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Ergodic components of partially hyperbolic systems

Andy Hammerlindl*

Abstract. This paper gives a complete classification of the possible ergodic decompositions
for certain open families of volume-preserving partially hyperbolic diffeomorphisms. These
families include systems with compact center leaves and perturbations of Anosov flows under
conditions on the dimensions of the invariant subbundles. The paper further shows that the
non-open accessibility classes form a C! lamination and gives results about the accessibility
classes of non-volume-preserving systems.
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1. Introduction

Invariant measures are important objects in the study of dynamical systems. Often,
these measures are ergodic, allowing a single orbit to express the global behaviour of
the system. However, this is not always the case. For instance, a Hamiltonian system
always possesses a smooth invariant measure, but a generic smooth Hamiltonian
yields level sets on which the dynamics are not ergodic [30]. Any invariant measure
may be expressed as a linear combination of ergodic measures and while such a
decomposition always exists, it is not, in general, tractable to find it. For partially
hyperbolic systems, there is a natural candidate for the ergodic decomposition given
by the accessibility classes of the system. This paper analyzes certain families of
partially hyperbolic systems, characterizing the possible accessibility classes and
showing that these coincide with the ergodic components of any smooth invariant
measure.

By the classical work of Hopf, the geodesic flow on a surface of negative curvature
is ergodic [26]. Further, by the work Anosov and Sinai, the flow is stably ergodic
meaning that all nearby flows are also ergodic [1,2]. Based on these techniques,
Grayson, Pugh, and Shub showed that the time-one map of this geodesic flow is also
stably ergodic as a diffeomorphism [21]. To prove this, they observed two important
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132 A. Hammerlindl CMH

properties. The first property is partial hyperbolicity. A diffeomorphism f is
partially hyperbolic if there is an invariant splitting of the tangent bundle of the phase
space M into three subbundles

TM = E"® E“®E°

such that vectors in the unstable bundle E* are expanded by the derivative 7f,
vectors in the stable bundle E° are contracted, and these dominate any expansion
and contraction of vectors in the center bundle E¢. (Appendix A gives a precise
definition.) The second property is accessibility. For a point x € M, the accessibility
class AC(x) is the set of all points that can be reached from x by a concatenation of
paths, each tangent to either £ or E*. A system is called accessible if its phase space
consists of a single accessibility class. For the geodesic flow, the phase space M
is the unit tangent bundle of the surface, E€ is the direction of the flow, and E*
and E* are given by the horocycles. Grayson, Pugh, and Shub demonstrated that
any diffeomorphism near the time-one map of the flow is both partially hyperbolic
and accessible and used this to prove its ergodicity. This breakthrough was followed
by a number of papers demonstrating stable ergodicity for specific cases of partially
hyperbolic systems (see the surveys [40,46]) and lead Pugh and Shub to formulate
the following conjecture [37].

Conjecture 1. Ergodicity holds on an open and dense set of volume-preserving
partially hyperbolic diffeomorphisms.

They further split this into two subconjectures.
Conjecture 2. Accessibility implies ergodicity.

Conjecture 3. Accessibility holds on an open and dense set of partially hyperbolic
diffeomorphisms (volume-preserving or not).

The Pugh—Shub conjectures have been established in a number of settings. In
particular, they are true when the center bundle £€ is one-dimensional [41]. However,
there are a number of partially hyperbolic systems which arise naturally and which
are not ergodic, leading to the following questions.

Question. Is it possible to give an exact description of the set of non-ergodic partially
hyperbolic diffeomorphisms?

Question. For a non-ergodic partially hyperbolic diffeomorphism, do the ergodic
components coincide with the accessibility classes of the system?

This paper answers these questions in the affirmative under certain assumptions
on the system. We first give one example as motivation before introducing more
general results. Consider on the 3-torus T°® = R3/Z3 a diffeomorphism f
defined by

f,y,2)=Cx+y,x+y,z2).
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The eigenvalues are A < 1 < A~ and f is therefore partially hyperbolic. Arguably,
this is the simplest partially hyperbolic example one can find. It preserves Lebesgue
measure but is not ergodic. Further, there are several ways to construct nearby
diffeomorphisms which are also non-ergodic. With a bit of thought, the following
methods come to mind.

(1) Rotate f slightly along the center direction, yielding a diffeomorphism
x,y,2)> 2x+y,x+y,z+0)

for some small rational 6 € R/Z.

(2) Compose f with a map of the form (x,y,z) — (¥(x,y,z),z) for some
v T3 - T2
(3) Perturb f on a subset of the form T? x X where X < S'.

(4) Conjugate f with a diffeomorphism close to the identity.

The results of this paper imply that any non-ergodic diffeomorphism in a
neighbourhood of f can be constructed by applying these four steps in this order.

Throughout the study of stably ergodic dynamical systems, regularity of the
invariant foliations has played a prominent role. One of Anosov’s early key
contributions was a proof that holonomies along the stable and unstable foliations are
absolutely continuous. This allowed him to show that all Anosov systems are stably
ergodic. Grayson, Pugh, and Shub adapted this proof in the setting of the perturbation
of the time-one map of an Anosov flow to show that the stable holonomy inside of
a center-stable leaf is C! regular. Determining the exact conditions which imply
C! regularity lead to the notion of “center bunching” [37,38]. Roughly speaking, a
partially hyperbolic system is center bunched if the derivative in the center direction
is sufficiently close to conformal. Further, a qualified case of the second Pugh—-Shub
conjecture holds: any accessible, center bunched system is ergodic [12].

In the case of one-dimensional center, every partially hyperbolic system is center
bunched. Further, F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures showed
that each accessibility class is either an open subset of the manifold or an immersed
codimension one submanifold tangent to £* @ E*® [41]. The submanifolds in the
second case form a lamination and are called us-leaves. While each leafis C ! regular,
it was not previously known if the coordinate charts defining the lamination could
taken as C!. In this paper, we establish this regularity, showing that the us-leaves
indeed form a C! lamination (see (2.9) below). This then allows us in certain
settings to apply Fubini’s theorem to the disintegration of the volume into measures
on leaves of the lamination and consequently to show that the ergodic components
have supports coinciding with the accessibility classes.

The proof of C! regularity of the lamination relies on the C! regularity of
the stable and unstable holonomies inside c¢s and cu-leaves. In the special case



134 A. Hammerlindl CMH

that E* and E*® are everywhere jointly integrable, these two holonomies commute and
together give a well-defined us-holonomy between center leaves. In the case where
the us-lamination is defined only on a proper closed subset of the phase space, the
holonomies do not commute and so establishing regularity of the lamination is more
involved. The basic idea is to define what the derivative of a us-holonomy “should
be” at all points and then use Whitney’s extension theorem to show that the holonomy
defined for points in the lamination extends to a C'! function in a neighbourhood of
these points. For leaves in the us-lamination which are accumulated on by other
leaves, the u and s-holonomies inside the cu and cs-foliations provide the candidate
derivatives. For isolated us-leaves which accumulate on non-isolated us-leaves,
these holonomies cannot be used and a more subtle approach is taken. Section 12
treats all of these issues of regularity in detail.

2. Statement of results

We again refer the reader to the appendix for a list of definitions.
Suppose A and B are automorphisms of a compact nilmanifold N such that A is
hyperbolic and AB = BA. Then, A and B define a diffeomorphism

fap:Mp — Mg, (v,t)+— (Av,1)

on the manifold
Mpg =N xR/(v,t) ~ (Bv,t —1).

Call f4p an AB-prototype.

Note that every AB-prototype is an example of a volume-preserving, partially
hyperbolic, non-ergodic system. Further, just like the linear example on T2 given
above, every AB-prototype may be perturbed to produce nearby diffeomorphisms
which are also non-ergodic.

To consider such perturbations, we use the notion of leaf conjugacy as introduced
in [25]. Two partially hyperbolic diffeomorphisms f and g are leaf conjugate if there
are invariant foliations W; and Wy tangent to E< and Eg and a homeomorphism /
such that for every leaf in L in WJ‘Z, h(L) is a leaf of Wg and h(f(L)) = g(h(L)).

We now define a family of diffeomorphisms which will be the focus of the paper.
A partially hyperbolic system f : M — M is an AB-system if it preserves an
orientation of the center bundle £ and is leaf conjugate to an AB-prototype.

In order to consider skew-products over infranilmanifolds and systems which do
not preserve an orientation of E¢, we also consider the following generalization.
A diffeomorphism fj is an infra-AB-system if an iterate of fy lifts to an AB-system
on a finite cover. To the best of the author’s knowledge, this family of partially
hyperbolic diffeomorphisms includes every currently known example of a non-
ergodic system with one-dimensional center. Further, there are manifolds on which
every conservative partially hyperbolic diffeomorphism is an AB-system.
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Question 2.1. Suppose f is a conservative, non-ergodic, partially hyperbolic C?
diffeomorphism with one-dimensional center. Is [ necessarily an infra-AB-system?

Skew products with trivial bundles correspond to AB-systems where B is the
identity map. The suspensions of Anosov diffeomorphisms correspond to the case
A = B. These are not the only cases, however. For instance, one could take
hyperbolic automorphisms A4, B : T3> — T3 defined by the commuting matrices

3 2 2 1 1
2 2 1 and 1 2 0
1 1 1 0 1

Throughout this paper, the letters A and B will always refer to the maps associated
to the AB-system under study, and N and M g will be the manifolds in the definition.
In general, if f : M — M is an AB-system, M need only be homeomorphic to Mg,
not diffeomorphic [14,15]. -

We show that every conservative AB-system belongs to one of three cases, each
with distinct dynamical and ergodic properties.

Theorem 2.2. Suppose f : M — M is a C? AB-system which preserves a smooth
volume form. Then, one of the following occurs.

(1) f is accessible and stably ergodic.

(2) EYand E® are jointly integrable and f is topologically conjugateto Mg — Mp,
(v,t) = (Av,t + 0) for some 6. Further, f is (non-stably) ergodic if and only
if 0 defines an irrational rotation.

(3) There are n > 1, a C! surjection p : M — S!, and a non-empty open set
U < S! such that

* for every connected component I of U, p~'(I) is an f"-invariant subset
homeomorphic to N x I and the restriction of " to this subset is accessible
and ergodic, and

s for every t € S'\ U, p~t) is an f"-invariant submanifold tangent to
(EY @ E°) and homeomorphic fo N.

Note that the first case can be thought of as a degenerate form of the third case with
U = S!. Similarly, the second case with rational rotation corresponds to U = @.

To give the ergodic decomposition of these systems, we decompose the measure
and show that each of the resulting measures is ergodic. Suppose @ is a smooth
measure on a manifold M and p : M — S! is continuous and surjective such that
P« = m where m is Lebesgue measure on St = R/Z. The Rokhlin disintegration
theorem [45] implies that x can be written as

b= f e dm(o)
tesSl
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where each 11, is contained in p~1(¢). Moreover, this disintegration is essentially
unique; if measures {v;},eq1 give another disintegration of w, then v, = p, for
m-a.e.t € S'. For an open interval I C S! define

1
wr = m—(l—)/ll«ttdm(f)-

Note that @7 is the normalized restriction of 1 to p~!(/). Then an open subset
U C S! yields a decomposition

— 1 +f dm(t 2.1
n ZI:M()M g m(t) 2.1

where ) _; denotes summation over all of the connected components / of U.

Theorem 2.3. If f : M — M is a C? AB-system and |1 is a smooth, invariant, non-
ergodic measure with /(M) = 1, thentherearen > 1, a C surjection p : M — S,
and an open set U C S such that p.ju = m and (2.1) is the ergodic decomposition
of (7, 1).

If f is in case (3) of (2.2), then the n, p, and U can be taken to be the same
in both theorems. If f is in case (2) and non-ergodic, then 0 is rational, and the
map p can be defined by composing the topological conjugacy from M to Mp with
a projection from Mp to S!,

As f preserves p and p.p = m, it follows that p(f(x)) = p(x) + ¢
for some rational ¢ € S! and all x with p(x) ¢ U. Because of this, one
can derive the ergodic decomposition of (f, ;) from (2.3). Each component is
either of the form %Z];'=1 Wit jg OF %Z?zl Wi, ; where if I = (a,b) then
Ivj =(a+ jq.b+ jq). In (2.3), the ergodic components of (f”, 1) are mixing
and, in fact, have the Kolmogorov property [12]. The ergodic components of f are
mixing if and only if (2.3) holds withn = 1.

Using the perturbation techniques of [41], for any AB-prototype f4p, rational
number § = hk—, and open subset U < S! which satisfies U + 8 = U, one can
construct an example of a volume-preserving AB-system which satisfies (2.3) with
the same n and U. In this sense, the classification given by (2.2) and (2.3) may be
thought of as complete. Versions of these theorems for infra-AB-systems are given
in Section 14.

Accessibility also has applications beyond the conservative setting. For instance,
Brin showed that accessibility and a non-wandering condition imply that the system
is (topologically) transitive [8]. Therefore, we state a version of (2.2) which assumes
only this non-wandering condition. For a homeomorphism f : M — M, a
wandering domain is a non-empty open subset U such that U N f"(U) is empty for
alln > 1. Let NW(f) be the non-wandering set, the set of all points x € M which
do not lie in a wandering domain.
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Theorem 2.4. Suppose f : M — M is an AB-system such that NW(f) = M.
Then, one of the following occurs.

(1) f is accessible and transitive.

(2) EY and E* arejointly integrable and [ is topologically conjugateto Mp — Mp,
(v,1) > (Av,t + 0) for some 0. Further, [ is transitive if and only if 0 defines
an irrational rotation.

(3) There are n > 1, a continuous surjection p : M — S', and a non-empty open
set U € S such that

s for every connected component I of U, p~Y(I) is an f"-invariant subset
homeomorphic to N x I, and

« for every t € S'\ U, p~'(t) is an f"-invariant submanifold tangent to
EY* & E° and homeomorphic to N.

The restriction of f™ to a subset p~1(t) or p~1(I) is transitive.

The non-wandering assumption is used in only a few places in the proof
and so certain results may be stated without this assumption. For a partially
hyperbolic diffeomorphism with one-dimensional center, a (us-leaf) is a complete
C! submanifold tangent to E* @ E¥.

Theorem 2.5. Every non-accessible AB-system has a compact us-leaf.

Theorem 2.6. Suppose f : M — M is a non-accessible AB-system with at least
one compact periodic us-leaf. Then, there are n > 1, a continuous surjection
p M — St and an open subset U C S with the following properties.

Fort € SY\ U, p~(¢t) is an f"-invariant compact us-leaf. Moreover, every
[ -periodic compact us-leaf is of this form.

