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Word length statistics for Teichmiiller geodesics
and singularity of harmonic measure

Vaibhav Gadre, Joseph Maher and Giulio Tiozzo

Abstract. Given a measure on the Thurston boundary of Teichmiiller space, one can pick a
geodesic ray joining some basepoint to a randomly chosen point on the boundary. Different
choices of measures may yield typical geodesics with different geometric properties. In
particular, we consider two families of measures: the ones which belong to the Lebesgue
or visual measure class, and harmonic measures for random walks on the mapping class group
generated by a distribution with finite first moment in the word metric.

We consider the word length of approximating mapping class group elements along a
geodesic ray, and prove that this quantity grows superlinearly in time along almost all geodesics
with respect to Lebesgue measure, while along almost all geodesics with respect to harmonic
measure the growth is linear. As a corollary, the harmonic and Lebesgue measures are mutually
singular. We also prove a similar result for the ratio between the word metric and the relative
metric (i.e. the induced metric on the curve complex).

Mathematics Subject Classification (2010). 30F60, 32G15, 60G50, 60J50.

Keywords. Random walks, mapping class group, Teichmiiller flow, harmonic measure, cusp
excursion.

1. Introduction

Let G = Mod(S) be the mapping class group of an orientable surface S of finite
type, which acts on the Teichmiiller space 7 (.S) of marked hyperbolic metrics on S.
Following Thurston, a boundary of Teichmiiller space is given by the space PMF
of projective measured foliations, which carries several measures:

* on the one hand, there is a natural Lebesgue measure class Leb on PMF given
by pulling back Lebesgue measure from the charts defined using train track
coordinates;

* on the other hand, Kaimanovich and Masur [18] showed that if x is a probability
distribution on G, whose support generates a non-elementary subgroup, then the
image of a random walk on G under the orbit map g — gX, converges to a point
in PMF almost surely. We let v be the corresponding hitting measure (also
known as harmonic measure).
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In this paper, we analyze geometric properties of typical geodesics with respect to
these measures. To define what we mean by typical geodesics, let us fix a basepoint
Xo € T(S). Then there is a map from PMF to the set of Teichmiiller geodesic rays
based at X. In fact, we can associate to each measured foliation F' the unique unit
area quadratic differential at Xy which has vertical foliation proportional to F', and
this quadratic differential determines a geodesic ray based at Xy. Thus, we can think
of the above measures as measures on the set of geodesic rays from Xg, and we can
talk about the behavior of geodesics which are typical with respect to either measure.

1.1. The word length ratio. Let us denote as ||g||¢ the word length of a group
element g with respect to some fixed generating set. As different choices of generators
lead to quasi-isometric metrics, our results will be independent of the particular
choice. Let T¢ denote the e-thin part of Teichmiiller space, i.e. the set of surfaces
with an essential curve of hyperbolic length less than €, and fix some € which is
smaller than the Margulis constant.

Let y be a Teichmiiller geodesic ray based at X. For each time 7, we denote as y;
the point at distance ¢ from the basepoint along y. If y; does not lie in the thin part,
we let g; be a group element such that g; X is a closest element of the G-orbit of X
to y;. This is illustrated schematically in Figure 1 below. We then define the word
length ratio as the quantity

- glle
p(y) = lim tt ,
Yi€Te

whenever the limit exists. Note that there may be several choices for g;, but since we
restrict the definition of g; to points y; which do not lie in the thin part, the distance
between different choices is bounded. Moreover, with respect to the measures we
consider, generic geodesics are recurrent to the thick part, so the above limit makes
sense almost surely.

Our first result establishes that the word metric grows superlinearly along
geodesics which are typical with respect to Lebesgue measure:

Theorem 1.1. Let X be a point in Teichmiiller space. Then for Lebesgue-almost
every geodesic ray y based at X, the word length ratio is infinite:

p(y) = oo.

We now state a corresponding result for random walks. Recall that a
measure . on the mapping class group G has finite first moment in the word metric
if [ llgllc di(g) < co. Moreover, we say that ;4 is non-elementary if the support
of p generates a non-elementary subgroup of G as a semigroup. The word length
ratio is almost surely finite along typical geodesics with respect to harmonic measure:

Theorem 1.2. Let i be a non-elementary probability measure on Mod(S') with finite
first moment in the word metric, let Xo € T(S) be a basepoint, and let v be the
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harmonic measure determined by the corresponding random walk. Then there is a
constant ¢ > 0 such that

p(y) =c

for v-almost every geodesic ray y based at Xy.

Figure 1. Our definition of g;. The point y; lies on the geodesic y, and g; X is a closest orbit
point to y;. In the case of genus 1, this corresponds to taking g; to be the element in the orbit
of Xo which lies in the same tile as y; of the Farey tessellation.

1.2. Therelative metric. A way to interpret this result is in term of different metrics
on the mapping class group. If G acts isometrically on a metric space (X, d), one
can pick a basepoint xg € X and consider the distance on G given by d(g,h) :=
d(gxg.hxg). In particular, the mapping class group acts on the following three
different metric spaces, and this can be used to define three metrics on G:

(1) the word metric || - ||g (or dg) previously mentioned arises from the action of G
on its Cayley graph;

(2) the mapping class group acts on the Teichmiiller space equipped with the
Teichmiiller metric: we will denote this metric as || - |7 or d;

(3) the mapping class group acts on the curve complex C(S): the resulting metric is
called the relative metric || - ||;e1 (or dre1). The curve complex is a locally infinite,
hyperbolic, simplicial complex. The relative metric on G can also be seen as the
word metric with respect to an infinite generating set, constructed by adding to a
finite generating set the stabilizers of simple closed curves «;, where the «; are
a set of representatives for orbits of simple closed curves under G [27].

It is well known (see [28,29]) that ||« ||t S || - l7 S || - |lg, and the three
metrics are not quasi-isometric to each other. Moreover, except in some cases of
low complexity, neither the word metric nor the Teichmiiller metric are hyperbolic
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in the sense of Gromov; the curve complex, on the other hand, is known to be
hyperbolic [27], but this comes at the price of not being locally compact.

However, if one restricts to geodesics that lie completely in some thick part, then
the three metrics are indeed quasi-isometric. Thus, one can interpret the results
of Theorem 1.1 and Theorem 1.2 by saying that typical geodesics with respect to
Lebesgue measure have larger excursions in the thin part than typical geodesics with
respect to harmonic measure.

We can also modify the word length ratio and define the relative word length ratio

prel(y) as

. lglle
praa(y) := lim ===
t—0o || g ||rel

ve€Te
For the relative word length ratio we have a similar result.
Theorem 1.3. Let X be a point in Teichmiiller space. Then for Lebesgue-almost
every geodesic ray y based at Xy, we have

prel(y) = Q.

Moreover, let |1 be a non-elementary probability measure on Mod(\S) with finite first
moment in the word metric, and let v be the harmonic measure determined by the
corresponding random walk. Then there exists a constant ¢ > 0 such that

pre1(y) = ¢

for v-almost every geodesic ray y based at Xy.

Let us remark that in the special case of G = SL,(Z) (mapping class group of
the torus), Theorem 1.3 is equivalent to the following classical statement in terms of
continued fractions. For each r € R, let us denote as a, (r) the n'” coefficient in the
continued fraction expansion of r. Then for Lebesgue-almost every r, we have

lim a(r) + -+ an(r) = 400,

n—00 n

while for almost every r with respect to harmonic measure, we have

e an(r
lim au() + L2 n()=c<oo.
n—o0o n

Note that the statement of Theorem 1.3 for the Lebesgue measure follows
immediately from Theorem 1.1, as the Teichmiiller metric is a coarse upper bound
for the relative metric. For the same reason, the statement of Theorem 1.3 implies
that for the harmonic measure the word length ratio p(y) is almost surely bounded
above and below between two positive constants: this is almost the statement of
Theorem 1.2, except for the existence of the limit.
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1.3. Singularity of harmonic measure. The theorem has the following corollary
for the harmonic measure:

Theorem 1.4. Let | be a measure on the mapping class group with finite first
moment in the word metric, and such that the semigroup generated by its support is a
non-elementary subgroup of Mod(S). Then the corresponding harmonic measure v
on PMUF is singular with respect to Lebesgue measure.

