Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 91 (2016)

Heft: 4

Artikel: Minimal discs in hyperbolic space bounded by a quasicircle at infinity
Autor: Seppi, Andrea

DOl: https://doi.org/10.5169/seals-630577

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-630577
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 91 (2016), 807-839 Commentarii Mathematici Helvetici
DOI 10.4171/CMH/403 © Swiss Mathematical Society

Minimal discs in hyperbolic space
bounded by a quasicircle at infinity

Andrea Seppi

Abstract. We prove that the supremum of principal curvatures of a minimal embedded disc
in hyperbolic three-space spanning a quasicircle in the boundary at infinity is estimated in a
sublinear way by the norm of the quasicircle in the sense of universal Teichmiiller space, if
the quasicircle is sufficiently close to being the boundary of a totally geodesic plane. As a
by-product we prove that there is a universal constant C independent of the genus such that if the
Teichmiiller distance between the ends of a quasi-Fuchsian manifold M is at most C, then M
is almost-Fuchsian. The main ingredients of the proofs are estimates on the convex hull of a
minimal surface and Schauder-type estimates to control principal curvatures.

Mathematics Subject Classification (2010). 53A10, 57M50, 30F60, 32G15.

Keywords. Minimal surfaces, Teichmiiller theory.

1. Introduction

Let H?3 be hyperbolic three-space and d,H? be its boundary at infinity. A surface S
in hyperbolic space is minimal if its principal curvatures at every point x have opposite
values. We will denote the principal curvatures by A and —A, where A = A(x) is
a nonnegative function on S. It was proved by Anderson [3, Theorem 4.1] that
for every Jordan curve I' in d,,H? there exists a minimal embedded disc S whose
boundary at infinity coincides with I". It can be proved that if the supremum ||A ||, of
the principal curvatures of S isin (—1, 1), then I' = 0,5 is a quasicircle, namely I
is the image of a round circle under a quasiconformal map of the sphere at infinity.

However, uniqueness does not hold in general. Anderson proved the existence of
a Jordan curve I' C 0o H? invariant under the action of a quasi-Fuchsian group G
spanning several distinct minimal embedded discs, see [3, Theorem 5.3]. In this case,
I' is a quasicircle and coincides with the limit set of G. More recently in [16] invariant
curves spanning an arbitrarily large number of minimal discs were constructed. On
the other hand, if the supremum of the principal curvatures of a minimal embedded
disc S satisfies ||A] o, € (—1, 1) then, by an application of the maximum principle,
S is the unique minimal disc asymptotic to the quasicircle I' = 045
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The aim of this paper is to study the supremum ||A|| ., of the principal curvatures
of a minimal embedded disc, in relation with the norm of the quasicircle at infinity, in
the sense of universal Teichmiiller space. The relations we obtain are interesting for
“small” quasicircles, that are close in universal Teichmiiller space to a round circle.
The main result of this paper is the following:

Theorem A. There exist universal constants Ky > 1 and C > 0 such that every
minimal embedded disc in H? with boundary at infinity a K -quasicircle T’ C 0 H?,
with 1 < K < Ky, has principal curvatures bounded by

Mg < ClogK .

Recall that the minimal disc with prescribed quasicircle at infinity is unique if
|Alloc < 1. Hence we can draw the following consequence, by choosing K|, <
min{ Ky, e'/€}:

Theorem B. There exists a universal constant K, such that every K-quasicircle

' C 00oH? with K < K}, is the boundary at infinity of a unique minimal embedded
disc.

Applications to quasi-Fuchsian manifolds. Theorem A has a direct application
to quasi-Fuchsian manifolds. Recall that a quasi-Fuchsian manifold M is isometric
to the quotient of H> by a quasi-Fuchsian group G, isomorphic to the fundamental
group of a closed surface X, whose limit set is a Jordan curve I' in dooH?>. The
topology of M is £ x R. We denote by §2 and €2_ the two connected components
of oo H3\T'. Then 24 /G and Q_/G inherit natural structures of Riemann surfaces
on X and therefore determine two points of 7 (%), the Teichmiiller space of X. Let
d7(x) denote the Teichmiiller distance on 7 (X).

Corollary A. There exist universal constants C > 0 and dy > 0 such that, for
every quasi-Fuchsian manifold M = H?/G with drx)(Q2+/G,Q2—-/G) < dy and
every minimal surface S in M homotopic to X x {0}, the supremum of the principal
curvatures of S satisfies:

Moo < Cdr(z)(R+/G.Q-/G).

Indeed, under the hypothesis of Corollary A, the Teichmiiller map from one
hyperbolic end of M to the other is K-quasiconformal for K < e2. Hence the
lift to the universal cover H* of any closed minimal surface in M is a minimal
embedded disc with boundary at infinity a K-quasicircle, namely the limit set of the
corresponding quasi-Fuchsian group. Choosing dy = (1/2) log Ky, where Kj is the
constant of Theorem A, and choosing C as in Theorem A (up to a factor 2 which
arises from the definition of Teichmiiller distance), the statement of Corollary A
follows.

We remark here that the constant C of Corollary A is independent of the genus
of X.
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A quasi-Fuchsian manifold contaning a closed minimal surface with principal
curvatures in (—1, 1) is called almost-Fuchsian, according to the definition given
in [18]. The minimal surface in an almost-Fuchsian manifold is unique, by the above
discussion, as first observed by Uhlenbeck [24]. Hence, applying Theorem B to the
case of quasi-Fuchsian manifolds, the following corollary is proved.

Corollary B. If the Teichmiiller distance between the conformal metrics at infinity
of a quasi-Fuchsian manifold M is smaller than a universal constant d;, then M is
almost-Fuchsian.

Indeed, it suffices as above to pick dy = (1/2) log K, which is again independent
on the genus of 2. By Bers’ Simultaneous Uniformization Theorem, the Riemann
surfaces 24 /G determine the manifold M. Hence the space QF(X) of quasi-
Fuchsian manifolds homeomorphic to ¥ x R, considered up to isometry isotopic to
the identity, can be identified to 7 (X) x 7 (X£). Under this identification, the subset
of QF(X) composed of Fuchsian manifolds, which we denote by F(X), coincides
with the diagonal in 7 (Z) x 7 (X). Let us denote by .AF(X) the subset of QF(X)
composed of almost-Fuchsian manifolds. Corollary B can be restated in the following
way:

Corollary C. There exists a uniform neighborhood N(JF (X)) of the Fuchsian locus
F(X)in QF(X) = T(X) x T(X) such that N(F (X)) C AF ().

We remark that Corollary A is a partial converse of results presented in [13],
giving a bound on the Teichmiiller distance between the hyperbolic ends of an
almost-Fuchsian manifold in terms of the maximum of the principal curvatures.
Another invariant which has been studied in relation with the properties of minimal
surfaces in hyperbolic space is the Hausdorff dimension of the limit set. Corollary A
and Corollary B can be compared with the following theorem given in [22]: for
every € and €g there exists a constant § = §(e€, €g) such that any stable minimal
surface with injectivity radius bounded by €p in a quasi-Fuchsian manifold M are
in (—e, €) provided the Hausdorff dimension of the limit set of M is at most 1 + §.
In particular, M is almost Fuchsian if one chooses € < 1. Conversely, in [17] the
authors give an estimate of the Hausdorff dimension of the limit set in an almost-
Fuchsian manifold M in terms of the maximum of the principal curvatures of the
(unique) minimal surface. The degeneration of almost-Fuchsian manifolds is also
studied in [21].

The main steps of the proof. The proof of Theorem A is composed of several steps.

By using the technique of “description from infinity” (see [7] and [19]), we
construct a foliation F of H? by equidistant surfaces, such that all the leaves of the
foliation have the same boundary at infinity, a quasicircle I"'. By using a theorem
proved in [25] and [19, Appendix], which relates the curvatures of the leaves of the
foliation with the Schwarzian derivative of the map which uniformizes the conformal
structure of one component of 3, H >\ ", we obtain an explicit bound for the distance
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between two surfaces F; and F_ of F, where F is concave and F_ is convex, in
terms of the Bers norm of I". The distance dyy3 (F—-, F4) goes to 0 when I" approaches
a circle in oo H?3.

A fundamental property of a minimal surface S with boundary at infinity a curve I"
is that S is contained in the convex hull of I'. The surfaces F_ and F of the previous
step lie outside the convex hull of I', on the two different sides. Hence every point x
of § lies on a geodesic segment orthogonal to two planes P_ and P (tangent to F_
and F respectively) such that § is contained in the region bounded by P_ and Ps.
The length of such geodesic segment is bounded by the Bers norm of the quasicircle
at infinity, in a way which does not depend on the chosen point x € S.

