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Dynamics on supersingular K3 surfaces
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Dedicated to Tetsuji Shioda on the occasion ofhis 75th birthday

Abstract. For any odd characteristic p 2 mod 3, we exhibit an explicit automorphism on
the supersingular K3 surface of Artin invariant one which does not lift to any characteristic

zero model. Our construction builds on elliptic fibrations to produce a closed formula for the

automorphism's characteristic polynomial on second cohomology, which turns out to be an
irreducible Salem polynomial of degree 22 with coefficients varying with p.
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1. Introduction

Recently, there has been a burst of activity on dynamics of K3 surfaces, in particular
for supersingular ones in positive characteristic. This paper contributes to this area
with rather explicit results.

The entropy of automorphisms of algebraic varieties (or Kähler manifolds over C)
is related to Salem polynomials. Often one aims for Salem numbers which are either
small or have large degree. On K3 surfaces, the maximum degree equals the second

Betti number &2 22, but it can only be attained in two specific settings: either

on non-projective complex K3 surfaces which contain no algebraic curves at all, as

studied by McMullen [9], or on supersingular K3 surfaces in characteristic p > 0.

A specific feature of automorphisms of maximal Salem degree on supersingular

K3 surfaces was pointed out by Esnault and Oguiso [3]: such an automorphism
cannot lift to any characteristic zero model of the K3 surface. Esnault and Oguiso
illustrated this phenomenon explicitly with the Fermat quartic in characteristic 3,

building on work of Kondö and Shimada [8], On the implicit side, there are non-
liftability results for the supersingular K3 surface X(p) of Artin invariant a 1 in
characteristic p 5, 7, 13 in [2,4], Our aim is to exhibit non-liftable automorphisms
on an infinite series of supersingular K3 surfaces in an explicit and systematic manner:

* Funding by ERC StG 279723 (SURFARI) is gratefully acknowledged.
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Theorem 1.1. For any odd prime p 2 mod 3, there exists an explicit g e

Aut(A(/?)) ofSalem degree 22. No power gr (r e Z \ {0}) lifts to any characteristic

zero model ofX(p).
The key ingredient of our approach consists in the theory of elliptic fibrations

on K3 surfaces and in particular Mordell-Weil lattices, since these are at the same

time accessible, versatile and allow for explicit descriptions of automorphisms. We

will review the basics on elliptic fibrations and dynamics in the next two sections,
before explaining the construction of the automorphisms proving Theorem 1.1. We

point out that the techniques are flexible enough to lend themselves to the study of
dynamics on other K3 surfaces, both over C and in positive characteristic, either of
which we hope to pursue in future work.

2. Elliptic fibrations

Let X be a K3 surface over an algebraically closed field k k:

cox Ox, h1(X,Ox) 0.

Classical examples are smooth quartics in P3 or more specifically Kummer surfaces,
i.e. the resolution of the quotient of an abelian surface A by inversion i with respect
to the group law (outside characteristic 2):

Km(A) A/1.

In what follows we will restrict for simplicity to elliptic K3 surfaces, although much

of what is stated holds true in much greater generality (see [16]). An elliptic fibration
on A is a surjective morphism

n : X -* P1

such that the generic fiber is a smooth curve of genus 1. Here we will only deal,
without further distinction, with jacobian elliptic fibrations, i.e. the morphism n
admits a section. This makes the generic fiber E into an elliptic curve over the

function field k(t) where t denotes an affine parameter of P1. One derives an
extensive correspondence between X and E as either determines the other (see [10]).
Notably this materializes in a bijection between sections of n and rational points
of E. Either set thus forms a group which is usually referred to as Mordell-Weil
group MW(I), or if we need to specify the fibration, MW(1,7r). In order to endow

MW(I) with a lattice structure following Shioda [20], we introduce the trivial lattice

Triv(30 (zero section, fiber components) C NS(X).
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As a consequence of Kodaira's classification of singular fibers [7] (or of Tate's

algorithm for the non-complex setting [24]), the trivial lattice decomposes as an

orthogonal sum of

• the hyperbolic plane U generated by zero section O and general fiber F, and

• negative-definite root lattices of Dynkin type An, Dm, £/ generated by the

fiber components after omitting the identity component (i.e. the component
meeting O).

