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Nekhoroshev’s estimates for quasi-periodic
time-dependent perturbations

Abed Bounemoura

Abstract. In this paper, we consider a Diophantine quasi-periodic time-dependent analytic
perturbation of a convex integrable Hamiltonian system, and we prove a result of stability of
the action variables for an exponentially long interval of time. This extends known results for
periodic time-dependent perturbations, and partly solves a long standing conjecture of Chirikov
and Lochak. We also obtain improved stability estimates close to resonances or far away from
resonances, and a more general result without any Diophantine condition.

Mathematics Subject Classification (2010). 37]25, 37J40.

Keywords. Hamiltonian systems, perturbation theory, effective stability.

1. Introduction and results

1.1. Introduction. Let n > 1 be an integer, D C R" an open bounded convex
domain and T" := R" /(27 Z)". Consider a smooth Hamiltonian function H defined
on the domain T” x D of the form

HB,I)=h(I)+ef(0,1I), >0, (0,1)=(b,....0n,11,..., 1) € T"xD,
(1.1)

and its associated Hamiltonian system

0;(t) = 31, H(O(1), I(2)) = 31, h(1(r)) + €d1, f(B(2), 1(1)),
Ii(t) = —03g, H(O(t), 1(t)) = —edg, f(O(1). I(t))

For ¢ = 0, the system is stable in the sense that the action variables /(¢) of all solutions
are constant, and all solutions are quasi-periodic. Now for ¢ # 0 but sufficiently
small, a fundamental result of Nekhoroshev states that if the system is real-analytic
and the integrable part / satisfies a steepness or S-steepness condition (these are
generic conditions), then the action variables /(¢) of all solutions are almost constant
for an interval of time which is exponentially long with respect to the inverse of the
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perturbation. More precisely, the following estimates hold true along all solutions:

110 = 101 = | Y000 - 10)? = Rae?. 1 = Toexp (3)) (12)
&

i=1

for some positive constants Rg, Ty, c,a and b. We refer to [25] and [26] for the
precise results and the definitions of steep and S-steep functions. The most important
constants appearing in the estimates (1.2) are undoubtedly the constants a and b,
which are called the stability exponents. The simplest class of steep (respectively S-
steep) integrable Hamiltonians are quasi-convex (respectively convex) Hamiltonians,
and these exponents depend then only on the number of degrees of freedom n.
Nekhoroshev’s original proof yielded the following dependence

1
a~b~n—2

Such values for the exponents were however much worse than the values

1
a=bh=—
2n
conjectured by Chirikov [12] on a basis of a heuristic argument and numerical
simulations. This issue was later solved by Lochak [20]: more precisely, Lochak—
Neishtadt [23] and independently Poschel [27] proved that (1.2) holds true with the

values
1

2n
in the quasi-convex case (in the convex case, these exponents are valid for solutions
starting not too close to the minimum of /; for these latter solutions the action
variables are stable for all time). The proof in [27] also allows to increase the value
of b at the expense of decreasing the value of a: given any 0 < p < 1, one can obtain
the exponents

a=>»

po o l=—p
= — 4+ —

2n &
that recovers the latter result by setting ;& = 1. On the other hand, it is proved in [10]
that one can slightly improve the value of a at the expense of greatly decreasing the

value of b: forany 0 < § < (2n)™!, one can choose

a=—, b

a=—2-(;1-—_—~ﬁ(1—28), b =32,

and the classical result is recovered by letting § = (2rn)~!. Examples of Arnold
diffusion [2,3,30] show that in any eventa < (2(n —2))~! so that in the convex case,
the estimate (1.2) is, as far as the dependence on a is concerned, quite sharp.
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In the general steep case, no improvement on the values of the stability exponents
were made until a recent achievement by Guzzo, Chierchia and Benettin (see [17] for
an announcement and [18] for the proof): denoting by «, ..., a,—; the steepness
exponents (these are integers always larger than one), they obtained the values

1 B a 1
On—1 2?1(0[1---0!,,_1)-

 2n(arran2)’

For a quasi-convex Hamiltonian, one simply has &y = -+ = a,—; = | and thus the
latter result extends the conjectured optimal values.

