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Free loci of matrix pencils and domains
of noncommutative rational functions

Igor Klep* and Jurij Vol&i¢**

Abstract. Consider a monic linear pencil L(x) = [ — A x| —---— Agxg whose coeflicients A ;
are d x d matrices. It is naturally evaluated at g-tuples of matrices X using the Kronecker tensor
product, which gives rise to its free locus 2°(L) = {X : det L(X) = 0}. In this article it is
shown that the algebras .4 and A generated by the coefficients of two linear pencils L and L
respectively, with equal free loci are isomorphic up to radical, ie., A/rad A = A/ radA
Furthermore, Z°(L) C & (L) if and only if the natural map sending the coefficients of Lo
the coefficients of L induces a homomorphism A/ rad A — A/ rad A. Since linear pencils
are a key ingredient in studying noncommutative rational functions via realization theory, the
above results lead to a characterization of all noncommutative rational functions with a given
domain. Finally, a quantum version of Kippenhahn’s conjecture on linear pencils is formulated
and proved: if hermitian matrices Ay, ..., Ag generate M4 (C) as an algebra, then there exist
hermitian matrices Xp,..., Xg such that ) ; Ai ® X; has a simple eigenvalue.

Mathematics Subject Classification (2010). 15A22, 14P05, 16R30; 26C15, 16K40, 16IN40.

Keywords. Linear pencil, noncommutative rational function, realization theory, free locus, real
algebraic geometry, hyperbolic polynomial, Kippenhahn’s conjecture.

1. Introduction

Let k be a field of characteristic 0 and let Ag, Ay,...,Ag € My (k). The formal
affine linear combination L(x) = Ag — A1x1 — -+ — Agxg, where x; are freely
noncommuting variables, is called an affine linear pencil. If Ag = 14 isthe d x d
identity matrix, then L is a (monic) linear pencil.

Linear pencils are a key tool in matrix theory and numerical analysis (e.g. the
generalized eigenvalue problem), and they frequently appear in algebraic geometry
(cf. [4,16]). Linear pencils whose coefficients are symmetric or hermitian matrices
give rise to linear matrix inequalities (LMIs), a pillar of control theory, where many
classical problems can be converted to LMIs [2, 12,39]. LMIs also give rise to
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feasible regions of semidefinite programs in mathematical optimization [42]. In
quantum information theory [31] and operator algebras [33] hermitian linear pencils
are intimately connected to operator spaces and systems, and completely positive
maps [21]. Lastly, LMIs, linear pencils and their determinants are studied from a
theoretical perspective in real algebraic geometry [10,23,27,30].

In this paper we associate to each linear pencil L its free (singular) locus 2 (L),
which is defined as the set of all tuples of matrices X over k such that

&
LX)=1®I1-) Ai®X
i=1

is a singular matrix; here ® denotes the Kronecker tensor product. We will address
the following question: If Z (L) € % (Z), what can be said about the relation
between the coefficients of L and ?

Our interest in linear pencils originates from their relation with the free skew field
of noncommutative rational functions [7,15,36]. Namely, if r is a noncommutative
rational function that is regular at the origin, then there exists a monic linear pencil L
and vectors b, ¢ over k such that

r =c' L 'b. (1.1)

Such presentations of noncommutative rational functions, called realizations, are
powerful tools in automata theory [8], control theory [2,25] and free probability [5].
One way of defining noncommutative rational functions is through matrix evaluations
of formal noncommutative rational expressions [22,24,40]. This gives rise to the
notion of a domain of a noncommutative rational function, i.e., the set of all matrix
tuples where it can be evaluated. While a realization of the form (1.1) is not unique,
there is a canonical, “smallest” one r = cf)Lo_lbo. The domain of r is then the
complement of the free locus Z°(Lg) [24]. It is thus natural to ask: (a) When is a
noncommutative rational function regular, i.e., defined everywhere? (b) When is the
domain of a rational function contained in the domain of another one? (c) What can
be said about the set of all rational functions with a given domain?

1.1. Main results. Our first main result is a Singularitétstellensatz for linear pencils
explaining when free loci of two linear pencils are comparable. If L = I — )", A;x;
is a monic pencil of size d, let A € M, (k) be the k-algebra generated by 4;. We
say that L is minimal if it is of minimal size among all pencils with the same free
locus.

Theorem A (S1ngular1tatstellensatz) Let L and L be monic linear pencils. Then
YL ¥ (L) if and only if there exists a homomorphism A/ rad A — A/rad A
induced by A; > A;.
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Moreover, if L, L are minimal and A, A are semisimple, then 2 (L) = % (Z)
if and only if there exists an invertible matrix P such that A; = PA; P ~1 for all
1 <i <g,ie, the linear pencil L is a conjugate of L.

The first part of Theorem A is proved as Theorem 3.6 in Subsection 3.3. The
second statement appears in Subsection 3.4 as Theorem 3.11.

Next we combine the Singularititstellensatz with the aforementioned realization
theory. First we elucidate everywhere-defined noncommutative rational functions.
Theorem 4.2 is an effective version of the following statement.

Theorem B. A regular noncommutative rational function is a noncommutative
polynomial.

A domain of a noncommutative rational function is co-irreducible if it is not an
intersection of larger domains. We say that a noncommutative rational function r is
irreducible if r = ¢/ L'b, where L 4 is a minimal monic pencil and A is simple.
For every co-irreducible domain D we can find a finite family of linearly independent
irreducible functions R (D) such that every irreducible function with domain D lies
in the linear span of R(D). A precise characterization of noncommutative rational
functions with a given domain is now as follows.

Theorem C. If a noncommutative rational function r is defined at the origin, then
its domain equals Dy N --- N Dy for some s € N and co-irreducible D ;, and r is a
noncommutative polynomial in {xy,...,xg} UR(Dy) U---UR(Dj).

See Theorem 4.6 in Subsection 4.2 for the proof.

Lastly, we apply our techniques to prove the quantum version of Kippenhahn’s
conjecture [26]. The original conjecture was as follows: if hermitian d x d
matrices H; and H, generate the whole M;(C), then there exist real numbers o
and a, such that oy Hy 4+ o2 H» has a simple nonzero eigenvalue. While this is false
in general [28], we show it is true in a quantum setting.

Theorem D. If Ay,..., Ag € My(k) generate M;(k) as a k-algebra, then there
existn € Nand X1, ..., Xg € My(k) suchthat ), X; ® A; has a nonzero eigenvalue
with geometric multiplicity 1. If k = C and A; are hermitian, then X; can also be
chosen hermitian.

The proof of Theorem D is given in Subsection 5.2.

