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Assembling homology classes in
automorphism groups of free groups

James Conant, Allen Hatcher, Martin Kassabov* and Karen Vogtmann**

Abstract. The observation that a graph of rank n can be assembled from graphs of smaller
rank k with s leaves by pairing the leaves together leads to a process for assembling homology
classes for Out(/r„) and Aut(F„) from classes for groups Twhere the generalize
Out(Fyt) Tfc.o and Aut(Fk) The symmetric group <Ss acts on //*(rjt by

permuting leaves, and for trivial rational coefficients we compute the &s-module structure

on H*(rks) completely for k < 2. Assembling these classes then produces all the known
nontrivial rational homology classes for Aut( Fn) and Out( Fn) with the possible exception of
classes for n =7 recently discovered by L. Bartholdi. It also produces an enormous number

of candidates for other nontrivial classes, some old and some new, but we limit the number of
these which can be nontrivial using the representation theory of symmetric groups. We gain
new insight into some of the most promising candidates by finding small subgroups of Aut(F„)
and Out( Fn) which support them and by finding geometric representations for the candidate
classes as maps of closed manifolds into the moduli space of graphs. Finally, our results have

implications for the homology of the Lie algebra of symplectic derivations.

Mathematics Subject Classification (2010). 20J06, 20F65, 20F28.

Keywords. Automorphisms of free groups, moduli spaces of graphs, cohomology.

1. Introduction

In this paper we develop a new approach to studying the homology of automorphism

groups of free groups which gives fresh group theoretic and geometric insight into
known families of homology classes, and also helps direct the search for new classes.

We restrict attention to homology and cohomology with untwisted coefficients in a

field k of characteristic zero unless explicitly specified otherwise.
Let us recall briefly what is known about these homology groups. First of all,

H, (Aut(F„)) and //, (Out(Fn)) are finite-dimensional over k for all /, and vanish

* Martin Kassabov was partially supported by Simons Foundation grant 305181 and NSF grants DMS
0900932 and 1303117.

**Karen Vogtmann was partially supported by NSF grant DMS 1011857 and a Royal Society Wolfson
Award.



752 J. Conant, A. Hatcher, M. Kassabov and K. Vogtmann CMH

for i greater than the virtual cohomological dimension (vcd), which is 2/7 — 2 for
Aut(Fn) and 2n — 3 for Out(Fn) [14]. The groups //;(Aut(F„)) and //, (Out(F„))
are independent of n for n > 5{i + l)/4 as shown in [23,24], and these stable groups
are in fact zero as well, as Galatius proved in [16]. Thus in the first quadrant of
the (i,n) plane (see Figure 1 below) there is a wedge-shaped region bounded by
lines of slope 1/2 and 5/4 that contains all the nonzero groups //, (Aut(F„)), and

similarly for //, (Out(F„)). There are only a small number of these groups which are

explicitly known to be nonzero. For Aut(F„) these occur for (/, n) (4,4), (7,5),
(8,6), (8,7), (11,7) and (12, 8); for Out(Fn) the list is the same except that (7,5) is

omitted. (The natural map Hi (Aut(F„)) -> Ht (Out( F„)) is known to be surjective
for all i and n [27] and we give a different proof of this in Theorem 2.4.) These

low-dimensional calculations are done mostly by computer; see [1,12,17,19,23,33].
Complete calculations of //, (Aut( F„)) have been made only for n <5 and for
Hi (Out(F„)) only for n <7.

Figure 1. Classes in the homology of Aut(F„) for n < 14. The Morita classes are shown as

squares and the Eisenstein classes are shown as circles, filled in if the classes are known to be

nontrivial. The nontrivial classes recently found by Bartholdi are shown as hexagons.

There are two potentially infinite sequences which begin with nontrivial classes:

these are classes Hk for (i, n) (4k, 2k + 2) defined by Morita [33] and classes

for (i,n) (4k + 3,2k + 3) constructed in [10], The latter are known as

Eisenstein classes because they arise from Eisenstein series via the connection
between modular forms and the cohomology of SL2(Z) established by the Eichler-
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Shimura isomorphism. The Morita classes are defined for both Aut and Out,
while the £k 's are defined for Aut and map to zero in Out. Note that these classes are

all either one or two dimensions below the vcd.
One of the big open questions is to determine which of the classes pk and £k

are nonzero. However, even if they are nonzero it seems that they account for only
a small fraction of the homology. The Euler characteristic for 7/*(Out(F„)) was

computed for n < 11 by Morita, Sakasai, and Suzuki in [35,36], and after starting
with the values 1 and 2 for n < 8, it becomes -21,-124, —1202 for n 9, 10,11.
If this trend continues for larger n, it would say there are many odd-dimensional
classes for Out(F„), though the only one discovered to date is the 11-dimensional
class in Out(F7) recently found by Bartholdi [1], (This class is balanced by a single
8-dimensional class, consistent with the Euler characteristic calculation for n 7.)

n 3 4 5 6 7 8 9 10 11 12

X(Out(F„)) 1 2 1 2 1 1 -21 -124 -1202

Figure 2. Euler characteristic of Out(E„)

The Morita classes were first constructed using Lie algebra techniques
underpinned by Kontsevich's "formal noncommutative symplectic geometry" [28,
29], In [12] these classes were interpreted explicitly in Lie graph cohomology and

generalized; further generalizations including the classes were obtained using
"hairy graph homology" in [10]. In the present paper we show how to construct all
of these classes in an elementary fashion which bypasses both graph homology and

Kontsevich's work. The idea is to use the fact that Out(F„) and Aut(F„) are the first
two groups in a series T„>0, T„;1, T„;2, • • • where r„v? is the group ofhomotopy classes

of self-homotopy equivalences of a rank n graph fixing s leaves (vertices of valence

one) [2,22,24], These groups are related by natural surjective homomorphisms
£n,s-k with kernel (Fn)k. These homomorphisms split for k < s but not for

k s.
The groups r„,5 are of interest because by gluing graphs together along a subset

of their leaf vertices we obtain many homomorphisms r„liSl x • • • x Vnk <Sk —> r„jS.
On the level of homology, each such map induces a homomorphism

77* (Tni !iSl) (g> • • (g> H*(TnktSk) 7/*(r„^),

which we call an assembly map (see Section 5). For example by pairing up all of the

leaves of two rank one graphs with 5 leaves (in any way) we obtain an assembly map

7/*(rM) (g> 7/*(TM) — 77*(r,+i>0) T7*(Out(7\y+i)).

Restricting to the case that s is odd, say s 2k + 1, it is easy to calculate that

i,2ifc-Ti) Ik (see Section 3.4), and in Section 5.1 we note that the Morita
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class ßk is the image of <g) under this assembly map, where is a generator of
H2k(^i,2k+i)- This graphical interpretation of the original Morita series allows us

to give two new proofs that Morita classes vanish after one stabilization, one proof
being algebraic (Section 6.2) and the other geometric (Section 7). This result was first
proved via a more elaborate combinatorial computation in graph homology in [13].

As a consequence of the elementary construction, we find that all the classes ßk
in Morita's original series, as well as the generalized Morita classes given in [12], are

supported on abelian subgroups of Aut(F„). This naturally gives rise to the question
of whether the standard maximal abelian subgroup can support nontrivial homology
classes, and we show in Section 8 that it cannot. For the Eisenstein classes we find

slightly more complicated nonabelian subgroups that support them.

Parallel to these group-theoretic descriptions of Morita and Eisenstein classes

there are geometric representations as maps of closed orientable manifolds into
the classifying spaces for Aut(F„) or Out(F„) carrying top-dimensional homology
classes of the manifolds to the Morita or Eisenstein classes. In the case of Morita
classes the manifolds are tori while for the Eisenstein classes they are products of a

certain 3-manifold with tori.
The computational heart of the paper is in Section 3 where we use the natural

action of the symmetric group &s on r„!-s to study H*(r„tS). For« land« =2we
determine the ©J-module structure of //*(rrajJ) completely. This can be applied in
the search for nontrivial classes in H*(Yns) that lie in the images of assembly maps.
In particular we show in Section 5.5 that many of the generalized Morita classes are

in fact zero, though this does not apply to the ß^ s themselves. In Section 5.7 we
show that certain odd-dimensional classes constructed in [35] must vanish, but we
also find some new candidates for nontrivial odd-dimensional classes.

The calculation of //»(Ti^) is an easy consequence of the fact that ^
Z2 ix Z,s_1. To calculate the homology of T2v? we use the short exact sequence

1 —> Fj — r2>J — r2,0 Out(F2) — 1.

In the Leray-Serre spectral sequence associated to this short exact sequence we note
that all differentials are zero, allowing us to completely calculate the homology.
(Actually, for convenience we use cohomology rather than homology for spectral

sequence arguments and indeed for most algebraic calculations.) The results of our
computations for n 1 and n 2 and small values of s are recorded in several

tables at the end of the paper.
These computations show that even though the dimension of //, (T„^) as a vector

space over Ik increases with s for fixed n — 1,2, it is nevertheless true that as

representations of &s these vector spaces eventually stabilize in the sense of [7],
This representation stability holds for all rt in fact, as a corollary of a result of
Jimenez Rolland [26]; see Proposition 6.1.

We also apply some elementary representation theory to show that the group
Hi (T„:S) is nontrivial whenever i is an even multiple of n and s is sufficiently large
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with respect to i and n. This can be contrasted with the situation for stabilization with
respect to n, where //, (r„iiS) becomes trivial as n increases, by Galatius' theorem for
5 1 and hence for all s since the groups Hi (r„ jiS) are independent of both n and s

when n > 2i + 4 by [24],
In Section 9 we point out the relationship of the homology of with both

hairy graph homology [10,11] and the cohomology of the Lie algebra of symplectic
derivations, as studied by Kontsevich, Morita and many others. In particular, we
show how our computations for r„;iS imply that the cohomology in each dimension
of this Lie algebra contains infinitely many simple Sp-modules.

Section 10 contains some conjectures and open questions. Most nontrivial rational
homology classes for any which occur below the vcd 2n — 3 + s have been

shown to be in the image of assembly maps. The only exceptions are new classes for
Out(F7) and Aut(F7) recently found by Bartholdi [1], for which this is still unclear.

It is then natural to ask whether assembly maps generate all classes below the vcd.
The number of potential homology classes for //,•(r„!iS) constructed from assembly

maps grows exponentially with n, leading to the expectation that the rank of the

homology also grows very fast. For 5 0 this expectation coincides nicely with the

Euler characteristic calculations of Morita, Sakasai, and Suzuki cited earlier.

Finally, we remark that the rational classifying spaces for the groups Tn.s have

natural compactifications, whose homology has recently been studied by Chan,
Galatius and Payne [5,6]. One thing they show is that this homology vanishes

in dimensions less than 5 — 3. It is easy to see that all homology classes which are in
the image of an assembly map must vanish in this compactification, consistent with
their calculations.

2. The groups rn?s

2.1. Definitions. The group Out(F„) is the group of homotopy classes of self-

homotopy equivalences of a finite connected graph X of rank n, and Aut(F„) is

the basepointed version of this, the homotopy classes of homotopy equivalences
of X fixing a basepoint, where homotopies are also required to fix the basepoint.
A natural generalization is to choose s distinct marked points xi,..., Xy in X and

then define to be the group of homotopy classes of self-homotopy equivalences
of X fixing each x, with homotopies also required to fix these points. The group
operation in T„^ is induced by composition of homotopy equivalences, which is

obviously associative with an identity element. To check that inverses exist one uses
the following elementary fact:

Lemma 2.1. If f: X —y Y is a homotopy equivalence offinite connected graphs
taking a set of s marked points x {xi,..., xs\ bijectively to another such set

y {y i,..., ys}, then f is a homotopy equivalence ofpairs {X, x) —> (Y, y), so
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there is a map g : Y -> X restricting to f 1

on y with the compositions gf and fg
homotopic to the identity fixing x and y respectively.

Proof. Let Z be the quotient of the mapping cylinder of / obtained by collapsing
x x I to x y. The quotient map collapses a finite number of intervals to a point
so it is a homotopy equivalence. If / is a homotopy equivalence, then the inclusions
of X and Y into the mapping cylinder are homotopy equivalences, hence the same is

true for the inclusions into Z. It follows that Z deformation retracts onto the copies
of X and Y at either end. The deformation retraction to X gives the map g.

This lemma also shows that does not depend on the choice of (X, x), up to
isomorphism. Throughout most of the paper we will take X to be a rank n graph
with exactly s leaves, with the leaf vertices as the marked points. Here a leaf means

a vertex of valence one together with the adjoining edge. Our generic notation for a

graph of rank n with s leaves will be Xn<s. Two examples of rank 3 graphs with 4

leaves are shown in Figure 3.

A homotopy equivalence / : Xn,s — Xn,s that permutes the leaf vertices induces

an automorphism of T„vS via conjugation by /. If / fixes the leaf vertices this is an

inner automorphism, hence induces the identity on the homology of T«^, so there is

an induced action of the symmetric group &s on the homology. If we choose Xn>s

to have a single nonleaf vertex as in the left half of Figure 3 then this action of &s on

homology comes from the action on X„tS permuting the leaves. The ©^-action on

H*(Yn,s) will play a major role in later sections of the paper.
The groups To,.s are trivial since any AovS is a tree and any homotopy equivalence

of a tree which fixes all of its leaf vertices is homotopic to the identity by a homotopy
fixing the leaf vertices.

As shown in [2], the group Ti^ is the semidirect product Z2 tx Z,s~'. The free
abelian subgroup Z5-1 is generated by homotopy equivalences which wrap one leaf
edge around the (unique) loop while fixing the leaf vertex and the rest of the graph.
These generators commute since they have disjoint supports. Note that wrapping
all of the leaf edges around the loop in the same direction results in a map which is

homotopic to the identity fixing the leaf vertices, so there are only s — 1 independent

generators. The generator of Z2 flips the loop, so acts on Zs~l by x i-»- —x.

Figure 3. Two possibilities for A3,4
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We remark that could also be defined as the mapping class group of the

3-manifold Mn<s formed by removing s disjoint balls from the connected sum

of n copies of S1 x S2, modulo the subgroup generated by Dehn twists along
embedded 2-spheres. This follows from results of Laudenbach and is made explicit
in Proposition 1 of [24].

The groups for s > 1 were first considered in [22] in work on homological
stability and also appeared in Bestvina and Feighn's proof that Out(F„) is a virtual

duality group [2], It was observed in [10] that their homology is very closely related

to hairy graph homology groups for the Lie operad.

2.2. Short exact sequences. In this section we observe that there are natural short

exact sequences relating the groups T„;i.

Proposition 2.2. Ifn > 1 and k < s there is a short exact sequence

i — Fk — rB>i — rn,s_k — l

which splits ifk < s. This holds also when n 1 and k < s, but in the exceptional
case (n,k) (1, s) there is a split short exact sequence

1 z5"1 — rUs — Tho — 1

expressing T i ,5 as the semidirect product Z2 k 1f~x.

For k s — 1 the proposition follows from [2, Section 2.5], where it is shown

that rn>i ^ Aut(F„) x F*~l.