The next step in the proof is then a Schauder-type estimate. Considering the
function u, defined on S, which is the hyperbolic sine of the distance from the
plane P_, it turns out that u solves the equation

Asu—2u=0, ()

where Ay is the Laplace-Beltrami operator of §. We then apply classical theory of
linear PDEs, in particular Schauder estimates, to the equation () in order to prove
that

lullc2@y < Cllullcoq)

where Q' CC Q and u is expressed in normal coordinates centered at x. Recall
that Ag is the Laplace—Beltrami operator, which depends on the surface S. In order
to have this kind of inequality, it is then necessary to control the coefficients of Ag.
This is obtained by a compactness argument for conformal harmonic mappings,
adapted from [6], recalling that minimal discs in H?> are precisely the image of
conformal harmonic mapping from the disc to H?>. However, to ensure that compact
sets in the conformal parametrization are comparable to compact sets in normal
coordinates, we will first need to prove a uniform bound of the curvature. For this
reason we will assume (as in the statement of Theorem A) that the minimal discs we
consider have boundary at infinity a K-quasicircle, with K < Kj.

The final step is then an explicit estimate of the principal curvatures at x € §,
by observing that the shape operator can be expressed in terms of u and the first and
second derivatives of u. The Schauder estimate above then gives a bound on the
principal curvatures just in terms of the supremum of u in a geodesic ball of fixed
radius centered at x. By using the first step, since S is contained between P_ and the
nearby plane P, we finally get an estimate of the principal curvatures of a minimal
embedded disc only in terms of the Bers norm of the quasicircle at infinity.

All the previous estimates do not depend on the choice of x € S. Hence the
following theorem is actually proved.

Theorem C. There exist constants Ko > 1 and C > 4 such that the principal
curvatures £ of every minimal surface S in H? with 0,0S = I' a K-quasicircle,
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with K < Ky, are bounded by:
Cll¥lg

Ji-Clv|

where I' = W(S1), ¥ : C—>Cisa quasiconformal map, conformal on C \ D,
and ||V | z denotes the Bers norm of V.

Moo =

(1.1)

Observe that the estimate holds in a neighborhood of the identity (which represents
circles in d.oH?), in the sense of universal Teichmiiller space. Theorem A is then
a consequence of Theorem C, using the well-known fact that the Bers embedding is
locally bi-Lipschitz.

Organization of the paper. The structure of the paper is as follows. In Section 2, we
introduce the necessary notions on hyperbolic space and some properties of minimal
surfaces and convex hulls. In Section 3 we introduce the theory of quasiconformal
maps and universal Teichmiiller space. In Section 4 we prove Theorem A. The
Section is split in several subsections, containing the steps of the proof. In Section 5
we discuss how Theorem B, Corollary A, Corollary B and Corollary C follow from
Theorem A.

Acknowledgements. 1am very grateful to Jean-Marc Schlenker for his guidance and
patience. Most of this work was done during my (very pleasant) stay at University
of Luxembourg; I would like to thank the Institution for the hospitality. I am very
thankful to my advisor Francesco Bonsante and to Zeno Huang for many interesting
discussions and suggestions. I would like to thank an anonymous referee for many
observations and advices which highly improved the presentation of the paper.

2. Minimal surfaces in hyperbolic space

We consider (3+1)-dimensional Minkowski space R3! as R* endowed with the
bilinear form

(x,y) = x'yl + x2y% + x3y3 —x*y4. (2.1)
The hyperboloid model of hyperbolic 3-space is

H3 = {x e R¥> : (x,x) =—1,x*> O}.

The induced metric from R3! gives H>® a Riemannian metric of constant
curvature —1. The group of orientation-preserving isometries of H? is Isom(H?) =
SO (3, 1), namely the group of linear isometries of R*! which preserve orientation
and do not switch the two connected components of the quadric {(x,x) = —1}.
Geodesics in hyperbolic space are the intersection of H?® with linear planes X
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of R3! (when nonempty); totally geodesic planes are the intersections with linear
hyperplanes and are isometric copies of hyperbolic plane H?2.

We denote by dyg3 (-, -) the metric on H? induced by the Riemannian metric. It is
easy to show that

cosh(dys(p,q)) = [{p.q)] (2.2)

and other similar formulae which will be used in the paper.
Note that H? can also be regarded as the projective domain

P({{x,x) < 0}) c RP3.

Let us denote by c@ the region

—

dS®> = {x e R>': (x,x) =1}

and we call de Sitter space the projectivization of c@,
ds® = P({(x,x) > 0}) c RP3.

Totally geodesic planes in hyperbolic space, of the form P = X N H3, are
parametrized by the dual points X+ in dS3 c RP3.

In an affine chart {x4 # 0} for the projective model of H?, hyperbolic space
is represented as the unit ball {(x,y,z):x* + y*+z? <1}, using the affine
coordinates (x,y,z) = (x'/x* x2/x* x3/x*). This is called the Klein model,
although in this model the metric of H? is not conformal to the Euclidean metric
of R3, the Klein model has the good property that geodesics are straight lines, and
totally geodesic planes are intersections of the unit ball with planes of R3. It is
well known that H? has a natural boundary at infinity, d,H? = P({(x,x) = 0}),
which is a 2-sphere and is endowed with a natural complex projective structure - and
therefore also with a conformal structure.

Given an embedded surface S in H?, we denote by 0o S its asymptotic boundary,
namely, the intersection of the topological closure of S with 9,0 H?>.

2.1. Minimal surfaces. This paper is mostly concerned with smoothly embedded
surfaces in hyperbolic space. Let o : S — H? be a smooth embedding and let N be
a unit normal vector field to the embedded surface o(S). We denote again by (-, -)
the Riemannian metric of H?>, which is the restriction to the hyperboloid of the
bilinear form (2.1) of R*!: V and V¥ are the ambient connection and the Levi-
Civita connection of the surface S, respectively. The second fundamental form of S
is defined as
Vs = V3 + Il (v, w)N

if v and w are vector fields extending v and w. The shape operator is the (1, 1)-tensor
defined as B(v) = —V, N. It satisfies the property

II(v,w) = (B(v), w).
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Definition 2.1. An embedded surface S in H? is minimal if tr(B) = 0.

The shape operator is symmetric with respect to the first fundamental form of the
surface S; hence the condition of minimality amounts to the fact that the principal
curvatures (namely, the eigenvalues of B) are opposite at every point.

An embedded disc in H? is said to be area minimizing if any compact subdisc
is locally the smallest area surface among all surfaces with the same boundary. It is
well known that area minimizing surfaces are minimal. The problem of existence for
minimal surfaces with prescribed curve at infinity was solved by Anderson; see [3]
for the original source and [5] for a survey on this topic.

Theorem 2.2 ([3]). Given a simple closed curve T in d50H?, there exists a complete
area minimizing embedded disc S with 05,S = T..

A key property used in this paper is that minimal surfaces with boundary at
infinity a Jordan curve I' are contained in the convex hull of I". Although this fact
is known, we prove it here by applying maximum principle to a simple linear PDE
describing minimal surfaces.

Definition 2.3. Given a curve I" in 95, H?3, the convex hull of ", which we denote
by CH(T"), is the intersection of half-spaces bounded by totally geodesic planes P
such that d P does not intersect I', and the half-space is taken on the side of P
containing I'.

Hereafter Hess 1 denotes the Hessian of a smooth function u on the surface S,
i.e. the (1,1) tensor
Hessu(v) = Vf gradu .

Sometimes the Hessian is also considered as a (2,0) tensor, which we denote (in the
rare occurrences) with

VZu(v, w) = (Hessu(v), w) .
Finally, A s denotes the Laplace—Beltrami operator of S, which can be defined as
Asu = tr(Hess u) .

Observe that, with this definition, A is a negative definite operator.

Proposition 2.4. Given a minimal surface S C H?> and a plane P, letu : S — R
be the function u(x) = sinhdys(x, P). Here dys(x, P) is considered as a signed
distance from the plane P. Let N be the unit normal to S, B = —V N the shape
operator, and E the identity operatior. Then

Hessu —u E = \/1 + u2 — ||grad u||* B (2.3)
as a consequence, u satisfies

Asu—-2u=0. (x)
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Proof. Consider the hyperboloid model for H>. Let us assume P is the plane dual
to the point p € dS3, meaning that P = p N H?3. Then u is the restriction to S of
the function U defined on H?>:

U(x) = sinhdpys(x, P) = (x, p). (2.4)

Let N be the unit normal vector field to S; we compute grad u by projecting the
gradient VU of U to the tangent plane to S:

VU =p+ (p,x)x (2.5)
gradu(x) =p+ (p,x)x—(p,N)N . (2.6)

Now Hessu(v) = Vf grad u, where V* is the Levi-Civita connection of S, namely
the projection of the flat connection of R%!, and so

Hessu(x)(v) = (p,x)v — (p, N)VEN =u(x)v+ (VU,N)B(v).
Moreover, VU = gradu + (VU, N)N and thus
(VU,N)? = (VU,VU) — |lgradu||®* = 1 + u? — ||grad u|*

which proves (2.3). By taking the trace, (x) follows. ]

Corollary 2.5. Let S be a minimal surface in H?>, with 00o(S) = I' a Jordan curve.
Then S is contained in the convex hull CH(T).