1.2. Reader’s guide. The paper is organized as follows. We start by introducing
the basic notation and terminology of monic linear pencils, noncommutative rational
functions and realizations in Section 2. The inclusion problem for free loci is treated
in Section 3. Our main tools are the algebraization trick (Lemma 3.1) and the
role of the nilradical of the algebra generated by the coefficients of a monic pencil
(Proposition 3.3). The first part of the Singularitatstellensatz is stated in Theorem 3.6,
while Theorem 3.11 asserts that minimal pencils with the same free locus are unique
up to conjugation. The connection between the free locus and the semisimple
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algebra assigned to a pencil is further investigated in Proposition 3.12 that relates
irreducible components of the free locus to the Artin—Wedderburn decomposition of
the corresponding semisimple algebra.

In Section 4 we apply the preceding results to noncommutative rational functions
and their domains. Corollary 4.1 solves the inclusion problem for domains
of noncommutative rational functions in terms of their minimal realizations.
As a consequence, Theorem 4.2 proves that every regular noncommutative
rational function (in the sense of being defined everywhere) is a polynomial,
which furthermore implies Douglas’ lemma for noncommutative rational functions
(Corollary 4.3). In Subsection 4.2 we introduce the notion of co-irreducible domains
and derive a precise description of functions with a given domain in Proposition 4.4
and Theorem 4.6.

Finally we focus on symmetric and hermitian pencils, which are ubiquitous in real
algebraic geometry [23,30] and optimization [21,27]. Section 5 starts by introducing
the free real locus assigned to a symmetric or hermitian pencil. Theorem 5.4 is the
x-analog of the Singularititstellensatz, but instead of noncommutative ring theory
its proof crucially relies on properties of hyperbolic polynomials [20,35] and the real
Nullstellensatz [9]. Subsection 5.2 discusses a relaxation of Kippenhahn’s conjecture;
its involution-free and hermitian version are resolved by Corollaries 5.6 and 5.7,
respectively.

2. Preliminaries

In this section we introduce basic notation and the main objects of our study: linear
pencils and their (zero) loci, and noncommutative rational functions together with
their domains.

2.1. Basic notation. Throughout the text let k be a field of characteristic 0. If x =
{x1,...,xg} is an alphabet, then <x > denotes the free monoid over x and 1 € <x>
denotes the empty word. Let k<x> be the free k-algebra of noncommutative
(nc) polynomials. By k<x>, we denote its subspace of nc polynomials with
zero constant term. For w € <x> let l[w| € N denote the length of w and
<x>p ={w € <x>:|w| = h}. If y is another alphabet and x N y = @, then
for w € <x U y> let |w|, denote the number of occurrences of elements from y
in w. Lastly, ~ denotes the cyclic equivalence relation on words, i.e., w; ~ ws if
and only if there exist words u and v such that w; = wv and w, = vu. Equivalently,
w is a cyclic permutation of w,.
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2.1.1. Free locus of a linear pencil. If 4;,..., 4, € M;(k), then

g
L=1- ZAix,- & Md(]k<x>)

i=1

is called a monic linear pencil of size d. We write L. = L 4 if we want to emphasize
which coeflicients appear in L. The evaluation of L at a point X = (X1,...,Xg) €
M, (k)¢ is defined using the (Kronecker) tensor product

g
LX) =1®1-) A®Xi € Myy(K).

i=1

The free (singular) locus of L is the set

ZL)=|J Z(L), where Z(L)={X € M,(k)*:det(L(X)) = 0}.

neN
(2.1)

Clearly, each 2, (L) is an algebraic subset of M,,(k)¥.

2.2. Noncommutative rational functions. We introduce noncommutative rational
functions using matrix evaluations of formal rational expressions following [22,25].
Originally they were defined ring-theoretically, cf. [7, 15]. A syntactically valid
combination of nc polynomials, arithmetic operations +, -, ~! and parentheses (,)
is called a noncommutative (nc) rational expression. The set of all nc rational
expressions is denoted Ry (x). For example, (1 4+ x3'x2) 4+ 1, x1 + (—x;) and 07!
are elements of R (x).

Every polynomial f € k<x> can be naturally evaluated at a point A € M, (k)&
by replacing x; with A; and 1 with 7; the resultis f(A4) € M, (k). We can naturally
extend evaluations of nc polynomials to evaluations of nc rational expressions. Given
r € Ri(x), then r(A) is defined in the obvious way if all inverses appearing in r
exist at A. Let dom,, r be the set of all A € M,, (k) such that r is defined at . Then
the domain of a nc rational expression r is

domr = U dom,, r
neN

and r is non-degenerate if domr # 0.

On the set of all non-degenerate nc rational expressions we define an equivalence
relation 11 ~ ry if and only if ri(A) = ry(A) for all A € domr; N domrs,.
Then noncommutative (nc) rational functions are the equivalence classes of non-
degenerate nc rational expressions. By [25, Proposition 2.1] they form a skew field
denoted k€x}. It is the universal skew field of fractions of k<x > [15, Section 4.5].
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Forr € k<€x> letdom, r be the union of dom,, r over all representatives r € R (x)
of r. Then the domain of a nc rational function r is

domr = U dom,, r.
neN

2.2.1. Realizations. Let k€x3>¢ C k€x> denote the local subring of nc rational
functions that are regular at the origin:

k€x>»o ={r € k€x>:0 € domr}.

A very powerful tool for operating with elements from k<€x 3> is realization theory.
If r € k€x>o, then there exist d € N, ¢, b € k? and a monic linear pencil L of
size d such that

r=c'L'b.

Such a triple (¢, L, b) is called a realization of r of size d. We refer to [8,22] for a
good exposition on classical realization theory; also see [40] for realizations about
arbitrary matrix points which can consequently be applied to arbitrary nc rational
functions.

Let us fix r € k€x3o. In general, r admits various realizations. A realization
of r whose size is minimal among all realizations of r is called minimal. The
following facts comprise the importance of minimal realizations.

(1) Minimal realizations are unique up to similarity by [8, Theorem 2.4]. That is, if
(¢, L,b) and (¢/, L', b’) are minimal realizations of r of size d, then there exists
P € GL;(k) such thate’ = P~%¢, L’ = PLP~ ! and b’ = Pb.

(2) If (e, L,b) is a minimal realization of r, then
domr = |_J{X € M, (K)®: det(L(X)) # 0} = Z(L)
neN

by [24, Theorem 3.1] and [41, Theorem 3.10].

(3) By [8, Section I.3], there is an efficient algorithm that provides us with a minimal
realization of r.

Hence the domain of a nc rational function regular at 0 can be described as a
complement of a free locus. Similar result also holds for an arbitrary rational
function [40, Corollary 5.9].

