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Fundamental domains and generators for lattice Veech groups

Ronen E. Mukamel*

Abstract. The moduli space QMg of non-zero genus g quadratic differentials has a natural

action of G GL^~(R)/(± (q ")). The Veech group PSL(Z,q) is the stabilizer of (X, q) e
QMg in G. We describe a new algorithm for finding elements of PSL(Z, q) which, for
lattice Veech groups, can be used to compute a fundamental domain and generators. Using
our algorithm, we give the first explicit examples of generators and fundamental domains for
non-arithmetic Veech groups where the genus of H/ PSL(Z, q) is greater than zero.

Mathematics Subject Classification (2010). 32G15, 30F30.

Keywords. Riemann surfaces, Teichmüller theory, Veech groups.

1. Introduction

Fix an integer g > 2 and let A4g be the moduli space of genus g Riemann surfaces.

The space A4g is a complex orbifold and carries a complete, Finsler Teichmüller
metric whose geodesies are explicitly described by Teichmüller's theorem. The

bundle Q AAg —> AAg of holomorphic quadratic differentials consists of pairs (X, q)
where q is a non-zero holomorphic quadratic differential on X e A4 g. The geodesic
flow on AAg gives an M-action on QA4g which, together with the C *-action fixing X
and rescaling q, generates an action of G GL^(R)/ (± ")) on QAAg.

The Veech group PSL(Z, q) is the stabilizer of (X. q) in G. There are many
examples of surfaces whose Veech groups are known to be complicated [7,8,11,17].
There are few examples of Veech groups that have been described in their entirety.
For instance, each integer D > 5 congruent to 0 or 1 mod 4 determines a quadratic
differential (Xo,qD) in QAAi as in Figure 3 whose Veech group is a lattice in
PSL2(R) [5, 10]. The homeomorphism type of M/ PSL(Vö, qo) is determined
in [2, 12, 13] but little else is known about PSL(Z£>, qr>) outside of some small
values for D.

The purpose of this paper is to introduce girth differentials and use them to study
the group PSL(X, q) and the quotient H/ PSL(Z, q). We will describe an algorithm

*The research for this paper was supported in part by grant DMS-1103654 from the National Science
Foundation.
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for finding elements of PSL(X, q) which, for lattice Veech groups, gives generators
for PSL(X, q) and a fundamental domain for the action of PSL(Z, q) on H. Using an

implementation of our algorithm in Sage [14], we compute the first explicit examples
of fundamental domains and generators for non-arithmetic Veech groups where the

genus of H/ PSL(X, q) is greater than zero.

Theorem 1.1. Fundamental domains and generators for PSL(X/), qo) are encoded

in Table 1 for D 44, 45, 48, 52, 53, 56, 57, and 60.

The discriminant D 44 is the smallest discriminant giving rise to a positive genus

quotient H/PSL(X44, #44) (the genus is one). In Figure 1 we give a fundamental
domain for PSL(Xm, ^44)- It is straightforward to check whether any given element

g G is in PSL(JV/), qo) by comparing the Delaunay triangulations of (Xo, qo)
and g • (Xo,qD)- Since the Delaunay decomposition of a quadratic differential is

unique, g is in PSL(Zö,^ö) if and only if the Delaunay polygons for (Xd^d)
differ from those for g (Xd, qo) by translations respecting the gluing relations. To

prove Theorem 1.1 without refering to the results in this paper, one simply checks

that the claimed generators are in PSL(X/j, qo) and that the group they generate
has covolume equal to the volume of H/ PSL(Xö, qo), which is computed in [2],
We will give another proof of Theorem 1.1, at the end of this introduction, that is

independent of [2]. The rest of this paper is devoted to explaining the algorithm used

to generate Table 1.

Girth differentials and the well-girthed spine. Throughout this paper, we fix a

quadratic differential (X0, q0) in QM.g and set QL G-(Xq, qo) and L C*\QL.
The quotient L is a hyperbolic Riemann surface isomorphic to IHI/ PSLfXo, q0) and

points in L are quadratic differentials in QL up to scale.

We will call a differential (X, q) e QL a girth differential if one of its shortest

saddle connections is horizontal of length one and for each (X, q) <= QL we define:

N(X, q) {X C* : (X, Xq) is a girth differential}.

The set N(X, q) is a non-empty, cyclically ordered and finite set. The number of
elements in N(X, q) depends only on the differential up to scale [X, q\ e L and

equals the product of the number of girth differentials in C*q with the orbifold
order of [X, q] in L. We will call a differential up to scale [X, q] e L well-girthed
if #N(X,q) > 2.

Our algorithm for finding elements of PSL(X0, go) is based on the study of the

level sets for #N(X, q):

L[n] {[X, q\ e L : #N(X, q) n),

and the well-girthed spine:

Spine^G(L) (J L[n\.
n> 2
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Our main theorem shows that the sets L[n\ stratify L by easy to understand pieces
and L deformation retracts onto Spinej^G(L).

Theorem 1.2. The sets L[n\ give a stratification L Un>1 L[n] by disjoint sets with
(Jn>£ L[n] closedfor each k > 1 and L deformation retracts1 onto its well-girthed
spine:

L -> Spine^G(L).

Each connected component of L[ 1] is diffeomorphic to the disk or the punctured
disk, each connected component of L [2] is a finite length geodesic arc and the set

U„>3 L[n] is discrete in L.

In particular, the well-girthed spine Spine^G(L) is homeomorphic to a graph.

Examples well-girthed spines are depicted in Figures 1 and 4.

Finite volume orbits. When the volume of L is finite, we use the Veech dichotomy
to show that L[l] contains a neighborhood of each cusp, allowing us to prove:

Theorem 1.3. If the volume of L is finite, then Spine^G (L) is compact, the set

U«>3 L[n\ is finite, the set L[2] has finitely many connected components and the

set L[l] consists o/#cusps(L) components of each of which is diffeomorphic to the

punctured disk.

For finite volume L, the well-girthed spine is homeomorphic to a finite graph.

