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Free loci of matrix pencils and domains
of noncommutative rational functions

Igor Kiep* and Jurij Volcic**

Abstract. Consider a monic linear pencil L(x) 1 — A\x\ Agxg whose coefficients Aj
are d x d matrices. It is naturally evaluated at g-tuples of matrices X using the Kronecker tensor

product, which gives rise to its free locus ?Z'(L) {X : detL(X) 0}. In this article iffis
shown that the algebras A and A generated by the coefficients of two linear pencils L and L,
respectively, with equal free loci are isomorphic up to radical, i.e., A/ rad A .4/racLA.
Furthermore, 3f(L) C 3f(L) if and only if the natural map sending the coefficients of L to
the coefficients of L induces a homomorphism A/ rad A —> A/ rad A. Since linear pencils
are a key ingredient in studying noncommutative rational functions via realization theory, the
above results lead to a characterization of all noncommutative rational functions with a given
domain. Finally, a quantum version of Kippenhahn's conjecture on linear pencils is formulated
and proved: if hermitian matrices A i,..., As generate M,j (C) as an algebra, then there exist
hermitian matrices X\,..., Xg such that M ® 'las a simple eigenvalue.
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algebraic geometry, hyperbolic polynomial, Kippenhahn's conjecture.

1. Introduction

Let k be a field of characteristic 0 and let A(). A\,..., Ag e M^(k). The formal
affine linear combination L(x) A a — A\X\ — — Agxg, where x; are freely
noncommuting variables, is called an affine linear pencil. If Aq — 1^ is the d x d
identity matrix, then L is a (monic) linear pencil.

Linear pencils are a key tool in matrix theory and numerical analysis (e.g. the

generalized eigenvalue problem), and they frequently appear in algebraic geometry
(cf. [4,16]). Linear pencils whose coefficients are symmetric or hermitian matrices

give rise to linear matrix inequalities (LMIs), a pillar of control theory, where many
classical problems can be converted to LMIs [2, 12,39], LMIs also give rise to
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feasible regions of semidefinite programs in mathematical optimization [42], In

quantum information theory [31] and operator algebras [33] hermitian linear pencils
are intimately connected to operator spaces and systems, and completely positive
maps [21]. Lastly, LMIs, linear pencils and their determinants are studied from a

theoretical perspective in real algebraic geometry [10,23,27,30].
In this paper we associate to each linear pencil L its free (singular) locus (L),

which is defined as the set of all tuples of matrices X over k such that

g

L(X) / <g> / — ^ A, <g> Xi
1 1

is a singular matrix; here <g> denotes the Kronecker tensor product. We will address

the following question: If IX(L) C IX(L), what can be said about the relation
between the coefficients of L and L?

Our interest in linear pencils originates from their relation with the free skew field
of noncommutative rational functions [7,15,36]. Namely, if r is a noncommutative
rational function that is regular at the origin, then there exists a monic linear pencil L
and vectors b, c over k such that

r c'L_1b. (1.1)

Such presentations of noncommutative rational functions, called realizations, are

powerful tools in automata theory [8], control theory [2,25] and free probability [5].
One way ofdefining noncommutative rational functions is through matrix evaluations

of formal noncommutative rational expressions [22,24,40], This gives rise to the

notion of a domain of a noncommutative rational function, i.e., the set of all matrix
tuples where it can be evaluated. While a realization of the form (1.1) is not unique,
there is a canonical, "smallest" one r CqLq !bo. The domain of r is then the

complement of the free locus iF(Lo) [24]. It is thus natural to ask: (a) When is a

noncommutative rational function regular, i.e., defined everywhere? (b) When is the

domain of a rational function contained in the domain of another one? (c) What can
be said about the set of all rational functions with a given domain?

1.1. Main results. Our first main result is a Singularitätstellensatz for linear pencils
explaining when free loci of two linear pencils are comparable. If L I — A,x,
is a monic pencil of size d, let A £ k) be the k-algebra generated by A,. We

say that L is minimal if it is of minimal size among all pencils with the same free
locus.

Theorem A (Singularitätstellensatz). Let L and L be monicjinearjiencils. Then

IX L) C IX(L) if and only if there exists a homomorphism A/ rad A —> A/ rad A
induced by A, iAt.
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Moreover, if L, L are minimal and A, A are semisimple, then £¥(L) A'(L)
if and only if there exists an invertible matrix P such that At PAtP~l for all
1 < i < g, i.e., the linear pencil L is a conjugate of L.

The first part of Theorem A is proved as Theorem 3.6 in Subsection 3.3. The
second statement appears in Subsection 3.4 as Theorem 3.11.

Next we combine the Singularitätstellensatz with the aforementioned realization
theory. First we elucidate everywhere-defined noncommutative rational functions.
Theorem 4.2 is an effective version of the following statement.

Theorem B. A regular noncommutative rational function is a noncommutative

polynomial.

A domain of a noncommutative rational function is co-irreducible if it is not an

intersection of larger domains. We say that a noncommutative rational function r is

irreducible if r c1 Lj^h, where La is a minimal monic pencil and A is simple.
For every co-irreducible domain D we can find a finite family of linearly independent
irreducible functions 7Z(D) such that every irreducible function with domain D lies
in the linear span of 71(D). A precise characterization of noncommutative rational
functions with a given domain is now as follows.

Theorem C. If a noncommutative rational function r is defined at the origin, then

its domain equals D\ H • fl Ds for some s £ N and co-irreducible Dj, and r is a
noncommutative polynomial in {x\,..., xg} U 1Z(D\) U • • U 7Z(DS).

See Theorem 4.6 in Subsection 4.2 for the proof.
Lastly, we apply our techniques to prove the quantum version of Kippenhahn's

conjecture [26], The original conjecture was as follows: if hermitian d x d
matrices H\ and H2 generate the whole MjfC), then there exist real numbers oq
and «2 such that a\H\ + 012H2 has a simple nonzero eigenvalue. While this is false

in general [28], we show it is true in a quantum setting.

Theorem D. If A\,... Ag £ Mrf(k) generate Mj(k) as a k-algebra, then there

exist n £ N and X\,... ,Xg £ Mn (k) such that Xt <g> A, has a nonzero eigenvalue
with geometric multiplicity 1. If k C and A, are hermitian, then Xt can also be

chosen hermitian.

The proof of Theorem D is given in Subsection 5.2.