3. Inclusion problem for free loci

In this section we investigate when free loci of two linear pencils are comparable.
The main results are the Singularititstellensétze 3.6 and 3.11. Theorem 3.6 shows
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that inclusion of free loci is equivalent to the existence of a homomorphism between
semisimple algebras associated to the two pencils. Theorem 3.11 proves that (under
natural minimality assumptions) two pencils with the same free locus are similar,
i.e. one is a conjugate of the other. Our main technical ingredient in the proofs is the
algebraization trick of Subsection 3.1, which relates properties of a linear pencil to
properties of the matrix algebra generated by the coeflicients of the pencils.

3.1. Algebraization trick. Lemma 3.1 will be used repeatedly in the sequel to pass
from a pencil L 4 to the k-algebra A generated by matrices A1, ..., Ag.

Lemma 3.1. For every | € k<x>_ and X;,Y € M, (k) there exist N € N and
X! € My (k) such that

dimker(L4(X) — f(A) ® Y) = dimker L 4(X") (3.1)
fJoralld € N and A; € My (k).

Proof. We prove a slightly stronger statement: for every f € k<x>,4, h € N and
X1,....Xg,Z1,...,Zp,Y € My(k)thereexist N € NandX’,...,Xé,Z;L,...,Z,’1
€ My (k) such that

dimker(L4.c(X,Z)— f(A) ® Y) = dimker L4.c (X', Z") (3.2)

for all d € N and Ay,...,Ag,Cy,...,Cp, € My(k), where Ly c(x,z) =

I — Zi A,—xi - Zk Cka.
First observe that

U I M
(u;) € ker (M2 Ml) =y us € ker(M — My M), uy = —Mquy

for all matrices M, M, M, of consistent sizes and therefore

. . I M
dimker(M — M, M;) = dim ker ( M, Ml) . (3.3)

If the stronger statement holds for f and g, then it also holds foraf + Bg fora, p € k
since

dimker(L 4.c(X,Z) — (af + Bg)(A) ®Y)
=dimker(L 4.c, r4)(X, Z,aY) — g(4) ® BY)
=dimker L ¢, ray (X', Z',Y")
=dimker(L4,c(X',Z")— f(A) ®@Y')
=dimker L4.c(X”,Z")

for appropriate X;,Z,Y" € My, (k) and X/, Z" € Mp,(k) that exist by
assumption. Hence it suffices to establish the statement for f = w € <x>\{l}.
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We prove (3.2) by induction on |w|. The case |w| = 1 is clear, so assume that (3.2)
holds for all words of length £ > 1. If w = x v for |[v| = £, then
dimker(L4,c(X,Z) —w(A)Q®Y)

1®@1 —v(A)®1
—A;®Y Lac(X,Z)

smie(aae(0 8)-0 9)) -0 Y-rns(3 2)

=dimker L4.c(X', Z")

= dim ker (

for some X/, Z); € My (k) by (3.3), conjugation with an invertible matrix, and the
induction hypothesis. 0

As it follows from the proof, the number N in the statement of Lemma 3.1 can be
bounded by a function which is polynomial in n and exponential in the degree of f
and number of terms in f.

Corollary 3.2. If Z(L4) € Z(Lp), then Z(L4a— f(A)y) € Z(Lp— f(B)y)
for every f € k<x> .

Proof. If (X,Y) e Z(La— f(A)y),let X' beasinLemma3.1. Then X' € Z(L4)
and therefore X' € Z°(L g) by assumption, so (X, Y) € Z°(Lg — f(B)y) since the
choice of X’ is independent of the pencils L 4 and L 3. O

3.2. Jointly nilpotent coefficients. The question whether an evaluation of a
pencil L 4(x) is invertible might be independent of some of the variables in x. In this
subsection we show that in this case their corresponding coeflicients in L 4 generate
a nilpotent ideal. Moreover, we provide explicit polynomial bounds originating from
the theory of polynomial trace identities [34] and bounds on lengths of generating
sets of matrix subalgebras [32] to check whether this happens.

Let A be a (possibly non-unital) finite-dimensional k-algebra. If § C A is its
generating set, then we define the length of S as

I
£(S) = min {l € N: U S/ linearly spans A}.

j=1
Here S/ is the set of all products of j elements of S. Denote

{ d=1,
A(d) = {d@Jr%_ ] d>2.

By [32, Theorem 3.1] we have £(S) < A(d) ~ ~/2d?/? for every generating set S
of A C My (k).
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In the sequel we also require the following notion. For g,n € N let
k[&] = kl:i:l(;');l <i<g 1<,y En]

be the ring of polynomials in gn? commutative indeterminates. The distinguished
matrices

(1]

i = ( S))U e M, (k[§])
are called the generic n x n matrices [11, Section 6.7].

Proposition 3.3. Let A C My, (k) be the k-algebra generated by
Al,...,Ag,Nl,...,Nh S Md(]k),

and let N' C A be the ideal generated by N1, ..., Np. If m > A(d) and
det (LA(X) YN ® Y,-) — det(L (X)) (3.4)
J

holds for all X;,Y; € My (Kk), then N is a nilpotent ideal in A.
Conversely, if N is nilpotent, (3.4) holds for all X;,Y; € M, (k) andn € N.

Proof. Assume (3.4) holds. Let E; be generic m x m matrices. As a matrix over the
ring of formal power series k[[&]], L 4(E) is invertible and

LaE) 7 =) w(d) ®w(E) (3.5)

we<x>
by the Neumann series expansion. Then (3.4) implies
det (1 ® 1 — (ZNj ® Y,-)LA(E)—l) =1
r
for every Y; € M,, (k). In particular, for

p(t) = det (I Q1 — I(Z N; ® Y,-)LA(E)‘I) € k[[&]][¢]

J

we have p(t) = 1, so (Zj N; ® Y;)L4(E)™! does not have nonzero eigenvalues
and is therefore a nilpotent matrix. Hence () N ® 1)L 4(8)7! is nilpotent,
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where T; are generic m X m matrices, so

£
O:tr(((ZNj ®'r,-)( > w(A)®w(E))) )
J we<x>
:tr( > w(A,N)®w(E,T))

WEY <X >y <X>,
lwly =¢£

= > (w4, N)tr(w(E,Y))

WEY <X >y <X>,

hﬂy=£
= > pwtr(w(4, N)) tr(w(E, T))
[wle<xUy>/~,
lw]y=¢£
for every £ € N, where 0 < jyy = |[[w]Ny<x>---y<x>|forw € <x U y>

with |w|, = £. Here [w] denotes the equivalence class of w with respect to ~. For
every h € N, the pure trace polynomial

ph= ) pwtr(w(d,N))tr(w)
[wle<xUy>p/~,
|lw|y=>0

of degree h therefore vanishes on all tuples of m x m matrices. By [34, Theorem 4.5,
Proposition 8.3] we have p, = 0 for all A < m. Therefore tr(w(A, N)) = 0 for
every w € <x U y>j with lw|, > 0and 2 < m. Since m > A(d), the discussion
above implies that

{w(A,N):1 < |w| <m, |w|y >0}

linearly spans N. Therefore tr(w(A4, N)) = Oforevery w € <xUy> with |w|, > 0,
hence N C A is a nilpotent ideal.

