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Ergodic components of partially hyperbolic systems

Andy Hammerlindl*

Abstract. This paper gives a complete classification of the possible ergodic decompositions
for certain open families of volume-preserving partially hyperbolic diffeomorphisms. These
families include systems with compact center leaves and perturbations of Anosov flows under
conditions on the dimensions of the invariant subbundles. The paper further shows that the

non-open accessibility classes form a C1 lamination and gives results about the accessibility
classes of non-volume-preserving systems.
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1. Introduction

Invariant measures are important objects in the study of dynamical systems. Often,
these measures are ergodic, allowing a single orbit to express the global behaviour of
the system. However, this is not always the case. For instance, a Hamiltonian system
always possesses a smooth invariant measure, but a generic smooth Hamiltonian
yields level sets on which the dynamics are not ergodic [30], Any invariant measure

may be expressed as a linear combination of ergodic measures and while such a

decomposition always exists, it is not, in general, tractable to find it. For partially
hyperbolic systems, there is a natural candidate for the ergodic decomposition given
by the accessibility classes of the system. This paper analyzes certain families of
partially hyperbolic systems, characterizing the possible accessibility classes and

showing that these coincide with the ergodic components of any smooth invariant
measure.

By the classical work of Hopf, the geodesic flow on a surface of negative curvature
is ergodic [26]. Further, by the work Anosov and Sinai, the flow is stably ergodic
meaning that all nearby flows are also ergodic [1,2], Based on these techniques,
Grayson, Pugh, and Shub showed that the time-one map of this geodesic flow is also

stably ergodic as a diffeomorphism [21], To prove this, they observed two important

*This research was partially funded by the Australian Research Council Grant DP120104514.
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properties. The first property is partial hyperbolicity. A diffeomorphism / is

partially hyperbolic if there is an invariant splitting of the tangent bundle of the phase

space M into three subbundles

TM Eu © Ec ® Es

such that vectors in the unstable bundle Eu are expanded by the derivative Tf,
vectors in the stable bundle Es are contracted, and these dominate any expansion
and contraction of vectors in the center bundle Ec. (Appendix A gives a precise
definition.) The second property is accessibility. For a point x e M, the accessibility
class AC(x) is the set of all points that can be reached from x by a concatenation of
paths, each tangent to either Es or Eu. A system is called accessible if its phase space
consists of a single accessibility class. For the geodesic flow, the phase space M
is the unit tangent bundle of the surface, Ec is the direction of the flow, and Es
and Eu are given by the horocycles. Grayson, Pugh, and Shub demonstrated that

any diffeomorphism near the time-one map of the flow is both partially hyperbolic
and accessible and used this to prove its ergodicity. This breakthrough was followed
by a number of papers demonstrating stable ergodicity for specific cases of partially
hyperbolic systems (see the surveys [40,46]) and lead Pugh and Shub to formulate
the following conjecture [37].

Conjecture 1. Ergodicity holds on an open and dense set of volume-preserving
partially hyperbolic dijfeomorphisms.

They further split this into two subconjectures.

Conjecture 2. Accessibility implies ergodicity.

Conjecture 3. Accessibility holds on an open and dense set ofpartially hyperbolic
diffeomorphisms (volume-preserving or not).

The Pugh-Shub conjectures have been established in a number of settings. In
particular, they are true when the center bundle Ec is one-dimensional [41 ]. However,
there are a number of partially hyperbolic systems which arise naturally and which
are not ergodic, leading to the following questions.

Question. Is itpossible to give an exact description of the set ofnon-ergodic partially
hyperbolic diffeomorphisms?

Question. For a non-ergodic partially hyperbolic diffeomorphism, do the ergodic
components coincide with the accessibility classes of the system?

This paper answers these questions in the affirmative under certain assumptions
on the system. We first give one example as motivation before introducing more
general results. Consider on the 3-torus T3 E3/Z3 a diffeomorphism /
defined by

f(x, y, z) (2x + y,x + y,z).
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The eigenvalues are A < 1 < A-1 and / is therefore partially hyperbolic. Arguably,
this is the simplest partially hyperbolic example one can find. It preserves Lebesgue
measure but is not ergodic. Further, there are several ways to construct nearby
dilfeomorphisms which are also non-ergodic. With a bit of thought, the following
methods come to mind.

(1) Rotate / slightly along the center direction, yielding a diffeomorphism

(x, y, z) h-> (2x + y, x + y, z + 9)

for some small rational 6 e E/Z.

(2) Compose / with a map of the form (x,y,z) i->- (1fr(x, y, z), z) for some

f : T3 -> T2.

(3) Perturb / on a subset of the form T2 x X where I c§'.
(4) Conjugate / with a diffeomorphism close to the identity.

The results of this paper imply that any non-ergodic diffeomorphism in a

neighbourhood of / can be constructed by applying these four steps in this order.

Throughout the study of stably ergodic dynamical systems, regularity of the

invariant foliations has played a prominent role. One of Anosov's early key
contributions was a proof that holonomies along the stable and unstable foliations are

absolutely continuous. This allowed him to show that all Anosov systems are stably
ergodic. Grayson, Pugh, and Shub adapted this proof in the setting of the perturbation
of the time-one map of an Anosov flow to show that the stable holonomy inside of
a center-stable leaf is C1 regular. Determining the exact conditions which imply
C1 regularity lead to the notion of "center bunching" [37,38]. Roughly speaking, a

partially hyperbolic system is center bunched if the derivative in the center direction
is sufficiently close to conformal. Further, a qualified case of the second Pugh-Shub
conjecture holds: any accessible, center bunched system is ergodic [12],

In the case of one-dimensional center, every partially hyperbolic system is center
bunched. Further, F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures showed
that each accessibility class is either an open subset of the manifold or an immersed
codimension one submanifold tangent to Eu © Es [41], The submanifolds in the
second case form a lamination and are called u.v-lcaves. While each leaf is C1 regular,
it was not previously known if the coordinate charts defining the lamination could
taken as C1. In this paper, we establish this regularity, showing that the my-leaves

indeed form a C1 lamination (see (2.9) below). This then allows us in certain

settings to apply Fubini's theorem to the disintegration of the volume into measures
on leaves of the lamination and consequently to show that the ergodic components
have supports coinciding with the accessibility classes.

The proof of C1 regularity of the lamination relies on the C1 regularity of
the stable and unstable holonomies inside cs and cm-leaves. In the special case
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that E" and Es are everywhere jointly integrable, these two holonomies commute and

together give a well-defined u.v-holonomy between center leaves. In the case where
the Mj-lamination is defined only on a proper closed subset of the phase space, the

holonomies do not commute and so establishing regularity of the lamination is more
involved. The basic idea is to define what the derivative of a M.s-holonomy "should
be" at all points and then use Whitney's extension theorem to show that the holonomy
defined for points in the lamination extends to a C1 function in a neighbourhood of
these points. For leaves in the M.s-lamination which are accumulated on by other
leaves, the u and s-holonomies inside the cm and cj-foliations provide the candidate
derivatives. For isolated u.v-leaves which accumulate on non-isolated w.v-leaves,

these holonomies cannot be used and a more subtle approach is taken. Section 12

treats all of these issues of regularity in detail.

2. Statement of results

We again refer the reader to the appendix for a list of definitions.
Suppose A and B are automorphisms of a compact nilmanifold N such that A is

hyperbolic and AB BA. Then, A and B define a diffeomorphism

(v,t) (Av,t)

on the manifold
Mb N x R/(y,t) ~ (Bv,t — 1).

Call /as an AB-prototype.
Note that every AB-prototype is an example of a volume-preserving, partially

hyperbolic, non-ergodic system. Further, just like the linear example on T3 given
above, every AB-prototype may be perturbed to produce nearby diffeomorphisms
which are also non-ergodic.

To consider such perturbations, we use the notion of leaf conjugacy as introduced
in [25]. Two partially hyperbolic diffeomorphisms / and g are leafconjugate if there

are invariant foliations Wj and Wg tangent to Ej- and Ecg and a homeomorphism h

such that for every leaf in L in Wj, h(L) is a leaf of Wg and h(f(L)) g(h{L)).
We now define a family of diffeomorphisms which will be the focus of the paper.

A partially hyperbolic system / : M —» M is an AB-system if it preserves an

orientation of the center bundle Ec and is leaf conjugate to an AB-prototype.
In order to consider skew-products over infranilmanifolds and systems which do

not preserve an orientation of Ec, we also consider the following generalization.
A diffeomorphism /o is an infra-AB-system if an iterate of /o lifts to an AB-system
on a finite cover. To the best of the author's knowledge, this family of partially
hyperbolic diffeomorphisms includes every currently known example of a non-
ergodic system with one-dimensional center. Further, there are manifolds on which

every conservative partially hyperbolic diffeomorphism is an AB-system.
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Question 2.1. Suppose f is a conservative, non-ergodic, partially hyperbolic C2

diffeomorphism with one-dimensional center. Is f necessarily an infra-AB-system?

Skew products with trivial bundles correspond to AB-systems where B is the

identity map. The suspensions of Anosov diffeomorphisms correspond to the case
A B. These are not the only cases, however. For instance, one could take

hyperbolic automorphisms A, B : T3 T3 defined by the commuting matrices

Throughout this paper, the letters A and B will always refer to the maps associated

to the AB-system under study, and N and Mb will be the manifolds in the definition.
In general, if / : M —> M is an AB-system, M need only be homeomorphic to Mb,
not diffeomorphic [14,15].

We show that every conservative AB-system belongs to one of three cases, each

with distinct dynamical and ergodic properties.

Theorem 2.2. Suppose f \ M M is a C2 AB-system which preserves a smooth
volume form. Then, one of the following occurs.

(1) / is accessible and stably ergodic.

(2) Eu and Es are jointly integrable and f is topologically conjugate to Mb Mb
(v,t) M" (Av,t + 9) for some 6. Further, f is (non-stably) ergodic ifand only

if 6 defines an irrational rotation.

(3) There are n > I, a C1 surjection p : M —> S1, and a non-empty open set
U C S1 such that

• for every connected component I of U, p~l(I) is an fn-invariant subset

homeomorphic to N x I and the restriction of / " to this subset is accessible
and ergodic, and

• for every t S1 \ U, p~l(t) is an fn-invariant submanifold tangent to

(Eu © Es) and homeomorphic to N.

Note that the first case can be thought of as a degenerate form of the third case with
U S1. Similarly, the second case with rational rotation corresponds to U 0.

To give the ergodic decomposition of these systems, we decompose the measure
and show that each of the resulting measures is ergodic. Suppose p is a smooth
measure on a manifold M and p : M -> S1 is continuous and surjective such that

p*p m where m is Lebesgue measure on S1 IR/Z. The Rokhlin disintegration
theorem [45] implies that p can be written as

pt dm(t)
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where each \it is contained in p~l(t). Moreover, this disintegration is essentially
unique; if measures {vt }f e3i give another disintegration of /x, then vt jit for
m-a.e. t e S1. For an open interval I C S1 define

Note that /x/ is the normalized restriction of /x to p
1

(7) Then an open subset

U cS1 yields a decomposition

where denotes summation over all of the connected components I of U.

Theorem 2.3. Iff : M M is a C2 AB-system and ji is a smooth, invariant, non-
ergodic measure with /x(M) 1, then there are n > \, a C 1

surjection p : M —> S1,

and an open set U c S1 such that p*ji m and (2.1) is the ergodic decomposition

If / is in case (3) of (2.2), then the n, p, and U can be taken to be the same

in both theorems. If / is in case (2) and non-ergodic, then 9 is rational, and the

map p can be defined by composing the topological conjugacy from M to Mb with
a projection from Mb to S1.

As / preserves /x and p*/x m, it follows that p(f(x)) p(x) + q
for some rational q e S1 and all x with p(x) £ U. Because of this, one

can derive the ergodic decomposition of (f ji) from (2.3). Each component is

either of the form ^ £"=i/A+x<? or ~ Yl)=\ lltk j where if Ik (a,b) then

Ik,j (a + jq,b + jq). In (2.3), the ergodic components of (/", /x) are mixing
and, in fact, have the Kolmogorov property [12]. The ergodic components of / are

mixing if and only if (2.3) holds with n 1.

Using the perturbation techniques of [41], for any AB-prototype /ab, rational
number 9 |, and open subset U eg1 which satisfies U + 9 U, one can

construct an example of a volume-preserving AB-system which satisfies (2.3) with
the same n and U. In this sense, the classification given by (2.2) and (2.3) may be

thought of as complete. Versions of these theorems for infra-AB-systems are given
in Section 14.

Accessibility also has applications beyond the conservative setting. For instance,
Brin showed that accessibility and a non-wandering condition imply that the system
is (topologically) transitive [8], Therefore, we state a version of (2.2) which assumes

only this non-wandering condition. For a homeomorphism / : M —^ M, a

wandering domain is a non-empty open subset U such that U fl fn{U) is empty for
all n > 1. Let NW(f) be the non-wandering set, the set of all points x e M which
do not lie in a wandering domain.

(2.1)
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Theorem 2.4. Suppose f : M —» M is an AB-system such that N W(f) M.
Then, one of the following occurs.

(1) f is accessible and transitive.

(2) E" and Es are jointly integrable and f is topologically conjugate to Mb Mb,
(v, t) (Av, t + 0) for some 6. Further, f is transitive ifand only ifd defines

an irrational rotation.

(3) There are n > 1, a continuous surjection p : M —» S1, and a non-empty open
set U c S1 such that

• for every connected component I of U, p~l(I) is an fn-invariant subset

homeomorphic to N x I, and

• for every t e S1 \ U, p~l(t) is an fn-invariant submanifold tangent to
Eu © Es and homeomorphic to N.

The restriction of fn to a subset p~l(t) or p~] (/) is transitive.

The non-wandering assumption is used in only a few places in the proof
and so certain results may be stated without this assumption. For a partially
hyperbolic diffeomorphism with one-dimensional center, a (us-leaf) is a complete
C1 submanifold tangent to E" © Es.

Theorem 2.5. Every non-accessible AB-system has a compact us-leaf.