1.2. Reader's guide. The paper is organized as follows. We start by introducing
the basic notation and terminology of monic linear pencils, noncommutative rational
functions and realizations in Section 2. The inclusion problem for free loci is treated
in Section 3. Our main tools are the algebraization trick (Lemma 3.1) and the

role of the nilradical of the algebra generated by the coefficients of a monic pencil
(Proposition 3.3). The first part of the Singularitätstellensatz is stated in Theorem 3.6,
while Theorem 3.11 asserts that minimal pencils with the same free locus are unique

up to conjugation. The connection between the free locus and the semisimple
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algebra assigned to a pencil is further investigated in Proposition 3.12 that relates

irreducible components of the free locus to the Artin-Wedderburn decomposition of
the corresponding semisimple algebra.

In Section 4 we apply the preceding results to noncommutative rational functions
and their domains. Corollary 4.1 solves the inclusion problem for domains
of noncommutative rational functions in terms of their minimal realizations.
As a consequence, Theorem 4.2 proves that every regular noncommutative
rational function (in the sense of being defined everywhere) is a polynomial,
which furthermore implies Douglas' lemma for noncommutative rational functions
(Corollary 4.3). In Subsection 4.2 we introduce the notion of co-irreducible domains
and derive a precise description of functions with a given domain in Proposition 4.4
and Theorem 4.6.

Finally we focus on symmetric and hermitian pencils, which are ubiquitous in real

algebraic geometry [23,30] and optimization [21,27], Section 5 starts by introducing
the free real locus assigned to a symmetric or hermitian pencil. Theorem 5.4 is the

*-analog of the Singularitätstellensatz, but instead of noncommutative ring theory
its proof crucially relies on properties of hyperbolic polynomials [20,35] and the real
Nullstellensatz [9]. Subsection 5.2 discusses a relaxation of Kippenhahn's conjecture;
its involution-free and hermitian version are resolved by Corollaries 5.6 and 5.7,

respectively.

2. Preliminaries

In this section we introduce basic notation and the main objects of our study: linear
pencils and their (zero) loci, and noncommutative rational functions together with
their domains.

2.1. Basic notation. Throughout the text let k be a field of characteristic 0. If*
{xi,..., xg } is an alphabet, then <x > denotes the free monoid over x and 1 6 <x >
denotes the empty word. Let k<x> be the free k-algebra of noncommutative
(nc) polynomials. By k<x>+ we denote its subspace of nc polynomials with
zero constant term. For w e <x> let | ?/; | e N denote the length of w and

<x>h {w <x>: \ w\ h}. If y is another alphabet and x fl y 0, then
for w 6 <x U y> let \w\y denote the number of occurrences of elements from y
in w. Lastly, ~ denotes the cyclic equivalence relation on words, i.e., w i ~ w2 if
and only if there exist words u and v such that W\ uv and w2 vu. Equivalently,
uq is a cyclic permutation of w2.



Vol. 92 (2017) Pencil loci and rational function domains 109

2.1.1. Free locus of a linear pencil. If A\,..., Ag e Md (k), then

8

L I — ^4,1, e Md(k<x>)
i=i

is called a monic linearpencil of size d. We write L La if we want to emphasize
which coefficients appear in L. The evaluation of L at a point X (X\,..., Xg) e

Mn(k)g is defined using the (Kronecker) tensor product

g

L(X) /<g)/-^ A, <g> X, e Mnd(k).
i=i

The free (singular) locus of L is the set

2f(L) |J 2fn(L), where %,(L) {X e M„(k)8: det(L(X)) 0}.
neN

(2.1)
Clearly, each fXn(L) is an algebraic subset of Mn(k)g.

2.2. Noncommutative rational functions. We introduce noncommutative rational
functions using matrix evaluations of formal rational expressions following [22,25],
Originally they were defined ring-theoretically, cf. [7, 15], A syntactically valid
combination of nc polynomials, arithmetic operations +, •,

_1 and parentheses
is called a noncommutative (nc) rational expression. The set of all nc rational

expressions is denoted TZ^.(x). For example, (1 + xfxx2) + 1, xi + (—xi) and 0-1

are elements of 7^fc(x).
Every polynomial / e k<x > can be naturally evaluated at a point A e Mn (k)?

by replacing x, with /l and 1 with I; the result is /(A) Mn (k). We can naturally
extend evaluations of nc polynomials to evaluations of nc rational expressions. Given

r e 77k (x), then r(A) is defined in the obvious way if all inverses appearing in r
exist at A. Let dom„ r be the set of all A e Mn(k) such that r is defined at r. Then
the domain of a nc rational expression r is

dorn r |^J dom„ r
neN

and r is non-degenerate if domr ^ 0.

On the set of all non-degenerate nc rational expressions we define an equivalence
relation r\ ~ r2 if and only if n(A) r2(A) for all A domr! n domr2.
Then noncommutative (nc) rational functions are the equivalence classes of non-
degenerate nc rational expressions. By [25, Proposition 2.1] they form a skew field
denoted kfxf. It is the universal skew field of fractions of k<x> [15, Section 4.5].
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For r e let dorn« r be the union of dorn,, r over all representatives r TZy(x)
of r. Then the domain of a nc rational function r is

2.2.1. Realizations. Let k-fx4o C k-fx^ denote the local subring of nc rational
functions that are regular at the origin:

A very powerful tool for operating with elements from k-fcxr^o is realization theory.

Such a triple (c, L, b) is called a realization of r of size d. We refer to [8,22] for a

good exposition on classical realization theory; also see [40] for realizations about

arbitrary matrix points which can consequently be applied to arbitrary nc rational
functions.

Let us fix r e k^x^-0- In general, r admits various realizations. A realization
of r whose size is minimal among all realizations of r is called minimal. The

following facts comprise the importance of minimal realizations.

(1) Minimal realizations are unique up to similarity by [8, Theorem 2.4]. That is, if
(c, L, b) and (c', L', b') are minimal realizations of r of size d, then there exists

P e GL^(k) such that c' P~'c, V PLP~l andb' Ph.

(2) If (c, L, b) is a minimal realization of r, then

by [24, Theorem 3.1] and [41, Theorem 3.10],

(3) By [8, Section II.3], there is an efficient algorithm that provides us with a minimal
realization of r.

Hence the domain of a nc rational function regular at 0 can be described as a

complement of a free locus. Similar result also holds for an arbitrary rational
function [40, Corollary 5.9],

3. Inclusion problem for free loci

k-^x^-o {r e k-£x^:0 domr}.

domr (J {X e Mn(k)8: det(L(X)) ^ 0} 3f(L)c

In this section we investigate when free loci of two linear pencils are comparable.
The main results are the Singularitätstellensätze 3.6 and 3.11. Theorem 3.6 shows
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that inclusion of free loci is equivalent to the existence of a homomorphism between

semisimple algebras associated to the two pencils. Theorem 3.11 proves that (under
natural minimality assumptions) two pencils with the same free locus are similar,
i.e. one is a conjugate of the other. Our main technical ingredient in the proofs is the

algebraization trick of Subsection 3.1, which relates properties of a linear pencil to

properties of the matrix algebra generated by the coefficients of the pencils.