Conversely, suppose N is nilpotent. Let k be the algebraic closure of k.
Burnside’s theorem on the existence of invariant subspaces [11, Corollary 5.23]
applied to A ® k yields a vector space decomposition

—d
k' =U&--- & U (3.6)

such that AUy C U; @ -+ ® Uy and (A @y k)i is either {0} or Endg(Ux),

where 1y : Uy — ﬁk—d and sy : ﬁd — Uy, are the canonical inclusion and projection,
respectively. We claim that NU, € U; @ -+ @ Ui_y; indeed, if (N U;) N
U # {0}, then the simplicity of Endi(Uy) implies I € mp (N ®x k)ix, which is a
contradiction since N ®y k is nilpotent.

Because the determinant of a block-upper-triangular matrix is equal to the product
of determinants of its diagonal blocks, the decomposition (3.6) and the structure of
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the Kronecker product imply

det (LA(X) -Y N;® Yj) = det(L 4(X))
J
forall X;,Y; € My(k) andalln € N. O

Corollary 3.4. If L is a monic linear pencil, then L(X) is invertible for all matrix
tuples X if and only if the coefficients of L are jointly nilpotent.

Of course, just assuming that L(w) is invertible for all scalar tuples o € k& does
not imply that coefficients of L are jointly nilpotent. For example, if

010 0 0 -1
L=I—-]0 0 O]lx;—|1 0 O |xz,
1 0 0 0 0 O

then every linear combination of the coefficients of L is nilpotent and hence
Z1(L) = 9, but the coefficients are not jointly nilpotent. For an investigation of
linear spaces of nilpotent matrices see e.g. [29].

3.3. Singularitiitstellensatz. This subsection contains the main result of this sec-
tion. Theorem 3.6 translates the inclusion between two free loci 2 (L 4) € 2 (Lp)
into a purely algebraic statement about algebras generated by the matrices A; and B;.
For a (possibly non-unital) finite-dimensional k-algebra R let rad R be its largest
nilpotent ideal; we call it the (nil)radical of R. If R # rad R, then R/rad R is
semiprime and hence semisimple [11, Theorem 2.65]. Note that such a ring contains
a multiplicative identity 1 and that an epimorphism of unital rings preserves the
identity.
Remark 3.5. Let N € M, (k) and consider p = det(/ —tN) € k[f]. Then N is
nilpotent if and only if p = 1. This is furthermore equivalent to

p(T)=det(I @I —T ®N) #0

forall 7 € M, (k) because the companion matrix associated to p is of sizedeg p < n.
If k is an algebraically closed field or a real closed field, then it of course suffices to
test p(T) #Oforall T € k or T € M,(k), respectively.

Theorem 3.6 (Singularititstellensatz). Let A C M (k) be the subalgebra generated
by Ai,...,Ag and let B C M,.(k) be the subalgebra generated by By, ..., Bg.
Then % (L4) € Z(Lp) if and only if there exists a homomorphism of k-algebras
B/rad B — A/ rad A induced by B; + A;.

Proof. (=) It suffices to prove that for every f € k<x>_, f(B) € rad B implies
f(A) e rad A. If f(B) generates a nilpotent ideal in I3, then

Z(La—f(Ay) S Z(Lp— f(B)y)=Z(Lp—0-y) (3.7)
by Corollary 3.2 and Proposition 3.3.
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Forn € N let E;, T be n x n generic matrices and let
p=det(L4(E) - f(H®T).

Suppose there exist | < 1¢, Jo < n such that %—‘? # 0, wheret = (Y),,,,. Because k
is infinite, there exist X; € M, (k) and «t,; € k for all 1 # 19 and j # jo such that

det(L (X)) # 0, aa_f(X’ a,1) % 0.

Letg = p(X,«,t) € k[t]; since g is non-constant polynomial of degree at most nd,
there exists T € M, 4 (k) such that ¢(7") = 0 by Remark 3.5. Now let Y’ € M,,2 (k)
be a block n x n matrix such that its (z, j)-block equals 7" if 1 = 19 and ;j = Jo,
and o, ; I otherwise. Then

det(La(X®1)— f(A®Y') =0,

which contradicts (3.7) since det(Lp(X ® I)) # 0.

Hence the free locus of I — »". A;x; — f(A)y does not depend on y and so
Z(La— f(A)y) = Z(L4—0-y). Therefore f(A) generates a nilpotent ideal in A
by Proposition 3.3.

(<) Let a; and b; be equivalence classes of A; and B; in A/ rad A and B/ rad 15,
respectively, and assume there is a homomorphism ¢ : B/rad B — A/rad A
satisfying ¢(b;) = a;. Suppose det(Lg(X)) # 0 for X € M,(k)®. Then there
exists p € kt], p(0) = 0, such that p([ 11—, B; ®Xz-) = [ ® I by the
Cayley—-Hamilton theorem. Let g¢(t) = p(l —¢) — p(1); then q(0) = O and
q(XC;Bi®X)) = 1+q1)] I. Ifgq(l) # —1,then ] ® I € M,(B) and
hence I € B, so

C_I(Zbi Ok Xi) =14+ qg(1))1p/mis ®k I € (B/rad B) ®x M, (k);

Onthe other hand, if g(1) =—1, theng (ZI B; ® Xl-) =0andsogq (Z1 b; R X,-) =},
Since ¢ (15) = 1.4, both cases imply

Q(Zai Rk Xi) = (1 4+ g1/ ran Ok I € (Af rad A) @y M, (k).

Consequently ¢ (Z, A ® X,-) =(14+¢q(1)I ® I + N for some N € My (rad A)
and therefore p (I I->,A4® X,-) =1 ®I+ N,sodet(L4(X)) # Osince N
is nilpotent. Thus Z°(L 4) € Z°(L ). O

Remark 3.7. Let L.; and L, be monic linear pencils of sizes d; and d3, respectively.
By Proposition 3.3 and proofs of Lemma 3.1 and Theorem 3.6 one can derive
deterministic bounds on size of matrices X7, . .., X, for checking 2°(L) € Z'(L2)
that are exponential in g and max{d;, d>}.
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From here on we write A (resp. B) for the (possibly non-unital) k-algebra
generated by the coeflicients Ay,..., Ag (resp. By,..., Bg) of the pencil L4
(resp. L g).