The singularity of harmonic measure for random walks on the mapping class
group was conjectured by Kaimanovich and Masur [18]. The origin of this conjecture
lies in the following analogy with Riemannian manifolds. If M s the universal
cover of a compact surface M of negative curvature, the harmonic measure on the
ideal boundary of M given by the Brownian motion is singular with respect to
the visual measure unless the surface has constant curvature (see Katok [16] and
Ledrappier [20]). In this light, the singularity of Theorem 1.4 is to be expected as
Teichmiiller space is inhomogeneous (e.g. its isometry group is discrete). Note that
the Teichmiiller metric is not Riemannian, so it is not clear how to define a Brownian
motion, but one can use the random walk as a discrete analog.

Note that the finite first moment assumption is essential; indeed, it is conjectured
that there exists a measure © on Mod(S) such that the hitting measure of the
corresponding random walk is absolutely continuous on PMF: as a consequence
of our result, such a measure must have infinite first moment.

In [10], Gadre proved singularity of the harmonic measure for random walks
on Mod(S) generated by measures with finite support, while here we consider
arbitrary measures of finite first moment. His proof uses train track splittings
on PMJF, and relies on the exponential decay of measures of shadow sets, which
are not known for measures of finite first moment.

In this paper, we get the Lebesgue measure statistics by using the ergodicity of the
Teichmiiller geodesic flow, combined with estimates on the volume of the thin part
of the space of quadratic differentials. In particular, we define the following function
L : QM — R on the moduli space of quadratic differentials:

1
L(g) := Z Ez_(oz)’

aeCy(8,e) 4

where £4(«) is the length of the curve « in the flat metric ¢, and Cy (8, €) the set
of cylinders which have core length < /e and area = §. We then prove, using
results of Eskin—Masur [7], that the ergodic average of L is infinite along orbits of
the Teichmiiller flow; Theorem 1.1 follows since the time integral of L is a lower
bound for the word metric | - ||G.

The statistics for harmonic measure follows from linear progress in the relative
metric, combined with sublinear tracking between geodesics and sample paths. In
particular, in [32] it is proven that random walks on the mapping class group track
Teichmiiller geodesics sublinearly (in the Teichmiiller metric). In order to transfer



6 V. Gadre, J. Maher and G. Tiozzo CMH

the information about the ratio between the word and the relative metric along sample
paths, we will prove a tracking result in the word metric.

1.4. Background and remarks. For random walks on general groups, the question
of singularity of harmonic measure has a long history (see also the introduction
of Kaimanovich and Le Prince [17]). In the context of lattices in Lie groups,
Furstenberg [8, 9] first constructed random walks on discrete groups whose hitting
measure is absolutely continuous on the boundary. For non-uniform lattices of rank 1,
these random walks have finite first moment in the Riemannian metric on the Lie
group, but do not have finite first moment in the word metric on the discrete subgroup.

For non-uniform lattices I" in SL(2,R), Guivarc’h and Le Jan [13, 14] proved
the singularity of harmonic measures by studying the asymptotic winding around
the cusp of the geodesic flow on I'\H2. Other approaches are given by Deroin,
Kleptsyn and Navas [4] and by Blacheére, Haissinsky and Mathieu [2]. Our approach
via the word length ratio can be also applied to non-uniform lattices in SL (2, R) [12].
On the other hand, for finitely supported measures on uniform lattices in SL(2, R),
harmonic measure is expected to be singular; however, the question appears to be
still open.

Several authors have considered cusp excursions of Lebesgue-typical geodesics;
in particular, Sullivan [31] showed that on a non-compact hyperbolic manifold a
generic geodesic ray ventures into the cusps infinitely often with maximum depth
in the cusps of about log#, where ¢ is the time along the geodesic ray. The same
approach has been then adapted to the Teichmiiller geodesic flow by Masur [26].

Our method uses essentially only the geometry of the cusp, so it is natural to
expect it to apply to other group actions for which the orbit space is a non-compact
manifold of finite volume and the geodesic flow is ergodic, e.g. for fundamental
groups of higher-dimensional hyperbolic manifolds with cusps.

1.5. Outline of the paper. In Section 2 we present background material on
Teichmiiller theory; in particular, we review the curve complex and marking complex,
define the concept of excursion and use results of Rafi in order to prove the
coarse monotonicity in the word metric of the approximating group elements along
Teichmiiller geodesics. In particular, in the case of curves corresponding to flat
annuli, we obtain an estimate for the excursion in terms of the twist parameter and the
area of the flat annulus. In Section 3, we prove the asymptotic result for the Lebesgue
measure, i.e. Theorem 1.1. This is done by considering the ergodic average with
respect to the Teichmiiller flow of an appropriate function defined on the moduli
space of quadratic differentials (Theorem 3.3) and then relate the average to the
growth rate of the word metric along typical geodesics. We use results of Masur [26]
and Eskin—-Masur [7], which give the growth rate of the number of flat annuli, and
enable us to apply the excursion estimates obtained in the previous section. Finally,
in Section 4, we prove Theorem 1.2, namely the asymptotics for harmonic measure.
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1.6. Notation. We shall find it convenient to occasionally use big O notation. We
say that f(x) = O(g(x)) if there are constants A and B such that | f(x)| < A |g(x)|
for all x = B. In particular, f(x) = O(1) means that the function f(x) is bounded.
We will also write f(x) < g(x) to mean that the inequality holds up to additive and
multiplicative constants, i.e. there are constants K and ¢ such that

fx) < Kg(x) +¢,

and similarly f(x) = g(x) will mean that there exist constants K, ¢ such that

%g(x) —c < f(x) £ Kg(x)+c.

Unless otherwise specified, the constants K, ¢ depend only on the topology of S, the
constant € defining the thin part, and the generating set for Mod(sS).

Acknowledgements. We would like to thank H. Masur, C. McMullen, Y. Minsky,
K. Rafi, J. Smillie and the referee for helpful comments. The first author was
supported by an AMS-Simons Travel Grant. The second author would like to thank
Kathi Crow for her generous hospitality, and was supported by PSC-CUNY award
66560-00-44 and Simons Foundation grant CGM 234477.

2. Preliminaries from Teichmiiller theory

In Sections 2.1-2.4 we review some background material on quadratic differentials,
subsurface projections and short markings. In Section 2.5 we review in detail some
results of Rafi [29, 30] which relate subsurface projection distance first to the twist
parameter along a Teichmiiller geodesic, and then to the excursion distance along
the geodesic. In Section 2.6, we use these results to show that word length grows
coarsely monotonically along Teichmiiller geodesics, and finally in Section 2.7, we
show that a similar result holds for the nearest lattice points to the geodesic, if they
lie in the thick part of Teichmiiller space.

2.1. Quadratic differentials and Teichmiiller discs. Let S be a hyperbolic surface
of finite type, i.e. a surface of finite area which may have boundary components
or punctures. We say such a surface S is sporadic if it is a sphere with at most
four punctures or boundary components, or a torus with at most one puncture or
boundary component. We shall primarily be interested in non-sporadic surfaces, as
in the sporadic cases the Teichmiiller spaces are either trivial, or isometric to HZ, and
covered by the case of SL(2,7) (see [12]).

Let S be a non-sporadic surface with no boundary components, but which may
have punctures. We will write 7(S) for the Teichmiiller space of a surface S, or
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just 7 if we do not need to explicitly refer to the surface. We shall consider 7
together with the Teichmiiller metric

dr(x,y) = %ir}fIOg K(f),

where the infimum is taken over all quasiconformal maps f:x — y in the correct
homotopy class, and K( f) is the quasiconformal constant of f. The mapping class
group G = Mod(S) of the surface acts by isometries on 7, and we shall write 7¢ for
the thin part of Teichmiiller space, i.e. all surfaces which contain an essential curve
of hyperbolic length at most €. We shall write M for the quotient G\7", which is
known as moduli space. The thin part of Teichmiiller space is mapping class group
invariant, and we shall write M. for the subset of moduli space given by G\ 7.

Let Q be the space of unit area quadratic differentials, which may be identified
with the unit cotangent bundle to Teichmiiller space [15]. We shall write & for
the projection 7 : @ — T which sends a quadratic differential to its underlying
Riemann surface, and we shall write iy, for the Masur-Veech measure, also known
as the holonomy measure, as it may be defined in terms of holonomy coordinates.
The measure ppe is mapping class group invariant, and so gives a measure on the
moduli space of unit area quadratic differentials MQ = G\Q, which has finite
volume [25,33].

