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Differentiability of integrable measurable
cocycles between nilpotent groups

Michael Cantrell

Abstract. We prove an analog for integrable measurable cocycles of Pansu’s differentiation
theorem for Lipschitz maps between Carnot—Carathéodory spaces. This yields an alternative,
ergodic theoretic proof of Pansu’s quasi-isometric rigidity theorem for nilpotent groups, answers
a question of Tim Austin regarding integrable measure equivalence between nilpotent groups,
and gives an independent proof and strengthening of Austin’s result that integrable measure
equivalent nilpotent groups have bi-Lipschitz asymptotic cones. Our main tools are a nilpotent-
valued cocycle ergodic theorem and a Poincaré recurrence lemma for nilpotent groups.

Mathematics Subject Classification (2010). 20F65, 37A20, 28D15, 20E99.

Keywords. Cocycle ergodic theorems, integrable measure equivalence, nilpotent groups,
asymptotic cones, Pansu derivative.

1. Introduction

In [13] Pansu proved the following seminal quasi-isometric rigidity theorem for
nilpotent groups.

Theorem 1.1 (Pansu [13]). Finitely generated quasi-isometric nilpotent groups have
isomorphic associated Carnot groups.

He did this in two independently interesting steps. First, he identified the unique
asymptotic cone of a finitely generated nilpotent group equipped with a left-invariant
inner metric as an associated Carnot group with a Carnot—Carathéodory metric [12].
The second step is Pansu’s differentiation theorem.

Theorem 1.2 (Pansu [13]). A bi-Lipschitz map between Carnot groups is differen-
tiable almost everywhere. Moreover, the derivative induces a group isomorphism.

Since asymptotic cones of quasi-isometric groups are bi-Lipschitz, one deduces
Theorem 1.1.

Measure equivalence (hereafter “ME”) is an equivalence relation on groups
introduced by Gromov [7] that is a measure-theoretic parallel of quasi-isometry.
It has been the object of considerable study: Furman’s survey [5] provides a thorough
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overview. However, a fundamental result of Ornstein and Weiss [11] implies that
measure equivalence collapses all amenable groups into one equivalence class.

A measure equivalence between two groups implicitly defines a pair of measurable
cocycles over probability measure preserving (pmp) actions of those groups. In
their study of rigidity of hyperbolic lattices [2], Bader, Furman and Sauer have
sharpened measure equivalence to a finer equivalence relation, called integrable
measure equivalence (“IME”), by considering only those measure equivalences for
which these cocycles satisfy an integrability condition.

Recently Austin and Bowen [1] showed that the single ME class of infinite
amenable groups splits into many IME classes. Bowen showed that the growth
type of a group is preserved by IME, and Austin used Bowen’s result to prove the
following.

Theorem 1.3 (Austin [1]). Finitely generated integrable measure equivalent nilpotent
groups have bi-Lipschitz asymptotic cones.

Notice that combining Theorems 1.2 and 1.3 one deduces the IME analog of
Theorem 1.1.

Theorem 1.4. Finitely generated integrable measure equivalent nilpotent groups
have isomorphic associated Carnot groups.

However this proof is not entirely satisfying as it does not “see” the group
isomorphism through the IME. In his proof, Austin considers the measurable cocycle
as an equivariant family of random maps between the f.g. groups that induces a
sequence of measurable maps «x,, between the associated Carnot groups indexed by
the rescaling 1/n in the asymptotic cone construction. He then proves that with high
probability a subsequence of these maps converge to a bi-Lipschitz map between the
Carnot groups. Austin then asks the natural question [1, Question 5.2]: Is there a
bi-Lipschitz group isomorphism between the Carnot groups to which this sequence
of random maps converge with high probability on bounded sets? We answer this
question in the affirmative.

Theorem A. Suppose I and A are IME f.g. nilpotent groups with associated Carnot
groups Goo and Huo. Let kx ,, be the maps as in [1, Question 5.2]. Then there is a
bi-Lipschitz group isomorphism ® : Goo — Hog to which ky , converge on bounded
sets with high probability as n — oo

Kx’n T ¢.

Remarks 1.5. (1) In [15] Shalom keenly observed that amongst f.g. amenable
groups, quasi-isometry implies uniform measure equivalence, which in particular
implies IME. Therefore Theorem A implies Theorem 1.1. While we do not rely
logically on Theorem 1.2, we do use the idea of the Pansu derivative.

(2) One might say that the isomorphism & is the Pansu derivative of the given
measurable cocycle. Indeed, in the deterministic case @ is the usual Pansu derivative.
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(3) Theorem A is for any Carnot—Carathéodory metrics on Gy, and Hy,. All
Carnot—Carathéodory metrics on a given Carnot group are bi-Lipschitz, so in what
follows we may not specify the metric. Moreover ® being a group isomorphism
implies it is bi-Lipchitz.

Theorem A is an immediate consequence of Theorem B, which has the spirit of
a nilpotent-valued cocycle ergodic theorem.

Theorem B. Let T',A be f.g. IME nilpotent groups with associated cocycles
¢:I'xX—>Aand B : AxY — T, and let Go and Hy, be the associated
Carnot groups of I and A. Then there exists a bi-Lipschitz group isomorphism
®: Goo = Hxo So that forall g € G

1 1
— ey, —> g Iimplies — e a(y,, x)) — P(g)
n n

where the convergence is in the sense of the asymptotic cone, and the second
convergence is in measure. The same is true after exchanging the roles of T',A,

o, B, and ®, L,
See §2.2 for the definition of convergence in the asymptotic cone.

Remarks 1.6. (1) Convergence in measure is the best one can hope for given
the L' integrability assumption. To have pointwise convergence even in case
I' = A = Z% one must assume L%! (Lorentz-space) integrability. The correct
integrability assumption for pointwise convergence of ergodic theorems for nilpotent
groups is commonly believed to be related to the growth type of the group.

(2) All of the theorems stated above are true for f.g. polynomial growth groups,
which by [6] are those groups with finite index nilpotent subgroups. Theorem B is
insensitive to finite index and finite kernels, so we reduce to the torsion-free nilpotent
case. See §2.7.

The proof of Theorem B is a natural extension of ideas developed in [4]. The idea
is that, following Pansu [12], the large scale geometry of f.g. nilpotent groups depends
only on the behavior of the projection to abelianization. Therefore, to understand
the large scale geometric behavior of a random map «(-, x) : I' — A, we project it
to the abelianization and integrate. Since a section of the abelianization generates
the whole group, we can write all elements in terms of that section. We then use
the cocycle identity to decompose arbitrary elements into a product of those coming
from (a section of) the abelianization, which allows us to promote the cocycle ergodic
theorem for cocycles with values in R, which is easy, to the desired cocycle ergodic
theorem with values in A.

We remark that while it is almost immediate that the limiting map ® is a
homomorphism, the nilpotent Poincaré recurrence Lemma 2.2 is needed to show
that ® has (the obvious candidate as) an inverse.
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The rest of the paper is organized as follows. The second section sets notation,
gathers background information regarding nilpotent groups, asymptotic cones, and
measure equivalence, and reduces to the torsion-free nilpotent case. In Section 3 we
study asymptotics along iterates of a single element. In Section 4 we combine the
results of § 3 with Lemma 2.1 to understand asymptotics along arbitrary elements.
Finally in Section 5 we define ®, prove Theorem B, and deduce Theorem A.

On a first reading of this paper, one may wish to skip the proofs in Subsection 2.5,
as the statements are intuitive. Also, one may wish to skip the proofs in Section 3,
which are the most technical part of the paper.