Theorem 2.6. Suppose f : M —> M is a non-accessible AB-system with at least

one compact periodic us-leaf. Then, there are n > 1, a continuous surjection

p : M —* S1 and an open subset U C S1 with the following properties.
For t S1 \U, p~1(E) is an fn -invariant compact us-leaf. Moreover, every

f -periodic compact us-leaf is of this form.
For every connected component I ofU, p~l(I) is fn-invariant, homeomorphic

to N x I and, letting g denote the restriction of /" to p~l(I), one of three cases

occurs:

(1) g is accessible,

(2) there is an open set V C such that

W)cv, (j gk(v) p-\i), pi/(F) 0,

and the boundary of V is a compact us-leaf, or

(3) there are no compact us-leaves in p~] (/), uncountably many non-compact
us-leaves in p~x (/), and X 1 such that g is semiconjugate to

iVxI^lVxl, (v, t) i-s- (Av, X t).
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It is relatively easy to construct examples in the first two cases above. Section 16

gives an example of the third case. It is based on the discovery by Rodriguez
Hertz, Rodriguez Hertz, and Ures of a non-dynamically coherent system on the
3-torus [44]. Theorem (2.6) corresponds to a rational rotation on an /-invariant
circle. The following two theorems correspond to irrational rotation.

Theorem 2,7. Suppose f : M —» M is a non-accessible AB-system with no periodic
compact us-leaves. Then, there is a continuous surjection p : M —S1 and a
C1 diffeomorphism r : S1 —> S1 such that

• NW{f) p-l(NW(r)\
• ift e NW(r) then p~l{t) is a compact us-leafand /(p_1(0) 7'_1(r(0). and

• if I is a connected component ofS1 \NW(r), then f{p~l{If) F_1(r(^))- Jn

particular, p~l(I) C M is a wandering domain.

Theorem 2.8. Suppose f : M M is a non-accessible AB-system with no periodic
compact us-leaves. Then, f is semiconjugate to

Mb ->• Mb, (v,t) i-»- (Av,t + 6)

for 9 defining an irrational rotation.

One can construct C1 examples of AB-systems satisfying the conditions of (2.7)
and with NW(f) / M. For instance, if r is a Denjoy diffeomorphism of the circle,
simply consider a direct product A x r where A is Anosov.

The diffeomorphism / in (2.4)-(2.8) need only be C1 in general. If / is a

C2 diffeomorphism, then the surjection p : M S1 may be taken as C1. This is a

consequence of the following regularity result, proven in Section 12.

Theorem 2.9. For a non-accessible partially hyperbolic C2 diffeomorphism with
one-dimensional center, the us-leaves form a C1 lamination.

The existence of a C° lamination was shown in [41].

The next sections discuss how this work relates to other results in partially
hyperbolic theory, first for three-dimensional systems in Section 3 and for higher
dimensions in Section 4. Section 5 gives an outline of the proof and of the organization
of the rest of the paper. The appendix gives precise definitions for many of the terms
used in these next few sections.

3. Dimension three

The study of partially hyperbolic systems has had its greatest success in dimension
three, where dim£" dim£'e dimi^ 1. Still, in this simplest of cases, a

number of important questions remain open. Rodiguez Hertz, Rodriguez Hertz, and

Ures posed the following conjecture specifically regarding ergodicity.
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Conjecture 3.1. Ifa conservative partially hyperbolic dijfeomorphism in dimension
three is not ergodic, then there is a periodic 2-torus tangent to E" © Es.

They also showed that the existence of such a torus would have strong dynamical
consequences. We state this theorem as follows.

Theorem 3.2 ([43]). Ifa partially hyperbolic dijfeomorphism on a three dimensional

manifold M has a periodic 2-torus tangent to E" © Es, then M has solvable

fundamental group.

In fact, the theorem may be stated in a much stronger form. See [43] for details.
Work on classifying partially hyperbolic systems has seen some success in recent

years, at least for 3-manifolds with "small" fundamental group. This was made

possible by the breakthrough results of Brin, Burago, and Ivanov to rule out partially
hyperbolic diffeomorphisms on the 3-sphere and prove dynamical coherence on the

3-torus [7,9]. Building on this work, the author and R. Potrie gave a classification

up to leaf conjugacy of all partially hyperbolic systems on 3-manifolds with solvable
fundamental group. Using the terminology of the current paper, the conservative
version of this classification can be stated as follows.

Theorem 3.3 ([23]). A conservative partially hyperbolic dijfeomorphism on a

3-manifold with solvable fundamental group is (up to finite iterates andfinite covers)
either

(a) anAB-system,

(b) a skew-product with a non-trivial fiber bundle, or

(c) a system leaf conjugate to an Anosov dijfeomorphism.

Further, the ergodic properties of each of these three cases have been examined in
detail. Case (a) is the subject of the current paper. Case (b) was studied in [42], where
it was first shown that there are manifolds on which all partially hyperbolic systems
are accessible and ergodic. Case (c) was studied in [24], which showed that if such a

system is not ergodic then it is topologically conjugate to an Anosov diffeomorphism
(not just leaf conjugate). It is an open question if such a non-ergodic system can

occur. All of these results can be synthesized into the following statement, similar in
form to (2.2).

Theorem 3.4. Suppose M is a 3-manifold with solvable fundamental group and

f : M M is a C2 conservative partially hyperbolic system. Then, (up to finite
iterates andfinite covers) one of the following occurs.

(1) f is accessible and stably ergodic.

(2) E" and Es are jointly integrable and f is topologically conjugate either to a

linear hyperbolic automorphism of T3 or to

Mb —r Mb, (v,t) (Av, t + 9)

where A, B : T2 —> T2 define an AB-prototype and 6 S1.
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(3) There are n > 1, a C1 surjection p : M —» S1, and a non-empty open set

U c 'S1 such that

• for every connected component I of U, p~l(I) is an fn-invariant subset

homeomorphic to T2 x I and the restriction of fn to this subset is accessible
and ergodie,

• for every t S1 \ U, p-1 (t) is an fn-invariant 2-torus tangent to Eu ® Es.

If (3.1) is true, then this theorem encapsulates every possible ergodic decomposition

for a 3-dimensional partially hyperbolic system.

Question 3.5. Is the condition "with solvablefundamental group " necessary in (3.4)

4. Higher dimensions

We next consider the case of skew products in higher dimension. In related work,
K. Burns and A. Wilkinson studied stable ergodicity of rotation extensions and of
more general group extensions over Anosov diffeomorphisms [11], and M. Field,
I. Melbourne, V. Nipcä, and A. Török have analyzed group extensions over Axiom A
systems, proving results on transitivity, ergodicity, and rates of mixing [16,17,31],

In this paper, we use the following definition taken from [20], Let n : M -> X
define a fiber bundle on a compact manifold M over a topological manifold X. If a

partially hyperbolic diffeomorphism / : M —> M is such that the center direction ECj-

is tangent to the fibers of the bundle and there is a homeomorphism A : X -> X
satisfying itf An, then / is a partially hyperbolic skew product. We call A
the base map of the skew product. While / must be C1, n in general will only be

continuous.
This definition has the benefit that it is open: any C1-small perturbation of a

partially hyperbolic skew product is again a partially hyperbolic skew product. This

can be proven using the results in [25] and the fact that the base map is expansive.
The base map also has the property that it is topologically Anosov [3], As with
smooth Anosov systems, it is an open question if all topologically Anosov systems
are algebraic in nature.

Question 4.1. If A is a base map of a partially hyperbolic skew product, then is A

topologically conjugate to a hyperbolic infranilmanifold automorphism?

We now consider the case where dim Ec 1 in order to relate skew products to
the AB-systems studied in this paper. The following is easily proved.

Proposition 4.2. Suppose f is a partially hyperbolic skew product where the base

map is a hyperbolic nilmanifold automorphism and Ec is one-dimensional and has

an orientation preserved by f. Then, f is an AB-system ifand only if thefiber bundle

defining the skew product is trivial.



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 141

If we are interested in the ergodic properties of the system, we can further relate

accessibility to triviality of the fiber bundle.

Theorem 4.3. Suppose f is a partially hyperbolic skew product where the base map
is a hyperbolic nilmanifold automorphism and Ec is one-dimensional and orientable.

Iff is not accessible, then the fiber bundle defining the skew product is trivial.

Corollary 4.4. Suppose f is a conservative C2 partially hyperbolic skew product
where the base map is a hyperbolic nilmanifold automorphism and Ec is one-
dimensional and has an orientation preserved by f. Then, f satisfies one of the

three cases of (2.2) and iff is not ergodic, its ergodic decomposition is given by (2.3).

Theorem (4.3) is proved in Section 13. A similar statement, (14.5), still
holds when "nilmanifold" is replaced by "infranilmanifold" and the condition on

orientability is dropped.
Every partially hyperbolic skew product has compact center leaves and an open

question, attributed in [40] to C. C. Pugh, asks if some form of converse statement
holds.

Question 4.5. Is every partially hyperbolic dijfeomorphism with compact center
leaves finitely covered by a partially hyperbolic skew product?

This question was studied independently by D. Bohnet, P. Carrasco, and A. Go-

golev who gave positive answers under certain assumptions [5,6,13,20], In relation
to the systems studied in the current paper, the following results are relevant.

Theorem 4.6 ([20]). If f is a partially hyperbolic dijfeomorphism with compact
center leaves, and dim Ec \, dim Eu < 2, and dim Es < 2, then f is finitely
covered by a skew product.

Corollary 4.7. Suppose f : M —> M is a partially hyperbolic dijfeomorphism with

compact center leaves, dim Ec 1, and dim M 4. Iff is not accessible, then f
is an infra-AB-system.

A compact foliation is uniformly compact if there is a uniform bound on the

volume of the leaves.

Theorem 4.8 ([6]). If f is a partially hyperbolic dijfeomorphism with uniformly
compact center leaves and dim Eu 1, then f is finitely covered by a partially
hyperbolic skew product where the base map is a hyperbolic toral automorphism.

Corollary 4.9. Suppose f is a partially hyperbolic dijfeomorphism with uniformly
compact center leaves and dim Eu dim Ec 1. If f is not accessible, then f is

an infra-AB-system.

In the conservative setting, we may then invoke the results of the current paper to
describe the ergodic properties of these systems.

Question 4.10. If f is a non-accessible partially hyperbolic dijfeomorphism with

compact one-dimensional center leaves, then is f an infra-AB-system?



142 A. Hammerlindl CMH

Positive answers to both (4.1) and (4.5) would give a positive answer to (4.10).

In his study of hyperbolic flows, Anosov established a dichotomy, now known
as the "Anosov alternative" which states that every transitive Anosov flow is either

topologically mixing or the suspension of an Anosov diffeomorphism with constant
roof function [1,17]. Ergodic variants of the Anosov alternative have also been

studied and the following holds.

Theorem 4.11 ([10,33]). For an Anosov flow <f>t : M M, the following are
equivalent:

• the time-one map (p\ is not accessible,

• the strong stable and unstable foliations are jointly integrable,

and both imply the flow is topologically conjugate to the suspension of an Anosov

diffeomorphism.

Corollary 4.12. Suppose every Anosov diffeomorphism is topologically conjugate to

an infranilmanifold automorphism. Then, every non-accessible time-one map ofan
Anosov flow is an infra-AB-system.

Thus, if the conjecture about Anosov diffeomorphisms is true, then the results

given in Section 14 will classify the ergodic properties of diffeomorphisms which are

perturbations of time-one maps of Anosov flows. This conjecture is true when the

Anosov diffeomorphism has a one dimensional stable or unstable bundle [32],

Corollary 4.13. Suppose f is the time-one map ofan Anosovflow with dim E" — 1.

Iff is not accessible, then it is an AB-system.

5. Outline

Most of the remaining sections focus on proving the results listed in Section 2 and

we present here an outline of the main ideas.

A partially hyperbolic system has global product structure if it is dynamically
coherent and, after lifting the foliations to the universal cover M, the following hold
for all x, y e M:

(1) Wu(x) and Wcs (y) intersect exactly once,

(2) Ws{x) and Wcu(y) intersect exactly once,

(3) if x Wcs(y), then Wc(x) and Ws(y) intersect exactly once, and

(4) if x G Wcu(y), then Wc(x) and Wu(y) intersect exactly once.

Theorem 5.1. Every AB-system has global product structure.

This proof of this theorem is left to Section 15. That section also proves the following.

Theorem 5.2. AB-systems form a C1-open subset of the space ofdiffeomorphisms.
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Now assume / is a non-accessible AB-system. There is a lamination consisting
of M.v-leaves [41], and this lamination lifts to the universal cover. Global product
structure implies that for a center leaf L on the cover, every leaf of the lifted
its-lamination intersects L exactly once. Each deck transformation maps the

lamination to itself and this leads to an action of the fundamental group on a closed
subset of L as depicted in Figure 1.

Figure 1. After lifting to the universal cover, an AB-system has a center leaf L invariant under
the lifted dynamics /. Each deck transformation a then defines a function ga : L —»• L where

ga (x) is the unique point for which Ws (a{x)) intersects W1' (ga (v)). These functions together
with f define a solvable action on a closed subset of L and this action is semiconjugate to an
affine action on JR.

In Section 6, we consider an order-preserving action of a nilpotent group G on a

closed subset Tel. We also assume there is / acting on F such that fGf~l G.

Then, / and G generate a solvable group. Solvable groups acting on the line were
studied by Plante [35], By adapting his results, we prove (6.5) which (omitting
some details for now) states that either Fix(G) is non-empty or, up to a common
semiconjugacy from T to R, each g e G gives a translation x i-> x + r(g) and /
gives a scaling x Xx.

Instead of applying this result immediately to AB-systems, Section 7 introduces
the notion of an "AI-system" which can be thought of as the lift of an AB-system
to a covering space homeomorphic to N x R where, as always, A is a nilmanifold.
Using (6.5), Section 7 gives a classification result, (7.1), for the accessibility classes

of AI-systems. Section 8 applies the results for Al-systems to give results about

AB-systems and gives a proof of (2.5). The higher dimensional dynamics of
the AB-system depend on the one-dimensional dynamics on an invariant circle.
Sections 9 and 10 consider the cases of rational and irrational rotation respectively
and prove Theorems (2.6)-(2.8).

a(L)
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Section 11 gives the proofs of (2.2), (2.3), and (2.4) based on the other results.

In order to establish the ergodic decomposition, the lamination of w.s-leaves must
be C1. By (2.9), this holds if the diffeomorphism is C2. The proof requires a highly
technical application of Whitney's extension theorem and is given in Section 12. The

specific version of this regularity result for AB-systems can be stated as follows.

Proposition 5.3. Let f : M —> M be a C2 AB-system. Then, there is a C1 surjection

p : M —> S1 and U C S1 such that the compact us-leaves of f are exactly the

sets p~1(t)fort 6 §1 \ U.

If S is a center leaf which intersects each compact us-leaf exactly once, then p
may be defined so that its restriction to S is a C1 -diffeomorphism.

