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Fundamental domains and generators for lattice Veech groups

Ronen E. Mukamel*®

Abstract. The moduli space QM of non-zero genus g quadratic differentials has a natural
action of G = GL (R)/ (£ (1 9)). The Veech group PSL(X, ¢) is the stabilizer of (X, q) €
OMyg in G. We describe a new algorithm for finding elements of PSL(X,q) which, for
lattice Veech groups, can be used to compute a fundamental domain and generators. Using
our algorithm, we give the first explicit examples of generators and fundamental domains for
non-arithmetic Veech groups where the genus of H/ PSL(X, ¢) is greater than zero.

Mathematics Subject Classification (2010). 32G15, 30F30.

Keywords. Riemann surfaces, Teichmiiller theory, Veech groups.

1. Introduction

Fix an integer ¢ > 2 and let M be the moduli space of genus g Riemann surfaces.
The space M, is a complex orbifold and carries a complete, Finsler Teichmiiller
metric whose geodesics are explicitly described by Teichmiiller’s theorem. The
bundle Q M, — M of holomorphic quadratic differentials consists of pairs (X, ¢)
where ¢ is a non-zero holomorphic quadratic differential on X € M,. The geodesic
flow on M, gives an R-action on Q M which, together with the C*-action fixing X
and rescaling ¢, generates an action of G = GLEL (R)/ (:I: ((1) (1))) on QMs,.

The Veech group PSL(X, q) is the stabilizer of (X, q) in G. There are many
examples of surfaces whose Veech groups are known to be complicated [7,8,11, 17].
There are few examples of Veech groups that have been described in their entirety.
For instance, each integer D > 5 congruent to 0 or | mod 4 determines a quadratic
differential (Xp,¢p) in QM as in Figure 3 whose Veech group is a lattice in
PSL;(R) [5,10]. The homeomorphism type of H/PSL(Xp,gp) is determined
in [2, 12, 13] but little else is known about PSL(Xp,gp) outside of some small
values for D. '

The purpose of this paper is to introduce girth differentials and use them to study
the group PSL(X, ¢) and the quotient H/ PSL(X, g). We will describe an algorithm

*The research for this paper was supported in part by grant DMS-1103654 from the National Science
Foundation.
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for finding elements of PSL(X, ¢) which, for lattice Veech groups, gives generators
for PSL(X, ¢) and a fundamental domain for the action of PSL(X, ¢) on H. Using an
implementation of our algorithm in Sage [14], we compute the first explicit examples
of fundamental domains and generators for non-arithmetic Veech groups where the
genus of H/ PSL(X, q) is greater than zero.

Theorem 1.1. Fundamental domains and generators for PSL(X p, qp) are encoded
in Table I for D = 44, 45, 48, 52, 53, 56, 57, and 60.

The discriminant D = 44 is the smallest discriminant giving rise to a positive genus
quotient H / PSL(X44, g44) (the genus is one). In Figure 1 we give a fundamental
domain for PSL(X44, q44). It is straightforward to check whether any given element
g € G isin PSL(Xp,¢gp) by comparing the Delaunay triangulations of (Xp,gp)
and g - (Xp,gqp). Since the Delaunay decomposition of a quadratic differential is
unique, g is in PSL(Xp,¢gp) if and only if the Delaunay polygons for (Xp,gp)
differ from those for g - (Xp, gp) by translations respecting the gluing relations. To
prove Theorem 1.1 without refering to the results in this paper, one simply checks
that the claimed generators are in PSL(Xp,¢p) and that the group they generate
has covolume equal to the volume of H/PSL(Xp, ¢p), which is computed in [2].
We will give another proof of Theorem 1.1, at the end of this introduction, that is
independent of [2]. The rest of this paper is devoted to explaining the algorithm used
to generate Table 1.

Girth differentials and the well-girthed spine. Throughout this paper, we fix a
quadratic differential (X, go) in Q M, andset QL = G-(Xo,qo)and L = C*\ QL.
The quotient L is a hyperbolic Riemann surface isomorphic to H/ PSL(Xo, go) and
points in L are quadratic differentials in QL up to scale.

We will call a differential (X, q) € QL a girth differential if one of its shortest
saddle connections is horizontal of length one and for each (X, g) € QL we define:

N(X,q) = {} € C* : (X, Aq) is a girth differential} .

The set N(X,¢g) is a non-empty, cyclically ordered and finite set. The number of
elements in N(X,q) depends only on the differential up to scale [X,¢] € L and
equals the product of the number of girth differentials in C*¢ with the orbifold
order of [X,¢q] in L. We will call a differential up to scale [X, g] € L well-girthed
if#N(X,q) > 2.

Our algorithm for finding elements of PSL(Xy, go) is based on the study of the
level sets for #N (X, g):

Lin] ={[X.q] € L : #N(X,q) = n},

and the well-girthed spine:

Spinew (L) = U Lin].

n>2
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Our main theorem shows that the sets L[n] stratify L by easy to understand pieces
and L deformation retracts onto Spinep g (L).

Theorem 1.2. The sets L[n] give a stratification L = | ., L[n] by disjoint sets with
\U,,>x L[n] closed for each k > 1 and L deformation retracts’ onto its well-girthed
spin—e:

L — Spiney (L).

Each connected component of L[1] is diffeomorphic to the disk or the punctured
disk, each connected component of L[2] is a finite length geodesic arc and the set
Uns3 Lln] is discrete in L.

In particular, the well-girthed spine Spiney, s (L) is homeomorphic to a graph.
Examples well-girthed spines are depicted in Figures 1 and 4.

Finite volume orbits. When the volume of L is finite, we use the Veech dichotomy
to show that L[1] contains a neighborhood of each cusp, allowing us to prove:

Theorem 1.3. If the volume of L is finite, then Spiney (L) is compact, the set
\U, >3 L[] is finite, the set L[2] has finitely many connected components and the
set L[1] consists of # cusps(L) components of each of which is diffeomorphic to the
punctured disk.

For finite volume L, the well-girthed spine is homeomorphic to a finite graph.

Decorated Riemann surfaces. Theorem 1.3 should be compared with the decom-
positions of decorated Riemann surfaces studied in [3]. A decoration of a finite
volume, cusped hyperbolic surface X is a subset B C X consisting of disjoint and
simple horocycles about each cusp of X. Associated to each decoration of X is a
spine Spinep (X, B) C X, similar in spirit to the spine Spiney,; (L) of L, consisting
of all points in X which have multiple shortest paths to B. In fact, for finite volume L,
one can show that the well-girthed spine Spiney, g (L) is associated to a particular
decoration of L.