We conclude the introduction by noting that, in light of Remark 1.5(1), one
might hope to develop a nilpotent IME rigidity theory parallel to that of quasi-
isometry [9, 14, 15].

Acknowledgements. I would like to express my sincere gratitude to Tim Austin and
to my advisor Alex Furman.

2. Background and notation

2.1. Integrable measure equivalence. Two infinite discrete countable groups I', A
are measure equivalent if there exists an infinite measure space (£2,m) with a
measurable, measure preserving action of I x A so that the actions A : T" ny (2, m)
and B : A ~ (2,m) admit finite measure fundamental domains Y, X C Q. The
space (€2, m) together with the I x A action is called a measurable coupling of I"
and A. By restricting attention to an ergodic component, one may always assume
that /m is ergodic for the I' x A action.

The fundamental domains ¥ and X for the G and H actions give rise to functions

a:I'xX—A and B:AXY —T
defined uniquely by requiring
B(A)y e A(BA,y)™HY and A(g)x € Ba(y,x) )X, VxeXVye?V.

There are associated finite measure preserving actions I' ~ (X, m|x) and
A ~ (Y, m|y) (whose actions we denote by -) defined by requiring that

A(y)x = Bla(y,x) )(y-x) and BQ)y = APBQ,y) H(A-y).

If m is ergodic for I' x A then the actions I' ~ (X, m|x) and A ~ (¥, m|y) are
ergodic. We may assume after renormalizing that both m|x and m|y are probability
measures. Finally, o and § are measurable cocycles over the pmp actions in the sense
that

a(y1y2, x) = a(y1, y2- x)a(y2,x) and B(AiAz2,y) = (A1, 42-y)B(A2,y)
2.1
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forall y;,v2 € I', A1, Ap € A and form a.e. x € X, y € Y. Most of our reasoning
will be about these cocycles.

Replacing the fundamental domain ¥ with one of its H translates only translates
the cocycle B. Since countably many translates of ¥ cover €, we may therefore
assume that m(X N Y) > 0. Moreover, (see [1] for more details) if

xeXNYny {(xny)

then

plaly.x),x) =y.
Given finitely generated groups I', A, acocycle & : I' x X — A over a pmp action
I' ~ (X, p) is integrable if, for some (any) choice of finite generating set for A

lee @ Mol = fX 0y, )| pdp(x) < 00, Vy €T

where || 5 is the word norm associated to the generating set. The subadditivity of |-| 5
implies
Il lall < Iylr - max llts. )l all

where |-|p is any word norm associated to a finite generating set for T".

Finally, finitely generated groups I and A are integrably measure equivalent if
they admit a measurable coupling so that the associated cocycles (2.1) are integrable.
This is an equivalence relation independent of choice of generating sets. For more
details, see [5].

Recall that measurable events £, C (X, m) occur with high probability (whp)
if m(E,) — 1 as n — oo. We say that a sequence of measurable functions
fn + X — [0,00) is o(n) in probability (or “whp”) if for all ¢ > 0 one has
m(fp(x)/n <€) - 1asn — oo. Thus for example da (x(y”,x),A) = o(n) in
probability means that for all €, > O there is N so that for all » > N one has
m(da(a(y™, x),A) < né) < e. Similarly for O(n).

2.2. The associated Carnot Lie algebra. Let I be a finitely generated torsion
free nilpotent group. Recall that by a theorem of Mal’cev [10] there is a unique
connected, simply connected nilpotent Lie group G, called the Mal’cev completion
of I', in which I" embeds as a (necessarily cocompact) lattice.

Since G is simply-connected, the exponential map exp : g := Lie(G) — G from
the Lie algebra of G to G is a diffeomorphism, so we can work with the Lie algebra.
Set

gli=9 o :=[g0
Being nilpotent, G satisfies g" ! = {0} for some r € N. Since [g*, g/] C g’/ the
Lie bracket on g defines a bilinear map

(/g™ ) ® (o7 /9’ ) —> (&' /g T,
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which can then be used to define the Lie bracket [—, —] on

r
e = @ni, where v; = g' /g’ 7! (2.2)

i=1

by extending the above maps linearly.
The resulting pair (geo, [—, —]oo) is called the Carnot Lie algebra associated
with g. Note that the linear maps

0 & Gos = Ooas  Op(Uiseu: 5 Up) = (r~v1,r2-v2,...,t”-vr),

satisfy 8; ([v, W]eo) = [8:(V), 6 (w)]oo and &;5 = 8; 0 85 for v, w € Poo, £, 5 > 0.
Hence {6; | t > 0} is a one-parameter family of automorphisms of the Lie algebra goo,
and therefore define a one-parameter family of automorphisms of the Lie group
Goo = €XPos(fcc), that we will still denote by {§; | ¢ > 0}. (Here we denote the
exponential map goo — G by eXp, to distinguish it from exp : g — G).

Choose a splitting of g as a direct sum of vector subspaces

g=V®---®V,, sothatg =V,i®---dV,, (2.3)

and choose a vector space identification L : g — g so that L(V;) = v; the
ith summand of gs,. For z > 0 define the vector space automorphism &; of g by
§i(v)y =t -vforveV; (i =1,...,r). Note that {§; | t > O} are not Lie algebra
automorphisms of g in general. Nevertheless they induce maps {6; | # > 0} from G
to G which we still denote §;. Note also that the maps §; defined on g and on g are
conjugate through L.

Now the Lie bracket [—, —]; on g, given by

[U, w]t = 8% ([81’ (U)’ 81‘ (w)]) )

defines a Lie algebra structure on g that is isomorphic to the original [—, —] = [—, —=];
via &;.
However, one has
L), L)l = Jim [v. w]

due to the fact that for v € V;, w € V; the “leading term” of [v, w] lies in Vj4;,
while the higher terms that belong to V; ;11 @ --- @ V; become insignificant under
the rescaling (see [12]). Using the log : G — g and expy, : oo — Goo mMaps we
obtain a family of maps

< log 8,—1 L €XPoo

scly (=) : T G g g o - G (t>0) 2.4)

that explains the asymptotic cone description of Pansu [12] as follows.



Vol. 92 (2017) IME between nilpotent groups 191

Let d be an inner left-invariant metric d on I and
1 GH
(r, = d,e) E8 (Goo, doo, €)

the Gromov—Hausdorfl convergence. Then a sequence y; € I', rescaled by ti_l with
ti > oo asi — 00, converges to g € G iff scly; (vi) — g in Guo.
We shall often write

1
g = lim —ey; instead of scl;, (y;) — g.

i—oco I

The metric part of the statement shows that for #; — oo and y;, yi’ el

1 1 1
g=lim —ey, g'=lim —eyl = duo(g.g) = lim —d(yi,y;). (2.5

i—oo [ i—oo [; L

The limiting distance d, on G is homogeneous in the sense that

doo((gs(g)ags(gl)) = S'doo(gsgl) (g’gl € Ggos 52 Q).

This distance is left-invariant (this follows from Lemma 2.1). The distance d, arises
from the sub-Finsler Carnot—Carathéodory construction.
Lemma 2.1. Given sequencest; — 0o, y;, y; € I" with % oy, — gand % oy, — g/,

then % o vy, — gg'.

Proof. This follows from the Baker—Campbell-Hausdorft formula (cf. § 3.3 and [3,
Proof of Lemma 5.5]). O

2.3. Nilpotent Poincaré recurrence lemma. To show that the limit map @ has
an inverse (Proposition 5.8), we will need the following nilpotent group variant of
Poincaré recurrence.