Proof. If T is a circle, then § is a totally geodesic plane which coincides with the
convex hull of I". Hence we can suppose I" is not a circle. Consider a plane P— which
does not intersect I" and the function u defined as in Equation (2.4) in Proposition 2.4,
with respect to P_. Suppose their mutual position is such that u > 0 in the region
of § close to the boundary at infinity (i.e. in the complement of a large compact set).
If there exists some point where ¥ < 0, then at a minimum point Asu = 2u < 0,
which gives a contradiction. The proof is analogous for a plane P4 on the other
side of I', by switching the signs. Therefore every convex set containing I" contains
also S. O

3. Universal Teichmiiller space

The aim of this section is to introduce the theory of quasiconformal mappings and
universal Teichmiiller space. We will give a brief account of the very rich and
developed theory. Useful references are [2, 11, 12, 14] and the nice survey [23].
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3.1. Quasiconformal mappings and universal Teichmiiller space. We recall the
definition of quasiconformal map.

Definition 3.1. Given a domain 2 C C, an orientation-preserving homeomorphism
Q- f(Q)ccC

is quasiconformal if f is absolutely continuous on lines and there exists a constant
k < 1 such that

0z | < k192 f].

Let us denote ju y = 0z f/0; f, which is called complex dilatation of f. This is
well defined almost everywhere, hence it makes sense to take the L, norm. Thus a
homeomorphism f : Q@ — f(2) C C is quasiconformal if || 7 ||, < 1. Moreover,
a quasiconformal map as in Definition 3.1 is called K-quasiconformal, where

k=115
1—k
[t turns out that the best such constant K € [1, +00) represents the maximal dilatation
of f,i.e. the supremum over all z € 2 of the ratio between the major axis and the
minor axis of the ellipse which is the image of a unit circle under the differential d, f.

It is known that a 1-quasiconformal map is conformal, and that the composition of
a K-quasiconformal map and a K;-quasiconformal map is K; K>-quasiconformal.
Hence composing with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composition
of two quasiconformal maps f, g on Q:

azf Hg — L f
0, f1—rpng
Using Equation (3.1), one can see that f and g differ by post-composition with
a conformal map if and only if ;s = pg almost everywhere. We now mention

the classical and important result of existence of quasiconformal maps with given
complex dilatation.

Hgof—1 = (3.1

Measurable Riemann mapping theorem. Given any measurable function ;& on C
there exists a unique quasiconformal map f : C — C such that £(0) =0, f(1) =1
and i r = p almost everywhere in C.

The uniqueness part of Measurable Riemann mapping Theorem means ﬁlat every
two solutions (which can be thought as maps on the Riemann sphere C) of the
equation

(az f)U' = a?f
differ by post-composition with a Mobius transformation of C.

Given any fixed K > 1, K-quasiconformal mappings have an important
compactness property. See [12] or [20].
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Theorem 3.2. Let K > 1 and f, : C > Cbea sequence of K-quasiconformal
mappings such that, for three fixed points z1,z5,z3 € C, the mutual spherical
distances are bounded from below: there exists a constant Cy > 0 such that

ds2(fu(zi). Ju(25)) > Co

for every n and for every choice of i,j = 1,2,3, i # j. Then there
exists a subsequence f,, which converges uniformly to a K-quasiconformal map

foo:@—>(C.

3.2. Quasiconformal deformations of the disc. It turns out that every quasicon-
formal homeomorphisms of ID to itself extends to the boundary dD = S!. Let us
consider the space:

QC(D) = {®: D — D quasiconformal} / ~

where ® ~ @' if and only if ®|g1= @’|gi. Universal Teichmiiller space is then
defined as

T(D) = QC(D)/Mdb(D),

where Mob(D) is the subgroup of Mébius transformations of D. Equivalently, 7 (D)
is the space of quasiconformal homeomorphisms ® : D — D which fix 1,/ and —1
up to the same relation ~.

Such quasiconformal homeomorphisms of the disc can be obtained in the
following way. Given a domain €2, elements in the unit ball of the (complex-valued)
Banach space L°°(ID) are called Beltrami differentials on 2. Let us denote this unit
ball by:

Belt(D) = {1 € L®(D) | [l < 1}

Given any p in Belt(ID), let us define i on C by extending p on C \ D so that

fi(z) = n(1/7).

The quasiconformal map f# : C — C such that u s« = i fixing 1,i and —1, whose
existence is provided by Measurable Riemann mapping Theorem, maps 9D to itself
by the uniqueness part. Therefore f# restricts to a quasiconformal homeomorphism
of D to itself.

The Teichmiiller distance on 7 (ID) is defined as

1 _
drm)y([®], [®]) = = inf log K(®7! o @),

where the infimum is taken over all quasiconformal maps ®; € [®] and ®) € [D].
It can be shown that dr ) is a well defined distance on Teichmiiller space, and
(T (D), dr(p)) is a complete metric space.
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3.3. Quasicircles and Bers embedding. We now want to discuss another inter-
pretation of Teichmiiller space, as the space of quasidiscs, and the relation with the
Schwartzian derivative and the Bers embedding.

Definition 3.3. A quasicircle is a simple closed curve I' in C such that I = w(sh
for a quasiconformal map W. Analogously, a quasidisc is a domain 2 in C such that
Q = Y(ID) for a quasiconformal map ¥ : C — C.

Let us denote D* = {z € C : z] > 1} = {z € C : |z|] > 1} U {o0}. We
remark that in the definition of quasicircle, it would be equivalent to say that I" is the
image of S! by a K’-quasiconformal map of C (not necessarily conformal on D*).
However, the maximal dilatation K’ might be different, with K < K’ < 2K. Hence
we consider the space of quasidiscs:

OD(D) ={V¥: C—C: W|p is quasiconformal and W|p= is conformal}/ ~ ,

where the equivalence relation is W ~ W’ if and only if ¥|p* = W'|p*. We will
again consider the quotient of Q D(ID) by Mobius transformation.

Given a Beltrami differential n € Belt(D), one can construct a quasiconformal
map on C , by applying Measurable Riemann mapping Theorem to the Beltrami
differential obtained by extending y to 0 on D*. The quasiconformal map obtained
in this way (fixing the three points 0,1 and o0) is denoted by f,,. A well-known
lemma (see [12, §5.4, Lemma 3]) shows that, given two Beltrami differentials p, i’ €
Belt(D), f*|g1 = fH'|g1 if and only if Sfulp* = fi|lp*. Using this fact it can
be shown that 7 (D) is identified to QD (ID)/ Méb(@ ), or equivalently to the subset
of QD(ID) which fix 0, 1 and co.

We will say that a quasicircle I' is a K-quasicircle if

K = inf K(V).
r=w(s!),
weQD(D)

It is easily seen that the condition that ' = W(S!) is a K-quasicircle is equivalent
to the fact that the element [®] of the first model 7 (D) = QC(D)/Mob(ID) which
corresponds to [¥] has Teichmiiller distance from the identity drp)([®], [id]) =
(log K)/2.

By using the model of quasidiscs for Teichmiiller space, we now introduce the
Bers norm on 7 (D). Recall that, given a holomorphic function f : Q@ — C with
f’ # 0in Q, the Schwarzian derivative of f is the holomorphic function

I/AN 1 my 2
5= (2Y L2
fl 2 f!
It can be easily checked that Sy, = Sz, hence the Schwarzian derivative can be

defined also for meromorphic functions at simple poles. The Schwarzian derivative
vanishes precisely on Mobius transformations.
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Let us now consider the space of holomorphic quadratic differentials on D.
We will consider the following norm, for a holomorphic quadratic differential
q = h(z)dz?:

Iglloo = sup e>"@|h(z)],
zeD
where 62n(2)|d2|2 is the Poincaré metric of constant curvature —1 on [D. Observe
that ||¢|| ., behaves like a function, in the sense that it is invariant by pre-composition
with Mobius transformations of 0, which are isometries for the Poincaré metric.