Proof. Let X be a rank n graph containing a set x {xi,... x,} of s distinct
marked points. Let En>s be the space of homotopy equivalences X —»• X fixed on x,
so F„:iS. ji0(En,s). For k < s there is an inclusion En,s C En,s-k obtained by
no longer requiring homotopy equivalences to fix x\,..., x^. Evaluating homotopy
equivalences X —> X on x\,..., x^ gives a map En>s-)t —> Xk which is a fibration
with fiber En,s over the point (x\,..., jiqt). The long exact sequence of homotopy

groups for this fibration ends with the terms

> Jti{X > rniiS > TnjiS_^ > 1.

When k < s the first term it\(En<s-k) is trivial by obstruction theory. Namely, we

can assume X is obtained by attaching 1-cells to a set of s — k 0-cells, and then any
loop of homotopy equivalences ft : X -> X fixing the 0-cells can be deformed to
the trivial loop since Jt2(X) 0. Thus we obtain the first short exact sequence in
statement of the proposition when k < s, for arbitrary n.

To split this short exact sequence when k < s it suffices to find a map
En,s-k En,s such that the composition En^s-k En^s is homotopic
to the identity. We are free to choose the marked points xi,...,Xfc anywhere
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in the complement of the remaining s — k points, so we choose them in a small
contractible neighborhood N of the point x^+i. We can then deformation retract

En,s-k onto the subspace E' k of homotopy equivalences that are fixed on N.
(This is particularly easy if we choose X to have a valence one vertex with Xfc+i as

this vertex.) The subspace E'n s_k includes naturally into En<s, and this inclusion

gives the desired map En^-k En,s as the composition of the first two maps
En,s-k E'n s-f, ^ En^s ^ En s-k, the first map being the retraction produced
by the deformation retraction. The composition of the three maps is homotopic to
the identity by the deformation retraction itself.

There remain the cases k s. The issue is whether n\(E„to) is trivial, so that
the long exact sequence becomes a short exact sequence. To settle this, consider the

fibration En l —>• En_0 —>• X which gives a long exact sequence

1 —> ni(E„)0) —> n\(X) — VnA — r„j0 — 1

where the initial 1 is tc\(Enj). The middle map in this sequence is the map from n\
of the base of the fibration to no of the fiber, and it is easy to check the definitions
to see that this is the map Fn —> Aut(F„) sending an element of Fn to the inner

automorphism it determines. The kernel of this map is the center of Fn so it is trivial
when n > 1 and we deduce that n\(En<o) 1 in these cases, so we again have the

short exact sequence claimed in the proposition.
When n 1 and k 5 the space Eito is homotopy equivalent to S1 and the

exact sequence of the fibration E 1>Ä —> E 1>0 Xs becomes

1 — Z — Z" — Ti,, —Th0 1,

with the map Z —»• 7LS the diagonal inclusion. This yields the short exact sequence
displaying T^ as the semidirect product Z2 tx Zs~l.

Remark 2.3. If we use Laudenbachs theorem to express r„^ in terms of the mapping
class group of then the short exact sequence of Proposition 2.2 can be derived
from a 3-dimensional analog of the Birman exact sequence for mapping class groups
of surfaces [2], From this viewpoint the space E„tS is replaced by the diffeomorphism
group of M„ j5, and the resulting fibration is a very simple special case of much more
general fibrations due to Cerf, Palais, and Lima.

2.3. Homology splitting. If s k and n > 2 the map Tnii r„i0
does not split. The reason is that Tn 0 Out(F„) contains finite subgroups which
do not lift. For example, consider the symmetry group of the graph consisting of two
vertices joined by n + 1 edges. This is a subgroup of rn>o which cannot be realized

on any graph of rank n by graph symmetries which fix a basepoint, so the subgroup
does not lift to any F„ ^ with s > 1.

Homology with coefficients in Ik does not see finite subgroups, and in fact when

we pass to homology we do obtain a splitting. Note that it suffices to prove this for
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5 1, i.e. the map from Aut(F„) to Out(F„). Homology splitting of this map was

first proved by Kawazumi in [27], There is a simple proof of this using the fact that
the moduli space of graphs (respectively basepointed graphs) is a rational K(jt, 1)

for Out(F„) (respectively Aut(F„)). The idea is that although there is no natural way
to choose a basepoint in a graph one can compensate by taking a suitably weighted
sum of all possible basepoints.

Theorem 2.4. The natural map Aut(F„) —> Out(F„) splits on the level of rational
homology, so (Out(F„)) embeds into (Aut(F„)).

Proof. We define a backwards map on the chain level. We take C*(Aut(F„)) and

C* (Out(F„)) to be defined in terms of the spine of the moduli space of (basepointed)

graphs. We refer to [13, section 2] for complete details. The chain complex
C*(Aut(F„)) is spanned by graphs with specified subforests and a chosen basepoint,
while C*(Out(F„)) is defined in the same way except the graphs do not have

basepoints. In both cases, the edges in the subforests are ordered, and changing
the order incurs the sign of the permutation. There are two boundary operators 3c
and 3r which sum over contracting and removing forest edges respectively. In both
the basepointed and unbasepointed cases, contracting the i th edge of a forest comes
with the sign (—1)' + 1, while removing that edge comes with the sign (—1)'.

The natural projection Aut(Fn) —> Out(F„) corresponds to the map

tt* \ C* (Aut(F„)) -> C* (Out(F„))

which forgets the basepoint.
We now define a map r: C*(Out(F„)) —> C*(Aut(F„)). by

r(G)= £ (M — 2)rv(G).
ve V(G)

Here V(G) is the vertex set of G, |u| is the valence of v and rv(G) is the forested

graph G with v specified as the basepoint. We need to check that r is a chain map.
Clearly 3Rr rdR since the definition of r makes no reference to the forest, and

the signs in 3r make no reference to the basepoint. For 3c we must check whether
the order of performing the two operations of adding a basepoint and contracting
an edge matters, the signs in 3c being the same in both cases. If e is an edge with
vertices v and w, then adding a basepoint distinct from v and w clearly commutes
with contracting e. Adding basepoints at v and at w followed by contracting e results

in the same basepointed graph with multiplicity |v| + |u>| — 4, whereas contracting e

first results in a vertex vw of valence |t>| + |uj| — 2, so adding a basepoint there also

gives multiplicity |u| + |ic| — 4 (see Figure 4).
Now observe that 7r* o r(G) kcG, where kc XZueK(G)(IuI — 2) 2n — 2.

Thus if we are not in the trivial case n 1 the composition jt* o r is represented by
a diagonal matrix with nonzero diagonal entries and is therefore invertible. So r* is

injective on homology.



760 J. Conant, A. Hatcher, M. Kassabov and K. Vogtmann CMH

Figure 4. Diagram commutes because |uu;| |u| + |w| —2

3. Cohomology of r„vS

We are interested in studying the homology of Out( Fn) and Aut( Fn), with trivial
coefficients in a field Ik of characteristic 0. The idea is to glue together homology
classes of the P„i5 using the assembly maps described briefly in the Introduction and

defined more precisely in Section 5. To find nontrivial classes which can be fed to the

assembly maps we use some elementary representation theory of symmetric groups
and GL„ (Z) together with the Leray-Serre spectral sequence applied to the group
extensions

1 — Fns — rB>, — T„,o Out(F„) — 1 (3.1)

from Section 2.2.

For the calculations it will be convenient to switch from homology to cohomology,
which is isomorphic by the universal coefficient theorem since we are taking
coefficients in Ik and all homology is finite-dimensional over Ik. In the course of
our study we will exploit the structure of //,(Tn>J) as an ©^-module. Since all
the modules we consider are finite-dimensional and all &s-modules are self-dual,
the cohomology is isomorphic to the homology also as an &s-module, though the

isomorphism is not canonical.

3.1. A little representation theory. In this section we establish some notation and

collect some results from representation theory which we will use. All the contents
of this section are well known and can be found, for example, in [15].
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Recall that the irreducible representations of <5S correspond to partitions of s and

are often represented by drawing Young diagrams with s boxes arranged in rows of
non-increasing size. We use Px to denote the representation corresponding to the

partition A (Ai,..., A&), where Ai > A2 > • • • > A^ and A, 5. Exponential
notation denotes equal values of A,-, e.g., P(2,1,1,1,1) is written as P(2,i4)-

Example 3.1. The module P(s) is the 1-dimensional trivial module. The module

P(\*) alt is the 1-dimensional alternating representation of &s, where a

permutation a acts as multiplication by sign(a) ±1. The module /J(.,-i,i) is the

— 1)-dimensional standard representation k5/Ik of &s. It contains distinguished
elements Vj, 1 < i < s, which satisfy ^ r, =0.

The tensor product of two &s-representations is also an ©^-representation with
the diagonal action. In general the multiplicity of an irreducible representation Pv

in the decomposition of Px <8> Pti is difficult to compute, but for v it is known
that P(s) occurs with multiplicity 1 if A p and with multiplicity 0 otherwise. One

tensor product we will encounter is Px <8> alt. This is equal to Px> where A' denotes

the transpose partition, obtained by switching the rows and columns of the Young
diagram.

If P is a representation of Gs-k and Q is a representation of &x, then P ® Q is

a representation of &s-k x If we consider ©s_/, x ©^ as a subgroup of ©,s we
can form the induced representation. Following Fulton and Harris [15], we denote

this induced representation by P o Q, i.e.,

/>oß Indl^xS;tP®ß.

The Littlewood-Richardson rule can be used to compute the decomposition of Px o Pß
into irreducible modules. When p (k) this specializes to the Pieri rule, see [15,

Appendix A], This says that the terms of Px ° P(k) correspond to all Young diagrams
which can be obtained by adding k boxes to the diagram for A, each in a different
column. An example is illustrated in Figure 5.

+ +

Figure 5. Pieri rule for decomposing P(2,2) 0 P(3)

Now let V be an n -dimensional vector space. The irreducible representations
of GL(K) GL„ (Ik) also correspond to partitions, and we let 17 denote the

GL„-representation associated to the partition A. Since dim(K) n only partitions
into at most n pieces occur. Schur-Weyl duality gives the irreducible decomposition



762 J. Conant, A. Hatcher, M. Kassabov and K. Vogtmann CMH

of the representation F®9 as a module over GL(F) x 6g, namely

F®9 © Sa*7 ® Px,
A

where the sum is over all partitions of q into at most n pieces (if A has more than n

rows the module §;.F is zero) (see, e.g., [15, Cor. 6.6]). We emphasize that GL(l/)
acts trivially on Px and &q acts trivially on §^F.
Example 3.2. For q 2 the Schur-Weyl formula gives

F <8> F (§(2)F <8> P{2)) © (S(i2) K ® 73(12)) Sym2 F © /\2V.

where Symfc denotes the A-th symmetric power functor on vector spaces and f\k is
the A-th exterior power.

Notation. We denote by VAq the &q -module which is isomorphic as a vector space
to V®q, with &q acting by permuting the factors and multiplying by the sign of the

permutation, i.e.,
YAq F®« 8) alt.

The Schur-Weyl formula translates to a similar formula for VAq:

VAq V0q 0 alt ^ 0 sAV ® Px (8 alt 0 §AF ® Px>,

A A

where the sum is over all partitions of q into at most n pieces.

Finally, we record a computation we will use later.

Lemma 3.3. Suppose dim(F) 2. Then S(q-x,k) V Symq~2k V detfc as

GL(V)-modules, where det^ (/\2 F)®^ is the I-dimensional representation given
by the k-th power of the determinant.

Proof. This can be seen by calculating the Schur polynomials Sx for the two
sides, which determine the representations uniquely. Using the formula A.4 of [15,
Appendix A] one obtains

S(a,b) (xix2)b
-va—b+1 „a—6+1"

S(a-b)-
X\ — X2

The lemma now follows because Schur polynomials of tensor products multiply,
§(1,1)# detandS(c)F Symc F.

3.2. The Leray-Serre spectral sequence. Shifting from homology to cohomology
now, the Leray-Serre spectral sequence of a group extension 1 -»• N —»• G —>

Q —> 1 is a first-quadrant spectral sequence with HP(Q: Hq(N)), which

converges to Hp+q(G). Applied to the short exact sequence (3.1) it reads

Ef* Hp(Out(Fny,Hq(Fns)) => Hp+q(Tn,s). (3.2)
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The symmetric group 6S which permutes the factors of Ff induces an action on
each of the E2 terms which commutes with all differentials. We begin by identifying
the coefficients Hq(Ff) as 6^-modules.

Throughout this section we set H Hl(Fn) Ik". Note that the action of
Out( Fn on H factors through the natural GL„ (Z) action on H.

Lemma 3.4. The cohomology of Ff is given as an &s -module by the formula

Hq(Ff) HA9 o P(s_q).

Proof. The Künneth formula gives an isomorphism

H*(F„)®---®H*(Fn) =s H*{Fn x • • • x Fn)

via the cohomology cross product. The group &s acts by permuting the factors, with
signs determined by the permutation and the dimension of the cohomology groups
on the left-hand side (see, e.g., [21, Chapter 3B]). The cohomology of Fn is Ik in
dimension 0, H in dimension 1 and zero in higher dimensions, so in dimension q the

cohomology of Ff is the direct sum of (sq) copies of H®9. These copies are permuted
by the action of &s. The stabilizer of each copy is isomorphic to &q x 6s~q, where
the action of &q on H®9 is modified by the sign of the permutation since all classes

are in dimension 1.

In other words, Hq(Ff) is obtained by inducing up to ©,s the Gq x &s-q -module
HA9 <g> P{s_q).

We now read off information which we obtain immediately from the spectral

sequence (3.2). The first observation applies to the case 5 1. The same result was
obtained earlier by Kawazumi [27] using a different method.

Proposition 3.5. There is an isomorphism

Hk(Aut{FnfM) ss Hk(Out(Fn)-h) ® Hk~l(Out(Fn)\ H).

Proof In the spectral sequence associated to 1 -»• Fn —> Aut( Fn) —> Out( Fn) —>• 1

we have E= Hp(Out(Fn); Hq{Fn)) with differentials of bidegree (2,-1).
Since Fn has cohomological dimension one there are only two nontrivial rows,
namely q 0 and q 1, so the only possible nonzero differentials in the entire
spectral sequence are on the E2 page; they start in the top row q 1 with target in
the bottom row q 0.

The map on cohomology induced by p\ Aut(T„) -> Out(F„) factors through the

edge homomorphism e\ E^° -> Hp(Aut(F„))

Ffp(Out(Fn)) > Hp(Aut(Fn))

Hp(Out(Fn))/lm(d2)
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The top arrow is injective by Theorem 2.4, so the left arrow is as well, i.e., Im(d2) 0

and the differentials on the F2 page are also trivial. Thus

Hk(Aut(Fn)) Ek'°®Ek'hl
Hk(Out(En)) © //^(Ou^F«);//'(£„))
Hk(Out(Fn)) © .//^(OutCF^jH).

The next observation has to do with the top-dimensional cohomology of T„ jiS.