Algorithm. Combining Theorem 1.2 with standard methods for traversing graphs
(e.g. breadth-first search) gives an algorithm for exploring L and enumerating
elements of PSL(Xp,qo). Breadth-first search (BFS) proceeds by iteratively
enlarging a list of “known” vertices and edges by, at each stage, finding the neighbors
of all of the previously known vertices.

The key ingredients to implementing BFS are methods to (1) list the neighbors of
a particular vertex, and (2) determine whether a particular neighbor is among the list

'Tf L has orbifold points, we mean that there is a homotopy h; : L — L defined on the coarse space
associated to L and a homotopy h; : L — Ldefinedona good cover 7 : L — Lsothat g isthe identity,
h; restricts to the identity on 7r 1 (Spiney, g (L)) and h\ is a retraction onto 77! (SpineWG (L)) and
T o ﬁt = hz oT.
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of known vertices. The vertices of Spiney, g (L) are points [X, ¢] € V = | ;-5 L[k]
and the valence of [X, ¢] is typically #N (X, ). It is straightforward to compute the
neighbors of [X, g] from the saddle periods of (X, ¢), and we describe an algorithm
to do so at the end of Section 3 (see also Figure 2). To check whether a particular
neighbor of [ X, g] is among the previously known vertices, we compare its Delaunay
triangulation with those of the known vertices. In this way, we enumerate the vertices,
edges and cycles on Spineyy g (L) and compute elements on PSL(X, q¢).

-11+\/1_,7%,4\/ﬁ,§(—11+\/ﬁ),%(~11—2\/ﬁ),%(—11+2\/ﬁ),%(722+3\/ﬁ),
V: %(—11+\/ﬁ),—2,%(—33+7\/ﬁ ,%(711+\/ﬁ),%(—22+3\/ﬁ),é(711+\/1_1),0,é(11—\/ﬁ), .
,2,71—30-(—11-4-\/H),é(EZ—B\/ﬁ),%(ll—\/ﬁ),\/ﬁ,o@

%(117m>,g(33—7\/ﬁ

11 TT /11 0 VIl
* - orbifold point
® - element of L[3]
- component of L[2]

Figure 1. The Riemann surface L44 =~ H/PSL(X44,¢44) of genus one has nine cusps and
three orbifold points of order two. The convex hull of V' C 9H (top) is an ideal 23-gon (middle)
and a fundamental domain for PSL(X44, g44). Our algorithm computes a fundamental domain
and generators for PSL(X44, g44) by performing a breadth first search on the well-girthed spine
Spineyy i (L44) (bottom).
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By Theorem 1.3, when PSL( Xy, qo) is a lattice, the well-girthed spine has finitely
many vertices and edges. The BFS will terminate yielding a complete list of vertices
and edges for Spiney, (L) from which one can compute a fundamental domain and
set of generators for PSL(Xg, go). In Section 4 we apply our algorithm to several

examples of Veech groups of genus two quadratic differentials (see also Figures 1
and 4).

Proof of Theorem 1.1. As described in Section 4, the pair (Sp, op) listed in Table 1
encodes an ideal hyperbolic polygon D(Sp) and generators I'(s,, o) C G for a
Fuchsian group I'p with fundamental domain D(Sp). By comparing Delaunay
triangulations as described above, we check that each element of I'(s, 5,) is in
PSL(Xp, ¢p) and conclude that I'p is finite index in PSL(Xp, ¢p).

To check that PSL(X p, ¢ p) is no larger, we compute Spiney, ¢ (H/ PSL(Xp,gp))
via the process outlined in the previous paragraph. Since H/PSL(Xp,gqp)
deformation retracts onto Spiney g (H/PSL(Xp,¢p)), we can compute the Euler
characteristic and hyperbolic area of H/PSL(Xp, ¢p) from the isomorphism type
of the well-girthed spine. Checking that the area of D(Sp) is equal to the area of
H/PSL(Xp,gp) ensures that I'p = PSL(Xp,gp). O]

Other algorithms. There are several other methods for computing elements in
PSL(Xo,q0). The algorithm described in [10] searches for parabolic elements
in PSL(Xo, go) and will find generators for lattice Veech groups only if the quotient
H/PSL(Xo,qo) has genus zero. A stratification of L by hyperbolic polygons
based on Delaunay triangulations is studied in [19] and an algorithm based on
this stratification is suggested in [4]. While this algorithm will theoretically give
generators and a fundamental domain for arbitrary Veech groups, the stratification
of L in Theorem 1.2 will typically be much simpler than the Delaunay stratification
and Theorem 1.1 is the first example of an explicit computation of fundamental
domains and generators for non-arithmetic Veech groups with higher genus quotients.
An algorithm for finding generators of PSL( X, go) when PSL(Xg, g¢) is arithmetic,
i.e. commensurable to PSL,(Z), is given in [15], and in [6] it is shown that every
finite index subgroup of I'(2) = ker(PSL,(Z) — PSL,(Z/2Z)) is a Veech group.

Notes and references. The spine Spiney (L) is also studied in [16] to give a
characterization of surfaces with lattice Veech groups. In particular, the retraction
L — Spiney (L) we define in Proposition 3.14 also appears there (cf. proof of
Proposition 4.2 in [16]). Theorem 1.3 can be read as a converse to Corollary 4.5
of [16] which shows that if L[2] has finitely many components then L has finite
volume.

Our terminology is meant to suggest a comparison with well-rounded lattices,
which form a spine for the homogeneous space SL,(R)/ SL, (Z) [1]. For examples
of quadratic differentials with complicated (and not necessarily lattice) Veech groups,
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see e.g. [11,17]. It would be interesting to explore those Veech groups using our
algorithm. For further background on the moduli space of quadratic differentials
QO My, the G-action on Q M, and Veech groups, see e.g. [9] or [20].

Acknowledgements. I would like to thank C. McMullen and S. Kerckhoff for
useful conversations and the referee for helpful suggestions. I would also like to
thank C. McMullen for sharing computer code that enumerates the saddle periods
on (Xo, go) on which our algorithm and the computations appearing in this paper

rely. The author was supported in part by National Science Foundation grant
DMS-1103654.

2. Quadratic differentials

In this section, we collect background and fix notation about quadratic differentials
and the G-action on Q M. For further background, see [9,20].