Decorated Riemann surfaces. Theorem 1.3 should be compared with the

decompositions of decorated Riemann surfaces studied in [3], A decoration of a finite
volume, cusped hyperbolic surface A is a subset B C X consisting of disjoint and

simple horocycles about each cusp of X. Associated to each decoration of X is a

spine SpineD (X, B) C X, similar in spirit to the spine Spine^G (L) of L, consisting
of all points in X which have multiple shortest paths to B. In fact, for finite volume L,
one can show that the well-girthed spine SpineW/G(L) is associated to a particular
decoration of L.

Algorithm. Combining Theorem 1.2 with standard methods for traversing graphs

(e.g. breadth-first search) gives an algorithm for exploring L and enumerating
elements of PSL(A0, qo). Breadth-first search (BFS) proceeds by iteratively
enlarging a list of "known" vertices and edges by, at each stage, finding the neighbors
of all of the previously known vertices.

The key ingredients to implementing BFS are methods to (1) list the neighbors of
a particular vertex, and (2) determine whether a particular neighbor is among the list

'If L has orbifold points, we mean that there is a homotopy ht : L L defined on the coarse space
associated to Land a homotopy/lj : L —> L defined on a good cover it : L —* L so that ho is the identity,
ht restricts to the identity on ;r_1 (Spine^/Q (L)) and h\ is a letiaction onto 7r-1 (Spine^Q (L)) and

it o ht ht o it
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of known vertices. The vertices of Spine^G (L) are points [X, q] e V Ufc>3^[^]
and the valence of [X, q] is typically #N(X, q). It is straightforward to compute the

neighbors of [X, q] from the saddle periods of (X, q), and we describe an algorithm
to do so at the end of Section 3 (see also Figure 2). To check whether a particular
neighbor of [X, q] is among the previously known vertices, we compare its Delaunay
triangulation with those of the known vertices. In this way, we enumerate the vertices,
edges and cycles on SpineR/G(L) and compute elements on PSL(Ao, q0).

-11 + vTl, -JJ-, -vtl, i (-11 + VIT) i (-11 - 2vtl) f (-11 + 2,/TT) A (-22 + 3v/Il)
(-11 + VIT) -2, i (-33 + 7vTT) i (-11 + vtl) ij (-22 + 3vTT) § (-11 + vtl) 0, A (ll - vTl)

i (ll - vT!) I (33 - 7vTTj 2, (-11 + ^iTj 1 (22 - 3vTl) i (11 - vu) vTT, 00

- orbifold point
- element of L[3]
- component of L[2]

Figure 1. The Riemann surface L44 H/PSL(2f44, ^44) of genus one has nine cusps and

three orbifold points of order two. The convex hull of V C 3H (top) is an ideal 23-gon (middle)
and a fundamental domain for PSL(X44, ^44). Our algorithm computes a fundamental domain
and generators for PSL(X44, ^44) by performing a breadth first search on the well-girthed spine

Spinej^ (L44) (bottom).
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By Theorem 1.3, when PSL(Ao, go) is a lattice, the well-girthed spine has finitely
many vertices and edges. The BFS will terminate yielding a complete list of vertices
and edges for Spinewq(L) from which one can compute a fundamental domain and

set of generators for PSL(Xo, go)- In Section 4 we apply our algorithm to several

examples of Veech groups of genus two quadratic differentials (see also Figures 1

and 4).

ProofofTheorem 1.1. As described in Section 4, the pair (Sd,vd) listed in Table 1

encodes an ideal hyperbolic polygon D(Sd) and generators T(sd,<jd) C G for a

Fuchsian group ro with fundamental domain D(Sd). By comparing Delaunay
triangulations as described above, we check that each element of r(sD,aD) is in
PSL(X£>, qo) and conclude that r# is finite index in PSL(A£>, qn).

To check that PSL(Xd <?r>) is no larger, we compute SpineWG (H/ PSL(AD,qü))
via the process outlined in the previous paragraph. Since H/ PSL(Xd, qo)
deformation retracts onto Spine^G(H/PSL(Zo,^o)), we can compute the Euler
characteristic and hyperbolic area of H/ PSL(2f£>, qo) from the isomorphism type
of the well-girthed spine. Checking that the area of D(Sd) is equal to the area of
H/ PSL(Xd, qo) ensures that Tß PSL(2f£>, qp).

Other algorithms. There are several other methods for computing elements in
PSL(AV), go). The algorithm described in [10] searches for parabolic elements

in PSL(Ao, go) and will find generators for lattice Veech groups only if the quotient
H/ PSL(Ao, go) has genus zero. A stratification of L by hyperbolic polygons
based on Delaunay triangulations is studied in [19] and an algorithm based on
this stratification is suggested in [4], While this algorithm will theoretically give
generators and a fundamental domain for arbitrary Veech groups, the stratification
of L in Theorem 1.2 will typically be much simpler than the Delaunay stratification
and Theorem 1.1 is the first example of an explicit computation of fundamental
domains and generators for non-arithmetic Veech groups with higher genus quotients.
An algorithm for finding generators of PSL(A0, qo) when PSL(A0. go) is arithmetic,
i.e. commensurable to PSL2(Z), is given in [15], and in [6] it is shown that every
finite index subgroup of T(2) ker(PSL2(Z) —>• PSL2(Z/2Z)) is a Veech group.

Notes and references. The spine Spine^G(L) is also studied in [16] to give a

characterization of surfaces with lattice Veech groups. In particular, the retraction
L —r Spine^G(L) we define in Proposition 3.14 also appears there (cf. proof of
Proposition 4.2 in [16]). Theorem 1.3 can be read as a converse to Corollary 4.5

of [16] which shows that if L[2] has finitely many components then L has finite
volume.

Our terminology is meant to suggest a comparison with well-rounded lattices,
which form a spine for the homogeneous space SL„(K)/ SL„(Z) [1]. For examples
of quadratic differentials with complicated (and not necessarily lattice) Veech groups,
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see e.g. [11,17], It would be interesting to explore those Veech groups using our
algorithm. For further background on the moduli space of quadratic differentials

QMg, the G-action on QMg and Veech groups, see e.g. [9] or [20],

Acknowledgements. I would like to thank C. McMullen and S. Kerckhoff for
useful conversations and the referee for helpful suggestions. I would also like to
thank C. McMullen for sharing computer code that enumerates the saddle periods
on (Xo,q0) on which our algorithm and the computations appearing in this paper
rely. The author was supported in part by National Science Foundation grant
DMS-1103654.