We now define the Bers embedding of universal Teichmiiller space. This is
the map Sp which associates to [¥] € T(D) = QD(D) /Méb(@) the Schwarzian
derivative Sy. Let us denote by o+) the norm on holomorphic quadratic
differentials on D* obtained from the ||+||,, norm on D, by identifying D with D* by
an inversion in S!. Then

fp : T(D) — QD)

is an embedding of 7(D) in the Banach space (Q(D¥), ||+||gm=*)) of bounded
holomorphic quadratic differentials (i.e. for which [¢| gp*) < +00). Finally, the
Bers norm of en element ¥ € 7 (D) is

IWlls = IAp[¥]lleo = lISwllom~) -

The fact that the Bers embedding is locally bi-Lipschitz will be used in the
following. See for instance [10, Theorem 4.3]. In the statement, we again
implicitly identify the models of universal Teichmiiller space by quasiconformal
homeomorphisms of the disc (denoted by [®]) and by quasicircles (denoted by [¥]).

Theorem 3.4. Let r > 0. There exist constants by and by, = b, (r) such that, for
every [V, [W'] in the ball of radius r for the Teichmiiller distance centered at the

origin (i.e. drm)([V], [id]), d7r@)([¥’], [id]) < r),
b1]Bp[¥] = Bp[V¥]lloo < dr@)([Y]. [¥']) < b2[AD[VY] — A [V] |l -

We conclude this preliminary part by mentioning a theorem by Nehari, see for
instance [20] or [11].

Nehari theorem. The image of the Bers embedding is contained in the ball of
radius 3/2 in (Q(D*), ||+||g+))- and contains the ball of radius 1/2.

4. Minimal surfaces in H3

The goal of this section is to prove Theorem A. The proof is divided into several
steps, whose general idea is the following:
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(1) Given ¥ € QD(D), if ||¥||z is small, then there is a foliation F of a convex
subset C of H? by equidistant surfaces. All the surfaces F of F have asymptotic
boundary the quasicircle I' = W(S'). Hence the convex hull of T is trapped
between two parallel surfaces, whose distance is estimated in terms of ||| 5.

(2) As a consequence of point ((1)), given a minimal surface S in H? with
doo(S) = T, for every point x € § there is a geodesic segment through x of
small length orthogonal at the endpoints to two planes P_, P+ which do not
intersect C. Moreover S is contained between P— and P.

(3) Since S is contained between two parallel planes close to x, the principal
curvatures of S in a neighborhood of x cannot be too large. In particular,
we use Schauder theory to show that the principal curvatures of S at a
point x are uniformly bounded in terms of the distance from P_ of points
in a neighborhood of x.

(4) Finally, the distance from P_ of points of S in a neighborhood of x is estimated
in terms of the distance of points in P4 from P_, hence is bounded in terms
of the Bers norm || W] ;.

It is important to remark that the estimates we give are uniform, in the sense that they
do not depend on the point x or on the surface S, but just on the Bers norm of the
quasicircle at infinity. The above heuristic arguments are formalized in the following
subsections.

4.1. Description from infinity. The main result of this part is the following. See
Figure 4.1.

Proposition 4.1. Let A < 1/2. Given an embedded minimal disc S in H> with
boundary at infinity a quasicircle 00oS = W(S') with |¥| s < A, every point of S
lies on a geodesic segment of length at most arctanh(2A) orthogonal at the endpoints

to two planes P_ and P+, such that the convex hull CH(T") is contained between P_
and P..

Remark 4.2. A consequence of Proposition 4.1 is that the Hausdorff distance between
the two boundary components of CH(I") is bounded by arctanh(2||W¥|| ;). Hence it
would be natural to try to define in such a way a notion of thickness or width of the
convex hull:

w(l) = max{ inf  d(x,d:.CH()), inf d(x, a_cy(r))}
x€d—CH(I) x€dCH(T)

However, a bound on the Hausdorfl distance is not sufficient for the purpose of

this paper. It will become clear in the proof of Theorem C and Theorem A, and

in particular for the application of Lemma 4.15, that the necessary property is the

existence of two support planes which are both orthogonal to a geodesic segment of

short length through any point x¢ € §.
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We review here some important facts on the so-called description from infinity
of surfaces in hyperbolic space. For details, see [7] and [19]. Given an embedded
surface S in H? with bounded principal curvatures, let I be its first fundamental
form and /I the second fundamental form. Recall we defined B = —V N its shape
operator, for N the oriented unit normal vector field (we fix the convention that N
points towards the x4 > 0 direction in R*!), so that I = I(B-,-). Denote by E the
identity operator. Let S, be the p-equidistant surface from § (where the sign of p
agrees with the choice of unit normal vector field to .5). For small p, there is a map
from S to S, obtained following the geodesics orthogonal to S at every point.

Figure 4.1. The statement of Proposition 4.1. The geodesic segment through x( has length < w,
for w = arctanh(2||W||z), and this does not depend on x¢p € S.

Lemma 4.3. Given a smooth surface S in H?, let S, be the surface at distance p
from S, obtained by following the normal flow at time p. Then the pull-back to S of
the induced metric on the surface S, is given by:

I, = I((cosh(p) E — sinh(p) B)-, (cosh(p) E — sinh(p)B)-) . (4.1)
The second fundamental form and the shape operator of S, are given by

11, = I((—sinh(p) E 4+ cosh(p)B)-, (cosh(p) E — sinh(p) B)-) 4.2)
B, = (cosh(p)E — sinh(p) B) ! (—sinh(p) E + cosh(p)B) . 4.3)

Proof. In the hyperboloid model, let o : D — H? be the minimal embedding of the
surface S, with oriented unit normal N. The geodesics orthogonal to S at a point x
can be written as

¥x(p) = cosh(p)a (x) + sinh(p) N(x).
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Then we compute

Ip(v, w) = (dyx(p)(v), dyx(p)(w))
= (cosh(p)doy (v) + sinh(p)d Nx(v), cosh(r)do(w) + sinh(p)d Ny (w))
= I(cosh(p)v — sinh(p) B(v), cosh(p)w — sinh(p) B(w)) .
The formula for the second fundamental form follows from the fact that I7, =
14l O
2 dp-

It follows that, if the principal curvatures of a minimal surface S are A and —
then the principal curvatures of S, are

__ A —tanh(p) , _ —A —tanh(p)
~ 1 —Atanh(p)’ P~ 14 Atanh(p)

In particular, if —1 < A < 1, then I, is a non-singular metric for every p. The
surfaces S, foliate H> and they all have asymptotic boundary 9e0S, = 900S.

We now define the first, second and third fundamental form at infinity associated
to S. Recall the second and third fundamental form of § are II = I(B-,-) and
Il = I(B-, B-).

Ap (4.4)

1 1
[* = lim 2¢e %], = 51((]«: — B)-,(E—B)") = 5(1 —2I + 1) (4.5)
pP—>00

B*=(E—-B)"YE+ B) (4.6)
1
I = 51((E + B)-,(E — B))) = I*(B*.,") 4.7)
ur* = r*(B*., B*.) (4.8)
We observe that the metric /, and the second fundamental form can be recovered as
| 1
I, = 532"]* + I* + 58“2’)[11* (4.9)
1dl, 1, 5 i T
I, =————=-I"((’E + e ”B™)-,(—e’E + e ”B™)-) (4.10)
2 dp 2
B, = (¢"E + e ”B*)" ' (—e’E + ¢ *B*) 4.11)

The following relation can be proved by some easy computation:

Lemma 4.4 ([19, Remark 5.4 and 5.5]). The embedding data at infinity (I*, B*)
associated to an embedded surface S in H? satisfy the equation

tr(B*) = —Kj~, (4.12)

where K+ is the curvature of I*. Moreover, B* satisfies the Codazzi equation with
respectto I*:

dVI*B* =0, (4.13)
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A partial converse of this fact, which can be regarded as a fundamental theorem
from infinity, is the following theorem. This follows again by the results in [19],
although it is not stated in full generality here.

Theorem 4.5. Given a Jordan curve I' C d5,H?3, let (I1*, B*) be a pair of a metric
in the conformal class of a connected component of d.oH?> \ T' and a self-adjoint
(1, 1)-tensor, satisfiying the conditions (4.12) and (4.13) as in Lemma 4.4. Assume
the eigenvalues of B* are positive at every point. Then there exists a foliation of H?
by equidistant surfaces Sy, for which the first fundamental form at infinity (with
respect to S = So) is I* and the shape operator at infinity is B*.