Note that Triv(A) is hyperbolic (i.e. of signature (1, rkTriv(A') — 1)) and that the

indices of the root lattices equal the number of fiber components minus one which
leads to a straight forward rank formula for Triv(A). The key theorem for (jacobian)
elliptic fibrations states that any divisor in NS(A) can be written as a sum ofhorizontal
and vertical divisors, or more precisely, in terms of sections and fiber components:

Theorem 2.1 (Shioda [20]). There is an isomorphism ofgroups:

MW(A') ss NS(Ar)/ Triv(A').

It is precisely this isomorphism which will allow us to make both many
automorphisms on K3 surfaces and their induced actions on cohomology (or NS(A))
explicit. To this end, we only have to add a lattice structure on the Mordell-Weil
group, or rather its quotient by the torsion subgroup, by means of the orthogonal
projection in NS(2f) ® Q with respect to Triv(A). Reversing the sign of the

intersection pairing, this makes

MWL(A) MW(A)/torsion

into a positive definite lattice (though not necessarily integral).

3. Automorphisms and Salem numbers

In this section, we will consider a K3 surface X equipped with an automorphism

g e Aut(A). For instance, one can think of a linear transformation of the ambient

projective space which preserves X. However, such an automorphism is necessarily
of finite order since it leaves the hyperplane section invariant and thus acts on its

orthogonal complement in NS(A), a negative-definite lattice, whence the claim can
be seen as a consequence of the Torelli theorem (although it holds true in greater
generality). Given an elliptic fibration, it is equally instructive to consider translation

by a rational point P on the generic fiber E which extends to an automorphism of X,
the order of which equals the order of P e E(k(t)).

In what follows, we work with f-adic etale cohomology H?fX, Q^(l)) after

applying a Tate twist (in characteristic p I - over C, we could equally well work
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with singular cohomology). For shortness, we will only write H2(X) and compute
the characteristic polynomial

fi(g*-,H2(X))eZ[x]

(which is indeed independent of I and integral by general theory). The relation with
dynamics is fostered by the occurrence of Salem polynomials. A monic irreducible
polynomial / e Z\x\ of degree 2d is called Salem polynomial if it has 2d — 2 roots
on the unit circle plus two real positive roots a, 1 /a\ as a convention, we denote the

root with absolute value greater than 1 by a.

Theorem 3.1. The characteristic polynomial ß{g*', H2{X)) factors into cyclotomic
polynomials and at most one Salem polynomial.

Over C, the result is due to McMullen [9]. In positive characteristic, it relies on
essential input of a result by Esnault and Srinivas [5] which implies that g* is finite
on the orthogonal complement of the span of all the g*-iterates of any polarization
on A. In particular, g* can only have positive entropy on a subspace of NS(A') which
then necessarily leads to a Salem polynomial by [3, Prop. 3.1] (which again draws

on [9]).
We can now define the entropy of g:

Kg)

0 if pt{g*\ H2(X)) factors completely

into cyclotomic polynomials,

log a if there is a Salem polynomial / | pt{g*\ H2(X))
with real root a > 1.

We point out that this notion is consistent with the topological entropy from complex
dynamics (compare [5]).

For our purposes, it will be crucial that NS(A) <g) Qz embeds as a direct
summand into H2(X) via the cycle class map. Denote the orthogonal complement
ofNS(A) (8> Qe with respect to cup-product by

Te(X) (NS(A) ® Q^)1- c H2(X).

This notation is consistent with the transcendental lattice T(X) C H2(X, Z) of a

complex K3 surface X as in that case T^(X) T(X) <g> Q^. Clearly g* preserves
NS(A'), so the above direct sum decomposition of H2(X) is compatible with the

g*-action, and we obtain a factorisation

/z(g*; H2(X)) /z(g*; Tt(X)) /z(g*; NS(JQ)

over Z (since NS(A) is a lattice over Z). The crucial dynamical restriction for
our purposes is the following observation which seems to be due to Oguiso in the

complex case; for positive characteristic, the argument has been sketched just below
Theorem 3.1.
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Theorem 3.2. IfX is algebraic, then a Salem polynomial can occur only on NS(A),
i.e. it necessarily divides pt{g*\NS(A')).

Over C, we can be a little more explicit about the other factors:

Lemma 3.3. IfX is a complex algebraic K3 surface, then p,(g*', T(X)) is a power
ofa cyclotomic polynomial.