2. Quadratic differentials

In this section, we collect background and fix notation about quadratic differentials
and the G-action on QM.g. For further background, see [9,20].

Quadratic differentials. A holomorphic quadratic differential on a Riemann surface

A e M.g is a holomorphic section of the square of the cotangent bundle on X.
The collection Q(X) of all holomorphic quadratic differentials on X forms a

(3g — 3)-dimensional complex vector space and, as X ranges in A4g, the non-zero
elements in Q(X) form a bundle QM.g —> M.g. A non-zero differential q Q(X)
gives a metric \q\ on A which is flat except for cone singularities at the zeros Z(q)
of q. The differential q also determines a foliation J~(q) of X \ Z(q) by horizontal
geodesies.

A typical way to specify a pair (X, q) is to glue parallel sides of equal length
on a collection of polygons {P\,..., Pk} in C by transition functions of the form
z ±z + c (see Section 4 for examples):

Lines in C give geodesies on X and horizontal lines give leaves of T(q). The

quadratic differential up to scale represented by (X, q) will be denoted by [X, q].

Saddle connections and saddle periods. A saddle connection on (A, q) is a \q\-
geodesic y : [a, b] -> A beginning and ending at Z(q) and avoiding Z(q) otherwise.

Along y there are two choices of square roots for q and the complex numbers fy ± ^fq
are called periods of y. The image in C*/(z ~ —z) of the set of all saddle periods
on (A, q) will be denoted by:

Per(A, q) : y is a saddle connection on (A, q)\ cC*/(z~—z).

(X,q) \J{Pl,dz2)/

Y
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Note that Per(A, X2q) {±Au : ±u e Per(A, q)} A Per(X,q). The set Per(A, q)
is discrete and its preimage in C is bounded away from zero.

The set of all shortest saddle periods in Per(A, q) will be denoted by:

Perm(A, q) { ± v e Per(A, q) : | ± u| < | ± w \ for any ±w Per(A, g)}.

As in Section 1, we will call (A, q) a girth differential if one of the shortest saddle

periods on (A, g) is horizontal of length one, i.e. ±1 e Perm(A,g). Since PerOT (A, q)
is a discrete subset of a circle, it is a non-empty, cyclically ordered and finite set. The
sets N(X, q) and Perm(A, q) are in natural bijection:

Proposition 2.1. The map ±A i-»- A-2 gives a bijection between Perm (X, q) and

Proof. For any A 6 C*, the shortest saddle periods on (X, q) and (A, A2q) are
related by A • Perm(A, q) Perm(A. A2q). One of the shortest saddle connections

on (A, A~2q) is horizontal and of length one if and only if ±A e Perm (A, q).

GLj (R)- and G -actions. Let GL^~ (R) denote the group of two-by-two matrices

with positive determinant and let G be the quotient GL^~ (M)/ (± (o ))• The group
GL^~ (R) acts on C by real-linear maps:

This action covers a G-action on the quotient C*/(z ~ —z).

For a quadratic differential (A, q) obtained by gluing together the polygons
Pi C C and a matrix A e GLJ (R), the quadratic differential A • (A, q) is obtained

by gluing together the polygons A • Pi:

The matrix 0! stabilizes every point in QMg, and this GL^(R)-action also

covers a G-action. The Veech group of (A, q) is its stabilizer in G:

An important property of saddle periods is that they are equivariant with respect
to G, i.e.:

N(X,q).

(x + iy) (ax + by) + (cx + dy)i.

A (A, q) [^J(A • Pi, dz2)/ ~

PSL(A, q) {A e G : A (A, q) (A, q)}.

Per(A (A, qj) A Per(A, q).

In particular, PSL(A, q) preserves the set Per(A, q).
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It is not true that the shortest saddle periods are equivariant with respect to G.
Instead, we have:

Proposition 2.2. Fix any (X, q) e QM.g, the set:

U{X,q) {BeG : Perm(B • (X,q)) C BVzrm{X,q)}

contains an open neighborhood of the identity.

Proof. The claim follows easily from the fact that Per(Z, q) is discrete. Let lo be

the length of one of the shortest saddle periods on (X, q) and let 1/2 > e > 0 be

a number so that there are no saddle periods whose lengths belong to the interval
(/o, (1 + e)/o). We will show that U(X, q) contains the image in G of the set U(e/3)
of matrices that distort lengths by a factor of at most 1 + e/3:

U(e/3) — {g e GL^ (E) : (1 + e/3)-1 |u| < |g • v| < (1 + t/3)\v\ for any v e *}.
If g e U(c/3), then the length of the shortest saddle period on g (X, q) is at most
(1 + e/3)/o and the longest saddle period in g-1 • Perm(g • (Z, q)) C Per(Z, q) has

length at most (1 +<?/3)2/0 < (l+e)/o. Based on our choice of e, Perm(g-(Z, <7)) C

g • Perm (Z, q) and the image of g in G is in U(X, q).

Proposition 2.2 yields the following as a corollary.

Proposition 2.3. For any k > 1, the set U«>it is closed in L.

Proof. We will show that the complement V U«<fc L[n] of (Jn>k L[n\ is open. If
[Z, q] e V, then Perm (X. q) contains fewer than k saddle periods. By Proposition 2.2,
there is a neighborhood U of the identity in G consisting of matrices g with
Perm(g • (Z, q)) C g • Perm(Z, q). The image of U in L under g ^ [g ' (X, q)]
is a neighborhood of [Z, q] and contained in V, so V is open.

Euclidean similarities and the hyperbolic plane. We will denote by C * C GLj (M)
the subgroup of Euclidean similarities, i.e. the subgroup commuting with 50(2). We

will denote by [A] the coset representative of A in C*\ GLJ (E). We will identify the

quotient C*\ GL^~(M) with the hyperbolic plane via the bijectionH —> C*\GL^"(E)
defined by

t [Ar] where Ar (igjj).
In particular, there is a unique holomorphic structure and metric on C*\ GLj (E)
for which this identification is an isometry. The map / : H —> L defined by

/([-4]) • (^fo> ^0)] is the universal covering map for L.
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Möbius transformations. The quotient C* \ GU|~ (R) has a right GLJ (R)-action
(and G-action), with B acting by [A] i-> [AB], There is a unique Möbius
transformation m# : H —> H with the property that [AXB] [Am[j(rf\. Namely,

if B {"%), then mß(t) The universal cover / : H —> L
satisfies / o mg f for each B e PSL(3fo,?o) and / covers an isometry
H/ PSL(Vo, qo) - L, where B e PSL(Zo, qo) acts on the right on H by mj.