Lemma 2.2 (Poincaré recurrence for nilpotent groups). Fix g € Gy and let A C X
withm(A) > 0. Then

1

m{x € A:3Imp)r CNIyn s CTst. — oy, — gandVk y,, -x € A} = m(A).
N

Lemma 2.3. Fix g € Goo, let A C X withm(A) > 0 and let § > 0. Then

1
m{x € A:3dy € T" 3n € N such that doo(— oy,g) <dandy-x € A} = m(A).
n

Proof that Lemma 2.3 implies Lemma 2.2. Set

1
A5={xEA:EIyGFEIneNsuchthatdoo(—oy,g) <8andy-x€A}
n
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which has measure m(A) by Lemma 2.3. Then

A" = N2 Ay
again has measure m(A), and has the desired property. O

Proof of Lemma 2.3. Suppose that the statement of the Lemma is false. Then there
isg € G, A C X withm(A) > 0,8 > 0and E C A with m(E) > 0 such that for
ae.x € E,forally e "and n eN,ifdoo(% ey, g)<d,theny-x ¢ A.

We claim that there exist infinitely many (ng,yn,) € N x I' such that
dm(ﬁ ® ¥Vn,» &) < § and such that if k; < k; then

1 _
doo(— o ”kli ynkj,g) < 4.

n k;

Indeed, pick any (11, y»,) so that doo(% ®y,,,8) < d. Now consider any sequence

1

-~ ®Ym — g. Since n% ° yn_ll — id as m — oo, Lemma 2.1 implies that

1

-1
;;.an ym_>g

Thus we may pick ny := m large to satisfy the claim. Continuing in this way, the
claim is proved.
Now we see that the sets y,, E are pairwise disjoint: indeed, if not, then

m(yn"kli Yr, ENE)>0.

which implies that there is a positive measure set of x € £ so that y, kl Yng. X €
i J
E C A while dm(ﬁ ® Y 11 Yni ;- &) < 8, contradicting the definition of £.
Thus the sets y,, E are pairwise disjoint. Butasm(E) > 0, thatis also impossible.
]

Notice that, while one can formulate the Lemmas 2.2 and 2.3 for any group
together with one of its asymptotic cones, the key ingredient that fails for groups that
are not nilpotent is Lemma 2.1. This is easily seen in the free group.

2.4. Logarithmic coordinates. We will use the so called logarithmic coordinates
throughout this paper, which are described as follows. Choose a real basis

{X1,...,X;»} for g that respects the decomposition (2.3). When we write
g = (x1,...,Xy) € G we mean that g = exp(x; X1 + -+ + xm Xm). These are the
logarithmic coordinates of G. Thus if g = (x1,...,xm) and h = (x7,...,x/,) then

the product gh = (y1,..., ym) where

exp(x1 X1+ -+ xmXm) exp(x1 Xy + -+ + X1 Xm) =exp(1 X1 + -+ + ym Xm).



Vol. 92 (2017) IME between nilpotent groups 193

In light of the vector space isomorphism L : g — goo the basis for g yields a
basis for geo that respects the decomposition (2.2). Throughout this paper we will
think of g and goo as occupying the same real vector space, only with different Lie
brackets [—, —] and [—, —]oc. We also use the logarithmic coordinates for goo, the
only difference in definition being the Lie bracket.

Letd = dim V. Then there exist constants ; € N, d < i < m so that I embeds
in G in logarithmic coordinates as

I'={(ai,...,04,Nd+10d+1,--->Tmam) - a; € Z} < G.

Thus we have identified I' < G = R™ = G4. Therefore we think of I' < G
and G as occupying the same copy of R”. We denote the group productin I’ < G
by g - h or simply by gk, and the group product in G, by g » h. We will always
denote a word norm on a discrete nilpotent group I" or A by |-| or [|-|,, a word
norm on a nilpotent Lie group G or H by || or ||z and a Carnot—Carathéodory
norm on a Carnot nilpotent Lie group Goo or Heo by ||, and their associated
metrics dr, da, dg, di, and ds. Thus we can without notational ambiguity omit
the linear identification L : G = G4. For example if y,0 € I' then |y|,, means
unambiguously |Ly|,, and y x 0 means Ly = Lo.

Since V; = g/g?, the sets

{(x1,....%4,0,...,00 e G}y =R? and {(ai,...,a4,0,...,0) €'} = 7¢

are complete sets of coset representatives for G/ G2, G/ G2, and (the torsion-free
part of) I'/I'2. We will use these choices of coset representatives in the arguments
that follow. We define the projections on to the abelian and commutator coordinates
for I', G, and G by

wap(@y,....am) = (@y,...,aqg,0,...,0)

Topi (01 1w« s Bm) = (055 01 s 0,84 5 = - o B )

2.5. Some nilpotent geometry. We now collect some basic nilpotent geometry
facts. We make no claim to originality in this subsection.

We will use the following Lemma of Guivarc’h repeatedly throughout this paper
to simplify our arguments. Since asymptotic statements are not sensitive to quasi-
isometry, the Guivarc’h Lemma allows us to prove asymptotic statements for only
one of (H,dy) or (Hso, dso).

Lemma 2.4 (Guivarc’h [8]; see also [3, Theorem 3.7]). Let K be a compact neigh-
borhood of the identity in a simply connected nilpotent Lie group G and dg (g, h) =
inf{n > 1: g7'h € K*}. Then for any homogeneous quasi-norm |-| on G there is a
constant C > 0 so that

1
Elgl <dgl(e,g) <Clg|+C.
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We now use the Guivarc’h Lemma to give succinct proofs of several nilpotent
geometric facts, which could also be proved by induction on nilpotency class. All
of the statements are true independent of choice of symmetric generating set, but
we work with a fixed generating set S with associated norm |-| and metric dr
to be concise. All constants depend on I" and S. Let us say that two functions
f.g : I' = Ry are quasi-isometric if there exists C > 0 so that for all y € T,
f(y)/C —C < g(y) < Cg(y) + C. The following lemma is a natural statement
regarding the asymptotic word growth of each coordinate in a nilpotent group. Define,
foreach 1 <i < m, the degree d; = deg(X;) to be the greatest j so that X; € g/ L.

Lemma 2.5. Foreach1 <i < m there exist(0) < c¢1 < ¢z < 00 so that foralln € Z
clnl/di <|0,...,n,...0)|p < cont/di

where the non zero term is in the i -th coordinate.
Moreover, if [X;,...,[Xi_,, Xi]++-] = cX; wherei, € {1,... ,m}andc # 0,

then
)
Z djr S dt.

r=1
Proof. The following is a quasi-norm on G
(X150 Xm) | = max lxill/di.

(G, |-|g) restricted to I" is quasi-isometric to (T', |-|y), while by the Guivarc’h Lemma,
(G, ||g) is quasi-isometric to (G, |-|,,,). But |[(0,...,n,...,0)|,, = n'/4  Since T
is discrete we may absorb the additive factors. The moreover statement is obvious
from the definitions. O

Lemma 2.6. Foreach 1l <i < m set

fi(n) =1(0,...,0,n,0,...,0)|p

gi(n) =min[(ay, ..., @i-1,7,8i11, ..., am)|r-
J

where the non-zero coordinate is in the i -th coordinate. Then there exists 1 < C < oo
so that foralln € N

fi(n) < cgi(n).

Proof.
fi(n) < cn'/di 5crzli_n|(a1,...,a,-_1,n,a,-+1,...,am)|m
<cep rgin[(al,...,a,-_l,n,aiﬂ,...,am)lp—I—CQ
< (ccy +Cz)rgli_n|(01,---,az—1,n,ai+1,---,am)lr (n #0)

where we have used Lemma 2.5 and the Lemma of Guivarc’h. O
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The next lemma says that projecting to the commutator coordinates only reduces
word norm by a universal multiplicative constant.