Proof. From Theorems 3.1 and 3.2, we know that pt{g*\ T(X)) is a product of
cyclotomic polynomials. But then the transcendental lattice T(X) is endowed with
a Hodge structure which is irreducible over Q (by definition, since pg 1). Hence

all the irreducible factors are the same.

Remark 3.4. There is an alternative proof without reference to Theorems 3.1 and 3.2:

For an algebraic K3 surface, it is known that any automorphism g acts by a root of
unity on the regular 2-forms. By standard comparison theorems, this root occurs
as an eigenvalue of g* on H2(X, Z), and by the very definition through the Hodge
structure, on T(X). Then the irreducibility gives the claim.

Note the immediate consequence of Theorem 3.2 that on an algebraic K3 surface

in characteristic zero, an automorphism can have a Salem factor of its characteristic

polynomials of degree at most 20 only. (This is the reason why for Salem degree 22,

previous work was concentrating on non-projective K3 surfaces, see McMullen [9].)
K3 surfaces X in positive characteristic p > 0 come with the advantage that

they allow for Salem polynomials of degree 22 attained on NS(A) if the latter has

rank 22, i.e. if X is supersingular. To see this at work, it seems to suffice with the

supersingular K3 surface of Artin invariant a 1, unique up to isomorphism by
work of Ogus [13] and denoted by X(p).
Theorem 3.5 (Blanc-Cantat, Esnault-Oguiso-Yu, Shimada). For any prime p, there
is an automorphism g e Aut(X(p)) of Salem degree 22.

Corollary 3.6. The automorphism g £ Aut(A'(p))from Theorem 3.5 does not lift to

any characteristic zero model of X(p).
We point out that the automorphisms in Theorem 3.5 are mostly implicit, i.e. there

are existence results building on elliptic fibrations (in particular ofmaximal rank) and

some group theory (see [2,4]). In contrast, until the completion of the first version
of this paper it was only for p 3 that there was an explicit g e Aut(X{p)) of
Salem degree 22 known [3], building on the calculation of Aut(A(3)) by Kondö
and Shimada [8], In the meantime, Shimada used lattice-theoretic decriptions
of involutions of double sextic models to equip any supersingular K3 surface (of
any Artin invariant!) for the first 1000 primes with an automorphism of Salem

degree 22 [19].
Our aim is to exhibit an infinite series of supersingular K3 surfaces, here X(p)

for odd primes p 2 mod 3, with explicit automorphisms of Salem degree 22. This
will be achieved successively in the following sections.
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4. Singular and supersingular K3 surfaces

A complex K3 surface X is called singular (in the sense of exceptional as opposed
to non-smooth) if its Picard number attains the maximum

p(X) hl'\X) 20.

Singular K3 surfaces played an instrumental role in the proof of the Torelli theorem
and of the surjectivity of the period map for K3 surfaces, see [22,23]. In particular,
this led to the notion of a Shioda-Inose structure which relates X to the product
of two isogenous CM-elliptic curves E x E' through rational degree 2 maps to the

Kummer surface Km(£ x E')\

ExE' X (4.1)

Km(£ x E') T(E x E') ss T{X)

We emphasize that when working over non-closed fields, the above construction
can always be carried out over a certain finite extension of the ground field (and that
a singular K3 surface always admits a model over the ring class field H(d) where
d < 0 denotes the discriminant of NS(Ar) by [14]). Therefore, classical CM theory
for elliptic curves easily gives the following statement for singular K3 surfaces:

Proposition 4.1. Eet X be a singular K3 surface, defined over some numberfield F.
Let p be a prime ofgood reduction above p 6 N. Then X (g) Fp is supersingular if p
is inert in Q(Vd) where d disc NS(X).

For all but finitely many p satisfying the conditions of the proposition, the

statement follows from [18]. For completeness, we include an argument which
applies to all p satisfying the conditions of the proposition, and in particular to those

above p 2 where the Shioda-Inose structure breaks down.

Proof We use modularity as exploited in [22], Namely the zeta function of X
contains a quadratic factor which corresponds to the transcendental lattice. By the

Shioda-Inose structure, it agrees (possibly after base extension) with some Hecke
character of K Q(Vd). By good reduction, the inertia group at p acts trivially
on H^fXp, Qt), hence the transcendental lattice gives two eigenvalues ß, ß' ofFrob*

on HffXp ,Qt) which are compatible with ij/. In the ring of integers Ok, we thus

have

ß,ß'eöK with ß + ß'eZ, ßß' Nq (p)2.