Quadratic differentials. A holomorphic quadratic differential on a Riemann surface
X € M, is a holomorphic section of the square of the cotangent bundle on X.
The collection Q(X) of all holomorphic quadratic differentials on X forms a
(3g — 3)-dimensional complex vector space and, as X ranges in M, the non-zero
elements in Q(X) form a bundle Q. M, — M. A non-zero differential g € Q(X)
gives a metric |¢| on X which is flat except for cone singularities at the zeros Z(q)
of ¢. The differential g also determines a foliation F(q) of X \ Z(g) by horizontal
geodesics.

A typical way to specify a pair (X, q) is to glue parallel sides of equal length
on a collection of polygons {Pi,..., Py} in C by transition functions of the form
z + £z + ¢ (see Section 4 for examples):

(X,q) = U(Pf,dzz)/ ~.

Lines in C give geodesics on X and horizontal lines give leaves of F(g). The
quadratic differential up to scale represented by (X, ¢) will be denoted by [X, g].

Saddle connections and saddle periods. A saddle connection on (X, q) is a |q|-
geodesic y : [a, b] — X beginning and ending at Z(g) and avoiding Z(gq) otherwise.
Along y there are two choices of square roots for ¢ and the complex numbers /. y £G4
are called periods of y. The image in C*/(z ~ —z) of the set of all saddle periods
on (X, g) will be denoted by:

Per(X,q) = {/ +./q : y is a saddle connection on (X, q); C C*/(z ~ —z).
¥
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Note that Per(X, A%2q) = {£Av : v € Per(X, g)} = A Per(X, ¢). The set Per(X, q)
is discrete and its preimage in C is bounded away from zero.
The set of all shortest saddle periods in Per(X, ¢) will be denoted by:

Per,, (X, q) = { +vePer(X,q):|£v|] <|£w|forany +w € Per(X,q)}.

As in Section 1, we will call (X, g) a girth differential if one of the shortest saddle
periods on (X, ¢) is horizontal of length one, i.e. =1 € Per,, (X, ¢). Since Per,, (X, q)
is a discrete subset of a circle, it is a non-empty, cyclically ordered and finite set. The
sets N(X, ¢g) and Per,, (X, g) are in natural bijection:

Proposition 2.1. The map £\ + A2 gives a bijection between Per,,(X,q) and

Proof. For any A € C*, the shortest saddle periods on (X,q) and (X, A?%q) are
related by A - Per,, (X, q) = Pery, (X, A%2g). One of the shortest saddle connections
on (X, A72gq) is horizontal and of length one if and only if £A € Per,,(X, q). O

GL;‘ (R)- and G -actions. Let GL;r (R) denote the group of two-by-two matrices
with positive determinant and let G be the quotient GL (R)/ (% (§ 9)). The group
GLJ (R) acts on C by real-linear maps:

(a 2) c(x +1iy) = (ax + by) + (cx + dy)i.
&

This action covers a G-action on the quotient C*/(z ~ —z).

For a quadratic differential (X, g) obtained by gluing together the polygons
P; C C and a matrix A € GLJ (R), the quadratic differential A - (X, g) is obtained
by gluing together the polygons A - P;:

A-X,q) = JA-Pi.dz?)] ~.

1
The matrix (' % ) stabilizes every point in Q M, and this GL; (R)-action also
covers a G-action. The Veech group of (X, g) is its stabilizer in G:

PSL(X,q) ={A€G:A4-(X,q) = (X,q)}.

An important property of saddle periods is that they are equivariant with respect
o G, ie:

Per(A-(X,q)) = A-Per(X,q).

In particular, PSL(X, g) preserves the set Per(X, g).
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It is not true that the shortest saddle periods are equivariant with respect to G.
Instead, we have:

Proposition 2.2. Fix any (X,q) € Q My, the set:
UX,q) = {B € G :Pery(B-(X,q)) C BPerm(X,q)}

contains an open neighborhood of the identity.

Proof. The claim follows easily from the fact that Per(X, q) is discrete. Let /o be
the length of one of the shortest saddle periods on (X, g) and let 1/2 > € > 0 be
a number so that there are no saddle periods whose lengths belong to the interval
(lo, (1 4+ €)lp). We will show that U(X, ¢) contains the image in G of the set U(¢/3)
of matrices that distort lengths by a factor of at most 1 + €/3:

U(e/3) = {g € GLEL(IR{) (1 +¢/3) | < |g-v| < (1+¢€/3)v|forany v € (C*}.

If g € U(e/3), then the length of the shortest saddle period on g - (X, ¢) is at most
(1 + €/3)lo and the longest saddle period in g~ ! - Per,, (g - (X, q)) C Per(X, ¢) has
length at most (1+¢/3)2ly < (1+4¢€)ly. Based on our choice of €, Per,, (g (X, q)) C
g - Pery, (X, ¢) and the image of g in G is in U(X, q). O

Proposition 2.2 yields the following as a corollary.

Proposition 2.3. Forany k > 1, the set | -, L[n] is closed in L.

Proof. We will show that the complement V' = | J, ., L[n] of | J,,~.; L[n]is open. If
[X,q] € V,thenPer,, (X, ¢) contains fewer than k saddle periods. By Proposition 2.2,
there is a neighborhood U of the identity in G consisting of matrices g with
Per,, (g - (X, q)) C g - Per,,(X,q). The image of U in L under g — [g - (X, q)]
is a neighborhood of [ X, ¢] and contained in 1/, so V' is open. L

Euclidean similarities and the hyperbolic plane. We will denote by C* C GL; (R)
the subgroup of Euclidean similarities, i.e. the subgroup commuting with SO(2). We
will denote by [A4] the coset representative of A in C*\ GLT (R). We will identify the
quotient C*\ GLI (R) with the hyperbolic plane via the bijection H — C*\ GL; (R)
defined by

T > [A;] where A, = (} Rer) .

In particular, there is a unique holomorphic structure and metric on C*\ GL;F (R)
for which this identification is an isometry. The map f : I — L defined by
f([A]) = [A - (X0, qo)] is the universal covering map for L.
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Mbobius transformations. The quotient C*\ GL‘?ZL (R) has a right GL; (R)-action
(and G-action), with B acting by [A] — [AB]. There is a unique Mobius
transformation mp : H — H with the property that [A; B] = [A5(r)]. Namely,
if B = (95), then mp(z) = _‘c‘:;z. The universal cover f : H — L
satisfies f omp = f for each B € PSL(Xy,qo) and f covers an isometry

H/PSL(Xo,q0) — L, where B € PSL(Xj, qo) acts on the right on I by mp.

