantly
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on HF^iYi), taking the element 1 in the first F[t/, U '] to the element 1 in the
second. Thus we can identify

CF°°(Yi) ~ A^/Z^F))) <g> F[U, t/_1],

where classes in Hi (Yi)/ Torsion act, via the duality pairing between H\l Torsion
and Hl, on elements in the exterior algebra A*(Hl (Ti)).

5.2. From Fi to Y„. There is a Künneth principle for the Floer homology of
connected sums of three-manifolds [32, Theorem 6.2], stating that:

CF°°(M#N,Sm#sn) ~ CF°°(M,sM) ®F[t/,t/-i] CF°°(N,Sn). (5.1)

This homotopy equivalence respects the A*{H\I Torsion) module structure, in the

following sense: there is a natural isomorphism

Hi(M#N) ss Hi(M) © Hi(N)

with which a class y Hi (M#N) can be identified with ym®Yn £ Hi(M)®Hi{N).
Then y acts on CF°°(M#N) as ym <8> Id# + Id^/ ®yn under the homotopy
equivalence (5.1).

Using this, together with our description of the Floer homology of Yi above,
allows us to conclude that

CF°°(Yn) ~ A*(Hl(Yn))®F[U,U-1}

as A*(Hi/Torsion) <g> F[C7, [/_1]-modules, where //j/Torsion classes act by the

duality pairing, as above.

5.3. A useful change of basis for Y2. While the module structure on CF°°(Yn)
is completely described above, it will be useful to have an alternate description for
CF°°{Y2g) which will be compatible with the filtration of CF°°(Y2g) induced by
the knot B and, ultimately, Kc Our description is determined by a change of basis

for the Fleegaard Floer homology of Y2 Yi#Yi, and the Künneth principle above.

Thus we begin with Y2. Denote the generators of the first cohomology of the two
connect summands of Y2 — Yi#Yi by x and y. Thus, A * H1(Y2) has basis

{ \, x, y, x A y}.

We denote the hom-dual generators of Hi (Y2) as x*, y*. We have the following
alternative description [30, Theorem 9.3] of the action of Hi(Y2) on the chain

complex; recall that the action of Hi(Y2) commutes with the action of U. We will
call the complex equipped with this action the knot adapted complex.
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Theorem 5.1. CF°°(Y2, s0) ~ A* H1 (Y2) ® F[t/, t/"1] as a module over¥[U, U'1].
The rational gradings of I, x, y, and x Ay are —1,0,0, and 1, respectively. All these

elements are at filtration level 0. The Fit/. U~l]-equivariant action of H\(Y2) on

CF°°(Y2, so) is given by:

• x*(x A y) y
• x*(^:) 1 + U(x A y)

x*(y)= 0

• x*(l) Uy.

The action ofy* is analogous; see Figure 1 for a graphical presentation of the action

ofx*.

Proof As a graded module over F[t/, U~x], the above description is clearly
isomorphic to our previous description. To obtain the non-standard (i.e. not induced

by the hom-pairing) action of H\l Torsion, we perform the (equivariant, filtered)
change of basis

1 —> 1 + UX Ay, X —> X, y y, XAJ-tlAJi.

2

1

0

-1

-2

-3

-3-2-10 1 2

Figure 1. The action of x* on the CF°°{Y2. so). The horizontal coordinate shows the filtration
level, the vertical coordinate shows the grading.
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Remark 5.2. Recall that the action of U lowers filtration levels by one and gradings
by two. Thus, the grading of Ul(x A y) is 1 — 2/. The gradings of U'x and Uly
are —2i, The grading of U1 (1) is — 1 — 2i.

5.4. Case of Y2g. Applying the Künneth principle to the knot adapted complex gives
rise to a model for CF°°(Y2g) which we will use throughout the article. In terms
of this complex, we will now compute the "bottom" and "top" knot Floer homology
groups. That is, we will find all possible chains in the knot adapted complex which
are homologous to generators for these groups (both of which are a priori isomorphic
to F[t/, U-1]). First, we recall the following definition.

Definition 5.3. Suppose an abelian group G acts on a second abelian group H; that

is, there is a homomorphism G —> Hom(//, H). We define //bottom to be the kernel
of the action; that is, all elements h H such that g{h) 0 for all g e G. We

define Htop to be the cokernel of the action; that is, the quotient of H by the subgroup
generated by elements of the form g(h) for some g e G and h e H. Usually we will
abbreviate "bottom" and "top" by "b" and "t," respectively.

We establish some notation for elements in the complex CF°°(Y2g):

Definition 5.4. Denote the generators of Hx(Y2g) — Hl(#8 Y2) in their natural
order by {xi, y \, x2,. yg}, and let w, x, a y,. Let A denote the set of subsets

of {1, 2,..., g}. For each a e A we set wa — A,eaio,. For a e A we let n(a)
denote the number of elements in a.

Theorem 5.5. CF00(Y2g, So) is isomorphic to the F[[/, U~l] module A* FIX (Y2g)®
F[(7, U"1]. The bottom homology is given by

E"*
aA

W~gwn

Furthermore, the top homology HF0O(Y2g, Sq){ is generated by any of the

Un(a)-g U)a^ anci any two suc/j [jn(a)-g yj^ ar£ eqU[vaienf jn the quotient. These

elements are all ofgrading level g.

In this statement, the brackets around the summation indicate the homology class

represented by the cycle.

Proof. For Y2, the statement is easily verified from our description of the knot
adapted complex given in Theorem 5.1. The general case follows immediately from
the Künneth principle for connected sums.

Example 5.6. The group HFf°(Y4, so) is generated over F[U, U~x] by

{xx A yi A x2 A y2) + U~1(xi A j>0 + U~l(x2Ay2) + U~2( 1).
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The group HFf°(Y2g,so) is generated over F[f/, U '] by either

(*! Ay! aj[2 Ay2), U~l{xx Ay,), U~1(x2 Af2) or U~2(\),

which are equal in the quotient group.

6. Knot Floer homology and d -invariants of surgery

6.1. Description of CFK°°(Y2g, B). A null homologous knot in a three-manifold
M induces a second filtration on CF°°(M, So), called the knotfiltration or Alexander
filtration. In our case we have the doubly filtered complex CFK°°(Y2g, B,so). This
complex was computed in [30] and is described as follows:

(1) As a graded, Z-filtered chain complex CFK°°(Y2g, B,so) CF°°(Y2g, so).

(2) The knot filtration of an element Ul • £, with £ e Ak(Hl(Y2g)) is given by

-g + k -i.
(3) The H\ (Y)l Torsion action is given as in the knot adapted complex.

The following is immediate.

Theorem 6.1. Ifuia is a product ofdistinct u;,- (according to our labeling convention

from Definition 5.4) then waU8~n^ £ CFKco{Y2g, B.Sq) has bifiltration level

(g-n(a).n(a)), where the value of the second coordinate, n(a), represents the knot

filtration level.