3.1. Algebraization trick. Lemma 3.1 will be used repeatedly in the sequel to pass
from a pencil LA to the k-algebra A generated by matrices Ax,..., Ag.

Lemma 3.1. For every f £ lk<x>+ and Xi,Y £ Mn(k) there exist N e N and
X- e Mn (k) such that

dimker(L^(A) — f(Ä) <g> Y) dimkerL^(A') (3.1)

for all d £ N and A,- £ M^(k).

Proof. We prove a slightly stronger statement: for every / £ k<jc>+, he N and

Xx,..., Xg, Z\,..., Z/j, Y £ Mn (k) there exist N e N and X[,..., X'g, Z[,..., Z'h

£ Mn (k) such that

dimker(A, Z) - f{A) ®Y) dimker LA,c(X', Z') (3.2)

for all d £ N and A\,..., Ag,C\,... ,Ch e M^(k), where LA,c{x,z) —

I - AiXi - J2k Ckzk.
First observe that

£ ker <^> u2 e ker(M - M2MX), ux -Mxu2

for all matrices M, Mx, M2 of consistent sizes and therefore

dimker(M — M2MX) dimker

If the stronger statement holds for / and g, then it also holds for af + ßgfora,ß e k
since

dimker(LA,c(X, Z) - {af + ßg){A) <g> Y)

dimk&r{LA Cj(A) {X, Z, aY) - g(A) ® ßY)
dim ker LA,Cj{A){X', Z', Y')
dim ker{LA,C{X', Z') - f{A) ® Y')
dimker LA>C{X", Z")

for appropriate X-,Z'j,Y' £ M(k) and X",Z" £ %2(k) that exist by
assumption. Hence it suffices to establish the statement for / w e <x> \{1}.
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We prove (3.2) by induction on |iu|. The case |u;| 1 is clear, so assume that (3.2)
holds for all words of length I > 1. If w x} v for |u| £, then

dimker(L^5c(^ Z) — w(A) <g> 7)

— dimker I®1 ~u(y4) ® 1 \
V_/1^7 LA,c(X,Z))

dim ker (l^,c (q °j (° °) - A, ® °) - v(A) ® (°
dim ker LA,c(X', Z')

for some X[, Z'} e Mby (3.3), conjugation with an invertible matrix, and the

induction hypothesis.

As it follows from the proof, the number N in the statement of Lemma 3.1 can be

bounded by a function which is polynomial in n and exponential in the degree of /
and number of terms in /.
Corollary 3.2. If 2?(LA) c 2T(LB), then 2?(LA - f(A)y) c jT(LB - f(B)y)
for every f k<x>+.

Proof. If (7, 7) e fZ(LA — f{A)y), let X' be as in Lemma 3.1. Then A' e 2f(LA)
and therefore X' e £X(Lb) by assumption, so (X, Y) SX(Lb — f(B)y) since the
choice of X' is independent of the pencils LA and Lb-

3.2. Jointly nilpotent coefficients. The question whether an evaluation of a

pencil La(x) is invertible might be independent of some of the variables in jr. In this
subsection we show that in this case their corresponding coefficients in LA generate
a nilpotent ideal. Moreover, we provide explicit polynomial bounds originating from
the theory of polynomial trace identities [34] and bounds on lengths of generating
sets of matrix subalgebras [32] to check whether this happens.

Let A be a (possibly non-unital) finite-dimensional k-algebra. If S c A is its

generating set, then we define the length of S as

£(S) — min 1/ e N: SJ linearly spans A
*

7 1

Here SJ is the set of all products of j elements of S. Denote

d 1,

d > 2.
A (d) WfS + j + f"2

By [32, Theorem 3.1] we have £(S) < A(d) % V2d3^2 for every generating set S

of A c Md(k).
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In the sequel we also require the following notion. For g, n e N let

k[$] k^: 1 < i < g, 1 < i, j < n

be the ring of polynomials in gn2 commutative indeterminates. The distinguished
matrices

are called the generic n x n matrices [11, Section 6.7].

Proposition 3.3. Let A c (k) be the k-algebra generated by

Au...,Ag,Ni,...,Nh e Md(k),

and letN c A be the ideal generated by N\,..., Nh- Ifm > X(d) and

det (la{X) det(L^(X)) (3.4)

holds for all X,,Yj e Mm (k), then J\f is a nilpotent ideal in A.

Conversely, ifAf is nilpotent, (3.4) holds for all X,, Yt 6 Mn{k) and n e N.

Proof. Assume (3.4) holds. Let S, be generic m x m matrices. As a matrix over the

ring of formal power series k [[£]], L^(E) is invertible and

La{S)"1 ^ w(A) (g> ui(E) (3.5)
W<X>

by the Neumann series expansion. Then (3.4) implies

det^/ <8>/ - ® 10^^(3)-^ 1

for every Y, e Mm(k). In particular, for

p(o det(/®/-t(y>7 ekmm

we have p(t) 1, so (£^ Nj 0 Yj)La(E)_1 does not have nonzero eigenvalues
and is therefore a nilpotent matrix. Hence Qfj X, 0 TJ)LA(l2)~1 is nilpotent,
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where Tj are generic m x m matrices, so

CMH

0 tr(((Z]^ ® T/')( ® u?(S)

y, w(A, N) <g> tu(E, T) J

K>~V <X>. 'wey<x>—y<x>,
\w\y=l

y tr(w(A,N))tr(w(Z,T))
w .y<x>—y <x>,

\w\y=l

y fiwtr(w(A,N))tr(w(3,T))
[w]e<xUy>/~,

\w\y=i

for every I e N, where 0 < p,w — |[w] fl y <x> • • y <x> | for w e <jc U y >
with | w |j, I. Here [w] denotes the equivalence class of w with respect to For

every he N, the pure trace polynomial

Ph E fiw lx(w(A, N)) tr(w)
[w]e<xUy>h/~,

\w\y>0

of degree h therefore vanishes on all tuples of m x m matrices. By [34, Theorem 4.5,

Proposition 8.3] we have Ph 0 for all h < m. Therefore tr(u;(4, N)) 0 for

every w e <x U y>h with |u;|j, >0 and h < m. Since m > A(d), the discussion
above implies that

{w(A, N): 1 < |u;| < 777, |u;]j, > 0}

linearly spans J\f. Therefore tr(w(A, N)) Ofor every w e <a:Uy> with |u;|j, > 0,

hence J\f c A is a nilpotent ideal.