A quadratic differential ¢ determines a flat structure on the surface, which may
be thought of as a union of polygons glued together along parallel sides, where the
vertices of the polygons may correspond to points of cone angle nx, forn = 1.
If n = 2, then the vertex corresponds to a zero of order n — 2 for the quadratic
differential ¢, and for n = 1 the vertices correspond to cone points of angle 7 which
are simple poles for the quadratic differential, and correspond to the punctures of the
surface. There is an affine action of SL(2,R) on the flat surface, which gives rise
to a new quadratic differential. The orbits of quadratic differentials under the action
of SL(2,R) give a foliation of Q by copies of SL(2,R), and we shall write 5q for
the orbit of the quadratic differential g. We shall write D, for the image of 5,] inT,
and this is called a Teichmiiller disc, which is geodesically embedded in 7. With the
metric induced from the Teichmiiller metric, D, is isometric to the hyperbolic plane
of constant curvature —4, and it will be convenient for us to use coordinates coming
from the disc model of hyperbolic plane, with the initial quadratic differential ¢
corresponding to the vector (1, 0) at the origin.

The group of rotations of R? acts on flat surfaces, and hence on Q. In terms of
quadratic differentials, rotation by angle 6 in R? sends g > e~2i%¢, and this action is
trivial on Teichmiiller space 7. It follows from the definition that holonomy measure
is invariant under rotation, i.e. Upo(U) = /,Lhol(eigU ), for all 6, for any subset
U C Q. In particular, this means that if we consider the conditional measure of [ty
on the image of a quadratic differential ¢ € Q under rotation, i.e. {e‘%q : 6 € [0, 27]},
then this is precisely the invariant Haar or Lebesgue measure on the circle.
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Finally, given X € T, the space Q(X) of unit area quadratic differentials on X
is the unit cotangent space at X, and we can denote by sx the conditional measure
induced by the holonomy measure on Q(X). The map Q(X) — PMF which
associates to each quadratic differential on X the projective class of its vertical
foliation pushes forward the measure sy to a measure in the Lebesgue measure class
(see Athreya, Bufetov, Eskin and Mirzakhani [1, Section 2]), so we can indifferently
use sy and Lebesgue measure on P M F when discussing sets of full measure. For
a discussion of the different measures on 7(S), PMJF and related spaces, see also
Dowdall, Duchin and Masur [6, Section 3].

2.2, Curve complex and subsurface projections. In this section we review the
properties we will use of two combinatorial objects associated with a surface, namely
the curve complex and the marking complex.

We say a simple closed curve on a surface S is essential if it does not bound a disc,
and is not parallel to a puncture or boundary component. The curve complex C(S)
is a finite dimensional but locally infinite simplicial complex whose vertices are
isotopy classes of essential simple closed curves on S, and whose simplices consist
of collections of curves which can be realised disjointly on the surface. For the non-
sporadic surfaces, the curve complex is a non-empty, connected, simplicial complex.
In the case of a torus with one puncture or boundary component, or a sphere with
four punctures or boundary components, the definition above gives a complex with
no edges, so we alter the definition to connect two vertices if their corresponding
curves can be realised by curves which intersect at most once (in the case of the
once punctured torus) or at most twice (in the case of the four punctured sphere). In
the case of the annulus, the curve complex is defined to be the infinite graph with
vertices consisting of arcs connecting the two boundary components of the annulus,
modulo isotopy fixing the endpoints, and with edges between two arcs if they can be
realised disjointly. The curve complex of the annulus is quasi-isometric to Z with a
quasi-isometry given by the algebraic intersection number with a fixed transversal.
We define the curve complex to be empty for the remaining sporadic surfaces.

We say a subsurface Y C S is essential if each boundary component is an essential
simple closed curve in S. Given an essential subsurface ¥ C .S, which is not a disc
or a three-punctured sphere, one can also consider C(Y'), the complex of curves
of Y. There is a coarsely well-defined subsurface projection ny:C(S) — C(Y)
which we now describe. Choose an element in the isotopy class of the curve y which
has the minimal possible number of intersections with Y, and then take a regular
neighbourhood of the union of the boundary of Y with the intersection of the curve y
with Y, i.e. N(@Y U (y N Y)). Choose an essential component of the boundary of
this regular neighbourhood to be wy (). This is coarsely well defined.

To define the annular projection 7z (y) of a curve y with essential intersection with
an annulus A one passes to the annular cover SofS given by the core curve o of A
and chooses 7 4(y) to be a component of the lift of y that is an arc running from one
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boundary component of S to the other. The set of components of the lift of y that
satisfy this property form a finite diameter set in the curve complex of the annulus S
and so the projection is coarsely well-defined. Finally the map 74 has the property
that if D, denotes the Dehn twist about ¢, then for any n € Z

deay(ma(Dg(y)), ma(y)) = |n|. (1)

Thus, defining the projection this way achieves the desired property of recording the
twisting around «. There is a natural Z-action on C(A) by Dehn twisting around
the core curve of the annular cover S. The group Z also has an inclusion into the
mapping class group of S as Dehn twists around «, and so it acts on C(A) through
this inclusion. The projection map 4 is coarsely equivariant with respect to the
two Z actions. We will often abuse notation and write 7, to mean the subsurface
projection to an annulus whose core curve is «.

2.3. Markings. A marking consists of a collection of simple closed curves «;
forming a maximal simplex in the curve complex, or equivalently, a pants
decomposition of the surface, together with a transverse curve t; for each pants
curve «;, which is an element of the annular curve complex corresponding to «;. The
curves «; are known as the base curves of the marking. We remark that the definition
we give here corresponds to the definition of a complete marking from [28]. They
consider more general markings, in which the set of base curves does not need to form
a maximal simplex in C(S), and all base curves are not required to have a transversal.
However, complete markings suffice for our purposes.

If « is a simple closed curve in S, then a clean transverse curve for o is a
simple closed curve B, such that a regular neighbourhood of & U 8, isotoped to
have minimal intersection, is either a sphere with four boundary components, or a
torus with a single boundary component. A clean marking is a marking («;, t;),
such that each transverse curve t; is of the form 7y, (8;), for some clean transverse
curve B;, which is disjoint from the union | J;; a; of the other base curves. A
clean marking m’ = («;, ;) is compatible with a marking m = (w;, t;) if the base
curves of m are the same as the base curves of m’, and for each base curve «;, the
distance dy, (t;, 7o; (B;)) is minimal. There are only finitely many clean markings m’
compatible with a given marking m, and the distance between any two of them is
bounded independently of m.

The marking complex M(S) is a graph whose vertices are clean markings, and
whose edges are given by elementary moves as defined by Masur and Minsky [28].
These moves are called twists and flips. In a rwist, a transverse curve f3; is replaced
by the image of the transverse curve under a Dehn twist along its corresponding pants
curve Dy, (B;). In a flip, a transverse curve f; and its corresponding base curve o;
are interchanged, i.e. a new clean marking is chosen which is compatible with the
marking formed by replacing (c;, mo; (Bi)) with (B;, g (a)). The mapping class
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group acts on the marking complex and the space of orbits is finite. We will write ds
for the induced metric on the marking comnplex obtained by setting the length of each
edge equal to one.

The mapping class group is finitely generated, so a choice of generating set gives
rise to a word metric, in which the length of a group element is the shortest length of
any product of generators representing the group element. Different generating sets
give rise to quasi-isometric metrics. We shall assume we have fixed a generating set,
and we shall write || - |g, or dg, for the word metric distance in the mapping class
group. Masur and Minsky showed that the distance dps in the marking complex is
quasi-isometric to the word metric in the mapping class group.

Theorem 2.1 ([28, Theorems 6.10 and 7.1]). Fix a complete clean marking mo and

a system of generators for Mod(S). Then there exist constants Cy, Cy such that for
each g € Mod(S)

Cillglle — Ca < du(mo, gmo) < Cillgll + Ca.

For any essential subsurface Y C §, there is a coarsely well-defined projection
map py : M(S) — P(C(Y)) to the set of subsets of C(Y'), which is defined for each
marking p as follows. If Y is an annulus whose core curve « is a base curve of L,
then the image of p is the transverse curve to «. Otherwise, the projection of p is
the set of subsurface projections to ¥ of the base curves of 1.

Given markings m and n, denote by dy (m, n) the diameter in C(Y') of the union
of the projections of m and n. If « is a simple closed curve, then d, will denote the
distance in the curve complex of the annulus with core curve «.

Masur and Minsky [28, Theorem 6.12] proved a distance formula expressing the
distance in the marking complex M (.S), and hence by Proposition 2.1, the distance
in Mod(S) in the word metric, in terms of subsurface projections. We now describe
their formula, using the cutoff function | x | 4, defined by

x)a = Hx=4 @)

0 otherwise.