Proposition 3.6. Hk(rn<s) vanishesfork > 2« —3 + 5 and H2n 3+s(r„,>iS) is given
as an 6s -module by

H2n-3+s(Tn,s) ^ H2n~3 (Out(F„); HAi)

Proof. The cohomology group FIp (Out(F„); Hq(Ff)) vanishes if either p > 2n—3

or q > s since the virtual cohomological dimension of Out(F„) is 2« — 3 and the

virtual cohomological dimension of Ff is equal to 5. Thus the only possible nonzero
terms in the spectral sequence (3.2) lie in a rectangle with F^"-3"5 at its upper
right-hand corner, so all differentials into or out of E2n~ "s are zero and

H2n-3+s(Tn,s) =* H2n~3(Out(F„); Hs(Fns)) s H2n~3 (Out(F„); HAi).

3.3. Rank zero. Since To,j is trivial, we just have

Hl(r0,s)
I P(s) Ik if z 0

io if i 7^ 0.

3.4. Rank one. For n 1 the short exact sequence (3.1) is a restatement of the fact
that

rhs Z2xZs_1,

where the Z2 acts via x —x. We can use this to compute the cohomology of T1

as an &s-module without appealing to the Leray-Serre spectral sequence, as follows.

Proposition 3.7. As a representation of&s

10 if i is odd.

In particular, H2k{T\,2k+\) P(\2k+\) It with the alternating action.

Proof. The rational cohomology of T^ Z2 x Zs_1 is the invariants of the

Z2-action on the cohomology of induced from the action on Zs_1. The
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cohomology of Z5 1 is the exterior algebra on s — 1 generators. Thus we get
the even degree part of this exterior algebra:

jA'k*-' if' is even

10 if i is odd.

To see the Gs action, write Ti 5 Z2 x (ZJ/Z). The representation Ik^/Ik is the

standard representation P(5_isi) of &s, and by [15, Ex. 4.6] we have /\l (Ik4'/Ik)

P{s-i, 1') as an ®s-module.

We record this calculation for small values of s in table form at the end of the

paper (Section 11). We note that the results agree with the calculations via dihedral

homology in [11],

3.5. Rank two. Recall that ^,0 Out(Fj) GL2(Z), so that for n =2 the £2
term of (3.2) is

EP'i Hp(GL2{Z);Hq(F2s)).

Since GL2(Z) has virtual cohomological dimension 1, the only potentially nonzero
terms on the £2-page of this spectral sequence lie in the first two columns p 0 and

p 1. For p 1 the cohomology of GL2(Z) is closely related to modular forms;
we review this relation in the next subsection.

3.5.1. Modular forms. Let A4S be the vector space of classical modular forms for
SL2(Z) of weight s, and let Ss C AAS be the subspace of cusp forms. See [31] for
an elementary introduction to these spaces. They satisfy

® Ms HE4, E6\,
s> 0

where £4 and E$ are generators of weight 4 and 6 respectively. In particular, A4s is

nonzero only fori > 2 even. In these cases the subspace Ss has codimension 1. The
classical Eichler-Shimura isomorphism (see, e.g., [20]) relates modular forms to the

cohomology of SL2(Z):

//1(SL2(Z);Sym5(k2)) ss Ms+2 © S,+2.

We next review the relation between cusp forms and the stabilizer of the cusp at

infinity. Let P < SL2(Z) be the (parabolic) subgroup generated by the matrix (JJ)
and consider the map

p://1(SL2(Z);SymJ(Ik2)) —> Hl (P; Sym*(lk2))

induced by inclusion. Since P Z, its first cohomology with any coefficients
is simply the coinvariants of the action, which is isomorphic to the space of
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invariants. If x and y are a basis for Ik2, the generator of P acts on Syms(k2)

k^,xs~ly,... ,xys~l,ys] by sending x i-> x and y t-> x + y, so the space of
invariants is 1-dimensional, spanned by xs. The map p can be identified with the map
Ms+2 © 5.4+2 -> Ms+2/Ss+2 (projection on the first factor, zero on the second

factor) given by the normalized value of the modular form at infinity (see [20]).
We can reinterpret p in terms of the cohomology of GL2(Z) using the short exact

sequence 1 -»• SL2(Z) —»• GL2(Z) —> Z2 -> 1 (see, e.g., [10]); this gives

//1(GL2(Z); Sym^k2) <g> det) Ms+2 and //'(GL2(Z); Sym,5(k2)) s Ss+2.

Since H1 (SL2(Z); Sym5(Ik2)) Ms+2 © 5s+2 we see that the restriction of p to
the second factor

p: Z/1 (GL2(Z); Syms(k2)) — Hx {P\ Sym*(k2))

is zero, but on the first factor

p: Hl (GL2(Z); Sym*(k2) (g) det) —> H1 (P; Sym*(k2) <g) det)

has 1 -dimensional image when 5 > 0 is even.

3.5.2. Cohomology calculations.

Lemma 3.8. Let H H1 (F2) k2. Then as an &q-module,

H«(GL2(Z);H-»)=!f<22-> if'1
0 otherwise.

//1(GL2(Z);HA?)

0 ifq is odd

Wq '= @ Xg,i ® ^(2',i®-2') tfl is even

0<i<2

where Xqi Sq+2-2i if i is even and Mq+2-2i ifi is odd. In either case Xqq is

trivial as an &q-module.

Remark 3.9. The formula in the statement above gives the following pattern for the

first few Wq:

W0 0

W2 (<S4 ® P(i2))

W4 (S6 ® P(14)) © (M4 ® P(2+2))

We (58 ® P(i6)) © (M6 <8> P(2+4)) © (S4 ® P(22+2))

Wg — (5io ® P(j8)) © (M8 ® P(2,i6)) ® (5Ö ® P(22,I4>) ® (M4 <8> P(23,I2))

Wio (S12 <8> P(I.O)) © (Ad 10 <8> P(2,i8)) © (5s ® P(22,I6)) ® (Mo <8> P(23,14))
ffi (54 ® P(24,!2))-
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However, the dimension ofM.k is 1 fork 4,6,8,10, and hence the dimension of Sit

is trivial in those degrees. The module <Sn is 1-dimensional, so we see interesting
modular forms entering the picture starting with Wio- Using this information, the

above list simplifies to

Wo 0

W2 0

W4 P(2,lZ)

W6 P(2,H)

^8 P(2,l6) ® P(23,l2)

Wio P(ilO) © P(2,18) ® P(23,l4)-

Proof We first decompose the coefficients WAq into irreducible components using
Schur-Weyl duality. Since H has dimension 2, this gives HAq s 0A S^H <g> Py,
where the sum is over all partitions of q into at most 2 pieces, i.e., X (q — k, k).

Now 7/°(GL2(Z); HA9) is equal to the GL2(Z)-invariants of HA<?, so we are

looking for the trivial representations appearing in the Schur-Weyl formula. By
Lemma 3.3 we have Sym9_2Ä H (g> det^, which is clearly trivial only if
q 2k and k is even. Therefore as an &q -module we have

//°(GL2(Z); Ha?) j P(2m'2my jP(22m) ifq 4m'
10 otherwise.

For the first cohomology we have

Hl(GL2(Ly,UAq) ® tf1(GL2(Z);Sto_*>jfc)H® P(q-k,ky)

o<k<|
® //1(GL2(Z);S(9_^fc)H) ® P{q-k,kY

0<&<2

® H1 (GL2(Z); Sym9_2fe H ® det*) ® P(q-k,ky

o<k<|
® H1 (GL2(Z); Sym9_2fe H <g> detfc) <g> P(2kA,-2ky

0<k<~2

The computations in Section 3.5.1 now give

0 if r is odd,

H1 (GL2(Z); Symr H <8> det*) Sr+2 if r and I are even,

M.r+2 if r is even and I is odd.
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Substituting r q — 2k, I k into these formulas and using the fact that

M.2 0 completes the calculation.

We now have the tools we need to completely compute the cohomology of
as an ©^-module.

Theorem 3.10. The cohomology of T2,s is

3(j—4m)

H'(r2,s)

P{21,n ® P0

0

w2m o P(j_2m)

0

Am < s,

Am + 2,

2m + 1 < s + 1,

otherwise,

where W2m is the module defined in the statement ofLemma 3.8.

Proof. For all r > 2 the differential on the r-th page of the Leray-Serre spectral

sequence has bidegree (r,—r + 1). Since only the first two columns are nonzero all
differentials are too wide to be nonzero, so E2 Loo and

Hk(T2,s) H°(GL2(Z); Hk(Ff)) © Hl{GL2{Z)- Hk~l(Ff)).

By Lemmas 3.4 and 3.8 we have

H° (gL2(Z); Hk(Ff)) ^ H° (GL2(Z);HAfc o P(s_k))

^ H° (gL2(Z); o P(s_k)

!P(22m)
o P(i_4m) if k Am < s,

0 otherwise,

where the second isomorphism holds because the GL2(Z) action on HAfc commutes
with the &k x 6s-k action and the &s-k action is trivial.

We calculate the irreducible decomposition of P^m) ° P(s-4m) using the Pieri
rule, which says that the components are obtained by adding s — Am boxes in different
columns to the Young diagram for A (22m). The only legal way to do this is to put
0, 1, or 2 boxes in a new bottom row and add the rest to the first row. The resulting
partitions are (s — Am — j, 22m~l, j) for j 0,1,2.

The second summand is

Hl(GL2(Zy,Hk-\Fns)) =s Hl(GL2{Zy,WAk~l) o P(s_k+!)•

By Lemma 3.8, H1 (GL2(Z); HAfc_1) is nonzero only when k is odd, in which case

we have identified it as an &k-i-module which we named Wk~\. Inducing this up
to &s produces copies of Wk_x, permuted by the action of ©,.
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The first few rows and columns of the spectral sequence look like this:

0 0 0

0 P(s-8) Wg ° P(s-8) 0

0 0 0

0 W6 o P(s-6) 0

0 0 0

° P(s-4) W4 O P(,._4) 0

0 0 0

0 w2 0 P(s-Z) 0

0 0 0

P(.s) 0 0

Since E2 E<*>, the result follows.

Remark 3.11. The dimension of P(22m) can be computed by the hook-length formula

(see, e.g., [15]); it is the 2m-th Catalan number C2m 2m+1 (2m)- induced

representation P(22m) ° P(s-4m) HAm(T2,s) consists of (4^) copies of this, so has

dimension equal to

2m + 1 \ 2m \ 4m } (s — 4m)!(2m + 1)!(2m)!

If j > 4m + 2 then the irreducible decomposition of P(22m) o /J(5_4m) obtained by
the Pieri rule is

P(22m) O P(s-4m) P(s-4m+2,22m~{) ® P(s-4m + l,22m~1,1) ® P(s-4m,22m)

Remark 3.12. Using the decomposition of Wq into irreducible ©^-modules in
Remark 3.9 one can use the Pieri rule to obtain the decomposition of Hl (T2^)
into irreducible ©^-modules for odd i. For example

tf7(r2,lo) P(4) P(2;14) o P(4) P(6,l4) ® ^(5,2, l3) ® P(5,1s) ® P(4,2, l4) -

The dimension and module structure of the cohomology of Ti>s and r2;iS for
s < 10 are summarized in the tables at the end of the paper.

Remark 3.13. The calculation of the map on cohomology induced by inclusion
P -» GL2(Z) in Section 3.5.1 together with the decomposition

H1 (GL2(Z); Ha?) 0 H1 (GL2(Z); Sym9_2fc H <g) det^) (8) P(2*> \q-2k).
0<k<|
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given in the proof of Lemma 3.8 shows that the image of the map

//1(GL2(Z);HA<?) —» Hl(P;HAq)

is isomorphic to P(2kA"-2k) for q even. Combining with this with Theorem 3.10

2k <q, k odd

gives a projection

Hl(T2,s) > @ P(2k,ii-lk-1) O P(s_, + 1)

2k<i — l,k odd

for i odd. This projection will be useful for constructing nice homology classes from
cohomology classes, which we do in Section 4.3.

3.6. Arbitrary rank. The representation theory we used to compute the cohomology

of T2iJ gives information about the cohomology of r„;iS for all values of n. In
this section we show how this works.

Theorem 3.14. If s > n(2m + 1) then FI2mn (Vns) contains the &s-module
P(s-2mn,n2m)as a direct summand with multiplicity 1. Inparticular, H2mn (TnjS) f 0

for all s > 2m n + n.

Proof The E2 term of the spectral sequence (3.2) is Hp(Out(Fn)\ Hq(Ff)). The

p 0 column is straightforward to calculate because it is simply a calculation
of GL„ (Z) invariants of a well-understood module. The other columns consist of
groups that are not known, so our strategy will be to look for G5-representations in
the p 0 column that cannot appear in the other columns. Such a representation
cannot support a nontrivial differential, as all differentials are 6s-equivariant, so

survives to Foo and hence to H*(rn.s).
The action of Out(F„) on H H1 (Fn) Ik" factors through the usual action of

GL„(Z) on H, and as before, using Lemma 3.4 we have

H°(Out(Fny,Hq(Fns)) H° (Out(F„); HA? o Pis_q))

H° (Out(Fny,HAq) o P(s_q)

— H° (GLn(Z);HA?) o P(s-q)-

By Schur-Weyl duality, HA? ©|a|=? <8) Px>, where §2H is the irreducible
GL„-representation corresponding to A. It follows from the character formula [15,
Theorem 6.3], that S^H is 1-dimensional if and only ifq is a multiple of n, say q kn
and A (k"). In this case §(fc«)H is the 1-dimensional GL„ (Ik)-representation which
is the Ath power of the determinant (the Schur polynomial is S^n (xix2 xn)k).
Thus S2H is a trivial GL„ (Z)-module only when q 2m n is an even multiple of n
and A ((2m)"). We conclude that //°(Out(F„); Hq(Ff)) 0 unless q 2mn
in which case we have

H°{Out(Fny H2mn(Fns)) pa2m)nY 0 P(s—2mn) — P(n2m) ° P(s—2mn)•
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Using the Pieri rule to decompose this representation, we see that as long as

s — 2mn > n one of the terms we get is P(s-2mn,n2m)> obtained by adding one box
below each existing column and the rest to the right of the first row; this is illustrated
in Figure 6.

n

2m <

Figure 6. Adding boxes to (n2m) to obtain the Young diagram for one term of the induced
module P(n2m) o P(S-2mn)

We have shown P(s-2mn,n2m) occurs in E®'2"1"- We now claim it does not appear
in any row below the 2mn-th row, so that all differentials from P(s-2mn,n2m) must
vanish, and P(s-2mn,n2m) survives in H*(Tn<s). Since

E Hp(Ovt(Fn),Hq(FZ))
Hp (Out(F„), HA? o P(s-q))

® Hp (Out(F„), SAH ® Px, o P(s_q))
|A| =q

® Hp (Out(F„),SAH) ® PX> ° P(s-g),
\X\=q

it suffices to show that P(s-2mn,n2m) cannot occur as a term in any of the induced
modules Px> o P(s-q) with |A| q < 2mn. The is the case because the first row of
any diagram appearing in Px> o P(s-q) has length at least s — q > s — 2mn.