For every connected component I of U, p~*(I) is f"-invariant, homeomorphic
to N x I and, letting g denote the restriction of f™ to p~'(1), one of three cases
OCCUrS:

(1) g isaccessible,
(2) there is an open set V. C p~'(I) such that
gWcv., Jgdm=pT't). WM =g
keZ keZ

and the boundary of V' is a compact us-leaf, or

(3) there are no compact us-leaves in p~'(I), uncountably many non-compact
us-leaves in p~'(I), and A # 1 such that g is semiconjugate to

NxR—- NxR, (v,t)+— (Av,Ar).
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It is relatively easy to construct examples in the first two cases above. Section 16
gives an example of the third case. It is based on the discovery by Rodriguez
Hertz, Rodriguez Hertz, and Ures of a non-dynamically coherent system on the
3-torus [44]. Theorem (2.6) corresponds to a rational rotation on an f-invariant
circle. The following two theorems correspond to irrational rotation.

Theorem 2.7. Suppose f : M — M is a non-accessible AB-system with no periodic
compact us-leaves. Then, there is a continuous surjection p : M — S' and a
C! diffeomorphism r : S' — S! such that

« NW(f)=p {(NW(r)),

e ift € NW(r) then p~1(¢) is a compact us-leaf and f(p~1(t)) = p~1(r(t)), and

o if I is a connected component of S' \ NW(r), then f(p~' (1)) = p~ ' (r(1)). In
particular, p~ (1) C M is a wandering domain.

Theorem 2.8. Suppose f : M — M is a non-accessible AB-system with no periodic
compact us-leaves. Then, f is semiconjugate to

Mp — Mp, (U,I)I—>(Av,l‘-|—9)

for 6 defining an irrational rotation.

One can construct C ! examples of AB-systems satisfying the conditions of (2.7)
and with NW( f) # M. For instance, if r is a Denjoy diffeomorphism of the circle,
simply consider a direct product A x r where A4 is Anosov.

The diffeomorphism f in (2.4)~(2.8) need only be C! in general. If f is a
C? diffeomorphism, then the surjection p : M — S! may be taken as C!. This is a
consequence of the following regularity result, proven in Section 12.

Theorem 2.9. For a non-accessible partially hyperbolic C? diffeomorphism with
one-dimensional center, the us-leaves form a C' lamination.

The existence of a C° lamination was shown in [41].

The next sections discuss how this work relates to other results in partially
hyperbolic theory, first for three-dimensional systems in Section 3 and for higher
dimensions in Section 4. Section 5 gives an outline of the proof and of the organization
of the rest of the paper. The appendix gives precise definitions for many of the terms
used in these next few sections.

3. Dimension three

The study of partially hyperbolic systems has had its greatest success in dimension
three, where dim £* = dim E¢ = dim E® = 1. Still, in this simplest of cases, a
number of important questions remain open. Rodiguez Hertz, Rodriguez Hertz, and
Ures posed the following conjecture specifically regarding ergodicity.
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Conjecture 3.1. If a conservative partially hyperbolic diffeomorphism in dimension
three is not ergodic, then there is a periodic 2-torus tangent to E¥ @& E°.

They also showed that the existence of such a torus would have strong dynamical
consequences. We state this theorem as follows.

Theorem 3.2 ([43]). If a partially hyperbolic diffeomorphism on a three dimensional
manifold M has a periodic 2-torus tangent to E" & E*, then M has solvable
fundamental group.

In fact, the theorem may be stated in a much stronger form. See [43] for details.

Work on classifying partially hyperbolic systems has seen some success in recent
years, at least for 3-manifolds with “small” fundamental group. This was made
possible by the breakthrough results of Brin, Burago, and Ivanov to rule out partially
hyperbolic diffeomorphisms on the 3-sphere and prove dynamical coherence on the
3-torus [7,9]. Building on this work, the author and R. Potrie gave a classification
up to leaf conjugacy of all partially hyperbolic systems on 3-manifolds with solvable
fundamental group. Using the terminology of the current paper, the conservative
version of this classification can be stated as follows.

Theorem 3.3 ([23]). A conservative partially hyperbolic diffeomorphism on a
3-manifold with solvable fundamental group is (up to finite iterates and finite covers)
either

(a) an AB-system,
(b) a skew-product with a non-trivial fiber bundle, or
(c) a system leaf conjugate to an Anosov diffeomorphism.

Further, the ergodic properties of each of these three cases have been examined in
detail. Case (a) is the subject of the current paper. Case (b) was studied in [42], where
it was first shown that there are manifolds on which all partially hyperbolic systems
are accessible and ergodic. Case (c) was studied in [24], which showed that if such a
system is not ergodic then it is topologically conjugate to an Anosov diffeomorphism
(not just leaf conjugate). It is an open question if such a non-ergodic system can
occur. All of these results can be synthesized into the following statement, similar in
form to (2.2).

Theorem 3.4. Suppose M is a 3-manifold with solvable fundamental group and
f M — M is a C? conservative partially hyperbolic system. Then, (up to finite
iterates and finite covers) one of the following occurs.

(1) f is accessible and stably ergodic.

(2) EY and E* are jointly integrable and f is topologically conjugate either to a
linear hyperbolic automorphism of T3 or to

Mp — Mp, (v,t) — (Av,t + 0)
where A, B : T?> — T? define an AB-prototype and 0 € S'.
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(3) There are n > 1, a C' surjection p : M — S!, and a non-empty open set
U < S such that

* for every connected component I of U, p~Y(I) is an f"-invariant subset
homeomorphic to T? x I and the restriction of f™ to this subset is accessible
and ergodic,

e foreveryt € S'\ U, p~l(t) isan f™-invariant 2-torus tangent to E* @ E°*.

If (3.1) is true, then this theorem encapsulates every possible ergodic decompo-
sition for a 3-dimensional partially hyperbolic system.

Question 3.5. Is the condition “with solvable fundamental group” necessary in (3.4)?

4. Higher dimensions

We next consider the case of skew products in higher dimension. In related work,
K. Burns and A. Wilkinson studied stable ergodicity of rotation extensions and of
more general group extensions over Anosov diffeomorphisms [11], and M. Field,
I. Melbourne, V. Niticd, and A. Torok have analyzed group extensions over Axiom A
systems, proving results on transitivity, ergodicity, and rates of mixing [16,17,31].

In this paper, we use the following definition taken from [20]. Letw : M — X
define a fiber bundle on a compact manifold M over a topological manifold X. If a
partially hyperbolic diffeomorphism f : M — M is such that the center direction E;
is tangent to the fibers of the bundle and there is a homeomorphism A4 : X — X
satisfying wf = Am, then f is a partially hyperbolic skew product. We call A
the base map of the skew product. While  must be C!, 7 in general will only be
continuous.

This definition has the benefit that it is open: any C!-small perturbation of a
partially hyperbolic skew product is again a partially hyperbolic skew product. This
can be proven using the results in [25] and the fact that the base map is expansive.
The base map also has the property that it is topologically Anosov [3]. As with
smooth Anosov systems, it is an open question if all topologically Anosov systems
are algebraic in nature.

Question 4.1. If A is a base map of a partially hyperbolic skew product, then is A
topologically conjugate to a hyperbolic infranilmanifold automorphism?

We now consider the case where dim £¢ = 1 in order to relate skew products to
the AB-systems studied in this paper. The following is easily proved.

Proposition 4.2. Suppose f is a partially hyperbolic skew product where the base
map is a hyperbolic nilmanifold automorphism and E€ is one-dimensional and has
an orientation preserved by f. Then, f is an AB-system if and only if the fiber bundle
defining the skew product is trivial.
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If we are interested in the ergodic properties of the system, we can further relate
accessibility to triviality of the fiber bundle.

Theorem 4.3. Suppose f is a partially hyperbolic skew product where the base map
is a hyperbolic nilmanifold automorphism and E° is one-dimensional and orientable.
If f is not accessible, then the fiber bundle defining the skew product is trivial.

Corollary 4.4. Suppose f is a conservative C? partially hyperbolic skew product
where the base map is a hyperbolic nilmanifold automorphism and E° is one-
dimensional and has an orientation preserved by f. Then, f satisfies one of the
three cases of (2.2) and if f is not ergodic, its ergodic decomposition is given by (2.3).

Theorem (4.3) is proved in Section 13. A similar statement, (14.5), still
holds when “nilmanifold” is replaced by “infranilmanifold” and the condition on
orientability is dropped.

Every partially hyperbolic skew product has compact center leaves and an open
question, attributed in [40] to C. C. Pugh, asks if some form of converse statement
holds.

Question 4.5. Is every partially hyperbolic diffeomorphism with compact center
leaves finitely covered by a partially hyperbolic skew product?

This question was studied independently by D. Bohnet, P. Carrasco, and A. Go-
golev who gave positive answers under certain assumptions [5, 6, 13,20]. In relation
to the systems studied in the current paper, the following results are relevant.

Theorem 4.6 ([20]). If f is a partially hyperbolic diffeomorphism with compact
center leaves, and dim E¢ = 1, dim E* < 2, and dim E® < 2, then f is finitely
covered by a skew product.

Corollary 4.7. Suppose f : M — M is a partially hyperbolic diffeomorphism with
compact center leaves, dim E€ = 1, and dim M = 4. If [ is not accessible, then |
is an infra-AB-system.

A compact foliation is uniformly compact if there is a uniform bound on the
volume of the leaves.

Theorem 4.8 ([6]). If f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dim E* = 1, then f is finitely covered by a partially
hyperbolic skew product where the base map is a hyperbolic toral automorphism.

Corollary 4.9. Suppose f is a partially hyperbolic diffeomorphism with uniformly
compact center leaves and dim E* = dim E€ = 1. If f is not accessible, then f is
an infra-AB-system.

In the conservative setting, we may then invoke the results of the current paper to
describe the ergodic properties of these systems.

Question 4.10. If f is a non-accessible partially hyperbolic diffeomorphism with
compact one-dimensional center leaves, then is f an infra-AB-system?
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Positive answers to both (4.1) and (4.5) would give a positive answer to (4.10).

In his study of hyperbolic flows, Anosov established a dichotomy, now known
as the “Anosov alternative” which states that every transitive Anosov flow is either
topologically mixing or the suspension of an Anosov diffeomorphism with constant
roof function [1, 17]. Ergodic variants of the Anosov alternative have also been
studied and the following holds.

Theorem 4.11 ([10, 33]). For an Anosov flow ¢, : M — M, the following are
equivalent:

* the time-one map ¢, is not accessible,
* the strong stable and unstable foliations are jointly integrable,

and both imply the flow is topologically conjugate to the suspension of an Anosov
diffeomorphism.

Corollary 4.12. Suppose every Anosov diffeomorphism is topologically conjugate to
an infranilmanifold automorphism. Then, every non-accessible time-one map of an
Anosov flow is an infra-AB-system.

Thus, if the conjecture about Anosov diffeomorphisms is true, then the results
given in Section 14 will classify the ergodic properties of diffeomorphisms which are
perturbations of time-one maps of Anosov flows. This conjecture is true when the
Anosov diffeomorphism has a one dimensional stable or unstable bundle [32].

Corollary 4.13. Suppose f is the time-one map of an Anosov flow with dim E ; = 1.
If f is not accessible, then it is an AB-system.

5. Outline

Most of the remaining sections focus on proving the results listed in Section 2 and
we present here an outline of the main ideas.

A partially hyperbolic system has global product structure if it is dynamically
coherent and, after lifting the foliations to the universal cover M, the following hold
forall x,y € M:

(1) W*"(x) and W**(y) intersect exactly once,

(2) W¥(x) and W<*(y) intersect exactly once,

(3) if x € W (y), then W€(x) and W*(y) intersect exactly once, and

(4) if x € W(y), then W€¢(x) and W¥(y) intersect exactly once.

Theorem 5.1. Every AB-system has global product structure.

This proof of this theorem is left to Section 15. That section also proves the following.

Theorem 5.2. AB-systems form a C'-open subset of the space of diffeomorphisms.
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Now assume f is a non-accessible AB-system. There is a lamination consisting
of us-leaves [41], and this lamination lifts to the universal cover. Global product
structure implies that for a center leaf L on the cover, every leaf of the lifted
us-lamination intersects L exactly once. Each deck transformation maps the
lamination to itself and this leads to an action of the fundamental group on a closed
subset of L as depicted in Figure 1.

a(x)

ga(X) L

Figure 1. After lifting to the universal cover, an AB-system has a center leaf L invariant under
the lifted dynamics f. Each deck transformation « then defines a function gy : L — L where
g« (x) is the unique point for which W* («(x)) intersects W (g4 (x)). These functions together
with f define a solvable action on a closed subset of L and this action is semiconjugate to an
affine action on R.

In Section 6, we consider an order-preserving action of a nilpotent group G on a
closed subset I' C R. We also assume there is f acting on I' suchthat fGf ! = G.
Then, f and G generate a solvable group. Solvable groups acting on the line were
studied by Plante [35]. By adapting his results, we prove (6.5) which (omitting
some details for now) states that either Fix(G) is non-empty or, up to a common
semiconjugacy from I" to R, each g € G gives a translation x — x + 7(g) and f
gives a scaling x +— Ax.

Instead of applying this result immediately to AB-systems, Section 7 introduces
the notion of an “Al-system” which can be thought of as the lift of an AB-system
to a covering space homeomorphic to N x R where, as always, NV is a nilmanifold.
Using (6.5), Section 7 gives a classification result, (7.1), for the accessibility classes
of Al-systems. Section 8 applies the results for Al-systems to give results about
AB-systems and gives a proof of (2.5). The higher dimensional dynamics of
the AB-system depend on the one-dimensional dynamics on an invariant circle.
Sections 9 and 10 consider the cases of rational and irrational rotation respectively
and prove Theorems (2.6)—(2.8).



144 A. Hammerlindl CMH

Section 11 gives the proofs of (2.2), (2.3), and (2.4) based on the other results.
In order to establish the ergodic decomposition, the lamination of us-leaves must
be C!. By (2.9), this holds if the diffeomorphism is C 2. The proof requires a highly
technical application of Whitney’s extension theorem and is given in Section 12. The
specific version of this regularity result for AB-systems can be stated as follows.
Proposition5.3. Let  : M — M be a C? AB-system. Then, thereis a C ! surjection
p: M — St and U C S! such that the compact us-leaves of f are exactly the
sets p~L(t) fort e ST\ U.

If S is a center leaf which intersects each compact us-leaf exactly once, then p
may be defined so that its restriction to S is a C'-diffeomorphism.

If | is a probability measure given by a C! volume form on M, then p may be
chosen so that p« i is Lebesgue measure on S' = R/Z.