Now instead of an autonomous perturbation as in (1.1), one may consider a
periodic time-dependent perturbation, that is one looks at the Hamiltonian

H®O,I)=h(I)+ef0,1,1), >0, B, 1)eT" xD, teT. (1.3)

Setting t = ¢ € T and introducing a variable J € R canonically conjugated to ¢, it
is equivalent to study the autonomous Hamiltonian

H®O.1,0.J)=h(I)+J +ef(0,1,9), &>0,
O, 1)eT" x B, (¢, J)eTxR. (1.4)

Indeed, (6(¢), 1(¢),@(t),J(¢)) is a solution of the system associated to (1.4) if,
and only if, (6(¢), 1(t)) is a solution of the system associated to (1.3). In his
seminal work [25,26], Nekhoroshev introduced a notion of P-steepness such that
exponential stability holds true for a periodic time-dependent perturbation of a
P-steep integrable Hamiltonian. As Nekhoroshev pointed out, the P -steepness of an
integrable Hamiltonian / + /() turns out to be equivalent to the steepness of the
extended integrable Hamiltonian (/, J) — h(I) + J, hence the stability of P-steep
integrable Hamiltonians under a periodic time-dependent perturbation is a direct
consequence of the stability of steep integrable Hamiltonians under an autonomous
perturbation.

Once again, the simplest class of P-steep Hamiltonians are given by convex
Hamiltonians: if 7 + h([I) is convex, then one easily check that (1, J) + h(I)+ J
is quasi-convex and thus steep. Thus the results of [23] and [27] apply to periodic time-
dependent perturbation of convex integrable Hamiltonians, and the estimates (1.2)
hold true for the Hamiltonian (1.3) with the exponents

1
2+ 1)
Now a periodic time-dependent perturbation is nothing but a special case of a

quasi-periodic time-dependent perturbation, and we may more generally consider
a Hamiltonian of the form

a=>bs

H®O,1)=h(I)+ef(0,1,ta), &>0,
0, 1) eT" x D, ta=t(@,....oam) €T (1.5)
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where o € R™ is a vector which is assumed to be non-resonant, that is k -« # 0
for any non-zero k € Z™ and where - denotes the Euclidean scalar product. We
will assume actually that o satisfies a Diophantine condition: there exist y > 0
and t > m — 1 such that

k-a| = ylk|™", k=(ki,....km) € Z™\ {0},
|k| W= |k1| + o+ |kml. (Dioy,r)

As before, setting ¢ = ta € T™ and introducing a vector J = (Jq,...,Jm) € R™
canonically conjugated to ¢, the Hamiltonian (1.5) is equivalent to

HO,I,p,J)=h(I)+a-J +ef0,1,p), >0,
@, 1)eT" x D, (p,J)eT” xR". (1.6)

The Hamiltonian (1.6), in the special case m = 1, reduces to Hamiltonian (1.4):
indeed, « € R and by a scaling one may assume that « = 1, and moreover (Dio, ) is
obviously satisfied for y = |¢| = 1 and t = m—1 = 0. However, in the case m > 2,
the extended integrable Hamiltonian does not satisfy any steepness condition, so it is
not clear whether the estimates (1.2) hold true.

We can now state the most general form of a conjecture of Chirikov (see [12, 13]
and [14]), stated in a more precise manner by Lochak [22].

Conjecture 1.1. The estimates (1.2) hold true for the Hamiltonian (1.6), provided it
is real-analytic and h convex, with the exponents

_ 1

24+ 141)

a=>»s

Note that this conjecture is made plausible by the fact that in the periodic case,
thatism = 1 and t = 0, it is a theorem. Yet for m > 2 and hence v > 1, it is
an open question whether the estimates (1.2) hold true for the Hamiltonian (1.6), for
some values of @ and b whatsoever.

It is the purpose of this article to solve this problem: we will prove that the
estimates (1.2) hold true for the Hamiltonian (1.6), provided it is real-analytic and A
convex, with the exponents

. 1 _ (m+Dr+1 1 n 1.7
T nt DO+ DT 2+ D0+ 2 2m+D0+10) O
We refer to Theorem 1.2 below for a more precise statement. Concerning the values of
the exponents we obtain, let us just make two comments (a more detailed discussion
is contained in Section 1.4). First, for the periodic case (m = 1, T = 0), we also
recover the known values of the exponents, so our result can also be considered as a
“correct” generalization of the periodic case. Then, in the non-periodic case (m > 2,
T > 1), our exponent a is substantially worse than the one of Conjecture 1.1, but
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at the same time our exponent b is always much better: b is always strictly bigger
than 1/4, and when m gets large, it is close to 1/2. Moreover, in the non-periodic
case, b is essentially independent of n which is an interesting feature. In any case, it is
therefore still an open question whether the values of the exponents of Conjecture 1.1
can be reached or not (once, again, we refer to Section 1.4).