Remark 3.15. The module P(s-2mn,n2m) use<i m fhe above proof is only a tiny

piece of E®'2mn H°(Oul(Fn)] Hq{F*)). It seems likely that a much larger part
survives to infinity in the spectral sequence and thus contributes to the cohomology
of T„tS.

4. Subgroups supporting homology classes in Ti)S and T2,s

In later sections of the paper it will be more natural to work with homology than

cohomology. The universal coefficient theorem formally allows us to do this, since we
have finite-dimensional homology groups and coefficients in a field. In this section
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we show that in rank 1 and 2 we can also describe some homology classes more

directly as classes supported on certain easily understood subgroups.

4.1. Rank one. The situation for rank 1 is quite simple so we describe this first. By
Proposition 3.7 the odd-dimensional cohomology of Ti^ vanishes and the inclusion
of Zs~x into Tinduces an isomorphism on cohomology in even degrees, hence this
holds also for homology. This implies that the top homology class of any subgroup
of even rank in Zs~x maps to a nontrivial class in H* (T i^), and H*(T ii-s) has a basis

of such classes. If s 2k + 1 then the entire subgroup Zs~x Z2k has even rank
and its top homology class maps to a nontrivial class a& H2k(T\jk+\), which is

well defined up to sign. The class ak will be used to construct the Morita class jk in
Section 5.1.

4.2. Rank two, even homology degree. Now we turn to rank 2, where //*(r2)iS)
is considerably more complicated. This extra complication is relatively mild in
even degrees, so we examine those first. It suffices to consider H4k(T2,s) since

H4k+2(F2,S) 0 by Theorem 3.10.

Notation. Throughout this section and the next we fix generators x and y for F2

and we let x and y denote their images in H\ (F2), with x* and y* the dual basis

of Hx(F2). We also set H H\{F2); the notation is meant to distinguish it from
H Hx(F2).

For disjoint subsets I and J of {1,2,..., s} let Aij be the abelian subgroup
of F| consisting of .v-tuples with powers of x in the I coordinates, powers of y
in the J coordinates, and the identity in the other coordinates. We have inclusions

Aij C F| c r2>„ and we let ajj e FI*(T2,S) be the image of a generator of the

top-dimensional homology of Aij.
Proposition 4.1. If\I\ — 7| 2k for some k then the class aij G 7/4^(r2j5) is

nonzero and these classes aij generate //4£(F2 i).

Proof First we show that a/j is nonzero when |/| |7j 2k for some k > 1.

(Here s > 4k since A jj c F2S.) We do this by finding a cohomology class

in HAk(T2,s) that pairs nontrivially with aij.
By Lemma 3.8 we have Hx(GL2(Z); H^"1) 0. Therefore

Hx(GL2(Z)-, H*k~l(Fi)) H1 (GL2(Z);hA4fc_ 1) o P(s_4/c) 0,

and

H4k{r2,,) s H°(GL2(Zy,H4k(Fi)) s H0(GL2(Z);HA4fe) o P(s_4k).

Thus to compute H4k(T2>s) as an ©^-module it suffices to understand the invariants
of the diagonal action of GL2(Z) on HA4fc. As a GL2(Z)-module, W'4k is the same

as H®4^, and we describe the (classical) answer below.
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A straightforward calculation shows that the diagonal action of an element

T e GL2(Z) on H ® H sends to* x* ® y* — y* <g> x* to (detT) • <z>*. The

diagonal action on H®4^ sends (a>*)®2k to (det T)2k{a>*)®2k, so since det T ±1
and 2k is even this is an invariant. Any permutation of the indices {1,..., 47c}

produces another invariant, and the invariants defined in this way span the entire

space of invariants (see, e.g., [15] for details). Note that each term in each of these

invariants has an equal number of x*'s and y*'s, so this is true of any invariant.

Suppose first that s 4k and let I {1, 3,..., 4k — 1}, the odd indices, and

J {2,4,... ,4/:},the even indices. Then the image of H4k (A/;y) s
H\(7j) in H\(F2k) H <g> • • • <g> H is generated by z xigiy <8> • • • ®x<g>y. Since this
matches the first term of (oo*)®2k, the cohomology class (to*)®2k e HAk{T2^k)
pairs nontrivially with a/,/, which is the image of z in H4k{T2t4k)- This shows

that ajj is nonzero. Permuting the indices produces other nonzero classes aij that

span H4k{T2Ak) since the corresponding cohomology classes span H4k(r2>4k).
Ifs > 4k, any of the natural inclusions V2<4k T2,s (given by gluing extra leaves

to the leaf vertices of X2y4k and extending maps by the identity) induces an injection
HAk{V2Ak) HAk{^2,s) mapping each apj nontrivially. On homology, the image
of this map depends only on the inclusion {1,..., 2/c} —> {1,..., ^} of leaf vertices.
Since H4k(F2,s) H4k(^2,Ak) ° P(s-4k), these classes span all of H4k(P2,s)- D

Remark 4.2. If I and J are disjoint subsets of {1,..., 5} of different size, then ajj
is trivial because the top-dimensional homology class of Aij is a simple tensor with
an unequal number of x's and y's, so every invariant evaluates trivially on it.

Remark 4.3. The classes aij e kfAk(r2iS) are not linearly independent. There

are several possible ways to obtain a subset of these classes which form a basis

of H4k(P2,s)- Since the dimension of H4k(T2,s) is closely related to the dimension
°f P(2k,2k)-> which is equal to the Catalan number C2k, one can use combinatorial
objects such as non-crossing partitions or Young tableaux to describe such a basis.

Here is one possible description of a basis.

Claim. The space H4k(T2>s) has a basis consisting of those a\ j for which I
{i\ < i2 < < i2k} and ./ {/1 < j2 < < j2k} are disjoint subsets

of{ 1,... ,5} such that it < jt for each t 1,... ,2k.

The proof of this involves a deeper use of representation theory so we will not
give it here.

4.3. Rank two, odd homology degree. Constructing classes of odd homology
degree is more difficult since no subgroups of F£ support such classes. As a result
we must use slightly more complicated subgroups of r2,j. We use the same notation
as in the previous section for generators of F2 and its homology and cohomology.

Fix disjoint subsets I, J c {1,..., s}. Let Bpj s F^ x Z'7' be the subgroup
of F2 consisting of ^-tuples with arbitrary elements in the I coordinates, powers
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of x in the /-coordinates and the identity in coordinates not indexed by I or J.
Recall that F2iiS maps onto r2,o GL(2,Z) with kernel F|. Let P s Z denote
the unipotent subgroup of GL2(Z) generated by (q }), corresponding to the (outer)
automorphism of F2 fixing x and sending y to xy. Lift the generator of P to an

element (p e r2;iS that wraps the y-loop of X2vS around both itself and the x-loop,
and fixes the x-loop and all leaves. This normalizes Bjj, and we define Mij to be

the subgroup of T2j5 generated by (p and B/j. We now have a commutative diagram

1 > F{ r2>J > GL2(Z) > 1

1 > BUJ Mi,j > P > 1.

Note that Mj,j splits as the product M/xZ'7' where M/ Mj,0 andZ'7' B0j.
We will be interested in the cases when |/| and |/| are even, and we let

|/1 + |/| 2k. The top-dimensional homology of Bjj is H2k(Bi,j) H®'7' <g)

X®'-7', where X ^ Ik is the subspace of H H\{F2) spanned by x. From the

Leray-Serre spectral sequence it follows that vanishes above dimension
2k + 1 and H2k+l(Mu) H{ (P; H2k(Bu)).

4.3.1. The case |/|=2. The analysis of the case | /1 2 is easier than the general
case and will suffice for our construction of the Eisenstein classes in Section 5.6, so

we begin with this case.

We first compute H2k+i (Mjj). From the splitting Mjj M/ x Z'7 we have

H2k+dMi,j) ss H3(Mi) ® H2k-2(Z2k~2) s H2{M,) ss H^P; i/2(Ä/,0)).

Since P s Z the first homology H\ (P; H2(Bi,0)) is just the invariants of the action

of P on H2(Bi,0) H <S> H. This is the diagonal action, where P acts on H by
sending x —» x and y -> x + y. It is easy to compute that the space of invariants is

2-dimensional, spanned by x ® x and <z> x®y — y <8> x. Thus

ss H^P-H^iBu)) s [H2k(Bu)]p s [H®2®X®2k~2]p s Ik2

with basis x2k and a> <g) x2k~2.

The class in H2k+i(Mi,j) corresponding to co <g> x2k~2 is the one whose

image mij in H2k+l(r2,s) will be used as a building block for Eisenstein classes.

In Section 7.2 we give a different, more geometric construction of this class as the

image of the fundamental class of a manifold mapped into a moduli space of graphs.
The natural actions of 6/ 62 and & j — &2k-2 on H2k+l(Mjj) are easy

to describe since these two symmetric groups act separately on the factors of the

splitting Mij M/ x Z'7'. For 6/ the transposition a interchanges the F2 factors

of F2, so ct(x <g> x) —x (8) x since the cross product in the Künneth formula is
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anti-symmetric. For the class <w x <g> y — y <g) x we have a (on) on since we get one

minus sign from the minus sign in on and another from anti-symmetry in the Künneth
formula. For an element a e 6 j the action on x2k~2 is just by the sign of a.

Because of the anti-symmetric action of © j, the classes mjj H2k+\(^2,s)
are well defined only up to sign. We now show they are nontrivial and describe how
much of H2k+l(r2,) they account for.

Proposition 4.4. For I,J c {l,...,s} with \I\ — 2 and |7j 2k — 2 > 2

the map —»• FI2k+\ (T2,s) induced by inclusion has l-dimensional
image spanned by mf j, and the &s-module generated by mj j is isomorphic to

P(2p2k-2) o P(s-2k)-

In particular, when s 2k the classes mij generate H2k+\(^2,2k) only when
k < 3; this follows from Theorem 3.10.

Proof. To prove that mjj is nonzero we find a cohomology class that pairs
nontrivially with it.

Assume first that s 2k. To simplify notation we also assume I {1,2} and

J {3,..., 2k} and set B Bjj, M Mpj and m mjj. The map from
H2k+\(T2,2k) H1 (GL2(Z); H2k(F2k)) to H2k+l(M) induced by the inclusion
M ^ r2,2fc factors as

H1(GL2(Z);H2k(F2k)) — H1 (P; H2k(F2k)) —> Hl(P\ H2k(B))

where the first map is induced by the inclusion P r—> GL2(Z) and the second by the

map of coefficients induced by B ^ F2k.
In Remark 3.13 we pointed out that the first map is a surjection onto the odd

terms of the decomposition of //'(P; Pl2k (F^k)) into irreducible ©2/t-modules.
Here is a more explicit description of this map. Since P ^ Z, for any P-module V
we have HX{P\V) Vp. If V is a vector space there is a canonical isomorphism
{V*)p (Vp)* (sending / to its restriction to Vp). In particular, using the

universal coefficient theorem we get natural isomorphisms

Hx{P-H2k{F2k)) [H2k(F2k)]p ss {[H2k(F2k)\p)*

([//i(P2)®2fe®alt]p)*

([H®2fc]p)* (g) alt,

where alt refers to the ©2^-action. Now recall that the space of P -invariants in H (g)H

is spanned by on and x2. Since H <g> H A2 A © Sym2H, this shows that the

subspace of P-invariants in each summand is l-dimensional. This is a special
instance of the general fact that the space of P -invariants in (/\z H)"8^ <g> Sym2k~2i H
is l-dimensional, spanned by o/ <S> x2k~2i. The Schur-Weyl decomposition of \\®2k

then shows that the image of the first map can be identified with 0^<k odd P^2e

as in Remark 3.13, where each term is generated by o/ <g> x2k~2i as an ©2^-module.
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For the second map, note that

Hl(P;H2k(B)) [H® H® X02k~2]p ® alt

ss ([H ® H ® ±®2k'2]p)* ® alt,

where this alt refers to the action of ©2 x ©2^-2 which permutes the factors of
B F2 x Z2k~2 independently. Thus the map

H1(P;H2k(F2k)) -* H1(P\H2k(B))
becomes

([H2k(F2k)]p)* — {[H2k(B)]p)*
i.e.,

([H®2fc]^)* ® alt — ([H®2 ® X®2]p)* ® alt.

The map on the first factor is just the transpose of the inclusion map
[H®2 ® X®2]p [H®2*^ and in particular sends (to ® \2k~2)* to itself.

Since (to ® x2k~2)* is in the image of the first map H1 (GL2(Z); H2k(F2k)) -o-

H1(P\ H2k(F%k)}, there is a cohomology class in H2k+l(T2,2k) which hits it under
the composition

H2k+l(T2ak) H1(GL2(Z);H2k(F2k)) — H1 (P; H2k (F2k))

—> H1(P;H2k(B)) H2k+l(M).

This class evaluates nontrivially on the image m e H2k+i(F2>2k) of to ® x2k~2 e

H2k+\(M), showing that m is nontrivial.
Any permutation of the indices {1,..., 2k} gives another class in Fl2k+\ (V22k).

The ©2fc-submodule generated by m is isomorphic to P(2l2k-2y which coincides
with H2k+i(T22k) only when k 2,3. This completes the proof of the proposition
for 5 2k.

The generalization to s > 2k is straightforward, since H2k+l(T2jJ)
H^GUiZy, H2k(F£)) s H1 (GL2(Z); HA2fc)oT>(i_4fc). The-modulegenerated
by the image of H2k+i (M/j) in H*(r2iS) is isomorphic to P^2 l2k-2) o P(s_2ky

As was noted when the classes mjj were defined, they are invariant under

transposing the two indices in I and anti-invariant under permutations of the indices
in J. When s — 2k we can obtain a class which is anti-invariant under a larger

group of permutations by adding together signed images of m ij under appropriate
permutations. Specifically, let I {1,2}, J {3,..., 2k} and m mjj as in the

proof of Proposition 4.4 and choose an index i e {I,... ,2k). Then define

mi — sign(a) a(m),
<t(1)=(
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where the sum is over all permutations a &2k which send 1 to i. The class m, is

then anti-invariant under stabe2A. (' )• For example when I ={1,2} and J {3,4},
so m corresponds to xyxx — yxxx (omitting tensor symbols for simplicity), the

class m i corresponds to 6yxxx — 2xyxx — 2xxyx — 2xxxy, up to sign. The formula
for m2 is similar, and one sees that m ±|(mi — m2). For larger J there are

analogous formulas.

4.3.2. The general case. Now we consider the general case |/| 21 for odd

I > 1. This is more involved because for i > 1 the top-dimensional cohomology
H2k+l (Mij) is quite large and it is not immediately clear how to pick a distinguished
element dual to co<g> x2k~~2t. We settle this by using the unique element which
is invariant under the action of certain involutions. This is motivated by the case

I 1, where the element co e HA2 spans the invariants of HA2 under the action of
the involution (12).

Given any set T of disjoint transpositions, let Nj denote the elementary abelian

subgroup that they generate.