Geodesics, half planes and horoballs. We now state some facts about geodesics,
half planes and horoballs in H = C*\ GLJ (R) that are elementary to verify.

For any pair of distinct points +v and £w in C*/(z ~ —z) with v and w linearly
independent over R, the set:

y(xv, tw) = {[A] e H: |4 (£v)| = |4 (fw)|}

Re(v)—Re(w)

(T —Toi(e) and — Re@WHReW) gop gych 4y and F+w,

is the geodesic with endpoints Tm(0) FTm(w)

the set:
T(tv, 2w) ={[A] € H: |A- (£v)| < |4 (w)]}

is an open half plane with boundary 07 (*v,4+w) = yp(£v,xw). Note if
v = Aw with A > 1 real, the set y(%v, w) is empty, T(xv, £w) is empty
and T (xw, £v) = H.

For any +v € C*/(z ~ —z) and real number C > 0, the set:

. 2
4 @E)P

B(+v,C) =[] e H : eiE  SE)

is the closed horoball tangent to dH at — Re(v)/ Im(v) and of radius z)(_lmcv_)i

3. Girth differentials and saddle periods

In this section, we will prove Theorems 1.2 and 1.3 by studying the set Per(X, g¢)
of saddle periods on (X, go) and the action of PSL(Xy, go) on Per(Xo, go). We will
associate to each finite subset S C Per(Xy, g¢) a set:

Hp(S) = {[A] € H : Pery (A - (Xo.q0)) = A- S}.

We will characterize when H,,(S) is non-empty and then prove the following
proposition, allowing us to establish the claims about the components of L[n] made
in Theorem 1.2:

Proposition 3.1. Fix S C Per(Xo, qo) with Hy,(S) non-empty. One of the following
holds:

(1) H,(S) is an open, convex subset of H and contained in a horoball (#S = 1);
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(2) H,,(S) is an open geodesic arc of finite length (#S = 2); or
(3) H;,(S) is a single point (#S > 3).
The image of Hy (S) under [A] — [A - (Xo, qo)] is a connected component of L[#S].

We will then construct an explicit homotopy inverse for the inclusion
Spiney (L) — L

using the G-action on QL to complete the proof of Theorem 1.2. The key observation
is that the set of girth differentials is closed under multiplication by matrices of the
form ((1) 62,) fort > 0:

Proposition3.2. If (X, q) € QL is a girth differential and t > 0, then (; 5 )-(X.q)
is also a girth differential.

This gives a foliation of the set of girth differentials by intervals which project to
geodesic rays in L. The map collapsing these rays to their endpoints gives the desired
homotopy inverse.

Finally, we will conclude this section by turning to the case where L has finite
volume. Using the Veech dichotomy, we will show that L[1] contains a horoball
neighborhood of each cusp of L to conclude that Spiney, (L) is contained in compact
set and prove Theorem 1.3.

Ellipses. To start, we will characterize when H,,(S) is empty. By an ellipse
(respectively circle) in C*/(z ~ —z) we will mean the image of an ellipse
(respectively circle) in C invariant under z — —z. We will say a finite subset S C
Per(Xg, qo) is supported by the ellipse E C C*/(z ~ —z) if S = E N Per(Xy, qo)
and the region bounded by E contains no saddle periods. Equivalently, an ellipse £
containing S supports S if and only if Per,, (A4 - (X0, qo)) = A- S whenever A - E is
a circle.

The subsets of Per(Xy, go) supported by ellipses are those for which H,, () is
non-empty:
Proposition 3.3. Fix a finite set S C Per(Xo,qo). The set Hy, (S) is non-empty if
and only if S is supported by an ellipse.

Proof. First suppose [A] € Hy,(S) and let E C C*/(z ~ —z) be the circle passing
through Per,, (A - (Xo,q0)) = A - S. The ellipse A1 E supports S. Conversely,
suppose E supports S and let A € G be any matrix for which A - E is a circle. For
such an A, Per,, (A - (Xo,q0)) = A+ S and [A] € H;,(S). O

The collection of subsets of Per( Xy, go) supported by ellipses:
Ell(Xo, g0) = {S C Per(Xo,qo) : S is supported by an ellipse} .

and the collections Ell(Xo,qo0)[n] = {S € Ell(Xo,qo) : #S = n} will play an
important role in what follows.
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Convex sets. We now associate to each S € Ell(X, go) a complete convex set H(S)
in H.

Proposition 3.4. For any S € Ell(Xy, qo), the set:
H(S) = {[A] cH:Theset A-S liesona circle}

is a convex and complete subset of H. More specifically, H(S) = H if #§ = 1,
H(S) is a geodesic if #S = 2 and H(S) is a point if #S > 3.

Proof. First suppose #S = 1. For any [A] € H, A - S consists of a single point
+v € C*/(z ~ —z) which lies on the circle of radius | £ v|. If #S = 2,ie. S =
{xv, w}, then H(S) is the geodesic y(£v £ w) defined in Section 2 (note that v
is not a real multiple of w since § is supported by an ellipse). Finally, suppose
#S > 3. The preimage of S in C consists of at least six points and there is exactly
one ellipse £ in C*/(z ~ —z) containing S. The set H(S) consists of the single
point [A] € H for which A - E is a circle. L]

Next we study the set Hp,(S) defined at the beginning of this section:
Proposition 3.5. For any S € Ell(Xy, qo), the set:

Hpn(S) = {[A] € H: Perpy(4- (X,q)) = A- S}

is a non-empty, convex and open subset of H(S) and is contained in the intersection

of horoballs (e B (:I:v, Mfos_‘m))_

Proof. The set H,,(S) is non-empty by Proposition 3.3.

We will now show that H,,(S) is open in H(S). Fix a point [A] € H,(S). By
Proposition 2.2, there is a neighborhood U of the identity in G with the property
that:

Per,, (BA - (X0, 90)) C B - Peryy(A - (Xo,g0)) = BA - S whenever B € U.

The image of U under g : B — [BA] is an open neighborhood of [A]. For any
B € U with g(B) = [BA] € H(S), Per,,,(BA - (Xo, qo)) is a subset of BA - S, a set
which lies on a circle. It follows that Per,, (BA - (Xo,q¢)) = BA-S,[BA] € H,,(S)
and g(U) N H(S) is contained in g(U) N H,,(S).