Section 13 proves (4.3) concerning the triviality of non-accessible skew products.
Infra-AB-systems are treated in Section 14.

6. Actions on subsets of the line

Notation. To avoid excessive parentheses, if f and g are composable functions, we
simply write fg for the composition. In this section, u is a measure on the real line
and p[x, y) denotes the measure of the half-open interval [x, y).

Let Homeo™ (R) denote the group of orientation-preserving homeomorphisms of
the line. If T is a non-empty closed subset of R, let Homeo™ (I") denote the group of
all homeomorphisms of I' which are restrictions of elements of Homeo™ (R). That
is, g is in Homeo™ (I") if it is a homeomorphism of I" and g(x) < g(y) for x < y.

We now adapt results of Plante to this setting.

Proposition 6.1. Suppose 1" is a non-empty closed subset of R and G is a subgroup
of Homeo™ (I") with non-exponential growth. Then, there is a measure j on R such
that

* suppu C I,
o w(X) = u(g(X)) forall g € G and Borel sets X C R, and
* if X C R is compact, then u(X) < co.

Proof. In the case I' = R, this is a restatement of (1.3) in [35]. One can check that
the techniques in [35] and [34] extend immediately to the case I' # R. (]

Proposition 6.2. Let T', G, and  be as in (6.1) and suppose Fix(G) is empty. Then
there is a non-zero homomorphism t : G — R such that for all x € R

pulx,g(x))  ifx < g(x),
7(g) = 10 ifx = g(x),
—plg(x), x) ifg(x) < x.
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Proof. Choose any x € R and define 7 as above. One can then show that 7 is a
non-zero homomorphism and independent of the choice of x. See (5.3) of [34] for
details. O

Proposition 6.3. Let ', G, 11, T be as in (6.2) and suppose f € Homeo™ (R) is such
that F : G — G defined by F(g)(x) = fgf'(x) is a group automorphism. Then,
there is A > 0 such that t(F(g)) = At(g) forall g € G.

Moreover, if A # 1, then fup = Au and any homeomorphism of R which
commutes with [ has a fixed point.

Proof. The first half of the statement follows as an adaptation of §4 of [35]. Further,
if A s 1, then fup = Ap by (4.2) of [35]. To prove the final claim, we first show
that if A =% 1 then f has a fixed point. Consider x € I'. As Fix(G) is empty by
assumption, there is g € G such that x < g(x). Then,

ju[x, +00) > pulx, g (x)) = k z(g)

for all k > 1. This shows that p[x, +00) = co for any x € R.
Assume, without loss of generality, that A < 1 and x < f(x) for some x € R.
Then,

ple,sup f4()) = Y Aeplx, f(x)) < oo
kzp k=0

and therefore, xg := supg-q f k(x) < oo is a fixed point for f. If 1 € Homeo™ (R)
commutes with f then forall k € Z

1[xo0, H*(x0)) = w[f(x0), Fh*(x0)) = A plxo, h* (x0))

which is possible only if jt[xg, ¥ (x0)) = 0. Then u[xo, supycz h*(x0)) = 0 and so
sup ¥ (x¢) < oo is a fixed point for 4. O

We now consider the case where G is a fundamental group of a nilmanifold.

Proposition 6.4. Let G be a torsion-free, finitely-generated, nilpotent group and
suppose ¢ € Aut(G) is such that ¢(g) # g for all non-trivial g € G. If H is a
¢-invariant subgroup, then ¢(gH) # gH for all non-trivial cosets gH # H.

Proof. First, we show that the function ¥ : G — G defined by ¥ (g) = g~ '¢(g)
is a bijection. If G is abelian, then G is isomorphic to Z? for some d and ¥ is
an invertible linear map, and hence bijective. Suppose now that G is non-abelian
and let Z be its group-theoretic center. Pick some element go € G. As G/Z is of
smaller nilpotency class, by induction there is g € G such that ¥ (gZ) = goZ or
equivalently ¥ (g)zo = go forsome zg € Z. As |z is an automorphism of Z, there
is z € Z such that ¥ (gz) = Y (g)¥(z) = ¥(g)zo = go- As go was arbitrary, this
shows v is onto.
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To prove injectivity, suppose ¥ (g) = ¥(g’). By induction, g’ = gz for some
z € Z. Then,

Y@ =vE)=v@VviE = yv@=1 = z=1 = ¢g=g

If H is a ¢-invariant subgroup, then ¥ (H) = H and the bijectivity of v implies
that ¥ (gH ) # H for any non-trivial coset. O

The results of J. Franks and A. Manning [18, 19,29] show that for any Anosov
diffeomorphism on a nilmanifold, the resulting automorphism on the fundamental
group satisfies the hypotheses of (6.4).

Lemma 6.5. Suppose I' C R, G < Homeo™ ('), and f € Homeo™ (R) are such
that

* [ is closed and non-empty,

* G is finitely generated and nilpotent,
« F:G — G definedby F(g)(x) = fgf'(x)

is a group automorphism with no non-trivial fixed points, and
* Fix(G) is empty.
Then, there are
* a closed non-empty subset I'y C T,
* a continuous surjection P : R — R,
* a non-zero homeomorphismt : G — R, and
s 0<A#1
such that for x,y e Rand g € G
» x <y implies P(x) < P(y),
Pg(x) = P(x) + =(g),
Pf(x) = AP(x),
e To={xel :g(x)=xforall g € kert}, and

for each t € R, P~Y(t) is either a point z € Ty or an interval [a, b] with
a,b e Ip.

Moreover, any homeomorphism which commutes with f has a fixed point in P~1(0).

Proof. The conditions on G imply that it has non-exponential growth [22]. Therefore,
we are in the setting of the previous propositions. In particular, there are p, 7, and A
as above.

First, suppose that the image t(G) is a cyclic subgroup of R in order to
derive a contradiction. In this case, the condition tF = At in (6.3) implies that
A1(G) = ©(G) and therefore A = 1. Then, F maps a coset of ker t to itself. As
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Homeo™ (I') is torsion free, so is G, and by (6.4), F' has a non-trivial fixed point,
in contradiction to the hypotheses of the lemma being proved. Therefore, t(G) is
non-cyclic.

Consequently, T(G) is a dense subgroup of R. Further A # 1, as otherwise, one
could derive a contradiction exactly as above. By (6.3), f has at least one fixed point,
say xo € R. Define a function P : R — R by

“lxg, x) if x > xg,
P(x)= 0 ifx:Xo,
—ul[x, xo) if x < xp.

By definition, P is (non-strictly) increasing. The density of 7(G) implies that P (IR)
is dense. Then, as a monotonic function without jumps, P is continuous and therefore
surjective. Foreach? € R, the pre-image P! (¢) is either a point or a closed interval,
In either case, one can verify that g(P~!(¢)) = P~ (¢) forall g € ker t and therefore
the boundary of P~1(¢) is in I'g. The other properties of P listed in the lemma are
easily verified.

The statement for homeomorphisms commuting with f follows by adapting the
proof of (6.3). L]

7. Al-systems

We now consider partially hyperbolic systems on non-compact manifolds. Sup-
pose M is compact and f : M — M is partially hyperbolic. Then, any lift of f
to a covering space of M is also considered to be partially hyperbolic. Also, any
restriction of a partially hyperbolic diffeomorphism to an open invariant subset is still
considered to be partially hyperbolic.

Let A be a hyperbolic automorphism of the compact nilmanifold N and / C R
an open interval. The Al-prototype is defined as

far :NxI = NxI, (v,t)— (Av,1).

A partially hyperbolic diffeomorphism f on a (non-compact) manifold M is an
Al-system if it has global product structure, preserves the orientation of its center
direction, and is leaf conjugate to an Al-prototype.

Theorem 7.1. Suppose f : M — M is an Al-system with no invariant compact
us-leaves. Then, either

(1) f is accessible,
(2) there is an open set V C M such that
fnycv. Urfom=m, (kv =
keZ keZ

and the boundary of V is a compact us-leaf, or
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(3) there are no compact us-leaves in M, uncountably many non-compact us-leaves
in M and there is A # 1 such that f is semiconjugate to

NxR—>NxR, (v,t)— (Av,At).

Notation. For a point x on a manifold supporting a partially hyperbolic system,
let W#(x) be the stable manifold through x, and W¥(x) the unstable manifold. Then
AC(x), the accessibility class of x, is the smallest set containing x which satisfies

W2 (y) U W*(y) C AC(x)
for all y € AC(x). For an arbitrary subset X of the manifold, define

Wix)= W', w*X)= )W), and ACX)= | ] AC(x).

xeX xeX xeX

Note that AC(X) may or may not be a single accessibility class.

Proposition 7.2 ([41]). Suppose f is a partially hyperbolic system with one-dimen-
sional center on a (not necessarily compact) manifold M. For x € M, the following
are equivalent:

o AC(x) is not open.
o AC(x) has empty interior.
e AC(x) is a complete C' codimension one submanifold.

If L is a curve through x tangent to the center direction, then the following are also
equivalent to the above:

* AC(x) N L is not open in L.
« AC(x) N L has empty interior in L.
If [ is non-accessible, the set of non-open accessibility classes form a lamination.

Assumption 7.3. For the remainder of the section, assume f : M — M is a
non-accessible Al-system.

All of the analysis of this section will be on the universal cover. Let M and N be
the universal covers of M and N. Then, f and the leaf conjugacy 4 lift to functions
f M — M,andh : M — N x [ still denoted by the same letters. Every lifted
center leaf of the lifted f is of the form 2~ ! (v x I) for some v € N. In general,
the choice of the lifts of f and 4 are not unique. They may be chosen, however,
so that Aif h=1(v x I) = Av x I where A : N > Nisa hyperbolic Lie group
automorphism. As A fixes the identity element of the Lie group, there is a center
leaf mapped to itself by f. Let L denote this leaf. As L is homeomorphic to R,
assume there is an ordering on the points of L and define open intervals (a,b) C L
fora,b € L and suprema sup X for subsets X C L exactly as for R.

Define a closed subset

A ={t € L:AC(¢) is not open}.
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Lemma 7.4. A is non-empty.

Proof. As M is connected, if all accessibility classes were open, f would be
accessible (both on M and M ). Therefore, there is at least one non-open accessibility
class. By global product structure, this class intersects L. ]

Lemma 7.5. [ft € A, then AC(t) = WSW¥*(1) = W W5(1).

This is an adaptation to the case of global product structure of local arguments
used in the proof of (7.2).

h=lwxD

Figure 2. A “bracket” of points defined by global product structure. The proof of (7.5) shows
thatif r € A, thent, =t¢.

Proof. Each center leaf in M is of the form h~!(v x I') for some v € N. By global
product structure, for each v € N there exist unique points Xy, Yy, Zy, fy € M such
that

Xy € W), vy e WH(xy) Nh Y wxI), zy,€W(yy), € Whz,)NL.
See Figure 2. These points depend continuously on v. As N is connected, the set
{t,;ve N} CLNAC(®)

is connected and, by (7.2), has empty interior as a subset of L. Therefore, it consists
of the single point #. This shows that both W*W"(¢) and W*W?*(¢) intersect each
center leaf A~! (v x I) in the same unique point y, and so the two sets are identical.
This set is both s-saturated and u-saturated and so contains AC(¢). O

By global product structure, for any x € M, there is a unique point R(x) € L
such that W*(x) intersects W*(R(x)). This defines a retraction, R : M — L. By
the previous lemma, if # € A, then R™1(¢) = AC(¢).

Let  : M — M be a deck transformation of the covering M — M. Then,
as depicted in Figure 1, o defines a map g, € Homeo™ (A) given by the restriction
of Rowa to A. Define

G ={gy: 0 €m(M)).
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Lemma 7.6. G is a finitely generated, nilpotent subgroup of Homeo™ (A).

Proof. For a € nl(M yand t € A, gu(2) is given by the unique intersection of
a(AC(t)) and L. Then,

AC(ga(gp())) = a(AC(gp (1)) = af(AC(1)) = AC(gap(t))

shows that nl(M ) — Homeo™ (A), a — gy is a group homomorphism. As M is
homotopy equivalent to the nilmanifold N, its fundamental group is finitely generated
and nilpotent. U

It is necessary to define G with elements in Homeo™ (A) as, in general, the same
construction on L will define a subset of Homeo™ (L) but not a subgroup.

Lemma 7.7. For a pointt € A, AC(t) C M projects to a compact us-leaf in M if
and only ift € Fix(G).

Proof. Consider 1 € A and let X C M be the image of AC(¢) by the covering
M — M. First, suppose ¢ € Fix(G). By global product structure, there is a unique
map o : N — AC(t) such that ho(v) € v x I for every v € N. For any deck
transformation « € Jn(M ),

a(AC(1)) = AC(ga(r)) = AC()

which implies that o0 = ooy where oy is the corresponding deck transformation
for the covering N — N. It follows that & quotients to a homeomorphism from the
compact nilmanifold N to X and therefore X is compact.

To prove the converse, suppose b is compact. From the definition of an Al-system,
one can see that every center leaf on M is properly embedded. Therefore, X intersects
each center leaf in a compact set. If X is the pre-image of X by covering MM,
then X intersects each center leaf on M in a compact set. In particular, XNLis
compact. Note that X N L is exactly equal to the orbit Gt = {g(¢) : g € G}. Define
s = sup Gt. Then, s € Gt by compactness and g(Gt) = Gt implies g(s) = s for
each g € G. This shows that {s} = Gs = Gt and therefore 1 = s € Fix(G). |

Lemma 7.8. Suppose J C L is an open interval such that dJ C Fix(f) N Fix(G).
Let X be the image of AC(J) by the covering M — M. Then, f|x is an Al-system.

This lemma is the justification for assuming there are no invariant, compact leaves
in (7.1). If such leaves exist, the Al-system can be decomposed into smaller systems.

Proof. Assume the subinterval J in the hypothesis is of the form J = (a, b) with
a,b € L. Unbounded subintervals of the form (a, +0c0) and (—oo, b) are handled
similarly.

For every center leaf 4~ (v x I), let ay,, b, € I be such that v x a, € h(AC(a))
and v x by € h(AC(b)). The set X = Upes h='(v x (ay, by)) is s-saturated,
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u-saturated, and contains J. Therefore, AC(J) C X. By global product structure,
one can show that X C AC (J), so the two sets are equal. By its construction X
is simply connected, and invariant under deck transformations. Therefore, it is the
universal cover for X. Global product structure is inherited from M. For instance,
for x,y € AC(J), there is a unique point z € M such that z € W5 (x) N We¥(y).
Since, W*(x) C X,z isin X.