Proposition 4.5. Let T be a set of I disjoint transpositions of the set I. Fort odd, the

top homology H2k+\(MIj) contains a unique (up to scalar multiple) element which
is invariant under the action of Nj C ©/. The image of this element under the map
H2k+\(Mpj) H2k+i(T2tS) induced by inclusion is nonzero. The &s-module
generated by this image is isomorphic to l\2t^2k-2i) o P(s-2k).

Proof In order to simplify the notation we will assume that I {1,...,2£},
J {21 + 1,..., 2k} and T {(1,2), (3,4),..., (21 - 1, 21)}, and set Bt Bu
and Mi Mjj

Recall that X is the 1-dimensional subspace of Hi (F2) spanned by x. The actions
of P and Nt on H2k(Bf) HA2^ <g> xc.2k-2t commute so

[H2k+i(Me)]NT [Hi(P-,H2k(Bt))]NT

The space of invariants in HA2^ under the action of Nt is 1-dimensional, spanned
by so the entire space [H2k+\(Mi)\NT is at most 1-dimensional. It is exactly
1 -dimensional since the element

me co®1 ® x2*"2* 6 [ftA2£ ® xA2k~2e]P
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is invariant under the action of Nt We will show that mi has nontrivial image in
H2k+\(y2,s) if I is odd.

Let Di be the subspace of //^(F^) HA2/c generated as a GL2(Z)-module
by (<y*)®£ <g> (x*)®2*-2*. Thus

De S(2fc^,Q(H) ss detf <8> Sym2fc"2£(H).

(See Lemma 3.3.) Viewing Di as a submodule of the induced module //2fc(F2)
H2k (F2k) o P(s-2k) we see that mi pairs nontrivially with the P-coinvariants in Di
(to compute these coinvariants, note that the action of P on H Hl(F2) is dual

to its action on H\{F2) so sends x* x* + y* and fixes y*.) Therefore mi pairs
nontrivially with the cohomology class generating Hl(P; Di).

Since I is odd Remark 3.13 shows that the map FI1 (GL2(Z); Di) —* Hl(P; Di)
is surjective. Hence the class mi pairs nontrivially with a class in H1 (GL2(Z); Di)
which is the image of a class in H1 (GL2(Z); //2fc(F2)) — H2k+1(T2)j). This
shows that the homology class mi is nonzero in //*(r2jiS).

The last statement of the proposition follows from the Schur-Weyl decomposition
of H2k(Bi):

H2k(Bi) HA2^ ® XA2fe-2* 0 S(/+i><_i)H ® P(2e-lA2l) ® XA2k~2e

i<i

The element mi co^ ® x2k~2i is in the / 0 term det^ <S> Sym2fc~2^ H,
so the &2k-submodule of H2k(Bt) h generates is of type which is then
induced up to P^t^k-it) o P(s-2k)-

Remark 4.6. The ©^-module generated by the element of H2k+l{T2tS) found in

Proposition 4.5 must come from the term Ai2k+2-2t P\2t; 12>t—2—o P(s-2k) of
the computation of H2k+1(T2,S) in Theorem 3.10. In fact it comes from the map
M.2k+2-21 L obtained by evaluating the modular form at infinity. This is clear
from the construction since we are using the parabolic subgroup P and the inclusion
of P into GL2(Z) kills all other classes (see Section 3.5.1).

Remark 4.7. Recall that after the proof of Proposition 4.4 we defined classes m;
using a symmetrization procedure. Similarly, we can use extra symmetrization to
obtain classes mj'j' indexed by disjoint sets /' and J' with |/'| I and \ J'\
2k — i for i odd which span the module P(2Li2,t~2£) 0 P(s-2k) inside H2k+\(P2,s)-
These elements are anti-invariant under the action of ©/' x ©7/ and invariant under

permutations fixing /' and J' pointwise. These elements generate all of H2k+i (T2ji)
ifk <5. For A: > 5 they generate only the homology coming from the parabolic group
P C SL2(Z). The elements mi>j> are not linearly independent, but a subset similar
to the one described in Remark 4.3 can be used to form a basis of the corresponding
©j-module.
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5. Gluing classes together

Given a graph Xn<s we can obtain a new set of graphs {XnitSi} by snipping some
of the edges at their midpoints; the snipped edges will become leaves in the Xni>Si.

Conversely, suppose we have a set of graphs Xnk,Sk} and a gluing
pattern <p which pairs up some or all of the leaf vertices to form a connected graph X^.
An example is shown in Figure 7. If Xq has rank n and s leaves, then the gluing

u • • • U Xnk^S/c > Xfj)

induces a homomorphism

P(j>-^n\,s\ > Tnj.

This in turn induces an assembly map on homology via the cross product,

\ //*(FnijiSi) <S> • • & H*(TnktSk) > //*(rn>$).

In particular, if we glue all of the univalent vertices in pairs, we obtain a map
to the homology of Out(F„), and if we glue all but one we obtain a map to the

homology of Aut(F„). We allow leaf vertices of a single Xn>s to be glued together.
For example, gluing all four leaf vertices of X2,a in pairs gives an assembly map
//*(r2,4) —» //*(r4,0) that we use in Section 5.2.

a;
4>

Figure 7. Making A4>3 from X| 3 and X2,4 using a gluing map (p

Remark 5.1. Assembly maps are associative since this is obviously true for gluing
graphs together, and the cross product in homology is associative. In particular, if
a gluing is done in two stages, the assembly map factors through the intermediate

stage.

Remark 5.2. The vcd of is 2n + s — 3 if n >0, and for a A:-fold assembly map
as above with each «, > 0 this is given by the formula

vcD(r„,.s) vcD(r„ljiSl) -I 1- vcD(rnA.,iA:) + (k- 1).
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To see this it suffices by induction to consider the case of gluing a single pair of
leaves. If k 1 we are gluing two leaves of the same graph together, increasing n

by one and decreasing s by two, so the vcd is unchanged. If k 2 and we glue a

leaf of one graph to a leaf of the other we have n n i + «2 and 5 .sy + s2 — 2, so

2n + s — 3 is one more than the sum (2n 1 + ,s ] — 3) + (2«2 + 52 — 3). A consequence
of this relation between the vcd's is that a A:-fold assembly map with k > 1 cannot

produce homology classes in the vcd of This holds even when some nt's are 0,

provided we exclude trivial factors with («,, s;) (0,2).

A different gluing 0' may also produce a graph of rank n with s leaves. As
noted at the beginning of Section 2.1, a bijection between the leaf vertices of X#
and Xp determines an isomorphism between the targets of both assembly maps. For
4>' 4> this gives the action of the symmetric group &s on //*(r„!iS).

The left-hand side of the assembly map A$ is a priori an ©,Vl x • • • x &Sk -module.
The gluing 0 interacts with the action of 0^, x • • • x 6Sk in various ways, which can
be explained by the following two observations:

(1) If tv leaves of XHl >iSj are paired with leaves of XHj iSj, then a permutation that
does the same thing to both sets of leaves does not change the result of the

gluing.

(2) If there are u, unglued leaves in XHi jiS;, then permuting them can be done

before or after gluing with the same effect.

The algebraic effect of the first observation is that the map A$ factors through the

coinvariants of the diagonal action of &t on //*(T„; <g) //*(F„y;J/). Here &tlJ
acts on and H*(T„jtSj) by restriction of the ©i; and &Sj actions. For

example, if the leaves of a graph with exactly s leaves are glued to the leaves of
another graph with exactly s leaves, then the assembly map factors through the space
of &s coinvariants:

Now (Px <8> Pß)es is zero unless X fi, in which case it is 1-dimensional.
Therefore the assembly map is trivial unless some irreducible Px appears in the

decompositions of both Hp(T„ltS) and Hg(r„2rS).
The second observation says that we can make A$ into an (6U, x x &Uk)~

module map by realizing ©Ml x • • • x &Uk as the appropriate subgroup of 6S. (Here

again GUi acts on //* (F„( by restricting the &S[ action.) We can sometimes obtain

new information about A$ by extending it to an ©^-module map, which we call A^.

Hp(TnuS) <g> Hq(T„2!S) Hp+q (Tn j +n2+s—l,o)

(Hp(Pni,s) ® Hq(rn2,s))es
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Thus the range of A$ is still //*(T„;i) but the domain of is the module obtained by

inducing H* (Tn, >sj) <g> • • • <8» //* (TnktS/c), considered as a (6„ j x • • • x &Uk )-module,
up to &s. The advantage here is that &s-modules and ©^-module maps between
them are very well understood.

In the following sections we give examples of assembly maps. In particular, we
show how all but one of the known nontrivial homology classes for Out(Fn) and

Aut(F„) are obtained by assembling classes from the homology of F^ and T2s.

5.1. Morita's original series [33]. Recall from Section 4.1 that //2/t(T 1,2/t+i) Ik

with generator ak- Fix a gluing pattern <p ' X\,2k+i u Xi^k+i X2k+i,o which
matches all of the leaves of the first graph with those of the second. This gives an

assembly map

H2k(X\,2k+ \) ® H2k(Th2k + \) ^4fc(Out(^2it+2))-

The kth Morita class pk is the image under A^ of ak <g> ak. Remark 9.5 explains
why this viewpoint leads to the same classes as those originally defined by Morita.
The classes pi, fx2, and p2 are known to be nontrivial.

A lift of fik to tf4*(Aut(F2ifc+2)) can be obtained via assembly maps using
the gluing pattern </> : X\2k+\ U Xq2 U X\2k+\ —> X2k+2^ which matches one
leaf of Ao,3 with a leaf of one Xx^k+i, another leaf of Ao,3 with a leaf of the

other X\>2k+\, and then pairs the remaining leaves of the two copies of Al2(t+i
as before. Let pk be the image of oik ® ® ak under the resulting assembly map
^2ifc(ri,2*:+i)<8»//o(ro,3)<8»//2Jfc(r1,2jfc+i) //4Ar(r2fc+2,i), where £ is a generator
of //0(r0,3). The projection map H4k{T2k+2,\) H4k(r2k+2,o) then sends pk
to pk.
Remark 5.3. This argument shows more generally that every assembly map with
target H, (Out(F„)) lifts to //, (Aut(F„)).

Proposition 5.4. The Morita class pk £ H4k (Out( F2k+2)) is supported in an
abelian subgroup lfk ofOu\.{F2k4.2), and the analogous statement also holds for a

lift to Aut(F2k+2 )•

Proof As noted in Section 4.1, the class ak is the top-dimensional homology class

of a subgroup l?k in T \t2k+\- The assembly that produces pk then gives a map
lfk —> Out(F2k+2) taking a generator of H4k{lfk) to pk. It is easy to see using
the definition of r„!iS as a group of homotopy equivalences that the image of the map
lfk —Out(F2£+2) is generated by automorphisms A,i and pi2 for 3 < i <2k + 2,
where Xl} is left multiplication of the basis element x, by x,, and pl} is right
multiplication of xt by x}, with all basis elements other than xt fixed in both cases.

From this description one can see that the map lfk -* Out(F2k+2) is injective, as

is its lift to Aut(F2fc+2), so the two versions of pk for Out and Aut are supported
on lfk subgroups.
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5.2. Homology of T2,4. If connects two copies of X^3 by gluing just one pair of
leaves as in Figure 8, the result is a graph X$ of rank 2 with 4 leaves and an assembly

map
A*: H2(r1,3) ® H2( 1-1,3) — H4(T2A).

As before, let a\ be a generator of //2(ri;3) P(l3). The image of «i ® ai
under A$ is then the nonvanishing class ctjA in Proposition 4.1 in the case k 1.

By Theorem 3.10 we have H4(T2A) P(2,2), which is 2-dimensional. Since P(2,2)
is irreducible as an ©4-module, nontriviality of A# implies that the induced map

i0:Res|3(//2(r1,3)) oRes^(//2(rli3)) — H4{T2A)

is surjective.

Figure 8. Gluing two copies of Yi 3

5.3. Gluing two leaves of a single rank 1 graph. If (j> glues two leaves of YiiS
together as in Figure 9, the result is a graph X# of rank 2 with s — 2 leaves and an

assembly map
Hk(T2,s-2).

Let us show that this A^ is zero when k > 0.

Figure 9. A self-gluing of X\

The map A$ is an ©5_2-modu]e map, where &s-2 is the subgroup of &s which

permutes the unglued leaves. For k > 0 either the domain or the range of A^ is zero
unless k is a multiple of 4, by Proposition 3.7 and Theorem 3.10. If k M > 0, then

Hu(rijiS) P(s~4£A4iy Restriction from ©5 to ©s_2 removes two boxes from the

Young diagram for P^s_1«), so as an ©,s_2-module the domain of A^ is

^(i-4f-2,l«> © 4f-l,l«-') © P(s-4l,l4e~2)
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(though if s — 41 < 3 some of the terms are not there). On the other hand, by
Theorem 3.10 all partitions in Hu{^2,s-i) contain at least 21 boxes in the second

column, so none of these modules appears in H^i{T2,s-2) and A$ must be zero.

5.4. Rank 2. For any positive 5i and s2 we can join YivSl to X\ v52 by connecting
one pair of leaves. We obtain a graph X$ of rank 2 with .sq +52 — 2 leaves and

assembly maps

A#'- H2iCl(TitSl) <g> H2k2(ThS2) —> H2iCl+2iC2(r2,Sl+S2-2).

If k\ + k2 is odd then H2kl+2k2 (T2iSl+S2-2) 0, so the map is obviously trivial.
In fact this map is trivial unless k\ k2, in which case it is nontrivial. This follows

immediately from Proposition 4.1 and Remark 4.2.

In the special case Si 2k, + 1 and k\ ^ k2 there is an alternative argument for

proving the assembly map is zero using representation theory. From the discussion

in the beginning of the section the assembly map induces a map

ResJ;;+1 (#2*, (ri,2*1+i)) ° ResJ^+1 OWr1A+i))
H2k1+2k2(^2,2ki+2k2)-

By Proposition 3.7 and Theorem 3.10 we have H2kl{^\,2kl+i) and

H2k1+2k2(T2,2k1+2k2) ^(2^+^), SO that the induced map is P(12fc1)oP(12ft2) ->•

P(2ki+k2y Since k\ ^ k2 there is no way to add 2k2 boxes to distinct rows in the

Young diagram for P^2k^ to obtain the diagram for P^2kl+k2y which means that

the decomposition of P^2k^ ° P^2k2) does not contain P^2kx+k2y So the map
(and hence the assembly map A#) must be zero. One can use a similar argument
when Si ^ 2ki + 1 but this requires the full Littlewood-Richardson rule instead of
the much easier Pieri rule.