6.2. Homology of (Y2g, B#K). Given a knot K c S3, we can form the knot
B#K C Y2g. We will denote this knot by Kc, since the case of primary interest will
be that arising from a cuspidal curve, whereby K is given as the connected sum of the

links of the singular points. Much of what we say here, however, applies to a general
knot in S3. Like the Heegaard Floer complexes of closed three-manifolds, the knot
Floer complexes behave naturally with respect to connected sums, see [30, Section 7].
We have the following.
Theorem 6.2. CFK°°(Y2g. Kc,So) — CFK°°(K) <g> CFK°°(Y2g, B, so), where

the bifiltration is additive under tensors. Moreover, under this equivalence, a class

y £ Hi (Y2g) acts on the knot complex of Kc by Id <8> ay where aY is the action ofy
on the complex for B.

Recall that H*(CFK°°(K)) s F[C7, £/-1]. From the previous theorem along
with Theorem 5.5 we have the following.
Theorem 6.3.

(a) We have HFK°°(Y2g, Kc, s0)b F[L', U~x], Furthermore the generators of
grading g are represented by sums

J2aa^>UnM-gWa,
cteA

where the aa are arbitrary cycles ofgrading 0 in CFK°°(K), each representing

a generator of HFK°°(K).
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(b) Similarly, HFK°°(Y2g, Kc, $o)i F[[/, U 1], where generators ofgrading g
are represented by elements of the form

aa ® Un^~8wa.

Here aa is an arbitrary cycle of grading 0 in CFK°°(K) representing a

generator of HFK°°(K).

6.3. Computing d-invariants of </2-surgery on (Yig, Kc). We consider d2

surgery on Kc in Y2g. The resulting manifold, Y2gMKc), has Hx(Y2g42{Kc)) ss

7L2g 0 Z^2. There are thus d2 torsion Spinc structures on Y2gd2(Kc)', these

come with a natural enumeration by integers m, {sm}_d2/2<m<(]2/2, as given in [30,
Section 3.4] and described below. We now present a surgery formula describing the

Heegaard Floer homology of these surgered manifolds in terms of the knot Floer

complex of Kc-
Recall, for a manifold M with Spinc structure s we define

CF~(M, s) CF°°(M,s){i<o},

the elements of filtration level less than 0. The homology of this complex is denoted

HF~(M, s). There is a natural map HF~(M,s) ->• HF°°(M,s).
Theorem 6.4 (see [30, Section 4]). For d2 > 2g(K) + 2g — 1 and for —d2/2 <
m < d2/2, there is an isomorphism ofpairs ofF[U ] modules,

{CF00(Y2gtd2(Kc),sm),CF-{Y2g42(Kc),sm))
S (CFK°0(Y2g,Kc,so),CFK°0(Y2g,Kc,so){i<oj<m})[s}.

The grading shift [s] is given by

(2m — n)2 — n
s —

4/z

If a class is at bi-filtration level (i, j) in C FK°° (Y2g. Kc.so) then it represents a
class at filtration level max(/, j — m) in CFK00(Y2gd2(Kc), sm).

Remark 6.5. In [30, Remark 4.3] the bound given would be presented as d2 >

2g(Kc) — 1. We used here the fact that g(Kc) g(K) + g. Notice that for
the knots we are considering, g(K) + g Thus, the inequality d2 >

2g(K) + 2g — 1 becomes d2 > (d — 1 )(d — 2) — 1, which holds for all d > 1.

Let " —>• 3D be a map of graded F[(7] modules. We denote by y(, D) the

maximal grading of an element in If that maps nontrivially to <2), if defined.

Our principal example is the following. For a manifold M with Spinc structure s,
there is a natural map HF~(M, s) -»• HF°°(M, s).
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Definition 6.6. For M a rational homology sphere and s a Spinc structure, we define

d(M,s) y(HF~(M,s), HF°°(M,s)) + 2.

Remark 6.7. The ^-invariant is often defined in terms of HF+(M, s). The

equivalence with our definition is elementary.

For general M, a similar definition applies to define bottom and top (/-invariants.

Definition 6.8. For general M and s a torsion Spinc structure, we define

db(M, 5) y(HF~(M, s)b, HF°°(M, s)b) + 2

and d{(M,s) y(HF~(M,5)u HF°°(M,s\) +2.

Note that while our definition makes sense for any manifold, it is not as clear what
the geometric meaning of d{ and db are when the three-manifold has non-trivial triple
cup products.

For any knot K for which CFK°°(K) is well understood, Theorem 6.4 provides
sufficient information to compute db(Y2gd2(Kc)) and dt(Y2gd2(Kc))- The result
is best described in terms of an auxiliary function.

Definition 6.9. Let T be a set of ordered pairs of integers. For any integer m we
define

ym{T) (min^(max{/,y -m}).

In brief, ym measures the minimum diagonal distance from an element in T to the

lower left quadrant with top right vertex (0, m). The following result is essentially a

corollary of Theorem 6.4.

Theorem 6.10. For the complex ~ CFK°°(K), let T() be the set of all
filtrations levels (ordered pairs) of cycles of grading 0 that represent generators of
FlFK°°(K). For large surgery,

d(S*(K),sm) -2ym(T()) + ((2m - n)2 - n)/4n.

Example 6.11.

(a) If K is a negative trefoil, then T {(1, 1)}; if K is a positive trefoil, then

T {(1,0), (0,1)}.

(b) More generally, suppose that K is a positive L-space knot. Then the complex

CFK°°(K) is what is called a staircase complex, generated by so-called type A

elements of grading 0 and type B elements of grading one. The set T is the set

of all type A vertices of the staircase complex of K. Details are presented, for

instance, in [5].

(c) If AT is a connected sum of L-space knots K\,..., Kn and T\,..., % are the

corresponding sets Ti T(CFK^iKj)), then T is a set of sums t\-\ 1- tn,
where t, Fp, see also [5].

Items (b) and (c) of the above example are the most important in our applications.
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To state the corresponding result for the bottom and top d -invariants, we introduce
additional notation. For a set T of ordered pairs of integers, we let T{a, b} be the

same set shifted by (a, b). Applying Theorem 6.3 we have the following.

Theorem 6.12. For the complex G CFK°°(K), let T (G) be the set of all
filiations levels (ordered pairs) of cycles of grading 0 that represent generators of
HFK°°(K). Let n be a large integer.

(1) dh(Y2g,n{Kc),sm) -2 max {ym(T(G){a, b})} + g + s,
a,b> 0

a+b=g

(2) dt(Y2g,n(Kc).sm) =-2 min {ym(T(G){a, b}} + g + s,
a,b>0

a+b=g

where s — ((2m — n)2 — n)/4n.

An elementary calculation restates Theorem 6.12 in somewhat simpler terms,

using the same notation as in Theorem 6.12.

Theorem 6.13. For the complex G CFK°°(K),
(1) db(Y2g,n(Kc),sm) -2 max {ym-b+a(T(G)) + a} + g + s,

a,b> 0

a+b=g

(2) dt(Y2g,n(Kc),sm) —2 min ^ym^b+a(T(G)) + a} + g + s,
a,b>0

a+b=g

where s — ((2m — n)2 — n)/4n.

Combining Theorems 4.2 and 6.13, we have the following.

Theorem 6.14. If C is a cuspidal curve of degree d, genus g, then for all k e Sj,
and G CFK°°(K),

MY2g d2(Kc),Hd) =-2 max {ykd-b+aCT(G)) + a) + g + s > -g
a,b> 0

a+b=g
and

MY2g d2(Kc),Skd) ~2 min {ykd-b+a(T{^)) + a) + g + s < g,
a,b>0

a+b=g

where s — ^2kd~^d2 ~d and K is the connected sum of the links of the singularities
of C.