If pi is a probability measure given by a C1 volume form on M, then p may be

chosen so that p*pi is Lebesgue measure on S1 R/Z.
Section 13 proves (4.3) concerning the triviality of non-accessible skew products.

Infra-AB-systems are treated in Section 14.

6. Actions on subsets of the line

Notation. To avoid excessive parentheses, if / and g are composable functions, we
simply write fg for the composition. In this section, pi is a measure on the real line
and pi[x, y) denotes the measure of the half-open interval [x, >•).

Let Homeo+ (R) denote the group of orientation-preserving homeomorphisms of
the line. If T is a non-empty closed subset of R, let Homeo+(T) denote the group of
all homeomorphisms of T which are restrictions of elements of Homeo+(R). That
is, g is in Homeo+(T) if it is a homeomorphism of T and g(x) < g(y) for x < y.

We now adapt results of Plante to this setting.

Proposition 6.1. Suppose T is a non-empty closed subset o/R and G is a subgroup
o/Homeo+(T) with non-exponential growth. Then, there is a measure pi on R such

that

• supp pt c r,
• pt(X) pi(g(X)) for all g e G and Borel sets X C R, and

• ifX c R is compact, then pi{X) < oo.

Proof. In the case T R, this is a restatement of (1.3) in [35]. One can check that
the techniques in [35] and [34] extend immediately to the case T ^1.
Proposition 6.2. Let T, G, and pi be as in (6.1) and suppose Fix(G) is empty. Then

there is a non-zero homomorphism r : G R such that for all x R
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Proof. Choose any x e M and define r as above. One can then show that x is a

non-zero homomorphism and independent of the choice of x. See (5.3) of [34] for
details.

Proposition 6.3. Let T, G, /i, r be as in (6.2) and suppose f e Homeo+(R) is such

that F : G —G defined by F(g)(x) fgf~l (x) is a group automorphism. Then,

there is X > 0 such that r(F(g)) Xx(g) for all g e G.

Moreover, if X 1, then /* /x Xji and any homeomorphism of M which
commutes with f has a fixed point.

Proof. The first half of the statement follows as an adaptation of §4 of [35], Further,

if A f 1, then /*/!. A/i by (4.2) of [35]. To prove the final claim, we first show

that if A l then / has a fixed point. Consider x e T. As Fix(G) is empty by

assumption, there is g e G such that x < g(x). Then,

/x[x, Too) > p[x,gk(x)) =kr(g)

for all k > 1. This shows that /x[x, Too) oo for any x e R.

Assume, without loss of generality, that A < 1 and x < f(x) for some x e IR.

Then,
OO

p[x, sup fk(x)) Xkp[x, f(x)) < oo
k-° k=0

and therefore, xo := sup/(,>0 fk(x) < oo is a fixed point for f. If h e Homeo+(R)
commutes with / then for all k e Z

/x[x0, hk(x0)) p[f(x0),fhk(xo)) X p,[x0,hk(x0))

which is possible only if jU.[x0, hk(xo)) 0. Then p[xo, supfc6Z hk(xf)) 0 and so

sup hk (xo) < oo is a fixed point for h.

We now consider the case where G is a fundamental group of a nilmanifold.

Proposition 6.4. Let G be a torsion-free, finitely-generated, nilpotent group and

suppose f e Aut(G) is such that (pig) f g for all non-trivial g £ G. If H is a

(p-invariant subgroup, then (p{gH) f gH for all non-trivial cosets gH H.

Proof. First, we show that the function ip : G G defined by fig) g~] <p(g)
is a bijection. If G is abelian, then G is isomorphic to Zd for some d and ip is

an invertible linear map, and hence bijective. Suppose now that G is non-abelian
and let Z be its group-theoretic center. Pick some element go e G. As G/Z is of
smaller nilpotency class, by induction there is g e G such that f(gZ) g0Z or
equivalently f(g)z0 go for some zo £ Z. As f\z is an automorphism of Z, there

isz e Z such that fiigz) f(g)ij/(z) iJf(g)z0 g0. As go was arbitrary, this
shows f is onto.
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To prove injectivity, suppose tig) tig')- By induction, g' gz for some

z e Z. Then,

tig) tig') tig)tiz) => tiz) 1 2 1 =>" g' g-

If H is a </;-invariant subgroup, then i//(II) H and the bijectivity of ijr implies
that tigH) H for any non-trivial coset.

The results of J. Franks and A. Manning [18,19,29] show that for any Anosov

diffeomorphism on a nilmanifold, the resulting automorphism on the fundamental

group satisfies the hypotheses of (6.4).

Lemma 6.5. Suppose F C 1, G < Homeo+(T), and f e Homeo+(R) are such

that

• T is closed and non-empty,

• G is finitely generated and nilpotent,

• F \G -r G defined by F(g)(x) fgf~l (x)
is a group automorphism with no non-trivial fixed points, and

• Fix(G) is empty.

Then, there are

• a closed non-empty subset To C F,

• a continuous surjection P : R ^ K,

• a non-zero homeomorphism r : G —> R, and

• 0 < A ^ 1

such thatfor x, y £ R and g G

• x < y implies Pix) < P{y),
• Pg(x) P(x) + r (g),

' Pfix) XP{x),

• To {x £ T : g(x) x for all g e kerr}, and

• for each t R, P~l(t) is either a point z Tq or an interval [a, b] with
a,b e T0.

Moreover, any homeomorphism which commutes with f has a fixedpoint in P_1 (0).

Proof The conditions on G imply that it has non-exponential growth [22]. Therefore,
we are in the setting of the previous propositions. In particular, there are /i, r, and A

as above.

First, suppose that the image r(G) is a cyclic subgroup of R in order to
derive a contradiction. In this case, the condition rF Ar in (6.3) implies that

Ar(G) r(G) and therefore A 1. Then, F maps a coset of kerr to itself. As



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 147

Homeo+(F) is torsion free, so is G, and by (6.4), F has a non-trivial fixed point,
in contradiction to the hypotheses of the lemma being proved. Therefore, r (G) is

non-cyclic.
Consequently, r(G) is a dense subgroup of E. Further A / 1, as otherwise, one

could derive a contradiction exactly as above. By (6.3), / has at least one fixed point,
say xo e R. Define a function P : R —> R by

fn[x0,x)
if x > x0,

0 if x xo,

—pt[x, xo) if x < xo-

By definition, P is (non-strictly) increasing. The density of r (G) implies that P(R)
is dense. Then, as a monotonic function without jumps, P is continuous and therefore

surjective. For each t R, the pre-image P~l (t is either a point or a closed interval,
In either case, one can verify that g(P~l(t)) 7J~' (t) for all g ker x and therefore
the boundary of P~l{t) is in IV The other properties of P listed in the lemma are

easily verified.
The statement for homeomorphisms commuting with / follows by adapting the

proof of (6.3).

7. AI-systems

We now consider partially hyperbolic systems on non-compact manifolds. Suppose

M is compact and / : M —> M is partially hyperbolic. Then, any lift of /
to a covering space of M is also considered to be partially hyperbolic. Also, any
restriction of a partially hyperbolic diffeomorphism to an open invariant subset is still
considered to be partially hyperbolic.

Let A be a hyperbolic automorphism of the compact nilmanifold N and I C R
an open interval. The Al-prototype is defined as

fAI : N xl ^ N xl, (v,t) (Av,t).

A partially hyperbolic diffeomorphism / on a (non-compact) manifold M is an

Al-system if it has global product structure, preserves the orientation of its center

direction, and is leaf conjugate to an Al-prototype.
Theorem 7.1. Suppose f : M —M is an Al-system with no invariant compact
us-leaves. Then, either

(1) / is accessible,

(2) there is an open setVdM such that

7W) cv, (J fk(V) M, Pi fk{V) 0,
fceZ feeZ

and the boundary ofV is a compact us-leaf, or
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(3) there are no compact us-leaves in M, uncountably many non-compact us-leaves
in M and there is X ^ 1 such that f is semiconjugate to

iVxt^-iVxl, (v, t) {Av,\t).

Notation. For a point x on a manifold supporting a partially hyperbolic system,
let Ws{x) be the stable manifold through x, and Wu (x) the unstable manifold. Then

AC{x), the accessibility class of x, is the smallest set containing x which satisfies

Ws(y) U Wu(y) C AC(x)

for all y e AC(x). For an arbitrary subset X of the manifold, define

WS(X) (J Ws{x), WU(X) [J Wu{x), and AC(X) [J AC(x).
xeX xeX xeX

Note that AC{X) may or may not be a single accessibility class.

Proposition 7.2 ([41]). Suppose f is a partially hyperbolic system with one-dimensional

center on a (not necessarily compact) manifold M. For x 6 M, the following
are equivalent:

• AC{x) is not open.

• AC(x) has empty interior.

• A C'(x) is a complete C1 codimension one submanifold.

IfL is a curve through x tangent to the center direction, then the following are also

equivalent to the above:

• AC(x) Fl L is not open in L.

• A C (x) Fl L has empty interior in L.

Iff is non-accessible, the set ofnon-open accessibility classes form a lamination.

Assumption 7.3. For the remainder of the section, assume f : M —x M is a
non-accessible Al-system.

All of the analysis of this section will be on the universal cover. Let M and N be

the universal covers of M and N. Then, / and the leaf conjugacy h lift to functions

/ : M ->• M, and h : M -> N x / still denoted by the same letters. Every lifted
center leaf of the lifted / is of the form h~l{v x I) for some v e N. In general,
the choice of the lifts of / and h are not unique. They may be chosen, however,
so that hfh~l(v x I) Av x I where A : N —x N is a hyperbolic Lie group
automorphism. As A fixes the identity element of the Lie group, there is a center
leaf mapped to itself by /. Let L denote this leaf. As L is homeomorphic to M,

assume there is an ordering on the points of L and define open intervals (a, b) C L
for a, b G L and suprema sup X for subsets X C L exactly as for R.

Define a closed subset

A {t e L : AC(t) is not open}.



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 149

Lemma 7.4. A is non-empty.

Proof. As M is connected, if all accessibility classes were open, / would be

accessible (both on M and M). Therefore, there is at least one non-open accessibility
class. By global product structure, this class intersects L.

Lemma 7.5. Ift e A, then AC(t) WsWu(t) WuWs(t).
This is an adaptation to the case of global product structure of local arguments

used in the proof of (7.2).

Figure 2. A "bracket" of points defined by global product structure. The proof of (7.5) shows
that if t e A, then tv t.

Proof. Each center leaf in M is of the form h~l(v x /) lor some v e N. By global
product structure, for each v e N, there exist unique points xv,yv,zv,tv e M such

that

xveWs(t), yv e Wu(xv) n h~l(v x I), zveWs(yv), tveW"(zv)nL.

See Figure 2. These points depend continuously on v. As N is connected, the set

{tv : v N} c L n AC{t)

is connected and, by (7.2), has empty interior as a subset of L. Therefore, it consists
of the single point t. This shows that both WsW"(t) and WuWs(t) intersect each

center leaf h~l(v x I) in the same unique point yv and so the two sets are identical.
This set is both ^-saturated and m-saturated and so contains /ICO).

By global product structure, for any x e M, there is a unique point R(x) e L
such that Wu(x) intersects Ws(R(x)). This defines a retraction, R : M L. By
the previous lemma, if t 6 A, then R~l{t) AC(t).

Let a : M —> M be a deck transformation of the covering M —> M. Then,
as depicted in Figure 1, a defines a map ga e Homeo+ (A) given by the restriction
of R o a to A. Define

G {ga:a e iti(M)}.
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Lemma 7.6. G is a finitely generated, nilpotent subgroup of Homeo+(A).

Proof. For a e jx\(M) and t e A, ga(t) is given by the unique intersection of
a{AC(t)) and L. Then,

AC{ga{gß{t))) a(AC(gß(t))) aß(AC(t)) AC{gaß{tj)
A j A

shows that it\(M) -> Homeo (A), a m>- ga is a group homomorphism. As M is

homotopy equivalent to the nilmanifold N, its fundamental group is finitely generated
and nilpotent.

It is necessary to define G with elements in Homeo+(A) as, in general, the same

construction on L will define a subset of Homeo+(L) but not a subgroup.

Lemma 7.7. For a point t e A, AC(t) C M projects to a compact us-leafin M if
and only ift Fix(G).

Proof. Consider t e A and let A c M be the image of AC(t) by the covering
M —> M. First, suppose t e Fix(G). By global product structure, there is a unique

map a : N -» AC(t) such that ho(v) e v x / for every v e N. For any deck

transformation a: n\ (M),

a{AC(t)) AC(ga(t)) AC (t)

which implies that cto aajy where a^s is the corresponding deck transformation
for the covering N —> N. It follows that a quotients to a homeomorphism from the

compact nilmanifold A to A and therefore A is compact.
To prove the converse, suppose A is compact. From the definition of an Al-system,

one can see that every center leaf on M is properly embedded. Therefore, A intersects
each center leaf in a compact set. If A is the pre-image of A by covering M —> M,
then A intersects each center leaf on M in a compact set. In particular, A D L is

compact. Note that A D L is exactly equal to the orbit Gt \g(t : g e G}. Define
5 supGt. Then, i e Gt by compactness and g(Gt) Gt implies g(s) 5 for
each g e G. This shows that {.?} Gs Gt and therefore t s e Fix(G).

Lemma 7.8. Suppose J C L is an open interval such that dJ C Fix(/) fl Fix(G).
Let X be the image of AC {J) by the covering M —> M. Then, f \ x is an Al-system.

This lemma is the justification for assuming there are no invariant, compact leaves

in (7.1). If such leaves exist, the Al-system can be decomposed into smaller systems.

Proof. Assume the subinterval J in the hypothesis is of the form J (a, b) with
a,b e L. Unbounded subintervals of the form (a, +oo) and (-co, b) are handled

similarly.
For every center leaf h~l(v x I), let av,bv el be such that v x av e h(AC(a))

and v x bv e h(AC(b)). The set A ^jveg/h~l{v x (av,bv)) is s-saturated,
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«-saturated, and contains J. Therefore, AC(J) c X. By global product structure,
one can show that X c AC (J), so the two sets are equal. By its construction X
is simply connected, and invariant under deck transformations. Therefore, it is the

universal cover for X. Global product structure is inherited from M. For instance,
for x, y AC(J), there is a unique point z £ M such that z e Ws{x) n Wcu{y).
Since, Ws(x) C X, z is in X.

Compose h with a homeomorphism which maps each v x (av,bv) to v x (0,1)
by rescaling the second coordinate. This results in a leaf conjugacy between /
on X and A x id on N x (0, 1) which quotients down to a leaf conjugacy from X
to N x (0,1).