5.5. Generalized Morita Classes. In [12], Morita's original series was generalized,
and it is not hard to describe the generalization in terms of assembly maps arising
from gluing together graphs of rank 0 and rank 1. Suppose we are given a finite
connected graph G with no valence 2 vertices, along with a partition of its non-leaf
vertices into two subsets Vo and fj such that all vertices in V\ have odd valence. Take

a copy Xv of X\2k+\ for each vertex v in Vj of valence 2k +1, and identify the leaves

of Xv with the edges of G incident to v. Similarly for each vertex in F0 of valence k
take a copy of Xqj- The graph G then gives gluing instructions for constructing a

graph Xn<s and a corresponding assembly map. (The s leaves of Xn^s come from the

valence 1 vertices of G.) By assembling copies of a& 6 Pl2k (T\,2k+i) at the valence
2k + 1 vertices in V\, along with standard generators for Ho(To,k) at the valence k
vertices in Vo, we obtain a generalized Morita class ßc £ Hi(Vn,s)- The original
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Morita classes are the case that G has two vertices, both in V\, with all edges going
from one vertex to the other.

Vertices in V\ are called rank one vertices, and vertices in V0 are rank zero
vertices. There is no loss of generality in assuming that all rank zero vertices are

isolated, in the sense that no edge of G connects two different rank zero vertices,
since such edges can be collapsed one by one without affecting the class [iß

If the graph G has certain "orientation-reversing" symmetries, for example if it
has an edge with both ends at the same vertex in V\, then the class fio is automatically
zero; this is spelled out in detail in [ 12] in the case 5 0, which is the case considered
there. The following result shows that /iß vanishes in many other cases as well.

Theorem 5.5. If G has two rank one vertices ofdifferent valence then fiß 0.

Proof. The graph G contains a path connecting two rank one vertices of different
valence and passing only through rank zero vertices. Using gluing instructions given
by this linear subgraph we obtain a graph X4, X2,s for some s > 0. We can
also obtain an X2%s by first gluing one of the rank 1 graphs and all of the rank 0

graphs to obtain a graph A+„s,, then gluing VliS| to the other rank 1 graph X\<S2.

Call the latter gluing x/r. The assembly map A4, factors through A 4,, and we showed

in Section 5.4 that A4, is zero since the two classes assembled by it have different
homology degrees, by the hypothesis that the original two rank one vertices have

different valence.

5.6. Eisenstein classes. Consider a gluing r/> that attaches leaves of X2,2k+2 to
leaves of Xl<2k+i, leaving one leaf of X2t2k+2 unpaired. This gluing determines a

map T2,2^+2 x r1;2/t+i r2A:+3,i Aut(F2A;+3) and an assembly map

A4, ' 7/2Ä: +3(r2,2fc-(-2) ® H2k(Pl,2k+ l) Z/4fc+3(Aut(F2fc +3)).

In Section 4.3 we constructed classes mjj e H2ic+3(r2t2/c+2) corresponding to a

partition of {1,..., 2k + 2} into sets I and J with \ I\=2 and |/| 2k. (Note that
the parameter k now corresponds to k — 1 in Section 4.3.) Choose I to consist of the

unglued leaf of 3f2,2fc+2 and one other leaf, with J the remaining leaves. Then the

Eisenstein class £k is the image of m[ j <g> under A4,. This does not depend on
the choice of the other leaf in / or the ordering of the leaves in J since permutations
of the glued leaves in X2,2k+2 become inner automorphisms of Aut(F2/t+3) which
therefore induce the identity on homology.

We choose I to contain the unglued leaf because if we did not, then £k would
automatically be zero by the following symmetry argument. Ifboth leaves in X2<2k+2
indexed by / were glued to leaves of Aj^fc+i then the transposition switching these

two leaves would extend to a transposition of two edges of the glued-together graph

^2fc+3,i- This transposition sends mjj (8) oik to its negative since it preserves ntfj
as we noted in Section 4.3 and it sends ak to its negative. On the other hand, after
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gluing, the transposition gives an inner automorphism of Aut( F2k+T,) inducing the

identity on homology. Choosing / to contain the unglued leaf has the effect of
breaking this symmetry, so £k does not vanish for any obvious reason. (Permutations
of the leaves in J act trivially on £k since they act by their sign on both m jj and

An alternative construction would be to use the class m, defined after the proof
of Proposition 4.4 instead of mij. Permutations of the glued leaves change m, by
the sign of the permutation, and the same is true for o^, so m, <8> is invariant
under these permutations. From the definition of m, it follows that using m,- instead

of mitj changes £k only by a nonzero scalar multiple.

Remark 5.6. The Eisenstein class £k maps to zero in 7/4^+3 (Out(/72/t+3)) since
the map r2^4-3,1 r2fc+3,o is induced by forgetting the leaf of X2k+3,\, and this
leaf could just as well be omitted from X2,2k+2 before the gluing, but this puts the
class m, in a dimension above the vcd of T2,2k+i- This argument applies more
generally whenever one has an assembly map with target 7/,(r„(i) and a source
factor Hsco(TnjtSj) whose graph XnjtSj is the one with the unglued leaf.

5.7. Odd-dimensional classes in //, (Out(F„)). The Euler characteristic calculations

for« < 11 imply that there must exist odd-dimensional classes in 77* (Out(/•"„)),
probably in great abundance as n increases. However, only one such class has been

found so it becomes an interesting challenge to find nontrivial odd-dimensional
classes in a systematic way.

Q V Q V
Figure 10. Left: Assembling y\ e 771 \ (OutfFg)) from 7/2^1,3), /^(Ti.s), and Hs{T2,a)-
Right: Assembling y2 e //is(Out(Fio)) from 7/4^1,5), and 7/5^2,4)

A sequence of candidates for such classes was introduced by Morita, Sakasai,
and Suzuki in [35], Proposition 6.3. These are classes yk £ 7/4fc+7(Out(F2A:-i-6))
for k > 1. The class yk can be interpreted as gluing X\^k+?> U X\ 2k+\ U -^2,4 —>

%2k+6,0 (illustrated for k 1 and 2 in Figure 10) and considering the image of the
class ajt+i where «I,- is the class defined after the proof of Proposition 4.4,
with 1 labeling the leaf of X2,4 attached to A1:2/t+i However, since the image of
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otfc-t-1 <8> Uk in 7/4^+2(r2;4yt-2) is trivial by Section 5.4, these classes must also be

zero by associativity of the assembly map.

a<n-D ooo
The class y\ e H\\(Out(Fg)) was introduced to account for the fact that e

//i2(Out(Fg)) is nonzero while the Euler characteristic of Out(Fg) is 1, so an odd-
dimensional class must exist. An alternative candidate class in //n(Out(Fg)) can
be constructed by assembling two copies of a\ e H2(Vli3) with a class in H2(r2^)
by gluing all the leaves of two copies of 703 to one copy of X2j6 as shown in the

left half of Figure 11. Another possibility is to glue all the leaves of and 205 to
the leaves of X2,6, obtaining an assembly map Hq{Tij) <g> Hj(F2,$) <S> ^5) —>

H11 (Out( Fg)) as in the right half of Figure 11. However, this assembly map may
well be zero since it produces classes that lift to classes in H\\ (Aut(Fg)) that are in
the image of the stabilization Hn (Aut(Fy)) H\\(Aut(Fg)) (see Section 6.2) so

if they were nonzero they would give counterexamples to Conjecture 10.5.

Q0O 0OO

Figure 11. Candidates for a nontrivial class in H\ \ (Out(Fg))

Figure 12. Candidates for a nontrivial class in //is(Out(Fio))

A few other ways to construct candidates for odd-dimensional classes are shown

in Figure 12, this time for classes in //is(Out(Fio)).
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There are many other ways to construct candidates for odd-dimensional homology
classes. If we glue to X2<s by joining all of their leaves, we obtain a rank s + 2

graph with no leaves and an associated assembly map

h2(rM) ® h5(t2,s) — h7( ri+2io).

For s > 4 we have 7/2(ri5) 7J(4_2,i2)- The decomposition of Hs(r2,s)
W4 o P(s~4) 7p,i2) ° P(s-4) has several terms but one of them is P(s-2t\2),
with multiplicity one. Thus the space of coinvariants (772(Fi!iS) <g) H5(T2<S))6 is
1 -dimensional and the assembly map, which factors through these coinvariants, may
well be nontrivial. This construction produces potential classes in T77(Out(F„)) for
all n > 6, although by homology stability these classes must be trivial for n > 10.

According to the calculations in [37] and [1] the classes for n 6,7 also vanish.

We can make a similar construction with H2k(Fii5) and H2k+3(T2tS) as long as

s > 2k + 2 using the partition (s — 2k, \2k). We have H2k(rliiS) P(s-2k,i2k) ancl

H2k+3(P2,s) W2k+2oP(s_2k-2). The second term ofW2k+2 is M2k+2® P(2 lik),
and one term of P(2^\2k) o P(s-2k-2) is equal to P^s-2k^2ky Thus we obtain a map
from A42k+2 to N4k+3(Out(Fs+2)). For large s this map must be trivial since the

target group is trivial. In fact we suspect that the map is trivial for s > 2k + 4 but
not for s 2k + 3. For 5 2k + 3 the image lies in 774^_|_3(Out(F2jt+5)). Since
the vcd of Out(F2/r.+5) is 4k + 7, these classes lie in codimension 4.

If 5 > 2k + 1 there is another similar construction with H2k(T\iS) and

772/t+i(r2j.v), again using the partition (s — 2k, \2k). Here H2k+\(T2,S) contains
the summand S2k+2 <8> 7,(12*) o Ps-2k Since P(\2k) o P(s-2k) contains a copy of
P(s~2kA2k) we get a map from S2k+2 to H4k+i (Out(Fs+2)). The first potentially
nontrivial class occurs when k 5, in 772i (OutfT7^)); this class is in 7/VCD_2.

5.8. Classes from pairs of cusp forms. Consider a gluing

2(2,2m U X2,2m > X2m+3to

matching the leaves of the first graph with those of the second, and the associated

assembly map

772m+i(T2 ,2m <8» 772w+i(T2 ,2m) ^ 774m+2(Out(F2m+3)).

There is aZ2 action on H2m+\ (r2,2m) <8> 772m+i (T2j2m) which switches the factors.

By basic properties of the cross product (which gives the Künneth isomorphism) we
have

a (8) b (_i)(2«+D(2m+Dfe ®a=-b®a,
so this assembly map factors through the exterior product /\2 772m+i(T2:2m) in
addition to factoring through the 62m-coinvariants.
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Applying Lemma 3.8 we now have a map

f/\ H2m+l(^2,2m)\ A ® X2m,i ® P(2'
^ ^ ®2m ^ 0<z <m ' &2m

H4m+2(Out(F2m+3)),

where X2m,i is the space of either cusp forms (if i is even) or all modular forms (if i
is odd) of weight 2m+2—2i. Since the P^M2'"-2*) are pairwise non-isomorphic
this gives a map

(J) H^m+2 (Out(7*2m+3)) •

0<i<m

The term corresponding to 2 =0 was first mentioned in [10].

6. Stabilization

In this section we consider the two ways to stabilize rn>J by letting one of the

parameters n and s increase while keeping the other fixed. Both stabilizations can be

viewed as special cases of assembly maps.

6.1. Stabilization with respect to s. For ,v > 1 the map gluing A0.3 to X„tS by a

single edge simply increases the number of leaves, and the associated assembly map

7/0 (r0,3) ® H,(rntS) — //,(r„iJ+1)

gives a stabilization map H,(TntS) H,(TntS+1) sending a class a to 1 (g> a
where l is the standard generator of 7/o(Fo,3)- This is the same as the map induced

by the splitting of the natural projection F„>i+i defined in the proof of
Proposition 2.2. Strictly speaking, there are s different stabilization maps depending
on which leaf of Xn,s we attach Vo,3 to, although these stabilizations differ only by
the action of &s. The stabilization maps are always injective since they are induced

by splittings of the groups. By [24] the stabilization map is surjective if n > 2i + 2,

but in this case the homology groups are trivial by Galatius' theorem.

Switching from homology to cohomology, Proposition 3.7 and Theorem 3.10

demonstrate directly that for fixed i the groups Hl (VijiS) and //' (r2j.y) satisfy
representation stability as 5 increases, i.e., for large enough s the partitions which

appear in their irreducible decompositions as ©^-modules differ only by the number

of boxes in the first row. This leads one to suspect that the cohomology of
satisfies representation stability for all n. This is indeed the case and can be deduced

easily from a theorem of Jimenez Rolland [26] giving the corresponding result for
mapping class groups of certain manifolds with punctures.
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Proposition 6.1. Forfixedi andn the groups Hl (r„^) satisfy representation stability
as s increases.

Proof. As described in Section 2.1 we can view r„tS as the quotient of the mapping
class group of the 3-manifold Mn<s by the subgroup generated by Dehn twists along
2-spheres. This subgroup is normal and is just a direct product of finitely many
cyclic groups of order 2. In particular it is a finite group so the projection from the

mapping class group to induces an isomorphism on cohomology with coefficients
in Ik by the Leray-Serre spectral sequence. Thus it suffices to prove representation
stability for the mapping class group, and this was done in [26], with a specific stable

range s >3i. To apply [26] one uses the manifold M M„to as the base manifold,
and one needs to check that this satisfies certain hypotheses: (1) it\M Fn is of
type FPoq and has trivial center, which is obviously true; and (2) the mapping class

group of M is of type FPoo, which follows from Out(F„) being FPoo and the kernel
of the map from the mapping class group to Out(F„) being finite abelian and hence

of type FPoq. O

We remark that A. Saied has recently shown that H' (r„iiS) satisfies representation
stability with respect to 5 whenever s > n + i [38], If n < 2i this is an obvious

improvement on the stable range mentioned in the above proposition, and ifn > 2i + 2

the cohomology is zero for all s.

6.2. Stabilization with respect to n. A stabilization map Ht (T„;i) —>• H, (r„+1;J)
can be obtained in a similar way by gluing X\,2 to Xn<s along one edge. Here

sufficiently many iterations take one to the stable range where the homology groups
are zero, so the interest is in what happens unstably. We can describe completely
what happens when rank one classes are stabilized to rank two:

Proposition 6.2. If a class in Ht (r„j V) is obtained from an assembly map with a

factor group Hj (Ti^), j > 0, then this class maps to zero under the stabilization
7fi(rn,s) — Pfi(^n + i,s) obtained by gluing X\^2 to the corresponding factor
graph Xuk.

An immediate consequence is the following result, first proved in [13] by
combinatorial arguments.

Corollary 6.3. The Morita class ptk, lifted from Out to Aut, vanishes under the

stabilization map HAk(T2k+2^) HAk(T2k+2fi).

ProofofProposition 6.2. It suffices to prove that the stabilization Ht{T i!iS) —>

//,(r2>,) is trivial fori > 0. The extension of A#: H, (T^) <gi//0(r1;2) -» Ht (r2>i)
to the &s-module map

VResf^/Mr,,,)) oResf?(//0(r1>2)) — ff,(r2,,)
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is accomplished by first restricting the ©^-action on r1? to ©,s-i and then inducing
it back up to &s. In terms of Young diagrams, restriction to ©j-i is accomplished
by removing one box (in all possible ways), while induction adds a box (also in all
possible ways). Since the diagrams of all partitions appearing in Hx (T ijV) have boxes

only in the first row and column, all resulting diagrams will have at most two boxes

in the second column.