Corollary 3.8. Let the notation be as in Theorem 3.6. Then Z(L4) = Z(Lp) if
and only if there exists an isomorphism A/ rad A — B/ rad B induced by A; — B;.

The validity of 2°(L4) € Z(Lp) can now be effectively tested. Using
probabilistic algorithms for finding the radical of a finite-dimensional algebra (see
e.g. [14]) we first reduce the problem to the case where A and B are semisimple.
Then we find £ < A(max{d,e}) such that {w(A4):1 < |w| < £} linearly spans A
and {w(B):1 < |w| < £} linearly spans B. Next, we determine the linear relations
between the elements of {w(B):1 < |w| < £ + 1}. Finally we check whether they
are also satisfied by {w(A4):1 < |w| < £+ 1}.

3.4. Irreducible free loci. In this subsection we discuss irreducible components of
free loci and how they correspond to the Artin—Wedderburn decomposition of the
semisimple algebra A/ rad A assigned to a pencil L 4.

Remark 3.9. Let A be a finite-dimensional simple k-algebra. Then A == M,,(A) for
some finite-dimensional division k-algebra A. Up to isomorphism there is exactly
one simple unital left .A-module, namely A™, and every unital left A-module is
isomorphic to a direct sum of copies of A™. Let § = m dimy A; then there exists an
irreducible representation p : A — M (k), which is unique up to conjugation by the
Skolem—Noether theorem [11, Theorem 4.48], and every representation of A factors
through it.

We will also use the following refinement of the Skolem—Noether theorem.
Lemma 3.10. For 1 < j < s let p; : AY) — My, (k) be an irreducible

representation of a simple k-algebra AYD. If 1t + AD x ... x A®) — My, (k)
is a unital embedding, then there exists P € GLg4 (k) such that

Pua)P ' =U®p1(@)® - ®URps(a) € Mg(k)  Vae AV x...xA®,

Proof. Consider vector subspaces U; = imu(1 4¢») for 1 < j < s; it is easy to
check thatk? = Uy @ --- @ Us, 1((AV)U; € U; and (AU = 0 for j' # j.
Hence we have a unital embedding AY) — Endy (U ;). By the Skolem—Noether
theorem there exists P; € Endy (U;) such that

Pitl yin(aj)P7' =1 ® pjlay)

forall a; € AW If Py € GL4 (k) is the transition matrix corresponding to the
decomposition k? =U & - ® U, thenlet P = Po(P1 @ - @ Py). ]

A pencil L is minimal if it is of the smallest size among all pencils whose free
loci are equal to 2°(L). (Note: (i) a pencil of a minimal realization is not necessarily
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minimal; (ii) a realization with a minimal pencil is not necessarily minimal.) A
minimal pencil L 4 is irreducible if A is simple.

Theorem 3.11. Let L 4 and L g be minimal pencils of size d and assume that A and B
are semisimple. Then 2 (L4) = Z(Lp) if and only if there exists P € GL4(k)
such that B; = PAiP'lfori = lyenen

Proof. It (L) = Z(Lp), then d = e by minimality. As elements of M, (k),
14 and 1z are idempotents. If for example 14 were a nontrivial idempotent, then
the restriction and projection of matrices 4; to subspace im 1 4 would yield a smaller
pencil with the same free locus, which contradicts the minimality assumption. Hence
14 = 15 = I. By Corollary 3.8 and semisimplicity we have

AP oW .o B g

for some simple algebras /) and isomorphisms ¢1, ¢, satisfying ¢op7!(A4;) = B;.
Let py L € ) - Mg, (k) be an irreducible representation of CY). By Lemma 3.10
and minimality there exist P;, P> € GL; (k) such that

Pi1(©)P{! = pi1(c) ® -+ ® ps(c) = Pagpa(c) P!
forallc € CV x ... x C®). Therefore P = P; ! Py satisfies B; = PA; P~ O

A free locus is irreducible if it is nonempty and not a union of two smaller free
loci. Note that ff(Ll @ Ly) = gg(Ll) U fép(Lz)

Proposition 3.12.

() If A/ rad A is isomorphic to the product of s simple algebras, then % (L 4)
has exactly s irreducible components.

(ii) Every irreducible free locus equals 2 (L) for some irreducible L.

Proof. ()Let¢ : A/rad A — AW x...x A®) be an isomorphism to a direct product
of simple algebras AU, Let AY) be the image of A; under the homomorphism A —
AW s My, (k), where AY) — M, (k) is an arbitrary faithful representation.
Then Corollary 3.8 yields

‘gp(LA) = g(LA(l)@...@A(s)) = QD(LA(I)) U-.-u ff(LA(s))-

Also, ji # j» implies Z°(L 4up) # Z (L 4j»). Otherwise there would exist
an isomorphism ¢ : AUD — AU2) given by AE“) — A§’2). If ¢pj, = 7j;¢
and ¢;, = 7j, ¢, where ; : AW oo A® 5 AW s the natural projection,

then ¢j, = ¥¢;, and so ¢;, (f(A)) = 0 if and only if ¢,,(f(A)) = O for every
f € k<x>,4, which contradicts the surjectivity of ¢p. Hence it suffices to prove

that Z°(L 4) is irreducible if A is simple.
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Suppose Z (L 4) = Z(L4)U Z (L ar) = Z(L g¢4~) and let B be the algebra
generated by matrices A} @ A;. Then A = B/rad B by Corollary 3.8, hence there
is an embedding

A— (A" x A"/ rad(A’ x A”) = (A'/rad A') x (A”/rad A")

such that the induced homomorphisms A4 — A’/rad A" and A — A”/rad A”
are surjective. Since A is simple, the induced map A — A’/rad A’ is trivial or
injective. In the latter case A = A'/rad A’ via A; — A}, so Theorem 3.6 implies
Z(Ly) = Z(Ly). Since Z(L4) # 0, Theorem 4.2 implies that A’/ rad A’
and A"/ rad A” cannot be both trivial, so we conclude that 2°(L 4) = % (L 4/) or
Z(Ly) = Z(L4r). Therefore Z(L 4) is irreducible.

(i) If Z°(L ) is irreducible, then B/ rad B = A is a simple algebra by (i). By
Remark 3.9 there exists an irreducible representation A — My (k). Set A; to be the
image of B; under the homomorphism B — A — My (k); then L 4 is the desired
irreducible pencil. L]

The radical of a finite-dimensional algebra and the Wedderburn decomposition of
a semisimple algebra can be computed using probabilistic algorithms with polynomial
complexity [18,19]. By Proposition 3.12 we can therefore efficiently determine
irreducible components of a free locus. In a forthcoming paper it will be shown that
if k is algebraically closed and Z°(L) is an irreducible free locus, then %, (L) is an
irreducible algebraic set in M, (k)& for sufficiently large n € N.