Next, we will show that H,,(S) is convex. Recall that, for any v and +w in
C*/(z ~ —z),theset T(£v, +w) = {[A] e H : |A - (£v)| < |4 - (£w)]|}is convex
(and usually an open half plane). The region H,,(S) satisfies:

Hm(S):H(S)ﬂ( N T(:I:v,:tw)),

LwePer(Xp,q0),
+w¢gS, +veS

and is also convex.
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We will now show H,,(S) is contained in the closed horoball B(#+v, Area(#o—))
foreach +v € §. If A+ S = Per,,(A - (X0, qo)), then the injectivity radius of the
metric flat metric on A - (Xo, qo) is at least |A - (&v)]| for each v € §. Whenever
[A] € B(+v, Area(Xo, go)/m), the area of A-(Xy, o) is small enough the injectivity
radius of the flat metric is smaller than |4 - (£v)]. ]

A stratification of H. We now show that the sets H,,(S) stratify H and that the

image of H,,(S) under the universal covering map f : H — L is an open subset
of L[#S].

Proposition 3.6. The sets H,,(S) as S ranges in EIl(Xo, qo) are pairwise disjoint
and cover H.

Proof. First suppose H,,(S1) and H,,(S,) intersect. If [A] € H,(S1) N Hpy(S2),
then A-S; = Per,,(A4-(Xo,q0)) = A-S> and, since A is invertible, S = S,. To see
that the sets H,,(S) cover H, note that [A] is in H,,(S) where S = A~! . Per,,(A -
(Xo, 4g0))- O

Proposition 3.7. Forany S € Ell(Xo, qo)[n], the image f(H;,(S)) is an open subset
of L{n].

Proof. Theset f(H(S))iscontainedin L[r]since, forany [A] € H,(S), f([4]) =
[A - (X0, qo)] has:

#N(A- (Xo,q0)) = #Perp,(A - (Xo.q0)) =#A- S =n.

Now fix any [A] € H,,(S). We will show that f(H,,(.S)) contains a neighborhood
of f([A]) in L[n]. By Proposition 2.2, there is a neighborhood U of the identity
in G with the property that Per,, (BA - (Xo, o)) C B Per,,(A - (X0, g0)) whenever
B € U. The image of U under g : B + [BA - (Xo,4o)] is an open neighborhood
of f([A]) in L, and g(B) is in L[n] if and only if:

Per,, (BA - (Xo.q0)) = B Pery(A - (Xo,490)) = BA- S,

i.e. [BA] € H,(S). The neighborhood g(U) N L[n] of f([A]) is contained in
S (Hpu(S)). [

Veech group. We now study the action of PSL( Xy, go) on H. We start by showing
that PSL(Xo. go) permutes the pieces of the stratification of H = () g e x, .40) Hm (S):

Proposition 3.8. Fix B € PSL(Xy,qo) and S € Ell(Xy, qo). The set B~! - S is in
Ell(Xo, qo) and the Mobius transformation mp : [A] v~ [A B] restricts to an isometry
between H,,(S) and H,,(B~! - 8).



Vol. 92 (2017) Fundamental domains and generators for lattice Veech groups 69

Proof. Fix [A] € Hpy(S), ie. Pery(A - (Xo,q90)) = A-S. If E is any ellipse
supporting S, then B~ - E supports B~ - §. The coset [AB] = mp([A]) is in
H,,(B~1S) since: '

Per (AB - (Xo,q0)) = Perm(A - (Xo,q0)) = A-S = (AB) - (B~ '-9).

This shows that mp sends Hy,(S) into H,,(B~"' - S). Since mg-1 = m3z', mp
restricts to an isometry between H,,(S) and Hp, (B~ ! - S). L

Partitions of L and L[n]. By Proposition 3.8, the Veech group permutes the
components of the stratification H = ( Jgcpyx,.40) Hm (), giving a stratification of
the quotient H/ PSL(Xy, go) into disjoint sets:

H/PSL(X0,90) = | J Hm(S)/Stab($).
[S]€EN(X0,90)/ PSL(X0,90)

Here [S] is the coset in Ell(Xg, o)/ PSL(Xo, go) containing S and Stab(S) is the
stabilizer of S in PSL(Xy, go). Since the universal covering map f : I — L factors
through an isometry H/ PSL(Xo,q0) — L and f(H,,(S)) is contained in L[#S],
this stratification of H/ PSL(X, qo) gives a stratification of L[n] into disjoint sets:

Linl= | f(Hn(S)).

[S1€E(X0,q0)[n]/ PSL(X0,q0)

By Proposition 3.6, f(H,,(S)) is open in L[n], giving:
Proposition 3.9. For each S € Ell(Xy, qo)[n], the set f(H,,(S)) is a connected

component of L[n]. The map [S] v [f(H,,(S)) gives a bijection between the
connected components of L[n] and EN( Xy, qo)[n]/ PSL(Xo, q0).

Proof. The sets f(H,,(S)) as S ranges over coset representatives in EIl(Xg, go)[r]/
PSL(Xo, go) are disjoint and open subsets of L[r]. They are also connected since
Hp, (S) is convex (and therefore path connected). O

We are now ready to prove Proposition 3.1 stated at the beginning of this section:

Proof of Proposition 3.1. Fix § C Per(Xo, qo) with H,(S) not empty, i.e. S €
Ell(Xo, o). In Proposition 3.9 we showed that the image of H,,(S) under [A] —
[A-(Xg.qo0)] is a connected component of L[n].

The remaining claims about H,,(S) follow from Propositions 3.4 and 3.5. If
#S = 1, H,(S) is an convex, open subset of H(S) = H and contained in
the horoball B (v, Area(Xo, go)/7) where +v € S. If #§ = 2, H,(S) is an
open and convex subset of the geodesic H(S) and is contained in the intersection

(Nipes B (ﬂ:v, %) which is compact. Such a set must be an open geodesic
arc of finite length. Finally, if #S > 3, then H,,(S) is a point. O
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Connected components of L[n]. We are now ready to prove the claims in Theo-
rem 1.2 about the connected components of L{n]. We start with L[1]:

Proposition 3.10. Each connected component of L[1] is diffeomorphic to the disk or
the annulus.