Using Theorem 3.10 we can see that the simple modules appearing in //, (r2ji)
for i even always have at least i/2 boxes in the second column. Thus if i >6 there
is no partition which appears in both the domain and range of Awhich forces

(and therefore A$) to be zero.
For i 2 the target H2{^2,s) is always zero. For i 4 the diagrams appearing

in tf4(rM) have five rows, but the diagrams appearing in //4(r2jiS) have at most
three rows, so it is not possible to obtain one from the other by changing the position
of a single box, and again the assembly map must be trivial.

In Section 7 below we show precisely how the class ak becomes trivial after one

stabilization, using a natural geometric interpretation of this class.

7. A more geometric viewpoint

A rational model for FOut(F„) is the quotient Qn of Outer Space for rank n graphs
by the action of Out(F„) changing the marking. (One could instead use just the spine
of Outer Space, but for our present purposes it is more convenient not to restrict to the

spine.) Points of Qn are thus isometry classes of finite connected graphs of rank n

with no vertices of valence 1 or 2 and with lengths assigned to the edges, normalized
so that the sum of the lengths of all the edges is 1. Collapsing edges to points by
shrinking their lengths to zero is allowed provided this does not decrease the rank
of the graph. There is a similar rational model Qn,s for BT„tS consisting of graphs
in <2« with s leaves attached to them at arbitrary points. There is no need to assign
lengths to the leaf edges since they are not allowed to collapse to points. An assembly

map is induced from a map Qnx,s\ x • x Qnk,sk -> Qn,s where edge lengths on
a glued-together graph X„,s are obtained by first assigning a fixed length, say 1, to
the new edges created by the leaf pairings, then renormalizing the lengths of all the

nonleaf edges of Xn,s.

7.1. Geometric Morita cycles. The classes ak e H2k(r1,2/t+i) are particularly
easy to describe from this perspective, and hence also the Morita classes and their
generalizations. The class ak is the image of the top-dimensional homology class

of a 2k-dimensional torus under a map /: T2k Q\.2k+\ described as follows.
Consider graphs X\^2k+\ obtained from a circle c by attaching 2k + 1 leaves. By
rotating the circle if necessary, we can assume the first leaf attaches at a fixed
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basepoint of c. The other leaves attach at 2k arbitrary points of c which need not
be distinct. Letting these points vary independently around c then gives the map

/: T2k -> öi,2fc+i- This is surjective but not injective since graphs differing by
a reflection of c fixing the basepoint are identified in ßi,2fc+t, so Q\,2k+\ is T2k

modulo the action of Z2 reflecting each circle factor. From this point of view one can
see why we require the total number of leaves to be odd, because if it were 2k instead

of 2k + 1 then the Z2-action would reverse the orientation of the torus T2k~l and

hence the map Tlk~x —> Ö i,2fc would induce the trivial map on the top-dimensional
homology of the torus.

For the map Qit2k+\ x Q \,2k+\ Q2k+2,0 used to construct the Morita class

Ffc ak ® ak we glue all the leaves of the first copy of Xx2k+\ to the leaves of the

second copy. Thus we have two circles joined by 2k + 1 edges. One of these edges

serves as a "basepoint" edge, and then by varying where the remaining 2k edges attach

we obtain a family of graphs X2k+2,0 corresponding to a map T4k -> Ö2fc+2,o taking
a generator of H^{TAk) to j±k- (The basepoint edge could be collapsed to a point,
giving a map T4k —> Q2k+2,0 homotopic to the original one.) The generalized
Morita classes have similar geometric descriptions as maps from a torus to the

appropriate Qn,s.
For the Morita class fit the map T4k —> Q2k+2,o is invariant under certain

symmetries. To start, there is the Z2 x Z2 symmetry coming from the symmetries
of the two oik factors reflecting each of the two circles. There is another Z2

symmetry from interchanging the two circles. Finally, there is an 62k symmetry
group permuting the 2k arcs connecting the two circles. Altogether this gives a

symmetry group Gk of order 8(2k)! with the map T4k -» Q2k+2,0 factoring through
the quotient T4k / Gk. One can regard Gk as acting on choices of an ordering and

orientations of the two circles and an ordering of the 2k connecting arcs. This makes

it clear that the induced map T4k/ Gk —> Q2k+2,0 is injective.
In the case k 1 the quotient T4/ G\ can be determined explicitly.

Proposition 7.1. T4/G\ S4.

Proof. The quotient of T4 by the reflections of the two circles gives S2 x S2 since
the quotient of T2 by reflection of its two circle factors is the familiar 2-sheeted

branched covering space T2 —> S2. Next, factor out the Z2-action interchanging the

two circles, corresponding to interchanging the two factors of S2xS2. This gives the

two-fold symmetric product SF2(52) which is well-known to be CP2. Explicitly,
CP2 can be identified with nonzero polynomials a2z2 + a.\Z + ao in C[z] up to
scalar multiplication, and these are determined by their unordered pair of roots in
S2 C U 00 where linear factors corresponding to roots at 00 are deleted. (See

e.g. [21, Example 4K.4]) Finally we need to factor out by the Z2-action interchanging
the two connecting arcs. This corresponds to reflecting each torus T2 across its

diagonal. In the quotient S2 x S2 of T2 x T2 this is equivalent to reflecting each S2

across its equator. In the space of quadratic polynomials this is given by complex
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conjugation of the roots, hence also of the coefficients. Thus we are forming the

quotient of CP2 by complex conjugation. This quotient is 54 by a classical result of
Massey [32] and Kuiper [30].

The quotient T4k/for k > 1 cannot be a sphere since one can compute that
its rational homology consists of a copy of Q in each dimension 41 < 4k.

We can use the geometric viewpoint to give another proof that Morita classes and

their generalizations vanish after one stabilization of the rank:

Geometric proof that vanishes after one stabilization. The idea is to see how the

commutator relation [e,j,ejjt] e,k among elementary matrices can be translated

into a two-parameter family of graphs.
We can reinterpret the stabilization map as the map Q ii2jt+i —* Qi.ik+i obtained

by attaching both ends of a new edge b at the basepoint of the graphs X\^k+\
described above consisting of a circle c with 2k + 1 leaves attached, where by the

basepoint we mean the point of c where the fixed leaf attaches. Let a be any one

of the remaining 2k leaves. Sliding a around c gives one of the S1 factors of the

torus T2k whose map to Q\pk+i sends a generator of H2k(T2k) to a^.
Figure 13 describes a two-parameter family of graphs in which one end of the

arc b moves across c while one end of the arc a moves across b and c. As we proceed
from left to right in the sequence of four pictures we see one end of b sliding around c.
The dotted arc denotes the path followed by the attaching point of a. Initially it just
goes across b, then when b has moved partway around c the end of a must backtrack

across part of c after it crosses b, in order to return to the basepoint. In the last picture
we see that a crosses both b and c.

Figure 13. A 2-parameter family of graphs X2,\

On the boundary of the parameter square for this two-parameter family one thus

has five slides of one arc over another, as indicated in Figure 14. The quotient
space of the square obtained by identifying the two a/b edges and the two b/c
edges is a surface Sij of genus one with one boundary circle, where this boundary
circle parametrizes the a/c slide. The a/c slide was the restriction of the map
f:T2k Qi.ik+i representing the stabilization of to one of the circle factors

of T2k, so we can extend f to a map J2k~x x S1;1 -> Q2,2k+\ This implies that /
induces the zero map H2k(T2k) -» H2k(Q2pk+i)-
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a/b a/c

b/c b/c

a/b

Figure 14. The parameter space, a punctured torus

7.2. Representing Eisenstein classes geometrically. Let us describe how the

Eisenstein classes 6k e //4^+3 (Aut(^2^+3)) can be realized as families of graphs

parametrized by certain manifolds Ek that are analogous to the tori representing
Morita classes, but a little more complicated. Consider first the case k 1, so E\
will be a closed orientable 7-manifold. This is the product of T4 with a 3-manifold N,
where N splits along a 2-torus into submanifolds N1 and N2 each homeomorphic to a

product of S1 with a compact surface Sij of genus 1 with one boundary component.
We obtain N from Ni JJ N2 by gluing the two boundary tori via a homeomorphism
of 3Vi 8N2 T2 switching the two circle factors of T2. From this description
one can see that it\E\ is the product of Z4 with two copies of Z x F2 amalgamated
along Z x Z where the second Z is generated by the commutator of the generators
of F2 and the amalgamation interchanges the two factors of Z x Z. Also from the

construction of E\ one can easily see that it is a K(jt, 1).

Now we describe a map E\ —> 2s, 1 corresponding to a 7-dimensional family of
rank 5 graphs with one leaf. To construct these graphs, start with the family of graphs

parametrized by .Sjj indicated in Figure 13, consisting of a circle c with edges a
and b attached. One end of b is attached to the basepoint of c and the other end to a

point moving around c. The arc a attaches at one end to a point that moves across b

and then returns to the basepoint along an arc of c. Next we attach one end of another

arc a' at a point that moves only around c, independently of how a and b attach. This
gives a family of graphs parametrized by Sl x Reversing the roles of a and a'
gives another family parametrized by S1 x On S1 x (JS'ij both families consist
of graphs in which b U c is S1 v S1 with a and a' attached to arbitrary points of c. The

two families parametrized by S1 x S1;1 then fit together to form a family parametrized
by N, so we have a map N — 02,2- Attaching two more arcs d and e at an endpoint
of each that moves freely around c gives a family parametrized by N x T2 and so

a map N x T2 —> 02,4. hence a class m e Hs(r2^). Finally, we assemble this
class m with the torus T2 representing a\ e H2(Fi>3) by adjoining another circle c'
and attaching the free ends of a, d, and e at points that move around c', where by
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rotating c' we can assume that a attaches just at the basepoint of c'. The arc a' has one
end unattached, so it is a leaf. Figure 15 shows a graph in the resulting 7-parameter
family in the case that a' attaches to c, but a' could also attach to b when a attaches

to c. These two possibilities correspond to the two submanifolds N\ and N2 of N.

To relate this to the earlier construction of Eisenstein classes, note first that the

group Mij in Proposition 4.4 is the semidirect product Z x (Fj x Z2) in the case

at hand when | /1 2 | J \. A K(n, 1) for this group is the mapping torus Tf of
a map / from (S1 V S1)2 x 72 to itself that is the identity on the T2 factor, and

on each S1 vS1' induces the automorphism of rr^A1 v A1) F2 fixing the first
basis element x and sending the second basis element y to xy. We can compute
7/5 (Tf) geometrically as the elements of 7/4 ((A1 v A1)2 x T2) fixed by /* using
the exact sequence in Example 2.48 of [21], This 7/4 has dimension 4 with basis

corresponding to the 4-cells of (A1 v A1)2 x T2 by the Künneth formula. The basis

elements can be written (omitting tensor product symbols for simplicity) as xxzz,
xyzz, yxzz, and yyzz. (It would make sense to simplify the notation further by

replacing z by x throughout.) The map /* fixes x and z and takes y to x + y. A
short calculation shows that the elements invariant under /* form a 2-dimensional
subspace with basis xxzz and xyzz — yxzz. The element xxzz is not of interest
to us since it can be shown to give the trivial element of 7/5(^,4). For the element

xyzz — yxzz the four letters of each of these two words correspond to the edges

a, a', d, e in that order. For example the four letters of xyzz correspond to a moving
around c, a' moving across b, and d and e moving around c. Interchanging a and a'
gives the other word yxzz. To go from 7/4((A1 v A1)2 x T2) to Hs(T/) involves a

fifth parameter, and this corresponds to one end of the edge b moving around c. The
whole mapping torus T/ corresponds to a 5-dimensional family of graphs in which a
and a' move freely around both b and c, while d, e, and one end of b move around c.
The reason for restricting to the graphs parametrized by N x T2 is to get a manifold
as parameter space and thus reduce the dimension of 7/5 from two to one.

To generalize from £\ to £k is easy since all one has to do is replace the arcs d
and e by 2k arcs d\,...,dk and e\,... .e^ that behave in exactly the same way as d
and e. Thus N x T4k. Incidentally, the manifold N belongs to the class of
3-manifolds known as graph manifolds, which seems an especially appropriate name
in the present context.

e

Figure 15. A graph in the £\ family
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One can see that £k e HAk+-i{T2k+^,i) maps to zero in 7/4^+3(^+3,o)
since ignoring the leaf a' replaces the 3-manifold N by a 2-dimensional quotient,
namely SXt\, so the composition E^ —> Qik+s, 1 Ö2fc+3,o factors through

Si,i x TAk which has one lower dimension than E^.

8. Homological triviality of a standard "maximal torus" for Aut(F„)

Let A be the subgroup of Aut(F„) generated by the automorphisms A, and p, for 1 <
i < n — 1, where A, sends the basis element x, to xnxt and fixes Xj for j 7^ i,
and p, is defined similarly but multiplies x, by xn on the right. Thus A is isomorphic
to Z2"-2, realizing the maximal rank of an abelian subgroup since the vcd of Aut(F„)
is 2n — 2.

Theorem 8.1. The inclusion A <—> Aut(F„) of the standardfree abelian subgroup of
maximal rank induces the trivial map on rational homology in all positive dimensions.

Note that the Z2"-4 C Aut(F„) realizing the Morita class jik is not contained in
this Z2"-2 C Aut(F„) or any subgroup conjugate to this by permuting basis elements
for Fn, and the theorem gives a good reason why this must be the case.

We will give three different proofs of this theorem, each with its own advantages.
The first proof is probably the most elementary.

Algebraic proof. We can enlarge A to a subgroup G C Aut(F„) by adjoining the

automorphisms that permute the basis elements x\,..., x„_i and send a subset of
them to their inverses. These automorphisms form a copy of the signed permutation

group in Aut(Fn), and G is the semidirect product kA. It will suffice to
show //, (G) 0 for i > 1 since Hx (Aut(F„)) 0 from the classical presentations
of Aut(F„).

Passing from homology to cohomology and applying the usual argument with
transfer homomorphisms, we can compute H*(G) as the invariants of El* (A) under
the action of induced by conjugation. The cohomology ring H*(A) is an

exterior algebra on generators a, and bt corresponding to A; and p;. Conjugation by
the map inverting x, sends A; to p"1 and p, to A"1, so in H*(A) this sends a, to —b,

and bt to —a,. Conjugation by a permutation of the xt 's has the effect of permuting
the subscripts on the a, 's and bt's.

Elements of Hk{A) are linear combinations of degree k monomials in the afs

and bf s. We will show that for any monomial m of degree k > 1 there exists

a e such that am —m. This implies that m cannot appear in any element

of Hk(A) that is invariant under the action of and hence Hk(G) 0 for
k > 1. There are three cases: if m contains both a, and bt for some i, then

inverting x, changes the sign of at A b, and thus the sign of m; if m contains at
and a j but not either of b, or b} we use the involution in G interchanging x, and Xj;
and if m contains a, and bj but not either of b, or a} we use the involution in G
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interchanging x, and Xj 1. (This argument does not apply when k — 1, but it is easy

to check that H1(G) Ik generated by a, — 6,.)