7. Semigroups, Alexander polynomials, and the d -invariant

The computation of the obstructions to a set of knots occurring as the links of
singularities has been reduced to computing ym(CFK00(K)) for particular knots K.
We will now summarize an interpretation of the value of ym(K) in terms of classical
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invariants of the singular points and in terms of the Alexander polynomial of K.
The material is presented in greater detail in [5]; further references include [16]
for a discussion of the Heegaard Floer theory and [38] for the relationship between

semigroups and Alexander polynomials.

7.1. Semigroup of a singular point. Suppose that z is a cuspidal singular point
of a curve C and B is a sufficiently small ball around z. There exists a local

parameterization \f of C; that is, a holomorphic map ij/(t) (x(t), y(t)) mapping
a neighborhood of 0 e C bijectively to a neighborhood of z e C, with x//(0) z.
For any holomorphic function F(x, y) defined near z we define the order of the zero
of F at z to be the order of the zero of the analytic map t F(x(t), y(t)) e C at 0.

Let S be the set integers which can be realized as the order for some F. Then S

is clearly a semigroup of Z>o, which we call the semigroup of the singular point.
The gap sequence, G : Z>o \ S, has precisely pt/2 elements; the largest is /x — 1,

where /z is the Milnor number.

The following two lemmas appear in Lemma 2.4 and a subsequent discussion

in [5], Further detail can be found in [38].

Lemma 7.1. The Alexander polynomial of the link ofa singular point can be written
as A x{t) 1 + (t — 1) 5Zy i{8j • where g\, ,gk is the gap sequence of the

semigroup of the singular point. In particular k — #G /x/ 2 g^(K).

If one expands the Alexander polynomial further, the following arises.

Lemma 7.2. If K is the link of an isolated singularity of a curve C and A*-(/) is

expanded as
U—2

A Kit) 1 +(t- 1 )g(K) + (t- l)2ZkjtJ>
j=0

then kj #{m > j:m <f S).

Example 7.3. Consider the knot T{4, 7). Its Alexander polynomial is

(f'8~1)(^~1) \-t+t4-t5 + t1-t9 + tn-tn + tu-t11 + tls
(t3~\)(t7-0

1 + (t - l)(f + t2 + t3 + t5 + t6 +19 + r10 + r13 + r17)

1 + 9(t - 1) + (t - 1)2(9 + 81 + It2 + 6f3 + 6r4

+ 515 + 4?6 + 4/7 + 4 ts + 319 + 2?10 + 2f11

+ 2r12 + r13 + t14 + t15 + t16).

The semigroup is (0,4. 7, 8,11, 12, 14, 15. 16, 18, 19,20,21,22,23,...). The gap

sequence is 1,2,3, 5,6, 9, 10, 13, 17.
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Definition 7.4. For any finite increasing sequence of positive integers G, we define

/g("t) #{k e G U Z<o: k > m}, (7.1)

where Z<o is the set of the negative integers. We call Ig the gap function, because

in most applications G will be a gap sequence, that is the complement of some

semigroup.

Notice that km 7e(m + 1), where km is defined in Lemma 7.2.

7.2. Expressing ym(K) in terms of the semigroup. We now wish to restate

Theorem 6.14 in terms of the coefficients of the Alexander polynomial, properly
expanded. For the gap sequence for the knot Ki, denoted Gk, let

7Kj (s) — #{k >s:ke Gk, U Z<0}.

Earlier we defined for a Heegaard Floer complex G CFK°°(K) the set of
integer pairs 7~(G) of filtration levels of cycles in G which represent generators of
HFK°°(K). By definition we have ym(T(G)) minq j)y-(max{/, j — m}). We

have already seen that computing ym is the main step in computing d-invariants of
manifolds built by surgery on K (or by surgery on K#B C Y2g). We have the

following results.

Theorem 7.5 ([4, Proposition 4.6]). If the knot K is the link of a singularity on a

cuspidal curve, then ym(K) lGKipi + h), where Gk is the gap sequence of K
and h is its genus.

For two functions 7,1': Z —» Z bounded below we define the following operation:

7 o I'(s) min{7(m) + F(s — m)}. (7.2)
me Z

Theorem 7.6 ([4, Theorem 5.6]). For K # Ki with the Ki the links of the

singularities on a cuspidal curve, we have ym(CFK°°(K)) I(m + h), where

I 11 o • • o In, and h is the genus of K.

7.3. Proof of Theorem 1. We need some preliminaries. For a semigroup S C Z>0
we introduce another function.

R(m) := #{S D [0,m)}. (7.3)

The function R is closely related to I{m) defined above, in fact in [5, Lemma 6.2] it
is proved that

R(m) — m — h + I(m),

where h #(Z>0 \ S). If S is a semigroup of a (unibranched) singular point, then h

is the genus of the link of the singularity.
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Given two semigroups Si and S2, we can consider two gap sequences G\, G2
and the corresponding gap functions I\ and /2. Then

R\ o R2 — wi — h + 11 o /2,

where h #(Z>0 \ Si) + #(Z>0 \ S2).

The proof of Theorem 1 is now a direct application of the above results. By
Theorem 3.1, the manifold Y is a surgery on B # K, where K is a connected sum
of the links of singular points of C. We use now Theorem 6.14 together with
Theorem 7.5 to see that for k e Sj we have

s
max {l(kd — b + a + h) + a} < g

a,b>0,a+b=g 2

min ll(kd — b + a + h) + a\ — - > 0,
a,b>0,a+b=g 2

where

(2kd — d2)2 — d2 (d-2k - \)(d-2k + I)
S ~ 4^2 ~ 4

and h is the genus of the connected sum of links of singularities; that is

(d-[)(d-2) f _ t(d- 3)
h g l+d---g.

Substituting a — g — b yields

kd — b + a + h [k -\ I d — 2b + 1.

(7.4)

We write j k + and notice that k e Sj if and only if j —I,... ,d — 2.

Then (7.4) takes the following form

0 < I(jd + 1 — 2b) + g — b — ^<g, for all b — 0,..., g.

Expressing s/2 in variables j and d yields G~d + \)U~d+2) we repjace j ^
After straightforward simplifications, we obtain

n ^ m -J I 1 in u ^ + ^^7 +7)
0 < R(jd + 1-2b) + b < g.

Note that the cases j — 1,0 are excluded in the statement of our theorem, as they
contain no information.
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8. Examples

We will present here several applications of the results of the previous sections, along
with detailed computations. More substantial applications in algebraic geometry will
be presented in Section 9 and especially in Section 9.4.

8.1. A degree 21, genus one example. Consider the case of d 21. If a degree d
curve is of genus one and has a single singularity of type (p, q), then one would have

{d-\)(d-2) (p-l)(q-\)
2 2

This simplifies to (p — l)(g — 1) 378. There are eight relatively prime pairs
(p, q) that satisfy this equation: (2, 379), (3, 190), (4, 127), (7, 64), (8,55), (10.43),
(15,28), and (19,22).

For each possibility, Theorem 1 provides 38 two-sided inequalities that must be

satisfied by the associated function R. (The value of j ranges from 1 to d — 2 and b

ranges from 0 to g 1.) The first of these inequalities, with j 1 and b 0, is:

3 < R(22) < 4.