In fact, we do obtain more general results. First, the perturbation will be
allowed to depend also on the J variables, that is we can replace f(6, I, ¢) in (1.6)
by f(0,1,¢,J),provided f is bounded and real-analytic in J, when J varies in R™,
Moreover, we will also be able to control the evolution of the J variables; in the
periodic case T = 0 we will obtain a stability result with the same exponents a and b,
while in the quasi-periodic case T > 1, we will obtain the same exponent a but a
worse confinement given by the exponent

b* =b—na = L 2n
2 2+ +1)
which is still strictly positive, and asymptotically close to 1/2 when m gets large.
This will be the precise content of Theorem 1.2. To understand the interest of this
seemingly mild extension, one can compare such a result with the preservation of
invariant tori (that is, the KAM theory) for Hamiltonians as in (1.1), (1.4) or (1.6).
In the autonomous case of (1.1), if the integrable Hamiltonian is convex then it
is in particular Kolmogorov non-degenerate and the classical KAM theory applies
(see [28] for a survey). In the periodic case (1.4), the integrable Hamiltonian is
no longer Kolmogorov non-degenerate but as it is quasi-convex, it is Arnold (or
iso-energetically) non-degenerate: it follows that tori are preserved at a fixed energy
for (1.4) yielding invariant tori for (1.3). In this case the perturbation may also
depend on J € R without affecting the result. Now in the more general quasi-
periodic case (1.6), the integrable part is both Kolmogorov and Arnold degenerate.
However, using the non-degeneracy with respect to the / variables and the fact
that the perturbation is independent of J, it is not hard to prove, using classical
KAM techniques, that many tori with prescribed Diophantine frequencies of the
form (w,a) € R"™™ are preserved (up to our knowledge, this was first observed by
Galavotti in [15] in a restricted situation and later by Lochak in [21,22] in a general
situation). It is crucial here to have a perturbation which is independent of J: if not,
the method simply breaks down and it is rather easy to construct counter-examples
(as in [29]) to the preservation of (full dimensional) invariant tori. Therefore unlike
the situation in KAM theory, our result is exactly the same when f is allowed to
depend on the J variables.

Then, exactly as in [27], one can obtain a more general result by increasing the
value of b (and therefore of »*) while decreasing the value of a. This will be the
content of Theorem 1’.

Moreover, as in the autonomous or periodic case, we do obtain enhanced stability
close to resonances. In our situation, the multiplicity of any resonance is at most d,
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where 0 < d < n (with the convention that any frequency is resonant of multiplicity
at least 0), and solutions who start sufficiently close to such a resonance are stable
with the exponents

1 b(d) = (n+Dr+1
2(n+ Dt +n+1-d)’ S 2((m+ Dt +n+1-d)

a(d) =

and
m+Drt+1—n

T2t Di+nti—d)
In the case of a resonance of maximal multiplicity d = n these exponents read

1

b*(d)

a) = ST D r D)
This will be proved in Theorem 5.1. One recovers the improved stability exponents of
the periodic case by setting t = 0, and our main result by setting d = 0. Using this
improved stability at resonances, one can proceed as in [10] to slightly improve the
value of the exponent a by greatly decreasing the value of the exponent » (and loosing
control on the J variables for m > 2). This will be the content of Theorem 5.2.

The complement of the neighborhoods of all resonances is the non-resonant
domain (this domain contains, in particular, invariant tori, if any). Solutions starting
in the non-resonant domain are stable with the exponents

1

1 N
= mrDarn Y =3

Moreover, the complement of this non-resonant domain is actually very small: its
measure is of order

b p n+ Dt +1
’ 2(n 4+ 1)(1 4+ 1)

and therefore goes to zero with €. This will be stated as Theorem 6.1. This actually
improves on the corresponding statement for T = 0, where the measure estimate
of the complement is just of order one. This non-resonant domain comes from the
proof of our main theorem, and ends up quite large as we need to exclude very small
neighborhoods of resonances. A more natural definition of a non-resonant domain
yield the following result: given any 0 < y’ < y and any v’ suchthat t" > n+m—1
and ¢/ > 7, where y and 7 are the constants appearing in (Dio, . ), there is a set whose
complement has a measure of order ’, such that on this set, the estimates (1.2) hold
true with the exponents

al=—1_’ b’=b,*='1_.