Geodesies, half planes and horoballs. We now state some facts about geodesies,
half planes and horoballs in H C*\ GLJ (R) that are elementary to verify.

For any pair of distinct points ±u and ±w in C*/(z ~ —z) with v and w linearly
independent over R, the set:

y(±v, ±w) {[/4] EI : \A (±u)| |A • (±u;)|}

is the geodesic with endpoints and For such ±u and ±w,
the set:

T(±v, ±w) {[A] H : \A (±u)| < |A (±u>)|}

is an open half plane with boundary 3r(±u,±u>) y(±v,±w). Note if
v Xw with A > 1 real, the set y(±u,±u>) is empty, T(±v,±w) is empty
and T(±w, ±u) H.

For any ±u e C*/(z ~ —z) and real number C > 0, the set:

a<±„.c) {M6H:14«<cJ.
is the closed horoball tangent to 3H at — Re(u)/ Im(u) and of radius

2(imV)2 •

3. Girth differentials and saddle periods

In this section, we will prove Theorems 1.2 and 1.3 by studying the set Per(V0, qo)
of saddle periods on (2fo, qo) and the action of PSL(Vo, qo) on Per(Vo, qo)- We will
associate to each finite subset S C Per(Afo, qo) a set:

Hm(S) {[A] H : Perm(A (X0,q0)) A-S}.

We will characterize when Hm(S) is non-empty and then prove the following
proposition, allowing us to establish the claims about the components of L[n] made

in Theorem 1.2:

Proposition 3.1. Fix S C Pcr(Vo.^o) with Hm(S) non-empty. One of the following
holds:

(1) Hm(S) is an open, convex subset of HI and contained in a horoball (#S 1);
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(2) Hm{S) is an open geodesic arc offinite length (#S 2); or
(3) Hm(S) is a single point (#S > 3).

The image ofHm(S) under[A] i—» [A (Xq. go)] is a connected component of L[#S],

We will then construct an explicit homotopy inverse for the inclusion

SpinejyG(L) -> L

using the G-action on QL to complete the proof of Theorem 1.2. The key observation
is that the set of girth differentials is closed under multiplication by matrices of the

form (Iß.t) fort > 0:

Proposition 3.2. If{X, q) G QL is a girth differential and I > 0, then (* ß,) • (X, q)
is also a girth differential.

This gives a foliation of the set of girth differentials by intervals which project to
geodesic rays in L. The map collapsing these rays to their endpoints gives the desired

homotopy inverse.

Finally, we will conclude this section by turning to the case where L has finite
volume. Using the Yeech dichotomy, we will show that L[1] contains a horoball

neighborhood of each cusp of L to conclude that Spine^ (L) is contained in compact
set and prove Theorem 1.3.

Ellipses. To start, we will characterize when Hm(S) is empty. By an ellipse
(respectively circle) in C*/(z ~ —z) we will mean the image of an ellipse
(respectively circle) in C invariant under z i-> —z. We will say a finite subset S C

Per(2fo, qo) is supported by the ellipse E C C*/(z ~ —z) if S — E fl Per(To, go)
and the region bounded by E contains no saddle periods. Equivalently, an ellipse E
containing S supports S if and only if Perm(A (T0, go)) A • S whenever A E is

a circle.
The subsets of Per(To,qo) supported by ellipses are those for which Hm(S) is

non-empty:

Proposition 3.3. Fix a finite set S C Per (To, qo). The set Hm(S) is non-empty if
and only if S is supported by an ellipse.

Proof. First suppose [A] e Hm(S) and let E c C*/(z ~ —z) be the circle passing
through Perm(^ • (To,<?o)) A • S. The ellipse A~l • E supports S. Conversely,

suppose E supports S and let A e G be any matrix for which A E is a circle. For
such an A, Perm(A (To, go)) A • S and [A] e Hm(S).

The collection of subsets of Per(T0, q0) supported by ellipses:

Ell(To, go) {S C Per(Xo, go) : S is supported by an ellipse}.

and the collections Ell(Xo,go)[n] {S e Ell(To, go) : #S n} will play an

important role in what follows.



Vol. 92 (2017) Fundamental domains and generators for lattice Veech groups 67

Convex sets. We now associate to each S e EII(Vo, go) a complete convex set H(S)
in H.

Proposition 3.4. For any S G E\\(Xq, qo), the set:

H(S) {[^4] H : The set A S lies on a circle}

is a convex and complete subset of H. More specifically, H(S) H if#S 1,

H(S) is a geodesic ifUS 2 and H(S) is a point if#S > 3.

Proof First suppose #5 1. For any [A] e H, A S consists of a single point
±v e C*/(z ~ —z) which lies on the circle of radius | ± v \. If #5 2, i.e. S

(±u, ±tu}, then H(S) is the geodesic y(±u ± w) defined in Section 2 (note that v
is not a real multiple of w since S is supported by an ellipse). Finally, suppose
#S > 3. The preimage of S in C consists of at least six points and there is exactly
one ellipse E in C*/(z ~ —z) containing S. The set H(S) consists of the single
point [A] G H for which A • E is a circle.

Next we study the set Hm(S) defined at the beginning of this section:

Proposition 3.5. For any S e Ell(Xo, qo), the set:

Hm(S) {[A] e H : Perm(Gl • (X,q)) A S}

is a non-empty, convex and open subset ofH(S) and is contained in the intersection

ofhoroballs n±ueS B (±u, Area(^0'go)).

Proof. The set Hm(S) is non-empty by Proposition 3.3.

We will now show that Hm(S) is open in H(S). Fix a point [^4] e Hm(S). By
Proposition 2.2, there is a neighborhood U of the identity in G with the property
that:

Perm(iM • (2f0, go)) C B Perm(/1 • (Vo, go)) BA S whenever B e U.

The image of V under g : B [BA] is an open neighborhood of [A], For any
B e U with g(B) [BA] e H(S), Pevm(BA (V0, go)) is a subset of BA • S, a set

which lies on a circle. It follows that Perm(BA (Xo, qo)) BA S, [BA] e Hm(S)
and g(U) fl H(S) is contained in g(U) fl Fdm{S).