The semigroup generated by {2, 379} contains 11 elements in the interval [0,22),
and thus R(22) 11 does not satisfy this inequality. Similarly, the semigroup
generated by {3,190} contains eight elements in the interval [0,22), and thus

R(22) 8 does not satisfy the inequality. The semigroup generated by {4,127}
contains six elements in the interval [0, 22), and thus R(22) 6 does not satisfy the

inequality.
In the next two cases, (7, 64) and (8,55), all these inequalities are satisfied. In

Section 9 we will discuss the realization of these curves and place the example
d 21, (p, q) (8, 55) in a general sequence of realizable curves, related to the

fact that 8. 21, and 55 are the Fibonacci numbers <p6~<ps- and (p\o-

For the pair (10, 43), we need to consider a different value of j to find the first
obstruction. Here we let j 2 and b 0, giving the inequality

6 < R(43) < 7.

The semigroup generated by (10,43) contains five elements in the interval [0,43), and

thus f?(43) does not satisfy the inequality. Finally, we can rule out the possibilities
of (15. 28) and (19. 22) by returning to the inequality 3 < R(22) < 4. In both cases,

R(22) 2.

8.2. A degree seven, genus three example. As a second example, we consider

a singular curve of genus 3, showing that there is no degree seven curve with one

singular point, whose Puiseux pair is (4,9).
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A generic curve of degree d 7 has genus 15 and the (4,9)-torus knot has

genus 12. Thus a degree seven curve with one singular point, whose Puiseux pair
is (4, 9) would have genus 3. Theorem 1 provides 20 two-sided inequalities; the value

of j is between 1 and 5 and the value of b is between 0 and 3. Of these inequalities,
exactly two provide obstructions. For j — 1, b 0 and j 3, b — 3, we have the

constraints:

3 < R{8) < 6,

7 < R( 16) < 10.

The semigroup generated by {4,9} has two element in [0,8), so R(8) 2 does

not satisfy the first inequality. This semigroup contains six elements in the interval
[0,16) (these elements are {0,4, 8, 9, 12, 13}) and thus R( 16) 6 does not satisfy
the second inequality.

8.3. A degree nine, genus eight example. The obstructions given by Theorem 1

become weaker as the genus increases, necessarily so, since more singularity types
can be realized. We present here one more example, one in which the obstruction
remains effective despite the genus being large relative to d. We consider the case

of d — 9 and the curve having a singular point, whose Puiseux pair is (5, 11).
Since the generic genus of a degree nine curve is 28 and the (5,1 l)-torus knot

has genus 20, a curve of degree nine and having one singular point whose Puiseux

pair is (5, 11) would have genus eight. Thus, Theorem 1 provides 63 two-sided

inequalities, as j ranges from 1 to 7 and b ranges from 0 to 8. Precisely one of these

provides an obstruction. In the case j =5.6 8 we get inequalities

13 < R{30) < 21.

The semigroup generated by {5,11} contains 12 elements in the interval [0, 30), and

thus the inequality is not satisfied.

8.4. A singularity T(4,7) on a degree six curve. The singularity was discussed

briefly in Example 7.3. Since a generic degree six curve has genus 10 and the

(4, 7)-torus knot has genus nine, a degree six curve having one singular point, whose

Puiseux pair is (4,7), is of genus one. There are eight constraints given by Theorem 1.

Two of these are

3 < R(1) < 4

and 5 < /?(11) < 6.

Since for (4,7), R(l) 2 and R{ \ 1) 4, these inequalities are violated.
This example is of special interest. We will see in Example 10.1 that another

important criterion, semicontinuity of the spectrum, is insufficient to obstruct this

case.
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9. Genus one curves with one singularity having one Puiseux pair

In the section we prove our classification result for genus one curves with a single
singular point with one Puiseux pair. The bulk of the work lies in the obstruction
of curves, for which we use Theorem 1 together with the multiplicity bound from
Section 9.3 below. For the sake of exposition, we introduce some (non-standard)
terminology. Throughout the section, we will call a curve C of type (p,q), if it
has precisely one singularity and that singularity has one Puiseux pair (p,q). Let
(po, 0i,... be the sequence of Fibonacci numbers such that cp0 0, (pi 1 and

(pn+1 <pn + <Pn-\ • The main theorem of this section is the following.

Theorem 9.1. Suppose C C C P2 is an algebraic curve ofgenus one, degree d, and

of type (p,q). Then either: (A) d — 04„, p <p\n-2, <1 <t)4n+2 f°r some n > 0;

or (B) the values of (p, q) and d are on the following list.

(a) (p,q) (2,5), d 4;

(b) (p,q) (2,11 ),d 5;

(c) (p, q) (3, 10), d 6;.

(d) (p,q) (6,37), d 15;.

(e) (p,q) (9,64), d 24;.

(f) (p,q) (10,73), d 27;

(g) (p,q) — (12, 91), J 33;

(h) (p,q) (p, 9p + 1), d — 3p for p 2,..., 10.

Remark 9.2. (a) Theorem 9.1 does not state that any of these cases can be

realized as an algebraic curve, nor does it state in how many ways each case can
be realized if some realization exists. In Proposition 9.14 and Proposition 9.15 we

clarify that cases (a)-(d) can be realized by an algebraic curve and that the main case

(<t>An-2,4>4n+2) can be realized.

(b) All the special cases have degree at most 33.

We begin with the following simple result.

Proposition 9.3. If a degree d curve is of genus one and has one singularity with
one Puiseux pair (p, q), then (p — 1 )(q — 1) — d(d — 3).

Proof. This is an immediate corollary of the genus formula, restating the condition
that (d - 1 ){d- 2)/2 (p - 1 )(q - l)/2 +1.

The rest of this section is devoted to proving Theorem 9.1.
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9.1. Preliminary bounds. Assuming that C satisfies the assumptions of Theorem

9.1 and the d, p, and q are as in the statement of that theorem, we begin by
developing some basic bounds.

Lemma 9.4. Ifd > 5, then p < d — 3 and q > d + 3.

Proof. First observe that p < d — 1: since p < q and (p — \ )(q — 1) (d — 3)d,
it immediately follows that p — 1 < d —2.

We now improve this to show that p < d — 2. By Theorem 1, setting j 1 and
b 1, we find

2< R(d -\) < 3.

If p d — 1, then 0 is the only element of the semigroup generated by p and q
that is in the interval [0. d — 1), in which case R(d — 1) 1, giving a contradiction.

Finally, we consider the case that p d — 2, which we write as p — 1 d — 3.

Clearly q — 1 d and q d + 1. By Theorem 1, setting j — 2 and b 1 we find

5 < R(2d - 1) < 6.

The following integers are the first six elements in the semigroup generated by d — 2

and d + 1 in increasing order:

{0, d - 2, d + 1, 2(d — 2), (d — 2) + (d + 1),2(d + 1)}

{Q,d -2,d + 1,2d -A,2d - 1,2d +2}.

Thus, R(2d — 1) £ 4, with equality whenever d > 5, giving the desired contradiction.

(If d 4, then the element 3d — 6 would also be an element in the semigroup that
is less than 2d — 1.)

For the lower bound on q, we observe that the minimum value of q would occur
if p d — 3. Solving for q yields q d + 2 + Since q is an integer and

d > 4, it follows that q > d + 3.