Theorem 2.2 (Quasi-distance formula [28]). There exists a constant Ag > 0, which
depends only on the topology of the surface S, such that for any A = Ay, there are
constants Cy and C,, which depend only on A and the topology of S, such that for
any pair of complete clean markings m and m’ in M(S),

Cildp(m.m') —Cy < ) " |dy(m.m') |4 < Crdp(m.m') + C
YCS§

where the sum runs over all subsurfaces Y of S, including S.
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2.4. Short curves and short markings. Let us recall the definition of extremal
length of a curve « on a surface:

Ext,(d) = sgp %

where the sup is taken over all metrics p in the same conformal class as o. For any
quadratic differential ¢ with area 1 and any curve «,

(t@)? < Bxto (@) < 25D oo
where the left-hand side is by definition, while the right-hand side is due to
Maskit [23], and L4 () is the length of « in the hyperbolic metric corresponding to
the conformal structure o.

Let now g € Q(S) be a quadratic differential, and define the short marking m(q)
in the following way. First, choose a pants decomposition by picking the simple
closed curves of shortest extremal length, using the greedy algorithm. To be precise,
start by choosing one of the shortest curves on the surface, then choose one of the
shortest curves on the complementary surface, and continue until you have a pants
decomposition of the original surface.

Then, for each curve «; of the pants decomposition choose a transverse curve t;
which is perpendicular to «; in the flat metric associated to g. This produces a
complete marking m’ on S. Finally, let us pick m(g) to be a clean marking which is
compatible with m’.

Note that the short marking need not be unique (for instance if there are multiple
shortest curves), but there are only a finite number of choices, with a bound depending
on the topology of the surface.

This givesamapm : Q(S) — M(S), which is coarsely well-defined and mapping
class group equivariant. This map is not Lipschitz over all of Q(S), but it is over
the pre-image of the thick part of Teichmiiller space. Once we fix a base point ¢y,
we shall write g; for the quadratic differential given by flowing g for time ¢, and
m; = m(q;) for the short marking associated to ¢;.

We remark that our definition of marking follows [30], but there are other
definitions of short markings in the literature [28,29], as one can choose to take
the short pants decomposition with respect to either the hyperbolic or extremal
length, and to define the transversals using either the hyperbolic or flat length. In
fact, the choice of extremal or hyperbolic length to define the pants decomposition
only changes the marking up to bounded distance, while changing the definition of
transversal may yield two markings whose distance is not bounded.

2.5. Excursions and twist parameter. The material in this section is due to Rafi [29,
30], and gives estimates for the twist parameters of flat annuli which depend on their
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area. This suffices for our purposes, as the results of Masur [26] and Eskin—Masur [7]
guarantee the existence of sufficiently many flat annuli with area bounded below.
However, we need versions of his results in terms of the excursion parameter, and we
use some of the contents of the proofs, not just the main stated results, so we write
out all of the details for the convenience of the reader.

A horoball H in the hyperbolic plane is a subset of the plane which in the Poincaré
disc model corresponds to a Euclidean disc whose boundary circle is tangent to the
boundary at infinity. Given a horoball H and a geodesic y which spends a finite
amount of time in H, let us define the excursion E(y, H) of y in H as the “relative
visual size” of the set of rays which go deeper than y inside H. Namely, consider a
basepoint X on the Teichmiiller disc in 7, and let Yz be the geodesic through X
which tends to the cusp of H, and yr a geodesic through X which is tangent to H.
Let ¢ be the angle between y and yg, and ¢, be the angle between ygy and yr
(see Figure 2). Then

Definition 2.3. The excursion of the geodesic y in the horoball H is defined as

E(y, H) := ¢’“’”‘. (3)

bo

It turns out that E(y, H) equals, up to an additive error, the hyperbolic length of
the closest point projection of y N H to the complement of H.

VH

YT
o

¢max

Figure 2. Excursion in the horoball H.

Let (X, g) be aquadratic differential on X, and « a simple closed curve on X. The
choice of ¢ determines a Teichmiiller geodesic y and a pair (F+, F™) of contracting
and expanding foliations. Each 7 determines a new quadratic differential g; and hence
a flat metric on X, which we will call the ¢g,-metric.

For a given ¢, « is realised by either a family of parallel flat closed geodesics or
by a union of saddle connections, and we will denote as 7; a perpendicular to « in the
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q:-metric (there are several such choices, but we can pick any one of them as they are
disjoint). The twist parameter tw;" (ct) is the highest intersection number between a
leaf of F* and the transversal 7, and similarly we define 7 w; («).

Given a simple closed curve « corresponding to a metric cylinder, there is a
unique rotation e’%¢ which takes the metric cylinder to a vertical metric cylinder.
The endpoint of the geodesic ray corresponding to the quadratic differential e’ gaq
determines a point &, on the boundary at infinity of the Teichmiiller disc ID. We shall
write H¢(a) as the set of points in the disc for which « is short in the flat metric:

He(x) :={q €D : 6621(05) < €}.

As seen in the disc, this set is a horoball tangent to the boundary at infinity at &,. The
fundamental estimate is the following:

Proposition 2.4. Let H = H () as above, and let t1 and ty respectively be the
entry time and exit time from H (i.e. t| < t) along the Teichmiiller geodesic y. Let
moreover A be the area of the maximal flat cylinder in (X, qo) with core curve a.
Then we have, up to universal multiplicative and additive constants,

_ _ A
tw,, (o) —tw; (o) < ?E(y, H).

Proof. Consider the universal cover of the flat cylinder corresponding to « at time 7,
in the flat metric ¢,. We shall assume that the contracting foliation is vertical, and
the expanding foliation is horizontal. Let £; be the length of « at time #, and let 6;
be the angle oy makes with the vertical contracting foliation, as illustrated below in
Figure 3.

Oy
Wy
(04
N 0; E U
//‘ N 7 :\ { h
m 7, t

Figure 3. Estimating intersections in the flat annulus.
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Let /; and v; be the horizontal and vertical lengths of £; in the g, metric, i.e.

h; = hge' = £y sinGpe’

t t

vy = vge = = Locosbpe’.

Let w; be the length of t;, which is the width of the flat annulus. Let 7; be the length
of the intersection of a leaf of the horizontal foliation with the universal cover of the
flat annulus, and let n; be the length of the intersection of the horizontal leaf with
two adjacent translates of ;.

Recall that by definition 7 w; («) is the maximum number of intersections between
the horizontal leaf of the foliation and t;. Hence, by looking at the universal cover of
the annulus as in Figure 3, one gets that rw, («) is given, up to a bounded additive
error, by 7;/n,. Therefore

wy sin 6
@) = 2L+ o) = 2527 4 o).
n: £; cos b
The area of the annulus is A = w,{,, and tan 6, = tan Hye?*, so this implies that
A
tw; (o) = E—ztan Boe?' + O0(1). 4)
t

The total length of « is given by
€2 = h? + v} = €5(sin® Hpe®" + cos® Hpe ™), (5)

and recall that we choose #; such that Etzr_ = €, which by (4) implies

A
tw (@) — twy, (@) = — tan Gp(e*2 — &*1) + O(1). (6)
€
Note that by definition the #; are solutions to the equation
E?i = 4?3(51112 Bpe?'i + cos? e i) = ¢ i=1,2
If we set X; := 2% then X; are the solutions to
e? 1
X?————X =0 7
£3 sin? By U tan? 6, )
hence
2 4
2ty 2t _ _ &
e —etl = X5, — X1 = ws 8
g . Jﬂg Sil’l4 90 tan? 90 ®)
and putting (6) and (8) together
Atan6
twy, (@) — twy, (@) = To(eﬂz — 2y + 0(1)
_A & 4+ 0(1) v
€\ 4sin2 g cos? b, '

Let us now relate this quantity to the excursion in the horoball H .
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Lemma 2.5. Let ¢pnax be the angle between a geodesic yr tangent to H and the
geodesic yy which goes straight into the cusp of H. Then

€

sin ¢max = 3_2 »
0

where £ is the length of o at time t = .