We now show that if the AI-system has no fixed compact us-leaves, then it satisfies
either case (2) or case (3) of (7.1) depending on whether it has any (non-fixed) compact
Ms-leaves.

Lemma 7.9. If Fix(G) is non-empty and Fix(/) fl Fix(G) is empty, then f satisfies
case (2) of (7.1).

Proof We first show that / restricted to L is fixed-point free. Suppose, instead, that

f(t) t £ L. By assumption t £ Fix(G), so let J be the connected component
of L \ Fix(G) containing t. As Fix(G) is /-invariant, /(/) J and each s e dJ
is then an element of Fix(/) fl Fix(G), a contradiction.

Without loss of generality, assume t < f(t) for all t e L. Choose some

to £ Fix(G) and define L+ {t e L : t > to}- Then,

7(1+) CL+, (J fk(L+) L, and f) fk{L+) 0.
fceZ keZ

One can then show that the covering M M takes AC(L+) to an open set V c M
which satisfies the second case of (7.1).

Lemma 7.10. If Fix(G) is empty, then f satisfies case (3) of (7.1).

Proof In this case, the hypotheses of (6.5) hold with T A. Let P : L —»• R and

r : G —> R be as in (6.5).
If a £ iti (M) is a deck transformation M —> M, then hah~l is equal to a/v x id

on IV x / for some deck transformation a# e n\{N). As N is a nilmanifold, any
homomorphism from n\ (N) to E defines a unique homomorphism from the nilpotent
Lie group N to R [28], This implies that there is a unique Lie group homomorphism
T : N —M such that Ta^{v) T(v) + r(ga) for all v £ N and a £ n\(M).

Let R : M —> L be the retraction defined earlier in this section and let
H : M —N be the composition of the leaf conjugacy h : M —> N x I with
projection onto the first coordinate. Define

<2 : M -> M, x PR(x)-TH(x).
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We will show that Q quotients to a function M —R and use this to construct the

semiconjugacy in the last case of (7.1).
First, consider a point x e M which has a non-open accessibility class. Then,

R(x) e A and, for a e ni(M),

PR(a(x)) PgaR{x) PR(x) + r (ga)

and

THa(x) Tc(nH(x) 77/(x) + r(ga)

which together show 2o:(x) Q(x).
Now, consider a point x e M which has an open accessibility class, and let

J C M be the connected component of Wc(x) n AC(x) which contains x. The

set To from (6.5) is a subset of T A and therefore P is constant on L \ A.
Then, PR is constant on J and, by continuity, constant on the closure of J as

well. As H is constant on center leaves, Q PR — TU is also constant on the

closure of J. Let y be a point on the boundary of J. Then, as AC(y) is non-

open, Q(x) Q(y) Qa(y) Qa(x). This shows that Q quotients down to a

function Q : M —> M. A much simpler argument shows that H : M N quotients
down to a function H : M N.

The properties of F and P in (6.5) imply that TA XT and therefore THf
TAH XTH. As PRf PfR XPR, this shows that Qf XQ. Then, H x Q
is the desired semiconjugacy in (7.1). By (6.5), P(A) K and so A is uncountable.

Each G-orbit of A corresponds to a distinct irv-leaf, and so there are uncountably

many.

This concludes the proof of (7.1). We note one additional fact which will be used

in the next section.

Corollary 7.11. If Fix(G) is empty, any homeomorphism of L which commutes

with f has a fixed point.

Proof This follows from the use of (6.5) in the previous proof.

8. AB-systems

Assumption 8.1. In this section, assume f : M —M is a non-accessible AB-

system.

The AB-prototype fAB has an invariant center leaf which is a circle. By the leaf

conjugacy, / also has an invariant center leaf. Call this leaf S. Note that / lifts to

an Al-system. This is because the AB-prototype fAB lifts to the Al-prototype A x id
on N x M. If h : M —> Mb is the leaf conjugacy, then hfh~l is homotopic to fAB
and therefore also lifts to N x M.
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Let it : M —> M be the universal covering, and choose a lift / : M —> M
and S a connected component of n~l(S) such that f(S) S. The universal

cover N x M of the manifold Mb has a deck transformation of the form (v, t) h>

(Bv, t — 1). Conjugating this by the lifted leaf conjugacy gives a deck transformation
ß : M —> M and one can assume that ß(S) S. Then, S plays the role of L in the

previous section. Define A {t e S : AC(t) is not open} and G as a subgroup of
Homeo+(A) as in the previous section.

Lemma 8.2. Fix(G) is non-empty.

Proof. This follows from (7.11) since ß and f are commuting diffeomorphisms
when restricted to S and ß is fixed-point free.

Lemma 8.3. Fort e A, AC(ix{t)) C M is compact ifand only ift e Fix(G).

Proof. If t Fix(G), then, by (7.7), AC{n{t)) is covered by a compact us-leaf of
the Al-system and is therefore compact itself.

Conversely, suppose t e A is such that AC{n(t)) C M is a compact us-leaf.
Note that as ß(F\x(G)) Fix(G) there are a,b e Fix(G) such that a < t < b

in the ordering on S. Then, Gt is contained in (a,b), a bounded subset of S.

Considering the supremum as in (7.7), one shows that s := sup Gt is in Fix(G).
Consequently, AC(n(t)) accumulates on jt(s) which, as AC(jtU)) is compact,
implies n(s) e AC(n(t)) and so there is a deck transformation a : M —M
such that a(s) e AC(t). This implies there is k e Z and g e G such that
t ßkg(s) ßk(s) Fix(G).

In this, and the next two sections, define

K {x e S : AC(x) c M is compact}.

The last lemma shows that K ?r(Fix(G)).

Corollary 8.4. K is closed and non-empty.

This also completes the proof of (2.5).

Corollary 8.5. K Fl N W(f \ s) is non-empty.

Proof. K is non-empty, /-invariant, and closed.

Corollary 8.6. / has a compact periodic us-leaf if and only if f\s has rational
rotation number.

Proof. As a consequence of (8.3), any compact ws-leaf X in M intersects S in a

unique point t. If fn(X) X then f" t and /1 s has rational rotation number.

If, conversely, /1 s has rational rotation number, its non-wandering set consists of
periodic points, and a compact periodic leaf exists by (8.5).
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The following is also from the last proof.

Corollary 8.7. All compact periodic us-leaves have the same period.

Lemma 8.8. If K S, then f on M is topologically conjugate to a function
(v, x) (Av, r(x)) defined on the manifold

Mg N x M./(Bv, t) ~ (v, t + 1)

where r : R —> R is a lift of a homeomorphism r : R/Z —> R/Z topologically
conjugate to f\s-

Proof Let f : S —> R be any homeomorphism such that fß(t) <p(t) + 1 for all t.
Define r as 0/</>_1. Extend f to all of M by making it constant on accessibility
classes. As in the proof of (7.10), let H : M —> N be the first coordinate of the

lifted leaf conjugacy h : M —> N x R. Then, the function H x <p : M —> Ä x R

gives a topological conjugacy between f on M and Ax r.
The fundamental group of Mb is generated by deck transformations of the form

(v,t) h> (ajv(u),f) or (v,t) i-> (Bv,t — 1). Using the fact that Fix(G) S and

the definition of r, one can then show that H x f quotients down to a topological
conjugacy defined from M to Mb

Lemma 8.9. Suppose J C S is an open interval such that 3J C Fix(/) D K. Then,

f\AC{J) is an AI-system.

Proof Let / be a lift of J to S. Then, as /(/) /, f(J) ßk(J) for some
k G Z. By replacing the lift / by fßk, assume, without loss of generality that

/ (/) J. As K 7r(Fix(G)), 3/ c Fix(/) n Fix(G), and so by (7,8), AC (J)
projects to X on M such that the dynamics on X is an AI-system. As J is contained
in a fundamental domain of the covering S —> S, one can show that X is contained
in a fundamental domain of the covering M —» M. Therefore, the dynamics on

jr(AC(J)) AC (J) is an AI-system.

We now give a C° version of (5.3).

Lemma 8.10. There is a continuous surjection p : M —> S1 such that p\s is a
homeomorphism, p\wc(x) is a covering for any center leaf Wc {x) fx e M) and p is

constant on each compact accessibility class.

Proof. Define ponS so that p\s maps S toS1 with constant speed along 5. Extend p
to AC(K) U S by making p constant on accessibility classes. Then, for any center
leaf Wc(x), let J be a connected component of Wc(x) \ AC(K) and define p on J
so that J is mapped at constant speed to S1 and extends continuously to the boundary
3J C AC(K). Transversality of the center foliation and icv-Iamination implies that p
is continuous. The other properties are easily verified.

Compare this short C° proof to the C1 proof in Section 12.
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We now consider the cases of rational and irrational rotation of / [ s separately in
the next two sections.

9. Rational rotation

This section proves (2.6).

Assumption 9.1. Assume f is a non-accessible AB-system with at least one periodic
compact us-leaf.

Let S, K, and other objects be defined as in Section 8. By (8.7), all

compact periodic leaves have the same period. Call this period n. Define
Kn K n Fix(/") C S. By (8.4), Kn is closed. Let p : M —> S1 be the projection
given by (8.10) and define U C S1 as U S1 \ p{Kn).

Note that if t £ U, then p~l(t) is an /"-invariant compact u.s-leaf. Moreover,

every such leaf is of this form. This proves the first part of (2.6).
To prove the rest of the theorem, replace / by its iterate /" and assume n 1.

The new / is still an AB-system, albeit with a different "A" than before. Now
Kn Fix(/) n K C S. If I is a connected component of U C S1, then p_1(/) fl S

is a connected component of S \ K\ and (8.9) implies that / restricted to p~l (/)
AC(n(J)) is an Al-system. Since J fl K„ is empty, AC(J) contains no invariant
compact M.v-leaves. Therefore, the Al-system falls into one of the cases given in (7.1).
As these cases correspond exactly to those given in (2.6), this concludes the proof.

10. Irrational rotation

This section proves (2.7) and (2.8).

Assumption 10.1. Assume f is a non-accessible AB-system with no periodic compact
us-leaves.

Let S, K and other objects be defined as in Section 8. By (8.6), f\s has irrational
rotation number.

Lemma 10.2. NW(f\s) C K.

Proof For any C1 circle diffeomorphism with irrational rotation, the non-wandering
set is minimal. The result then follows from (8.5).

Lemma 10.3. If I is a connected component of S \ NW{f\s), then AC {I) is

a wandering domain. That is, the sets fk(AC(I)) AC(fk(I)) are pairwise
disjoint for all k e Z.



156 A. Hammerlindl CMH

Proof. Let J be the closure of I. Note that any compact leaf in AC (J) must be of
the form AC(t) for some t J. By the properties of circle diffeomorphisms, the
sets fk(J) are pairwise disjoint. By the last lemma, dJ C K. If AC {J) intersects

AC(fk (J)), then this intersection has a boundary consisting of compact w.v-Ieaves.

Such a compact leaf would intersect S in a point t e J H fk(J), a contradiction.

Lemma 10.4. NW(f) AC(NW(f\s)).

Proof. The last lemma shows NW(f) c AC(NW(f\s)).
To prove the other inclusion, suppose t e NW(f\$),x e AC(t) and V C M is

a neighbourhood of x. There is a sequence {n^ } such that f"k (t) converges to t. By
taking a further subsequence, assume fnk(x) converges to some point y e AC(t).
Let D c V be a small unstable plaque containing x. Then fnk (D) is a sequence of
ever larger unstable plaques, and

k

Unstable leaves of the Anosov diffeomorphism A are dense in A [19]. Therefore, by
the leaf conjugacy, W"(y) is dense in AC(t). This shows that some iterate fnk(V)
intersects V.

Now, let p : M ->• S1 be as in (8.10). We may assume p\s is a

C1-diffeomorphism. Define r : S1 —» S1 by rp(t) pf(t) for all t e S. Then,
(2.7) can be proved from the above lemmas. As r has irrational rotation number, it is

semiconjugate to a rigid rotation t i->- t + 9. Using this and the leaf conjugacy, one
can prove (2.8) using an argument similar to the proof of (8.8).

11. Proving theorems (2.2), (2.3), and (2.4)

This section gives the proofs of several of the theorems stated in Section 2 based on
results proved in other sections.

The proof of (2.4) makes use of a result of Brin regarding transitivity [8]. The

following is an extension of this result to the non-compact case, though the proof is

in essence the same.

Proposition 11.1 (Brin). Suppose f is a partially hyperbolic diffeomorphism of a

(not necessarily compact) manifold M. If V is open and f(V) — V C NW(f),
then V AC(V).

In particular, iff is accessible and NW(f) M, then f is transitive.

Proof. For c > 0 and y e M, let Wf (y) be the set of all points reachable from y by
a path tangent to Eu of length less than <?.
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If x G V, then x G NW(f) implies there are sequences {x&} and both

converging to x and such that — f Jk (xk) for some non-zero jk G Z. By
swapping Xk with yk if necessary, assume every jk is positive. If jk is bounded,
then x is periodic, so we may freely assume that jk —> +00. As V is open, there
is > 0 such that Wf(xk) c V for all large k. The uniform expansion of Eu

implies there is ip —>• 00 such that Wfk (yp) C /"< (Wf(xk)) C fJk(V) V and

therefore the entire unstable manifold Wu (x) lies in the closure of V. This proves

Proofof (2.4). By (11.1), any accessible / satisfies case (1) of (2.4). Therefore,
assume that / is non-accessible.

For now, assume / has no periodic compact ns-leaves, so that (2.7) holds. That
theorem, with the assumption NW(f) M, implies that NW(r) S1 and that

every point in M lies in a compact icy-leaf. This shows that (8.8) holds and the r in
that lemma can be taken as the same r in (2.7). As NW(r) S1, r is topologically
conjugate to a rigid rotation t i-»- t + 9 and therefore / satisfies case (2) of (2.4).

For the remainder of the proof, assume / has a periodic compact ws-leaf, so that

(2.6) holds. Let I be a connected component of U and g : p~l(I) —> p~1(I) be

as in (2.6). The condition NW(f) M implies NW{g) p~l(I). This is only
possible in the first of the three cases in (2.6), where g is accessible. Then, g is

transitive by (11.1).
If t G S1 \U, then fn restricted to p~x (I) is topologically conjugate to a

hyperbolic nilmanifold automorphism and is therefore transitive [19]. Hence, if U is

non-empty, the third case of (2.4) is satisfied.

If U is empty, then every p~l{t) is an /"-invariant compact irs-leaf and (8.8)
holds with r : S1 —> S1 topologically conjugate to a rigid rational rotation t i-> t + 9.