We now place a stronger upper bound on p and a lower bound on q.

Lemma 9.5. Suppose C satisfies the conditions of Theorem 9.1. If d > 6, then

p < jd and q > 2d — 1.

Proof. First observe that by Theorem 1 with j — 1 and b — 0,

3 < R(d + 1) < 4.

If p > jd then there are at most two elements (0 and p) in the semigroup
generated by p and q in the interval [0, d + 1), giving a contradiction.

If p \d, then one computes q — 1
2(- ~1J^2~Z'>~2

> which is not an integer
since d > 4.

Given that p < jd, elementary algebra shows that q > 2d — 1 — Since

d > 6 and q is an integer, q > 2d — 1 as desired.
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For bounds in the reverse direction, we have the following lemma.

Lemma 9.6. Ifd > 8, then p > and q < 2d + 16.

Proof. Again applying Theorem 1 with j 1 and h 1, we have

R(d - 1) < 3.

That is, at most two positive multiples of p are in the interval [0,d — 2], Thus,

p > as desired.

Simple algebra now yields that q < 3d + 1 + <3d + \1.

9.2. A Bogomolov-Miyaoka-Yau based inequality. We begin with a summary
of a result of Orevkov [26] which is based on the Bogomolov-Miyaoka-Yau
inequality [23],

Associated to each singular point on a curve C there is an Orevkov M-number,
defined in full generality in [26]; we note here that in the case of singularities having
link a (/?,g)-torus knot, that is, having a single Puiseux pair (p,q), the value is

M p + q- [q/p] - 3.

We have the following consequence of the Bogomolov-Miyaoka-Yau inequality

[23]; because the details are fairly technical, we delay presenting them until
Section 9.6.

Theorem 9.7. If C C (CP2 is a cuspidal curve of genus g > 0 and degree d with
singular points z\ ...,zn and corresponding M numbers Mi,..., Mn, then

n

^M,<3J+4g-5. (9.1)

Example 9.8. Theorem 1 does not prohibit the existence of a curve of degree 3p
(p 1,2,...) with genus 1 and a singularity (p; 9p + 1). One can indeed check that
this case satisfies (1.1) for all j. Nevertheless it does not satisfy (9.1) if p > 11. In
fact, we have M p + 9p + \ — 9 — 3 10p — 11 and the bound is M < 3d — 1

9/7—1. This is satisfied only when p < 10.

9.3. The multiplicity bound. We will now prove a multiplicity bound similar to
one given by Orevkov in [26, Theorem A], We restrict to the case of interest, g 1

and one singular point, but with care the argument extends to arbitrary genus and

multiple singularities. In the case of a singular point with one Puiseux pair (p, q),
the multiplicity is the minimum of p and q which, since we assume throughout
that p < q, is given by p.

Theorem 9.9. Suppose that C is a cuspidal curve of degree d, genus g 1, and
with one singular point ofmultiplicity m. Then d < otm + ß, where a — ^(3 + V5)
and ß | + V5-
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Proof. By [6, Proposition 2.9] we have the Milnor number p. and M number satisfy

p < m(M — m + 2) (this is immediate for a singularity with one Puiseux pair).
Therefore, by the genus formula

(id — 1 )(d —2) — 2g < m(M — m +2).

Using the assumption that g — 1 and Theorem 9.7, it follows that

d2 — 3d 5 m(3d — 1 — m + 2).

This can be rewritten as

d2 — 3(1 + m)d + (m2 — m) < 0.

Viewing this as a quadratic polynomial in d yields

2d < 3(1 +m) + ^9(7 + m)2 — 4(m2 — m).

This simplifies to

r l 22 9
2d ^ 3 T 3m v 5m \ 1 -f- — T

5m 5m2'

which we can rewrite as

2d < 3 + (3 + y/5)m + V5m( I\ j_ _i i ].
VV 5m 5m2 J

The proof is completed by showing that for m > 2,

22 9 ^ ^
11

a/1 + 5^n + 5^2 ~ V 5'
This is an elementary exercise in calculus, perhaps most easily solved for substituting
m ^ to consider

yj 1 + Y-X + |X2 - 1

on the interval (0, |], The first derivative of this function is easily seen to be negative,
and L'Hopital's rule determines the limit at 0 to be -y-.

9.4. Classification theorem. Theorem 9.1 will be deduced from the multiplicity
bound (Theorem 9.9) along with a technical result, Lemma 9.11, which follows the

proof of a sequence of simpler lemmas. Throughout the rest of this section we
assume C is a curve of degree d and genus one, with exactly one singular point, and

that singular point is of type (p, q). We remind the reader that p < q.



242 M. Borodzik, M. Hedden and C. Livingston CMH

We need to introduce some notation. Let 0o, 0i. be the sequence of Fibonacci
numbers such that 0o 0, 0i 1 and 4>n+\ <Pn + <Pn-i- Most elementary texts

on number theory include the necessary background, for instance regarding such

facts as gcd(0„, 0„+1) 1 gcd(0„, fn+2) as well as nonlinear relations, such as

Cassini's Identity 0„_i0„+1 —<Pn (—1)", and its generalization 0„_r0„+r—02
(_!)"—r + 1^,2

Our next step is to rule out some special cases of possible values of p.

Lemma 9.10. Suppose C is as in the assumptions of Theorem 9.1 and is not one of
the exceptional cases (p, q) (2, 5), (2, 11), (3,10), or (6, 37). Then p d

for all j > 0.

Proof Suppose that p d for some j. Since <£27-1 is coprime to 027 + 1, we

see that ^ is an integer.

Since (p — \)(q — 1) d(d — 3), we have

('<j>2j-id — cp2j+i)(q — 1) <t>2j + \d{d — 3).

The left hand side can be rewritten using the identity <^27+1 3<i>2j-i ~ <p2j-3 to

give
\fd — 3)027-1 + 027—3] — 1) 027 +1 d{d — 3).

Taking these equalities modulo d and d — 3, respectively, we arrive at

02j + i{q — 1) 0 mod d

and <f2] —3 (q — 1) 0 mod (d — 3).

Thus d divides <j>2j + i(q — I), d — 3 divides 02j —3(<? — 1) and so \cm(d,d — 3)
divides lern(027+i, <p2j-3)(q ~ !)• The value of lern(d, d — 3) is either d(d — 3)

or d(d — 3)/3, depending upon whether or not d is divisible by 3. In either case, we
have

d(d — 3)|3027-3027 + l (q — 1).

Since (p — 1 ){q — 1) d(d — 3), if follows that

(p- I)|3027-3027 + l- (9-2)

Notice that in the case that d is not divisible by 3, we have the stronger constraint

(P — 1)1027-3027 + 1-

Denote x 027-1 and y ^+[ e Z, so that xy p. Notice that x2 + 1

4>2j-\ + 1 027 —3027+1 > which follows from the basic identities satisfied by the

Fibonacci numbers. By (9.2) xy — 1 divides 3(x2 + 1); that is, there exist c > 0

such that

c(xy — 1) 3jc2 + 3.
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Taking both sides modulo x, we infer that c kx — 3 for some integer k > 0.