Proof. When 0y = 6,,« then the geodesic is tangent to the horoball H, hence t; = 1,
in equation (8), so
€2 4

£ sint Opey  tan? Opmax

The claim follows by recalling that a rotation of angle 6 in the flat metric picture
corresponds to multiplying the quadratic differential by e2i% hence Dz = 20005
O

The proposition now follows easily from the lemma, equation (9) and the fact that
¢0 == 2902

tw,, (&) — tw,, (o) =

2A sin Prax sin? A
o2 ibeen <SP0 o o) 59 L B
€ singy Sin“ Prax €

where in the last equality we used equation (3) and the fact that sin ¢ < ¢ (note that
we can assume sin ¢ < % sin ¢max, otherwise the claim is trivially verified). O

Remark. As a corollary of the previous computation we have for each ¢ the formula

A tan 6y
£2(sin? By + cos? Gpe*")

tw; (@) =

so the function fw), («) is monotonically increasing, with
tw, (@) = 0 ast — —oo

and
2A sin A
tw, (@) > — 1_¢max =< —E(y,H) ast — +oo.
€ singy €

The distance between the projections from the marking complex to the complex
of the annulus can be compared to the excursion in the horoball:

Proposition 2.6. Let ¢ > 0 sufficiently small, and (Xy,q) a unit area quadratic
differential, which determines the geodesic ray y;. Let A be the q-area of the
maximal flat cylinder with core curve o, and suppose that o is not short in the
q-metric (i.e. EZ (@) = €). If the geodesic y crosses the horoball H = He(a) and t
is larger than the exit time of y from H, then

A
dy(mo, my) < :E(y, H)
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where m; is the short marking on y;, and the quasi-isometry constants depend only
on Xy, € and the topology of S.

Proof. Note that by the above remark the twist function fw, («)™ is monotone in ¢;
hence, if 1 and £, are the two times such that Ef‘l =eand 0 <ty <ty <t,then

1w, (@) — tw; (@) < tw, (@) —tw, (@) < S_l)igloo tw, (o) — S_l}r_noo 1w, (@)
and by Proposition 2.4 and the remark both sides are comparable to %E (v, H), hence

_ _ A
da(mo.my) = 1wg, (@) = 1wy, (@)] < = E(y, H)
as claimed. O

2.6. Coarse monotonicity for the word metric. In [30], Rafi shows the following
non-backtracking or reverse triangle inequality for subsurface projections along a
Teichmiiller geodesic. Recall that given a Teichmiiller geodesic y; we write m; for
the short marking at y;, and we write dy (mg, m;) to mean the distance in the curve
complex C(Y) between the images of m; and m, under subsurface projection to Y.

Theorem 2.7 (|30, Theorem 6.1]). There exists a constant C, only depending on the
topology of S, such that for every Teichmiiller geodesic y, and every subsurface Y,

dy (m,,mg) + dy (mg,m;) < dy(m,,m;) + C, (10)

for all constants r < s < £,

The above theorem along with the Masur—Minsky quasi-distance formula (2.2)
implies that the distance in the marking complex is coarsely monotone along a
Teichmiiller ray.

Proposition 2.8. There exist constants C1 > 0 and Cs, that depend only on S, such
that along a Teichmiiller geodesic vy, for r < s < t the distance in the marking
complex satisfies

dy (my, mg) < Cidp(my,my) + Ca.

Proof. Let C be the constant in Rafi’s reverse triangle inequality, Theorem 2.7.
Assume r < s < ¢, then (10) implies

dy (my,m;) = dy (m,,mg) — C (11)

for all subsurfaces Y C S. The Masur—Minsky quasi-distance formula (Theorem 2.2)
holds for all floor constants sufficiently large, though the quasi-isometry constants
depend on A. Choose a floor constant A > 2C, and let K; and K, be the associated



18 V. Gadre, J. Maher and G. Tiozzo CMH

quasi-isometry constants. By the definition of the floor function, if | x | 4 is non zero,
then x = A. This implies that x — A/2 = x /2, and as the floor function is monotone,

|lx —A/2|4 = |x/2] 4. (12)
As we have chosen A > 2C, combining (11) and (12) implies
ldy (mr.my)| 4 = |5dy (M. mg)] 4, (13)

again for all subsurfaces ¥ € §. Now summing (13) over all subsurfaces ¥ C §,
the quasi-distance formula implies

du(my.mo) > - (S L3dy npmola - Ka).

By definition of the floor function, Lé-xj g = %ij 24, SO

dua(ny.m) = 5 (S ldy Gy |os —2K2)

The quasi-distance formula holds for all A sufficiently large, so in particular holds
for 2A, though with different quasi-isometry constants, which we shall denote K3
and K4. This implies that

1
dy(my,my) = K s (dm(my,ms) — K3 K4 — K3)

whence the result. O

2.7. Projection to closest Teichmiiller lattice point. Let g be a quadratic differ-
ential, let g; be the image of ¢ under the Teichmiiller geodesic flow after time ¢, and
let X; be the image of ¢; in 7. The orbit of Xy under the mapping class group is
called a Teichmiiller lattice, and let g, X, be a choice of closest lattice point in T
to X;, i.e. such that

dr(g: Xo, X;) < dr(gXo, X;) for all g € Mod(S).

For any given point X;, there are at most finitely many closest lattice points, however
it is possible that the number of closest lattice points increases as you choose points
deeper in the thin part. Let m, be a short marking on X, and || - || the word metric
on the mapping class group with respect to some choice of generators.

Lemma 2.9. If Xo and X; both lie in the thick part T \ T, then

lgtllg = dum(mo,my)

where the quasi-isometry constants only depend on Xy, the choice of € and the
generating set for the mapping class group.
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Proof. Let K; be the diameter of the thick part 7 \ 7¢ in moduli space; then,
by definition there exists a group element g such that in Teichmiiller space
d7(gXo, X;) < K1, so by definition of g;

dr(g: X0, X:) < K.
Hence by group invariance
dr(Xo, g7 ' X1) < K.

In the Teichmiiller ball of radius K; only finitely many markings appear as short
markings, hence there exists K;, depending only on K; and the surface S, such that
the distance in the marking complex is bounded:

=
dy(mo, g, my) < K.
As a consequence,

\dp (mo, me) — dpg (mo, gemo)| < dy(gemo, m;) = dM(mO,gt—lm,) < Ks.

Finally, the distance in the word metric ||g;| ¢ is quasi-isometric to the distance
dp(mo, gemyp) in the marking complex by Proposition 2.1. O

By combining the previous lemma with the coarse monotonicity statement of
Proposition 2.8, we get that the word length of the closest point projection to the
Teichmiiller lattice is coarsely monotone along the thick part of a Teichmiiller ray:

Proposition 2.10. There exists constants C1 > 0 and Cs,, that depend only on Xy
and € and the choice of generators, such that along a Teichmiiller geodesic y;, for
0 < s <t the word metric satisfies

lgsllc < Cillgille + C2

whenever yo, Ys and y, all lie in the thick part T \ 7Te.

3. Lebesgue measure sampling

The goal of this section is to study the asymptotic behaviour of typical Teichmiiller
geodesics with respect to Lebesgue measure, proving Theorem 1.1. More precisely,
we want to keep track of short curves in the flat metric as the metric changes under
the action of Teichmiiller flow, and prove an asymptotic result, Theorem 3.3. In
Section 3.1 we recall results of Masur [26] and Eskin and Masur [7] which show
that the growth rate of the number of metric cylinders with area bounded below is
quadratic. In Section 3.2 we consider the function given by the sum of the squares of
the reciprocals of the short curves, and show that the average value of this function
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tends to infinity along almost every Teichmiiller geodesic with respect to Lebesgue
measure. Then in Section 3.3 we show that this function gives a lower bound for
the average of the sums of the excursions along the geodesic. Finally in Section 3.4
we show that the sum of the excursions is a lower bound for the word metric along
the Teichmiiller geodesic, and so the word metric along the geodesic has faster than
linear growth, which completes the proof of the Theorem 1.1.

3.1. Metric cylinders with bounded area. Let g be a quadratic differential of unit
area. A metric cylinder for g is a cylinder in the flat metric associated to ¢ which
is the union of freely homotopic closed trajectories of g. We shall label each metric
cylinder by the homotopy class « of the corresponding closed trajectory.

Let us now fix some 0 < § < 1, and let C,;(8) be the set of metric cylinders for
the g-metric with area bounded below by . Moreover, let us denote by C, (8, €) the
set of cylinders whose area is bounded below by § and whose core curve has length
shorter than the square root of €:

Cq(8.€) :={a € C4(8) : £3(a) <€}

Lemma 3.1. Suppose € < §. Then any two distinct elements of C4(8, €) are disjoint
on q. As a corollary, the cardinality of Cy4(8,€) is bounded above by a constant
which depends only on the topology of S.