Conversely, suppose M is nilpotent. Let k be the algebraic closure of k.
Burnside's theorem on the existence of invariant subspaces [11, Corollary 5.23]
applied to A <8>k k yields a vector space decomposition

k^ Ux © • • • © Us (3.6)

such that AUk Q U\ © ••• © and n/AA ®k k)i/c is either {0} or End^f/fc),
where -» k and ' k —> Uk are the canonical inclusion and projection,
respectively. We claim that MUk c f/i © ••• © Uk-i', indeed, if (NU^) n
Uk 7^ {0}> then the simplicity of End^f/^) implies I e niAM <8>k k)qt, which is a

contradiction since A/* ®k k is nilpotent.
Because the determinant of a block-upper-triangular matrix is equal to the product

of determinants of its diagonal blocks, the decomposition (3.6) and the structure of
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the Kronecker product imply

det (]La(X) — Nj <8>Yj \ det(LA(X))
j

for all Xt,Yj e Mn(k) and all n e N.

Corollary 3.4. If L is a monic linear pencil, then L(X) is invertible for all matrix
tuples X ifand only if the coefficients of L are jointly nilpotent.

Of course, just assuming that L(a) is invertible for all scalar tuples a e kg does

not imply that coefficients of L are jointly nilpotent. For example, if
/0 1 0\ /0 0 -1\

L / — I o o o n- l o 0 x2,
\1 0 0/ \0 0 0 /

then every linear combination of the coefficients of L is nilpotent and hence

IA\ (L) 0, but the coefficients are not jointly nilpotent. For an investigation of
linear spaces of nilpotent matrices see e.g. [29].

3.3. Singularitätstellensatz. This subsection contains the main result of this
section. Theorem 3.6 translates the inclusion between two free loci (LA) c A'(LB)
into a purely algebraic statement about algebras generated by the matrices At and Bt.

For a (possibly non-unital) finite-dimensional Ik-algebra TZ let rad TZ be its largest

nilpotent ideal; we call it the (nil)radical of TZ. If 7Z ^ rad 7Z, then 7Z/ rad 7Z is

semiprime and hence semisimple [11, Theorem 2.65]. Note that such a ring contains

a multiplicative identity 1 and that an epimorphism of unital rings preserves the

identity.

Remark 3.5. Let N e Mn{k) and consider p det(7 — tN) e k[t]. Then N is

nilpotent if and only if p 1. This is furthermore equivalent to

p(T) det(I ® I - T ® N) J:0
for all T e Mn (k) because the companion matrix associated to p is of size deg p <n.
If k is an algebraically closed field or a real closed field, then it of course suffices to
test p(T) f 0 for all T e k or T e M2(k), respectively.

Theorem 3.6 (Singularitätstellensatz). Let A c (k) he the subalgehra generated
by A\,..., Ag and let B c Me(k) be the subalgebra generated by B\,..., Bg.
Then A'(La) £ °X'(Lb) if and only if there exists a homomorphism of h-algebras
B/ rad B A/ rad A induced by Bl i-* At.

Proof. (=>) It suffices to prove that for every / e k<x>+, f(B) e rad B implies
f(A) e rad A. If f(B) generates a nilpotent ideal in B, then

2f(LÄ ~ f(A)y) c 2f(LB - f(B)y) 2?(LB - 0 y) (3.7)

by Corollary 3.2 and Proposition 3.3.
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For n N let S,, T be n x n generic matrices and let

p det (L^E) — f(A) 0 T).

Suppose there exist 1 < io, jo < n such that §7 ^ 0, where t (T);o7o. Because k
is infinite, there exist Xl e M„(k) and atJ e k for all i A io and j A j0 such that

det(Lß(Z)) ^0, ^(X,a,t)^0.
at

Let q p(X, a, t) e k[/]; since q is non-constant polynomial of degree at most nd,
there exists T e Mnd(k) such that q(T) 0 by Remark 3.5. Now let V e Mnid (k)
be a block n x n matrix such that its (/, /)-b!ock equals T if i i0 and / j0,
and at/1 otherwise. Then

dzt(LA(X 0 /) - f(A) 0 Y') 0,

which contradicts (3.7) since det(Lb(X 0 /)) A 0.

Hence the free locus of I — AiX, — f(A)y does not depend on y and so

3?{La — f(A)y) (LA — 0 y). Therefore /{A) generates a nilpotent ideal in A
by Proposition 3.3.

(<=) Let <3; and b, be equivalence classes of /l,- and Bj in A/ rad A and B/ rad B,
respectively, and assume there is a homomorphism cj) : B/radB A/ rad A
satisfying <p(bi) a,. Suppose det(Lb(X)) ^ 0 for X e Mn(k)s. Then there

exists p e k[f], p{0) 0, such that p (/ 0 I ® %i) I ® I by the

Cayley-Hamilton theorem. Let q(t) p{\ — t) — p{\)\ then q{0) 0 and

q (J2i Bi ® Xi) (1 + q(l))I 0 I If g(l) A —1, then I 0 I e Mn{B) and

hence I e B, so

q{ x>) C1 + ^f(1))1ß/radß <8>k / e (B/radB) 0k Mn(k);
^ I '

On the other hand, ifq(\) —1, then q Bl 0 Xt) 0 and sog (J2i bi ®k x^) =0
Since </>(lg) 1a, both cases imply

q( ^^ 0,k Z, j (1 +^(l))l^/rad^<8>k I e {A/rad A) 0k M„(k).
i

Consequently q A, 0 Z,) (1 + q{Y))l 0 / + N for some N e Mn{vadA)
and therefore p (/ 0 / — At 0 Z,) / 0 I + N, so det(L,i(Z)) ^ 0 since N
is nilpotent. Thus 3X(LA) c 3?(Lb)- D

Remark 3.7. Let Lx and L2 be monic linear pencils of sizes d\ and d2, respectively.
By Proposition 3.3 and proofs of Lemma 3.1 and Theorem 3.6 one can derive
deterministic bounds on size of matrices Zx,..., Xg for checking 33(L\) c 33 (L2)
that are exponential in g and max{d\, d2\.



Vol. 92 (2017) Pencil loci and rational function domains 117

From here on we write A (resp. B) for the (possibly non-unital) k-algebra
generated by the coefficients Ai,...,Ag (resp. B\,..., Bg) of the pencil La
(resp. Lb).