Substituting this, after simplifications we obtain

(ky — 3)x 3y + k. (9.3)

This equation has only a finite number of positive integral solutions, which we now
enumerate. First, if x 1, then

and the only solutions for the triple (x, y, k) are {(1, 2, 9), (1, 3, 6), (1, 4, 5), (1,7, 4)}.
Similarly, the only solutions with y 1 are {(2, 1, 9), (3,1, 6), (4, 1, 5), (7,1,4)}. If
x > 2 and y > 2, we write

An easy calculus exercise shows that on the domain {x > 2, y > 2} the maximum
of the right hand side is achieved at (2.2), with value k 4. For k — 1,2,3. and 4,

one finds the only solutions for (x, y, k) are

{(4,13, 1), (5, 8,1), (8, 5,1), (13,4, 1), (2, 8,2), (8,2,2),

(2,3,3),(3,2,3),(1,7,4),(2,2,4),(7,1,4)}.

Thus, the values of (x, y) to consider are

{(1,2), (1,3), (1,4), (1,7), (2,2), (2,3), (2, 8), (4, 13), (5, 8)}

and their symmetric pairs.
Recall that we have x <t>2j-i, y 02^+1» a°d P xy. The only possibilities

for x are x 1,2,5, and 13, in which case v f. and respectively. The

possible pairs (x, y) are thus

{(1,2), (1,3), (1,4), (1,7), (2, 1), (2,2), (2, 3), (2, 8), (5, 8), (13, 4)}.

An immediate calculation yields the following possibilities for (p, d):

{(2,4), (3, 6), (4, 8), (7, 14), (2, 5), (4, 10), (6,15), (16, 40), (40, 104), (52, 136)}.

For most of these, the corresponding value of q 1 + is not an integer. The

values of (p, q, d) that can arise as integer triples are

{(2, 5,4), (3, 10, 6), (2, 11, 5), (6, 37, 15)}.

Lemma 9.11. Suppose C is as in the assumptions of Theorem 9.1 and is not one of
the exceptional cases. If d > <p2k-\ + 2 and d > 6, then p < d.
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ProofofLemma 9.11. We proceed by induction over k. The base case, k 1, is

that p < |d, which is the statement of Lemma 9.5.

Notice that the sequence
<p2k-\

ar
4*2k + \

is decreasing, converging to 3+2^. So suppose we have already proved that p <
t2K ~3 d for some k and assume that p > t2k~l
<P2k-1 r <P2k+l

<t>2k-\
4>2k +1

2 d for some k and assume that p > ^ j d (by Lemma 9.10 we do not have to

consider the possibility that p t2k~l d).
Assume momentarily that

q > *2k~x-i.
<p2k-3

Then the number of the elements in the semigroup generated by p and q in the

interval [0, f2k-\d] is the number of lattice points in the triangle

This is at most the number of the lattice points in the triangle

T {(*, y) R|0 : x—'— + y—^— < 1

' (P2k + l <P2k-3

notice that since p > d and q > d, we replaced the inequality < 1 with
the strict inequality < 1, essentially deleting the hypothenuse of the triangle.

Counting lattice points in a polygon with lattice points as vertices can be done

using Pick's theorem. In our situation, though, the triangle is especially simple so

we can use an elementary argument, which can be found for instance in [35, p. 64],
to conclude that the number of lattice points in T is

ß _
(<p2k + \ + \){<f>2k-3 + 1)

_ j
2

Finally, elementary properties of Fibonacci numbers permit us to rewrite this as

^ _
(<p2k—l + \ )(<p2k-1 + 2)

_ |~ 2

To summarize, under the assumptions that p > d and q > we have

that the number of elements in the semigroup generated by p and q in the interval

[0,<hk-id] is at most R. However, Theorem 1 with j 4>2k-i ar|d b 0 states

that

a ^ nsj. J I 1\ (02*-1 + l)(</)2*-l +2)
o £ R(4>2k-\d + 1) < 1,
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and in particular,

D/J. 7 1
(02fc— 1 + 1)(02/-1 +2)

R(4>2k-\d + 1) >

Noting that R — R{(p2k-\d + 1) yields a contradiction. (We have used here that
d > (j>2k-\ +2, since Theorem 1 requires that j <d — 2.) Thus, (1.1) is not satisfied
for j 4>2k-\ an(i b 0.

With this contradiction, we can now conclude that under the assumption p >
t2k~l d we must have q < 12k~l d.
02A + 1 ^ </>2A-3

Recall that our induction hypothesis is that p < 1fok~\d. That p is an integer
implies that

02Z—3 1

p < d
02/:—1 02Z-1

We can use these inequalities to conclude

K4*2k — l <p2k-\ /V02Z-3 J

This can be written as

(p _ 1)(9 _ 1) < d2 _ (+ + 1 _ j— + (9.4)
V 02/:—1 02/:—3 / 02/:—3 02/:-1

The term in parenthesis can be rewritten as

02/:—3 02/-1 _ 02Z-3 02/-1 02/4-1
_

02/ + 1

02/:-1 02/:—3 02/:-1 02Z-3 02/:-1 02/:-1

Using the facts that 02/;-3+02/+1 302/-i and 02/-302/+i _02/-i 1, the first

and the third term yield 3, while the second and the last give — ^ so (9.4)
can be rewritten as

- / 1 \ d 1

(/? - 1)(<7 — 1) < - 3 - J + 1 - + (9.5)
V 02/:—302/: —1 / 02/-3 02/-1

which can be rewritten as

d d 1

(/? - !)(<? - 1) < r/2 - 3rf + + 1 - +
02/—102/:—3 02/—3 02Z-1

Since (/> — l)(g — 1) d2 — 3d, this implies that

d d 1

+ 1 - -— + -— > 0.
02/ —102/—3 02/—3 02/—1

This is equivalent to

/ ^ ^ / 02/ —1 + 1

''-fe-TS4UT
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The conditions of the theorem include d > 02k-1 + 2, so this equality implies

Clearing the denominator and writing 02k-3 02k-1 — 02k-2 yields

(02k-l - l)(02k-l + 2) 5 (02k-l — <t>2k-2)(<p2k-1 + !)•

Expanding, this becomes

02k—1 + 02k—1 — 2 < 02/t—l + 02k—1 — 02k-202k-l — 02k-2-

Finally, this can be rewritten as

02k—202k —1 + 02k—2 5 2,

which is false for k > 1.

With this final contradiction we see that » < f2*~'d must hold, so the induction^ — 02k +1
step is accomplished.

We shall need another result.

Lemma 9.12. Ifd > 6 and p+q > 3d, then p < |d; equivalently, ifp > |<i then

p + q < 3d.

Proof. Suppose that p + q > 3d and 8p > 3d. The eight multiples ap with
a 0,..., 7, are possibly in [0, 3c?], but %p is not. The conditions imply that p+aq
is not in the interval for any a > 0. It is possible that q is in the interval, but 2q is

not, since in Lemma 9.5 we showed that q > 2d — \ This gives a maximum of 9

elements in S n [0, 3c?], while (1.1) for j 3 and b 0 implies that there must be

at least 10.

Proofof Theorem 9.1. We suppose d > 6; for d < 6 the result is a straightforward
computation.

We consider three cases. The first case is p <\d. Combining this with the result

of Theorem 9.9, which states that d < ap + ß, yields (| — a)p < ß. This places an

upper bound on d; performing the arithmetic and using simple bounds on a and ß

yields d < 300. All of these can be analyzed with a computer search, which yields
the exceptional cases (a)-(h) of Theorem 9.1. Notice that the only examples having
degree more than 33 are in item (h) of that list, but the BMY inequality rules these

out: see Example 9.8 following Theorem 9.7.