Compose h with a homeomorphism which maps each v x (ay, by) to v x (0, 1)
by rescaling the second coordinate. This results in a leaf conjugacy between f
on X and A x id on N x (0, 1) which quotients down to a leaf conjugacy from X
to N x (0,1). O

We now show that if the Al-system has no fixed compact us-leaves, then it satisfies
either case (2) or case (3) of (7.1) depending on whether it has any (non-fixed) compact
us-leaves.

Lemma 7.9. If Fix(G) is non-empty and Fix( f) N Fix(G) is empty, then [ satisfies
case (2) of (7.1).

Proof. We first show that f restricted to L is fixed-point free. Suppose, instead, that
f(t) =t € L. By assumption ¢ ¢ Fix(G), so let J be the connected component
of L \ Fix(G) containing ¢. As Fix(G) is f-invariant, f(J) = J and each s € dJ
is then an element of Fix( /) N Fix(G), a contradiction.

Without loss of generality, assume ¢t < f(¢) for all t+ € L. Choose some
to € Fix(G) and define LT = {t € L : t > to}. Then,

fHctt, At =L, ad [ ff@H =2

kez keZ

One can then show that the covering M — M takes AC (LT)toanopenset V C M
which satisfies the second case of (7.1). O

Lemma 7.10. If Fix(G) is empty, then f satisfies case (3) of (7.1).

Proof. In this case, the hypotheses of (6.5) hold with I' = A. Let P : L — R and
T:G — R beasin (6.5).

If « € 71 (M) is a deck transformation M — M, then hah™! is equal to oy x id
on N x I for some deck transformation « N € m1(N). As N is a nilmanifold, any
homomorphism from (N ) to R defines a unique homomorphism from the nilpotent
Lie group NtR [28]. This implies that there is a unique Lie > group homomorph1sm
T : N — R such that Toan () = T(W) + 1(ge) forallv e N and« € nl(M)

Let R : M — L be the retraction defined earlier in this section and let
H:M — N be the composition of the leaf conjugacy £ : M — N x I with
projection onto the first coordinate. Define

O:M—R, x PR(x)—TH(x).
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We will show that Q quotients to a function M — R and use this to construct the
semiconjugacy in the last case of (7.1).

First, consider a point x € M which has a non-open accessibility class. Then,
R(x) € A and, fora € Jn(M),

PR(a(x)) = PgaR(x) = PR(x) + 7(ga)
and
THoa(x) = TayH(x) = TH(x) + t(ga)

which together show Qa(x) = Q(x).

Now, consider a point x € M which has an open accessibility class, and let
J C M be the connected component of W¢(x) N AC(x) which contains x. The
set ['gp from (6.5) is a subset of I' = A and therefore P is constant on L \ A.
Then, PR is constant on J and, by continuity, constant on the closure of J as
well. As H is constant on center leaves, Q = PR — TH is also constant on the
closure of J. Let y be a point on the boundary of J. Then, as AC(y) is non-
open, Q(x) = Q(y) = Qua(y) = Qua(x). This shows that O quotients down to a
function Q : M — R. Amuch simpler argument shows that f : M —> N quotients
down to a function H : M — N.

The properties of F and P in (6.5) imply that TA = AT and therefore TH f =
TAH = ATH. As PRf = PfR = APR, this shows that O/ = AQ. Then, H x 0
is the desired semiconjugacy in (7.1). By (6.5), P(A) = R and so A is uncountable.
Each G-orbit of A corresponds to a distinct us-leaf, and so there are uncountably
many. ]

This concludes the proof of (7.1). We note one additional fact which will be used
in the next section.

Corollary 7.11. If Fix(G) is empty, any homeomorphism of L which commutes
with f has a fixed point.

Proof. This follows from the use of (6.5) in the previous proof. 1

8. AB-systems

Assumption 8.1. In rhis section, assume f : M — M is a non-accessible AB-
system.

The AB-prototype f4p has an invariant center leaf which is a circle. By the leaf
conjugacy, / also has an invariant center leaf. Call this leaf S. Note that f lifts to
an Al-system. This is because the AB-prototype f4p lifts to the Al-prototype A x id
on N xR. If h : M — Mp is the leaf conjugacy, then 2 f h~! is homotopic to fap
and therefore also lifts to N x R.
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Let ¥ : M — M be the universal covering, and choose a lift f M > M
and S a connected component of 7~1(S) such that f(S) = S. The universal
cover N x R of the manifold Mg has a deck transformation of the form (v,?)
(Bv,t—1). Conjugating this by the lifted leaf conjugacy gives a deck transformation
B : M — M and one can assume that 8(S) = S. Then, S plays the role of L in the
previous section. Define A = {t € § : AC(¢) is not open} and G as a subgroup of
Homeo™ (A) as in the previous section.

Lemma 8.2. Fix(G) is non-empty.

Proof. This follows from (7.11) since f and JF are commuting diffeomorphisms
when restricted to S and f is fixed-point free. O

Lemma 8.3. Fort € A, AC(n(t)) C M is compact if and only if t € Fix(G).

Proof. If t € Fix(G), then, by (7.7), AC(x(t)) is covered by a compact us-leaf of
the Al-system and is therefore compact itself.

Conversely, suppose ¢t € A is such that AC(m(t)) C M is a compact us-leaf.
Note that as S(Fix(G)) = Fix(G) there are a,b € Fix(G) such thata <1t < b
in the ordering on S. Then, Gt is contained in (a,b), a bounded subset of S.
Considering the supremum as in (7.7), one shows that s := sup Gt is in Fix(G).
Consequently, AC(m(¢)) accumulates on m(s) which, as AC(m(¢)) is compact,
implies 7(s) € AC(x(t)) and so there is a deck transformation o : M — M
such that a(s) € AC(¢). This implies there is k € Z and g € G such that
t = Bk g(s) = B¥(s) € Fix(G). O

In this, and the next two sections, define
={x e S:AC(x) C M is compact}.

The last lemma shows that K = w(Fix(G)).

Corollary 8.4. K is closed and non-empty. [
This also completes the proof of (2.5).

Corollary 8.5. K N NW(f'|s) is non-empty.

Proof. K is non-empty, f-invariant, and closed. ]

Corollary 8.6. f has a compact periodic us-leaf if and only if f|s has rational
rotation number.

Proof. As a consequence of (8.3), any compact us-leaf X in M intersects S in a
unique point ¢. If f"(X) = X then f"(¢t) = ¢ and f |s has rational rotation number.
If, conversely, f|s has rational rotation number, its non-wandering set consists of
periodic points, and a compact periodic leaf exists by (8.5). O
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The following is also from the last proof.
Corollary 8.7. All compact periodic us-leaves have the same period. ]

Lemma 8.8. If K = S, then f on M is topologically conjugate to a function
(v, x) = (Av, 7 (x)) defined on the manifold

Mp = N xR/(Bv,t) ~ (v, t +1)

where ¥ : R — R is a lift of a homeomorphism r : R/Z — R/Z topologically
conjugate to f|s.

Proof. Let ¢ : S — R be any homeomorphism such that (1) = ¢(r) + 1 for all 7.
Define 7 as ¢ f ¢~!. Extend ¢ to all of M by making it constant on accessibility
classes. As in the proof of (7. 10) let H : M — N be the first coordinate of the
lifted leaf conjugacy i : M — N x R. _Then, the function H X ¢ : M — N xR
gives a topological conjugacy between f on M and A x F.

The fundamental group of Mp is generated by deck transformations of the form
(v,1) > (an (), 1) or (v,1) = (Bv,t —1). Using the fact that Fix(G) = S and
the definition of 7, one can then show that H x ¢ quotients down to a topological
conjugacy defined from M to Mp. ]

Lemma 8.9. Suppose J C S is an open interval such that 3J C Fix(f) N K. Then,
flaccr is an Al-system.

Proof. Let J be a lift of J to S. Then, as f(J) = J, f(J) = Bk(J) for some
k € Z. By replacing the lift f by o ﬁk assume, without loss of generality that
F(J)=17T. As K = n(Fix(G)), 9J C le(f) N Fix(G), and so by (7.8), AC(J)
projects to X on M such that the dynamics on X is an Al-system. As J is contained
in a fundamental domain of the covering § — §, one can show that X is contained

in a fundamental domain of the covering M — M. Therefore, the dynamics on
w(AC(J)) = AC(J) is an Al-system. O

We now give a C? version of (5.3).

Lemma 8.10. There is a continuous surjection p : M — S such that p|s is a
homeomorphism, p|we x) is a covering for any center leaf W€(x) (x € M ) and p is
constant on each compact accessibility class.

Proof. Define p on S so that p|s maps S toS! with constant speed along S. Extend p
to AC(K) U S by making p constant on accessibility classes. Then, for any center
leaf W€(x), let J be a connected component of W¢(x) \ AC(K) and define p on J
so that J is mapped at constant speed to S! and extends continuously to the boundary
dJ C AC(K). Transversality of the center foliation and us-lamination implies that p
is continuous. The other properties are easily verified. [

Compare this short C° proof to the C'! proof in Section 12.



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 155

We now consider the cases of rational and irrational rotation of f|g separately in
the next two sections.

9. Rational rotation

This section proves (2.6).

Assumption 9.1. Assume [ is a non-accessible AB-system with at least one periodic
compact us-leaf.

Let S, K, and other objects be defined as in Section 8. By (8.7), all
compact periodic leaves have the same period. Call this period n. Define
K, = K NFix(f") C S. By(8.4), K, isclosed. Let p : M — S! be the projection
given by (8.10) and define U C S' as U = S' \ p(Kp).

Note that if ¢ ¢ U, then p~!(¢) is an f"-invariant compact us-leaf. Moreover,
every such leaf is of this form. This proves the first part of (2.6).

To prove the rest of the theorem, replace f by its iterate /" and assume n = 1.
The new f is still an AB-system, albeit with a different “A” than before. Now
K, =Fix(f)N K c S. If I is a connected component of U C S!, then p~1(/)N S
is a connected component of S \ K7 and (8.9) implies that f restricted to p~!(I) =
AC(m(J)) is an Al-system. Since J N K, is empty, AC(J) contains no invariant
compact us-leaves. Therefore, the Al-system falls into one of the cases given in (7.1).
As these cases correspond exactly to those given in (2.6), this concludes the proof.

10. Irrational rotation

This section proves (2.7) and (2.8).

Assumption 10.1. Assume f is a non-accessible AB-system with no periodic compact
us-leaves.

Let S, K and other objects be defined as in Section 8. By (8.6), f |s has irrational
rotation number.

Lemma 10.2. NW(f|s) C K.

Proof. Forany C! circle diffeomorphism with irrational rotation, the non-wandering
set is minimal. The result then follows from (8.5). [

Lemma 10.3. If I is a connected component of S \ NW(f|s), then AC(I) is
a wandering domain. That is, the sets fK(AC(I)) = AC(f*(1)) are pairwise
disjoint for all k € 7.
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Proof. Let J be the closure of /. Note that any compact leaf in AC(J) must be of
the form AC(¢z) for some ¢t € J. By the properties of circle diffeomorphisms, the
sets f*(J) are pairwise disjoint. By the last lemma, 3J C K. If AC(J) intersects
AC(f*(J)), then this intersection has a boundary consisting of compact us-leaves.
Such a compact leaf would intersect S in a point¢ € J N f*(J), a contradiction. [

Lemma 104. NW(f) = AC(NW(f|s)).

Proof. The last lemma shows NW(f) C AC(NW(f|s)).

To prove the other inclusion, supposet € NW(f|s), x € AC(t) and V C M is
a neighbourhood of x. There is a sequence {ny} such that "k (t) converges to t. By
taking a further subsequence, assume f”*(x) converges to some point y € AC(t).
Let D C V be a small unstable plaque containing x. Then f"#(D) is a sequence of
ever larger unstable plaques, and

w*(y) c | /(D).
k

Unstable leaves of the Anosov diffeomorphism A are dense in N [19]. Therefore, by
the leaf conjugacy, W*(y) is dense in AC(¢). This shows that some iterate "% (1)
intersects V. O

Now, let p : M — S!' be as in (8.10). We may assume p|s is a
C!-diffeomorphism. Define r : S' — S! by rp(t) = pf(¢) for allt € S. Then,
(2.7) can be proved from the above lemmas. As r has irrational rotation number, it is
semiconjugate to a rigid rotation ¢ — ¢ + 6. Using this and the leaf conjugacy, one
can prove (2.8) using an argument similar to the proof of (8.8).

11. Proving theorems (2.2), (2.3), and (2.4)

This section gives the proofs of several of the theorems stated in Section 2 based on
results proved in other sections.

The proof of (2.4) makes use of a result of Brin regarding transitivity [8]. The
following is an extension of this result to the non-compact case, though the proof is
in essence the same.

Proposition 11.1 (Brin). Suppose [ is a partially hyperbolic diffeomorphism of a
(not necessarily compact) manifold M. If V is open and f(V) =V C NW(f),
then V = AC(V).

In particular, if [ is accessible and NW(f) = M, then f is transitive.

Proof. Fore > 0and y € M, let W¥(y) be the set of all points reachable from y by
a path tangent to £* of length less than €.
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If x € V, then x € NW(f) implies there are sequences {x;} and {y,} both
converging to x and such that y, = f/k(x;) for some non-zero jz € Z. By
swapping x; with yy if necessary, assume every ji is positive. If ji is bounded,
then x is periodic, so we may freely assume that j, — +o00. As V is open, there
is € > 0 such that W} (xy) C V for all large k. The uniform expansion of E¥
implies there is ry — oo such that W2 (yg) C fIR(WH(xx)) C f/(V) =V and
therefore the entire unstable manifold W*(x) lies in the closure of V. This proves
W*(V) = V. Similarly, W*(V) =V and so AC(V) = V. O

Proof of (2.4). By (11.1), any accessible f satisfies case (1) of (2.4). Therefore,
assume that f is non-accessible.

For now, assume f has no periodic compact us-leaves, so that (2.7) holds. That
theorem, with the assumption NW(f) = M, implies that NW(r) = S! and that
every point in M lies in a compact us-leaf. This shows that (8.8) holds and the r in
that lemma can be taken as the same 7 in (2.7). As NW(r) = S!, r is topologically
conjugate to a rigid rotation ¢ + ¢ + 6 and therefore f satisfies case (2) of (2.4).

For the remainder of the proof, assume f has a periodic compact us-leaf, so that
(2.6) holds. Let / be a connected component of U and g : p~ (/) — p~1(/) be
as in (2.6). The condition NW(f) = M implies NW(g) = p~'(I). This is only
possible in the first of the three cases in (2.6), where g is accessible. Then, g is
transitive by (11.1).