This shows that / is in case (2) of (2.4).

To prove ergodicity of the components of the decomposition given in (2.3), we
use results given in [12], [41], and in the classical work of Birkhoff and Hopf. These

results were formulated for systems on compact manifolds, but the proofs are local in
nature, involving short holonomies along stable and unstable manifolds. The results,
therefore, generalize to the non-compact case so long as the measure is still finite.

Proposition 11.2. Let f be a homeomorphism of a (not necessarily compact)
manifold M and let Co(M) be the space of continuous functions M —R with
compact support. Suppose fi is an invariant measure with ji(M) 1 and there is an
invariant closed submanifold S such that pi is equivalent to Lebesgue measure on S.

(1) For f G Cq(M the limits

WU(V) V. Similarly, WS(V) V and so AC(V) V.

and
k—1

exist and are equal p.-almost everywhere.
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(2) There is a countable set C Co(M) (depending only on M) such that

(/, /x) is ergodic ifand only if <psf and <p" are constant ji-almosl everywhere for
every j.

Further, suppose f is a C2 partially hyperbolic diffeomorphism with one dimensional
center.

(3) If <p e Co(M), then <ps is constant on stable leaves and (pu is constant on
unstable leaves.

(4) If S M, Xs, Xu C M are measurable, and

W*(XS) Xs, WU{X") Xu and pt{Xs AXU) 0,

then there is X C M measurable such that

AC(X) X and p,(Xs AX) 0 fi(XuAX).

(5) If S M and f is accessible, then (/, ji) is ergodic.

Proof. Item (1) is a re-statement of the classic BirkhofF Ergodic Theorem.
To prove (2), let {cpj} be a countable set whose linear span is dense in Co(M)

with respect to the supremum norm. As any function in Co(S) may be extended to a

function in Co(M), the linear span of {<pj } is dense in L1 (/x). Suppose the bounded
linear operator </> on L1 (/i) takes every element of {fj} to the subspace of
constant functions. By density, every f e Lx (ji) is mapped to the same subspace.
Therefore (/, /x) is ergodic. The converse statement in (2) follows directly from the

properties of ergodicity.
Proofs of (3)-(5) can be found in both [12] and [41],

Proofof (2.3). As pt is a finite, /-invariant measure which is equivalent to Lebesgue,

NW(f) M by Poincare recurrence. Let p, n, and U then be given as in (2.4).

By (5.3), assume p*p, m where m is Lebesgue measure on S1. Without loss of
generality, assume n 1.

Lor each connected component I of U, the set p~x{I) is an accessibility class

and therefore (/, pti) is ergodic by (11.2) where )i[ is as in (2.1).
Let {0;}^=! be as in (11.2) and for j N and q e Q. define X*

q — {x e

M : (pj(x) < q}. Define X" similarly. By items (3) and (4) of (11.2), there is

Xhq AC{Xhq) equal mod zero to both Xs} q
and Xjq. Define a "bad" set Y by

Y U (XSj,<tAXJ*uX"<tAX^)
j,q

and note that pt{Y) 0. Equation (2.1) implies that there is a "good" set Z C S1 \ U
such that U UZ has full measure in S1 and ptt (Y n/?-1(i)) 0 for all? e Z where jit
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is given by the decomposition in (2.1). By (5.3), we may further assume that jit is

equivalent to Lebesgue measure on p~x (t) for all t e Z.
As p~l(t) is an accessibility class, every Xhq n p~l (t) is either empty or all

of p~x(t). Therefore for t e Z, every X*
q

and X" either has /i(-measure equal to
zero or one, and item (2) of (11.2) implies that (/, p,t) is ergodic. Thus, modulo a set

of measures whose combined support has /i-measure zero, every measure in (2.1) is

ergodic. This shows that (2.1) is the ergodic decomposition of pi.

One might be tempted to prove (2.3) by arguing that for t £ U, / restricted
to p~l{t) is an Anosov diffeomorphism and therefore the invariant measure jit is

ergodic. The problem is that we have only shown that p~l{t) is a C1 submanifold
of M, which is not enough regularity to conclude ergodicity for an Anosov system.
Hence, the above proof.

Proofof (2.2). If / is in case (1) or (3) of (2.4), it is fairly easy to show that / is
also in the corresponding case of (2.2). Therefore, assume / is in case (2) of (2.4).

If 9 is rational, then (v, t) (Av, t + 9) is non-transitive and therefore / is not
ergodic.

Suppose 9 is irrational and / is not ergodic. Then there are j e N and q e Q
such that the sets Xs X"q, and Xuq, defined as in the last proof, have neither

zero measure nor full measure with respect to the /-invariant measure p,. Write
X XJtg. As X AC(X), there is Y C S1 such that X p~x{Y) and m

implies that m(Y) is neither zero nor one. The condition p*/x m further implies
that p gives a semiconjugacy from / to a rigid irrational rotation Rq{x) x + 9

on S1. Then, f(X) X implies R$(Y) Y which contradicts the ergodicity
of (Rg,m).

12. Regularity

This section proves (2.9), showing that the Mi-lamination of a partially hyperbolic
diffeomorphism is C1 if the center is one-dimensional and the diffeomorphism is C2.

We first give a general idea of the method of proof before providing all the

technical details. Let A denote the lamination of Mi-leaves. Suppose L is a compact
segment of a center leaf and C is a tubular neighbourhood of L. If x e C fl A, then
there is a unique point y e L so that x and y are connected by a short path inside a

single Mi-leaf. This defines a map, the Mi-holonomy, from C fl A to L that we wish
to show is C1 regular in the sense of Whitney. Equivalently, we wish to show that this

map extends to a C1 function from C to L. By local product structure of the splitting
Eu © Ec © Es, the function C fl A —> L may be written either as an unstable

holonomy composed with a stable holonomy or vice versa, and on C fl A these

holonomies commute. That is, with x and y as above, y hs{hu(x)) hu{hs(x)).
Further, hs and hu are known to be C1. If other leaves of A accumulate on the
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leaf through jc, then hs(h"(xn)) hu(hs(xn)) holds for a sequence of points xn on
distinct leaves where the xn converge to x. From this, it follows that the derivatives

commute as well: D(hs o hu) D(hu o hs) at x. For such points x, we use this

as the candidate for the derivative of the ws-holonomy CflA^L when applying
Whitney's extension theorem. If x lies on an isolated leaf of A, then D(hs o hu)
and D{hu o hs) may differ at x and neither can be used as the candidate derivative.
Further, a sequence of isolated leaves of A might accumulate on a non-isolated leaf.
To handle this, we first restrict D(hs o hu) to a function defined only for points on
non-isolated leaves, and then take any continuous extension of this restricted function
to all of C n A. This extended function is then used as the candidate derivative in

Whitney's extension theorem.
We now give the full proof, starting with a known result on the regularity of the

stable and unstable holonomies.

Proposition 12.1. Suppose f : M —x M is a C2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Then any unstable

holonomy hu inside a cu-leafis C1. Moreover, the derivative ofh" tends uniformly
to one as the unstable distance between the point x and its image hu (x) tends to zero.

Proof. That such a holonomy is C1 is proved in an erratum [39] to the paper [38], If
y e Wu(x) and h" is the holonomy taking x to y, then adapting the argument in §3

of [36] one can show that the norm of the derivative of hu at x is given by

00 I! TC

j,y=n
n—O

Tf-"jy)fW
\TCf-Hx)f\\

where Tff : ELZ Pc^z) is the restriction of the derivative Tzf : TZM -x Tf(z)M.
As / is C2, the derivative Tz f is Lipschitz in z and the center bundle Ec is Holder
by [25]. Therefore,

00 OO

log Jxy < L[dist(f~n(x), f~n(y))f < ^ L[C/z~"]0[dist(x, y)]0
n=0 n=0

for appropriate constants L, C, /x > 1 and 0 < 9 < 1. This shows that Jxy tends

uniformly to one as dist(x, y tends to zero.

Proposition 12.2. Suppose f : M —> M is a C2 dynamically coherent partially
hyperbolic diffeomorphism with one-dimensional center. Suppose Lq C M is a

compact interval inside a center leaf and g : Lo 1 is C'. Then g extends to a
C1 function defined on a neighbourhood of Lo which is constant on us-leaves.

Proof. Without loss of generality, assume g is defined so that |g(x) — g(y)| is the

arc length of the center segment between x and y. Any other C1 function on L0 can
be constructed by composition with this specific g.
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By local product structure and the compactness of Lq, one may construct a

compact set C C M containing Lq with the following properties:

• The interior of C contains the (one-dimensional) interior of Lq.

• If Wc(x) is a center leaf, then every connected component of Wc(x) n C is a

compact interval, called a "center segment."

• If AC(y) is a ns-leaf, then every connected component of AC(y) n C is a

compact set homeomorphic to a closed ball and called a "us-plaque."

• Each center segment intersects each u s-plaque in exactly one point.

• Lq is a center segment.

By a C1 change of coordinates, assume that C C R^.
Let E C C be the union of all ws-plaques, and S'cE the union of all u,v-plaques

which are accumulated on by other u.s-plaques. If x G E', define

IK n Lq - o n Loll
D(x) lim

n—*oo \\<jn n L — a n L|

where L is the center segment through x, a is the us-plaque through x, and on

are ws-plaques converging to a. By (12.1), this limit exists, is independent of the

sequence an tending to a, and is non-zero. The C1 regularity of the holonomies also

implies that if pn is another sequence of lev-plaques converging to a, then

rw \ IILq — pn (~1 Lo||
D(x) lim — —

n-*-oo ||cr„ n L — pn n L||

so long as an ^ pn for large n. Further, by (12.1), the ratio D(L\ fl o)/D(L2 fl a)
tends uniformly to one as dist(L!,L2) tends to zero. As D is continuous when
restricted to each center segment and uniformly continuous on each us-plaque a, it
is therefore continuous on all of E'. Define O(x) 1 for all x e Lq and note that
this agrees with the above definition on the intersection E' H L0. Then, choose a

continuous positive extension D : S U Lq —> R.

Also extend g : Lq -> R to a function g:EULo^Mby making it constant on
each i/.s-plaque. To further extend g to a C1 function on all of C, we will define for
each point x G EULo a candidate derivative dgx : Wl -> R and show that Whitney's
extension theorem applies. Choose an orientation for Ec and for each xgEU Lq,
let vcx be the unique oriented unit vector in Ecx. Define dgx as the unique linear map
such that dgx(vx) D(x) and ker dgx E" ® Esx. As both D(x) and the splitting
Ex © Ex © Ex are continuous in x, the linear map dgx is continuous in x.

Define the function R : C x C —> R by

R(xn,yn) i rrfgK) - g(x„) - dgXn(y„ -xn)).
\\yn -xn\\ V >
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To apply Whitney's extension theorem, one needs to show that for any two sequences

{xn}%Lj and {yn \<^Ll with \\xn — yn || converging to zero, the sequence R(xn,yn)
also converges to zero. If this does not hold, there are sequences {xn} and {y„ J so

that R(xn, y„) is bounded away from zero. Therefore, without loss of generality, one

may replace these sequences by subsequences and assume xn and yn both converge
to a point q e C. We will also restrict to further subsequences as necessary later in
the proof.

We prove the convergence in progressively more general cases.

Case 1. First, assume xn,yn, and q are all on the same center segment L 7^ L0. Let
an, p„ and a be such that

onnL xn, pn n L yn, and a n L q.

If a ^ £', then xn yn q for large n. Therefore, assume a e E'. Then,

lim g(yn)-g(xn) lim
\\on H Lp - p„ fl Lp[|

n^oo \\Xn-yn\\ n^co \\on C L - pn C\ L\\

As both the candidate derivative dgx and the center direction vcx are continuous in x,

lim
-jj üdgXn(yn - x„) lim dgXn)( lim —^-)

n~*°° \\yn -Xn\\ n^oo \\yn - xn\\'
dgq(ycq) D(q).

Therefore, lim„^oo R(xn,y„) D(q) - D{q) — 0.

Case 2. Now, consider the case where xn and yn are on the same center segment Ln
for each n. Define xcn to be on the same w.y-plaque as xn and the same center segment
as q. Define ycn similarly. Then,

g(xn) - g(y„) g(xc„) - g(ycn).

By (12.1),
II L« Xn ||

1hm 1.
\\ycn-xcn\\

Thus,

|im Um g(ti)-g(x<)
n^oo || — Xn || »^oo \\y°-xZ\\

where the last equality is by the previous case. As before,

lim r" dgXn(y„-xn) dgq(vc) D(q)
"->0° \\yn -xn\\ q

and therefore lim,j_>0O R(xn,yn) 0.
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Case 3. Now consider xn and zn as general sequences in S converging to q. Define y„
as the unique point lying on the same center segment as xn and the same tt.v-plaque
as zn. By taking subsequences, assume

zn ynlim -
n^oo ||zn — yn ||

exists. By continuity of the partially hyperbolic splitting, this limit is in E © Esq.

Therefore,

lim
1

dgx (zn - yn) lim dgXn) lim —^—) 0
n—>-oo ljzn yn || Woo Woo ||z„ -yn\\

implying, with g(zn) g(yn), that

lim
M [7 (g(zn) - g(yn) - dgx (zn - yn)) 0.

n^oo ||z„ -yn\\

By transversality of the foliations, there is a constant © > 0 such that \\zn — xn |] >
ci \\zn — yn || and therefore

lim 7, Ag{zn) ~ g(yn) ~ dgx (z„ - yn)) 0
n-*oo \\zn — ||

as well. Again by transversality, there is C2 > 0 such that ||z„ — xn\\ > C2\\yn ~ *n II

and therefore by the previous case

lim (g(y„) - g(x„) - dgx (yn - x„)) 0.
n->oo ||zn - X„\\ '

Added together, these limits show that limn^oo R{xn,zn) 0.

Case 4. Now consider the case where xn e Lq and zn S for all n. Define yn
from x„ and zn exactly as in the last case. Then,

R{xn,zn) -—^ Ag{zn) -g(yn) -dgx„(zn -yn))
IIZn Xn ||

1

(g(yn) - g(xn) - dgXn (yn - Xn))
Zn ~ X:

and, similar to the previous case, both summands can be shown to converge to zero.
The case xn e E and zn e Lo is almost identical.

Case 5. If both {xn} and \zn} are in L0, then lim„^oo R(xn, zn) 0 simply by the
fact that g is C1 when restricted to Lq.
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The general case. The final case to consider is where {xn} and {z„} are general

sequences in X E U Lo. By taking subsequences, one can assume each sequence
lies either entirely in Lo or entirely in E and therefore reduce to a previous case.