Since p is inert in K, it follows that both ß,ß' are /^-powers times a root of unity.
Hence the Tate conjecture (which holds by [1] because Xp^ carries an elliptic fibration

for rank reasons) predicts that p(Xp^) 22.
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More precisely, it is known that any supersingular reduction Aj. will have Artin
invariant a 1, i.e. NS(Ajjp) has rank 22 and discriminant — p2 by [17]. In

consequence, Proposition 4.1 provides a systematic way to produce projective models

for X(p) for all p in some given arithmetic progressions. Lattice theoretically, there

is a conceptual formulation for this connection due to Shioda [21]: X admits a certain

elliptic fibration with section and exactly two reducible fibers, both ofKodaira type II*
(unless E and E' are isomorphic). This fibration which was crucial to (4.1) and is

nowadays often referred to as Inose's pencil (see [16, §13.5]) comes equipped with
an isometry

MWL(A) ss Hom(£\ E')[2], (4.2)

Here Hom(£\ E') is endowed with a lattice structure by means of the degree, and

the intersection pairing on MWL(T) is that of Hom(£, E') scaled by 2. By [6], the

isometry (4.2) can even be made Galois-equivariant.

5. Isotrivial elliptic fibration

It is rather exceptional that the whole construction from the previous section can
be made explicit in terms of equations including generators of NS(X(/?)). Here

we exploit one such instance: the minimal case of discriminant d — 3 where the

singular K3 surface X is most readily constructed as the minimal resolution

X (E x E)/((px<p2)

where E denotes the elliptic curves with zero j-invariant and <p an automorphism of
order 3 on E. Projection onto either factor in E x E induces an isotrivial elliptic
fibration on X which has been studied from other perspectives in [15]:

X : y2+ t2(t-l)2y x3. (5.1)

The corresponding fibration
7T : X —> P'

has three singular fibers of Kodaira type IV* at t — 0, l,oo (as long as the
characteristic is different from 3) and 3-torsion sections (0,0), (0, —t2(t — 1 )2), so
that standard formulae indeed confirm rank and discriminant over C. More precisely,
fiber components and zero sections generate a sublattice

U + El C NS(X)

of index 3 where the 3-divisible classes can be identified with the 3-torsion sections

by Theorem 2.1. For later reference, we fix a basis of NS(V) starting with the general
fiber and with further divisors indicated by the numbers in the following diagram of
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(—2)-curves on X (where 7a and 7b mean that the 7th basis element is the sum of
the two fibre components).

Figure 1. 24 (—2)-curves supporting singular fibers and torsion sections of it

The isotriviality allows us to pull-back n from a rational elliptic surface S by a

purely inseparable base change of degree p for any p 2 mod 3 (including p 2).
The rational elliptic surface S can be given in Weierstrass form

S : y2 + s(s — l)y x3 (5.2)

with singular fibers of Kodaira type IV at s 0, l,oo and 3-torsion sections

(0,0), (0, —s(s — 1)). The inseparable base change leading to X in characteristic

p 2 mod 3 is

s tp.

Conceptually, this is a consequence of the specific singular fibers and their behaviour
under base change; explicitly it can be derived by minimalising the resulting equation
by rescaling x and y. It follows that X(p) is a Zariski surface, and we obtain

MWL(3f(/?), n) s A^{p) abstractly from the classification by Oguiso-Shioda [12]
through functoriality [20, Prop. 8.12], Alternatively, we can work out generators of
MW(S) explicitly; for instance, the sections Pq (5, s) and ojPq (cos, s) together
with the 3-torsion section Q (0,0) suffice where a> simultaneously denotes a

primitive third root of unity and the corresponding automorphism of the generic fiber
of (5.1) and (5.2). On the elliptic fibration given by (5.1), these induce the following
sections, expressed in terms of p 3n + 2:

p (tn+2/(t - 1 )2n,t2/(t - l)3"), coP (cotn+2/{t - 1 )2n,t2/{t - l)3").
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One computes the following intersection numbers between sections (symmetric in P
and coP):

P.O P.Q P.2Q n, P.coP=3n.