Lemma 2.7. There is a constant C > 0 so that Vy € I’

¥Ir = Clocom¥ |-
Proof. Consider the quasi-norm |-|,, defined above. For all y € I" we have trivially
V| Z [7com¥ |-
The Guivarc’h Lemma and the discreteness of I" finish the proof. ]
Lemma 2.8. There exists [ > 0sothatforally € T — T2 and foralln |y"|p > In.

Proof. If y ¢ I'? then |y"|,, > n. The Guivarc’h Lemma and the discreteness of I"
finish the proof. .

Lemma 2.9. The functions ||, ||, |"lu- "les : I = Ry are all quasi-isometric to
one another. Moreover,

Yl = 1@ntsevsee s um)lp = 0(1) <= |ans =o0(n?®) Vi<t <m
ulr = 1@n1v-- s pm)lp = O() <= lang = 0?®) Vi<i<m
Ignlg = [@n,1,-..s... Gnm)lg = 0(n) = |an:| = o(nd(’)) Vi<t<m
18216 = 1@n,1s- - @nm)lg = O() <> an | = 0@??) Vi<i<m
€nloo = @15 oreernm)leg =0(1) <= |an: =0m*?) Vi<t<m
8aloo = (@10 -+ s s Bnm)loe = O() <= ansl = Om*P) Visr<m

where a, ; € Z (an,j € R) is the j-th coordinate of y, € I' (g, € G).

Proof. For the first statement, recall that (G, |-|g;) restricted to I is quasi-
isometric to (I, ||p), while by the Guivarc’h Lemma, (G, |-|5) is quasi-isometric
to (G, ||,,). Note that (G, ||,,) and (G, |-|,,) are equal (under the implicit linear
identification L), and that (G, |*|s,) is @ quasi-norm. Since any two quasi-norms
on the same group are bi-Lipschitz, we have proven the first statement.

The moreover statement follows from the first statement together with the fact
that

|gnlm = 0(n) = lan:| = O(Hd(t)) Vi<t<m

and similarly for O(n). O

Note that the stronger statement that the corresponding left-invariant metrics
(G,dg) and (G, doo) are quasi-isometric is not true in general.
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Lemma 2.10. If g, € G is a sequence such that
(1) [|Tcom&nloo = 0(11)
(2) |7apgnloe = O(n)
then
|(Tapgn) " * gn| o, = 0(n).

Proof. Let g, = (Gn,1++++:8n,m) 50 that Tzpgn = (@n,15++-:8n,4,0,...,0) and
(Tapgn) ' = (—an1,...,—an4,0,...,0). Using the Baker—Campbell-Hausdorff
formula, the nilpotency of G, and linearity of the bracket

(n'abgn)_1 * gy = an,d-{-le—l-l ol tialy an,me + h.o.t.
where h.0.t. are precisely the terms involving at least one bracket in the product
(—an1 X1 = —anaXg) * (@nda+1Xd+1+ -+ anmXm). (2.6)

Since the abelian coordinates of (m,5g,)" ! * g, are all zero, by Lemma 2.9
it suffices to show that the ¢-th coordinate of (7,pg,)~"! * gn is 0(n) for every
d <t < m. By assumption |comgn|s = 0(n), so it suffices to show that the
contributions from (2.6) to each ¢ coordinate are o(n¢®), for d <t < m. Using
Baker—Campbell-Hausdorff again, for fixed d < ¢ < m the contribution is a sum of
finitely many terms of the form

[P0, CHPR [an,ii—l Xiy_y» Qn,ij Xi]--]

where ¢ is a constant from the Baker—Campbell-Hausdorff formula, iy,...i; €
{1,...,m} and for at least one r, i, € {d + 1,...,m}. Since the number of such
terms depends only on G, it suffices to show that

an,il "'al’l,il = O(Hdt)a

which follows immediately from the fact that at least one i, € {d + 1,...,m} and
* |an. | = O(n) forl <i, <d
* |an; | =o(ndr) ford <i, <m

« Yo di <di. O
Lemma 2.11. Let gn, hy, € G. If |gn|g = 0(n) and |h,|g = O(n) then
g0 By gnhn| g = o(n).

Moreover the same is true of any Carnot—Carathéodory norm on G« instead of G.
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Proof. Letg, = (an1,--.»anm), hn = (bn1,..., by m)andsuppose |g,|; = 0(n)
and |h,|g = O(n). By Lemma 2.9

lans =o0(n®) 1<t<m

bs| = O(%) 1<t <m.

Say g, = expv, = exp(an1 X1+ +anmXm) and h, = expw, = exp(b,,1 X1+
SR + bn’me), SO

gy gnhn = eXp —vy €XP —Wp eXp Uy eXp Wy = eXp([Vn, wal + 1) (2.7)

where the dots stand for terms involving three or more brackets. Let us examine the
coefficient ¢, of X, in (2.7); it is a sum of finitely many terms of the form

Caniy ***Gn,igbn,jy -+ bn,j, where § : dip + djq <dr,

l1<p=<s
I<g=t

where ¢ is a (possibly zero) constant depending only on G, and s # 0, i.e. there
is at least one a,; term. Employing Lemma 2.9 again it suffices to show that each
of these possible coefficients is o(n%"). Indeed there is a constant ¢ (coming from
the O(n?U4))) so that for all € > 0 and all sufficiently large n

d dy

‘an’il ‘.‘an,ié'bn’jl .”bnyjt‘ SEnZdtpan iq '<_ cen
To see that the same is true for G, with a Carnot—Carathéodory norm |-| .., note
that the proof only used Lemma 2.9 and nilpotency. U

2.6. Notation. All of the above was true of a general finitely generated torsion-free
nilpotent group I', though of course the groups G, G, as well as the corresponding
dimension of the abelianization d = dim(G/[G, G]), the nilpotency step s and the
vector space dimension m all depend on I'.

Let us fix two finitely generated torsion-free nilpotent groups I" and A that are
integrably measure equivalent with integrable cocycles as in (2.1) for which the action
I' ~ (X, m) is pmp ergodic. We denote their Mal’cev Lie groups G and H and their
Carnot lie groups G, and Ho, respectively. Let us now fix finite generating sets S
and T for I" and A respectively. We will denote their respective word norms ||
and || , and the metrics dr and d. Let us also fix a compact generating set K C H
and denote the corresponding word norm and metric |-| ; and dg. Finally, there are
the unique Carnot—Carathéodory metrics on Hy, and G, associated to dr and da
by [12]. Let us denote both by d, as no confusion can arise.

Keep in mind that, since we are not assuming Pansu’s Theorem 1.2 a priori we
do not know whether G, and Hy, are isomorphic groups or that the dimensions of
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their abelianization are the same. So let us say that in logarithmic coordinates

A< H=Hyx=R" dim(/p?) =d
IF'<G=06sx=R" dim(g/g*) =d"

We will only work in the Lie algebras h and hoo of H and H. Let us identify as
in (2.3)
V=1V1& ®V; =h=bhoo

with Lie brackets [—, —]g and [—, —]oo. The projections we will use are for A, H
and Hss:

o bl § « s w5 ) = @15z 5 2 5 Gds U 45,5 0)

iU g = « oy B} = (0, . o . . 0, 8841, v - @)

We will think of the image 7,5 (H) = R¢ in order to integrate, but for notational
ease we suppress the identification. Now we may define two maps essential to what
follows

Qgp : T XX —> H gy, x) = map 0 a(y, x)

% :T — H E ) = fX s (7, ) dm(x).