Corollary 3.8. Let the notation be as in Theorem 3.6. Then 2T(La) (Lb) if
and only if there exists an isomorphism A/ rad A —> B/ rad B induced by At B,.

The validity of £¥(La) (7 3?(Lb) can now be effectively tested. Using
probabilistic algorithms for finding the radical of a finite-dimensional algebra (see

e.g. [14]) we first reduce the problem to the case where A and B are semisimple.
Then we find t < A(max{d,e}) such that (u;(^4): 1 < |w| < 1} linearly spans A
and {w(B): 1 < |u;| < 1} linearly spans B. Next, we determine the linear relations
between the elements of {w(B): 1 < |u>| < I + 1}. Finally we check whether they
are also satisfied by {w(A): 1 < [it;| < I + 1}.

3.4. Irreducible free loci. In this subsection we discuss irreducible components of
free loci and how they correspond to the Artin-Wedderburn decomposition of the

semisimple algebra A! rad A assigned to a pencil La-

Remark 3.9. Let A be a finite-dimensional simple k-algebra. Then A Mm(A) for
some finite-dimensional division k-algebra A. Up to isomorphism there is exactly
one simple unital left A-module, namely Am, and every unital left ^.-module is

isomorphic to a direct sum of copies of Am. Let 8 m dim^ A; then there exists an

irreducible representation p : A -» Ms(k), which is unique up to conjugation by the

Skolem-Noether theorem [11, Theorem 4.48], and every representation of A factors

through it.

We will also use the following refinement of the Skolem-Noether theorem.

Lemma 3.10. For 1 < j < s let p3 : A^ Mdj (k) be an irreducible

representation of a simple "k-algebra A^J\ If i : A^ x ••• x A^ —> (k)
is a unital embedding, then there exists P GL^ (k) such that

Pi(a)P~l (/ <g> pi (a)) © • • • © (/ ®ps(a)) Md(k) Va g A^ x---x„4(,s).

Proof. Consider vector subspaces U} im for 1 5 / £ ,v; it is easy to
check that U\ © • • • © Us, i(A^)Uj c Uj and t{A^)Uj' 0 for j' A jHence we have a unital embedding A^ —End^ (Uj). By the Skolem-Noether
theorem there exists Pj e EndAUj) such that

pjl\AO)(aJ)P~1 I 0 Pj(aj)

for all ay G A^. If Pq e GL^(k) is the transition matrix corresponding to the

decomposition kd U\ © • • • © Us, then let P Pq{P\ ® • • © Ps).

A pencil L is minimal if it is of the smallest size among all pencils whose free
loci are equal to A"(L). (Note: (i) a pencil of a minimal realization is not necessarily
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minimal; (ii) a realization with a minimal pencil is not necessarily minimal.) A
minimal pencil La is irreducible if A is simple.

Theorem 3.11. Let La and Lb be minimalpencils ofsize d and assume that A and B
are semisimple. Then LA {La) A(Lb) if and only if there exists P e GL^ (Ik)

such that Bi PA, P~l for i 1,..., g.

Proof. If A'(La) A (Lb), then d e by minimality. As elements of Mci (k),
1a and 1b are idempotents. If for example 1a were a nontrivial idempotent, then

the restriction and projection of matrices A, to subspace im Ia would yield a smaller

pencil with the same free locus, which contradicts the minimality assumption. Hence

1^ ls /. By Corollary 3.8 and semisimplicity we have

A C(1) x-xC(!) % B

for some simple algebras C0) and isomorphisms (pi, <p2 satisfying (p2(ppx (A;) Bt.
Let pj : C(J) —> Mdj (k) be an irreducible representation of C- A By Lemma 3.10
and minimality there exist P\, P2 e GLt/(k) such that

Px<pi(c)Pfl pi(c) ® • • • © ps(c) P2<p2(c)Pfl

for all c e C*-1-* x • • • x (AA Therefore P Pfl P\ satisfies Bi PA, P_1.

A free locus is irreducible if it is nonempty and not a union of two smaller free

loci. Note that A(L 1 ® L2) A(L\) U A(L2).

Proposition 3.12.

(i) If A/ rad A is isomorphic to the product of s simple algebras, then A(La)
has exactly s irreducible components.

(ii) Every irreducible free locus equals A(L) for some irreducible L.

Proof, (i) Let <p : A/ rad A —> A*-1' x • • • xA^ be an isomorphism to a direct product
of simple algebras A^J'. Let A|7' be the image of At under the homomorphism A —

jfj) Mjj (k), where A^J' -> (k) is an arbitrary faithful representation.
Then Corollary 3.8 yields

A(La) A(LAW(B...eA^) A(LaW) U • • • U 2f(LA&).

Also, yd A j2 implies A(LaoL>) A A(Lau2))- Otherwise there would exist

an isomorphism 1fr : A*-"' —> A*72^ given by A j71
^

m* A^J2\ If <pj1 jrh (p

and <pJl Jiji cp, where n, : A(1) x • • • x A(i) —> A(/) is the natural projection,
then (pj2 f(pj\ and so cpJl (f(A)) 0 if and only if cpJ2(f(A)) — 0 for every

/ e k<x>+, which contradicts the surjectivity of (p. Hence it suffices to prove
that A(La) is irreducible if A is simple.
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Suppose 2?(La) 2?(La') U 2L(La") 2f(LA'®A") and let B be the algebra
generated by matrices A[ ® 4". Then A B/ rad B by Corollary 3.8, hence there
is an embedding

A^(A'x A")/rad {A! x A") (A' /rad A') x (.47 rad .4")

such that the induced homomorphisms A —> A!/ rad A' and A —> A"/ rad A"
are surjective. Since A is simple, the induced map A —> A!/ rad A' is trivial or
injective. In the latter case A A'/ rad A! via 4, Af so Theorem 3.6 implies

(La) 3?{La')- Since J2°(La) 0, Theorem 4.2 implies that .4'/rad .4'
and A"/ rad A" cannot be both trivial, so we conclude that A'(La) L^(La') or

(La) 2L(La")- Therefore 2?(La) is irreducible.

(ii) If L¥(Lb) is irreducible, then B/ rad B A is a simple algebra by (i). By
Remark 3.9 there exists an irreducible representation A —> M(/ (k). Set 4,- to be the

image of Bl under the homomorphism B —A —»• Mci (k); then La is the desired

irreducible pencil.

The radical of a finite-dimensional algebra and the Wedderburn decomposition of
a semisimple algebra can be computed using probabilistic algorithms with polynomial
complexity [18,19]. By Proposition 3.12 we can therefore efficiently determine
irreducible components of a free locus. In a forthcoming paper it will be shown that

if k is algebraically closed and 2f(L) is an irreducible free locus, then 2Ln(L) is an

irreducible algebraic set in Mn(k)s for sufficiently large n e N.