2(t" + 1) 2
This will be the content of Theorem 6.2. Hence on a smaller non-resonant subset,
but which is still relatively large, we have a stronger stability result, with a” arbitrarily



Vol. 91 (2016) Quasi-periodic Nekhoroshev’s estimates 659

close to the value conjectured and " much better. As a matter of fact, when 7 > m—1
(for m > 2, the set of vectors « for which ¢ = m — 1 has zero measure), one can
choose " = n + 7 and then &’ coincides with the value conjectured.

Finally, as usual with results in Hamiltonian perturbation theory concerning long
but finite time scale, the Diophantine condition (Dio,, ;) on the vector « € R turns
out to be unnecessary. For an arbitrary vector « € R™ which is assumed to be
non-resonant, that is

k-a#0, k#0eZ",
we will obtain in Theorem 7.3 a more general stability result which reduces to the

main result in the case where « is Diophantine.

1.2. Main result. Let us now state more precisely our main result. We consider a
Hamiltonian of the form

H@O.9.1,J)=h(I)+a-J + f(0.9.1,J),
0,1)eT" xD, (p.J)eT"xR™ (H)

where 7 is the integrable part and f the perturbation. The Hamiltonian h, defined
on D := D x R™ by

W, J):=h(D)+a-J, (I,J)eD

will be called the extended integrable part. The functions 4 and f are assumed to
be real-analytic as follows. Given two parameters ro > 0 and 5o > 0, we define the
complex domains

VieD :={1 € C" | |[I — D| < ro},
VieD :={(1.J) e C"*™ | |(1,J) — D|| < ro}
where

If =D := inf |1 —1I'|, |(I,J)—D| := inf |(1.J)— ", T,
I'eD (I’,JNeD

and
Ve T i= {(6.9) € C"+"/2rZ)"*™ | max [Im(6))] < so.
<i<n

max |Im(g;)| < SO}-
1<i<m

Let us also define the associated real domains

Uy, D := V;y D NR",
Uy, D := V,, D NR*"*™ = U, D x R™,
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The function h is assumed to be real-analytic on V,,D so that h is real-analytic
on V,, D, and its Hessian V2 is assumed to be uniformly bounded on the complex
domain V,, D, namely there exists M > 0 such that

sup [|V2h(I)| = sup |VZh(I,J)| < M (M)
1€V, D (I1,0)€Vy,D

where the matrix norm is the one induced by the Euclidean norm. The gradient of A
is also assumed to be uniformly bounded on the real domain U, D, that is there exists
€2 > 0 such that

sup [(VA(I),a)| = sup [|VA(I)| < Q. (Q)
IeUr, D 1eU,,D

Moreover, the integrable Hamiltonian is assumed to be (strictly, uniformly) convex:
there exists k > 0 such that for any v € R”,

VZh(I)v-v > k|| (k)

Observe that 2 > [l and k < M.
Finally, the function f is real-analytic on V,, D x Vs, T" +tm_and moreover, given
a small parameter ¢ > (), it is assumed that

lflro,so <¢ (e)
where the Fourier norm | f|, i, of f is defined as follows: letting
f(ga (p9 I, J) == Z fk,l([a J)ei(k:l)'(e,‘P)
(k,Hezn+tm

be the Fourier expansion of f with respect to (6, ¢), we define

Flrosor= 0P D LfiaC DI ®DR0, (e, 1)) = Jke| + 1]
(I,J)EV,—OD_ (k,lyezn+m

We can now state our main theorem.

Theorem 1.2. Let H be as in (H), with h satisfying (M), (2) and (k), and f
satisfying (¢). Assume also that a satisfies (Dio,, ), and let us define

1 m+Dr+1 y (M+Dr+1-—n
a = - = 3 =
2n+ D(t+ 1) 2n+ 1)(t+ 1) 2+ D(t + 1)
and
R = KoY 350

= . T — S
I0M(n+ 1) 7T Q

1

£ = Krgyz ( K )2(n+1) A r_o)ﬁ
21005 + 1)t \10M ’ R.) -
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If kro < min{80, 24||a||} and e < min{eg, 4}, for any solution (1(t), J (1), 0(¢), ¢(1))
of the system associated to H with initial condition (1o, Jo, 80, o) € D x T" ™ we
have

b a
I11(t) — Io|| < R(e) := R« (g) , |t| £ T(e) := Tk exp (%0 (8?0) )

Moreover, in the case where m = 1 and hence t = 0, we have

b a
J(@) — ol < (/la] + DR, (i) = Tee (2 (2))