We now prove the following restatement of (2.9).

Corollary 12.3. If f : M -> M is a non-accessible, partially hyperbolic C2

dijfeomorphism with one-dimensional center, the non-open accessibility classes form
a C1 lamination. That is, around any point x 6 M there is a neighbourhood V and

functions g : V —>• R and j/ : V —r R^_1 such that g x \fr is a C1 embedding and

ifAC{y) is a us-leafand a a connected component ofAC(y) n V, then a g~l
for some t e R.

Proof. Define a coordinate chart (p x jr : V —R x Rrf_1 such that the kernel of the

derivative dtp : TXM -» R at x is equal to L" © Ej. By (12.2), after replacing V by
a subset, there is a C1 function g : V —R constant on u.v-plaques and such that g
and cp are equal on a center segment through x. Then, the derivative of g x i// is

invertible at x and so, after again replacing V by a subset, g x \[r is the desired C1

embedding.

We now proceed to prove (5.3). Recall the definition of an AI-system from
Section 7.

Proposition 12.4. Let f \ M M be a C2 AI-system and X c M a compact
us-leaf. Then, there is a neighbourhood V of X, an open subset U C (0,1) and

functions p : V (0, 1) and : V —> X such that p x f is a C1 dijfeomorphism
and the compact us-leaves in V are exactly of the form p~l it) for t j U.

Moreover, p restricted to each center segment L C V is a C1 dijfeomorphism.

In this context, a center segment is a connected component of the intersection
of V with a center leaf.

Proof. There is a neighbourhood V of X such that inside V each center segment
intersects each compact us-leaf in a unique point. Therefore, the proofs of the

previous results of this section hold as before with compact 1/5-Ieaves now filling the

role of wv-plaques. This gives the existence of p and f.
As the function D is positive in the proof of (12.2), for x e X and unit vector

vc Ecx the derivative dpx of p satisfies dpx(vc) 0. By continuity, this property
holds for all x in a neighbourhood of X and so, by replacing V by a subset, the

restriction of p to any center segment L has non-zero derivative along all of L.

As it is a local result, (12.4) also holds for a compact us-leaf in an AB-system
instead of an AI-system. To go from the local to the global requires a technical lemma
which "fills in the gaps" between compact us-leaves.



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 165

Lemma 12.5. Let N be a C1 manifold, andfor 0 < e < | define

Ve N x ([0, e) U (1 — e, 1]) C JV x [0,1],

If there are e > 0 and a C1 function g : Ve —> [0, 1] such that

• It'll* t) > Qforall (x't) e K> and

• g(x, 0) 0 and g(x, 1) I for all x e V
then there are 5 > 0 and a C1 function h : N x [0,1] —> [0, 1] such that

• h(x,t) g(x,t)for all (x,t) e Vg,

• (x, t) i-> (x,h(x, t)) is a C1 dijfeomorphism of N x [0,1], and

• if x e N satisfies g(x, t) t for all (x,t) e Vg, then h(x,t) t for all
t G [0,1],

Proof Pick S > 0 small enough that there is a continuous function ho : N x [0,1] —>

[0,1] which for each x N satisfies the following properties:

• 1 i-> /?0(x, t) is strictly increasing and linear on each of the intervals [5,35],
[35, 1 — 35], and [1 — 35,1 — 5]; and

• ho agrees with g and agrees with ^ at the points of the form (x, 5) and

(x, 1 - 5).

Then, define h by h(x, t) g(x, t) for (x, t) Vg, h(x, t) ho(x, t) for (x, t) e

V25 \ Vg, and h{x, t) jg f'^sS ho(x, s)ds otherwise.

Proposition 12.6. Let f : M —»• M be a C2 Al-system, and J a compact interval
inside a center leaf such that its endpoints Xo and X\ lie inside compact us-leaves.

Then there are r : AC (J) —> ^4C(xo) and p : AC (J) —> [0,1] such that r x p is a
C1 dijfeomorphism and every compact us-leaf in AC (J) is of the form p~l{t) for
some t e [0,1],

Proof. By approximating the center bundle Ec by a C1 vector field v, one may define

a C1 flow taking points in ^C(xo) to points in ^4C(xi). By rescaling v, assume the

flow takes each point in y4C(xo) to a point in ^C(xi) in exactly one unit of time.
This flow then defines a C1 diffeomorphism between AC(J) and AC(xo) x [0,1],
Therefore, we may assume our system is defined on a space of the form N x [0,1]
where N is a manifold C1 -diffeomorphic to AC(xo) and that r : N x [0,1] —»• N is

given by projection onto the first coordinate. Further assume that the flow v is tangent
to Ec on the center leaf containing J. Then, when viewed as a subset of N x [0,1],
J is of the form J {xo} x [0, 1].

By adapting the arguments in the proofs of (12.2) and (12.4), there is a C1

function g : N x [0,1] —» [0,1] which is constant on compact u.v-leaves and such

that g(xo, 0 t for all t e [0,1],
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Let E C N x [0,1] be the union of all compact ws-leaves. For a point
z e iV x [0, 1], let vz be the oriented unit vector in Ecz. Then, due to the construction
of g as in the proof of (12.2), dgz(vz) is positive for all z e E. As dg is continuous,
there is a C1 vector field v approximating vc such that dgz(v(z)) is positive for all
z e E. By another C1 change of coordinates, assume v is equal to v and therefore

lh\(x t) dg(x,t)(v(x, t)) for all (x,t) e N x [0, 1]. By uniform continuity, there

is e > 0 such that dgz(v(z)) > 0 for all z at distance at most e from E. Flence, there

are at most a finite number of regions I, C iV x [0, 1] such that

• the boundary of Xl is given by two compact wj-leaves,

• there are no compact leaves in the interior of X,, and

• - 0 for some (x,t) e X,.

By (12.5), define a C1 function p : N x [0, 1] —»• [0, 1] which is equal to g everywhere
outside of U,-X; and such that ^ >0 for all (x, t) e N x [0,1].

Since both r and p are submersions, r x p has an invertible derivative at every
point and is therefore a C1 diffeomorphism.

Corollary 12.7. In the setting of (12.6), ifL C M is a center leaf then p and r may
be chosen so that p restricted to L D AC (J) is a C1 diffeomorphism onto [0,1].

Proof. Take J (Z L in the previous proof.

Corollary 12.8. In the setting of (12.6), if /x is a probability measure given by a
continuous volume form on AC(J), then p may be chosen so that p*pt is Lebesgue

measure on [0,1],

Proof Assume p : N x [0,1] —> R is a positive density function such that

pi{X) I pdmN~x.dm
Jx

where mn x m is the product of the Lebesgue measures on N and [0,1].
If h : [0, 1] ->• [0, 1] is defined by h(t) fi(p~1([0, /])), then

is continuous and positive, showing that h is a C1 diffeomorphism. Replacing p
with the composition hp, the result is proved.

Proofof (5.3). As noted in Section 8, every AB-system / : M —> M lifts to an

Al-system / : M —> M. Moreover, if the AB-system has a compact w.y-leaf, the

covering M ->• M has a fundamental domain which is bounded between two compact
leaves AC(x) and ß(AC(x)) where ß is the deck transformation defined in Section 8.
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Then, (12.6) applies where the region AC (J) is exactly this fundamental domain and

therefore, there is a C1 surjection p : AC(J) [0,1], Moreover, the candidate
derivative in the application of Whitney's extension theorem may be chosen so that it
agrees on AC(x) and ß(AC(x)). Then, p quotients down to a C1 function M —> S1

as desired.
The other statements in (5.3) follow from the above two corollaries.

13. Skew products

This sections proves (4.3) showing that non-accessible skew products have trivial
fiber bundles.

Proofof (4.3). As the base map A has a fixed point, there is a fiber S such that

f(S) S. By replacing / by f2 if necessary, assume / preserves the orientation
of S. As tt2(N) is trivial (see, for instance, [19]), the long exact sequence of
fiber bundles gives a short exact sequence 0— —> Z— —> G— H— —^0
where Z 7ri(S), G n\{M), and H By naturality, / induces
the commutative diagram

0 > Z > G > H > 0

0 Z G H 0.

As can be shown for any circle bundle with oriented fibers, the subgroup Z is

contained in the center of G. In this case, as H G/Z is nilpotent, G is then also

nilpotent.
Skew products have global product structure. The proof is similar to that given for

AB-systems in Section 15 and we leave the details to the reader. Similar to the case
for AB-systems, we may then consider the universal cover M of M, a topological
line S C M which covers S, and a lift / : M —> M such that f(S) S. Let
A C S be the set of all points t £ M such that AC(t) is not open. Then G induces

an action on A.
Let z be a non-trivial element of Z. Then z may be regarded as a fixed-point free

homeomorphism of S. By (6.1) and (6.2), there is a homomorphism r : G —> R
such that r(z) is non-zero. By (6.3), there is A > 0 such that rf*(g) A z(g) for
all g e G. Since, /*(z) z, this implies that A equals one. By rescaling r, assume

r(Z) Z. Then, r : G -> R quotients to a homomorphism r : H R/Z and

rA* r.
As A is hyperbolic, A* has no non-trivial fixed points and, by (6.4), no non-

trivial fixed cosets. As all of the cosets of kerf are fixed by A*, it follows that

f 0. That is, r(G) Z. One can then define a map which takes each g £ G
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to the unique z e Z such that r(g) r(z). This shows that the exact sequence
0 > Z > G y H y 0 splits. Then, G is isomorphic to H x Z and the

bundle is trivial.
In fact, one can find a compact irv-leaf directly. Viewing H now as a subgroup

of G equal to the kernel of r, choose a point x e S and define y sup^6// g(x).
Then, with pt as in (6.1), pt[x, y) — 0 which implies y < +oo. In other words, y is

a well-defined point in S. Since y is in Fix(H) it projects to a point in M contained
in a compact us-leaf.

14. Infra-AB-systems

We now consider infra-AB-systems as defined in Section 2.

First, recall the definition of an infranilmanifold. Let A be a simply connected

nilpotent Lie group. A diffeomorphism <p : A —y A is a (right translation) if there
is v e A such that <p(u) u v for all u e A. Let Trans(A) be the group of all
translations (which is canonically isomorphic to A itself). Let Aut(A) be the group
of all automorphisms of A. Then the group of affine diffeomorphisms, Aff(A), is the

smallest group containing both Trans(A) and Aut(A). Equivalently, xjr Aff(A) if
and only if there is (p e Aut(A) and v £ A such that xpiu) (p{u)-v for all u e A.

If a subgroup T < Aff(A) is such that F fl Trans(A) has finite index in T and

Ao := A/T is a compact manifold, then Ao is a (compact) infranilmanifold. If
A e Aff(A) quotients to a function Ao : Ao —> No then Ao is also called affine.

Theorem 14.1. Suppose fo is a conservative C2 infra-AB-system. Then, either

(1) fo is accessible and stably ergodic,

(2) E" and Es are jointly integrable and fo is topologically conjugate to an algebraic
map, or

(3) there are n > 1, a C1 surjection po from Mo to either S1 or §1/Z2, and a

non-empty open subset U po(Mo) with the following properties.

• If t <j U then Pol(t) is an /0"-invariant compact us-leaf homeomorphic to

an infranilmanifold. Moreover, every fo-periodic compact us-leaf is of this

form.

• If I is a connected component of U, then p^ 1(I) is ff -invariant and

homeomorphic to a (possibly twisted) I-bundle over an infranilmanifold.

This theorem is proved at the end of the section and the exact nature of the

"algebraic map" in case (2) is given in the proof. Also, as will be evident from the

proof, if Ec is orientable then po(Mo) S1. Otherwise, po(M0) S1/Z2 which is

the 1-dimensional orbifold constructed by quotienting R by both Z and the involution
t —t. This orbifold is homeomorphic to a compact interval. A set p~l(I) will be

twisted (as an I-bundle) if and only if I is homeomorphic to a half-open interval.
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The ergodic decomposition given in (2.3) also generalizes.

Theorem 14.2. Let fo : Mo —>• Mo be a C2 infra-AB-system and suppose there

is a smooth, fa-invariant, non-ergodic measure £ supported on Mo. Then, there

are n > 1, a Cl surjection pofrom Mo to either S1 or S1 /Z2, and an open subset

U c po(M0) such that

is the ergodic decomposition for (/0", £).

Here, the components £/ and of the decomposition are defined analogously
to (2.1).

Proof. Let n : M0 —> M be the finite covering and / an AB-system such that
71f ffn for some m > 1. Then, £ lifts to a measure /x on M which (up to

rescaling the measure so that /x(M) 1) satisfies the hypotheses of (2.3). If £) is

a component of the decomposition (14.1), then its support is a single accessibility
class Zo. If X is a connected component of jr-1 (Z0) C M, then there is an ergodic
component (fn, p.t) of (/", /x) where pt is supported on X and such that it*ptt (up
to rescaling) is equal to £f. Ergodicity of (jffn, (7) then follows from the ergodicity
of (/", /xf). Ergodicity of components of the form £/ can be proven similarly.

The theorems in Section 2 concerning non-conservative AB-systems may also be

generalized using techniques similar to those in the proof of (14.1) below. In the

interests of brevity, we leave the statements and proofs of these other results to the
reader. The following two known results about functions on infranilmanifolds will
be useful.

Lemma 14.3. If No is an infranilmanifold, there is a nilmanifold N finitely
covering No such that every homeomorphism of No lifts to N.

Proof This follows from the fact that T IT Trans (N) is the unique maximal normal

nilpotent subgroup of A proof of this is given in [4], a paper which also

contains an infamously incorrect result about maps between infranilmanifolds. (See
the discussion in [27].) However, the proof of the above fact about T (T Trans (A) is

widely held to be correct.

Lemma 14.4. Ifa homeomorphism B on a compact infranilmanifold No commutes
with a hyperbolic affine diffeomorphism A, then B itself is affine.

Proof. This follows by a combination of the results of Mal'cev and Franks. First,
consider the case where N No is a nilmanifold. Let x be a fixed point of A. Then

(14.1)
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y := B(x) is also a fixed point of A. Using the standard definition of the fundamental

group for based spaces, the diagram

commutes. By [28], there is a unique affine map 0 : (A, x) —> (N,y) such that

0* B*. (If x y one shows this by considering two distinct lattices of the
form xTx-1 and y Fy_1 on the Lie group A in order to construct a Lie group
homomorphism which quotients down to 0.)