4. Domains of noncommutative rational functions regular at the origin

In this section we shall explain how our results on free loci pertain to domains
of nc rational functions. The main results are Corollary 4.1 and Theorem 4.6.
While Corollary 4.1 relates the inclusion of domains of nc rational functions to
homomorphisms between the algebras associated to their minimal realizations,
Theorem 4.6 analyzes the precise structure of nc rational functions with a given
domain.

Recall that k€x ¢ C k€x3 denotes the local subring of nc rational functions
that are regular at the origin. As explained in Subsection 2.2, the domain
of r € k€x>}¢ is the complement of the free locus of a pencil corresponding to
the minimal realization of r by [24, Theorem 3.1]. Hence Theorem 3.6 yields the
following result about comparable domains of elements in k€x >¢.

Corollary 4.1. Forr,r’ € k€x>¢ let (¢, L4,b) and (¢/, L 4/,b") be their minimal
realizations. Then domr C domr’ if and only if there exists a homomorphism of
k-algebras A/ rad A — A’/ rad A" induced by A; — A’.
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4.1. Regular ncrational functions. In this subsection we prove that every regular nc
rational function, i.e. one that is defined at every matrix tuple, is in fact a polynomial.
While this can be already deduced from Corollary 4.1, we present a more precise
proof which gives us explicit polynomial bounds for testing whether a nc rational
function is a polynomial.

Theorem 4.2. Let r be a nc rational function with minimal realization of size d and
let

Ad) k is an algebraically closed field,
m = {2A(d) kisareal closed field,
dA(d)? otherwise.

Ifdom,, r = M,,(k)&, then r is a nc polynomial of degree at most d — 1.

Proof. Let (c, L4,b) be the minimal realization of r about 0, ie. r = cL;lb.
By [24, Theorem 3.1], det(L 4(X)) # 0 for every X; € M,,(k). In particular,

det(1®1—T®2Ai®n)7éo
i

for all Y; € Myy(k) and T € M (k) with k < % Hence ), A; ® ¥; is a
nilpotent matrix by Remark 3.5 and thus

det([@]—ZA,-@Yi) =1

for all Y; € My q)(k). By Proposition 3.3, the algebra generated by Ay,..., Ag is
nilpotent, so

d—

r= c(] = Zi:Aix,-)_lb - EC(IZAixi)jb

=0

—

~

is a polynomial. U

4.1.1. Douglas’ lemma for nc rational functions. Douglas’ lemma [17, Theorem 1]
is a classical results in operator theory. Its finite-dimensional version states that for
A, B € M,(C) we have AA* < BB* if and only if there exists C € M,(C) with
IC|| <1, such that A = BC. As an application of the characterization of regular
nc rational functions we give a version of Douglas’ lemma for nc rational functions.

Corollary 4.3. Letr,s € C£x>. Then
r(X)*'r(X) <s(X)*s(X)  forall X € domr Ndoms 4.1)

if and only if there exists A € C,

Al <1, such thatr = As.
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Proof. If s = 0, thenr = 0, so we can assume that s # 0. Denote

D = domr Ndoms Ndoms™ .

By (4.1),
rX)s ' X)) rX)sHX)<I VXeD.

Let f = rs™!; then domf D D and |f(X)| < 1 for all X € D. By definition,
DN M, (C)8 is Zariski open in M, (C)& and nonempty for infinitely many n € N, so
boundedness implies dom, f = M, (C)?# for infinitely many n € N. Consequently f
is regular everywhere, so it is a polynomial by Theorem 4.2. Since it is bounded in
norm by 1, it is constant by Liouville’s theorem, sors™! = A e Cand |A] < 1. O

4.2. Characterization of nc rational functions with a given domain. Let ®omgy =
{domr:r € k€x>o}. A setin Domy is co-irreducible if it is not an intersection
of two larger sets in ®omgy. Thus a domain is co-irreducible if and only if it is the
complement of an irreducible free locus. A nc rational function r € k€x>¢ is
irreducible if it admits a realization (¢, L, b) with L irreducible. Note that such a
realization is automatically minimal by Remark 3.9.

Proposition 4.4. [f r is irreducible, then domr is co-irreducible. Conversely, for
every co-irreducible set D € Domy there exists a unique d € N and a pencil L of
size d such that irreducible rational functions whose domains are D are exactly of
the form

L7,  b,cek?\ {0}

Proof. The first part follows from Proposition 3.12. Now letr € k<€x 3¢ and suppose
that D = domr’ is co-irreducible. If (¢, L 4/, b’) is a minimal realization of r’,
then A’/ rad A’ is simple by Proposition 3.12. Fix some irreducible representation
p: A'/rad A" — My(k). Let A; be the image of A; under the homomorphism
A — My(k) and set L = L4. Then D is the complement of Z°(L) by
Corollary 3.8 and D = dom(c’L~!b) for every b,e¢ # 0. On the other hand,
if r” is an irreducible function with domr = D and (¢”, L 4#,b”) is its minimal
realization, then 2°(L) = % (L 4~) and so AY = PA; P~ for some P € GL4(k)
by Theorem 3.11. Hence r = (P'c¢”)L~1(P~'b"). O

Let R(D) be the set of irreducible functions whose domains equal D. If we
adopt the notation of Proposition 4.4, then the elements of R(D) are exactly nonzero
linear combinations of d? linearly independent irreducible functions e/ Z~le; for
1 =<1,7 £4d.

The next lemma is essentially a version of Wedderburn principal theorem [37,
Theorem 2.5.37] for (possibly non-unital) k-subalgebras in My (k).

Lemmad.5. Let A € My (k) be ak-algebra, A/ rad A = AD ... x A® with AD)
simple, and let p; : A Mg, (k) be irreducible representations. Then there exist
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a subalgebra S € A and P € GL; (k) such that A = S @ rad A (as vector spaces)
and PSP~ is precisely the image of

A(l) SCoen XA(S) (I®p1)x-x(1®ps)

0l @My, (k) ®--- (I @Mg, (k) € Mg (k).

Proof. 1f A is unital, then Wedderburn’s principal theorem yields the decomposition
A = S @rad A, where S € A is a subalgebra. If A is not unital, let A* be
the unitization of A [11, Section 2.3]; i.e. A* = k & A, A is an ideal of A* and
rad A* = rad A. Hence A* = S’ @ rad A* by Wedderburn’s principal theorem and
therefore A = AN(S'@rad A) = (ANS)drad A, soS = AN’ is the required
subalgebra.