If t € S!\ U, then f” restricted to p~'(I) is topologically conjugate to a
hyperbolic nilmanifold automorphism and is therefore transitive [19]. Hence, if U is
non-empty, the third case of (2.4) is satisfied.

If U is empty, then every p~!(¢) is an f"-invariant compact us-leaf and (8.8)
holds with r : S' — S! topologically conjugate to a rigid rational rotation ¢ +> ¢ + 6.
This shows that f is in case (2) of (2.4). O

To prove ergodicity of the components of the decomposition given in (2.3), we
use results given in [12], [41], and in the classical work of Birkhoff and Hopf. These
results were formulated for systems on compact manifolds, but the proofs are local in
nature, involving short holonomies along stable and unstable manifolds. The results,
therefore, generalize to the non-compact case so long as the measure is still finite.

Proposition 11.2. Let f be a homeomorphism of a (not necessarily compact)
manifold M and let Co(M) be the space of continuous functions M — R with
compact support. Suppose [L is an invariant measure with L(M) = 1 and there is an
invariant closed submanifold S such that |¢ is equivalent to Lebesgue measure on S.

(1) For ¢ € Co(M) the limits
1 « 1 ¢
() = lim — 3 pfC(x) and ¢"(x) = lim ~ §fF(x)
k=1 k=1

exist and are equal ju-almost everywhere.
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(2) There is a countable set {¢;}52, C Co(M) (depending only on M) such that
(f, ) is ergodic if and only if qu and ¢ are constant ji-almost everywhere for
every j.

Further, suppose [ is a C? partially hyperbolic diffeomorphism with one dimensional
center.

(3) If ¢ € Co(M), then ¢* is constant on stable leaves and ¢¥ is constant on
unstable leaves.

@D IfS=M, X%, X¥ C M are measurable, and
WH(X%) = X°, WHX")=X" and u(X°AX")=0,
then there is X C M measurable such that

AC(X)=X and w(X*AX)=0=puX*AX).

(5) If S = M and f is accessible, then (f, 1) is ergodic.

Proof. Item (1) is a re-statement of the classic Birkhoff Ergodic Theorem.

To prove (2), let {¢;} be a countable set whose linear span is dense in Co(M)
with respect to the supremum norm. As any function in Cy(S) may be extended to a
function in Co(M), the linear span of {¢;} is dense in L' (1). Suppose the bounded
linear operator ¢ — ¢° on L1 () takes every element of {¢;} to the subspace of
constant functions. By density, every ¢ € L1 (i) is mapped to the same subspace.
Therefore ( f, ) is ergodic. The converse statement in (2) follows directly from the
properties of ergodicity.

Proofs of (3)—(5) can be found in both [12] and [41]. ]

Proof of (2.3). As pisafinite, f-invariant measure which is equivalent to Lebesgue,
NW(f) = M by Poincaré recurrence. Let p, n, and U then be given as in (2.4).
By (5.3), assume p«u = m where m is Lebesgue measure on S'. Without loss of
generality, assume n = 1.

For each connected component I of U, the set p~!(7) is an accessibility class
and therefore ( f, ;7) is ergodic by (11.2) where w7 is as in (2.1).

Let {¢;}52, be as in (11.2) and for j € N and ¢ € Q define X;, =1{x €
M : ¢j(x) < g}. Define X}‘,q similarly. By items (3) and (4) of (11.2), there is
Xjq = AC(X4) equal mod zero to both X; and X . Define a “bad” set ¥ by

Y = J(X5,0X;, UXY,AX,)
Jj.a

and note that ;(Y) = 0. Equation (2.1) implies that there is a “good” set Z € S\ U
such that U U Z has full measure in S* and ., (Y N p~1(1)) = Oforallt € Z where 4,



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 159

is given by the decomposition in (2.1). By (5.3), we may further assume that p, is
equivalent to Lebesgue measure on p~!(¢) forallt € Z.

As p~1(1) is an accessibility class, every X, N p~1(z) is either empty or all
of p~1(¢). Therefore fort € Z, every X }q and X7 74 cither has ji;-measure equal to
zero or one, and item (2) of (11.2) implies that ( f, u,) is ergodic. Thus, modulo a set
of measures whose combined support has p-measure zero, every measure in (2.1) is
ergodic. This shows that (2.1) is the ergodic decomposition of . L]

One might be tempted to prove (2.3) by arguing that for t ¢ U, [ restricted
to p~1(r) is an Anosov diffeomorphism and therefore the invariant measure i, is
ergodic. The problem is that we have only shown that p~!(¢) is a C! submanifold
of M, which is not enough regularity to conclude ergodicity for an Anosov system.
Hence, the above proof.

Proof of (2.2). If f is in case (1) or (3) of (2.4), it is fairly easy to show that f is
also in the corresponding case of (2.2). Therefore, assume f is in case (2) of (2.4).

If € is rational, then (v, %) + (Av,t + 6) is non-transitive and therefore f is not
ergodic.

Suppose 0 is irrational and f is not ergodic. Then there are j € Nand g € Q
such that the sets X7 g X g» and X4, defined as in the last proof, have neither
zero measure nor full measure with respect to the f-invariant measure p. Write
X =X;, As X = AC(X), thereis Y C S! suchthat X = p~!1(Y) and pspt = m
implies that m(Y) is neither zero nor one. The condition p,u = m further implies
that p gives a semiconjugacy from f to a rigid irrational rotation Rg(x) = x + 6
on S'. Then, f(X) = X implies Rg(Y) = Y which contradicts the ergodicity
of (Rg, m). O]

12. Regularity

This section proves (2.9), showing that the us-lamination of a partially hyperbolic
diffeomorphism is C ! if the center is one-dimensional and the diffeomorphism is C2.

We first give a general idea of the method of proof before providing all the
technical details. Let A denote the lamination of us-leaves. Suppose L is a compact
segment of a center leaf and C is a tubular neighbourhood of L. If x € C N A, then
there is a unique point y € L so that x and y are connected by a short path inside a
single us-leaf. This defines a map, the us-holonomy, from C N A to L that we wish
to show is C'! regular in the sense of Whitney. Equivalently, we wish to show that this
map extends to a C ! function from C to L. By local product structure of the splitting
EY @& E¢ @ E°, the function C N A — L may be written either as an unstable
holonomy composed with a stable holonomy or vice versa, and on C N A these
holonomies commute. That is, with x and y as above, y = h*(h*(x)) = h*(h°(x)).
Further, 7% and A" are known to be C!. If other leaves of A accumulate on the
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leaf through x, then 2% (h%(x,)) = h* (h*(x,)) holds for a sequence of points x, on
distinct leaves where the x, converge to x. From this, it follows that the derivatives
commute as well: D(h* o h*) = D(h* o h®) at x. For such points x, we use this
as the candidate for the derivative of the us-holonomy C N A — L when applying
Whitney’s extension theorem. If x lies on an isolated leaf of A, then D(h® o h*)
and D(h* o h*) may differ at x and neither can be used as the candidate derivative.
Further, a sequence of isolated leaves of A might accumulate on a non-isolated leaf.
To handle this, we first restrict D(h* o h*) to a function defined only for points on
non-isolated leaves, and then take any continuous extension of this restricted function
to all of C N A. This extended function is then used as the candidate derivative in
Whitney’s extension theorem.

We now give the full proof, starting with a known result on the regularity of the
stable and unstable holonomies.

Proposition 12.1. Suppose f : M — M is a C? dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center.  Then any unstable
holonomy h* inside a cu-leaf is C'. Moreover, the derivative of h* tends uniformly
to one as the unstable distance between the point x and its image h" (x) tends to zero.

Proof. That such a holonomy is C! is proved in an erratum [39] to the paper [38]. If
y € W*(x) and A" is the holonomy taking x to y, then adapting the argument in §3
of [36] one can show that the norm of the derivative of 4% at x is given by

c
ﬂ 150 /1
LT, ]
where T7 f 1 Ef — EY ) istherestriction of the derivative T fiT:M — TrM.
As f is C2, the derivative T, f is Lipschitz in z and the center bundle E¢ is Holder
by [25]. Therefore,

(0] oo

log Jxy < > L[dist(f ™" (x), f " (»)]’ Z “[dist(x, )]

for appropriate constants L, C, 0 > 1 and 0 < 6 < 1. This shows that J,, tends
uniformly to one as dist(x, y) tends to zero. O

Proposition 12.2. Suppose f : M — M is a C? dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Suppose Lo C M is a
compact interval inside a center leaf and g : Lo — R is C'. Then g extends to a
C! function defined on a neighbourhood of Lo which is constant on us-leaves.

Proof. Without loss of generality, assume g is defined so that |g(x) — g(y)]| is the
arc length of the center segment between x and y. Any other C'! function on L can
be constructed by composition with this specific g.
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By local product structure and the compactness of Ly, one may construct a
compact set C C M containing L, with the following properties:
e The interior of C contains the (one-dimensional) interior of L.

o If W¢(x) is a center leaf, then every connected component of W¢(x) N C isa
compact interval, called a “center segment.”

o If AC(y) is a us-leaf, then every connected component of AC(y) N C is a
compact set homeomorphic to a closed ball and called a “us-plaque.”

» Each center segment intersects each us-plaque in exactly one point.
* [ is a center segment.

By a C! change of coordinates, assume that C C R¥.
Let X C C be the union of all us-plaques, and ¥’ C X the union of all us-plaques
which are accumulated on by other us-plaques. If x € X', define

NLo—oNL
n—oo |lop,NL—oNL

where L is the center segment through x, o is the us-plaque through x, and o,
are us-plaques converging to o. By (12.1), this limit exists, is independent of the
sequence oy, tending to ¢, and is non-zero. The C! regularity of the holonomies also
implies that if p, is another sequence of us-plaques converging to o, then

NLy— NL
n—>0 |loy N L—py NL|

so long as 0, # p, for large n. Further, by (12.1), the ratio D(L1 No)/D(L, N o)
tends uniformly to one as dist(L, L;) tends to zero. As D is continuous when
restricted to each center segment and uniformly continuous on each us-plaque o, it
is therefore continuous on all of X’. Define D(x) = 1 for all x € Ly and note that
this agrees with the above definition on the intersection ¥’ N Ly. Then, choose a
continuous positive extension D : ¥ U Ly — R.

Also extend g : Lo — R toafunction g : £ U Ly — R by making it constant on
each us-plaque. To further extend g to a C! function on all of C, we will define for
each point x € U L a candidate derivative dgy : R? — R and show that Whitney’s
extension theorem applies. Choose an orientation for £¢ and for each x € 2 U Ly,
let v{ be the unique oriented unit vector in E§. Define dgy as the unique linear map
such that dg, (v$) = D(x) andkerdg, = E¥ & E;. Asboth D(x) and the splitting
EY @ ES @ E; are continuous in x, the linear map dg is continuous in x.

Define the function R : C x C — R by

RO, ) = = (8(m) — £0xn) = dgx, On = 0)).

| vn _xn”
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To apply Whitney’s extension theorem, one needs to show that for any two sequences
{xn 402 and {y,}52, with |[x, — y.|| converging to zero, the sequence R(xy, yn)
also converges to zero. If this does not hold, there are sequences {x,} and {y,} so
that R(x,, yn) is bounded away from zero. Therefore, without loss of generality, one
may replace these sequences by subsequences and assume X, and y, both converge
to a point ¢ € C. We will also restrict to further subsequences as necessary later in
the proof.
We prove the convergence in progressively more general cases.

Case 1. First, assume x,, v,, and ¢ are all on the same center segment L # Lg. Let
Oy, pn and o be such that

oL =%, p;OL=3, and eNL=g.

If o ¢ ¥/, then x, = y, = q for large n. Therefore, assume o € ¥'. Then,

i g(yn) — g(xn) s lon N Lo — pn N Lol _
1m —

= I D(q).
n—oo  ||xp — yul n—co |loy N L —p, N L

As both the candidate derivative dgx and the center direction v§ are continuous in x,

1 _
lim —————dgy, (yn — xn) = (nlggo dgx,)( lim M)

n=>00 || yp — Xn| n—o0 || yp — xn|
= dgq(vg) = D(q).

Therefore, lim, o0 R(Xxz, vn) = D(q) — D(q) = 0.

Case 2. Now, consider the case where x, and y, are on the same center segment L,
for each n. Define x§, to be on the same us-plaque as x, and the same center segment
as q. Define y; similarly. Then,

g(xn) —g(yn) = g(xy) — g(yp).

By (12.1),
li | ¥n — Xn|| o
im — =
n—oo || yg — xgl
Thus,
_ cy __ c
lim 80 —&0wm) _ oy 80n) —8() _
n—o0 ||y, — X n—oo ||yf — xg

where the last equality is by the previous case. As before,

1 c
lim ———— dgxn (Yn —xp) = dgq(vq) = D(q)

n—>00 ||y, — Xp ||

and therefore lim, oo R(Xx,, yn) = 0.
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Case 3. Now consider x, and z, as general sequences in X converging to g. Define y,
as the unique point lying on the same center segment as x, and the same us-plaque
as z,. By taking subsequences, assume
Zn — Vn
n=>00 ||zp — yul|

exists. By continuity of the partially hyperbolic splitting, this limit is in E; & Ej.
Therefore,

1 —
lim _7” dgx” (Zn - yn) = (nll{rolo dgx”)( lim M) =0

n>00 ||z — yn n=00 ||z, — Yul|

implying, with g(z,) = g(y,), that

1
lim ————(g(zn) — g(¥n) — dgx,(zn — yn)) = 0.

n—o0 ||z, — yu|

By transversality of the foliations, there is a constant ¢; > 0 such that ||z, — x,|| >
¢1||zn — yu|| and therefore

1
lim ————(g(zn) — 8(¥n) — dgx,(2n — ¥a)) =0

n—>o0 ||z, — xp “

as well. Again by transversality, there is ¢, > 0 such that ||z, — x| > c2||lyn — x|l
and therefore by the previous case

lim ;(g()’n) —g(xn) — dgx, (yn — xn)) = 0.

n—00 ||z — xp ||
Added together, these limits show that lim,, oo R(xy, z5) = 0.

Case 4. Now consider the case where x, € Lg and z, € X for all n. Define y,
from x, and z, exactly as in the last case. Then,

RCn.20) = ———(g(za) = (n) — dgx, (20 — )
o —
1

+ M(g(yn) — 8(xn) = dgx, (yn = Xn))

and, similar to the previous case, both summands can be shown to converge to zero.

The case x,, € X and z,, € L is almost identical.