As 0*A* A*0*, the uniqueness given in [28] entails that 0/1 40 as

functions on A. As A is aspherical, 0 is homotopic to B. Then, using that A is a

iti -diffeomorphism as defined in [19], it follows that 0 and B are equal.
Now suppose Ao is an infranilmanifold. By (14.3), there is a nilmanifold A and

a normal finite covering A —> No such that both A and B lift to functions A A.
By abuse of notation, we still call these functions A and B. As the covering is

finite, there is j > 1 such that A'y yAJ for every deck transformation y. In
particular, there is a deck transformation y : A —> A such that AJ B BAJy.
Then, AjkB B(AJy)k BA-ikyk for all k e Z, and, taking k > 1 such that yk is
the identity, Ajk commutes with B and the problem reduces to the previous case.

Proposition 14.5. Suppose fo is a partially hyperbolic skew product where the base

map is a hyperbolic infranilmanifold automorphism and Ec is one-dimensional. If fo
is not accessible, it is an infra-AB-system.

Proof Lift the fiber bundle projection 7T : Mq —> No to if : M N where M and A
are the universal covers. Let G consist of those deck transformations a e it\(M0)
which preserve the orientation of the lifted center bundle and for which fta y ft
for some y e Trans(A). Then, G is a finite index subgroup of tt\(Mo) defining a

finite cover M M/G and one can show that /0 : Mo —^ Mo lifts to / : M —/ M
where the base map Ao : No Ao lifts to the nilmanifold N/ix(G). If /0 is not
accessible, then / is not accessible. The fiber bundle on M is then trivial by (4.3),
implying that f2, which preserves the orientation of Ec, is an AB-system.

We now prove (14.1).

Assumption 14.6. For the remainder of the section, assume f : M —> M is a non-
accessible conservative C2 AB-system, n : M —> Mo is a (not-necessarily normal)
finite covering map and that fo : M0 —> Mo and m > 1 are such that nf /0m7r.

Note this implies that fo is partially hyperbolic and the splitting on the tangent
bundle TMo lifts to the splitting for / on TM.

For now, make the following additional assumptions, which will be removed later.

7Ti(A, X) > 7t\ (A, y)

711 (A, x) itx{N,y)
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Assumption 14.7. Assume until the end of the proofof (14.9) that

• Ec on Mo is orientable;
• /o preserves the orientation of Ec; and

• m 1, that is, ttf fott.
By the assumption m 1, both /0 and / can be lifted to the same map / on the

universal cover M.
As / is an AB-system defined by nilmanifold automorphisms A, B : N —» V,

there is a map 7/ : M —(V whose fibers are the center leaves of / and where V
is the universal cover of N and therefore a nilpotent Lie group. Further, A lifts to a

hyperbolic automorphism of N, which we also denote by A, and the leaf conjugacy
implies that EIf AH.

Dehne S H~x ({0}) where 0 is the identity element of the Lie group. Then S is

an /-invariant center leaf which covers a circle S C M and S further covers a circle
So C Mo. By (2.2), there is a C1 surjection p : M -> S1 and a constant 0 e S1 such

that if x e M has non-open accessibility class AC{x) then p is constant on AC(x)
and pf(x) p(x) + 6. By (5.3), assume p restricted to S is a C1 diffeomorphism.
Using p and the covering 7r : M Mo, dehne a map

q Mq —^ xq i—> E "(yt
yejc-l(x0)

It follows that if xq e Mo has non-open accessibility class AC(x0) then q is constant

on AC(xo) and qfo(xo) q(xo) + Od where d is degree of the covering. Further, q
restricted to So is a C1 covering from So to S1 (though not necessarily of degree d).
After lifting q to a map q : M —> M, there is a homomorphism q* : n\(Mo) —^ ^ such

that qy(x) q(x) + q*(y) for every x e M and deck transformation y e tti (M0).
As the deck transformations preserve the lifted center foliation, for each

y tti (Mo), there is a unique homeomorphism : N —> N suchthat Hy ByH.
Lemma 14.8. By e Aff(Ä) for all y e jti(Mo).

Proof We may view jti(M) as a hnite index subgroup of 7Ti(M0). The dehnition
of an AB-system implies that By e Aff(V) for all y tti(M).

Now consider the subgroups A3 < K2 < K\ < ti\ (M0) dehned as follows:

K\ is the kernel of q*,
K-2 K\ fl ti\{M), and

K3 {a e K2\ aßK2 ßK2 for all ß e Kx}.

By its dehnition, A3 is a normal hnite index subgroup of K\. The lift / of fo induces
a homomorphism /* : 7ri(Mo) ->• Jt\{Mo) given by /*(y) fy f~l. There is a

constant eel such that

qf(x) q(x) + c

for all x e M with non-open accessibility class. This implies that f*{K\) K\.
From this, one can show that f*(K2) K2 and therefore f*(Kf) A3.
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Note that Nj := N/{By : y e K3} is a nilmanifold (which finitely covers the

original nilmanifold N), and the hyperbolic Lie group automorphism A : N —> N
descends to an Anosov diffcomorphism on N3.

Suppose y e K\. As /* permutes the cosets of K3, there is j > 1 such

that /* (y)K3 yK3. This implies that A7 and By descend to commuting
diffeomorphisms on N3. Then, by (14.4), By is affine. Thus, we have established the

desired result for all y e K\, and further shown that N\ := N /{By : y e K\} is an

infranilmanifold (finitely covered by the original nilmanifold N).
Now suppose y e 7ti (M0) is an arbitrary deck transformation. Then

qfyf~lY~l(x) q(x)

for all x e M with non-open accessibility class. This implies that f*{y)K\ yK\.
and so A and By descend to commuting diffeomorphisms on Ni. As A is hyperbolic,
By e Aff(N) by (14.4).

If / is accessible, then clearly fo is accessible. Therefore to prove (14.1), it is

enough to consider / in cases (2) and (3) of (2.2).

Proposition 14.9. If f is in case (3) of (2.2) and fo satisfies assumption (14.7),
then fo is in case (3) of (14.1).

Proof. By replacing /0, /, and / by iterates, assume n 1 in (2.2) and that the

lift / was chosen so that / (X) X for every accessibility class X C M.
The image of q* is equal to fZ for some t > 1. Then po := \q quotients to

a function po : Mo —> S1. As the original p : M —> S1 was C1, the functions

q, q, po, and p are also C1. Also, po is constant on compact ns-leaves and its
restriction to So is a C1 covering. If, for some t e S1, X0 and To are compact
M.y-leaves in the pre-image pf1 (t), then they lift to closed u.v-lcaves X,Y c M
such that po(X) — po(Y) is an integer. By the definition of po, there is then a deck

transformation taking X to Y and so X0 T0. This shows that every compact
ns-leaf in Mo is of the form pfl (t) for some t.

If Xo is instead an open accessibility class, then its boundary consists of two
compact ns-leaves and from this one can show that p^

1 (/?o(^o)) Xo.
Note that every accessibility class X0 on M0 is the projection of an accessibility

class X onM. As / fixes accessibility classes, so does fo. Further, using K\ andAi
as in the proof of the lemma above, Xo is homeomorphic to X/K\. If X is non-open,
then X/K\ is homeomorphic to the infranilmanifold N\. If X is open, then X/K\
is an I-bundle over /Vj where the fibers of the I-bundle are segments of center leaves.

This shows that /0 satisfies case (3) of (14.1).

We now remove the additional assumptions above and show that this result still
holds.
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Proposition 14.10. If f is in case (3) of (2.2) and fo does not satisfy
assumption (14.7), then fo is in case (3) of (14.1).

Proof In case (3) of (14.1), we are free to replace /0 by an iterate. By replacing fo
by /0m, one can assume m 1. That is, nf fott. By replacing /0 by /02, one

can assume fo preserves the orientation of any orientable bundle. Thus, the only
condition to test is when Ec is non-orientable.

Any non-orientable bundle on a manifold lifts to an orientable bundle on a double

cover and any bundle-preserving diffeomorphism lifts as well. Therefore, we are free

to consider the following situation. As before, Ec is orientable and fo preserves the

orientation, but now there is an involution r : Mo —» Mo, such that r reverses the

orientation of Ec and r commutes with /0. As a consequence of this commutativity,
r preserves the partially hyperbolic splitting of fo. Choose a continuous function

Pi : Mo —> S1 which satisfies 2p\{x) — po(x) — Pot(x). As r2 is the identity,
pir(x) — pi(x) and so pi descends to a function p2 : Mo/t —> S1/^.

Since §' ->S', ih- —x has two fixed points, one can show that r fixes exactly
two accessibility classes on Mo. Let Xo be one of these two classes, and lift r and X0
to the universal cover to get X and r such that r(X) X. As / and r commute, it
follows from an adaptation of (14.8) that B? e Äff(Ä). If X0 is compact, then A0/r
is homeomorphic to an infranilmanifold. If instead X0 is open, then X0 is an I-bundle
over No where the fibers are center segments, and r reverses the orientation of these

fibers. Therefore, Ao/r is a twisted I-bundle over an infranilmanifold.
This shows that case (3) holds for the quotient of fo to M0/r where po and U C S1

are replaced by p2 and U/Z2 C S1/^-

Now consider the situation where / is in case (2) of (2.2). The following
proposition shows that fo is "algebraic" as stated in case (2) and concludes the proof
of (14.1).

Proposition 14.11. Suppose fo is an infra-AB-system and E" © Es is integrable.
Then there is a lift fo of fo to the universal cover M and a homeomorphism
/? : M —> ./V x R such that

hfoh~x 6 Aff(Ä) x Isom(R)

and

hyh~l e Aff(Ä) x Isom(R)

for every deck transformation y 7t\(Mo).

Here, Isom(R) is the group of functions of the form / 1—x + c or f 1—^ — t + c.

Proof. First consider the case where fo satisfies assumption (14.7) and recall the
functions H : M —» N and q : M —» R defined earlier in this section. By global
product structure and the integrability of Eu © Es, H x q is a homeomorphism.
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The results already given in this section then show that h H x q satisfies the

conclusions of the lemma.

If /o does not satisfy (14.7) and Ec is orientable on M0, then there is in > 1

such that /0m satisfies (14.7). Let H and q be given for /0m. Define a — +1 if /o
preserves the orientation of Ec and a —1 if /o reverses the orientation. Define

r : M —» E by r(x) — Ylk=o a>C anc* ta^e h H x r.
If Ec is non-orientable on Mo, then /0 lifts to a double cover on which Ec is

orientable. Then, let H and r be defined as in the previous case. Choose a deck
transformation r : M —> M which reverses the orientation of Ec on M and define a

function s : M —E by s(x) r(x) — rz(x) and take h H x s.

15. Openness

This section establishes that AB-systems have global product structure and form an

open subset of the space of C1 diffeomorphisms.

Lemma 15.1. Suppose G is a simply connected nilpotent Lie group. For any
distinct u,v G, there is a unique one-dimensional Lie subgroup GUjV such that
v~lu e Gu v. (That is, u lies in the coset vGUjV.)

Proof. This follows from the fact that for such groups, the exponential map from the

Lie algebra to the Lie group is surjective [28].

A right-invariant metric on such a group G is a metric d : G x G —> [0, oo)
such that d(u,v) d(u w, v • w) for all u, v, w e G. For such a metric, we define

a function d\ : G x G —> [0, oo) where d\(u, v) is the length of the path from it
to v which lies in the coset vGu,v given by (15.1). Clearly, d(u,v) < di(u,v)
for all u,v G G. Further, d\ is continuous and the ratio d\(u, v)/d(u, v) tends

uniformly to one as d(u,v) tends to zero. Note that d\ is not a metric on G in

general. (If G is abelian, however, the coset uG\ is simply the line through u
and v and d d\.)

If <j) : G —> G is an automorphism and G\ is a one dimensional subgroup, then
there is A such that di(<j)(u),(p(v)) Xd\(u, v) for all u, v e G with u e vG\. This
follows because both Gj and 4>(G\) are Lie groups isomorphic to E and d\ restricts
to a right-invariant metric on either of Gj or f(G\
Lemma 15.2. Suppose G is a simply connected nilpotent Lie group, d is a right-
invariant metric, {<pk}a sequence ofLie group automorphisms of'G, G\ C G is a
one-dimensional Lie subgroup, uo G, and i'o e uqGi with Uq f Vq.

(1) If lim*—>00 d(<l>k(Mo),<pk(vo)) 0, then

lim d(4>k(u),fk(v)) 0
k^-oo

for all u e G and v e uG\.
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(2) If a > 1 andlimk^.00akd(fk(uo),fk(^o)) 0, then

lim akd(fk(u),4>k(v)) 0
k^-oo

for all u £ G and v £ uG\.

(3) If supfc d(fk(u0),(pk(vo)) < oo, then

sup d i (<pk (u0),<pk(v)) 1

k

for some v £ UoG\.

Proof Let Xk be such that d\{<fk{u),fk(v)) Xkd\ (u, v) when u £ vG\. Then in
the first item, the two limits hold if and only if Xk —> 0 and so one implies the other.

For the second item, consider akXk. For the final item, if the first supremum is finite,
then A := sup^ Xk < oo and one can take v £ v0Gi such that d\ (u, wo) 1/A.

We now show that every AB-system has global product structure.

Proofof (5.1). Let / : M —> M be the lift of the AB-system to the universal cover
and h : M -> Mb the lifted leaf conjugacy to the AB-prototype. The functions /
and h are written without tildes as all the analysis will be on the universal covers.

Measuring distances on the manifold Mb requires care. The metric d^B on Mb
is defined by lifting a metric from Mb- If Pk iuk^k), and qk (vk,tk) are

sequences in Mb V x M, then d(pk, qk) may not converge to zero, even if
both dfi(uk, vk) 0 on N and \sk — tk\ —> 0 on M. The convergence depends on
the exact nature of the automorphism B. 11' sk and tk are bounded sequences in ]R,

however, then one can show in this special case that (pk,qk) 0 if and only if
both dfi(uk, vk) 0 on N and \sk — tk\ ^ 0 on R.

There is a deck transformation ß : Mg —> Mb defined by ß{v, t) (Bv,t — 1)

which is an isometry with respect to For general {pk} and {qk}, let {nk}
be the unique sequence of integers such that 0 < \sk — nk\ < 1 for all k. Then,
ß"k (Pk) £ (V x [0,1) for all k and

dMB(Pk,qk) dÜB(ßnk(pk),ßnk{qk)) 0

if and only if both

dp(B"k(uk),Bnk(vk)) 0 and \sk-tk\->0.