Next, we will show that Hm(S) is convex. Recall that, for any ±u and ±w in
C*/(z ~ —z),thesetr(±u, ±to) {[T] e H : \A (±u)| < | A • (±to)|} is convex
(and usually an open half plane). The region Hm(S) satisfies:

tfm(S) //(S)nf n
V ± w GPer(^o ^o)» '

±veS

and is also convex.
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We will now show Hm(S) is contained in the closed horoball B(±v, Area^°'g°))
for each ±v e S. If A S Perm(d • (X(hq0)), then the injectivity radius of the

metric flat metric on A (Xq, q0) is at least | A (±u) for each ±u e S. Whenever

[A] $ B(±v, Area(Zo, qo) / it), the area of A • (X0,qo) is small enough the injectivity
radius of the flat metric is smaller than | A (±u)|.

A stratification of EL We now show that the sets Hm{S) stratify H and that the

image of Hm(S) under the universal covering map / : H —> L is an open subset

of L[#S].

Proposition 3.6. The sets Hm(S) as S ranges in Ell(Zo,go) are pairwise disjoint
and cover H.

Proof. First suppose Hm(S\) and Hm(S2) intersect. If [A] e Hm(Si) n Hm(S2),
then A • Si Perm(A (Xo,qo)) A- S2 and, since A is invertible, Si S2. To see

that the sets Hm(S) cover H, note that [A] is in Hm{S) where S A~x Perm(A •

(Zo,go))- D

Proposition 3.7. For any S e Ell(Zo, qo)[n], the image f(Hm(S)) is an open subset

of L[n\.

Proof The set /(Hm (S)) is contained in L[n\ since, for any [A] e Hm (S), /([A])
[A (Z0,tfo)] has:

#N(A (X0,qo)) #Perm(A (X0,qo)) #A S n.

Now fix any [A] e Hm(S). We will show that f(Hm(S)) contains a neighborhood
of f{[A}) in L[n\. By Proposition 2.2, there is a neighborhood U of the identity
in G with the property that Perm(BA (Z0, qo)) C B Perm(A (Xq, qo)) whenever
B G U. The image of U under g : B m>- [BA (Xo, ^o)] is an open neighborhood
of f([A\) in L, and g(B) is in L[n\ if and only if:

Perm(ZE4 • (Z0, q0)) B Perm(A • (X0,qo)) BA - S,

i.e. [BA] e Hm(S). The neighborhood g(U) n L[n] of f([A]) is contained in

f(Hm(S)).

Veech group. We now study the action of PSL(Z0, qo) on H. We start by showing
that PSL(Zo, qo) permutes the pieces of the stratification ofH (J5eEn(x0,?0) Hm (S).

Proposition 3.8. Fix B e PSL(Z0, qo) and S e Ell(Zo, qo)- The set B~] • S is in

E\\(Xo,qo) and the Möbius transformation ms ' [A] i->- [AB] restricts to an isometry
between Hm(S) and Hm(B~x S).
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Proof. Fix [A] e Hm(S), i.e. Perm(/4 • (Xo,i?o)) A S. If E is any ellipse
supporting 5, then B~x E supports B~l • S. The coset [AB] mg([^]) is in
Hm(B~xS) since:

Perm(AB (X0,q0)) P^m(A (X0,q0)) A S (AB) (B~l S).

This shows that ra,g sends Hm(S) into Hm(B~l S). Since mB-1 mj1, mB
restricts to an isometry between Hm(S) and Hm(B~l S).

Partitions of L and L [«]. By Proposition 3.8, the Veech group permutes the

components of the stratification HI UseEn^ go) ^miS), giving a stratification of
the quotient H/ PSL(Xo, qo) into disjoint sets:

H/PSL(V0,<7o) U tf«(S)/Stab(S).
[S]eEU(JTo»9o)/ PSL(^o,?o)

Here [S] is the coset in Ell(Xo, qo)/ PSL(Vo, ^o) containing S and Stab(S) is the

stabilizer of S in PSL(Xo, qo)- Since the universal covering map / : HI —> L factors

through an isometry H/ PSL(2fo, go) L and f(Hm(S)) is contained in L[#S],
this stratification of HI/ PSL(Zo, ^o) gives a stratification of L[n\ into disjoint sets:

L[n]= (J f(Hm(S)).
[5]6EU(Xo,9O)[«I/ PSL(A-0,9O)

By Proposition 3.6, f(Hm(S)) is open in L[n\, giving:

Proposition 3.9. For each S e EllfVo, qo)[n], the set f(Hm(S)) is a connected

component of L[n\. The map [S] h-> f(Hm(S)) gives a bijection between the

connected components of L[n\ and Ell(Vo, qo)[n\/ PSL(V0, qo).

Proof. The sets /(Hm(S)) as S ranges over coset representatives in Ell(Xo, qo)[n]/
PSL(Xo, qo) are disjoint and open subsets of L[n], They are also connected since

Hm(S) is convex (and therefore path connected).

We are now ready to prove Proposition 3.1 stated at the beginning of this section:

ProofofProposition 3.1. Fix S C Per(X0, qo) with Hm(S) not empty, i.e. S G

E11(X0, qo)- In Proposition 3.9 we showed that the image of Hm(S) under [X]
[A (Xo, go)] is a connected component of L[n\.

The remaining claims about Hm(S) follow from Propositions 3.4 and 3.5. If
#5 1, Hm(S) is an convex, open subset of H(S) H and contained in
the horoball B (±r>, Area(Xo, qo)/n) where ±v e S. If #5 2, Hm(S) is an

open and convex subset of the geodesic H(S) and is contained in the intersection

n±ue,s ^ Area<Xo'g°which is compact. Such a set must be an open geodesic

arc of finite length. Finally, if #5 > 3, then Hm(S) is a point.
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Connected components of L\n\. We are now ready to prove the claims in Theorem

1.2 about the connected components of L[n\. We start with L[l]:
Proposition 3.10. Each connected component ofL[ 1] is diffeomorphic to the disk or
the annulus.