4. Domains of noncommutative rational functions regular at the origin

In this section we shall explain how our results on free loci pertain to domains

of nc rational functions. The main results are Corollary 4.1 and Theorem 4.6.

While Corollary 4.1 relates the inclusion of domains of nc rational functions to

homomorphisms between the algebras associated to their minimal realizations,
Theorem 4.6 analyzes the precise structure of nc rational functions with a given
domain.

Recall that [k-fi-vTo C Ik 4*4 denotes the local subring of nc rational functions
that are regular at the origin. As explained in Subsection 2.2, the domain
of r e k-fixTo is the complement of the free locus of a pencil corresponding to
the minimal realization of r by [24, Theorem 3.1]. Hence Theorem 3.6 yields the

following result about comparable domains of elements in k-fix To-

Corollary 4.1. For r, r; e k-fix4o let (c, La, b) and. (c', La', b') be their minimal
realizations. Then domr c domr' if and only if there exists a homomorphism of
k-algebras A/ rad A -> A'/ rad A' induced by 4, i-> Af
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4.1. Regular nc rational functions. In this subsection we prove that every regular nc
rational function, i.e. one that is defined at every matrix tuple, is in fact a polynomial.
While this can be already deduced from Corollary 4.1, we present a more precise
proof which gives us explicit polynomial bounds for testing whether a nc rational
function is a polynomial.

Theorem 4.2. Let .r be a nc rational function with minimal realization ofsize d and
let

X (d) k is an algebraically closed field,
m 2X(d) k is a real closedfield,

dX(d)2 otherwise.

Ifdornm i° MmQX)8, then r is a nc polynomial of degree at most d — 1.

Proof Let (c, L^,b) be the minimal realization of ir about 0, i.e. r cL^'b.
By [24, Theorem 3.1], det{La{X)) ^ 0 for every Xt £ Mm(k). In particular,

det ^7 0 / - T <g> Ai ® F«) + 0

for all Yi £ Mx(d){k) and T £ Mfc(k) with k < jffij- Hence A, <g> Yx is a

nilpotent matrix by Remark 3.5 and thus

det (/ 0 I — ^ 0 Yi^j 1

for all Yl e Mx{d)(.k)- By Proposition 3.3, the algebra generated by A\,..., Ag is

nilpotent, so

r c(l-^2,Atx\ b b
^

I
' j=o ^ l

'

is a polynomial.

4.1.1. Douglas' lemma for nc rational functions. Douglas' lemma [17, Theorem 1]

is a classical results in operator theory. Its finite-dimensional version states that for
A, B Mn(C) we have A A* < BB* if and only if there exists C £ Mn (C) with
||C || < 1, such that A BC. As an application of the characterization of regular
nc rational functions we give a version of Douglas' lemma for nc rational functions.

Corollary 4.3. Lett,§ e C-^ar^-. Then

r(Z)*r(Z) < §(A)*§(A) for all X e domr n doms (4.1)

ifand only if there exists X £ C, |A| < 1, such that r As.
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Proof. If § 0, then r 0, so we can assume that § f 0. Denote

V dorn r D dom § fl dom §_1.

By (4.1),
< I VX V.

Let IF r§_1; then domff 2 T> and ||f(V)|| < 1 for all X £ V. By definition,
V fl Mn (C)s is Zariski open in Mn (C)g and nonempty for infinitely many n e N, so

boundedness implies dom„ ff Mn(C)g for infinitely many n e N. Consequently ff

is regular everywhere, so it is a polynomial by Theorem 4.2. Since it is bounded in
norm by 1, it is constant by Liouville's theorem, so r§_1 leC and |A| < 1.

4.2. Characterization ofnc rational functions with a given domain. Let D onto

{domr:r e k-^xAo}- A set in Domo is co-irreducible if it is not an intersection
of two larger sets in Domo- Thus a domain is co-irreducible if and only if it is the

complement of an irreducible free locus. A nc rational function r e "kfxfo is

irreducible if it admits a realization (c, L, b) with L irreducible. Note that such a

realization is automatically minimal by Remark 3.9.

Proposition 4.4. If r is irreducible, then dorn r is co-irreducible. Conversely, for
every co-irreducible set D G Domo there exists a unique de N and a pencil L of
size d such that irreducible rational functions whose domains are D are exactly of
the form

c?L_1b, b,cek^\{0}.

Proof. The first part follows from Proposition 3.12. Nowletir e lk-(:xTo and suppose
that D domr' is co-irreducible. If (c', La>, b') is a minimal realization of r',
then A'/ rad A! is simple by Proposition 3.12. Fix some irreducible representation

p : A/ rad A' —^ M^(k). Let A; be the image of A- under the homomorphism
A' Md(k) and set L La- Then D is the complement of A(L) by
Corollary 3.8 and D dom(C L x

b) for every b, c ^ 0. On the other hand,

if it" is an irreducible function with domr D and (c", La", b") is its minimal
realization, then fX{L) 2f(LA") and so A" PA/P-1 for some P e GL^(k)
by Theorem 3.11. Hence r (P'c")L~1(P~1b").

Let TZ(D) be the set of irreducible functions whose domains equal D. If we
adopt the notation of Proposition 4.4, then the elements of 7Z(D) are exactly nonzero
linear combinations of d2 linearly independent irreducible functions e'L_1ey for
1 < i,j < d.

The next lemma is essentially a version of Wedderburn principal theorem [37,
Theorem 2.5.37] for (possibly non-unital) k-subalgebras in M^(k).
Lemma 4.5. Let A c M^(k) be ah-algebra, A! rad .A A^'x-'xA'5' withA^
simple, and let pj : A^ —> M(jJ (k) be irreducible representations. Then there exist
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a subalgebra S c A and P £ GL^ (k) such that A S © rad A (as vector spaces)
and PSP-1 is precisely the image of

(/®pi)X-X(/®Pj) c Md(k).

Proof. If A is unital, then Wedderburn's principal theorem yields the decomposition
A S © rad A, where S c A is a subalgebra. If A is not unital, let .4* be
the unitization of A [11, Section 2.3]; i.e. A^ k © A, A is an ideal of A$ and

rad A^ rad A. Hence A^ S' © rad A$ by Wedderburn's principal theorem and

therefore A A D (S' © rad A) (Ad S') © rad A,soS A n S' is the required
subalgebra.