Suppose now that p > |d. By Lemma 9.12, p + q < 3d. The second case is

that p + q < 3d — 1, so q < 3d — 1 — p. Substituting this into (1.1) we obtain

(p — l)(3c? — p — 2) > d{d — 3).
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We proceed as in the proof of Theorem 9.9. The inequality can be rewritten in terms
of a quadratic polynomial in d:

d2 — 3pd + (p2 + p — 2) < 0.

Applying the quadratic formula yields

2d <3p + s/5p2 — Ap + 8

This in turn can be written

2d <3p + -n/5p + s/~5p

The term in parenthesis equals 0 for p 2 and is negative for p > 2. Thus, in
general, we have d < ap.

For some k,d e [(j>2k-i + 2,(p2k+i + !]• By Lemma 9.11 we have p < d.
Combined with d < ap we find

<p2k + \ d
< — < a. (9.6)

4>2k-l P

The sequence ^*+1 are the even convergents of the continued fraction expansion
of a. As such, they form an increasing sequence converging to a, offering the closest

lower approximations for given denominators. More precisely, (9.6) implies that

p > <p2k-\ (See, for instance, [25], for these results concerning continued fractions.
In particular, Theorem 7.13 of [25] states the required result concerning the sense in
which convergents of continued fractions provide the best rational approximations to
an irrational number.)

We now have <p2k-\ < P < ^a+'i 'mP^n§ ^at ^ > 4>2k+1> and thus

d (j>2k+\ + 1- We now have

4>2k + \ 4>2k +1 + 1

SO

Since p is an integer,

02/t-l P

^
4>2k-l

P < <p2k-l + "
<P2k +1

P < <p2k-l-

a contradiction.
The last case is p + q 3d. Expanding (p — l)(g — 1) d(d — 3), we find

p + q — pq + 3d — d2 + \. Combining these gives that pq d2 — 1. Writing
(q - p)2 (q + p)2 — Apq yields (q - p)2 5d2 + 4.
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We need to find all the integers d such that 5d2 + 4 is a square. This problem
is a case of Pell's equation. One accessible reference is [10, Section 5.1], where
this precise problem is solved. The result states that 5d2 + 4 is a square if and only
if d fat for some integer i. For a more general number theoretic discussion, a

good reference is the discussion of the Unit Theorem in [21].
As a brief aside, we include here a summary of the argument.

Lemma 9.13. If (x, y) is an integer solution to 5v2 + 4 x2 then y ±02« for
some n.

Proof This equation can be rewritten as (| + \V/5)(f — \ -J~S) 1- Notice that x
and y must have the same parity, and thus solutions correspond precisely to units

of norm one in the algebraic number ring Z[1+^]. (Units have norm either plus
or minus one.) For a real quadratic number ring, the set of units forms an abelian

group isomorphic to Z2 © Z (see, for instance, [21] or [9]). In our case, the infinite
summand is generated by an element of the form § + §\/5, where a and h are positive
and have the same parity. Clearly, a generator of this form will have the minimum
possible value of a. Since y 1 + I s/5 does have norm —1, this is the generator
of the set of units modulo torsion.

The first five powers of y are \ \ V5, § + | V5, | + § \/5, \ + § V5 and

^ + §\/5. Notice the numerators of the coefficients of \/5 in yn are the Fibonacci
numbers, 0„ and the numerator of the rational parts can be expressed as 30„_i +<Pn-2-
For instance, 11 3-3 + 2. That this pattern continues is an easy inductive
argument using the defining recursion relation for Fibonacci numbers. Finally, since y
has norm — 1, only even powers of y have norm one, and thus only the Fibonacci
numbers 02„ appear as solutions for y in our original equation 5y2 + 4 x2.

Solving the pair of equations p + q — 3d and (p — l)(g — 1) d(d — 3) for p
and q, with q > p, yields

ß j
p -d - - s/5d2 + 4 02,-2

2 i
q — -d + - y/5d2 + 4 4>2i+2-

Notice, that gcd(p,<?) gcd(02i-2, <p2i+2) 0gcd(2;-2,21+2)- If ' is odd, then p
and q are both divisible by 3, so they are not coprime, and the case is ruled out. We

are left with the case p 04,-2, q 04,+2 and d 04,.

9.5. Construction of curves. We will now use Orevkov's argument (see [26, Section

6]) to construct curves with (p, q) (047-2> 04/+2) and degree 047.

Proposition 9.14. For any j 1,2,... there exists a curve ofgenus 1 and degree 047

having a unique singularity with of type (04^-2.04;+2)-
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Proof. Fix a curve N of degree 3 with one node. Let f:CP2 — CP2 be a Cremona
transformation as in [26], Let F\ be a cubic that passes through the node of N and is

tangent to one branch with the tangency order eight. Such curve exists by a parameter
counting argument; that is, the space of all cubics has dimension (3 ^2) — 1 9, we
need one parameter to make F\ pass through the node, and each order of tangency
is one more condition, so we need altogether eight conditions. Notice that F\ has

genus one and does not intersect N away from the node.

We define inductively Fj f(Fj-i Since / is biregular away from C P2 \ N,
each curves F} has genus one and a single cusp. The characteristic sequence of
the point of F\ which is tangent to N is (1,8) (by this we mean that it is a smooth

point of Fi and the order of tangency is eight), and (1.8) (02.06)- The image of
this point under the composite / o / o • • • o f is the singular point of Fj and the

characteristic sequence becomes (04;-2.04;+2) by the same argument as in [26],
The degree of Fj is computed via the genus formula and the relation

(04;—2 — l)(04;+2 ~ 1) 04; (04; ~ 3).

Proposition 9.15. Cases (a), (b), (c) and (d) from Theorem 9.1 can be realized;
that is, there exists a curve of degree 4 with singularity (2; 5), a curve of degree 5

with singularity (2; 11), a curve of degree 6 with singularity (3; 10) and a curve of
degree 15 with singularity (6; 37).

Proof. In [36, Example 1 ] there is given a construction of curves (b) and (d). A
degree 4 curve with a (2; 5) singularity can be given by an explicit equation. We are

thankful to Karoline Moe for giving us an explicit construction of curve (c); we will
not present her proof here.

The following result is well known to experts, we refer to [1] for a modern

approach.

Proposition 9.16. There exists a curve ofdegree 6 with a singularity (2; 19). This is

case (h) from the list with p 2.

9.6. The BMY inequality. Here we provide background for the proof of Theorem

9.7. Our approach closely follows [7,26]. The Bogomolov-Miyaoka-Yau
inequality, see [17,23], is one of the main tools in studying curves in algebraic
surfaces.
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To formulate the BMY inequality we need some preliminaries. We let X be a

(closed) algebraic surface. Recall that a divisor on X is a formal sum ai A > where

a,- e Z and Z), are closed algebraic curves on X. One of the main examples is the

canonical divisor K. This is a divisor which represents a class in H2(X; Z) that is

Poincare dual to the first Chern class of the cotangent bundle of X.
Let D be a reduced effective divisor (that is, each irreducible component of D,

which is a reduced algebraic curve, has coefficient one) with the property that X \ D
is of log-general type. We refer to [22, Section 1.1 ] for the definition of log-general
type and note that in our applications X \ D will always be of this type. There
exists a so called Zariski-Fujita decomposition of the divisor K + D \ this is a unique
decomposition K + D ZZ + N, where H and N are rational divisors and H is

the numerically effective (in [22] this is called "arithmetically effective") part and N
is the negative part of K + D ; see [13] or [22, Section 1.3].