Proof. By Proposition 3.9, each connected component of L[1] is equal to f(Hm (S))
for some S £ Ell(Xo, go)[l]- By Proposition 3.8, the quotient Hm(S)/ Stab(S)
injects into the quotient H/ PSL(Xo, go), and the restriction of / to Hm(S) covers
a bijection from the quotient Hm(S)/ Stab(.S') onto f(Hm(S)). This bijection is a

diffeomorphism since it is a local isometry.
We need to show that Hm (5)/ Stab(S) is diffeomorphic to the disk or the annulus.

Since Hm(S) is a convex open set in H(S) H, Hm(S) is diffeomorphic to a disk.
The stabilizer Stab(S) is a unipotent subgroup of the discrete group PSL(X0, qo).
Either Stab(S) is trivial and f(Hm(S)) is diffeomorphic to the disk, or Stab(5) is

isomorphic to Z, acts freely and properly discontinuously on Hm(S) and Hm(S) is

diffeomorphic to the annulus.

Proposition 3.11. Each connected component ofL[2] is a finite length geodesic arc.

Proof. By Proposition 3.9, each connected component of L[2] is equal to /(Hm (S))
for some S EllfXo, t/o)[2]. By Proposition 3.5, Hm(S) is an open convex subset of
the geodesic EI(S) and is contained in the intersection of a pair of horoballs tangent
to distinct points in 3IHI. The set Hm(S) is a finite length geodesic arc and so is its

image f(Hm (S)) in L.

Proposition 3.12. The set (J«>3 L[n] is discrete in L.

Proof. Let [A] £ H be any point with /([.4]) [A (Xo, go)] £ L[n] for n > 3. Set

S A~l Perm(4 (Xo,qo)), so that [A] £ Hm(S). By Proposition 2.2, there is a

neighborhood U of the identity in G with the property that Perm (BA (Xo, go)) C
B Perm(^4 • (Xo, go)) BA • S whenever B £ U.

The image of U under g : B f([BA]) is an open set in L. Suppose

g(B) £ L[k] with k > 3, and choose S' C S so Perm(fT4 • (Xo,go)) BA • S'.
Since S' contains at least three points, there is a unique ellipse E supporting S'. The
matrix B takes the circle A E into the circle BA • E and is therefore a Euclidean

similarity. In other words, the only point in g(U) n ]Jn>3 is /(M)- ^

Retraction and homotopy equivalence. We now show that L deformation retracts
onto U«>2 by constructing an explicit homotopy inverse. We start by showing
that L[l] is foliated by geodesic rays. To do so, we will show that the set of girth
differentials in QE:

GL {(X, g) £ QL : (X, g) is a girth differential}
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is invariant under multiplication by gt q ß,) for t > 0. The following Proposition
implies Proposition 3.2:

Proposition 3.13. There is a continuous function T : GL —>• M<o so that, for any
(X, q) e GL, we have:

(1) gt (X, q) is a girth differential and #N(gt • (V, q)) I for t > T(X, q);

(2) gt • (V, q) is not a girth differential for t < T(X, q); and

(3) gt (X, q) is a girth differential and #N(gt (X, qf) > 2 for t T(X, q).

Proof. For any ±(x + iy) Per(A, q) with |x| < 1, the number to | log

is non-positive since x2 + y2 > 1. The number to also has the property that
| (J e2t) (±(x + i}'))\ is greater than one for t > to, equal to one when t — to and

is less than one for t < to- It is straightforward to verify that the function T(X, q)
given explicitly by:

T(X,q)= sup
l-

log (' X V
±U+;»ePer(X^)4 V T /

|x|<l

satisfies the desired properties. Note that the intersection of Per(V, q) with the strip
{x + iy : |x| < 1} is non-empty since the area of \q\ is finite.

Proposition 3.13 shows that L[l] is foliated by open half-infinite geodesic rays
whose endpoints lie in {Jn>2 L[n\. The map sending [X. q] e L[l] to the endpoint
of the leaf of this foliation gives a homotopy inverse for the inclusion (Jtt>2 L[n]\

Proposition 3.14. The inclusion Spine^G(L) —> L is a homotopy equivalence, with
homotopy inverse:

h : L -> Spine^G(L)

defined by h([X, q]) [gT{X,q) • (X, q)\ whenever (X, q) e GL.

Proof. For (X, q) GL and t > 0 define:

ht(X,q) gmax(-t,T(x,q)) (X,q).

The functions ht : GL —> GL are continuous and depend continuously on t. Also,
ht covers a well defined map ht \ L L since, whenever C*q contains more than

one girth differential, T(X, <?;) 0 for each i. The function ho is the identity map
on L and the function ht restricts to the identity on SpineWG(L) for every t > 0.

As t tends to infinity, ht tends uniformly on compact sets to the retraction hrx, h.

The functions ht gives the desired homotopy equivalence, at least between the

coarse space associated to the orbifold L and the subset [Jn>2 L[n\. If L has

orbifold points, we can replace L by a good cover n : L —> L, say by marking the

TLjnTL-homology of [A, q\ 6 L for n large enough. It is straightforward to define a
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homotopy ht between the identity on L and a retraction onto n 1
({Jn>2 E[2]) which

satisfies jt o ht ht o n. Note that the orbifold points of L all lie in \Jn>2 L[n\ since
the orbifold order of [X, q] L[n) divides n.

Proofof Theorem 1.2. The sets L[n] are clearly disjoint and give a stratification
L U/j>i L[n\. The set (Jn>/t L[n] for each k is closed by Proposition 2.3. The
other claims about the components of L[n] are established in Propositions 3.10,
3.11 and 3.12. That (J«>2 L[n] ^ L is a homotopy equivalence is established in
Proposition 3.14.

Lattice Veech groups. We now turn to the case when PSL(X0, go) is a lattice and L
has finite volume.

Cusps. A cusp of a Fuchsian group T is the fixed point x e 3H of any unipotent
element g e T. The set of all cusps of T we will denote by C(T). A cusp of the

quotient V H/risaT-orbit in C(T) and we will denote the set of all cusps on V
by C{V). When the volume of V is finite, the set C(V) is finite and can be added

to V to give a closed surface V V U C(V).