Since S is semisimple, it has the multiplicative identity 15. Let U kerl5 and

V im ls. Then kd U ® V, SU 0 and SV c V. Therefore we have a unital
embedding

A(1) x x A(s) ^5c Endk(L),

so Lemma 3.10 applies.

Theorem 4.6. Letr e k-^x^o- Then domr DiC\- Ds for some co-irreducible

Dj e 2)omo and r is a nc polynomial in x U 1Z{D\) U • • • U 7Z(DS) of degree at
most d, where d is the size of the minimal realization of r.

Proof Let (c, La, b) be a minimal realization of r. Then dorn r is a finite intersection
of co-irreducible domains by Proposition 3.12. Let A S © rad A and P e GLj(k)
be as in Lemma 4.5. Write A, S, + Nt with respect to this decomposition and

set S £, x, and N £, N,x,. As a matrix over the ring of noncommutative
formal power series k«A», LA I — S — N is invertible and

OO

L-/ (/ - S)"1 (/ - N(I - S)-1)"1 (/ - S)-1 £ (N(I - sy1)'.
J=o

Since (rad A)d 0 and consequently

(OO
d

Y,NS1) °.

j =0
'

we have
d-1

l~y {i - - srxY
7=0

Therefore r is a polynomial of degree d in x and the entries of (/ — S")-1. Let

PS, P~l 0 © (/ <g> A;(1)) ©••©(/ ® 4^).
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By the construction, is a simple algebra and LAu) is a simple pencil. Since

(I - S)-1 P~l (/ © (/ 0 L~aw) ©••©(/ 0 L~{s)))p,

the entries of (1 — S)~l are polynomials of degree at most 1 in the elements of
TZ(Di) U • • • U 7Z(DS) by Proposition 4.4.

Example 4.7. Let {x,y} be our alphabet and consider rational functions

n (1 - x - y(l - x)-1y)-1(l + x(l - x + y)"1)

(\ — x —y 0 Yl (0\
(0 1 0) -y 1 - x -x 1

V 0 0 1-x + y/ V1/

r2 (1 — x — y)_1(l - x)(l - x - y)-1 + (1 - x - y)_1x(l - x + y)-1

/l-x-y -y -x \_1 /0\
(110) 0 1-x-y 0 1.

V 0 0 1-x + y/ \1/
It is easy to check that the given realizations are minimal, so

domri domr2 domsj fl dom§2,

where §i (1 — x — y)-1 and §2 (1 — x + y)-1 are irreducible functions. It
is evident that r2 §i ((1 — x)§i + x§2) is a polynomial in x, §i, §2. On the other
hand, it becomes clear that ri is a polynomial in x, §i, §2 only after we rewrite it as

n |((1 - X - y)"1 + (1 - X + y)_1)(l + x(l - X + y)"1)

®2)(1 + XS2).

5. Symmetric and hermitian pencils

In the final section we turn our attention to pencils with symmetric and hermitian
matrix coefficients. Here the free loci are defined with tuples of symmetric and

hermitian matrices, respectively. We call them free real loci. We investigate when
two real loci are comparable; we show that this is equivalent to the existence of
a *-homomorphism between *-algebras generated by the pencils (Theorem 5.4).
The main new ingredients needed to make this work are the theory of hyperbolic
polynomials [20,35] and the real Nullstellensatz from real algebraic geometry [9],
Finally, in Subsection 5.2 we formulate and prove a free (quantum) version of
Kippenhahn's conjecture [26] on simple eigenvalues of hermitian pencils.
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Let Hn(C) c Mn(C) and Sn(R) c M„(M) be the M-spaces of hermitian and

symmetric matrices, respectively. If the coefficients of L are symmetric matrices,
then L is a symmetric pencil and

3f\L) (J iT„s(L), 2%(L) 3Tn(L) n Sn(R)8
neN

is its free real locus. Similarly, if the coefficients of L are hermitian matrices, then L
is a hermitian pencil with free real locus

2f\L) (J 2${L), 2${L) 3Tn(L) n Hn(C)8.
ne N

5.1. Singularitätstellensätze for real loci. In this subsection we prove the *-analog
of Theorem 3.6.

5.1.1. RZ polynomials. Let t and u {wi,..., ug} be commutative indetermi-
nates. Then p G M[h] is a real zero (RZ) polynomial [23] if p(0) f 0 and for every
a G M5", p(ta) G M[t] has only real roots. This is essentially the dehomogenized
version of hyperbolic polynomials that arise in convex optimization [3,35], partial
differential equations [6] and real algebraic geometry [10,27,30],

Proposition 5.1. Let p e R[k] be a RZ polynomial. If q e C[m] and p(a) 0

implies q(a) 0 for all a e then p(a) 0 implies q(a) 0 for all a G C8.

Proof. It clearly suffices to prove the statement for q G R[u], Let p p\ ps,
where pj G M[m] are irreducible. Fix 1 < j < s] then pj is a RZ

polynomial. Since pj is also square-free, there obviously exist a, ß Gl8 such that

Pj(a)pj(ß) < 0. By [9, Theorem 4.5.1], the ideal in R[w] generated by pj is real.

Since pj (a) 0 implies q(a) 0 for all a G Rg, there exists h j e M[k] such that

q hjpj by the Real Nullstellensatz [9, Theorem 4.1.4], Hence qs (h \ • hs) p,
so p(a) 0 implies q(a) 0 for all a G Cg.

5.1.2. Inclusion of free real loci. Each symmetric or hermitian pencil L gives
rise to the RZ polynomial detL. We now use the properties of RZ polynomials
presented above to show that iFs(Li) c ^°S(L2) (or 5°h(Li) c f¥h(L2)) if and

only if .^(Li) c

Proposition 5.2. Let L be a monic pencil.

(i) IfL is hermitian, then ff'^(L) is Zariski dense in 2£n(L) for every n G N.

(ii) IfL i and L2 are symmetric, then

3T(Li) c JTS(L2) =* 3r(Lx) c 2f(L2).
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Remark 5.3. Note that L) is not Zariski dense in An{L) if L is symmetric and

n >2. For example, if 3 J=1 is a 2 x 2 generic matrix, then the polynomial
(1 — £n)(l — £22) — £12 vanishes on Ä^s(l — x) but not on ^(1 — x).

ProofofProposition 5.2. (i) Fix n e N and an element of the coordinate ring
of Mn(C)8, i.e. a complex polynomial q in gn2 variables. Assume that q 0

on 'Zf(L). For every Xl,Yl e Hn(C) let

Px,y '= det(L(uX + vY)) e R[m, d], qxj '•= q(uX + vY) e C[n, »].