)

whereas in the case m > 2 and hence T > 1, we have

*

& g S0 /€0\4
|7(6) = Joloo := sup|Ji(£) — Ji (0)] < R, (—) = Teexp (2 (2) )
1<i<m €0 6 \¢

Let us just make one comment concerning the assumption (¢), which requires
the perturbation f(6, ¢, I, J) to be uniformly bounded in J, with J belonging to
the ro-neighborhood of R™ in C. When H comes from a time-dependent quasi-
periodic perturbation of a convex integrable Hamiltonian, the perturbation is in fact
independent of J so the above requirement is void. As a matter of fact, since we
are able to control the evolution of the J variables, one can obtain a stability result
assuming only that the perturbation f(6, ¢, I, J) is uniformly bounded in J, with J
belonging to the r¢-neighborhood of some fixed bounded domain U C R™ in C™.
In the periodic case m = 1 this is easily done and one obtains exactly the same result
with this weakened assumption. The problem in the quasi-periodic case m > 2 is that
the control on the J variables we obtain (which is given by the exponent 5*) is worse
than the control on the / variables (given by the exponent b) and as a result, under
this weakened assumption one would obtain a worse stability result. The discrepancy
between the exponents b and b* will be discussed in more details in Section 1.4.

Next, exactly as in [27], replacing the radius of analyticity rp by the smaller
radius ro(es/go)l__f’i for 0 < p < 1, we immediately obtain the following more
general statement.

Theorem 1. Let H be as in (H), with h satisfying (M), () and (k), and f
satisfying (&). Assume also that a satisfies (Dio,, ), and let us define

y 1 _ (n+Dr+1 « (+Drt+1-n
2+ D+ T 2+ DT+ 1)’ 2+ 1)(t+1)
and
Kroy 359
R* = ) * = T
10M(n + 1)° Q

Krgyz K 2(n+1) r() JE
Ep = ( ) y Ex = &0 | — "
210(n + 1)2t \10M R.
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If kro < min{80, 24||«[|} and ¢ < min{eo, e}, forany solution (1(t), J(1),6(t), ¢(1))
of the system associated to H with initial condition (1o, Jo, 0o, ¢o) € D x T ™ we

have
n=ren(® (%))

forany 0 < u < 1. Moreover, in the case where m = 1 and hence t = 0, we have

= Teexp (2 (2))

whereas in the case m > 2 and hence t > 1, we have

) — Jolos < Re (i)ub*+l_7“ 1] < Taexp (fg (8?0);1@).

)M’HI—E&

€
1 1(t) — o] < R« (—
€0

15
() = Jo| < (@/]a] + )R, (f)“
0

6

Observe that Theorem 1.2 reduces to the case i = 1 of Theorem 1’.

1.3. Strategy of the proof. There are two known methods to prove Nekhoroshev
type estimates for small perturbations of integrable Hamiltonian systems. The
first one is the Nekhoroshev—Poschel’s method, introduced in the seminal work
of Nekhoroshev [25,26] and later improved by Poschel [27] in the convex case (see
also [18] for a further extension of the work of Nekhoroshev and Poschel leading to
an improved and conjecturally optimal value of the stability exponents in the steep
case). The second method is the Lochak method, introduced by Lochak [20,23] in the
convex case (see also [11] for an extension to the steep case, though with worse values
for the stability exponents). In the convex case, the latter method is undoubtedly the
simplest and most elegant way to prove stability estimates.

The Lochak method crucially relies on the existence of periodic orbits for the
integrable system, that is on the existence of periodic frequencies. Now in the case of
a quasi-periodic perturbation, the space of frequencies is of the form (w, o) € R" ™,
where w € R” is free but « € R™ fixed and non-resonant (in particular, « is
not periodic; if it were, one would be in fact looking at a time-dependent periodic
perturbation). The issue is that this space does not contain periodic frequencies. As
a matter of fact, it is not really necessary to have exact periodic frequencies, but
only frequencies which can be approximated by periodic ones. Now any frequency
of the form (w, @) can be approximated by a periodic frequency, say (@', «’). But
then necessarily o’ # «, and since our Hamiltonian is not convex in the J variables
we were not able to prove stability close to such periodic frequencies. Therefore the
method of Lochak does not seem to extend in a easy way to the case of a quasi-periodic
perturbation.