We want to give a relation between the Bers norm of the quasicircle I and the
existence of a foliation of H?* by equidistant surfaces with boundary I, containing
both convex and concave surfaces. We identify d,,H> to C by means of the
stereographic projection, so that D correponds to the lower hemisphere of the sphere
at infinity. The following property will be used, see [25] or [19, Appendix Al].

Theorem 4.6. Let I' C dooH?3 be a Jordan curve. If I* is the complete hyperbolic
metric in the conformal class of a connected component Q of dooH?> \ T, and 11
is the traceless part of the second fundamental form at infinity II*, then —II; is
the real part of the Schwarzian derivative of the isometry W : D* — Q, namely the
map V which uniformizes the conformal structure of Q2.

11§ = —Re(Sw). (4.14)

We now derive, by straightforward computation, a useful relation.

Lemmad.7. Let T = W(S!) be a quasicircle, for W € QD(D). IfI* is the complete
hyperbolic metric in the conformal class of a connected component Q of 9o H3 \ T,
and By is the traceless part of the shape operator at infinity B*, then

sup|det By (z)| = || ¥|5 . (4.15)
zeQ

Proof. From Theorem 4.6, B is the real part of the holomorphic quadratic
differential —Sy. In complex conformal coordinates, we can assume that

1,27
o 2 0 =
I* =e*dz| _(%e”’ 20 )

and Sy = h(z)dz?, so that

* 1 2 | i\ A52 %h 0
1§ = 5 (h(2)dz* + h(z)dz%) = — (2 1

and finally )
- 0 e2"h
* * 1 *
By =(I")"1lI; = (e_znh 0 )
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Therefore |det By (z)| = e~*1G)|h(z)|2. Moreover, by definition of Bers embedding,
B([¥]) = Sy, because ¥ is a holomorphic map from D* which maps S' = oD
to I'. Since

Wil = sup(e™*"P|h(2)[),

z€Q

this concludes the proof. 0
We are finally ready to prove Proposition 4.1.

Proof of Proposition 4.1. Suppose again [ * is a hyperbolic metric in the conformal
class of Q. Since tr(B*) = 1 by Lemma 4.4, we can write B* = Bj + (1/2)E,
where By is the traceless part of B*. The symmetric operator B* is diagonalizable;
therefore we can suppose its eigenvalues at every point are (a + 1/2) and (—a +1/2),
where a is a positive number depending on the point. Hence +a are the eigenvalues
of the traceless part B.

By using Equation (4.15) of Lemma 4.7, and observing that |det By| = a2, one
obtains |W||; = ||a| - Since this quantity is less than A < 1/2 by hypothesis, at
every point a < 1/2, and therefore the eigenvalues of B* are positive at every point.

By Theorem 4.5 there exists a smooth foliation F of H? by equidistant surfaces S,
whose first fundamental form and shape operator are as in equations (4.9) and (4.11)
above. We are going to compute

p1 = inf {p : B, is non-singular and negative deﬁnite}
and

p2 = sup {p : B, is non-singular and positive definite} .

Hence S, is concave and S, is convex. By Corollary 2.5, S is contained in the
region bounded by S,, and S,,. We are therefore going to compute p; — p2. From
the expression (4.11), the eigenvalues of B, are

—2e% + (2a + 1)

A, =
P 2¢2P 4+ (2a + 1)

and

N —2e%? 4+ (1 - 2a)
P 2e2p +(1—2a)

Since a < 1/2, the denominators of A, and A;) are always positive; one has A, < 0 if
and only if e > a 4+ 1/2, whereas A, < 0if and only if e?P > —a +1/2. Therefore

1 1 1 1 1 +2A4
—pp==(log{A+=)-log(-a+=z))=21
RL=P2 2(°g( +2) Og( +2)) 2°g(1—2A)

= arctanh(2A4) .
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This shows that every point x on S lies on a geodesic orthogonal to the leaves
of the foliation, and the distance between the concave surface S,, and the convex
surface S,,, on the two sides of x, is less than arctanh(2A4). Taking P_ and P the
planes tangent to S,, and S,,, the claim is proved. g

Remark 4.8. The proof relies on the observation — given in [19] and expressed
here implicitly in Theorem 4.5 — that if the shape operator at infinity B* is positive
definite, then one reconstructs the shape operator B, as in Equation (4.11), and
for p = 0 the principal curvatures are in (—1,1). Hence from our argument it
follows that, if the Bers norm || W/|| 5 is less than 1/2, then one finds a surface S with
d0oS = W(S1), with principal curvatures in (—1,1). This is a special case of the
results in [8], where the existence of such surface is used to prove (using techniques
of hyperbolic geometry) a generalization of the univalence criterion of Nehari.

4.2. Boundedness of curvature. Recall that the curvature of a minimal surface S is
given by Ks = —1 — A2, where £2 are the principal curvatures of S. We will need
to show that the curvature of a complete minimal surface § is also bounded below
in a uniform way, depending only on the complexity of do,S. This is the content of
Lemma 4.11.

We will use a conformal identification of S with ID. Under this identification the
metric takes the form gs = e2/|dz|?, |dz|* being the Euclidean metric on . The
following uniform bounds on f are known (see [1]).

Lemma 4.9. Let g = ¢2/|dz|? be a conformal metric on D. Suppose the curvature
of g is bounded above, K, < —e* < 0. Then

4
e*/ < —. (4.16)
e2(1—1z[%)?

Analogously, if —8? < Ky, then

e/ > : —. (4.17)
§2(1—1z1%)?

Remark 4.10. A consequence of Lemma 4.9 is that, for a conformal metric g =
e2f|dz|* on D, if the curvature of g is bounded from above by K ¢ < —€2 <0, then
a conformal ball By(p, R) (i.e. a ball of radius R for the Euclidean metric |dz|?) is
contained in the geodesic ball of radius R’ (for the metric g) centered at the same
point, where R’ only depends from R. This can be checked by a simple integration
argument, and R’ is actually obtained by multiplying R for the square root of the
constant in the RHS of Equation (4.16). Analogously, a lower bound on the curvature,
of the form —§2 < K,, ensures that the geodesic ball of radius R centered at p is
contained in the conformal ball By(p, R’), where R’ depends on R and §.
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Lemmad4.11. Forevery Ko > 1, there exists a constant Aoy > 0 such that all minimal

surfaces S with 0508 a K-quasicircle, K < Ky, have principal curvatures bounded
by [Mloo < Ao.

We will prove Lemma 4.11 by giving a compactness argument. It is known that
a conformal embedding o : ) — H?3 is harmonic if and only if o (ID) is a minimal
surface, see [9]. The following lemma is proved in [6] in the more general case of
CMC surfaces. We give a sketch of the proof here for convenience of the reader.

Lemma 4.12. Let 0, : D — H? a sequence of conformal harmonic maps such that
0(0) = x¢ and 05 (0,(D)) = T, is a Jordan curve, and assume I'y — 1" in the
Hausdoff topology. Then there exists a subsequence o, which converges C* on
compact subsets to a conformal harmonic map 6o : D — H3 with o0 (00 (D)) = T.

Sketch of proof. Consider the coordinates on H?> given by the Poincaré model,
namely H? is the unit ball in R3. Let o, for [ = 1,2,3, be the components
of 0, in such coordinates. Fix R > 0 for the moment.

Since the curvature of the minimal surfaces o,(D) is less than —1, from
Lemma 4.9 (setting € = 1) and Remark 4.10, for every n we have that 0, (B (0, 2R))
is contained in a geodesic ball for the induced metric of fixed radius R’ centered
at xo. In turn, the geodesic ball for the induced metric is clearly contained in the ball
B3 (xo, R'), for the hyperbolic metric of H3. We remark that the radius R’ only
depends on R.

We will apply standard Schauder theory (compare also similar applications in
Sections 4.3) to the harmonicity condition

Ao’ 9ok 9o/ dok
Aoa,§=_(rj.koa)( B/ M G’)::h; (4.18)

ox! dx! ox2 dx2

for the Euclidean Laplace operator A, where I" j i are the Christoffel symbols of the
hyperbolic metric in the Poincaré model.