Proof. We follow the argument in [26, Lemma 2.2]. Denote by « the core curve of
some cylinder which belongs to C,(8,€). Since the metric cylinder of « has area
A(e) = 6, any curve t which crosses « is such that § < £,(a)ly(7) < £4(1) Ve,
hence £,4(7) > /€, so t cannot belong to C4 (3, €). O

Given the quadratic differential ¢, let us denote as N, (8, T) the number of
cylinders in the g-metric which have area bounded below by & and length smaller
than 7. As Eskin and Masur showed, N, (8, T)) grows quadratically as a function
of T:

Theorem 3.2. There exists 0 < § < 1 and a constant cg > 0 such that, for almost
every quadratic differential g of unit area, we have

Ny, T)

lim = &5,

T—o0 T2
Proof. Let 0 < § < 1. By the general counting argument of Eskin—-Masur [7,
Theorem 2.1] applied to the set of metric cylinders with area bounded below by §,
we get the existence of the limit cs almost everywhere. On the other hand, by [26,
Proposition 2.5], for every quadratic differential there exists some § > 0 such that

NalSl) -, 0, so the constant c¢g must be positive for some 4. O

liminfr_ 72

A finer statement, at least in the case of translation surfaces, is due to Vorobets [34].
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3.2. Asymptotic length of short curves. Let us now quantify the idea of keeping
track of short curves in the flat metric. For the rest of the paper, we will fix some
d > 0 for which Theorem 3.2 holds, and some € < §. Let us define the function

L:9OM —Ras 1
L@ = ) 5
aeCy(8,¢€) Eq (G{)

Note that by Lemma 3.1 the number of terms in the sum is always finite, so the function
is well-defined. Let us fix denote by ¢, the image of the quadratic differential ¢ under
the Teichmiiller geodesic flow after time ¢. Our goal is to prove that the ergodic
average of L is infinite:

Theorem 3.3. For pno-a.e. quadratic differential q of unit area, we have

T
L dt
lim —fo (4:) = 0
T—00 T

In the proof of Theorem 3.3, we will make use of the following relations between
metric cylinders and the geometry of Teichmiiller discs. Let us fix a base point gg in
the space of quadratic differentials, and call D, the Teichmiiller disc given by the
SL,(R)-orbit of gg. For every metric cylinder o on gg, there is an angle 6, such
that « is vertical in the quadratic differential e?% go. The angle 6, determines a point
in the circle at infinity of D,,. For each metric cylinder on g¢ with core curve «, let
us define the set

He() :={q € Dy, : £3(c) < €},

of points in the Teichmiiller disc for which the length of « is less than the square root
of €. Recall the metric induced on D, by the Teichmiiller metric is the hyperbolic
metric of constant curvature —4, and H¢ () is a horoball for that metric.

Lemma 3.4. The Euclidean diameter s of the horoball He () is
_ 2¢
€+ L2 ()

where Lg,(a) is the length of « in the flat metric associated to the quadratic
differential qq.

Proof. By integrating the hyperbolic metric of curvature —4 we have

I=s  dx 1 o P
d (g0, He(@)) = [ = Z1og

o 1—x2 2 s

and, since the Teichmiiller map exponentially shrinks the curve «,

—2d(qo,He
e 240 (a))géo (@) = ¢

hence the claim. O
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We will need the following estimate from elementary Euclidean geometry:

Lemma 3.5. In the unit disc, let 8(r, R) be the angle at the center of the disc
corresponding to the mtersecrlon of the circle of radius R = 3 L centered at the origin,
with a circle of radius r < 3 tangent to the boundary, with R + 2r — 1 = 0. Then
there is a constant K such that

}1<—\/(1—R)(R+2r—1) 6(r,R) < K+/(1 —R)(R +2r —1).

Proof. By the law of cosines, r? = (1 —r)? + R? —2R(1 —r) cos(6/2). The claim
follows by standard algebraic manipulation and approximation. g

In the following lemma, we let ¢, ¢ be the quadratic differential given by flowing
the quadratic differential %% gq for time .

Lemma 3.6. For almost every quadratic differential qq there exists a constant ¢ > 0,
such that for each € > 0 there exists a time t. such that

Z Leb({6 € [0,27] : g0 € He()}) = ce NIz,
a€Cqq (8)

where Leb denotes Lebesgue measure on the circle.

Proof. Let % < R < 1, and consider the set of horoballs of the collection H(«) with
o € Cy4,(8) and Euclidean diameter s > %(1 — R). By Lemma 3.4, these horoballs
correspond precisely to metric cylinders with core curve « such that

3R + 1
82 o(@) < —Le.
3(1 - R)
By Theorem 3.2, the number of such cylinders is, for R large, at least c—i‘- 33(11{:’};) €. By

Lemma 3.5, every corresponding horoball intersects the circle of Euclidean radius R
centered at the origin in an arc of visual angle

1
h = K\/_(I—R)

and by Lemma 3.1 every quadratic differential belongs to at most a universal]y
bounded number M of horoballs, hence the total visual angle is at least O

GKMJ"

In order to prove Theorem 3.3, let us first define a discrete version of L. Namely,
for each n and o we denote as H, («) the horoball

Hy(a) :==1{q € Dy, :IZZ‘(a) £ 2 e},
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Now, the function ¥ : OM — R is defined as

Uig) =Y > 2" Y@

@eCy(8) n=1

It is easy to see that W is bounded above by a multiple of L:

Lemma 3.7. For each quadratic differential q, we have

W(g) < 4eL(q)

Proof. Let @ € C4(8) be a short curve on g: then there exists a positive integer M
such that
M = Eg(a) & Folkle

Now, since ¢ lies in Hy(¢) U --- U Hps (o),
e.e}
Y Y xpp@ <1424 +2M <2.0M < ——
£ (@)
n=1 q
and summing over « yields the claim. ]

Proof of Theorem 3.3. By Lemma 3.7, it is enough to prove the statement for . Let
us now truncate the function W by defining, for each N,

N
Un(g) =Y D 2" Y-

aeCy(8) n=1

Let us now fix N. By Lemma 3.1, ¥y is bounded on the moduli space M Q of unit
area quadratic differentials, hence pupo-integrable; by ergodicity of the geodesic flow,
for a generic Teichmiiller disc for almost all radial directions 6 the ergodic average
of Wy along the flow tends to its integral:

T
W dt
lim f M =f Wn(q) dithol for a.e. 6.
T—o0 0 T MO

Then, if we integrate both sides w.r.t. to the angular measure d6 and apply the
dominated convergence theorem,

Ty dt
lim [ d@f M =/ Uy (g) ditnol
51 0 MQ

T—o0 T
and by Fubini
74
. dt [¢1 YN (qre) dO
Thm Jo 4t Js: = 2 =[ U (q) dithor-
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Now, by Lemma 3.6, foreach t > T,-n~

N
[Sl Y (gr,0) dO Z’;Z" 2" =¢N

hence

T
W dtls W) @0

f Wy (g) dpisa = lima

Since the previous estimate works for all NV, then also

| 1@ i = o
MO
hence the ergodic average tends to infinity almost everywhere:

T I.(q,) dt
lim (9:) _

f L(q) ditne = 00 fora.e. ¢ € MQ. O
T—o0 Jo T MQ

3.3. Average excursion. Let us now turn the asymptotic estimate of the previous
section into an asymptotic about excursions. If ¢ is a quadratic differential, let us
denote as y, the corresponding Teichmiiller geodesic ray. We now define the concept
of total excursion traveled by the geodesic y, inside the horoballs up to time 7'

Definition 3.8. Given a quadratic differential ¢, the total excursion E(q,T) is the
sum of all excursions in all horoballs crossed by the geodesic ray y, up to time 7

E(@q.T):= Y E(yg He().

Yg([0,TDNHe (2)#0

Our goal is to prove that also the average total excursion is infinite.

Theorem 3.9. For (o -almost every quadratic differential q of unit area, we have

" E(q.T) _
m =

T—o00

Theorem 3.9 follows from Theorem 3.3 and the following

Proposition 3.10. Let g be a quadratic differential with geodesic ray y,, and let
T > 0 be such that both g and y,(T) lie outside all horoballs of the type H¢(a).
Then

g C
| Lavar< CEG)
0

for some universal constant C.
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Proof. Let « € C4(8) be a curve which has become short before time 7', i.e. such
that y, ([0, T]) N He(a) is non-empty. Let 7 be the time the geodesic enters He (),
and 75 the time the geodesic exits. Moreover, let N be the maximum integer k such
that the geodesic enters Hy («). Note that there is a universal constant Cy such that
foreach n = 1 and each «

Leb({r € [0,T] : g: € Huq1() \ Hp(e)}) < Cy.