Case 5. If both {x,} and {z,} are in L, then lim, .o, R(x,, z,) = 0 simply by the
fact that g is C! when restricted to L.
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The general case. The final case to consider is where {x,} and {z,} are general
sequences in X = X U L. By taking subsequences, one can assume each sequence
lies either entirely in L or entirely in ¥ and therefore reduce to a previous case. [

We now prove the following restatement of (2.9).

Corollary 12.3. If f : M — M is a non-accessible, partially hyperbolic C*
diffeomorphism with one-dimensional center, the non-open accessibility classes form
a CY lamination. That is, around any point x € M there is a neighbourhood V and
functions g : V — Rand ¥ : V — R such that g x V is a C' embedding and
if AC(y) is a us-leaf and o a connected component of AC(y) NV, theno = g~ (¢)
for some t € R.

Proof. Define a coordinate chart ¢ x ¥ : V' — R x RZ~1 such that the kernel of the
derivative d¢p : Ty M — R at x isequal to EY @ E75. By (12.2), after replacing V by
a subset, there is a C! function g : V' — R constant on us-plaques and such that g
and ¢ are equal on a center segment through x. Then, the derivative of g x v is
invertible at x and so, after again replacing V by a subset, g x ¥ is the desired C!
embedding. U

We now proceed to prove (5.3). Recall the definition of an Al-system from
Section 7.

Proposition 12.4. Letr f : M — M be a C? Al-system and X C M a compact
us-leaf. Then, there is a neighbourhood V of X, an open subset U C (0, 1) and
functions p : V — (0,1) and W : V — X such that p x ¥ is a C' diffeomorphism
and the compact us-leaves in V are exactly of the form p~'(t) fort ¢ U.

Moreover, p restricted to each center segment L C V is a C' diffeomorphism.

In this context, a center segment is a connected component of the intersection
of V' with a center leaf.

Proof. There is a neighbourhood V' of X such that inside V' each center segment
intersects each compact us-leaf in a unique point. Therefore, the proofs of the
previous results of this section hold as before with compact us-leaves now filling the
role of us-plaques. This gives the existence of p and .

As the function D is positive in the proof of (12.2), for x € X and unit vector
v¢ € E¢ the derivative dpy of p satisfies dpy (v) # 0. By continuity, this property
holds for all x in a neighbourhood of X and so, by replacing V' by a subset, the
restriction of p to any center segment L has non-zero derivative along all of L. [J

As it is a local result, (12.4) also holds for a compact us-leaf in an AB-system
instead of an Al-system. To go from the local to the global requires a technical lemma
which “fills in the gaps” between compact us-leaves.
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Lemma 12.5. Let N be a C! manifold, and for 0 < € < % define
Ve=Nx([0,e)U(l1—¢,1]) C N x[0,1].

If there are € > 0 and a C! function g : Ve — [0, 1] such that
© E| sy > Oforall (x,1) € Ve, and
* 2(x,0)=0and g(x,1) =1forallx € N
then there are § > 0 and a C! function h : N x [0, 1] — [0, 1] such that
o h(x,t) = g(x,t)forall (x,t) € Vs,
e (x,1)— (x,h(x,1)) is a C! diffeomorphism of N x [0, 1], and
* if x € N satisfies g(x,t) = t forall (x,t) € Vs, then h(x,t) =t for all
t €[0,1].
Proof. Pick § > 0 small enough that there is a continuous function k¢ : N x [0, 1] —
[0, 1] which for each x € N satisfies the following properties:

* t > ho(x,1t) is strictly increasing and linear on each of the intervals [§, 3],
[35,1 — 36], and [1 — 36,1 — 6]; and

* hg agrees with g and {g’—to agrees with %% at the points of the form (x, §) and
(x,1—=29).

Then, define & by h(x,t) = g(x,t) for (x,t) € Vs, h(x,t) = ho(x,t) for (x,t) €

Vos \ Vs, and h(x,t) = % Lt'gg ho(x, s)ds otherwise. ]

Proposition 12.6. Let f : M — M bea C? Al-system, and J a compact interval
inside a center leaf such that its endpoints xo and x1 lie inside compact us-leaves.
Then there are r : AC(J) — AC(xg) and p : AC(J) — [0, 1] such thatr X pisa
C! diffeomorphism and every compact us-leaf in AC(J) is of the form p~'(t) for
some t € [0, 1].

Proof. By approximating the center bundle E€ by a C! vector field v, one may define
a C! flow taking points in AC(xp) to points in AC(x1). By rescaling v, assume the
flow takes each point in AC(xp) to a point in AC(x;) in exactly one unit of time.
This flow then defines a C! diffeomorphism between AC(J) and AC(xp) x [0, 1].
Therefore, we may assume our system is defined on a space of the form N x [0, 1]
where N is a manifold C!-diffeomorphic to AC(xp) and that 7 : N x [0,1] — N is
given by projection onto the first coordinate. Further assume that the flow v is tangent
to E€ on the center leaf containing J. Then, when viewed as a subset of N x [0, 1],
J is of the form J = {x¢} x [0, 1].

By adapting the arguments in the proofs of (12.2) and (12.4), there is a C'!
function g : N x [0, 1] — [0, 1] which is constant on compact us-leaves and such
that g(xo,t) =t forallt € [0, 1].
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Let ¥ C N x [0,1] be the union of all compact us-leaves. For a point
z € N x [0, 1], let v¢$ be the oriented unit vector in E¢. Then, due to the construction
of g as in the proof of (12.2), dg,(vf) is positive for all z € . As dg is continuous,
there is a C'! vector field ¥ approximating v¢ such that dg, (9 (z)) is positive for all
z € . By another C! change of coordinates, assume v is equal to © and therefore
%—ﬂ(x’t) = dgx,n(v(x,1)) forall (x,7) € N x [0, I]. By uniform continuity, there
ise > O such that dg,(v(z)) > O for all z at distance at most € from X. Hence, there
are at most a finite number of regions X; C N x [0, 1] such that

* the boundary of X; is given by two compact us-leaves,

* there are no compact leaves in the interior of X;, and
g .

. W‘(x,z) < 0 for some (x,1) € X;.

By (12.5), definea C'! functionép : N %[0, 1] — [0, 1] which is equal to g everywhere
outside of U; X; and such that 5% ) 0 forall (x,t) € N x [0, 1].

Since both r and p are submersions, r x p has an invertible derivative at every
point and is therefore a C! diffeomorphism. [

Corollary 12.7. In the setting of (12.6), if L C M is a center leaf, then p and r may
be chosen so that p restricted to L N AC(J) is a C* diffeomorphism onto [0, 1].

Proof. Take J C L in the previous proof. 0

Corollary 12.8. In the setting of (12.6), if i is a probability measure given by a
continuous volume form on AC(J), then p may be chosen so that p. . is Lebesgue
measure on [0, 1].

Proof. Assume p : N x [0, 1] — R is a positive density function such that

w(X) =f pdmy x dm
b

where m y x m is the product of the Lebesgue measures on N and [0, 1].
If i : [0,1] — [0, 1] is defined by (1) = u(p~'([0,1])), then

dl / pdm
sl g N
dt Nx{t}

is continuous and positive, showing that 4 is a C! diffeomorphism. Replacing p
with the composition /p, the result is proved. [

Proof of (5.3). As noted in Section 8, every AB-system f : M — M lifts to an
Al-system f : M — M. Moreover, if the AB-system has a compact us-leaf, the
covering M — M has a fundamental domain which is bounded between two compact
leaves AC(x) and B(AC(x)) where B is the deck transformation defined in Section 8.
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Then, (12.6) applies where the region AC(J) is exactly this fundamental domain and
therefore, there is a C! surjection p : AC(J) — [0, 1]. Moreover, the candidate
derivative in the application of Whitney’s extension theorem may be chosen so that it
agrees on AC(x) and B(AC(x)). Then, p quotients down to a C! function M — S!
as desired.

The other statements in (5.3) follow from the above two corollaries. L]

13. Skew products

This sections proves (4.3) showing that non-accessible skew products have trivial
fiber bundles.

Proof of (4.3). As the base map A has a fixed point, there is a fiber S such that
f(S) = S. By replacing f by f? if necessary, assume f preserves the orientation
of S. As m(N) is trivial (see, for instance, [19]), the long exact sequence of
fiber bundles gives a short exact sequence 0— — Z— — G— — H— — 0
where Z = m1(S), G = m1(M), and H = m;(N). By naturality, f/ induces
the commutative diagram

0 Z G H 0
lid lf* J'A*
0 Z G H 0.

As can be shown for any circle bundle with oriented fibers, the subgroup Z is
contained in the center of G. In this case, as H = G/Z is nilpotent, G is then also
nilpotent.

Skew products have global product structure. The proof is similar to that given for
AB-systems in Section 15 and we leave the details to the reader. Similar to the case
for AB-systems, we may then consider the universal cover M of M, a topological
line S © M which covers S, and a lift f : M — M such that f(SN) = S. Let
A C S be the set of all points € M such that AC(¢) is not open. Then G induces
an action on A.

Let z be a non-trivial element of Z. Then z may be regarded as a fixed-point free
homeomorphism of S. By (6.1) and (6.2), there is a homomorphism 7 : G — R
such that t(z) is non-zero. By (6.3), there is A > 0 such that tfx(g) = A t(g) for
all g € G. Since, fi(z) = z, this implies that A equals one. By rescaling ¢, assume
7(Z) = Z. Then, t : G — R quotients to a homomorphism 7 : H — R/Z and
TA, = T.

As A is hyperbolic, A4 has no non-trivial fixed points and, by (6.4), no non-
trivial fixed cosets. As all of the cosets of ker T are fixed by A, it follows that
T = 0. Thatis, ©(G) = Z. One can then define a map which takes each g € G
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to the unique z € Z such that 7(g) = t(z). This shows that the exact sequence
0— = Z— —- G— — H— — 0 splits. Then, G is isomorphic to H x Z and the
bundle is trivial.

In fact, one can find a compact us-leaf directly. Viewing H now as a subgroup
of G equal to the kernel of 7, choose a point x € S and define Y = Supgep &(X).
Then, with w as in (6.1), u[x, y) = 0 which implies y < +oc. In other words, y is
a well-defined point in S. Since y is in Fix(H) it projects to a point in M contained
in a compact us-leaf. [

14. Infra-AB-systems

We now consider infra-AB-systems as defined in Section 2.

First, recall the definition of an infranilmanifold. Let N be a simply connected
nilpotent Lie group. A diffeomorphism ¢ : N > Nisa( right translation) if there
is v € N such that ¢p(u) =u-vforalu e N. Let Trans(N) be the group of all
translations (which is canonically isomorphic to N itself). Let Aut(N) be the group
of all automorphisms of N. Then the group of affine diffeomorphisms, Aff (N), is the
smallest group containing both Trans(N) and Aut(N). Equivalently, ¥ € Aff(N) if
and only if there is ¢ € Aut(N) and v € N such that Y (u) = ¢u)-vforallu € N.

If a subgroup I'" < AfF(N) is such that I' N Trans(N) has finite index in T" and
No == N /T is a compact manifold, then Ny is a (compact) infranilmanifold. If
A € Aff (N ) quotients to a function Ag : N9 — Ny then Ay is also called affine.

Theorem 14.1. Suppose fy is a conservative C? infra-AB-system. Then, either
(1) fo is accessible and stably ergodic,

(2) EY and E® are jointly integrable and fy is topologically conjugate to an algebraic
map, or

(3) there are n > 1, a C! surjection po from My to either S' or S'/Z,, and a
non-empty open subset U & po(My) with the following properties.

» Ift ¢ U then p, L(¢) is an f'-invariant compact us-leaf homeomorphic to
an infranilmanifold. Moreover, every fo-periodic compact us-leaf is of this
form.

« If I is a connected component of U, then py'(I) is fg-invariant and
homeomorphic to a (possibly twisted) I-bundle over an infranilmanifold.

This theorem is proved at the end of the section and the exact nature of the
“algebraic map” in case (2) is given in the proof. Also, as will be evident from the
proof, if E€ is orientable then pg(My) = S!. Otherwise, po(Mo) = S'/Z, which is
the 1-dimensional orbifold constructed by quotienting R by both Z and the involution
t +> —t. This orbifold is homeomorphic to a compact interval. A set p~! (1) will be
twisted (as an I-bundle) if and only if / is homeomorphic to a half-open interval.
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The ergodic decomposition given in (2.3) also generalizes.

Theorem 14.2. Let fo : My — My be a C? infra-AB-system and suppose there
is a smooth, fo-invariant, non-ergodic measure { supported on My. Then, there

are n > 1, a C' surjection pgy from My to either S! or S! /7, and an open subset
U < po(My) such that

¢ = ;mu)cl + /ﬁw & dm(o) (14.1)

is the ergodic decomposition for (f3'. ).

Here, the components {; and {; of the decomposition are defined analogously
to (2.1).

Proof. Let m : My — M be the finite covering and f an AB-system such that
nf = fo"n for some m > 1. Then, { lifts to a measure ; on M which (up to
rescaling the measure so that (M) = 1) satisfies the hypotheses of (2.3). If {; is
a component of the decomposition (14.1), then its support is a single accessibility
class Xo. If X is a connected component of 71 (X,) C M, then there is an ergodic
component ( f*, ;) of (", ;) where p, is supported on X and such that 7* 1, (up
to rescaling) is equal to ¢;. Ergodicity of ( f;"", ;) then follows from the ergodicity
of (f", uy). Ergodicity of components of the form ¢; can be proven similarly. [

The theorems in Section 2 concerning non-conservative AB-systems may also be
generalized using techniques similar to those in the proof of (14.1) below. In the
interests of brevity, we leave the statements and proofs of these other results to the
reader. The following two known results about functions on infranilmanifolds will
be useful.

Lemma 14.3. If Ny is an infranilmanifold, there is a nilmanifold N finitely
covering Ny such that every homeomorphism of Ny lifts to N.

Proof. This follows from the fact that I' N Trans(V) is the unique maximal normal
nilpotent subgroup of 7r;(M). A proof of this is given in [4], a paper which also
contains an infamously incorrect result about maps between infranilmanifolds. (See
the discussion in [27].) However, the proof of the above fact about I" N Trans(N) is
widely held to be correct. [

Lemma 14.4. [f a homeomorphism B on a compact infranilmanifold No commutes
with a hyperbolic affine diffeomorphism A, then B itself is affine.

Proof. This follows by a combination of the results of Mal’cev and Franks. First,
consider the case where N = N is a nilmanifold. Let x be a fixed point of A. Then
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y 1= B(x)is also a fixed point of A. Using the standard definition of the fundamental
group for based spaces, the diagram

B
71 (N, x) ——> mi(N,y)

| |

B,
w1 (N,x) —— m1(N,y)

commutes. By [28], there is a unique affine map ¢ : (N,x) — (NN, y) such that
¢« = Bx. (If x # y one shows this by considering two distinct lattices of the
form ¥I'x~! and yT'3~! on the Lie group N in order to construct a Lie group
homomorphism which quotients down to ¢.)