2.7. Reduction to torsion-free nilpotent groups. Here we reduce Theorem B to
the case of torsion-free nilpotent groups. Finitely generated polynomial growth
groups have finite index nilpotent subgroups, which themselves have finite normal
torsion subgroups. Let I < I be a finite index subgroup. The action I ~, (X, m)
has at most [I" : I'']-many ergodic components permuted by the I' action. Let
71,...,7; € I be a complete set of representatives for I''\I". Consider an ergodic
component X’ and the integrable cocycle &’ : T” x X’ — A obtained by restriction.
Suppose % ® yn — g € Goo. For each n write y, = y, 1y, where 7,; € {71,..., 71}
and y; € I'". Then % ey, — g so by Theorem B ;11_ e x(y,,x) — P(g) for some P
that a priori depends on the ergodic component X’. Now the cocycle equality
o (Yn, X) = (¥, Tn;» X) = a(yy,, Tn; X)a(Ty;, x) implies

da(a(yn, x), a()’p’z’ Tn; X)) = |a(fn,- ) x)|A

which is bounded by a constant independent of 7 with high probability by Markov’s
inequality. Therefore

1 1
oo # (v %), — s ayn. X)) = 0(n)  whp.

Now let N be a finite normal subgroup of I'. Then I'/N acts ergodically by pmp
transformations on (X, m)/N. Since N is finite, we can find a measurable section
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s: X/N > Xofrmr:X — X/N. Forevery x € X, there is ny € N so that
ny - sm(x) = x. Define

f:X—>A f(x)=a(ny,sm(x))

and the cocycle cohomologous to « via f

o (y,x) = flyx)"ra(y, x) f(x).

Notice that f takes finitely many values, so o/ isintegrable. A direction computation
shows that o/ restricted to N is the trivial map, so o/ descends to a cocycle

o/ :T/N x X/N — A.

Finally, if y, € T is such that % ey, — g, then also % ey, — g where

Yy =yN e€T'/N. Thus % o o/ (7, mx) — ®(g). Again since f takes finitely
many values, another application of the Markov inequality shows that

da(a’ (7a, x).@(yn.x)) = 0(n) whp
which finishes the proof.

3. Asymptotic behavior along iterates

In this section we analyze the asymptotic behavior of a(y", x) as n — oo for a given
y € I'. In the following section, we use the cocycle equation and the results of
this section to understand the asymptotic behavior of an arbitrary ¢« (y, x). The idea
in this section is to use the cocycle identity to see that «(y”, x) typically behaves
like a homomorphism in to a nilpotent group. Crucially, one parameter families
of elements in to nilpotent groups experience an asymptotic decay in the higher
order terms (commutator coordinates). In this section we use ergodicity to extend
this phenomenon to a cocycle. Moreover, the position in the abelian coordinates
stabilizes asymptotically, so that we have a perfect picture of the asymptotics of
iterates: the higher order terms vanish, and the abelian coordinates tend to their
average value.
The main result of this section is the following proposition.

Proposition 3.1. Foreveryy € I

1
—ea(y",x) —> wgp(y) in probability.
n

Equivalently,
doo (0t (Y", X), 8n0gp(¥)) = 0(n) in probability.

We will prove Proposition 3.1 by analyzing the abelian and commutator
coordinates separately.
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3.1. Abelianization direction. In this subsection we prove the following lemma
describing the asymptotic behavior of « along iterates in the abelianization.

Lemma 3.2. Fora.e. x € X andeveryy € I

1
;aab (", x) = oap(y)
where the convergence is of vectors in R%.

The proof of the lemma is an easy application of the following found in the more
general sub-additive case in [1] and [4].

Proposition 3.3. Suppose c : I' x X — R is a measurable cocycle over I' ~, (X, m)
which is pmp ergodic. Then for a.e. x € X and everyy € I'

1
Ec(y”,x)—>f c(y, x)dm(x).
X

Proof of Lemma 3.2. agqp is itself a cocycle taking values in R¢ which we can
decompose as d independent cocycles with values in R. Indeed there are cocycles
o :I'x X > Rforl <i <d sothat

Aap (¥, x) = (1 (¥, X), ..., aq(¥, x),0,...,0).

We can similarly decompose the averages

Gaply) = ([qu(y,x)dm(x),...,[ond()/,x),O,...,O).

Applying Proposition 3.3 to each of the «; finishes the proof. a

3.2. Commutator direction. The purpose of this subsection is to prove the
following lemma describing the asymptotic behavior of « along iterates in the
commutator direction.

Lemma 3.4. Foreveryy € I'
|-Trc0m 2 Ol()/", x)lA = o(n) in probability.

Moreover, the same is true if one replaces the norm |-| x with || ..

The moreover statement follows immediately from Lemma 2.9. The proof of the
main statement requires some preparation. The idea is to use the cocycle equation
to write a(y”k,x) = a(y", x)a(y", x2) - --a(y", xx) where x; 4, = y™ x. Using
Lemma 3.2 whp the abelianization of each of the a(y”, x;) ~ nv for some v, so that
the commutator of &(y”¥, x) is roughly the sum of the commutators of the ot (y”", x;).
This allows us to promote a linear bound on the commutator to an o(n) bound since
the commutator direction “should” grow at least quadratically.
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To begin, we use a weakened form of Proposition 3.2 from [1] to obtain the O(n)
bound. Recall that given a pmp action I' ~, (X,m)amapc : I'x X — Ry isa
subadditive cocycle if

c(y1y2.x) <e(y1,y2-x)+c(y2,x) Vy,y2€l’ m—ae x € X.

Proposition 3.5. Given a subadditive cocycle ¢ : I' x X — Ry, there is M > 1
such that for any € > 0 there is C = C(¢€) such that

l¥Ir 2 € = m(le(y,x)| 2 M|y|r) <e.

We would like to use Proposition 3.5 to draw conclusions about the size of the
commutator of «(y, x). To do this, we use Lemma 2.7 which says that projection to
the commutator increases word norm by at most a universal multiplicative constant,
and Lemma 2.8 which says that the norm of iterates of an element with nontrivial
abelianization grows linearly up to a multiplicative constant. Combining this with
Proposition 3.5 we easily deduce the following O(n) bound on the commutator
growth. Since the word length of iterates of y € I'? does not grow linearly, we must
deal with this easy case separately.

Lemma 3.6. Foreveryy € I' —I'? there is M’ > 1 so that for any € > 0 there is N
so that for alln > N

m(|eom 0 (¥, x)|p > M'n) <e.

Proof. We apply Proposition 3.5 to the subadditive cocycle ¢ : I' x X — [0, 00)
defined by ¢(y, x) = |a(y, x)|,. We obtain M and set M' = M|y|p/k where k is
from Lemma 2.7. Fix € > 0. Then there is C so that

YIlr =2 C = m(la(y, x)|, = M|y|p) <e.

Set N = C/1[ where [ is from Lemma 2.8. Then since |y" | < n|y|r,
n>=N = [y'Ipr 2C = m(la(y",x)|p = Mn|y|p) <e.

Finally, by Lemma 2.7

n>N = m(|rcom@(y",x)|p = M'n) <e. O

The proof of Lemma 3.4 is easy in case y € I'2.
Lemma 3.7. Ify € I'2 then
|7Tcom © (", X)|p = 0(n) in probability.