In what follows, we write d without a subscript for the metrics on M, Mb, and N.
There is no ambiguity as they are all treated as distinct manifolds. If 7 is a subset of
one of these three manifolds, then

dist(x, Y) := inf d(x,y).
yeY
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Also let ds(x, y) denote distance measured along the corresponding stable foliation:

Wf if x, y M, WSA if x,y e N, and W^xid if x,y e N x R. Similarly for du

and dc.
The leaf conjugacy implies that every cs-leaf of / intersects a cn-leaf in a unique

center leaf. Therefore, establishing global product structure reduces to showing
existence and uniqueness of intersections inside the cs and cu leaves.

Uniqueness. Suppose x e M and x / y Wj(x) D Wsj-(x). Then as k —>• oc,

ds{fk{x), fk{y)) -> 0 and dc(fk(x), fk{y)) -*> 0

since if both sequences tended to zero, local product structure would imply that x
and y were equal. Define pk hfk(x) and qk hfk(y). As the leaf conjugacy
is uniformly continuous, d(pic,qic) —> 0 and dc(pk, qk) 0. If pk (uk,Sk) and

<Ik (Vk, tk), then, as noted above,

d(pkitfk) * 0 =y tk\ x 0 dc(pk,qk) ^ 0,

a contradiction.

Existence. Suppose x M lies on a center leaf Lo and L\ c Wy (x) is a distinct
center leaf. Then h(L§) {uo} x R and h(L\) {iq} x M for distinct points
vo, tq e N. As L0 and L\ are subsets of the same cs-leaf of /, v0 and tq lie on the

same stable leaf of A. By (15.1), there is a one-dimensional subgroup N\ C N such

that u^"1 • iq e N\. By item (2) of (15.2), the coset voN\ is a subset of WA(vo).
If Uj- is a small neighbourhood of x in Wsj-(x), then h(Usy C WA(vo) x R and

the set h(Wyuy)) Wqxid(^(Uy-)) is a neighbourhood of h(x) in WA(vo) x R.

Therefore, if v e WA(vo) is sufficiently close to uo, then there is y e Wj-(x) such

that h(y) e {u} x R.
In particular, let v be such that v e v0N\ and fix such a point y. See Figure 3.

Let {ilk} be such that ß"khfk{x) e N x [0,1) for all k. Then,

d(fk(x),fk(y))^ 0

d(ßnkhfk(x),ß"khfk(y)) -> 0

d(BnkAk(v0), BnkAk{v)) -* 0

which by (15.2) implies d(BnkAk(v0), BnkAk{vx)) -* 0.

Then, as hfk(Li) {Afc(iq)} x R,

dist{ßnkhfk{x),ßnkhfk{L1)) -> 0

=> dist(hfk(x), hfk(Li)) —>• 0

=> dist(/fc(x), fk(Li)) 0.
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Thus, for sufficiently large k, Wj(fk(x)) intersects fk{L\) showing that Wy(x)
intersects L\.

Figure 3. A depiction of points and leaves occuring in the proof of global product structure. In
this figure, the stable direction Esf is shown as if it were two-dimensional and IJf is drawn as

a small plaque tangent to ESy. The entire left side of the figure lies inside a three-dimensional
c.y-leaf of / and the right side lies inside a ci-leaf of A x id.

A sequence {xk} is an e-c-pseudoorbit if for each k e Z the points f{xk) andx^+i
lie e-close on the same center leaf. A partially hyperbolic system is plaque expansive

if there is > 0 such that if {x^} and \)>k) are e-c-pseudoorbits and d(xk, v;c) < e

for all k e Z, then xo and jo are on the same local center leaf.

Theorem 15.3. Every AB-system is plaque expansive.

Since plaque expansive systems are open in the C1 topology [25], this also

proves (5.2).

Proof. Let / : M —> M be an AB-system. Let C > 1 be a constant to be defined

shortly. Since / expands in the unstable direction, there is q > 0 such that if points
x, y,x', y' e M satisfy

<du{x,y) <C, dc(f(x),x') < e0, and y' e JLe(/(y)) n Wu(x')

then du(x,y) < (1 — e0)du(x',y'). This result then also holds for points
on the universal cover M where / for the remainder of the proof denotes the

lift / : M M.
Let h : M -> N x M be the lifted leaf conjugacy. Define sets

X {(u, w) g N x N : u e W%(w), d(v, w) < 1}

and

X\ — {(u, w) e N x N : veW%(w), | < d\(v, w) < 1}.

and a function

D : X x [—1, 1] —> R, (u, iv, t) i-> ü?„(/z_1(u x M), h^1(w x t)).
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That is, D(v,w,t) is the distance, measured along an unstable leaf of /, between

the center leaf /z_1 (v x IB) and the point h~l (w xt). Such a function is well-dehned
and continuous by global product structure.

If a : N N is a deck transformation for the covering N —> N, then a x id
is a deck transformation for the covering Mb Mb and one can verify that

D(a(v),a(w),t) D(v,w,t). Using the compactness of N and [—1, 1], there
is C > 1 such that

D(X x [—1,1]) c [0, C] and D(X1 x [-1, 1]) c [^, C],

This defines the constant C used above.

For some e > 0 let {.xy} and {z^} be e-c-pseudoorbits such that d(xk,Zk) < e-

By increasing e and by sliding the points zy along center leaves, assume, without loss

of generality, that there is a point y^ for each k such that and yy are connected

by a short unstable segment and yy and zy are connected by a short stable segment.

By again increasing e, one can show that {y^} is a e-c-pseudoorbit. We may freely
assume that the original e was chosen small enough that dc( f(xk), Xfc+i) < f-o for
all k. We will show that xq and yo lie on the same center leaf. An analogous

argument holds for yo and zo which will complete the proof.
Suppose xo and y0 lie on distinct center leaves. Then, using fi as in the previous

proof, there are vx ^ vy e N and {n^} such that ßnkh(xic) e {B"k Akvx} x (—1,1)
and ß"kh(yk) e {Bnk Akvy} x (—1,1) for all k e Z. This implies that

sup d(B"kAkvx, B"kAkvy) < oo.
k

Let Ni C N be a one-dimensional subgroup such that vy e vxN\. By (15.2), there

is v e vxNi such that

suydl(BnkAkvx, B"kAkv) 1.
keZ

By the global product structure of /, there is a unique sequence {yy} in M such

that h{yk) e {Akv} x M and y^ e W"(xk). Then, S sup^ du{xk,yk) satisfies

^ < S < C. Let k e Z be such that du(xic, yk) > (1 — )S. The definition of <?o

implies that du(x^+ \, yk+\) > S, a. contradiction.

16. The dynamically-incoherent example

This section gives a construction of the example due to Rodriguez Hertz, Rodriguez
Hertz, and Ures of a partially hyperbolic system on the 3-torus having an invariant
cs-torus [44], For this specific construction, Eu and FA are jointly integrable and

the tangent foliation has exactly one compact leaf. The system therefore gives an



Vol. 92 (2017) Ergodic components of partially hyperbolic systems 179

example of case (3) of (2.6). This version of the example given here was written
before the version in [44] was made publicly available, and it was not clear at the

time what the accessibility classes of the latter would be.

We use the following to prove the example is partially hyperbolic.

Proposition 16.1. Suppose f is a diffeomorphism of a compact manifold M,
TM Es © Ec ® E" is an invariant splitting, and there is k > 1 such that

\\Tfkvsx\\ < \\TfkvcJ < \\TfkvuJ and \\TfkvsJ < 1 < \\Tfkv»\\

for all x e N W(f) and unit vectors v* e E* (* s,c,u). Then, f is partially
hyperbolic.

To prove this, note that if the above inequalities hold on NW(f), they also hold
on a neighbourhood U of NW(f) and any orbit of / has a uniformly bounded
number of points which lie outside of U. The details are left to the reader.

Now, we return to constructing the example on T3. The example has a linear stable

bundle, so we first consider dynamics in dimension two. Define A |(1 + a/5) and

functions

if : R -> R, x x + | sinx and g : R2 ->• R2, (x, y) i-> (if(x), Ay + cosx).

The derivative of g is

(f(x) 0\
sin x Ay

On the vertical line x 0, there is an expanding fixed point for g. Through this point
is an invariant one-dimensional unstable manifold associated to the larger eigenvalue
of Dg. One can show that this unstable manifold may be expressed as the graph of a

function u : (—tt, tt) —> R. For now, only consider n on [0, tt). By an invariant cone

argument, one can show that u'(x) < 0 for all x e (0, n). Using that f{x) < A

when x is close to n and that

|A t — sinxl A

I i k M >
| Jf| > '\tMl \tMl

for t < 0, one can show that \vmxfn u'{x) —oo.

Define a foliation W" on [0, n) x I by all graphs of functions of the form
x h» u (x) + b for b e M. This foliation is g-invariant. Reflecting about the y-axis,
extend this to a foliation on (—tt, n) x M. By including the vertical lines on the

boundary, extend this foliation to [—n, i]xl and then, by 2n-periodicity in x, to
all of M2. Call this foliation W" and let E" be the C° line field tangent to it.

Now consider the hyperbolic fixed point of g on the line x n. Part of the
stable manifold of this point is given by the graph of a function c : (0, rr] —> R.
One can show that c'(x) > 0 for all x e and, since if'(0) > A,
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that limx\o c'(x) +00. From the definition of g, there is a constant C > 1

such that g_1 maps the region [—C, C] x [0, jt] into itself. The stable manifold
given by graph(c) must therefore be contained in this region, showing that c is a

bounded function and can be continuously extended to all of [0, n\. By reflection and

periodicity, further extend c to a continuous function R —» R which is differentiable
except at 27rZ and such that g(graph(c)) graph(c). By considering translates,

x i-> c(x) + £, define a foliation Wc on R2 and let Ec be the unique continuous line
field on R2 which is tangent to Wc on (R \ 27tZ) x R. As u' < 0 < c' on (0,n), Eu
and Ec are transverse.

The matrix

has eigenvalues A j (1 + \/5) and —A-1. Therefore, there is a lattice A C Z2 such

that (y,z) i-> (Ay, —A_1z) quotients to an Anosov diffeomorphism on the 2-torus
R2/A. Define / : R3 -> R3 by

f{x, y, z) (x + | sinx, Ay + cosx, —A~'z)

and a splitting Ec © E" © Es by Es and where Ec © Eu on each xy-plane is

given by the earlier splitting constructed for g. This splitting is /-invariant and there
is a foliation tangent to Eu © Es. Define M (Rx R2)/(27tZ x A). Both / and

the splitting descend to M. Here, NW(f) C M consists of two tori, one tangent
to Ec ffi Es and the other tangent to E" © Es. Using (16.1), one can verify that /
is partially hyperbolic. It has a foliation tangent to Eu ffi Es with one compact leaf
and all other leaves are planes.

This is not an example of an AB-system as there is no invariant foliation tangent
to Ec. In the above analysis, the crucial properties needed for the term cosx in the

formula Ay + cosx for the second coordinate of g were that cos' < 0 on (0, it)
and cos'(jt) < 0 cos'(O). Therefore, replace Ay + cos x by Ay + sin x — x in all of
the above analysis. As sin x — x is an odd function, the resulting function c : R -»• R
is odd and its graph is a C1 submanifold in R2. Defining / : R3 —» R3 now by

f(x, y,z) (x + | sinx, Ay + sinx — x, —A-1z)

and quotienting by the lattice in R3 generated by {0} x A and (2tt, 0) one
constructs a skew product on T3 having a foliation tangent to E" ffi Es with exactly
one compact leaf.

A. Definitions

This appendix defines a number of notions in smooth dynamical theory.
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All manifolds considered in this paper are Riemannian manifolds without
boundary. Suppose / is a C1 diffeomorphism on a compact manifold and there is a

Tf -invariant splitting TM Eu © Ec © Es of the tangent bundle and k > 1 such

that \\Tfkvs\\ < 1 < || Tfkvu || for all unit vectors vs e Es andvu e Eu. If£"cisthe
zero bundle, then / is an Anosov diffeomorphism. If E", Ec, and Es are all non-zero
and \\Tfkvs\\ < \\Tfkvc\\ < \\Tfkvu^ for all p e M and unit vectors vs e Esp,

vc e Ep, and vu e Eup then / is a partially hyperbolic diffeomorphism. The

notion of partially hyperbolicity is also extended to certain non-compact manifolds
in Section 7.

A C1 flow is an Anosov flow if its time-one map is a partially hyperbolic
diffeomorphism with a center bundle given by the direction of the flow.

A partially hyperbolic diffeomorphism / is dynamically coherent if there are

invariant foliations Wcu and Wcs tangent to Ec ®E" and EC®ES. As a consequence,
there is also an invariant center foliation Wc tangent to Ec. Global product structure
is defined in Section 5.

For homeomorphisms / : A —> A and g : Y —> Y, a topological semiconjugacy
is a continuous surjection h : A —» Y such that hf gh. If h is a homeomorphism,
it is a topological conjugacy.

Partially hyperbolic diffeomorphisms / and g are leaf conjugate if they are

dynamically coherent and there is a homeomorphism h such that for every center
leaf L of /, h(L) is a center leaf of g and hf(L) gh(L).

A homeomorphism / : M -» M is (topologically) transitive if every non-empty
open /-invariant subset of M is dense in M.

For a homeomorphism / : M —> M, a Borel measure /i is invariant if
ji(X) ji(f(X)) for every measurable set A C M. The pair (/, p) is ergodic
if ji is /-invariant and either /x(X) 0 or n(X) 1 for every /-invariant
measurable Ac M. We often write that / is ergodic or ji is ergodic if the

context is clear. For brevity, we sometimes say that a system / with a finite non-
probability measure p is ergodic when, to be precise, we should actually say that
the pair (/, is ergodic. A homeomorphism / is conservative if it has

an invariant measure given by a smooth volume form on M. A conservative C2

diffeomorphism is stably ergodic if it has a neighbourhood U in the C1 topology of
C1 diffeomorphisms such that every conservative C2 diffeomorphism in U is also

ergodic. For a discussion of why the quirky combination of C1 and C2 regularity is

necessary, see [46],

If N is a simply connected nilpotent Lie group and V is a discrete subgroup such

that N := N / T is a compact manifold, then N is called a (compact) nilmanifold [28].
If Ä : N —» N is a Lie group automorphism which descends to A : N —> N, then A
is a nilmanifold automorphism (also called a toral automorphism when N Td).
If A is Anosov, it is called hyperbolic. Infranilmanifolds and their automorphisms
are defined in Section 14.
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If / : M —> N is a continuous function and jzm ' M —> M and jvn N —> N
are covering maps, then a lift of / is a function / : M —»• N such that jvn f /tvm
Note that if jim and are universal covering maps, then at least one such lift exists,
but is not unique in general.
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