Cylinder decompositions. It is well known that if PSL(Xo, qo) contains a unipotent
element stabilizing the line L R (±(x + iy)) of slope y/x, then there is a

collection {yj,..., y„] of saddle connections whose periods lie in L and whose

complement in (Xo, qo) is a disjoint union of metric cylinders {Ci,..., Q.}. We will
need the following partial converse for lattice Veech groups which is a consequence
of the famous Veech dichotomy [18]:

Theorem 3.15 (Veech). Suppose PSL(Xo, c/o) is a lattice. Each saddle period
±>; e Per(Xo, qo) is parallel to a cylinder decomposition of(Xo, qo) and is stabilized
by a unipotent element in PSL(Xo, qo)-

The Veech dichotomy allows us to prove:

Proposition 3.16. The following three subsets ofdHI are equal:

• Tx =C(PSL(X0,<7o)),

• T2 {—x/y e 9IH : ±(x + iy) Per(Xo, ^o)}, and

• T3 {-x/y 3H : {±(x + iy)} e E11(X0, ^0)} •

Proof. The sets T\ and T2 are equal by Theorem 3.15. The sets T2 and T3 are equal
since a collection S {±n} C Per(Xo, qo) of saddle periods consisting of a single
saddle period is supported by an ellipse if and only if ±w is the shortest saddle period
in the line M • (±u).

Proposition 3.17. Suppose L has finite volume, and S {±u} G EllfXo, qo). The

set Hm(S) contains B(±v, K) for some K > 0.
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Proof. When L has finite volume, the complement in (Xo, qo) of the set of all
saddle connections with periods parallel to ±u is a disjoint union of metric cylinders

{Ci,... Q;}. Let K > 0 be a number smaller than Area(Q) for each i. For any
point [A] G B(±v, K), the height of the cylinder A Ci is larger than |A (±u)|.
For such an [A\, any saddle period in A (Xo, qo) not parallel to A (±t>) is longer
than A (±u). The saddle periods parallel to A • (±u) are also longer than A • (±u)
since S is supported by an ellipse, so A (±u) is the unique shortest saddle period
on A • (Xo, qo)- The point [A] is in Hm(S).

Proposition 3.18. Suppose L has finite volume. The set L[l] has #C(L) connected

components, each of which is dijfeomorphic to the annulus and L\ 1] contains a
horoball around each cusp of L.

Proof. By Proposition 3.9, each connected component of L[l] is equal to /(Hm (S))
for some S — {±u} G Ell(Xo, <7o)[l]- By Theorem 3.15, ±v is stabilized by a

unipotent element of PSL(Xo, qo), and Stab(S) is isomorphic to Z. The component
f(Hm(S)) is diffeomorphic to the annulus Hm(S)/ Stab(S).

To see that L[l] has #C(L) connected components, note that the equality of sets

T\ 7*3 from Proposition 3.16 gives a bijection between the cusps of PSL(Xo, qo)
and elements of Ell(Xo, £/o)[l] which is equivariant with respect to PSL(X0, qo). So

we have:

#C(L) #C(PSL(Xo,qo))/PSL(X0,qo) #mXo,qom/^SL(X0,qo)

and the right hand side is in bijection with the number of components of L[l] by
Proposition 3.9.

Now fix a cusp c of L and let t g 3H be any cusp of PSL(Xo, qo) mapping
to c. By Proposition 3.16, t — —x/y for some S {±(x + iy)} G Ell(X0,go)-
The set Hm(S), whose image under / lies in L[1 ], contains a horoball about t by
Proposition 3.17.

Proposition 3.19. If the volume of L is finite, then SpineWG(L) is compact, the set

\Jn>2, L[n\ is finite, the set L[2] has finitely many components.

Proof. By the previous proposition, the set L[l] contains a neighborhood of each

cusp in L. The spine Spine^G(L) is closed by Proposition 2.3 and is contained
in a compact subset of L since it is contained in the complement of L[l]. Since

U„>3 L[n\ is a discrete subset of this compact set, (J«>3 L[n] is finite. Since L
has finite volume, the Euler characteristic of L is finite. The homotopy equivalent
set U«>2 L[n] also has finite Euler characteristic. But the Euler characteristic of
u„>2 L[n\ is equal the difference between the number of points in U„>3 L[n\ and

the number of components of L [2] (and possibly a finite contribution from the orbifold
points on L) so L[2] has finitely many components.
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Proofof Theorem 1.3. The remaining claims about L[n] when L has finite volume

are established in Propositions 3.18 and 3.19.

Algorithm. Fix a point [X, q] e L[k] with k > 3. We conclude this section by

describing an algorithm for finding the neighbors of [X, q] in the graph whose vertices

are points in (J„>3 L[n] and whose edges are components of L[2],

Choose a matrix A e G so [X, q] — [A (Zo.^o)] and set S A-1 Perm(T •

(X0,qo)) so Hm(S) {[A]} and f(Hm(S)) [X,q\. Let ±ui,..., ±vk be the

elements in S ordered by the counterclockwise cyclic ordering induced by the unique
ellipse supporting S. The components of L[2] emanating from [X, q\ are the geodesic

arcs /(//m({±u,, ±u,+i})), where subscripts are read modulo k.

One endpoint of Hm({±Vj, ±uy+i}) is Hm(S). To compute the other endpoint
of Hm({±Vj, ±u,+i}):

(1) Compute the matrix B e G with B • (±u7) ±1 and B • (±uj+i) ±L The

cyclic ordering on the vf s ensures that B S lies in the quadrant {±(x + iy) :

xy < 0}.

(2) Find the minimum Ecco of the quantity:

Ecc(±u;) (1 — x2 — y2)/(2xy) where ± (x + iy) B • (±it>)

and ±w ranges in the saddle periods for which B (±w) ±(x + iy) with
\x — y \ < 1. The condition on ±iu ensures there is an ellipse E passing through
±1, ±i and B • (±w) and the quantity Ecc(±tu) measures the eccentricity of E.

(3) The collection of saddle periods:

S' {±iu Per(Zo, ^o) : B • (±wt) ±(x + iy) with x2 + 2Ecco xy + y2 1}

contains at least three saddle periods and is supported by an ellipse. The endpoints
of Hm({±Vj, ±u7+1}) are Hm(S) and Hm(S').