The RHS in Equation (4.18), which is denoted by hfi, is uniformly bounded on
Bo(0,2R). Indeed Christoffel symbols are uniformly bounded, since o, (Bo(0,2R))
is contained in a compact subset of H?, as already remarked. The partial derivatives
of 0,1t are bounded too, since one can observe that, if the induced metric on §
is €2/ |dz|?, then 2¢2/ = |do||?, where

2 4 96 \* [802\* (853"
ldol” = (1—)3,-(a;;)2)2(( e ) T\ ) T\
+(ao,;)2+(aog)2+(aa;)2
dy dy dy '

Hence from Lemma 4.9 and again the fact that 0, (Bo(0,2R)) is contained in a
compact subset of H?3, all partial derivatives of o, are uniformly bounded.
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The Schauder estimate for the equation Aoo,i = h fz [15] give (foreverya € (0, 1))
a constant C; such that:

! I I
lonllcreByo,ry)) = Cl(liUnHCO(BO(o,zR)) + ”hn”CO(BO(O,ZR))) ;

Hence one obtains uniform C *(By(0, R;)) bounds on ofl, where R < Ry < 2R,
and this provides C%%*(By(0, R;)) bounds on hft. Then the following estimate of
Schauder-type

! I !
lon | 2. (By0,Ry)) = C2(||0n lcoBoo.ry)) T th”cl,a(BO(o,Rl)))

provide C?% bounds on By(0, R;), for R < R, < R,. By a boot-strap argument
which repeats this construction, uniform C*(Bgy(0, R)) for U,I, are obtained for
every k.

By Ascoli-Arzela theorem, one can extract a subsequence of o, converging
uniformly in C¥%(By(0, R)) for every k. By applying a diagonal procedure one can
find a subsequence converging C°°. One concludes the proof by a diagonal process
again on a sequence of compact subsets By (0, R,) which exhausts .

The limit function 0 : D — H? is conformal and harmonic, and thus gives a
parametrization of a minimal surface. It remains to show that 0 (0s0(D)) = T,
Since each 0, (D) is contained in the convex hull of I',, the Hausdorff convergence
on the boundary at infinity ensures that o, (ID) is contained in the convex hull of I",
and thus 04 (000 (D)) C T

For the other inclusion, assume there exists a point p € I' which is not in the
boundary at infinity of 0 (D). Then there is a neighborhood of p which does not
intersect 0 (D), and one can find a totally geodesic plane P such that a half-space
bounded by P intersects I' (in p, for instance), but does not intersect o, (D). But
such half-space intersects o, (ID) for large n and this gives a contradiction. O]

Proof of Lemma 4.11. We argue by contradiction. Suppose there exists a sequence
of minimal surfaces S, bounded by K-quasicircles I',, with K < Ky, with curvature
in a point K5, (x,) < —n. Letus consider isometries 7}, of H?3, so that T}, (x,) = Xo.

We claim that, since the point x( is contained in the convex hull of 7,(I,)
for every n, the quasicircles 7, (I",) can be assumed to be the image of S! under
Ko-quasiconformal maps WV, : C — C, such that W, maps three points of S! (say
1, i and —1) to points of 7,,(I",;) at uniformly positive distance from one another in
the spherical metric (thus satisfying the hypothesis of Theorem 3.2). Indeed, recall
that composing a Ky-quasiconformal map by a conformal map does not change
the constant K. Thus it suffices to prove that the quasicircles 7, (T',) = ¥, (S')
(¥, a Ko-quasiconformal map) contain three points u,, v,, w, at uniformly positive
distance from one another, and then one can re-parameterize the quasicircle by pre-
composing W, with a biholomorphism of C (which is determined by the image
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of three points on S 1y so that 1,i,—1 are mapped to u,, v,, w,. Moreover, it
suffices to prove that the quasicircles 7, (I',) contain two points u,, v, with distance
dg2(Up,v,) > 2C, where C is some constant independent from n. Indeed, the Jordan
curve T, (I",,) will then necessarily contain a third point w, such that dg2(u,, w,)
and d g2 (v, , wy) are larger than C. The latter claim is easily proved by contradiction:
if the statement was not true, then for every integer ; there would exists a quasicircle
Ty ; (I'n ;) which is contained in a ball of radius 1/; for the spherical metric on S 2,
But then it is clear that, for large j, the convex hull of 7, (I'y ;) would not contain
the fixed point x(. See Figure 4.2.

Figure 4.2. If the quasicircle 7, (I';;) is contained in a small ball for the spherical metric, then
the (fixed) point xo cannot be in the convex hull of the quasicircle.

By the compactness property in Theorem 3.2, there exists a subsequence T, (I'y, )
converging to a K-quasicircle I'y,, with K < K. By Lemma 4.12, the minimal
surfaces T, (S,, ) converge C° on compact subsets (up to a subsequence) to a
smooth minimal surface Soo With 000 (Seo) = I'ee. Hence the curvature of 75, (S, )
at the point xo converges to the curvature of S, at x¢. This contradicts the assumption
that the curvature at the points x, goes to infinity. ]

It follows that the curvature of S is bounded by —§? < Kg < —e?2, where § is
some constant, whereas we can take € = 1.

Remark 4.13. The main result of this section, Theorem A, is indeed a quantitative

version of Lemma 4.11, which gives a control of how an optimal constant Ay would
vary if Ky is chosen close to 0.
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4.3. Schauder estimates. By using equation (2.3), we will eventually obtain
bounds on the principal curvatures of S. For this purpose, we need bounds on
u = sinhdys (-, P—) and its derivatives. Schauder theory plays again an important
role: since u satisfies the equation

Asu—2u =0, (%)

we will use uniform estimates of the form

”u”Cz(BO(O,%)) =C ||u||C0(Bo(O,R))

for the function u, written in a suitable coordinate system. The main difficulty is
basically to show that the operators

ur—> Asu—2u

are strictly elliptic and have uniformly bounded coefficients.

Proposition 4.14. Let Ky > 1 and R > 0 be fixed. There exist a constant C > 0
(only depending on K¢y and R) such that for every choice of:

A minimal embedded disc S C H3 with 0sS a K -quasicircle, with K < Ky,
* Apointx € S;
* A plane P_;

the function u(+) = dys (-, P-) expressed in terms of normal coordinates of S
centered at x, namely

u(z) = sinhdgs(exp,(z), P-)

where exp,. : R? = Ty S — S denotes the exponential map, satisfies the Schauder-
type inequality
lullc2(Boc0,2y) = Cllellcooo,r) - (4.19)

Proof. This will be again an argument by contradiction, using the compactness
property.

Suppose our assertion is not true, and find a sequence of minimal surfaces S,
with 00(S,) = ', a K-quasicircle (K < Kj), a sequence of points x, € S,, and
a sequence of planes P, such that the functions u,(z) = sinhdyaz(exp,, (2), Pn)
have the property that

[ ”02(30(0,1;)) > nljullcocgyo,r)) -

We can compose with isometries T}, of H? so that T}, (x,) = xo for every n and the
tangent plane to 7, (S,) at xo is a fixed plane. Let S, = T,(S,), I',, = T,(I'») and
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P, = T,(Py). Note that I'), are again K-quasicircles, for K < Ky, and the convex
hull of each I';, contains x.

Using this fact, it is then easy to see — as in the proof of Lemma 4.11 —
that one can find Ko-quasiconformal maps ¥, such that ¥, (S') = I/ and W, (1),
W, (i) and W, (—1) are at uniformly positive distance from one another. Therefore,
using Theorem 3.2 there exists a subsequence of W, converging uniformly to a
Ko-quasiconformal map. This gives a subsequence I}, , converging to [, in the
Hausdorff topology.

By Lemma 4.12, considering S, as images of conformal harmonic embeddings
o) : D — H?3, we find a subsequence of o/, . converging C° on compact subsets
to the conformal harmonic embedding of a minimal surface S.,. Moreover, by
Lemma 4.11 and Remark 4.10, the convergence is also C°° on the image under the
exponential map of compact subsets containing the origin of R2.

It follows that the coefficients of the Laplace-Beltrami operators Ag/ on a
Euclidean ball By(0, R) of the tangent plane at xo, for the coordinates given by
the exponential map, converge to the coefficients of Ag:_. Therefore the operators
Ags — 2 are uniformly strictly elliptic with uniformly bounded coefficients. Using
these two facts, one can apply Schauder estimates to the functions u,, which are
solutions of the equations Ags (u,) — 2u, = 0. See again [15] for a reference. We
deduce that there exists a constant ¢ such that

l[un ”C2(B0(0,§)) = C”un“CO(BO(O,R))

for all n, and this gives a contradiction. O

4.4. Principal curvatures. We can now proceed to complete the proof of Theo-
rem A. Fix some w > 0. We know from Section 4.1 that if the Bers norm is smaller
than the constant (1/2) tanh(w), then every point x on S lies on a geodesic segment /
orthogonal to two planes P_ and P, at distance dy3(P—, P+) < w. Obviously the
distance is achieved along /.

Fix a point x € S. Denote again u = sinhdys (-, P-). By Proposition 4.14,
first and second partial derivatives of u in normal coordinates on a geodesic ball
Bs(x, R/2) of fixed radius R /2 are bounded by C |[u||co(p(x,r))- The last step for
the proof is an estimate of the latter quantity in terms of w.