Proof. By Proposition 3.9, each connected component of L[1] is equal to f(H,,(S))
for some S € Ell(Xo,qo)[l]. By Proposition 3.8, the quotient H,,(.S)/ Stab(S)
injects into the quotient H/ PSL(Xy, go), and the restriction of f to H,,(S) covers
a bijection from the quotient H,,(S)/ Stab(S) onto f(H,,(S)). This bijection is a
diffeomorphism since it is a local isometry.

We need to show that H,,(S)/ Stab(S) is diffeomorphic to the disk or the annulus.
Since H,,(S) is a convex open set in H(S) = H, H,,(S) is diffeomorphic to a disk.
The stabilizer Stab(S) is a unipotent subgroup of the discrete group PSL( Xy, go).
Either Stab(.S) is trivial and f(H,(S)) is diffeomorphic to the disk, or Stab(S) is
isomorphic to Z, acts freely and properly discontinuously on H,,(S) and H,,(S) is
diffeomorphic to the annulus. O

Proposition 3.11. Each connected component of L[2] is a finite length geodesic arc.

Proof. By Proposition 3.9, each connected component of L[2] is equal to f(H»(S))
for some S € Ell(Xy, q¢)[2]. By Proposition 3.5, H,,(S) is an open convex subset of
the geodesic H(S) and is contained in the intersection of a pair of horoballs tangent
to distinct points in dH. The set H,,(S) is a finite length geodesic arc and so is its
image f(Hpy(S))in L. O

Proposition 3.12. The set | J,,. 5 L[n] is discrete in L.

Proof. Let [A] € H be any point with f([A]) = [4- (X0, q0)] € L[n] forn > 3. Set
S = A ' Per;, (A - (Xo,q0)), so that [4] € H,,(S). By Proposition 2.2, there is a
neighborhood U of the identity in G with the property that Per,, (BA - (X¢,q0)) C
B - Per,,(A - (Xo,q0)) = BA-S whenever B € U.

The image of U under g : B +— f([BA]) is an open set in L. Suppose
g(B) € L[k] with k > 3, and choose S’ C S so Per;;,(BA - (Xo,q0)) = BA- S’
Since S’ contains at least three points, there is a unique ellipse E supporting S’. The
matrix B takes the circle A - E into the circle BA - E and is therefore a Euclidean
similarity. In other words, the only pointin g(U) N | J,~5 L[n] is f([A]). O

Retraction and homotopy equivalence. We now show that L deformation retracts
onto | J,-, L[n] by constructing an explicit homotopy inverse. We start by showing
that L[1] is foliated by geodesic rays. To do so, we will show that the set of girth
differentials in QL:

GL = {(X, q) € QL : (X,q) is a girth differential}
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is invariant under multiplication by g, = (| 3 ) fort > 0. The following Proposition
implies Proposition 3.2:

Proposition 3.13. There is a continuous function T : GL — R<g so that, for any
(X,q) € GL, we have:

(1) g¢-(X,q) is a girth differential and #N(g; - (X,q)) = 1 fort > T(X, q);
(2) g:-(X,q) is not a girth differential fort < T(X, q), and
(3) g; - (X.q) is a girth differential and #N(g; - (X, q)) = 2 fort = T(X, q).

Proof. Forany +(x 4 iy) € Per(X, q) with |x| < 1, the number 7y = %log (1552)
is non-positive since x2 + y? > 1. The number #y also has the property that
| ((1) eg, ) - (£(x + iy))| is greater than one for ¢ > #o, equal to one when ¢ = # and
is less than one for t < #o. It is straightforward to verify that the function 7'(X, ¢)

given explicitly by:

1 ] —x=
T(X,q)= sup —log( 5 )
+(x+iy)ePer(X,q) 4 y
|x]<1

satisfies the desired properties. Note that the intersection of Per(X, ¢) with the strip
{x 4+ iy : |x| < 1} is non-empty since the area of |g| is finite. O

Proposition 3.13 shows that L[1] is foliated by open half-infinite geodesic rays
whose endpoints lie in | ., L[r]. The map sending [X,¢] € L[1] to the endpoint
of the leaf of this foliation gives a homotopy inverse for the inclusion UnzZ L[n]:

Proposition 3.14. The inclusion Spiney,g (L) — L is a homotopy equivalence, with
homotopy inverse: )
h : L — Spiney (L)

defined by h([X, q]) = gT(x.q) " (X, q)] whenever (X, q) € GL.
Proof. For (X,q) € GL and t > 0 define:

ht(Xa Q) = fmax(—t,T(X,q)) * (X, Q)

The functions h; : GL — GL are continuous and depend continuously on 7. Also,
h, covers a well defined map k; : L — L since, whenever C*g contains more than
one girth differential, 7 (X, g;) = 0 for each i. The function ho is the identity map
on L and the function h; restricts to the identity on Spiney, (L) for every ¢ > 0.
As t tends to infinity, /; tends uniformly on compact sets to the retraction ﬁw = h.

The functions /; gives the desired homotopy equivalence, at least between the
coarse space associated to the orbifold L and the subset | J,., L[r]. If L has

orbifold points, we can replace L by a good cover 7 : L = L, say by marking the
Z [nZ-homology of [X, g] € L for n large enough. It is straightforward to define a
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homotopy h; between the identity on L and a retraction onto 7! (Un22 L[Z]) which

satisfies 7 0, = h; o 7r. Note that the orbifold points of L all lie in U2 L[n] since
the orbifold order of [X, ¢] € L[n] divides n. O

Proof of Theorem 1.2. The sets L[n] are clearly disjoint and give a stratification
L = J,~; L[n]. The set | J,., L[n] for each k is closed by Proposition 2.3. The
other claims about the components of L[n] are established in Propositions 3.10,
3.11 and 3.12. That | J,., L[n] — L is a homotopy equivalence is established in
Proposition 3.14. - [l

Lattice Veech groups. We now turn to the case when PSL(X), go) is a lattice and L
has finite volume.

Cusps. A cusp of a Fuchsian group I' is the fixed point x € dH of any unipotent
element g € I". The set of all cusps of I we will denote by C(I"). A cusp of the
quotient V' = H /T is a I"-orbit in C(I") and we will denote the set of all cusps on V'
by C(V). When the volume of V' is finite, the set C (V) is finite and can be added
to V to give a closed surface V =V U C(V).