Our strategy is therefore to try to extend the Nekhoroshev—Pdschel method, and we
will succeed in doing so. This method consists of covering the space of frequencies
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by resonant blocks, which are neighborhood of resonances (defined by a certain
lattice of integer vectors) that are otherwise non-resonant (for integer vectors not
in the lattice). Using convexity, one can then show that the solutions stay in the
same resonant block for a long time (in the general steep case, they may leave their
resonant block and the proof of the stability gets much harder). In the autonomous
case where the frequency space is just w € R”", resonances define linear subspaces
which are orthogonal to arbitrary submodules of Z". In the quasi-periodic case, our
frequency space is still n-dimensional but resonances are associated to submodules
of Z"*t™_ But not all submodules of Z"T™ are associated to resonances: those that
are not will be called non admissible. Now resonances associated to admissible
submodules do not necessarily define linear subspaces but rather affine subspaces
in the space of w € R". Therefore we are facing much more resonances than in
the autonomous case, and the geometry of these resonances gets more involved.
In particular, different admissible submodules might lead to different but parallel
affine subspaces, and it is at this point that the assumption that « is Diophantine
(or in fact simply non-resonant) comes into play: it ensures that we can control the
distance between these parallel affine subspaces. In particular, in the extreme case
where these parallel affine subspaces are just points (that is, their associated vector
space is trivial), they can get very close to each other, and this is precisely from this
phenomenon that our values of the stability exponents come from. This improved
geometry of resonances will lead to the fact that any frequency (., «) is close to some
resonant frequency of the form (w’, ). Using this, and the fact that our integrable
Hamiltonian is convex in the / variables while linear in the J variables, we will
be able to prove stability for the / variables. Once we know that the evolution of
the 7 variables is bounded, using the fact that resonances are associated to admissible
submodules, we will obtain stability for the J variables, with the same interval of
time yet with a worse confinement.

1.4. A discussion on the stability exponents. First let us recall that the conjecture
of Chirikov—Lochak predicts that

1

a:b:2(n—|—1+t) (15
while we proved
1 (m+ 1 +1
T2+ T 2+ DO+ 1)

For = 0, the exponents are the same but not for > 1. However there is certainly no
contradiction here; our result yields a better confinement but on a worse time-scale.
Chirikov initial conjecture is ultimately based on the ansatz

(k. 1) - (w, )| ~ |kl + 1] = K, (1.9)

Knt+tm—1 4
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for an arbitrary fixed vector @ € R™, leading to the exponents

1
T 2n+tm)

(1.10)

We refer to [14, Equation (1.8)], for instance. When m = 0 or m = 1, that is
when the perturbation is autonomous or time-periodic, vectors @ € R" satisfying
the above condition (1.9) do exist: they are called badly approximable, they are the
“best” non-resonant vectors and they form a dense set but of zero Lebesgue measure.
In those two cases m = 0 and m = 1, the exponents (1.10) turned out to be correct,
but proofs do not use existence (nor density) of those badly approximable vectors: on
the contrary, in the work of Lochak it is the “worst" resonant vectors, namely periodic
vectors, that play the major role. When m > 2, as observed by Lochak in [22], the
ansatz (1.9) and hence the exponents (1.10) are clearly too optimistic: one should
require & to be Diophantine with some exponent T > m — 1, and replace (1.9) by

(k1) - (w0, )| ~ k| + 1] < K, (1.11)

Kn+t’
so that the exponents of (1.10) become those of (1.8). Vectors w € R”
satisfying (1.11) do exist, they form a dense set which is furthermore of full Lebesgue
measure when t > m — 1 (when T = m — 1 they have zero Lebesgue measure). In
our opinion, it is a very interesting open problem to derive first these exponents when
m = (0 or m = 1 using badly approximable vectors, to see if and how one can try to
use vectors satisfying (1.11) to possibly reach the values (1.8).

The fact that our exponent b is much better than the exponent conjectured, whereas
our exponent a is much worse, lead to the following natural question: is it possible
to improve the exponent a (possibly to the conjectured value) at the expense of
deteriorating the exponent b?! Of course, we cannot prove this is not possible (as
this would mean that the conjecture is wrong, which of course we do not know) yet
we will try to explain why this cannot be done if one strictly follows the confinement
mechanism of Nekhoroshev (which is what we do here). Indeed, a crucial point in this
mechanism is the so-called non-overlapping of resonances: resonant zones (which
are small neighborhoods around exact resonances) of the same multiplicity should
not be allowed to intersect, because if they do, this could create a path in action space
along which orbits could have large variation. This property was fundamental in the
original work of Nekhoroshev [25], but also in [27] (though in a rather disguised
form) and then finally in [18]. As a matter of fact, in [25] this non-overlapping of
resonances was forced by the definition of the resonant zones which ultimately lead
to non-optimal exponents while in [18], using a different definition of resonant zones,
which generalizes the one introduced in [27], this property was proved to be satisfied
by a very careful analysis, leading to improved and conjecturally optimal exponents.