The two fundamental proprieties of this decomposition are that H • N 0 and
N2 < 0. The BMY inequality as given in [17] or [26, Theorem 2.1] says that
H2 < 3x(X \ D), where x is the Euler characteristic; for our purpose the following
formulation is sufficient.

Theorem 9.17 (BMY inequality). Suppose X is an algebraic surface, K its canonical
divisor, and D a divisor on X such that X\D is of log-general type (see [13]). Then

(K + D)2 <3X(X\D). (9.7)

If, in addition, in the Zariski-Fujita decomposition K + D H + N we have

N 0, then we cannot have an equality in (9.7).

Suppose that C C C P2 is a cuspidal curve of positive genus g > 0 with singular
points z\,... ,zn, n > 0. For some m > 0, appropriately blowing up m points
resolves the singularities, providing what is called a good resolution (also known as

an SNC resolution, where SNC stays for "simple normal crossings"); in particular,
it constructs a curve C', the strict transform of C, in a manifold X diffeomorphic

to CPHmCP2.
The steps of forming the good resolution of C build a sequence of divisors in X,

E\ Em, each of multiplicity one (they corresponds to the exceptional divisors of
the blow-ups constituting the good resolution). The reduced exceptional divisor E
is the sum ^ £); see [38, Section 8.1]. We set

D C' + E.

This is a reduced effective divisor on X.
A result of Wakabayashi [37] states that the complement of a positive genus

algebraic curve in CP2 of degree d > 4 is of log-general type. By the genus formula,

any curve of degree 3 or less is either nonsingular or genus 0. In particular, C is of
degree four or more and Wakabayashi's result implies that the complement CP2\C
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is of log-general type [37], Since C P2\C ^ X \ D, we have X \ D is log-general
type, so Theorem 9.17 applies.

In order to show that the inequality in (9.7) is sharp, we use the following result

proved in [27]; see [28] for more detailed exposition.

Lemma 9.18. If C has n cuspidal singular points and K + D H + N is the

Zariski-Fujita decomposition, then N2 < — |. In particular, if C has at least one

cuspidal singular point, then N is not trivial.

Since X\D^CP2\C, we have /(X \ D) — (2g + 1). Thus, (9.7) becomes

(K + D)2 <3(2g + l).

This can be written as

K(K + D) + D(K + D) < 6g + 3.

By the adjunction formula D(K + D) 2g — 2; see [37, Section 7.6]. Substituting
this, we obtain

K(K + D) <4g + 5.

The homology of X splits as an orthogonal sum, with one summand spanned

by L (representing a generator of II2(C P2)) and separate summands, one for each

singular point. Details are presented in [26, Section 2], Accordingly, we write
K Kq T K\ -(-'•• T Kn and D Dq T D\ T • * * -f Here and Dq
belong to the summands spanned by L and Kt, and the Z), belong to the summands

corresponding to the singular points z,. Note that K0 —3L and D0 — dL.
Using this decomposition, we can write the inequality as a summation:

n

K0(K0 + D0) + J2 K,(K, + D;) < 4g + 5.

1 1

Substituting the values of K0 and D0 we obtain.

n

9 — 3d + ^ '
Kt (Ki + £),)< 4g + 5.

1=1

According to [7, Proposition 4.1], Kt{Kt + Dt) can be identified with the Orevkov
M-number (where it was called the codimension). Thus,

< 3d + 4g-4.
i> 0

As both sides of the above inequality are integers, we have

J^Ml <3d + 4g-5.
i >0

Theorem 9.7 is proved.
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10. The semicontinuity of the spectrum

The spectrum £ of a singular point of a plane curve is a collection of rational numbers

from the interval (0, 2), where each rational number can occur multiple times. The

count with multiplicity, #£, is the Milnor number of the singularity. It is one of the

strongest invariants of singularities. From a topological point of view, the spectrum
can be (almost) recovered from the Tristram-Levine signatures of the link. For a

singularity xp — yq — 0 (that is a singularity whose link is T(p, q)), the spectrum is

the set

~ 1 - 1 - P ~ !' 1 - J - 1 ~
(P <7

where if a number x can be presented in v different ways as a sum j it means
that x appears in with multiplicity v.

There is a property of semicontinuity of spectra. Following [10, Section 2.4] we
will formulate it as follows.

Suppose C is an algebraic curve in CP2 of arbitrary genus and not necessarily
cuspidal. Suppose deg C d. Let zi,..., z„ be the singular points and Si,..., £„
the corresponding spectra. Let

Zd,d |-7 + 7, 1 < i,j < d - l|
(d d

be the spectrum of the singularity xd — yd 0. Then for any x e M we have

n

#(^d,d n (x,x + l)) > £#(s, n (x,x + 1)). (10.1)

j=1

Equation (10.1), the spectrum semicontinuity property, is one of the strongest
obstructions to the existence of curves in CP2 with prescribed singularities. It
is most effective if the total number of elements of the spectra J] #S7 is close to

#Sd,d (d — l)2, that is, if the (geometric) genus of C is small. The spectrum was

effectively used in [10] to classify rational cuspidal curves with one cusp and one
Puiseux pair at that cusp. We will show it is of limited effectiveness in case of curves
of genus one.

Substituting x — 1 + ^. into (10.1), where / 1,..., d — 1 we obtain

E#(S7 0 (0'^)) " 5(/ ~1)(/- 2)" (10-2)

This equation in [10] is referred to as (SSi). We shall examine how these inequalities
apply to the classification problem of cuspidal curves of genus one with one singular
point and one Puiseux pair, as in Theorem 9.1.
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Example 10.1. The case where C has degree 6 and is of type (4, 7) (so its genus
is 1) satisfies all the SSi inequalities, but cannot occur by discussion in Section 8. In
fact there is only one singular point with spectrum

E -11 15 18 19 23 25 26 27 1

28' 28' 28' 28' 28' 28' 28' 28 " "
(the spectrum is symmetric around 1, so we give only elements in spectrum in the

interval [0, 1]). The values of #£ n (0, for / 1,..., 6 are 0,0, 1, 3. 6, 9, which
are less than or equal to 0,0,1, 3, 6. 10, as given by the right hand side of (10.2).
Theorem 1, however, obstructs the existence of such curve, see Section 8.4.

Similarly, one can show that the property (SSi) admits, for example, a genus one

curve of degree 75 and with a singularity of type (28,201).

Example 10.2. If C is a curve of type (p,q), then, according to [10, Example 2.4],
{SSj-1) reads as

(p- 1)07-1)
+

q pq
-d. L d \ < (d-2)(d-3)

Since (p — 1 )(q — 1) d(d — 3), this gives

> d - 3 +

Writing pq d{d — 3) + p + q — 1 we arrive at

El
L d

<7

id J

p + q

d
>

.d

This inequality is trivially satisfied whenever p > 1.
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