Cylinder decompositions. It is well known that if PSL( Xy, go) contains a unipotent
element stabilizing the line L = R - (£(x + iy)) of slope y/x, then there is a
collection {y1,..., ¥s} of saddle connections whose periods lie in L and whose
complement in (X, go) is a disjoint union of metric cylinders {Cy, ..., Cr}. We will
need the following partial converse for lattice Veech groups which is a consequence
of the famous Veech dichotomy [18]:

Theorem 3.15 (Veech). Suppose PSL(Xy,qo) is a lattice. Each saddle period
+v € Per(Xo, qo) is parallel to a cylinder decomposition of (X, qo) and is stabilized
by a unipotent element in PSL(Xy, qo).

The Veech dichotomy allows us to prove:
Proposition 3.16. The following three subsets of dH are equal:

* Th = C(PSL(Xo.40)),

o T, ={—x/y € 0H : &(x + iy) € Per(Xo, qo)}, and

o Ts ={—x/y € dH : {£(x +iy)} € Ell(Xo,g0)} -
Proof. The sets T1 and T5 are equal by Theorem 3.15. The sets 7> and 73 are equal
since a collection S = {+v} C Per(Xy, qo) of saddle periods consisting of a single

saddle period is supported by an ellipse if and only if +v is the shortest saddle period
in the line R - (£v). m

Proposition 3.17. Suppose L has finite volume, and S = {xv} € EI(Xo, go). The
set Hy, (S) contains B(£v, K) for some K > 0.
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Proof. When L has finite volume, the complement in (Xy, go) of the set of all
saddle connections with periods parallel to v is a disjoint union of metric cylinders
{Ci,...Cr}. Let K > 0 be a number smaller than Area(C;) for each i. For any
point [A] € B(xv, K), the height of the cylinder A - C; is larger than |A - (£v)].
For such an [A4], any saddle period in A4 - (Xo, go) not parallel to A - (£v) is longer
than A - (£v). The saddle periods parallel to A - (£v) are also longer than A - (£v)
since S is supported by an ellipse, so A - (£v) is the unique shortest saddle period
on A - (Xo,qo). The point [4] is in H,,(S). L

Proposition 3.18. Suppose L has finite volume. The set L[1] has #C (L) connected
components, each of which is diffeomorphic to the annulus and L[1] contains a
horoball around each cusp of L.

Proof. By Proposition 3.9, each connected component of L[1] is equal to f(H,(S))
for some § = {£v} € Ell(Xo,qo)[l]. By Theorem 3.15, v is stabilized by a
unipotent element of PSL(Xy, go), and Stab(.S) is isomorphic to Z. The component
J(Hpy(S)) is diffeomorphic to the annulus H,,(S)/ Stab(S).

To see that L[1] has #C (L) connected components, note that the equality of sets
Ty1 = T3 from Proposition 3.16 gives a bijection between the cusps of PSL( X, ¢o)
and elements of Ell(X¢, go)[1] which is equivariant with respect to PSL(Xg, go). So
we have:

#C(L) = #C(PSL(Xo, q0))/ PSL(Xo., q0) = #EIll(Xo, qo)[1]/ PSL(Xo0. q0)

and the right hand side is in bijection with the number of components of L[1] by
Proposition 3.9.

Now fix a cusp ¢ of L and let ¢ € dH be any cusp of PSL(Xg, go) mapping
to ¢c. By Proposition 3.16, t = —x/y for some S = {+(x +iy)} € Ell(Xo, qo)-
The set H,,(S), whose image under f lies in L[1], contains a horoball about ¢ by
Proposition 3.17. ]

Proposition 3.19. If the volume of L is finite, then Spiney, (L) is compact, the set
U,s3 LIn] is finite, the set L[2] has finitely many components.

Proof. By the previous proposition, the set L[1] contains a neighborhood of each
cusp in L. The spine Spiney,; (L) is closed by Proposition 2.3 and is contained
in a compact subset of L since it is contained in the complement of L[1]. Since
\U,>3 L[n] is a discrete subset of this compact set, | J,,~.; L[n] is finite. Since L
has finite volume, the Euler characteristic of L is finite. The homotopy equivalent
set | J,~, L[n] also has finite Euler characteristic. But the Euler characteristic of
U2 L[n] is equal the difference between the number of points in \U,>3 L[n] and
the number of components of L[2] (and possibly a finite contribution from the orbifold
points on L) so L[2] has finitely many components. O
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Proof of Theorem 1.3. The remaining claims about L[n] when L has finite volume
are established in Propositions 3.18 and 3.19. 0

Algorithm. Fix a point [X,¢q] € L[k] with k¥ > 3. We conclude this section by
describing an algorithm for finding the neighbors of [ X, g] in the graph whose vertices
are points in | ;.5 L[] and whose edges are components of L[2].

Choose a matrix A € G so [X,q] = [A - (Xo,g0)] and set S = A~ Perp (A -
(Xo0,490)) s0 Hn(S) = {[A]} and f(H,(S)) = [X,q]. Let £vq,...,+vg be the
elements in S ordered by the counterclockwise cyclic ordering induced by the unique
ellipse supporting S. The components of L[2] emanating from [X, ¢] are the geodesic
arcs f(Hpy({£v;, +v;i41})), where subscripts are read modulo k.

One endpoint of H,, ({:tvj, v }) is H,,(S). To compute the other endpoint
of Hm({:lzvj, :I:vj_H}):

(1) Compute the matrix B € G with B - (£v;) = £1 and B - (£v;4+1) = %i. The
cyclic ordering on the v;’s ensures that B - S lies in the quadrant {(x + iy) :
%7 =< 0

(2) Find the minimum Eccg of the quantity:
Ecc(£w) = (1 —x? — y?)/(2xy) where =+ (x +iy) = B - (£w)

and +w ranges in the saddle periods for which B - (fw) = %(x + iy) with
|x — y| < 1. The condition on 4w ensures there is an ellipse £ passing through
+1, &/ and B - (+w) and the quantity Ecc(4+w) measures the eccentricity of E.

(3) The collection of saddle periods:
S" = {£w € Per(Xo,qo) : B - (fw) = £(x + iy) with x> + 2Bccoxy + y* = 1}

contains at least three saddle periods and is supported by an ellipse. The endpoints
of Hm({:lzvj, Fvj4q }) are H,,(S) and H,,(S’).