Proof. By Markov’s inequality there is k = maxgegs |||t (s, )| A [l1 so that for every
M eN
m(la(y™, X)|a > Mr|y"|p) < 1/M.
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For y € T'? there is a constant ¢ > 0 so that for all n € N we have |y"|p < c/n
(Lemma 2.5 and Lemma 2.9). Thus for such y we have |a(y”, x)|, = o(n) whp.
Lemma 2.7 completes the proof. L

We need one more lemma before we can prove Lemma 3.4. Let us illustrate the
idea behind the lemma through the example of the Heisenberg group. Recall that in
logarithmic coordinates, the multiplication in the Heisenberg group is

x,y,2)(x", ¥, 2y =@ +x"y+y.z+ 2+ 1/2(xy" — x"y)).

The non-linear growth in the z-coordinate is given by the area enclosed by the
triangle formed by (x, ), (x + x’, y + »’) and (0, 0). So, if a pair of elements have
very similar abelianizations, the z-coordinate of their product is approximately the
sum z +z’. Now suppose we have k elements with uniformly controlled z-coordinates
and very similar abelianizations. Then the z-coordinate of their product grows
approximately linearly. Thus the z-coordinate is o (k) since the z-coordinate “should”
grow quadratically. The following lemma generalizes this idea to general finitely
generated torsion-free nilpotent groups.
We define the projection on to the first # commutator coordinates

A —> A may,...,am)=(0,...,0,a341,...,a:,0,...0).

Let d; be the /! metric on R? and ||, be the /' norm, so that |(xj,...,x4)|; =
x| + -+ [xal.
Lemma 3.8. Fix0 < M <ocoandv € R, Foreachd <t < m forall§ > 0

there exists K € N and 8’ > 0 so that for all k > K and n > 1, whenever there exist
A, ..., Ar € A such that

di(apAi,v) < J75’|v|1 (3.1)
I]I'IA.”A < 778’ (32)
| FeomAs| & < UM (3.3)

then
|JT;+1/11 .o 'Ak|A < T]k(g

Proof of Lemma 3.4. Fix y € ' — I'2, We obtain M as in Lemma 3.6 and set
v = Ogp(y). We prove by induction that for every d <t <m

| (y", x)|p = o(n) in probability.

For t = d there is nothing to show. Suppose the result is known for 7. Fix
€ > 0and d > 0. We apply Lemma 3.8 with the given §, M and v to obtain k = K
and 6’. Let N be as in Lemma 3.6 applied to €/ k, so that for all n > N we have with
probability at least 1 —e/k

lncoma(yn’ x)|A < ﬂM-
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By taking N larger if necessary, applying the inductive hypothesis to ’/3 and €/ k
we obtain N so that for all n > N with probability at least 1 — ¢/ k we have

[ (y™, x)|5 < né'/3.

By taking N larger again if necessary, by Lemma 3.2 for all » > N with probability
atleast 1 —e/k

di(mapa(y”, x), nv) < né’|v]/3.

Since the I' action on (X, i) is measure preserving, the previous three statements
remain true if we replace any instance of x with gx forany g € I.

Finally, let N be larger if necessary so that k < §'N. Now let p > kN. Write
p =nk +r where 0 <r < k and n > N. Using the cocycle equation

a(YF7 x) = a(y", )@y, y"x) - a@p, yE D ey, y &7 x).

Since n,n + r > N, with probability at least 1 — 3¢ we have simultaneously for all
0<i<k-2
|7rcoma(y”,yi”x)|A <nM
|ea(y™, )/i”x)|A <né'/3

di (rapa(y", y"x), nv) < né’|v];/3
and

Teomt (Y177, y("'””X)lA <+rM

ma(y™, y )| <+ 183
di(mapae(y"7, yE V) (4 1)v) < (0 + 1) vl /3.

Since r < §’n the final three inequalities imply

Teome (Y"1, V("_””X)(A <20M

ma(y™r, V(""””x)|A <né’
dy(apa (", yE D) vy < 8

where for the final inequality we have used the triangle inequality with intermediate
term (n + r)v.
Therefore with probability at least 1 — 3¢ we apply Lemma 3.8 and obtain

| 410(y?, x)| 4 < knd < pé. O

Proof of Lemma 3.8. Fix0 < M <oo,veR4,d <t <m,8§>0and1> 6§ > 0.
We will show in the proof how to choose 8’ as a function of §, |[v|;,z. Choose K



204 M. Cantrell CMH

large so that M/+/K < 82, and fix k > K and 5 > 1. Suppose we have A1, ..., Ax
satisfying conditions (3.1)—(3.3). Let us denote A; = (a;.1,4i2,...,dim) for each
1 <i <k, keeping in mind that only a; 1, ..., a;i +1 are relevant. Throughout this
proof ¢ will denote an ever-changing constant that is independent of §, §' and 7.

We are concerned with the absolute value of the 7 + 1 coordinate of the product
A1 ---Ag. By Lemma 2.5 it suffices to show that the absolute value of this coordinate
is at most ¢ (7k8)4“+ 1) The estimate we seek will follow from the Baker—Campbell—
Hausdorff equation and the following constraints on the a; ; implied by conditions
(3.1), (3.2) and (3.3):

|ai,j —air,j| < cné'lv]y Vi<ii'<k Vl<j<d (3.4)

lai ;| <c8)?  Vi<i<k Vd<j<t (35

laii+1] < M) Vi <i <k (3.6)

|ai ;| < en®® Vi<i<k Vi<j<t 3.7)

Indeed, setting v = (vy,...,vy), from (3.1) we have Zj?=1 |a1-7j - Uj| < né'|v|,

which implies in particular |a,-, j—v ji < né'|v|, for all i, giving (3.4). Combin-
ing (3.2), Lemma 2.6 and Lemma 2.5 we immediately arrive at (3.5). Similarly
combining (3.3), Lemma 2.6 and Lemma 2.5 we arrive at (3.6). It only remains to
prove (3.7) in the case 1 < j < d, which follows from |a,-,j — vj‘ < né’|v|, above
and |vj| < |v];.

By the Baker—Campbell-Hausdorff equation we can express the product A - - - Ax
as a sum of terms of the form

C[)\.il,...,[)Li,_l,Ki[],...] (3.8)

where i; € {1,...,k} foreach 1 < j <[ < m. We emphasize that it is possible
that the indices are repeated, i.e. that i; = i;» while j # j’. We are only interested
in the brackets that contribute to the coefficient of X, ;. We replace each A; with
> _jai;X; in each of the summands (3.8) above. Using linearity of the Lie

g
bracket, the result is a sum of terms of the form

claiy,jin X - 1@y ja-0 X jG-00 @ Xjapl -1 (3.9)
where for each i, we have chosen j(i,) € {1,...,7 + 1}. By Lemma 2.5, we have
that

I
> djg,) < di (3.10)

r=1

so that in particular / < 7 4 1. We will show that each such term is small by analyzing
the possibilities for the choices j(i,) above. We consider three cases.
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For the first case we consider all terms with j(i,) = ¢ + 1 for some r. Note that
in this case, in view of (3.10) in fact (3.9) becomes

Gy, 31X 1

In view of (3.6), summing these over all 1 < i; < k, the total contribution to the
t + 1 term from this case is, in absolute value, at most

ck(nM)d"H < cn@r1§dr+1j 1+di1/2

by our choice of k. This suffices since we may assume d;+; > 2.

For the second case, we consider all terms in which at least one of the
Jjr) €{d,...,t + 1}. By linearity we pull out all of the constants a; ; and consider
the size of their product. By our assumption and (3.5) one of the terms is at most
c(n8")%iir and by (3.7) the rest of the terms are at most cn?/t» . Therefore their
product is at most

cg’an:l djiry < e/ pd+1,

Since there are finitely many such terms independent of &', by taking ¢’ small as a
function of §, ¢, ¢ and the number of such terms, the total contribution to the ¢t + 1
coordinate of the product A - - - A from terms of the second type is as desired.