Then
Ty 1 N on C, - 2N+1
s dt <y —Leb({t € [0.T] : gr € Hp1(e)\ Ha(@)}) S ———.
Ty eq(a) — €

In order to compare the right hand side with the excursion, let us denote by € the
smallest value of E; () along the geodesic ray y,. By the definition of N, we have

¢ =< 27Ne. Now, by the definition of excursion and Lemma 2.5,

B Hu(e) = 2 = 0 =

(where all the approximate equalities hold up to multiplicative constants), hence the
claim follows. N

= 9N

—~

my| m

Remark. A precise analysis of how E(gq,7) grows along Leb-typical geodesics is
carried out in [11]. It culminates in a strong law analogous to the one established by
Diamond and Vaaler for continued fractions [5].

3.4. The word metric. Let us complete the proof of Theorem 1.1 and Theorem 1.3
for the Lebesgue measure by proving that the word metric is bounded below by the
total excursion. Let us pick €¢ smaller than the Margulis constant to define the thick
part, and let us choose 4 so that Theorem 3.2 holds. Finally, we choose € so that if X
belongs to the thick part 7\ 7¢, and « is the core curve of a metric cylinder of g-area
larger than § on X, then £Z () = €.

Let Xy lie in the thick part 7 \ 7¢,, and let y be a Teichmiiller geodesic with
¥(0) = Xj. Recall that for each time 7, g; is a closest point projection of y(f) to the
Teichmiiller lattice.

Proposition 3.11. Ify(T) lies in the thick part T \ Te,, then

lgrllc =2 CLE(y,T) — Cy

where the constants depend only on Xy, the choice of €y and the choice of generating
set for Mod(S).
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Proof. Since y(0) and y(T) lie in the thick part, by Lemma 2.9

lgrllc =< dp(mo, mr).

By the Masur—Minsky quasi-distance formula (Theorem 2.2), for any B large enough

dy(mo,mp) < Y ldy(mo.mr)s= Y |da(mo.mr)|p
Ycs y([0,TDNHe () #£D

where on the right-hand side we only consider projections to annuli which are realised
as flat cylinders of area bounded below by §, and whose core curve becomes short
before time 7. Now by Proposition 2.6, for some constants K; and K,

do(mo,mr) = K1 E(y, He(a)) — K>
soif B = K

[dalmo.mr)| 5 > LK1 EG: Hel@) — Kalg > L LEG, He(@)] 32

and we can choose € a bit smaller than € so that | E(y, He (o) ] 28 > E(y, Hz (o)),
1

hence
> lda(mo.mr)|p> Y. E(yHe(@) = E@q.T).
y([0,TDNHe () #9 ([0, TDNHg (a)#0
O

Proofs of Theorem 1.1 and Theorem 1.3 (Lebesgue measure). Theorem 1.1 follows
directly from Theorem 3.9 and Proposition 3.11. The first part of Theorem 1.3
follows from Theorem 1.1 and the fact that the relative metric is coarsely bounded
above by the Teichmiiller metric. ]

4. Hitting measure sampling

In Section 4.1 we review some background material from the theory of random walks,
and recall some previous results which show that the ratio between the word metric
and the relative metric along the locations w, X of a sample path of the random walk
remains bounded for almost all sample paths. This means that if a location wy, Xo
of the sample path is close to the geodesic, then this ratio is also bounded for points
on the geodesic close to wy, Xo. However, the results of the previous section apply to
all points along the geodesic which lie in the thick part of Teichmiiller space, so we
need to extend the bounds to these other points. In Section 4.2 we use some results
of [32] to show that the distance between the locations of the sample path and the
corresponding geodesic grows sublinearly, and then in Section 4.3 we use the coarse
monotonicity of word length along the geodesic to show that this also bounds the
ratio between word length and relative length for all points along the geodesic which
lie in the thick part.
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4.1. Random walks. Let ;¢ be a measure on the mapping class group G = Mod(S).
We say that p has finite first moment with respect to the word metric on G if

f lglle due) < oo
G

where || - ||g is a word metric on G with respect to a choice of finite set of generators
(note that the finiteness does not depend on this choice). The step space is the infinite
product GN with the product measure P := . Letw, = g1g2 . .. g» be the location
of the random walk after n steps. The path space is GV, with the pushforward of the
product measure under the map

(glag25g3a ) = (wl, w2, UJ3,...).

It will also be convenient to consider bi-infinite sample paths. In this case the step
space is the set G% of bi-infinite sequences of group elements with the product
measure. The location of the random walk is given by w, = g1g2...g, if n is
positive, and w, = gg5'gZ] ... g, , if n is negative (we also set wo = 1). The path
space is G%, as a set, but with measure coming from the pushforward of P under the
map

(..., 8-1,80,81.82,...) —~ (... w_1,wp, w1, Wa,...).

Let us fix a base point X € 7, and consider the image of the sample paths w, Xy
in 7. Kaimanovich and Masur showed that almost every sample path converges to
a uniquely ergodic foliation in the space PMF of projective measured foliations,
Thurston’s boundary for Teichmiiller space. Recall that the harmonic measure v
on P M F is defined as the hitting measure of the random walk, i.e. for any measurable
subset A € PMF,

v(A4) :=P(w, : lim w,Xo € A).
nH—>0c0

Theorem 4.1 (Kaimanovich and Masur [18]). Let u be a probability distribution
on the mapping class group whose support generates a non-elementary subgroup.
Then almost every sample path (wy)nen converges to a uniquely ergodic foliation

in PMUF, and the resulting hitting measure v is the unique non-atomic |.-stationary
measure on PMF.

Since the mapping class group is non-amenable, the random walk makes linear
progress in the word metric || - ||g, or indeed in any metric quasi-isometric to the
word metric.

Theorem 4.2 (Kesten [19], Day [3]). Let u be a probability distribution on a group,
whose support generates a non-amenable subgroup. Then there exists a constant
c1 > 0 such that for almost all sample paths

lim W@alle _ (14)

n—00 n
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Even though the relative metric is smaller than the word metric, more recent
results prove that the growth rate is still linear in the number of steps.

Theorem 4.3 (Maher [21], Maher-Tiozzo [22]). Let p be a probability distribution
on the mapping class group which has finite first moment in the word metric, and
such that the semigroup generated by its support is a non-elementary subgroup. Then
there is a constant ¢y > 0 such that for almost all sample paths

[ wa [l el

lim = &,
n—o00 n

Note that in [21], the result is proven under the additional condition that the
support of p is bounded in the relative metric, while such condition is not needed
in [22].

From these results it follows that the quotient between the word metric and the
relative metric converges to ¢ /c; for almost every sample path, i.e.

|wnllG _a
=00 ”wn”re] €2

for almost all sample paths. The limit above is a limit taken along the locations
(Wp)nen of the random walk. In order to compare this to the previous statistic we
need to relate locations of the random walk to points on a Teichmiiller geodesic.

By the work of Kaimanovich and Masur [18], for almost every bi-infinite sample
path w € GZ%, there are well-defined maps

F*:GL > PMF
given by
Ft(w):= lim w, X,
o0

n—r
and

F~(w) := lim w_,Xo.

n—00

Furthermore, the two foliations F*(w) and F~(w) are almost surely uniquely
ergodic and distinct, so there is a unique oriented Teichmiiller geodesic y,, whose
forward limit point in PMF is FT(w) and whose backward limit point is F~(w).
There is also a unique geodesic ray p,, starting at the basepoint Xy whose forward
limit point is F . We shall always parameterize p,, as unit speed geodesic with
pw(0) = Xo. As FT is uniquely ergodic, the distance between vy, and py, tends to
zero, by Masur [24], and we shall parameterize y,, such that d7 (o (£), yw(t)) — 0.

For each bi-infinite sample path we can define the function

DG =R
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given by
D(w) := d7(Xo. yw)

which represents the Teichmiiller distance between the base point X and the
geodesic yy,. This is well-defined and measurable, by Lemma 1.4.4 of [18]. In
particular, this implies that for any € > O there is a constant M such that the
probability that D(w) < M is at least 1 — €.
The shift map o maps the step space to itself by incrementing the index of each
step by one, i.e.
0 (gnlnez = (En+1)nez.

This is a measure preserving ergodic transformation on the step space, and the induced
action of o on the path space is given by

o: (Wp)nez +> (wl_lwn—l-l)nEZ-

4.2. Distance between geodesic and sample path. The geodesic y,, is determined
by its endpoints F+(w) and F~(w), and the distribution of these pairs is given by
harmonic measure v and reflected harmonic measure v respectively.