'We would like to thank an anonymous referee for pointing out this question.
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The point here is that in the quasi-periodic case, there are much more resonances
than in the periodic case, hence if one wants to separate resonant zones of the same
multiplicity, then one needs to consider much thinner neighborhoods of resonances,
and by doing so one obtains at the end a very small radius of confinement. To
explain this in more detail, let us start by comparing the simplest yet non-trivial cases
n=m = 1 withn = 1, m = 2. In the first case, we consider the integrable part

1
h(I,J) = 512 +J, (I,J)eR? (1.12)

while in the second case, we consider the integrable part

1
h(I,Jl,J2)=512+J1+aJ2, (I,J1,J,) eR3 «aecR\Q. (1.13)

For simplicity, let us restrict the discussionto / € [0, 1]. Inthe case (1.12), resonances

of order at most K > 1 correspond to rational values of / with denominators bounded
by K, that is

%(q,p)~Vh(1,J)=o, — %1:—2,

q
1(q. P)lec = K, q=1(q,p)le < K.

Clearly, the distance between any two such rationals is bounded by

/

|£_P_
qg q

1 1

> — > —

“qq9" T gK

and therefore to separate the resonant zones, one has to define them as

1

Zg,p) = {IGR ! ‘1__‘<"(pq)} "(p.g) ™~ qK

The analysis then requires to have /¢ < r(;,p), and as ¢ can be as large as K, the
largest possible choice of K is K ~ ¢~1/4 and this leads to the exponent of stability
a = 1/4. Moreover, since g can be as small as one, one alsohas r ) < K —1 L gl/4
and thus b = 1/4. Another way to see this (and this is the point of view taken in [27])
is to observe that at I = —p/q, for any k = (q’, p') € Z? with |k|e < K, then
either k- Vh(—p/q,J) = 0 (if k = (¢’, p’) is proportional to (p, g)) or else one has
the “small divisor” estimate

a'r|_|pa—d'p|_1

k- Vh(=p/q.))| = (4. p') - Vh(=p/q, )| = |p' - ‘ —
q q q

It is then easy to see that this estimate, which holds true at I = —p/q, can then be

extended to any I € Z, ;) provided we choose r(,, ;) as above.
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Let us now look at the case (1.13). Here, resonances are much more abundant,
namely

p.)-Vh(I.J) =0, f Q..
(q. p.1) - Vh(I,J) — {

q
1(q. p.D)|eo < K, q <1(q, p.D]oo < K.

To control the distance between any two such resonant values, assume that (1, «)
satisfies (Dioy ), then we have

_ 1@'p—aqp) + ('l — gl

B qq’

> 1 4

~ 99’ (@' p —ap) + (gl —ql")]*

and using the fact that ¢’ < K, |(¢'p — qp’)| + |(¢'l —ql")| < K2, one obtains for
instance

‘p+la P+ 1la
q q

ptla p'+la y
q ql ~ qKZt—I—l

and therefore resonant zones are separated if one define them as

(1.14)

p+lo
P

Z(q,p,l) = {I eR, | ‘I —

Y
= r(p,q,l)}v T'(p,g,l) ~ gK2t+1’

Then since g can be as large as K and since we need /& < r(g.p.1), the largest

possible choice of K is K ~ 8_2<++2) = E_W and this gives the stability
exponent a = 1/(4(r + 1)), and moreover, as g can be as small as one, then
rapn < K7@D ~ g8 with b = (2t + 1)/(4(x + 1)). As before, one can
also see this (and this is the point of view we take in this work, following [27]) as
the maximal width around exact resonances for which the small divisors estimate
at I = —(p + la)/q can be extended to Z(, ). One may argue that (1.14)
can be estimated differently, for instance with a lower bound that depends on the
norm of (g, p, /) and not just g. The first point we want to make is that this is not
compatible with the approach we will take in this paper: in order to use convexity to
control the evolution of the action variables /, we need to consider resonant zones
as neighborhoods of affine subspaces in the 7 space (in the example here, these
are neighborhoods of points in the / space) and not as neighborhoods of vectors
subspaces in the (7, Jy, J>) space (which, in the example, would be neighborhoods
of vectorial lines in the (7, J1, J2) space); indeed, in the second case exact resonances
in frequency space would then correspond to vectors of the form (7, ) € R? with B
close to (1, «) but not necessarily of this form, and our argument using convexity
to bound the evolution in the / variables wouldn’t work. The second point is that,
independently of how one chooses to bound (1.14), in any event this quantity can
be as small as K272 = K~2(t+1) (jt is easy to construct examples of integer
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vectors (g, p.!) and (¢’, p’,1’) generating a maximal lattice in Z3 for which this
happens), so it seems hard to choose K larger.