Since & is semisimple, it has the multiplicative identity 15. Let U = ker 15 and
V =im1g. Then kY = U @ V,SU = 0and SV C V. Therefore we have a unital
embedding

AW o x AS) > S € Endg(V),

so Lemma 3.10 applies. O

Theorem 4.6. Letr € k€x>¢. Thendomr = DN---N Dy for some co-irreducible
D; € Domg and r is a nc polynomial in x U R(D;) U --- U R(Dy) of degree at
most d, where d is the size of the minimal realization of r.

Proof. Let(c, L 4,b) be aminimal realization of r. Then domr is a finite intersection
of co-irreducible domains by Proposition 3.12. Let A = S@rad Aand P € GL, (k)
be as in Lemma 4.5. Write A; = S; + N; with respect to this decomposition and
set § =) ; Six; and N = ) . N;x;. As a matrix over the ring of noncommutative
formal power series k<<X>>, L4 = [ — S — N is invertible and

L= - (I-NI-5") "= -5 (Nt -5 .
j=0

Since (rad A)¢ = 0 and consequently

oo d
(NI — S)_l)d = (Z st) =0,
j=0

we have
d—1

L' ==Y (Nu -85

F=D

Therefore r is a polynomial of degree d in x and the entries of (/ — S)™!. Let

PS;P'=00 (@A) @ & (I ® AD).
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By the construction, A is a simple algebra and L 40) 1s a simple pencil. Since
(F =81 = P—I(J URL )D& L;}s)))P,

the entries of (1 — S)~! are polynomials of degree at most 1 in the elements of
R(D1) U ---UR(Dy) by Proposition 4.4. O]

Example 4.7. Let {x, y} be our alphabet and consider rational functions

rn=>0-x—y1-x)"'y»)"'A+x0Q-x+y7"
=

l=x =y 0 0
=0 1 0 -y 1-=x —X 1],
\ 0 0 1—-x+y 1

=>01-x-»"0-x)1A-x-»"+A-x—p) 21 -x+y)~"
~1

] =%=¥ -y =% 0
=(1 1 0) 0 l—x—y 0 1
0 0 l—x+y 1

It is easy to check that the given realizations are minimal, so
domr; = domry; = doms; N doms,,

where s; = (1 —x — y)~ ! and s = (1 — x + y)~! are irreducible functions. It
is evident that r; = s1((1 — x)s; + xs) is a polynomial in x, s, s,. On the other
hand, it becomes clear that r; is a polynomial in x, s1, S, only after we rewrite it as

f= 5 —x =) 4 A= x )+ x5+ 9T

1
= 5(31 + s2)(1 + xs2).

5. Symmetric and hermitian pencils

In the final section we turn our attention to pencils with symmetric and hermitian
matrix coeflicients. Here the free loci are defined with tuples of symmetric and
hermitian matrices, respectively. We call them free real loci. We investigate when
two real loci are comparable; we show that this is equivalent to the existence of
a *-homomorphism between x-algebras generated by the pencils (Theorem 5.4).
The main new ingredients needed to make this work are the theory of hyperbolic
polynomials [20, 35] and the real Nullstellensatz from real algebraic geometry [9].
Finally, in Subsection 5.2 we formulate and prove a free (quantum) version of
Kippenhahn’s conjecture [26] on simple eigenvalues of hermitian pencils.



124 I. Klep and J. Vol¢i¢ CMH

Let H,(C) € M,(C) and S,,(R) € M,(R) be the R-spaces of hermitian and
symmetric matrices, respectively. If the coefficients of L are symmetric matrices,
then L is a symmetric pencil and

L) =] Zw., ZWL)=2ZUL)NSR)*
neN

is its free real locus. Similarly, if the coefficients of L are hermitian matrices, then L
is a hermitian pencil with free real locus

ML) =) ZML).,  ZNL) = Z,(L) N Ha(C)E.
neN

5.1. Singularititstellensitze for real loci. In this subsection we prove the *-analog
of Theorem 3.6.

5.1.1. RZ polynomials. Let ¢ and u = {u;,...,u,} be commutative indetermi-
nates. Then p € R{u] is a real zero (RZ) polynomial [23] if p(0) # 0 and for every
a € R, p(ta) € RJ[¢] has only real roots. This is essentially the dehomogenized
version of hyperbolic polynomials that arise in convex optimization [3, 35], partial
differential equations [6] and real algebraic geometry [10,27,30].

Proposition 5.1. Let p € Ru] be a RZ polynomial. If ¢ € Clu] and p(a) = 0
implies q(o) = 0 for all o € RS, then p(«) = 0 implies g(o) = 0 forall o € C8.

Proof. Tt clearly suffices to prove the statement for ¢ € Rlu]. Let p = p;--- ps,
where p; € Rlu] are irreducible. Fix 1 < j < s; then p; is a RZ
polynomial. Since p; is also square-free, there obviously exist o, B € R® such that
pi(@)p;(B) <0. By [9, Theorem 4.5.1], the ideal in R[u] generated by p; is real.
Since pj(«) = 0 implies ¢(«) = O for all @ € R, there exists /2; € R[u] such that
g = hj p; by the Real Nullstellensatz [9, Theorem 4.1.4]. Hence ¢° = (hy---hs)p,
so p(a) = 0 implies g(a) = O for all « € C&. |

5.1.2. Inclusion of free real loci. Each symmetric or hermitian pencil L gives
rise to the RZ polynomial det L. We now use the properties of RZ polynomials
presented above to show that Z5(L;) € 275(L,) (or Z"(Ly) € Z"(L,)) if and
only if Z°(L1) € Z(L>).

Proposition 5.2. Let L. be a monic pencil.
() If L is hermitian, then 2*(L) is Zariski dense in 25, (L) for everyn € N.

(ii) If L1 and L, are symmetric, then

(L) S Z(L2) = Z(L) S Z(L,).
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Remark 5.3. Note that Z2;"(L) is not Zariski dense in 27 (L) if L is symmetric and
n > 2. For example, if 8 = (§;; f ;=1 is @2 x 2 generic matrix, then the polynomial
(1 — &11)(1 — &) — £2, vanishes on Z5(1 — x) but not on Z5(1 — x).

Proof of Proposition 5.2. (i) Fix n € N and an element of the coordinate ring
of M,(C)#, i.e. a complex polynomial g in gn? variables. Assume that ¢ = 0
on ZN(L). For every X;,Y; € Hy(C) let

px,y :=det(L(uX +vY)) € Rlu, v], gxy ‘= quX +vY) € Clu,v].