As ¢« Ax = As¢«, the uniqueness given in [28] entails that A = A¢ as
functions on N. As N is aspherical, ¢ is homotopic to B. Then, using that A is a
m1-diffeomorphism as defined in [19], it follows that ¢ and B are equal.

Now suppose Ny is an infranilmanifold. By (14.3), there is a nilmanifold N and
a normal finite covering N — Ny such that both A and B lift to functions N — N.
By abuse of notation, we still call these functions A and B. As the covering is
finite, there is j > 1 such that A’y = yA/ for every deck transformation y. In
particular, there is a deck transformation y : N — N such that A/ B = BA/y.
Then, A7* B = B(A47y)* = BA7*y* forall k € Z, and, taking k > 1 such that y* is
the identity, A7% commutes with B and the problem reduces to the previous case. []

Proposition 14.5. Suppose fy is a partially hyperbolic skew product where the base
map is a hyperbolic infranilmanifold automorphism and E€ is one-dimensional. If f
is not accessible, it is an infra-AB-system.

Proof. Liftthe fiber bundle projection : My — Noto# : M — N where M and N
are the universal covers. Let G consist of those deck transformations & € 71(My)
which preserve the orientation of the lifted center bundle and for which ro = y7
for some y € Trans(N). Then, G is a finite index subgroup of 7, (M) defining a
finite cover M = M /G and one can show that f : My — My liftsto f : M — M
where the base map Ag : No — Np lifts to the nilmanifold N/7(G). If fy is not
accessible, then f is not accessible. The fiber bundle on M is then trivial by (4.3),
implying that 2, which preserves the orientation of E€, is an AB-system. L

We now prove (14.1).

Assumption 14.6. For the remainder of the section, assume [ : M — M is a non-
accessible conservative C* AB-system, w : M — My is a (not-necessarily normal)
finite covering map and that fo : My — Mo and m > 1 are such that nf = f;"m.

Note this implies that fy is partially hyperbolic and the splitting on the tangent
bundle 7'M, lifts to the splitting for f on TM.
For now, make the following additional assumptions, which will be removed later.
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Assumption 14.7. Assume until the end of the proof of (14.9) that

» E€on My is orientable;

* fo preserves the orientation of E; and

e m=1,thatis, n f = fom.

By the assumption m = 1, both f, and f can be lifted to the same map f on the
universal cover M.

As f is an AB-system defined by nilmanifold automorphisms 4, B : N — N,
there is a map H : M — N whose fibers are the center leaves of f and where N
is the universal cover of N and therefore a nilpotent Lie group. Further, A lifts to a
hyperbolic automorphism of N, which we also denote by A, and the leaf conjugacy
implies that H f = AH.

Define S = H~1({0}) where 0 is the identity element of the Lie group. Then S is
an f -invariant center leaf which covers a circle S C M and S further covers a circle
So C My. By (2.2), there is a C! surjection p : M — S! and a constant € S! such
that if x € M has non-open accessibility class AC(x) then p is constant on AC(x)
and pf(x) = p(x) + 6. By (5.3), assume p restricted to S is a C! diffeomorphism.
Using p and the covering & : M — My, define a map

qg:My—S' xo Z p(y).
yer=!(xo)

It follows that if xo € M, has non-open accessibility class AC(xg) then g is constant
on AC(xg) and g fo(x0) = q(x0) + 0d where d is degree of the covering. Further, ¢
restricted to S is a C'! covering from Sy to S! (though not necessarily of degree d).
Afterliftingg toamap g : M — R, thereisa homomorphism g : 71 (My) — Zsuch
that gy (X) = q(X) + g«(y) forevery X € M and deck transformation y € 71 (Mp).

As the deck transformations preserve the lifted center foliation, for each
y € m1(Mp), there is aunique homeomorphism B, : N — Nsuchthat Hy = B, H.

Lemma 14.8. B, € Aff(N) forall y € w1 (My).

Proof. We may view m1(M) as a finite index subgroup of 1(My). The definition
of an AB-system implies that B, € Aff(N) forall y € 71(M).
Now consider the subgroups K3 < K> < K < m1(My) defined as follows:

K is the kernel of g,
K> = KiNm(M), and
K5 = {Gl e K, : (XﬁKz = ﬂKz for allﬁ S Kl}.
By its definition, K3 is a normal finite index subgroup of K. The lift f of fyinduces

a homomorphism f; : my (M) — m1(My) given by fi(y) = fyf~!. Thereisa
constant ¢ € R such that

G/ (%) =§() +c
for all X € M with non-open accessibility class. This implies that f.(K;) = K;.
From this, one can show that f.(K;) = K, and therefore fi(K3) = K3.
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Note that N3 := N/ {B, : y € K3} is a nilmanifold (which finitely covers the
original nilmanifold N), and the hyperbolic Lie group automorphism 4 : N = N
descends to an Anosov diffeomorphism on N3.

Suppose y € Kj. As f, permutes the cosets of K3, there is j > 1 such
that f/ (y)K3 = yKs. This implies that A’ and B, descend to commuting
diffeomorphisms on N3. Then, by (14.4), B, is affine. Thus, we have established the
desired result for all y € K1, and further shown that N; := N/ {By :y € K;}is an
infranilmanifold (finitely covered by the original nilmanifold N).

Now suppose y € m1(Mp) is an arbitrary deck transformation. Then

GfyfyTIF) = 4@

for all ¥ € M with non-open accessibility class. This implies that fix(y)K; = yK;.
and so A and B, descend to commuting diffeomorphisms on N;. As A4 is hyperbolic,
B, € Aff(N) by (14.4). O

If f is accessible, then clearly fy is accessible. Therefore to prove (14.1), it is
enough to consider f in cases (2) and (3) of (2.2).

Proposition 14.9. If [ is in case (3) of (2.2) and [y satisfies assumption (14.7),
then fo is in case (3) of (14.1).

Proof. By replacing fo, f, and ¥ by iterates, assume n = 1 in (2.2) and that the
lift f was chosen so that f (X) = X for every accessibility class X C M.

The image of ¢« is equal to £Z for some £ > 1. Then pg := Eq quotients to
a function po : My — S'. As the original p : M — S! was C', the functions
4, 4, po, and p are also C 1 Also, pg is constant on compact us-leaves and its
restriction to Sy is a C! covering. If, for some ¢ € S!, X, and Y, are compact
us-leaves in the pre-image p, ~1(1), then they lift to closed us-leaves X, Y M
such that 5o(X) — po(Y) is an integer. By the definition of j, there is then a deck
transformation taking X to ¥ and so Xo = Y. This shows that every compact
us-leaf in M is of the form py!(z) for some ¢.

If Xy is instead an open accessibility class, then its boundary consists of two
compact us-leaves and from this one can show that py' (po(Xo)) = Xo.

Note that every accessibility class X on M is the projection of an accessibility
class X on M. As f fixes accessibility classes, so does fy. Further, using Ky and Vy
as in the proof of the lemma above, X is homeomorphic to ¥ {lys IF X is non- open,
then X /K, is homeomorphic to the infranilmanifold Ny. If X is open, then X /K,
is an I-bundle over N; where the fibers of the I-bundle are segments of center leaves.

This shows that fj satisfies case (3) of (14.1). ]

We now remove the additional assumptions above and show that this result still
holds.
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Proposition 14.10. If f is in case (3) of (2.2) and fy does not satisfy
assumption (14.7), then [y is in case (3) of (14.1).

Proof. In case (3) of (14.1), we are free to replace fy by an iterate. By replacing fo
by fi", one can assume m = 1. Thatis, 7/ = for. By replacing fo by fZ, one
can assume fqo preserves the orientation of any orientable bundle. Thus, the only
condition to test is when E€ is non-orientable.

Any non-orientable bundle on a manifold lifts to an orientable bundle on a double
cover and any bundle-preserving diffeomorphism lifts as well. Therefore, we are free
to consider the following situation. As before, E€ is orientable and fj preserves the
orientation, but now there is an involution v : My — My, such that 7 reverses the
orientation of £¢ and T commutes with fy. As a consequence of this commutativity,
7 preserves the partially hyperbolic splitting of f5. Choose a continuous function
p1 @ Mg — S! which satisfies 2p;(x) = po(x) — pot(x). As 72 is the identity,
p17(x) = —p1(x) and so p; descends to a function p, : Mo/t — S'/Z>.

Since S! — S', x — —x has two fixed points, one can show that 7 fixes exactly
two accessibility classes on My. Let X be one of these two classes, and lift  and X
to the universal cover to get X and 7 such that 7(X) = X. As f and r commute, it
follows from an adaptation of (14.8) that Bz € Aff(N). If X, is compact, then Xo/t
is homeomorphic to an infranilmanifold. If instead X is open, then X is an I-bundle
over Ny where the fibers are center segments, and t reverses the orientation of these
fibers. Therefore, Xo/7 is a twisted I-bundle over an infranilmanifold.

This shows that case (3) holds for the quotient of f; to M/t where pgand U C S!
are replaced by p» and U/Z, C S'/Z,. O

Now consider the situation where f is in case (2) of (2.2). The following
proposition shows that fy is “algebraic” as stated in case (2) and concludes the proof
of (14.1).

Proposition 14.11. Suppose fo is an infra-AB-system and E* @ E° is integrable.
Then there is a lift fo of fo to the universal cover M and a homeomorphism
h:M — N xR such that

hfoh™! € Aff(N) x Isom(R)

and
hyh™! € AfF(N) x Isom(R)

for every deck transformation y € w1 (My).
Here, Isom(RR) is the group of functions of the form ¢+t +cort — —f + c.
Proof. First consider the case where fq satisfies assumption (14.7) and recall the

functions H : M — N and § § : M — R defined earlier in this section. By global
product structure and the integrability of E¥ & E*®, H x g is a homeomorphism.
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The results already given in this section then show that 7 = H x ¢ satisfies the
conclusions of the lemma.

If fo does not satisfy (14.7) and E€ is orientable on My, then there is m > 1
such that f;" satisfies (14.7). Let H and g be given for f;". Define a = +1 if fo
preserves the orientation of E ¢ and a=—1if fg reverses the orientation. Define
r:M —Rbyr(x)= Y1 a qfo(x)andtakeh—er

If £¢ is non-orientable on My, then fq lifts to a double cover on which E€ i
orientable. Then, let A and r be defined as in the previous case. Choose a deck
transformation 7 : M — M which reverses the orientation of E¢ on M and define a
function s : M — R by s(x) = r(x) — ri(x) and take h = H x s. ]

15. Openness

This section establishes that AB-systems have global product structure and form an
open subset of the space of C'! diffeomorphisms.

Lemma 15.1. Suppose G is a simply connected nilpotent Lie group. For any
distinct u,v € G, there is a unique one-dimensional Lie subgroup G, , such that
vy e Gy,v. (That is, u lies in the coset vGy y.)

Proof. This follows from the fact that for such groups, the exponential map from the
Lie algebra to the Lie group is surjective [28]. O

A right-invariant metric on such a group G is a metric d : G x G — [0, c0)
such that d(u,v) = d(u - w, v - w) for all u, v, w € G. For such a metric, we define
a function d; : G x G — [0, 00) where dj(u, v) is the length of the path from u
to v which lies in the coset vGy , given by (15.1). Clearly, d(u,v) < di(u,v)
for all u,v € G. Further, d; is continuous and the ratio dq(u,v)/d(u,v) tends
uniformly to one as d(u, v) tends to zero. Note that d; is not a metric on G in
general. (If G = R4 is abelian, however, the coset u G is simply the line through u
andvandd = d,.)

If ¢ : G — G is an automorphism and G, is a one dimensional subgroup, then
there is A such that dy (¢ (1), ¢(v)) = Ady(u,v) forallu,v € G withu € vGy. This
follows because both G and ¢ (G1) are Lie groups isomorphic to R and d; restricts
to a right-invariant metric on either of G or ¢(Gy).

Lemma 15.2. Suppose G is a simply connected nilpotent Lie group, d is a right-
invariant metric, {¢y } is a sequence of Lie group automorphisms of G, G; C G isa
one-dimensional Lie subgroup, ug € G, and vy € ugGy with uy # vy.

(1) If limg s 00 d(Pr (10), Pr (Vo)) = O, then
kliH;o d(pr(u), o (v)) =0

forallu € G andv € uG;.
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(2) If a > 1 and limg_, o0 a*d(¢x (uo), P (Vo)) = 0, then

lim a*d(¢ic(u). ¢ (v)) = 0

k—oc

Jorallu € G andv € uGy.
(3) If supy d(¢x (u0), i (vo)) < 00, then

sup dy(¢ic (o), i (9)) = 1

for some ¥ € ugGy.

Proof. Let A be such that d; (¢* (1), ¢*(v)) = Ardi(u, v) when u € vGy. Thenin
the first item, the two limits hold if and only if Ay — 0 and so one implies the other.
For the second item, consider a* A k. For the final item, if the first supremum is finite,
then A := sup; Ax < coand one can take v € voGy such that dy (7, ve) = 1/A. [

We now show that every AB-system has global product structure.

Proof of (5.1). Let f : M — M be the lift of the AB-system to the universal cover
and i : M — Mp the lifted leaf conjugacy to the AB-prototype. The functions f
and & are written without tildes as all the analysis will be on the universal covers.
Measuring distances on the manifold M p requires care. The metric d s1p OD M B
is defined by lifting a metric from Mp. If py = (ug,sx), and g = (v, #) are
sequences in Mg = N x R, then d Mg (pk, qx) may not converge to zero, even if

both d 5 (ug,vi) — 0 on N and |sg — tx| — 0 on R. The convergence depends on
the exact nature of the automorphism B. If s; and #; are bounded sequences in R,
however, then one can show in this special case that d Wi (pk,qx) — 0if and only if
both d g (1, vi) — 0 on N and |5 — tk| — OonR.

There is a deck transformation 8 : M — Mp defined by B(v, t) = (Bv,t—1)
which is an isometry with respect to dy; . For general {pi} and {qx}, let {n}

be the unique sequence of integers such that 0 < [sx — ng| < 1 for all k. Then,
B (pr) € N x [0, 1) for all k and

Az, (P i) = dgg, (B" (px), " (qk)) — O
if and only if both
dg(B"* (ug), B" (vg)) - 0 and [sp — x| — 0.