By assumption we have

Px,Y(ot,ß) 0 =>• qXj(a,ß) 0 Va,ßeRg.

Since px,Y is a RZ polynomial, Proposition 5.1 implies

Px,Y(a,ß) 0 => qXj{ot,ß) 0 Va,ße£8.

If Z Mn{C)g is arbitrary, then Z ±(Z + Z*) + \i{iZ* - iZ) and Z + Z*,
iZ* — iZ are tuples of hermitian matrices, so q 0 on Xfn (L).

(ii) Let r : <C —> M2(R) be the standard *-embedding of M-algebras. For every
n G N, the ampliation map

in idM„(R) : Mn(C) Mn{R) C M2n(R)

is again a *-embedding. If L\ is symmetric and X e Hn(C)8, then L\(X) is

invertible ifand only ift^„ (Li(A)) Li(in(X)) is invertible. Therefore 25s (L\) c
(L2) implies iFh (L1) c Jr°h (L2) and the conclusion follows from considering L \

and L2 as hermitian pencils and applying (i).

Let La be a symmetric (resp. hermitian) pencil. As before, let A denote the real

(resp. complex) algebra generated by A\,..., Ag. We claim that A is semisimple.
Indeed, suppose that f(A) radA for some / e M<jc> (resp. / e C<jc>). Since

f(A)* e A, we have f(A)* f(A) e rad A. In particular, f{A)*f(A) is a positive
semi-definite nilpotent matrix, so f{A)* f{A) 0 and thus f{A) 0.

Theorem 5.4.

(i) Let La and Lb be symmetric pencils. Then 5X*(La) 5XS(L b) ifand only if
there exists a *-homomorphism ofR-algebrcis B A induced by Bt —> A,.

(ii) Let La and Lb be hermitian pencils. Then 5°h(L^) c ,Zh (Lb) ifand only if
there exists a *-homomorphism of C-algebras B -» A induced by Bt A,.

Proof. Since A and B are semisimple, this assertion is a direct consequence of
Proposition 5.2 and Theorem 3.6.
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Let 0^ C GL^(R) and C GL^(C) be the orthogonal and the unitary group,
respectively.

Corollary 5.5.

(i) Let La and Lb be symmetric minimal pencils of size d. Then 2L&(La)
i2's(Lß) if and only if there exists Q G Oc/ such that B, QA, Ql for
i

(ii) Let La and Lß be hermitian minimal pencils of size d. Then 5°h(L^)
A'h(Lß) if and only if there exists U e such that 5, UAiU* for
i l,...,g.

Proof. We prove just (i) since the proof of (ii) is analogous. If 2Ts(La) 2Xs(Lb),
then by Theorem 5.4(i) there exists a *-isomorphism A —> B given by A, h-> Bj.
The rest follows as in the proof of Theorem 3.11 from the *-version of Lemma 3.10,
which in turn is a consequence of the following claim: if C is a simple M-algebra and

i, t' : C —>• Mci (R) are irreducible ^representations, then there exists Q Od such

that

t'(c) Qt(c)Q~l Vc e C. (5.1)

Indeed, by the Skolem-Noether theorem there exists Q0 e GL^(M) such that (5.1)
holds. Because i and t! are *-homomorphisms,

QoticYQö1 (ßoi(c)öö1)' Qö'^YQo

holds for every c e C. Therefore Q'0Qo lies in the centralizer of i(C) in M^(M).
Since t is irreducible representation, Q'0Qo belongs to the center of Mj(M),
so Q'oQo oil for a > 0 because Q'0Qo is positive-semidefinite. Now
Q -j^Qo £Od satisfies (5.1).

In free real algebraic geometry an analogous result for free spectrahedra

(distinguished convex sets associated to symmetric linear pencils) has been

established in [21] using nontrivial operator algebra techniques, e.g. Arveson's
noncommutative Choquet boundary [1].

5.2. Kippenhahn's free conjecture. Kippenhahn's conjecture [26, Section 8] can
be restated as follows: if H\, H2 G Md(C) are hermitian matrices that generate
Md(C) as a C-algebra, then there exist a\.a.2 £ M such that the dimension of the

kernel of I — oq H\ — a2#2 is exactly one. While this conjecture has been established
for matrices of small size [13,38], it is false in general by [28], However, we prove it
is true in a free setting.

Corollary 5.6. If A\,..., Ag e Md(k) generate M^(k) as k-algebra, then there

exist n e N and X\,..., Xg e Mn (k) such that dim ker La (X) 1.
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Proof. By assumption there exists / 6 k<jc>+ such that f(A) E\A. By
Lemma 3.1 there exist X,- e Mn{k) such that

1 dimker(7 — Z?i,i) dimker (I — ^0-A, — 1 • f(A) J dimkerL,i(X).
^ i '

5.2.1. Hermitian case. The original Kippenhahn's conjecture deals with hermitian
matrices and their real linear combinations. Likewise, the free version can be

strengthened for hermitian pencils.

Corollary 5.7. IfA\,.... Ag e (C) generate Mci(C) as C-algebra, then there

exist n e N and X\,..., Xg £ //„(C) such that dimker LA(X) 1.

Proof The set

On {X £ 2fn(LA):dimk&rLA(X) 1}

is Zariski open in 3fn(LA) and nonempty for some n e N by Corollary 5.6. Since

3Pf(LA) is Zariski dense in .%, (LA by Proposition 5.2, we have

On n 3f„(LA) ^0.
Similar reasoning as in Remark 3.7 implies that n e N from the statement of

Corollary 5.7 can be bounded by an exponential function in g and d.

5.2.2. Symmetric case. Let LA be a symmetric pencil. In contrast to the hermitian
case in Proposition 5.2(i), .°^{LA) is not Zariski dense in s¥n(LA) for n >2. Hence

we cannot use the same arguments as in Corollary 5.7 to prove the real version of
Kippenhahn's free conjecture. Nevertheless, we can at least deduce the following.

Corollary 5.8. If A Ag e Sj (M) generate (M) as M.-algebra, then there

exist n e N and X\,.... Xg e Sn(K) such that dimker LA(X) 2.

Proof Since A\,..., Ag generate M^(IR) as M-algebra, they also generate M(/(C)
asC-algebra. Hence there exist X\,..., Xg £ Hn(C) such that dimker LA(X) 1

by Corollary 5.7. If in : Mn(C) M2n(^) is the *-embedding of M-algebras from
the proofofProposition 5.2(ii), then iiX,) e S2„(M) anddimker La{l{X)) 2.

Acknowledgements. The authors thank Bill Helton and Scott McCullough for
valuable comments and suggestions.
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