Figure 2 gives an example of a quadratic differential up to scale with #N (X, q) = 3,
as well as its three neighbors.
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Figure 2. Gluing parallel sides of equal length on the polygons (top) gives four genus two
differentials (X;,q;) = (P;,dz?)/ ~ with #N(X;,q;) = 3. The thick lines in P; give the
shortest saddle connections on (X;,¢;). The three neighbors of the differential up to scale
[X1.q1] are [X;,q;] for i > 2 as is easily computed by enumerating a small number of the
saddle periods on (X1, q1) (bottom, generated by code written by C. McMullen).
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4. Examples

In this section, we study several examples of Veech groups in genus two using our
algorithm.

L-shaped polygons. Each integer D > 5 satisfying D = 0 or 1 mod 4 determines
a Euclidean octagon P (D) as in Figure 3. Gluing parallel sides of equal length
together by translations gives a genus two Riemann surface with a holomorphic
quadratic differential:

(Xp.gp) = (P(D),dz*)/ ~.

An important result of Calta and McMullen is that the Veech group of (Xp,¢gp) is a
lattice:
Theorem 4.1 (Calta, McMullen). The Veech group PSL(Xp.qp) is a lattice.

Set QLp = G-(Xp,gp)and Lp = C*\QLp.

(1+N)i

Figure 3. Each integer D > 5 with D = 0 or 1 mod 4 determines a Euclidean octagon

P(D) C C built out of a square of side length A = # and a b x l-rectangle where

b = (D —e?)/4and e = —1 or 0 so that e = D mod 2. Gluing parallel sides of equal length
together by translations gives a genus two quadratic differential (X p,¢p) = (P(D),dz?)/ ~
with lattice Veech group.

Fundamental domains and generators. We now describe how to encode an ideal
n-gon D(S) and generators I'(s ) for a Fuchsian group with fundamental domain
D(S) by a pair (S, o) consisting of a finite set § C R? and a gluing involution o in
the permutation group of .

Letv; = (;} ) siwsg g = (;ﬁ ) be the elements of S ordered so that —x;/y; <
—X2/y2 < -+ < —xp/yn and set z; = x; + iy;. Define D(§) C H to be the
convex hull of the set {—x;/y1,...,—xn/yn} C 0H.
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Given a pair v; and vg in S, there is a unique element A(v;, vx) € G satisfying:
Aj,vg) - (£(z)) = £zg4q and A(vj, vg) - (£zj41) = £2¢.

The Mobius transformation m 4y, v ;) takes the edge of D(S) connecting —x;/y;
to —xj4+1/yj+1 to the edge connecting —Xg41/Vk+1 10 —xi/yk. If o is an order
two element in the permutation group of .S, the set:

I'¢s,o) = {A(;, o)) 1 v; € S}

generates a Fuchsian group with D(S) as fundamental domain.

Example: D = 12. The Riemann surface L, has genus zero, three cusps and one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the
components of Li;[n] for n > 2. The set L1,[3] consists of three differentials up to
scale, L1;[n] is empty for n > 4 and L1,[2] has five components.

We also computed a pair (S;2,012) encoding a fundamental domain and
generators for PSL(X 2, ¢12):

S12 = {(‘{3) ; (3_1“/3) {95 (‘/51‘3) : (3_0*/-’—’)} and o1, = (1, 1)(2, 3)(4, 3).

The domain D(S12) is the convex hull of { — +/3,-3 + +/3,0,3 — +/3, 00} and
PSL(X12,412) is generated by:

34243 —3—4./3 1 0 _
L($12,012) = {:l: ( 2+% ~3—2J§) . E ("“1“% 1) , £ ((1) 13)} '
The domain D(S)>) is depicted in Figure 4.

Example: D = 13. The Riemann surface L3 has genus zero, three cusps, one
orbifold point whose orbifold order is two. Using our algorithm, we enumerated the
components of Ljs[n] for n > 2. The set L3[3] (see Figure 4) consists of three
differentials up to scale, L;3[n] is empty for n > 4 and L;3[2] has five components.

We also computed a pair (S;3,0;13) encoding a fundamental domain and
generators for PSL(X 13, ¢13):

JI3_1 \/'1_3_1 VI3_1 ~13_ 1
o090 (178)-(32) 005

2

and

013 = (1, 2)(3, 5)(4, 4)
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The domain D(S;3) is the convex hull of {I_E/ﬁ,_7+3‘/ﬁ,—l,0,oo} and
PSL(X13,q13) is generated by:

s (0im T) = (ot 4572

. ~ La+v13) o0 (1++/13) 3(-1-V13
(S13,013) — 7+2/13 —2(5-1—«/13)
L(414+114/13) 92413

The domain D(S;3) and the stratification L3 = [, >1 L 3[n] are drawn in Figure 4.

Li2
/ . 4 Eedf
NEl 3+/3 0 343
Liz 1
p
L
- 2 1
(1-V13)2 (V1373 -1 0

Figure 4. The Riemann surfaces L p for D = 12 (top) and D = 13 (bottom) both have genus
zero, three cusps and one orbifold point of order two. The stratification L p = ,,~; L p[n]
decomposes L p into easy to understand pieces. Enumerating points in L p[n] for n > 3
and components of L p[2] allows us to compute a fundamental domain and generators for
PSL(Xp.gqp).
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Example: D = 44. The Riemann surface L44 has Euler characteristic —21/2,
genus one, nine cusps and three orbifold points each of which has orbifold order two.
The set L4q[n] is empty for n > 4, the set L44[3] consists of 21 points, and the set
L[2] has 33 connected components.

The pair (S44. 044) listed in Table 1 encodes a fundamental domain and generators
for PSL(X 44, q44). The domain D(S44) is the ideal 23-gon equal to the convex hull
of:

—11 + +/11,— I L(= 114+ V10), 3 (= 11 = 24/11), (= 11 +2V/11), (= 22 + 3V/10),
2(-11+ 11),-2 5( 33+ 74/11), (= 11 + V1), 3 (= 22 + 3v/11), 3 ( = 11 + V/11),0, 1 (11 - V1), } -
11 =V11), 133 = 7v/11), 2, = (= 11 + V1), L (22 - 3v/11), 4 (11 = V11), V11, 0

The domain D(S44) and the preimages of L44[n] for n > 2 are drawn in Figure 1. A
few examples of elements the Veech group of (X44, g44) include:

:I:(l—“),:l:(ﬂz“/_ = T 6J_) :I:(25+6Jﬁ —6(11+42/11)

2+ 2= 5211 ~10- 3% 2546411 )EPSL(X44,q44).

A full list of generators for PSL(X44,¢44) can be easily computed from the pair
(S44, 0'44) listed in Table 1.
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