By assumption we have

PX,Y(O‘aﬁ) =) = QX,Y(C(,,B) =0 VanB € Rg‘

Since px.y is a RZ polynomial, Proposition 5.1 implies

rxy(@,B)=0 = gxy(a,p)=0 Yoa,p € C8.

If Z € M,(C)® is arbitrary, then Z = 3(Z + Z*) + 3i(iZ* —iZ) and Z + Z*,
iZ* —iZ are tuples of hermitian matrices, so g = 0 on %, (L).

(ii) Let t : C — M, (R) be the standard *-embedding of R-algebras. For every
n € N, the ampliation map

tp = idp, ) ®RL : My(C) = M, (R) ®r C — M2, (R)

is again a x-embedding. If L; is symmetric and X € H,(C)#, then L{(X) is
invertible if and only if ¢4, (L1(X)) = L1(t, (X)) isinvertible. Therefore Z*(L;) C
Z5(L)implies ZM(L{) € 2™ (L,) and the conclusion follows from considering L ;
and L, as hermitian pencils and applying (i). L]

Let L 4 be a symmetric (resp. hermitian) pencil. As before, let .4 denote the real
(resp. complex) algebra generated by A1,..., A;. We claim that 4 is semisimple.
Indeed, suppose that f(A) € rad A for some f € R<x> (resp. f € C<x>). Since
f(A)* € A, we have f(A)* f(A) € rad A. In particular, f(A)* f(A) is a positive
semi-definite nilpotent matrix, so f(A4)* f(A) = 0 and thus f(A4) = 0.

Theorem 5.4.

(i) Let L 4 and L g be symmetric pencils. Then Z5(L 4) € Z°°(Lg) if and only if
there exists a *-homomorphism of R-algebras B — A induced by B; — A;.

(ii) Let L 4 and L g be hermitian pencils. Then Z"(L 1) € 2"(Lp) if and only if
there exists a x-homomorphism of C-algebras B — A induced by B; — A;.

Proof. Since A and B are semisimple, this assertion is a direct consequence of
Proposition 5.2 and Theorem 3.6. O
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Let Oy C GL4z(R) and U; C GL4(C) be the orthogonal and the unitary group,
respectively.

Corollary 5.5.

(i) Let L4 and Lp be symmetric minimal pencils of size d. Then Z*(L4) =
ZS(Lp) if and only if there exists Q € Og such that B = QA; Q' for
i=1,...,g.

(ii) Let L4 and Lp be hermitian minimal pencils of size d. Then Z"(L,) =
ZFNLp) if and only if there exists U € Uy such that B; = UA;U* for
i = lyssus s

Proof. We prove just (i) since the proof of (ii) is analogous. If Z7%(L 4) = Z°*(L ),
then by Theorem 5.4(i) there exists a *-isomorphism A — I3 given by 4; > B;.
The rest follows as in the proof of Theorem 3.11 from the *-version of Lemma 3.10,
which in turn is a consequence of the following claim: if C is a simple R-algebra and
t,t" : C = Mgy (R) are irreducible *-representations, then there exists Q € Oy such
that

U(c) = Qu(c)07! Ve eC. (5.1)

Indeed, by the Skolem—Noether theorem there exists Q¢ € GL;(R) such that (5.1)
holds. Because ¢ and ¢’ are *-homomorphisms,

Qot(c)' Oy = () = (Qot(€) Q5" = Q" 1(e) Qg

holds for every ¢ € C. Therefore Qf Qo lies in the centralizer of «(C) in My (R).
Since ¢ is irreducible representation, Qf Qg belongs to the center of M,(R),

so Q5Q0 = ol for « > 0 because QQy is positive-semidefinite. Now
0 = ﬁQo € Oy satisfies (5.1). 0

In free real algebraic geometry an analogous result for free spectrahedra
(distinguished convex sets associated to symmetric linear pencils) has been
established in [21] using nontrivial operator algebra techniques, e.g. Arveson’s
noncommutative Choquet boundary [1].

5.2. Kippenhahn’s free conjecture. Kippenhahn’s conjecture [26, Section 8] can
be restated as follows: if Hy, Hy € M;(C) are hermitian matrices that generate
M4 (C) as a C-algebra, then there exist &1, @2 € R such that the dimension of the
kernel of I —«y Hy —a, H; is exactly one. While this conjecture has been established
for matrices of small size [13,38], it is false in general by [28]. However, we prove it
is true in a free setting.

Corollary 5.6. If Ay,..., Ay € My(k) generate My(k) as k-algebra, then there
existn € Nand X1,...,Xg € My (k) such that dimker L 4(X) = 1.
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Proof. By assumption there exists f € k<x>4 such that f(4) = E;;. By
Lemma 3.1 there exist X; € M, (k) such that

1 = dimker(/ — E1,;) = dimker (I—ZO-A,-—Lf(A)) = dimker L4(X). O
i

5.2.1. Hermitian case. The original Kippenhahn’s conjecture deals with hermitian
matrices and their real linear combinations. Likewise, the free version can be
strengthened for hermitian pencils.

Corollary 5.7. If Ay, ..., Ag € Hy(C) generate M4(C) as C-algebra, then there
existn € Nand Xy,...,Xg € Hy(C) such that dimker L 4(X) = 1.

Proof. The set
Op, ={X € Z,(L4):dimker L4(X) = 1}

is Zariski open in %, (L 4) and nonempty for some n € N by Corollary 5.6. Since
ZM(L 4) is Zariski dense in 25 (L 4) by Proposition 5.2, we have

On N ZMNLy) # 0. O

Similar reasoning as in Remark 3.7 implies that n € N from the statement of
Corollary 5.7 can be bounded by an exponential function in g and d.

5.2.2. Symmetric case. Let L 4 be a symmetric pencil. In contrast to the hermitian
case in Proposition 5.2(i), Z,3(L 4) is not Zariski dense in %5 (L 4) forn > 2. Hence
we cannot use the same arguments as in Corollary 5.7 to prove the real version of
Kippenhahn’s free conjecture. Nevertheless, we can at least deduce the following.

Corollary 5.8. If A1,..., Az € Sg(R) generate M;(R) as R-algebra, then there
existn € N and X1,..., Xg € Sy(R) such that dimker L 4(X) = 2.

Proof. Since Ay, ..., Ag generate M, (R) as R-algebra, they also generate M, (C)
as C-algebra. Hence there exist X1, ..., Xy € H,(C) such thatdimker L 4(X) = 1
by Corollary 5.7. If v, : M,,(C) — M>, (R) is the *-embedding of R-algebras from
the proof of Proposition 5.2(ii), then ¢ (X;) € S»,(R) anddimker L 4(t (X)) =2. O
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