For the third and final case we group each term into pairs and use antisymmetry,
as follows. We may assume all terms i(j,) € {1,...,d}. In particular the inner
most term [a;, _, iG,_ )X jG,_1)» @iy, ji) X jipl has jii—1) = s, j(i;) = t for some
s,t €[1,...,d]. We pair the terms for which j(i;—,) = s, j(i;) = t with that for
which j(i;—1) = t, j(i;) = s, and all other j(i;) equal. By anti-symmetry of the
bracket, the sum of these two terms is

iy, i) X1 -- o iy, G0 X G- Qi ian Xiapl -]
+ @iy, i) XiGnys - 1560 X e @i Xja_pl -]
= [@iy, ;) X jG1)» - - - @iy jG1—1)Gig, )Ry, 3G Gy, jG— D) X G 1) Xjapl -]

Pulling the constants out and considering the absolute value of the coefficient, we are
concerned with the absolute value of

iy, i) " Qip_n,jGir—2) @ip_y G- Gig, 7)) — Figy, i Gy, G—1))- (3.11)

By properties (3.4) and (3.7) and the triangle inequality we have

B0, — B, PO Do Gt
= |ail—1:j(il—l)ail,j(il) - aif,j(i/)ail,j(il—l)l + ’ail,j(ii)ait,j(if—l) iy, jG—1)
< |@i, | @i i) — | * [T 560|860 = 35560

< cenend'|v|y + enend’v], = cn28’[v[1.
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Now by (3.7) each of the other terms in the product (3.11) has absolute value at
most c¢n. Putting this together with the preceding and noting that / < d;+, the
absolute value of (3.11) is at most cn%+1§'|v|,. Since there are a finite number of
such terms independent of &', by taking &’ small as a function of §, ¢, |v|,, the total
contribution to the absolute value of the ¢ + 1 coordinate of A;--- A, from terms
from the third case is as desired. This finishes the proof. O

3.3. Proof of Proposition 3.1. Finally we can combine Lemmas 2.10, 3.2 and 3.4
to prove Proposition 3.1.

Proof of Proposition 3.1. Fix y € I'. Chow’s Theorem and Lemma 3.2 imply
doo(0tap (y", x),negp(y)) = 0(n)  in probability (3.12)
which implies in particular that
ot (¥, X)| oo = O(n) in probability. (3.13)
Now we use the triangle inequality

doo (@ (y", X), ngp(¥)) < doo(a(y", X), €ap (¥", X)) + doo(ap (¥", X), nttgp(y)).

The second summand is o(n) by (3.12). For the first summand, we apply Lemma 2.10
with 7,(x) = a(y",x); by (3.13), |maphn(Xx)|e = O(n) in probability, while
Lemma 3.4 implies |7Zcom/1n(X)|o = 0(n) in probability. O

4. Asymptotic behavior along arbitrary elements

In this section we prove the following.
Theorem 4.1. Let y,, € I' be a sequence satisfying

a a
W = Sllz,l . _Skn.k
where s; € S are fixed, in order, independent of n and for each i, N > a, ; — oo as
n — oco. Then whp

doo(@(Yn,X),8a, 1 Qab(51) * +++ % 84, , Uaqp(sk)) = o(Maxay ;).

We note that, for any sequence y, € I, it is possible to write the y,, to satisfy the
hypotheses of Theorem 4.1. Indeed, by Proposition 3.3 in [1], there is always a K
so that every y = s7! ---sz" with a; € N, s € § and k < K. By increasing K,
one may assume that every y is represented with the same ordered generating set.
By increasing K again, we ensure a,,; — ©o as n — oo for each i. Indeed, for
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every y, look at a = maxa;, and for each 1 < j < k so that a; < a/2, rewrite
s?’ = 52 ¥ s ] . We will not use either of these observations.
There is a natural way to compare the two points above. Using the cocycle

equation we write

An .k

o (Y, X) = a(sf”’l,xl) o5, xge)

where x; := sH’fl’“ ---sZ"‘kx. Proposition 3.1 relates a(s;", x;) and 8ap ;Clab(Si).
We use the uniform boundedness of k£ and Lemma 2.1 to extend Proposition 3.1 to

Theorem 4.1.

Proof of Theorem 4.1. By the cocycle equation, it is enough to show that whp

doo(at(sy", x1) -+ 05", xk), 84, | Fab(51) * = % 84,,  Fap (5k)) = 0(Maxan,;).

For each n, let a,, = maxa, ;. Now suppose the conclusion is false. Then there are
€,8 > 0 and a subsequence (we keep the index 7) so that

a,, ap, N -
m(x : doo(a(sy” ',xl)---a(sk' k,xk),8a",1aab(sl)*---*8a”,kaab(sk)) > da,) > €.

Notice that 0 < a,;/a, < 1. Therefore, after taking a diagonal subsequence, we
may assume that a, ; /a, — a; foreach 1 <i < k. Proposition 3.1 implies that, for
every | <i <k,whpasn — 0o

1

o as;™, x) — Tap(si).
ap i

The above, and an easy calculation in coordinates using the definition of the §; and
that a, ; /a, — a; shows thatforall 1 <i <k, whpasn — co.

‘ 1 an i _
0 (5" %) = Bay yjan —— @ (™ X) — 0, Tap(s1)
n n,i

Invoking Lemma 2.1, whp as n — o0

a M W
——eals” cx1) ol xk) —> 84, Wap(s1) * -+ % 8a, Uap (5%
which is equivalent to

a JR— -
doo (et (57", X1) - (5", Xk ), Sapa) Xab(51) * +++ * Sapay Tab(Sk)) = 0(an).

But

doo(ga”ma_ab(sl) ke ok 8anak%(5k)a 8a,,_105_ab(51) * ook 3an_k05—ab(5k)) = o(ay),

so we have a contradiction. O
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5. Construction of ¢ and proof of Main Theorem

In this section we construct @, prove Theorem B and deduce Theorem A.

Definition 5.1. Let (G, 6;) be a Carnot nilpotent lie group with its one-parameter
family of automorphisms. A finite symmetric subset S C G generates G, With
respect to §;, t > 0, if for every g € G there exist k € N, s1,...,5, € S and
ai,...,ar € Ry so that

g = Bay 51 % =+ * 84, Sk (5.1

Example 5.2. In the Mal’cev coordinates on G, the set of d' = dim(Goo/G2,)
elements

{(1,0,...,0),(0,1,0,...0),...,(0,...,1,0,...,0)}

together with their inverses form a finite symmetric generating set for G, with respect
to the homotheties &;.

More generally any finite symmetric set with real span containing V; = g/g?
generates G, with respect to §;. Indeed, the group generated by exp,, (V1) is a
connected subgroup of G, so by the Lie correspondence, its Lie algebra is a sub
algebra of goo containing V. Since V; generates goo as a Lie algebra, the group
generated by exp,, (V1) is all of G.

We can now give a definition of @ that will a priori depend on a choice of
representation of g € G in the generating set S. Later on we will prove that
there was in fact no choice involved. Let S C G4 be the set of 2d’ elements from
Example 5.2.

Definition 5.3 (First Definition of ®).

D(g) = 8ay Xap(51) * 8a,0ap(52) * ++ - * 84, Aap (5k)
where
g = 08a;81 x++ * 8q, Sk
is a fixed choice of representation of g as in (5.1).

Proposition 5.4. For each g € G, there is a sequence vy, € 1" so that
ol L0 e

o a(yy, x) — ©(g) with high probability as n — oc.