In what follows, we write d without a subscript for the metrics on M,Mg,and N .
There is no ambiguity as they are all treated as distinct manifolds. If Y is a subset of
one of these three manifolds, then

dist(x, ¥Y) := inf d(x, y).
yeyY
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Also let ds(x, y) denote distance measured along the corresponding stable foliation:
Ws if x,y e M, Wiifx,y € N, and Wiigif x.y € N x R. Similarly for d,
and .

The leaf conjugacy implies that every cs-leaf of f intersects a cu-leaf in a unique
center leaf. Therefore, establishing global product structure reduces to showing
existence and uniqueness of intersections inside the c¢s and cu leaves.

Uniqueness. Suppose x € M and x # y € ch (x)N W} (x). Then as k — o0,

ds(f¥(x), f¥() =0 and  d.(f*(x), f¥(y)) » 0

since if both sequences tended to zero, local product structure would imply that x
and y were equal. Define py = hf*(x) and g5 = hf*(y). As the leaf conjugacy
is uniformly continuous, d(px, qx) — 0 and d.(pk,qx) - 0. If pr = (ug,si) and
qr = (vg, tr), then, as noted above,

d(pk.qx) >0 = |sgx—tx| =0 = de(pr.qr) =0,

a contradiction.

Existence. Suppose x € M lies on a center leaf Lo and L, C W]‘Es (x) is a distinct
center leaf. Then h(Lg) = {vo} x R and h(L;) = {v1} x R for distinct points
vo. V1 € N. As Lo and L are subsets of the same cs-leaf of f, vy and v; lie on the
same stable leaf of A. By (15.1), there is a one-dimensional subgroup N; C N such
that vy ' - vy € Ni. By item (2) of (15.2), the coset vo Ny is a subset of Wi (vo).

If U} is a small neighbourhood of x in W; (x), then h(U}) c Wy (vo) x R and
the set h(W;(U})) = ijid(h(U})) is a neighbourhood of A(x) in Wj(vg) x R.
Therefore, if v € Wj(vo) is sufficiently close to v, then there is y € W;(x) such
that 2(y) € {v} x R.

In particular, let v be such that v € voN; and fix such a point y. See Figure 3.
Let {n;} be such that 8"« hf*(x) € N x [0,1) for all k. Then,

d(f*x). f¥(y) — 0

= d(B"hf*(x). B hf*(y)) — 0

= d(B" A*(vg), B A*(v)) > 0

which by (15.2) implies d (B A*(vo), B A (v1)) — 0.
Then, as hf*(L;) = {AX(v))} x R,

dist(B"* hf* (x), B hf*(L1)) — 0

= dist(hf*(x), hf* (L)) = 0

= dist(f*(x), F*(L1)) = 0.
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Thus, for sufficiently large k, W}' (f*(x)) intersects f*(L;) showing that W; (x)

intersects L. 0
//\/i v xR
h
us AT h(U3)
S vxR
LO Vg X R h(y)

S - -

X h(x)

Figure 3. A depiction of points and leaves occuring in the proof of global product structure. In
this figure, the stable direction £ is shown as if it were two-dimensional and U} is drawn as
a small plaque tangent to £ } The entire left side of the figure lies inside a three-dimensional
cs-leaf of f and the right side lies inside a cs-leaf of A x id.

A sequence {xy } is an e-c-pseudoorbit if for each k € Z the points f(xz) and xz 11
lie e-close on the same center leaf. A partially hyperbolic system is plague expansive
if there is € > 0 such that if {x;} and {yx} are e-c-pseudoorbits and d(xg, yx) < €
for all k € Z, then xy and yq are on the same local center leaf.

Theorem 15.3. Every AB-system is plaque expansive.

Since plaque expansive systems are open in the C! topology [25], this also
proves (5.2).

Proof. Let f : M — M be an AB-system. Let C > 1 be a constant to be defined
shortly. Since f expands in the unstable direction, there is €g > 0 such that if points
x,y,x",y € M satisfy
1
c Sdulx,y) =C, de(f(x).x") <. and y € W(f(y) NW*(x)
then dy(x,y) < (1 — €o)dy(x',y’). This result then also holds for points
on the universal cover M where f for the remainder of the proof denotes the
lift f: M — M.
Leth : M — N x R be the lifted leaf conjugacy. Define sets
X={(v,w)e NxN: veWiw), dwv,w) <1}
and
Xi={w,w)e NxN: ve Wi (w),
and a function
D:Xx[-1,L1] >R, (v,w, 1) du(h" (v xR), i~ (w x1)).

% = dl(vaw) = 1}
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That is, D(v, w,t) is the distance, measured along an unstable leaf of f, between
the center leaf 4! (v x R) and the point 4~ ! (w x ¢). Such a function is well-defined
and continuous by global product structure.

If o : N — N is a deck transformation for the covering N — N, then & x id
is a deck transformation for the covering Mp — Mp and one can verify that
D(x(v),x(w),t) = D(v,w,t). Using the compactness of N and [—1, 1], there
is C > 1 such that

DX x[-1,1]) c[0,C] and D(X;x[-1,1]) C [%,C].

This defines the constant C used above.

For some € > 0 let {x;} and {z;} be e-c-pseudoorbits such that d(xz, zx) < €.
By increasing € and by sliding the points zz along center leaves, assume, without loss
of generality, that there is a point y; for each k such that x; and y; are connected
by a short unstable segment and y; and z; are connected by a short stable segment.
By again increasing €, one can show that {yy} is a e-c-pseudoorbit. We may freely
assume that the original € was chosen small enough that d.( f (xk), xx+1) < €o for
all k. We will show that xo and yo lie on the same center leaf. An analogous
argument holds for yg and z¢ which will complete the proof.

Suppose xo and yg lie on distinct center leaves. Then, using f as in the previous
proof, there are vy # vy € N and {ny} such that B h(xy) € {B™ AFv,} x (=1, 1)
and "% h(y) € {B"* Akvy} x (=1, 1) for all k € Z. This implies that

sup d(B"* A¥ v, B Akvy) < 80
k

Let ]\71 C :/V be a one-dimensional subgroup such that vy, € vx]\71. By (15.2), there
is U € vy N; such that

sup dq (B"™ A*vy, B™ A*)) = 1.

kEZ
By the global product structure of f, there is a unique sequence {Jy%} in M such
that 2(Pg) € {A*¥} x R and J; € WJE‘ (xx). Then, S = supyez du(Xk, Vi) satisfies
& <8 < C. Letk € Zbe such that dy (xg, Jx) > (1 — €0)S. The definition of €
implies that dy, (xg 11, Vk+1) > S, a contradiction. O

16. The dynamically-incoherent example

This section gives a construction of the example due to Rodriguez Hertz, Rodriguez
Hertz, and Ures of a partially hyperbolic system on the 3-torus having an invariant
cs-torus [44]. For this specific construction, E* and E* are jointly integrable and
the tangent foliation has exactly one compact leaf. The system therefore gives an
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example of case (3) of (2.6). This version of the example given here was written
before the version in [44] was made publicly available, and it was not clear at the
time what the accessibility classes of the latter would be.

We use the following to prove the example is partially hyperbolic.

Proposition 16.1. Suppose f is a diffeomorphism of a compact manifold M,
TM = E* & E¢ & E" is an invariant splitting, and there is k > 1 such that

1T vrll < IT 505l < WTF %l and T vl < 1< I TF0%)
for all x € NW(f) and unit vectors vy € E¥ (x = s,c,u). Then, f is partially

hyperbolic.

To prove this, note that if the above inequalities hold on N W( /), they also hold
on a neighbourhood U of NW(f) and any orbit of f has a uniformly bounded
number of points which lie outside of U. The details are left to the reader.

Now, we return to constructing the example on T2. The example has a linear stable
bundle, so we first consider dynamics in dimension two. Define A = %(1 + +/5) and
functions

v :R—->R, x »—>x—|—§sinx and g:R? - R?, (x,y)~ (Y(x), Ay + cosx).

pe= (%2 9).

—sinx A

The derivative of g is

On the vertical line x = 0, there is an expanding fixed point for g. Through this point
is an invariant one-dimensional unstable manifold associated to the larger eigenvalue
of Dg. One can show that this unstable manifold may be expressed as the graph of a
function u : (—m, w) — R. For now, only consider # on [0, ). By an invariant cone
argument, one can show that u’(x) < 0 for all x € (0, 7). Using that ¥'(x) < A
when x is close to 7 and that

|At — sin x| - ] > It]
¥ (x)] ¥/ (x)] ’
for 1 < 0, one can show that limy », u'(x) = —o0.

Define a foliation W* on [0, r) x R by all graphs of functions of the form
X = u(x) + b for b € R. This foliation is g-invariant. Reflecting about the y-axis,
extend this to a foliation on (—m, ) x R. By including the vertical lines on the
boundary, extend this foliation to [, ] X R and then, by 2z -periodicity in x, to
all of R?. Call this foliation W¥ and let E* be the C? line field tangent to it.

Now consider the hyperbolic fixed point of g on the line x = m. Part of the
stable manifold of this point is given by the graph of a function ¢ : (0,7] — R.
One can show that ¢’(x) > 0 for all x € (0,7) and, since ¥'(0) > A,
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that lim,\ o ¢’(x) = +00. From the definition of g, there is a constant C > 1
such that g~! maps the region [—-C, C] x [0, ] into itself. The stable manifold
given by graph(c) must therefore be contained in this region, showing that ¢ is a
bounded function and can be continuously extended to all of [0, 7z]. By reflection and
periodicity, further extend ¢ to a continuous function R — R which is differentiable
except at 27 Z and such that g(graph(c)) = graph(c). By considering translates,
x +> ¢(x) + b, define a foliation W¢ on R? and let E€ be the unique continuous line
field on R? which is tangent to W€ on (R\ 277Z) x R. Asu’ <0 < ¢’ on (0, ), E*
and E€ are transverse.
1 1
(1 o)

The matrix
has eigenvalues A = 1 (14 +/5) and —A~!. Therefore, there is a lattice A C Z? such
that (y,z) = (Ay, —A~1z) quotients to an Anosov diffeomorphism on the 2-torus
R2/A. Define f : R*> — R? by

f(x, 5,20 = (x + %Sinx, Ay + cos x, —)L_lz)

and a splitting E€ @ E¥ @ ES by ES = —% and where E¢ @ EY on each xy-plane is
given by the earlier splitting constructed for g. This splitting is f -invariant and there
is a foliation tangent to E* @ E*. Define M = (R x R?)/(2wZ x A). Both f and
the splitting descend to M. Here, NW(f) C M consists of two tori, one tangent
to E¢ @ E® and the other tangent to E* @& E*. Using (16.1), one can verify that f
is partially hyperbolic. It has a foliation tangent to £* @ E*® with one compact leaf
and all other leaves are planes.

This is not an example of an AB-system as there is no invariant foliation tangent
to E¢. In the above analysis, the crucial properties needed for the term cos x in the
formula Ay + cosx for the second coordinate of g were that cos’ < 0 on (0, 7)
and cos’(77) < 0 = cos’(0). Therefore, replace Ay + cos x by Ay + sin x — x in all of
the above analysis. As sin x — x is an odd function, the resulting functionc¢ : R — R

is odd and its graph is a C! submanifold in R?. Defining f : R® — R3 now by
&, ¥:8) = (x + %sinx, Ay 4+ sinx — x, —)L"lz)
and quotienting by the lattice in R3 generated by {0} x A and (2, fT”I,O) one

constructs a skew product on T2 having a foliation tangent to E¥ @ E* with exactly
one compact leaf.

A. Definitions

This appendix defines a number of notions in smooth dynamical theory.
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All manifolds considered in this paper are Riemannian manifolds without
boundary. Suppose f is a C! diffeomorphism on a compact manifold and there is a
T f -invariant splitting TM = E* & E¢ & E° of the tangent bundle and & > 1 such
that || Tf*vs|| < 1 < ||Tf*v*|| for all unit vectors v* € E® and v¥ € E*. If Eisthe
zero bundle, then f is an Anosov diffeomorphism. If £¥, E€, and E* are all non-zero
and ||TF%vs|| < |Tf%ve|| < |Tf%v¥| for all p € M and unit vectors v* € El;
v¢ € Ej, and v* € E} then f is a partially hyperbolic diffeomorphism. The
notion of partially hyperbolicity is also extended to certain non-compact manifolds
in Section 7.

A C! flow is an Anosov flow if its time-one map is a partially hyperbolic
diffeomorphism with a center bundle given by the direction of the flow.

A partially hyperbolic diffeomorphism f is dynamically coherent if there are
invariant foliations W and W¢* tangentto E“@ E* and E€@ E°. Asaconsequence,
there is also an invariant center foliation W€ tangent to £€. Global product structure
is defined in Section 5.

For homeomorphisms f : X — X and g : Y — Y, atopological semiconjugacy
is a continuous surjection s : X — Y suchthatif = gh. If h is a homeomorphism,
it is a topological conjugacy.

Partially hyperbolic diffeomorphisms f and g are leaf conjugate if they are
dynamically coherent and there is a homeomorphism /4 such that for every center
leaf L of f, h(L) is a center leaf of g and A f (L) = gh(L).

A homeomorphism f : M — M is (topologically) transitive if every non-empty
open f-invariant subset of M is dense in M.

For a homeomorphism f : M — M, a Borel measure u is invariant if

w(X) = u(f(X)) for every measurable set X C M. The pair (f, ) is ergodic
if p is f-invariant and either w(X) = 0 or w(X) = 1 for every f-invariant
measurable X € M. We often write that f is ergodic or u is ergodic if the
context is clear. For brevity, we sometimes say that a system f with a finite non-
probability measure u is ergodic when, to be precise, we should actually say that
the pair (f, ﬁﬁ W) is ergodic. A homeomorphism f is conservative if it has
an invariant measure given by a smooth volume form on M. A conservative C?
diffeomorphism is stably ergodic if it has a neighbourhood ¢/ in the C! topology of
C! diffeomorphisms such that every conservative C? diffeomorphism in I/ is also
ergodic. For a discussion of why the quirky combination of C! and C? regularity is
necessary, see [46].

If N is a simply connected nilpotent Lie group and I' is a discrete subgroup such
that N := N / I" is a compact manifold, then N is called a (compact) nilmanifold [28].
If A: N — N is a Lie group automorphism which descends to A : N — N, then A4
is a nilmanifold automorphism (also called a toral automorphism when N = T%).
If A is Anosov, it is called hyperbolic. Infranilmanifolds and their automorphisms
are defined in Section 14.
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If f: M — N is a continuous function and Ty M — M and TN N —> N
are covering maps, then a [ift of f is afunction f M — N such that TN f fra.
Note that if 73, and 7y are universal covering maps, then at least one such lift exists,
but is not unique in general.
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