We first need a simple lemma which controls the distance of points in two parallel
planes, close to the common orthogonal geodesic. Compare Figure 4.3.

Lemma 4.15. Let p € P_, q € P4 be the endpoints of a geodesic segment [
orthogonal to P— and P, of length w. Let p’ € P_ a point at distance r from p and



830 A. Seppi CMH

letd = dys((|p,.) "' (p'), P-). Then

tanhd = coshr tanh w (4.20)

inh
sinhd = coshr e (4.21)

/1 — (sinh r)2(sinh w)? .
Proof. This is easy hyperbolic trigonometry, which can actually be reduced to
a 2-dimensional problem. However, we give a short proof for convenience of
the reader. In the hyperboloid model, we can assume P_ is the plane x3 = 0,
p = (0,0,0, 1) and the geodesic [ is given by /(¢) = (0,0, sinh ¢, cosht). Hence P+
is the plane orthogonal to /"(w) = (0,0, cosh w, sinh w) passing through /(w) =
(0,0, sinh w, cosh w). The point p’ has coordinates

p' = (cos @ sinh r, sin @ sinh r, 0, cosh r)
and the geodesic /; orthogonal to P_ through p’ is given by
l1(d) = (coshd)(p’) + (sinhd)(0,0,1,0) .
We have [1(d) € Py if and only if (/;(d).!’(w)) = 0, which is satisfied for
tanhd = coshr tanh w ,

provided cosh r tanh w < 1. The second expression follows straightforwardly. 0

Figure 4.3. The setting of Lemma 4.15. Here dyy3(p, p’) = rand ¢’ = (J’!’lp+)_l (p).

We are finally ready to prove Theorem C. The key point for the proof is that all
the quantitative estimates previously obtained in this section are independent on the
point x € S.
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Theorem C. There exist constants Ko > 1 and C > 4 such that the principal

curvatures +A of every minimal surface S in H? with 0o0S = I' a K-quasicircle,
with K < Ky, are bounded by:

Cl¥ls

V1-Clv|E

1Al =

(4.22)

where I’ = W(S1), for ¥ € QD(D).

Proof. Fix Ky > 1. Let S a minimal surface with d,,S a K-quasicircle, K < K.
Let x € S an arbitrary point on a minimal surface S. By Proposition 4.1, we find
two planes P_ and P4 whose common orthogonal geodesic passes through x, and
has length w = arctanh(2||V|| 5).

Now fix R > 0. By Proposition 4.14, applied to the point x and the plane P_, we
obtain that the first and second derivatives of the function

u = sinh ds (exp, (), P-)

on a geodesic ball Bg(x, R/2) for the induced metric on S, are bounded by the
supremum of u itself, on the geodesic ball Bgs(x, R), multiplied by a universal
constant C = C(Ky, R).

Figure 4.4. Projection to a plane P_ in H? is distance contracting. The dash-dotted ball
schematically represents a geodesic ball of H?3.

Let 7 : H® — P_ the orthogonal projection to the plane P_. The map x
is contracting distances, by negative curvature in the ambient manifold. Hence
w(Bs(x, R)) is contained in Bp_ (7 (x), R). Moreover, since S is contained in the
region bounded by P_ and P, clearly sup{u(x) : x € Bg(0, R)} is less than the
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hyperbolic sine of the distance of points in (7| p Jr)_l (Bp_(m(x), R)) from P_. See
Figure 4.4.

Hence, using Proposition 4.15 (in particular Equation (4.21)), we get:

sinh w
/1 — (sinh R)2(sinh w)?2 ,

lullcocsg(x,r) < coshR (4.23)

where we recall that w = arctanh(2|| ¥ ).

We finally give estimates on the principal curvatures of S, in terms of the
complexity of d(S) = W(S!). We compute such estimate only at the point
x € §; by the independence of all the above construction from the choice of x, the
proof will be concluded. From Equation (2.3), we have

1

B =
\/1 + u2 — ||grad u||?

(Hessu —u E).

Moreover, in normal coordinates centered at the point x, the expression for the
Hessian and the norm of the gradient at x are just

2

. 52, Ju . ou =
i 2 _ [ ou o
(Hessu); = axians lgradu||” = (axl) + (3)62) .

It then turns out that the principal curvatures £4 of §, i.e. the eigenvalues of B, are
bounded by

A= Cillullcosg (x,r))
— 2 ]
\/1 =iy ||U||CO(BS (x,R))

The constant C; involves the constant C of Equation (4.19) in the statement of
Proposition 4.14. Substituting Equation (4.23) into Equation (4.24), with some
manipulation one obtains

(4.24)

Al < C(cosh R)(tanh w)
= VT—(1 + Cr)(cosh R)?(tanh w)?

(4.25)

On the other hand tanh w = 2||¥||z. Upon relabelling C with a larger constant, the
inequality
CllVlls

1-C[¥|3

is obtained. O

A oo =

Remark 4.16. Actually, the statement of Theorem C is true for any choice of Ky > 1
(and the constant C varies accordingly with the choice of Kj). However, the estimate
in Equation (4.22) does not make sense when || ¥||> > 1/C. Indeed, our procedure
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seems to be quite uneffective when the quasicircle at infinity is “far” from being a
circle — in the sense of universal Teichmiiller space. Applying Theorem 3.4, this
possibility is easily ruled out, by replacing Ky in the statement of Theorem C with a
smaller constant.

Observe that the function x + Cx/+/1 — Cx?2 is differentiable with derivative C
at x = 0. As a consequence of Theorem 3.4, there exists a constant L (with respect
to the statement of Theorem 3.4 above, L = 1/by) such that | V|5 < Ldr([\W¥], [id])
if d-([¥], [id]) < r for some small radius r. Then the proof of Theorem A follows,
replacing the constant C by a larger constant if necessary.

Theorem A. There exist universal constants Ko and C such that every minimal
embedded disc in H> with boundary at infinity a K -quasicircle T C 0,H?3, with
K < Ky, has principal curvatures bounded by

[Alloo = Clog K.

Remark 4.17. With the techniques used in this paper, it seems difficult to give explicit
estimates for the best possible value of the constant C of Theorem A. Indeed, in the
proof of Theorem C, the constant which occurs in the inequality (4.22) depends on
the choices of the bound K¢ on the maximal dilatation of the quasicircle, and on the
choice of a radius R. The radius R does not really have a key role in the proof, since
the estimate on the principal curvatures is then used only for the point x (in a manner
which does not depend on x). However, the choice of R is essentially due to the form
of Schauder estimates, which provide a constant Csg, such that

||”Hc2(30(o,§)) - CSch”u”CO(BO(O,R))’

where Csq, depends on the radius R. Moreover, Csq, depends on the bounds on the
coeflicient of the equation satisfied by u, which in our case is

Asu—2u=20. (%)

The bound on the coefficients of such equation, which depends on the Laplace-
Beltrami operator of the minimal surface S, thus depends implicitly on the
choice of Ky (a compactness argument was used in this paper, in the proof of
Proposition 4.14). Finally, the dependence on the constant K, appears again in
the proof of Theorem A, when applying the fact that the Bers embedding is locally
bi-Lipschitz (Theorem 3.4). In fact, the local bi-Lipschitz constant depends on the
chosen neighborhood of the identity in universal Teichmiiller space.

5. Some applications and open questions

In this section we discuss the proofs of Theorem B, of Corollaries A, B and C, and
mention some related questions.
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5.1. Uniqueness of minimal discs. We recall here Theorem B, which was stated in
the introduction.

Theorem B. There exists a universal constant K| such that every K-quasicircle
I' C 0,oH3 with K < K, is the boundary at infinity of a unique minimal embedded
disc.

To prove Theorem B, one applies the well-known fact that a minimal disc in H?>
with principal curvatures in [—1 + €, 1 — €] for some € > 0 is the unique one with
fixed boundary at infinity. Under this hypothesis, the curve at infinity is necessarily
a quasicircle (one can adapt the argument of [13, Lemma 3.3]). For the convenience
of the reader, we provide here a sketch of a proof which uses the tools of this paper.

Lemma 5.1. Let S be a minimal embedded disc in H? with 0,,cS = T. If the
principal curvatures of S satisfy ||A||oo < 1, then S is the unique minimal disc with

Sketch of proof. Suppose I is such that there exists two minimal surfaces S and S’
with 0508 = 0008’ = I, and that the principal curvatures of S are in [—1 +¢€, 1 —¢€].
As observed after the proof of Lemma 4.3, the p-equidistant surfaces from S give a
foliation of a convex subset C of H?3, for p € (— arctanh|| 4|, arctanh||A| ). By
Corollary 2.5, the minimal surface S’ is also contained in C.