S

Proof. Fix g € G4 and the choice of representation of g
g = 8,81 %+ * 8q, Sk

as in (5.1). Foreachn € Nandeach 1 <i < k set m,; = |na;|, the greatest
integer less than or equal to na;. Thenforeach 1 <i <k asn — oo

’nn,i

— a;. (5.2)
n
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Now define forn € N

Vn = ST)1,1S’2”7H,2 .. _Sl’:zn,k
First notice that for each 1 <i < k we have
l .Smn,i S S
i a;oi-
n
Therefore by Lemma 2.1
1

— % Vi —* &
n

giving the first item. For the second item we invoke Theorem 4.1, which says that
whp

doo (@ (Vn: X), O, Cab(S1) * -+ * O, , Uap(Sk)) = o(maxmy,;).

By (5.2) the right hand side is o(n). Thus whp as n — oo

doo(gl/na()/n’x)a 5m,,‘1/na_ab(sl) horee ok Smn,k/na—ab(sk)) =1

Butasn — oo

Sm”,l/n@(sl) K Es K Sm,hk/n@(sk) — ®(g)
which finishes the proof. O

The next Proposition says that % e «(oy, x) — D(g) uniformly as % °0, —> g.

Proposition 5.5. Fix g € Goo. For all €1,e; > 0 there exist 6 > 0 and N € N
so that whenever o € I" and n > N are such that dg_, (% ®0,g) < 0, then with
probability at least 1 — €1 we have

dHoo(% e (0, x), CID(g)) < €.

In particular, for any sequence % ®© 0, — g we have % ® «(on, x) = P(g) in
probability.

Proof. Fixg € Gooand e, €3 > 0. Choose § > 0 small sothatk (1 + €3)26/¢; < €3
where kK = maxges |||a(s,-)[5]l1. Let y, be the sequence from Proposition 5.4.
Choose N large so that for all n > N, dgoo(% ® ¥, g) < & and so that
d Hw(% o ot(yn.x), ®(g)) < €2 with probability at least 1 — €;. Choose N larger
if necessary so that the maps scl,I; and sclf} are (1 + e;)-bi-Lipschitz for alln > N.

Now suppose dg., (% e0,g) <8 wheren > N. Then dGoo(% ® 0, % ® ) < 26,
which implies dr (0, yn) < (1 + €2)n268. Set t = 0~ Ly, s0 |t| < (1 + €2)n268. By
Markov’s inequality

m(la(z, x)|5 = «[z]/€1) < €.
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Thus by our choice of §, with probability at least 1 — €1, we have
le (7, x)| < ne,.

Using the cocycle equation «(y,, x) = «(0, Tx)x(r, x) and that sclf,\ is (1 + €3)-bi-
Lipschitz we have

1 1
dHoo(_ e u(yy,x), —ealo, tx)) < (1+ €p)en.
n n

with probability at least 1 —e;. Since dy__ (}—I o (yn, x), ®(g)) < e with probability
at least 1 — €1, we are done. O

The next corollary says that the definition of @ is independent of the choice of
representation of g in the generating set S.

Corollary 5.6. Suppose g € Goo can be written
g =88y * e % 8y Sy
where a; € Ry and s; € S. Define
(I)’(g) = 8(1’1@(5/1) LIRS Sak,m(sllc/)-
Then ®(g) = ®'(g).

Proof. Repeat the proof of Proposition 5.4 with @ in place of ®. Doing so we obtain
¥y € I so that % e y, — g and so that §;/,0(y;,x) — ®'(g) in probability. By
Proposition 5.5 8, (y,;,, x) — ®(g) in probability. Therefore ®'(g) = ®(g). O

5.1. ® is abi-Lipschitz group automorphism. We can now show that ® is a group
isomorphism. Since any two Carnot—Carathéodory metrics on the same Carnot group
are bi-Lipschitz to one another, we deduce that @ is bi-Lipschitz. Let & denote the
result of the above construction applied to the cocycle f instead of @. By symmetry,
all of the results above apply equally to W. We will see that ¥ and ® are inverses.

Proposition 5.7. @ is a homomorphism.

Proof. Fix g,h € G4 and '1—1 ey, — gand % e 0, — h. Then by Lemma 2.1 and
Proposition 5.5

* 2 e a(yy,0px) — ®(g) in probability

n

e ¢(0y, x) — P(h) in probability

==

[ ]

=

®V,0, —> gh

® «(Yn0n,x) — P(gh) in probability.

S =
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Invoking Lemma 2.1 in A, with high probability
1
- o (Y, onx)a(0y, x) = ®(g) » B(h).

Combining this with the fourth item, the proof is complete. [

Proposition 5.8. ® and V are inverse maps. Consequently, they are group iso-
morphisms.

Recall (§2.1) that the fundamental domains X and Y satisfy m(X N Y) > 0 and
that x € X NY Ny~ 1(X NY) implies that B(a(y, x), x) = y.

Proof. Fix g € G4 and € > 0. We will show that doo (V(D(g)), g) < 2¢. Using
the symmetry of « and B, we apply Proposition 5.5 to the cocycle 8, the map W and
the element ®(g) to obtain N € Nand § > 0 so that for any y, € T" withn > N and
any x € X, for a positive measure setof y e X NY

At (- 2 @l 1), 0(8)) <8 = dow (= » Blalrn, 0).0), W@()) < c.
(5.3)
Now applying Proposition 5.5 to a, ® and g we obtain §’ > 0 and N’ € N so that
whenevern > N

dG o (% ° yn,g) < &

implies that for a positive measure subset of X N Y both (5.3) occurs and

du.. (% o (¥, X), CD(g)) <4

Choose §’ < € if necessary, and set N = max(N, N”’). Then with positive probability
inXNY,forn>N

dona( o1 8) <8 = dow (o Pl x).2), W@E)) <c. (54

Now we invoke Lemma 2.2 (Poincaré recurrence) applied to X N'Y, g and & to
assert that with positive probability in X N Y there exists # > N and y, € I" with
dG.. (% ® ¥, g) < &, such that y,x € X N'Y and such that (5.4) occurs. Therefore
with positive probability

dg.. (% . yn,\ll(cb(g))) <€ and dg_ (% . yn,g) <e. 0l



212 M. Cantrell CMH

5.2. Theorem B implies Theorem A.

Proof. We recall the definition of the maps «x,. For each n € N the maps
sclf°° (—) : ' = G map I' more and more densely into G, and similarly for
sclf"" (=) : A = Hy (see §2). Forevery g € G and everyn € Nlet j,(g) € T
be an element of I' minimizing the distance between scl,c,;oo (') and g. Then for
g € G we define

ex,n(g) = self™ (@(jn(g), X)).

Now fix R > 0,8 > 0 and € > 0. Let Bg‘” (e) denote the ball of radius R > 0 in
(Goo, dxo) about the identity. By Theorem B, forevery g € G, thereist = 7(g) > 0
so that whenever sclf o (yn) € BGee (e), with probability at least 1 — § we have

Ao (D(g), sclif> (@ (ya, X))) < €.

By the compactness of Bgo" (e) we obtain a finite set F' C Bgoo (e) with the property
that for every g € Bg"" (e) there is go € F sothat dg_ (g, go) < € and so that

Goo
8 € Brig2(80):

Now set 7 = ming t(g) and choose N large sothatforalln > N, forallg € Bg“’ (e)
we have

da., (sc19(jn(g)), &) < /2.

Then for all n > N and every g € Bgo" (e) there is go € F so that with probability
atleast 1 —§

d s (D(g0), sClF> (@ (jn(g). X)) < €

and

dG.. (P(g), P(go)) < Le
where L is the Lipschitz constant for ®. This finishes the proof. M
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