In addition, P meets the IV* fibers at t oo in the same component as Q (#13),
at t 0 in the other non-identity component compared with Q (#6) and at t 1 in
the identity component. In terms of the height pairing [20] one thus easily verifies
that

{P,0) (P,Q) {P,2Q) 0, (P,P)=2p/3, (P,o)P) -p/3,

confirming MWL(A(p)) (p). Translation by P on the generic fiber of (5.1)

gives an automorphism
r e Aut(2f(/?)).

Using Theorem 2.1, it is not hard to work out the action of r* on NS(A(p)). For

instance, t* rotates both IV* fibers at t 0, oo while leaving the fiber at t 1

invariant componentwise. We illustrate this with two more explicit examples.

Complementing the above basis of NS(A) by P,a>P for a Z-basis of NS(X(p)),
we can write

p + Q (4,2,-1,-2,-1,0,-2,-2,-4,-3,-2,
- 3, -2, -3, -6, -4, -2, -5, -4, -2, 1,0)

2P (2n + 6,2, -2, -4, -2,0, -4, -2, -4, -3, -2,
- 3, -2, -3, -6, -4, -2, -5, -4, -3,2,0)

Here is a quick guide how to find these representations: first subtract O to obtain

a divisor D with D.F 1; then add and subtract fiber components until D meets

each fiber at exactly one component (partly predicted by the group structure on the

smooth locus of the fiber); finally add a multiple of F such that D2 —2.

In exactly the same way, translation by the section coP defines an automorphism

z°> e Aut(X(p)).

The full matrices representing r and rw in the above basis of NS(A(p)) are

available from the author's homepage; the same goes for two further automorphisms
of X(p) which we will develop in the next two sections, and subsequent calculation
data. Together the four automorphisms will combine for the automorphism proving
Theorem 1.1.

6. Alternative elliptic fibration

One of the keys for the implicit results in [2,4] is the special feature that a K3 surface

may admit different elliptic fibrations. For convenience, we shall only work with
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fibrations which are already visible on I. By work of Nishiyama [11], there are 6

such up to isomorphism, each uniquely encoded in the singular fibers.
In detail, we work with the elliptic fibration which has a fiber of Kodaira type /igln

Figure 1, this is visible as the outer circle of (—2)-curves. Note that by general

theory, this divisor will in fact induce the fibration

it' : X -* P1

in question. Over C, it is easy to work out MW(2f, n')\ choosing some curve as

zero section O' for n', there is a 3-torsion section Q' and a section R' of height 3/2
as indicated in Figure 2. By standard formulae for the discriminant [16, (22)], Q'
and R' generate MW(I, n').

Figure 2. I\$ fiber and 6 sections

Next we consider n' as a fibration on X(p) for an odd prime p 3n + 2

as above. The congruence assumption on p ensures that the fibration does not
degenerate (cf. Rem. 6.1), and MW(3f(/?), n') has rank 3 (cf. Prop. 4.1). Generators

complementing Q', R' are readily obtained from the degree p-multisections P, a>P.

By Theorem 2.1, these induce sections P',coP'. For our purposes, it suffices to
describe the sections as divisors in terms of the multisections and elements from the

trivial lattice of n' as in section 5 (subtracting (p — 1)0 and then proceeding as

before).
For completeness we list the resulting intersection numbers (again symmetric

in P', coP', and in perfect agreement with disc NS(2f(p)) —p2)'.

P'.O' (3n2 + 8« + l)/4, P'.Q' (3n + 5){n + l)/4.
P'.R' (3n2 + 2n + 3)/4, P'.coP' 3n.
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As in Section 5, we can then define an automorphism

r' e Aut(X(p))

by translation by P' on the generic fiber of n' and compute the induced action
on NS(*O0).
Remark 6.1. At p 2, the fibration n' degenerates as it attains three additional
reducible fibers of Kodaira type 12 (with fiber components given by the sections —P,
—u>P, —co2P). Since MW(A"(2), n') Z/6Z, the above computations cannot carry
over. Indeed, on the contrary, the multisection P induces the 3-torsion section Q'
for n'.