Now, let po the supremum of the value of p on the minimal surface S’. If this
supremum is achieved on S’, then the minimal surface S’ is tangent to the smooth
surface S, at distance pp from S. But by Equation (4.4), when p > 0 the mean
curvature of S, is negative (in our setting, a concave surface, for instance obtained
for large positive p, has negative principal curvatures). Hence by the maximum
principle, necessarily pg < 0.

If the supremum is not attained, let us pick a sequence of points x, € S’ such
that the value of p at x, converges to pg as n — oc. One can apply isometries 7,
of H3 so that x, is mapped to a fixed point xo. By the usual argument (see also
Lemma 4.11), one can apply Theorem 3.2 to ensure that the quasicircles 7, (I")
converge to a quasicircle 'y, and then Lemma 4.12 to get the C*° convergence on
compact sets of the minimal discs 7, (S”) to a minimal disc S’ with 00655, = I'eo,
up to a subsequence. Moreover, one can also assume that the minimal discs 7, (.S)
converge to a minimal disc S. Indeed, consider the points y, on S such that the
geodesic of H? through y,, perpendicular to S, contains x,. The isometries T},
map ), to a compact region of y, (as d(xo, Tn(yn)) = d(xn, yn) < arctanh||A| ),
thus one can repeat the previous argument (first compose with isometries R, which
map T, (y,) to a fixed point yg, and extract a subsequence of R, converging to an
isometry Ro). By the C*° convergence, the minimal surface S, still has principal
curvatures in [—1+¢€, 1 —€], and therefore one can repeat the argument of the previous
paragraph, applied to So and S, to show that py < 0.

In the same way, one proves that the infimum of p on S’ must be nonnegative,
and thus p must always be zero on S’. This proves that § = S’. U
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The proof of Theorem B then follows from Lemma 5.1. With respect to the
constants Ko and C of Theorem A, by choosing some constant K, < min{Ky, e 1/Cy
one obtains that every minimal embedded disc with boundary at infinity a
K -quasicircle, with K < K, has principal curvatures bounded by ||A| o, < 1.

5.2. Quasi-Fuchsian manifolds. In this subsection we collect the applications of
Theorem A to quasi-Fuchsian manifolds. A quasi-Fuchsian manifold is a Riemannian
manifold isometric to H3/G, where G is subgroup of Isom(H?), which acts freely
and properly discontinuously on H?3, isomorphic to the fundamental group of a closed
surface X, and such that the limit set (i.e. the set of accumulation points in 9., H?>
of orbits of the action of G) is a quasicircle. The topology of a quasi-Fuchsian
manifold is ¥ x R, where ¥ is the closed surface. Therefore the results obtained
in the previous sections hold for the universal cover S = % of any closed minimal
surface Xy homotopic to X x {0}.

Recall that Teichmiiller space 7 (X) of a closed surface X is the space of Riemann
surface structures on X, considered up to biholomorphisms isotopic to the identity.
In the same way, the classifying space for quasi-Fuchsian manifolds, which we denote
by QF (), is the space of quasi-Fuchsian metrics on X x R up to isometries isotopic
to the identity. By the celebrated Bers’ Simultaneous Uniformization Theorem [4],
QF(X) is parameterized by 7 (X) x 7 (X). The construction is as follows: since the
limit set A of G is a Jordan curve, the complement of A in 0o H? has two connected
components 24 and €2_ on which G acts freely, properly discontinuously and by
biholomorphisms. This construction thus provides two Riemann surface structures
on X, namely the structures given by the quotients Q24 /G and 2_/G. Bers proved
that these two Riemann surface structures, as points in 7 (X), can be prescribed and
determine uniquely the quasi-Fuchsian structure in Q.F (X).

Finally, recall that the Teichmiiller distance between two points of 7 (X), namely
two Riemann surface structures A; and A, on X, is defined as:

1
dr)((Z, A1), (2, A2)) = > }E’fi-d log K(f),

where K( f) is the maximal dilatation of f and the infimum is taken over all f :
(X, A1) — (2, A) quasiconformal and isotopic to the identity.

Corollary A. There exist universal constants C > 0 and dy > 0 such that, for
every quasi-Fuchsian manifold M = H3/G with d1(5)(Q+/G,Q-/G) < dy and
every minimal surface S in M homotopic to ¥ x {0}, the supremum of the principal
curvatures of S satisfies:

Moo = Cdr()(2+/G,2-/G).

Corollary A follows directly from Theorem A. Indeed, let us choose dy =
(1/2)log Ky. If the Teichmiiller distance between 24 /G and Q2_/ G is less than d,
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then for every d < dy, d larger than the Teichmiiller distance, one can obtain (by
lifting to the universal cover) a K-quasiconformal map between €24 and 2_ with
K = e24 < K,. Thus the limit set T is a K-quasicircle, with K < K. Thus by
Theorem A the lift S = ¢ of any minimal surface in M satisfies

Ao < Clog K =2Cd
Since the choice of d was arbitrary, one obtains
1Moo = 2Cdr(2)(R2+/G,R2-/G)

and the statement is concluded, replacing C by 2C.

Clearly, the simplest example of quasi-Fuchsian manifolds are Fuchsian
manifolds, namely those quasi-Fuchsian manifolds which contain a totally geodesic
(and thus minimal) surface homotopic to £ x {0}. The lift to H? of such surface is
a totally geodesic plane, whose boundary at infinity is a circle. Fuchsian manifolds
are parameterized by the induced metric on this totally geodesic surface, and thus
the space . of Fuchsian metrics on ¥ x R, up to isometry isotopic to the identity,
is parameterized by 7 (X). As a subset of QF, F is precisely the diagonal in
T(Z) x T(X).

It is easy to see that the totally geodesic surface in a quasi-Fuchsian manifold is
the unique minimal surface. Although the uniqueness of the minimal surface in a
quasi-Fuchsian manifold does not hold in general, there is a larger class of manifolds
where uniqueness is guaranteed. According to the terminology in [18], we have the
following definition of almost-Fuchsian manifolds:

Definition 5.2. A quasi-Fuchsian manifold is almost-Fuchsian if it contains a minimal
surface homotopic to X x {0} with principal curvatures in (—1, 1).

We will denote by AF(X) the subset of QF(Z) of almost-Fuchsian manifolds.
Uhlenbeck in [24] first observed that the minimal surface in an almost-Fuchsian
manifold is unique. This follows also from the proof of Lemma 5.1, in a simplified
version for the compact case. A direct consequence of our results is the following:

Corollary B. If the Teichmiiller distance between the conformal metrics at infinity
of a quasi-Fuchsian manifold M is smaller than a universal constant d |, then M is
almost-Fuchsian.

Indeed, in Corollary A, if the Teichmiiller distance is small enough, then the
principal curvatures are bounded by 1 in absolute value. Finally, if we endow
QF = T(X) x T(X) by the 1-product metric, namely

dr o)1) (A1, A)). (A2, A})) = dr(z) (A1, A2) + drs) (A} AY)

then Corollary B can be restated by saying that if the distance of a point
(2+/G,2_/G) from the diagonal is less than d{, then the quasi-Fuchsian manifold
determined by (24/G,Q2_/G) is almost-Fuchsian. We state this in Corollary C
below.
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Corollary C. There exists a uniform neighborhood N(F (X)) of the Fuchsian locus
F(X)in QF(X) = T(X) x T(X) such that N(F(X)) C AF(X).

5.3. Further directions. There is a number of questions left open on quasi-Fuchsian
and almost-Fuchsian manifolds. In particular, the results presented in this paper hold
for quasi-Fuchsian manifolds such that the two Riemann surfaces at infinity are close
in Teichmiiller space. The understanding of the subset of almost-Fuchsian manifolds
far from the Fuchsian locus is far from being completed. More in general, it is an
interesting and challenging problem to understand the geometric behavior of minimal
discs in hyperbolic space with boundary at infinity a Jordan curve, especially when
this Jordan curve becomes more exotic and phenomena of bifurcations occur.

The techniques of this paper, as observed in Remark 4.2, motivate towards a
definition of thickness or width of the convex core of a quasi-Fuchsian manifold or,
more in general, the convex hull of a quasicircle in doH>. One might expect to
find a relation between such notion of thickness and, for instance, the Teichmiiller
distance between the conformal ends of the quasi-Fuchsian manifold, or the maximal
dilatation of the quasicircle. Again, it seems challenging to provide relations which
hold far from the Fuchsian locus.
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