The distance from a location w;, to the corresponding geodesic y,, is given by

dr(wn Xo, Yw) = dr(Xo, w, ')

since the mapping class group acts on 7 by isometries, and by the definition of the
shift map,

dT(w,,Xo, Vw) . dT(X(], )’a”w)-

As already noted in [18], if € is sufficiently small, almost every geodesic with
respect to harmonic measure returns to the e-thick part 7 \ 7¢ infinitely often.

Our goal is to show that every step of the random walk lies within sublinear
distance in the word metric from some point in the thick part of the limit geodesic.

In [32], sublinear tracking is proven in the Teichmiiller metric: we will adapt
the argument to the word metric. The fundamental argument for sublinear tracking
in [32] is the following lemma.

Lemma 4.4 (Tiozzo [32]). Let T : 2 — €2 a measure-preserving, ergodic
transformation of the probability measure space (2,1), and let f : Q — R>°
any measurable, non-negative function. If the function

g(w) = f(Tw) - f(w)
belongs to LY(2, 1), then for A-almost every o € Q one has

i f(TMw)
im —= =

n—00 n

0.
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We now explain how to apply the lemma above in the current setting. Given a
point X € T, let us denote as proj(X) the set of lattice points at minimal distance
from X:

proj(X) :=t{th € G : d7(h X, X) is minimal}.
Such a projection may possibly vary wildly if X lies in the thin part, but it is controlled
in the thick part: namely, given € > 0O there is a constant K(¢) such that

dr(X,hXp) < K(e), VX ¢7Tc Vh € proj(X).

We now associate to almost every sample path w a subset P(w) of the mapping
class group, which we now describe. Almost every bi-infinite sample path w € G*
determines two uniquely ergodic foliations, F¥(w). Let y, be the bi-infinite
Teichmiiller geodesic joining them. Now, let us define P(w) as the set of mapping
class group elements 2 € G such that 4 X is the closest projection from some point X

inyy \ e, ie.

P(w) := U proj(X).

Xeyw\Te

This is illustrated in Figure 4.

Figure 4. Sample path locations and basepoint orbits close to the geodesic.

The key result is the following:
Proposition 4.5. Fix € > 0, sufficiently small. Then for almost every sample path
(Wn)nen, With corresponding Teichmiiller ray py,, there exists a sequence of times
tn — 00 With py, (ty) € pw \ Te, such that

d Jh
lim G(Wn, hy) _

n—o00 n

0

for any hy, € proj(py (in))-
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Proof. Letus fix € > 0 sufficiently small. Recall that P (w) is the collection of group
elements corresponding to closest lattice points to points on the geodesic y,, which
lie in the thick part of Teichmiiller space. Note that, since the mapping class group
acts by isometries with respect to both the Teichmiiller and word metrics, then P is
equivariant, in the sense that

P(c"w) = w, ' P(w).

Let us now define the function ¢ : G% — R on the space of bi-infinite sample paths
as

p(w) :=dg(l, P(w))

i.e. the minimal word-metric distance between the base point X and the set of closest
projections from the thick part of the geodesic y,,. The shift map o : GZ — GZ acts
on the space of sequences, ergodically with respect to the product measure u”. By
the equivariance of P, we have for each n the equality

p(o"w) = dg(wn, P(w)). (15)

We shall now apply Lemma 4.4, setting (Q,4) = (G%,u?), T = o, and
f = @. The only condition to be checked is the L!-condition on the function
g(w) = f(Tw) — f(w), which in this case becomes

g(w) = plow) —p(w) = dg(1, P(ow)) —dg (1, P(w)).
Now, using (15) we have
|dg (1, P(ow)) —dg(1, P(w))| = |dg (w1, P(w)) —dg(l, P(w))| < dg(1, w1)

which has finite integral precisely by the finite first moment assumption. Thus, it
follows from Lemma 4.4 that for almost all bi-infinite paths w one gets
i 46, P(w))
1m —

n—0o0 n

0.

By definition of P(w), there exists a sequence of times ¢,, such that y,,(¢,) lies
in yy \ 7¢, the e-thick part of the geodesic y,, and group elements p, € G such that
Pn € proj(yw(,)), and furthermore

li dg(wn, pn) _
im ——————— =

n—>co n

0. (16)

Now let FT be the terminal foliation of the geodesic vy, and denote as p,, the
geodesic ray through X, with terminal foliation F*. We have obtained a sequence
of points lying in the intersection of the geodesic y,, with the thick part 7 \ 7,
and we now show how to obtain a sequence of points lying in the intersection of the
geodesic py, with the thick part 7\ 7Te.
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Proof. Letus fix € > 0 sufficiently small. Recall that P (w) is the collection of group
elements corresponding to closest lattice points to points on the geodesic y,, which
lie in the thick part of Teichmiiller space. Note that, since the mapping class group
acts by isometries with respect to both the Teichmiiller and word metrics, then P is
equivariant, in the sense that

P(c"w) = w;' P(w).

Let us now define the function ¢ : G% — R on the space of bi-infinite sample paths
as

p(w) = dg(1, P(w))

i.e. the minimal word-metric distance between the base point X and the set of closest
projections from the thick part of the geodesic y,,. The shift map o : GZ — G% acts
on the space of sequences, ergodically with respect to the product measure u?. By
the equivariance of P, we have for each n the equality

¢(0"w) = dg(wn, P(w)). (15)

We shall now apply Lemma 4.4, setting (2,1) = (G% u%), T = o, and
f = ¢. The only condition to be checked is the L!-condition on the function
g(w) = f(Tw) — f(w), which in this case becomes

g(w) = g(ow) — p(w) = dg(1, Plow)) —dg (1, P(w)).
Now, using (15) we have
|de (1, P(ow)) —dg(1, P(w))| = |dg (w1, P(w)) —d (L, P(w))| < dg(1,w1)

which has finite integral precisely by the finite first moment assumption. Thus, it
follows from Lemma 4.4 that for almost all bi-infinite paths w one gets
d g bt
L do(wn, Pw))

n—o0o n

0.

By definition of P(w), there exists a sequence of times ¢,, such that y,,(z,) lies
in yy \ 7e, the e-thick part of the geodesic yy,, and group elements p, € G such that
Pn € proj(yw(ty)), and furthermore

li dg(Wy, pn)
m ——

H—00 n

= 0. (16)

Now let. FT be the terminal foliation of the geodesic ¥y, and denote as py, the
geodesic ray through X, with terminal foliation F*. We have obtained a sequence
of points lying in the intersection of the geodesic y,, with the thick part 7 \ 7e,
and we now show how to obtain a sequence of points lying in the intersection of the
geodesic py, with the thick part 7\ 7Te.
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Proof of Theorem 1.2 and Theorem 1.3 (harmonic measure). Givenasample path w,
let py, be the geodesic ray joining the base point X to the limit foliation F T (w),
and let 7, be the sequence of times given by Proposition 4.5. Let now 7" > 0 be a
time for which the geodesic p,, (7') lies in the thick part, and let g7 X, be a projection
of py (T') to the Teichmiiller lattice. Since t,, — oo, there exists an index n = n(T')
such thatf, < 7T < t,4;. By Proposition 2.10, there exist constants C; > 0, C; such
that

dG(hn,gT) < CldG(hns hn+1) + Cs.

Moreover, by Proposition 4.5 and triangle inequality,

li dc(hp, hnt1) 2 dc (hn, wp) + de(Wn, Wpt1) + do(Wnt1, hny1) .
im < lim =

n—00 n n—00 n

0

(where we used the finite first moment condition to ensure dg(wy, wWy+1)/n — 0).
Thus, we also have

L do(hn.gr) _
im —————— =

n—00 n

0

and again by Proposition 4.5

li d(wn, gT) . dg(wy, hy) + dg(hn, 1) _
im — < lim ==

n—00 n n—00 n

0.

Similarly, since the relative metric is bounded above by the word metric,

fim dt‘el(wn,gT) _
n—00 n

0.

Finally, by computing the ratio between the word and relative metric,

dg(l,g7) dg(1,wy)

C
lgrlle _ . n(M)  _ lim = _% .5

Z e ”gT”rel T—oo Are(l,€7) n—o00 @rel(1,Wwn) C
pw(T)¢Te pw(T)¢Te  n(T) n

This completes the proof of Theorem 1.3. The proof of Theorem 1.2 is exactly the
same, replacing d., with d7 and noting that, since the Teichmiiller metric is a coarse
upper bound for the relative metric, Theorem 4.3 implies also positive drift in the
Teichmiiller metric. Cl
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