7. Extra involution

In order to prove Theorem 1.1, it is crucial to throw in an involution which does

not respect the elliptic fibration (5.1) above. Almost to the contrary, it exploits a

symmetry in Figure 1 which makes the fibration with three fibers of type IV* visible
in two essentially different ways: the one depicted in Figure 1 and the one which
features the original torsion sections O, Q, 2Q as triple components of the singular
fibers:

01" 0)

Figure 3. Isomorphic fibration with three IV* fibers

By the uniqueness of the fibration, there is an automorphism

1 e Aut(A)

(and thus in Aut(2f (/?))) switching these two models of the fibration. Explicitly, this
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can be derived after rescaling x, y in (5.1) from the resulting symmetry in y,t (up to

sign):

X: (y2 + y)t(t-l) x3.

For the new fibration, P and ojP again induce multisections of degree p\ modulo the

trivial lattice they are equivalent to —P, —coP in terms of the standard basis. Again,
one can thus spell out the induced action of i* on NS(X(p)).

8. Non-liftable automorphism

Consider the following automorphism on X(p):

g x'oiox'oioxwoiox'oiox'oiox Aut(A(/?)).

With a computer algebra system, one computes the characteristic polynomial of g*
on NS(X(p)):

ß(g*) xn<p(x + l/x), (8.1)

where

<p(x) 6804+ 11016« + 2187n2 + (—6804« — 20304 + 7128n2) x

- (16443 «2 + 64281« + 34254)x2 - (17442 «2 - 20925« - 56020) x3

+ (107487« + 31536«2 + 63852) x4 + (12987«2 - 16794«-43992) x5

- (22545«2 + 70167« + 44646) x6 - (3780«2 - 5157« - 13414) x7

+ (6696«2 + 19467« + 12900) x8 + (378 «2 -540« - 1404) x9

+ (-1308-702«2 - 1929«) x10 +X11

Lemma 8.1. The polynomial i//(x) is an irreducible Salem polynomial over Z for
any n e N such that 3« + 2 is prime.

Proof. Let « e N such that p 3« + 2 is prime. Then f(x) comes from the

automorphism g e Aut(ATp)) sketched above. If f(x) were not irreducible over Z,
then it would split off a cyclotomic factor by Theorem 3.1. This, however, can be

falsified simultaneously for all « e N by computing the remainders after division
with each cyclotomic polynomial of degree at most 22.

Proof of Theorem 1.1. We have verified for any odd prime p 2 mod 3 in
Lemma 8.1 that g e Aut(X(p)) is an (irreducible) Salem polynomial of degree 22.

For the sake of completeness, we recall why g does not lift to any characteristic

zero model of X(p). Assume to the contrary that there is a lift X of X(p) over

some field K of characteristic zero, with some automorphism g e Xut(X) lifting g.
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Since the isomorphism H2(Xp) H2(X(p)fp) is equivariant for the action of g*
resp. g*, this implies

Mg*) Kg*)-
By Theorem 3.2, the Salem factor (p(x) can only be attained on NS(^), hence

p(X£) deg^(x) 22.

This contradicts Lefschetz' bound p(X%) < hl'l(X^) 20. The same reasoning
applies to any non-trivial power of g, since the characteristic polynomial remains
irreducible of degree 22, and in particular Salem.

Remark 8.2. One can exhibit explicit automorphisms of Salem degree 22 on X(p)
for odd p 2 mod 3 already as a ninefold composition of our automorphisms r,
zw, z', i, but their characteristic polynomials turn out more complicated than Kg*)-
Indeed, an extensive search of compositions of the given automorphisms did not yield
any irreducible characteristic polynomials of less complexity. On the other hand, we

can exhibit a slightly less complicated automorphism of Salem degree 20,

g' z'oiOT'oiOTOlOz'oiOT Aut(X(p)),

which does not lift to any characteristic zero model of X(p). This has characteristic

polynomial Kg'*) (x ~ ' X* + 1 )VX*) for some Salem polynomial ifr(x) of
degree 20. Since the latter factor has to be attained on NS of any characteristic zero

lift, one can apply Lemma 3.3 to the remaining linear factors of Kg'*) to establish

a contradiction against lifting. We emphasise, though, that this non-lifting argument
does not apply to g'2.

Remark 8.3. The polynomial p(g*) is also irreducible over Q for p 2, i.e. n 0.

However, it is not immediate to deduce that it is the characteristic polynomial of an

automorphism on X(2), since the fibration n' degenerates, see Remark 6.1.
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