Figure 2 gives an example of a quadratic differential up to scale with #N(X, q) 3,

as well as its three neighbors.
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Figure 2. Gluing parallel sides of equal length on the polygons (top) gives four genus two
differentials (Xi,qi) (Pj,dz2)/ ~ with #N{Xi,qi) 3. The thick lines in Pi give the
shortest saddle connections on (X;,qi). The three neighbors of the differential up to scale

[X\,q\] are [Xi,qi] for i > 2 as is easily computed by enumerating a small number of the
saddle periods on (Vi, q\) (bottom, generated by code written by C. McMullen).
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4. Examples

In this section, we study several examples of Veech groups in genus two using our
algorithm.

L-shaped polygons. Each integer D > 5 satisfying D 0 or 1 mod 4 determines

a Euclidean octagon P(D) as in Figure 3. Gluing parallel sides of equal length
together by translations gives a genus two Riemann surface with a holomorphic
quadratic differential:

{XD,qD) (P{D),dz2)/ ~
An important result of Calta and McMullen is that the Yeech group of (X/j. qo) is a

lattice:

Theorem 4.1 (Calta, McMullen). The Veech group PSL(A/). qp) is a lattice.

Set QLp G (Xp,qp) and Lp C*\QLp.

(I +A)i i

~*K * b

Figure 3. Each integer D > 5 with D 0 or 1 mod 4 determines a Euclidean octagon

P(D) C C built out of a square of side length A and a b x 1-rectangle where
b (D — e2)/4 and e —1 or 0 so that e D mod 2. Gluing parallel sides of equal length
together by translations gives a genus two quadratic differential (Xn, qp) (P(D), dz2)/ ~
with lattice Veech group.

Fundamental domains and generators. We now describe how to encode an ideal

n-gon D(S) and generators F(s\a) for a Fuchsian group with fundamental domain

D(S) by a pair (S, o) consisting of a finite set S C M2 and a gluing involution a in
the permutation group of S.

Let V\ (y\),..., vn be the elements of S ordered so that —x\/y\ <
—xihz < ••• < —xn/yn and set zj xj + iyj. Define D(S) C H to be the

convex hull of the set {—x\/y\,..., —xn/yn} C 3H.
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Given a pair Vj and vk in S, there is a unique element A{vj, vk) e G satisfying:

A(vj,vk) (±(zj)) ±zk+1 and -4(u7, u&) • (±z,+i) ±zk.

The Möbius transformation m.A(Vl,vj) takes the edge of D(S) connecting —Xj/yj
to —x]+\/yj+\ to the edge connecting —xk+i/yk+\ to —xk/yk. If a is an order

two element in the permutation group of S, the set:

generates a Fuchsian group with D(S) as fundamental domain.

Example: D 12. The Riemann surface L12 has genus zero, three cusps and one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the

components of L\2[n] for n > 2. The set L12[3] consists of three differentials up to
scale, L\2[n] is empty for n > 4 and L12[2] has five components.

We also computed a pair (S12, o"i2) encoding a fundamental domain and

generators for PSL(V12, ^12):

S12 {(f) > ('"Z1) - (^r3) ' ('"(Z5)} andai2 (1,1)(2, 3)(4, 5).

The domain D(S12) is the convex hull of { — V3, —3 + a/3, 0, 3 — \/3, 00} and

PSL(2fi2, ^12) is generated by:

The domain D(Sn) is depicted in Figure 4.

Example: D 13. The Riemann surface L13 has genus zero, three cusps, one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the

components of Li3[n] for n > 2. The set L 13[3] (see Figure 4) consists of three

differentials up to scale, Lj3[n] is empty for n > 4 and L j3[2] has five components.
We also computed a pair (5"i3,cti3) encoding a fundamental domain and

generators for PSL(Vi3, g13):

r(s» {^(u,ct(U;)) : V, e 5}

_ 3+2a/3 -3-4^3i (512,0-12) — 2+ -A= -3-2V3 )'±(-1"75')>:td i3)

|(^).(^).($-4).(!).(^)!
and

or13 (1, 2)(3,5)(4,4).
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The domain D(S\3) is the convex hull of j1 7+3v^, — 1,0, oo|

PSL(Xi3, ^13) is generated by:

CMH

and

(£13,0-13)

0 •( 0 2(4-^3) A
=*=1

^(i+vi3) 0 j'^yw+vn)
± f 7+2713 -2(5 + 714) \

\ 5(41+11 yTd) -9-2713 J

The domain D(5!3) and the stratification L13 U«>i T13 M are drawn in Figure 4.

L|2

(I-VT3)/2 (TTT-7)/3 -I

Figure 4. The Riemann surfaces Ld for D 12 (top) and D 13 (bottom) both have genus
zero, three cusps and one orbifold point of order two. The stratification Lo U«>i 7-d[/i]
decomposes Ld into easy to understand pieces. Enumerating points in Lp [«] for n >3
and components of Ld[2] allows us to compute a fundamental domain and generators for
PSL(Xd, qD).
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Example: D 44. The Riemann surface L44 has Euler characteristic —21/2,

genus one, nine cusps and three orbifold points each of which has orbifold order two.
The set L^[n] is empty for n > 4, the set L44P] consists of 21 points, and the set

L[2] has 33 connected components.
The pair (S44,0*44) listed in Table 1 encodes a fundamental domain and generators

for PSL(Xm, 944). The domain D{S^) is the ideal 23-gon equal to the convex hull
of:

i-11
+ 7TT,-^.-7iT.i(-n + TIT). ±( - 11 -27TT),4(- 11 + 2VTT),i(-22 + 3VTT),

i(- 11 + vTT),-2,i(-33 + 7VTT),i(- 11 + VTT),A(-22 + 3vTi),i(- 11 + vTT),o, ±(11 - 7TT),1.

±(11 - yn),i(33-7vTT).2,-i(-n + v7T),i(22-3v7T),i(ii - TIT), TIT, 00

The domain Ö(.S'44) and the preimages of L44[/z] for n > 2 are drawn in Figure 1. A
few examples of elements the Veech group of (X44, c/44) include:

1/1 -11 \ 5+2711-11-6711A / 25+6711-6(11+2VTT)\
±(o 1 )'±^2+-^7 -5-27h J. ±^-10--^. 25+6711 J ^ PSL(Z44, ^44).

A full list of generators for PSL(V44, <y44) can be easily computed from the pair
(S44, U44) listed in Table 1.
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