Geometric proof. As in the previous section we consider the rational model Qn,i for

Aut(F„). The inclusion Z2"-2 Aut(F„) corresponds to a map /: T2n~2 -* Qn^
of the (2rt —2)-torus to Q„ti. This specifies a family of graphs parametrized by T2n~2

constructed as follows. Start with a basepointed circle c, then attach n — 1 arcs a, by

identifying their endpoints with points Si and t, in c. The s, and q- are the coordinates

on F2"-2, and we can write / as a function f(s\, t\,sn-\, tn-\).
The map / is not injective since there are some symmetries present. One can

interchange si and r,-, switching the ends of a,-, without changing the graph, and one

can permute the arcs a,. Switching st and f, gives a quotient of the i th 2-torus factor of
T2n~2 (F2)"-1. The quotient of a 2-torus by interchanging the two circle factors
is a triangle with two edges identified. This deformation retracts to a single circle,

say the s,- circle. The quotient of T2n~2 by these coordinate transpositions thus has

the homotopy type of F"-1. This already implies that the inclusion A Aut(F„)
induces the trivial map on for k > n — 1.

Now we can factor out the permutations of the n — 1 factors of this Tn~l, producing
the (n — l)-fold symmetric product of S1. This is well known to have the homotopy
type of a single circle. (See for example the end of Example 4K.4 in [21].) Thus the

map / factors through a space homotopy equivalent to S1 so it induces the trivial
map on Hi for i > 1. It also induces the trivial map on H\ since H\ (Aut(F„)) 0

as noted in the first proof.

Proof via representation theory. We have inclusions A C Ti^n-i C Aut(F„) where
the second inclusion corresponds to the self-gluing %n,\- (In fact

Fi,2n—l is contained in the subgroup G used in the first proof above). The gluing
X\^2n—i -> A'n.i factors as the composition of two gluings Xit2n-i X2<2n-3 —
Xn>i as shown in Figure 16, so the map H*(A) —» //*(Aut(F„)) factors as //*(A) —>

H*{T\,2n-\) —* H,(r2,2n-3) H*(Fn,i). The middle of these three maps is an
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assembly map which we showed is trivial in Section 5.3 (unless the degree is 0),
which implies that Hk(A) Hk(Aut(Fn)) is trivial if k > 0.

One of the advantages of this last proof is that it also works in degree 1, so one
does not need a separate argument for this case.

Remark 8.2. The composition A —> Aut(F„) —> Out(F„) has kernel Z and is

injective when restricted to a suitable subgroup Z2"~3 realizing the vcd of Out(F„).
The theorem implies that this inclusion Z2"-3 Out(F„) is also trivial on homology
since it factors through A Aut(F„).

9. Connections with hairy graph homology
and the Lie algebra of symplectic derivations

9.1. Hairy graph homology. In this section we note the connection between our
calculations and the hairy graph homology theory of [10]. As above Gk denotes the

symmetric group on k letters and Sym^ the k-th symmetric power functor on vector

spaces. The following lemma is an immediate consequence of Proposition 3.6.

Lemma 9.1. Let H Hx(Fn) Ik". For any h-vector space V

H2n-3+S(r#M) VAS ^ H2n-3(Out(Fny,Syms(H®V)).

Proof. The Künneth isomorphism Hs(Fns) s Hx(Fn)AS HAS is Out(F„) x
equivariant. So

H2n~3+S(r„,s) s H2"-3 (Out(F„); Hs(Fns)) FAi (Prop. 3.6)

s H2n~3 (Out(F„);HA*) ®6, VAS

S H2n~3 (Out(Fn); HAS ®6,

s H2"-3 (Out(F„);H0J (8>ej 7®')
ss H2n~3 (Out(F„); Sym^(H ® 7)).

Let %"yS denote the hairy Lie graph complex (see [10,11]), where graphs have

rank n and s hairs labeled by vectors from V. In [10] the following theorem, with
the twist accidentally omitted, was proved by a direct analysis of the chain complex.

Theorem 9.2 ([10], Theorem 11.1). There is an isomorphism

Hk(HnyS) Sä H2n+s-2~k{Tn,s) ®6, 7Ai.

Combining this with Lemma 9.1 gives a shorter proof of the following theorem
from [11] relating the first homology of the hairy Lie graph complex with the

cohomology of Out(F„) with twisted coefficients.
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Theorem 9.3 ([10], Theorem 8.8). Forn > 2,s > 0 there is an isomorphism

H^UY) s //2"~3(Out(F„); Sym^H (g) K)).

This theorem has been slightly restated here to be more compatible with current
notation.

9.2. The Lie algebra of symplectic derivations. According to Theorem 9.2 hairy
graph homology is obtained by twisting the homology of with VAS. In [10,11],
it was shown that if the dimension of V is sufficiently large, the k-th homology of the

Lie algebra t)y of positive degree symplectic derivations embeds in hairy Lie graph

homology:

Hk(f)v) C Hk(Uv) @Hk{Un/) ^^H2n+s-2~k(Tn,s) ®&s KAi.
n,s n,s

Furthermore, every irreducible GL(L)-module §;_ V in the decomposition of
hairy graph homology corresponds to an irreducible Sp(L)-module §(x) V in the

decomposition of of //*(f)v). Thus the cohomology classes found in this paper
produce homology classes for l)y. These classes can be used to show that (b)
contains infinitely many different Sp-modules, as we now show.

Theorem 9.4. H2n+d-2{^)) contains the Sp-module ,id)} for m-

Proof. Let s 2n(m+\) + d. By Theorem 3.14, H2nm{Yn,s) contains the

submodule P(n+d,n2m) multiplicity 1. Setting k 3n + d — 2 we have

H3n+d-2(Hny) ss H2mn(rntS) ®es

P(n+d,n2m) ®&s ^
Since ®A Pk> <® §a(^) and Px <8>6j Pß 0 unless A p, in which

case it is the trivial module Ik, we see that for dim(L) > max(2m + l, n+d),
tf3«+rf-2('HKi)COntainStheGU^)"SubmoduleS(H+rf,K2m)'(l/) S((2m+l)",lrf)(l/)
Therefore for dim(K) sufficiently large H3n+d-2Q)v) contains the corresponding
Sp(L)-submodule §(((2m+i)",ia))(l/)- Taking the limit as dim(L) goes to infinity,
gives that //&(!}) contains §(((2m+i)«,irf)) f°r ad m-

Remark 9.5. In [12] the original Morita classes in the cohomology of Out( Fn) were

re-interpreted in terms of hairy graphs and this point ofview was then used to construct
more classes, called generalized Morita classes. The fact that the classes described

in Sections 5.1 and 5.5 represent the same classes stems from the identification

7/1(7fb2fc+1) s tf2*(rli2*+i) ®e2*+i VA2k+l §2k+xV Sym2*+1 V

from Theorem 9.2. A generator of Hi(FLy2k+l) is a linear Lie tree with two ends

joined by an edge and 2k + 1 commuting L-labeled leaves ("hairs"), whereas a
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generator of H2k(Fi^k+i) is the same thing, but with unlabeled leaves. Call this

generator a£, as it is dual to ak. The graphical cocycle of [12] is nonzero only if
the graph is the union of o£ a£m with the hairs connected up by edges. In that

case the cocycle evaluates to ± the graph obtained by shrinking each ak to a point.
Further projecting the graphical cocycle into the subspace spanned by a single graph
gives the Morita cocycle \xq- By construction, this process is dual to the gluing map
defined by G.

Remark 9.6. In [11] it was explained that hairy graph homology can be viewed
as the Feynman transform of a cyclic operad. In light of Theorem 9.2 this implies
that the cohomology groups H*(T„^) can be combined into a (twisted) modular co-

operad [18]. Therefore the duals //*(T„^) of these groups form a (twisted) modular
operad. The assembly maps defined in Section 5 are the structure maps of this
modular operad.

10. Open Questions

We finish with several questions and conjectures related to results in the paper. The

conjectures have been verified for all but the most recently discovered nontrivial
classes in Hk (rMvS), but there are not enough of these verified cases to provide
overwhelming evidence for the conjectures.

In what follows we always exclude trivial assembly maps, those that involve
a component graph Xo,2 where the gluing involves only one leaf, because the

map ß : Hk(rntS) -»• Hk(Tn^s) induced by the assembly map a : Hk(YnyS) (g>

Hq(T0 2) —> Hk(TntS) is equal to the identity.

10.1. Surjectivity of the assembly maps below the virtual cohomological dimension.

An assembly map //*(rniiJl) <g> <g> H*{Ynk,Sk) ->• H*(rn,s) for k > 2 can

never have nontrivial image in the virtual cohomological dimension (vcd) of
since in that case the vcd of r„>s is strictly greater than the sum of the vcd's of
the factors. An assembly map induced by gluing pairs of leaves of a single graph

preserves the vcd, so such an assembly map might conceivably be nontrivial in that
dimension, though it seems unlikely that such a map can be surjective (with nontrivial
image). By contrast, in other dimensions we expect that all classes are constructed

by assembly from lower-rank graphs.

Conjecture 10.1. Suppose that k 7^ 2n + s — 3, the vcd of T„ ,5. Then Hk{Tns)
is generated by the images of the assembly maps over all possible gluings which

give the graph Xns.

The examples in Section 5 confirm this conjecture for n 1 and n — 2. It can be

seen from the description of the cohomology groups that Hk(rn>s+1) is generated by
the images of the assembly maps Hlt(Tn>i) (8) HoiYo^) —> //fe(r„!iS+i) in all cases
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except when k 2n + s — 3, or when n 2 and k s is divisible by 4. The first

exception is excluded from the conjecture since these classes are in the vcd and the

second one is covered by Section 5.4.

The first three Morita classes and the first two Eisenstein classes are obtained as

images of assembly maps. By Bartholdi's calculations there are nontrivial classes in
H\i (Out( F-j)) and H^(OuUFj)). The first of these is in the vcd, and there is a natural
candidate for the second one, obtained by assembling four copies of oq e /AO 1,3) in
a tetrahedral pattern. By Theorem 2.4 the class in H11 (Out(F7)) also produces a class

in H\ 1 (Aut(/*V)), which cannot be the Eisenstein class by Remark 5.6. It is possible
that this class can be obtained by assembling classes in and //o(To,3)-

As mentioned in Remark 9.6, the homology groups H*(Yn,s) for 22 > 1 form a

twisted modular operad. Conjecture 10.1 together with computations in Section 5

imply that this modular operad is generated by //olToq) and H2n+s-i{Yn,s)-

10.2. Injectivity of classes constructed from modular forms. In Section 5.8 we
constructed maps from spaces of modular forms to //4m+2(Out(E2m+3)) by gluing
two rank 2 graphs together along all of their leaves. These maps take the form

X ' (aZ^2m,i^ fAm+2(Out(E2m+3))
0<i <m

The first of these maps which could be nontrivial has target H42(Out(/<23)). We

do not know how to show that the image is nontrivial and it is beyond the reach of
computer calculations. Nevertheless, we make the following conjecture:

Conjecture 10.2. The restriction of x to the term f\2X2m.o is injective.

This conjecture appeared as a question in [10]. It seems unlikely that x is injective
on /\2X2m,i for i close to m, but injectivity is still plausible for small values of 2, so

we ask the following question:

Question 10.3. For which i is the restriction ofx to the term f\2 X2m,i injective?

We remark that Conjecture 10.2 would contradict a conjecture made by Church,
Farb, and Putman [8, Conjecture 12] concerning a stability property of the groups
//2„-3-jt(Out(F„)) for fixed k as n 00.

10.3. Odd-dimensional classes. In Section 5.7 we constructed maps from the space
AA.2k.-t-2 °f modular forms of weight 2k + 2 to H^k-vs (Out(/q+2)) for all k and s.

For small .v this map is trivial because the homology dimension is above the vcd and

for large s the map must be trivial by homology stability, but for s 2k + 2 we

conjecture that it is highly nontrivial:

Conjecture 10.4. The map A42k+2 ff4/t+3 (Outlet+4)) constructed in
Section 5.7 is injective for all k.
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This too is incompatible with the conjecture of Church, Farb, and Putman.
Since the vcd of Out(fr2^+4) is 4k + 5, these classes lie in codimension 2, and

Conjecture 10.4 implies that the dimension of //VCD-2(Out(F„)) grows at least

linearly with n when n is even.

10.4. Vanishing under stabilization. For 5 > 0 there are two natural ways to
stabilize T„ jiS, by increasing n or by increasing s, as described in Section 6. Here we
consider the stabilization increasing n.

Conjecture 10.5. If <p is any gluing, then all positive-dimensional classes in the

image of the assembly map A$ vanish after a single stabilization with respect to n.

The condition of positive dimension is of course necessary to exclude the classes in
H0(rn>s) which clearly do not vanish after stabilization. In Section 6 we showed that
the conjecture is true for classes in the image of an assembly map where stabilization
is done using a rank 1 factor.

We point out that Conjectures 10.1 and 10.5 imply the following for classes in
dimensions below the vcd:

Conjecture 10.6. All classes in Hk{T„tS) for 0 < k < 2n + s — 3 vanish after a

single stabilization with respect to n.

Since the vcd of F„ ,.v increases with n, this conjecture implies that two
stabilizations kill all homology classes.

11. Tables of results

In this section we write out tables of the cohomology of F„^ for small values of s.
The space above the diagonal in each table is left blank since it represents terms
above the virtual cohomological dimension, where the cohomology must vanish.

H° H1 H2 H3 H4 H5 H6 H1

r i,o Ik

n,i Ai)
Fl,2 P(2) 0

n,3 P(3) 0 P(i3)
Tl.4 P{4) 0 P(2,12) 0

ri,5 P(5) 0 P(3,12) 0 P05)
Fl,6 P(6) 0 P(4,12) 0 F(2, l4) 0

Fl,7 P(7) 0 P(5,l2) 0 •F(3,l4) 0 PA7)
Fl,8 P(8) 0 P(6,12) 0 P(4,l4) 0 P(2, l6) 0

Table 1. W (T^; k) for 5 < 8
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H° Hl H2 H3 H4 H5 H6 H7

n,o 1

n.t 1

n,2 1 0

Tl,3 1 0 1

n,4 1 0 3 0

Tl.5 1 0 6 0 1

TI.6 1 0 10 0 5 0

Tl.? 1 0 15 0 15 0 1

Tl.8 1 0 21 0 35 0 7 0

Table 2. Dimensions of Hl (Ti iS; k) for s < 8

H° Hl H2 H3 ha H5 H6 H7 //8 H9

r2,0 1 0

r2,t 1 0 0

r2,2 1 0 0 0

r2>3 1 0 0 0 0

r2,4 1 0 0 0 2 3

r2,5 1 0 0 0 10 15 0

r2,6 1 0 0 0 30 45 0 5

r2,7 1 0 0 0 70 105 0 35 0

r2,8 1 0 0 0 140 210 0 140 14 35

r2,9 1 0 0 0 252 378 0 420 126 315

r2,io 1 0 0 0 420 630 0 1050 630 1575

Table 4. Dimensions of H' (f^.s; Ik) for i, s < 10
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