Now in the general case n > 1 and m > 1, the same discussion applies at maximal
resonances (which are of multiplicity n), and leads to the fact that the distance between
resonant zones of the same multiplicity can be as small as K~®+D+D and therefore

the largest choice of K is K ~ s_m , which gives the value of our exponents a
andthen b = a((n + 1)t + 1).

Let us also try to give another reason why it is not so unnatural to have such
a small radius of confinement. For this we need to recall that the perturbation is
allowed to depend on the J variables, and that we do control the evolution of these
variables also, yet with a worse radius of confinement in the case m > 2: for the /
variables the exponents are given by

1 _ (n+Dr+1 1 n

T2+ +0) O 2+t 2 2m+DA+r)

whereas for the J variables, we obtain the same exponents if m = 1, T = 0 while in
the case m > 2, T > 1, we obtain

1 g W+l tl—n 1 2n

T2+ D +1) T2+ D+ 2 2+ D1 +1)

We do have 0 < b* < b, but b* still gets close to 1/2 when m becomes large. Let us
first briefly explain why we do not obtain the same exponents. Using the geometry of
resonances and convexity with respect to /, one first obtain a control on the evolution
of the [ variables. As we already explained, in the geometry of resonances, given
an admissible submodule A C Z"*™™ since we want to work in the / space, the
width of its resonant zone is controlled by the covolume [A| of the projection A
of A onto Z", and not by the covolume |A| of A (in the casen = 1 and m = 2
we described in (1.13), the width of the resonant zone depends just on ¢ and not
on the norm of (g, p,l)). Clearly one cannot control the J variables in the same
way, that is using the geometry of resonances and convexity, since the integrable
Hamiltonian is linear in the J variables. However, once we know that the / variables
are stable, one can then use the normal form to control the J variables, using the fact
that since A has rank at most n, any resonant normal form has at least m independent
first integrals. But here it is no longer |A | but the covolume of the full lattice |A | that
plays an important role, and since |A| and |A | might be of different size, we cannot
reach b* = h. We do believe that one could reach b* = b even though we were not
able to do so; since ™ still converge to 1/2 when m goes to infinity, we do believe
that this is not so important for our purpose here. Indeed, the point we want to make
is to compare our exponents for the “mixed non-linear linear” integrable Hamiltonian

h(I,J)=h(I)+a-J
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with the known exponents of the fully non-linear convex integrable Hamiltonian / (/)
(under a periodic time-dependent perturbation, so we consider a quasi-convex
integrable Hamiltonian with n + 1 degrees of freedom) and with the known exponents
of the fully linear integrable Hamiltonian « - J. In the first case, the known exponents
are

1 1
=—\ b= — 1.15
T 2m+ 201 + 1) LA
while in the second case, they are
1 1
a=——, b=—-. (1.16)
T+ 1 2

When n is fixed, and t gets very large, it seems reasonable to expect that the mixed
system should essentially behave like the linear system; and indeed, in this case
our exponents @ and b* ~ b are asymptotically equivalent to those of (1.16) (it is
precisely for this reason that an exponent »* that converges to 1/2 when m converges
to infinity is sufficient for our purpose?). The exponents a and b in (1.16) are known
to be optimal (see [6] for easy examples), and therefore since our result do contain
the linear case (one can even put formally n = 0), it seems reasonable to have such
large exponent b and »*. But then in the same way, when 7 is fixed, and n gets very
large, it seems reasonable to expect that the mixed system should essentially behave
like the non-linear system; yet our exponents a and b are asymptotically equivalent

to
1 1

a~——, b~-
2(n +1) 4
so we obtain essentially the same exponent a but a much better exponent b. As a
matter of fact, only the exponent a in (1.15) is known to be optimal; it is still an open
question whether the exponents

1 1
a=———, b=- (1.17)
2n+1) 2
can hold uniformly in phase space in the non-linear case; our result shows that for n
large, if one adds linearity in just one degree of freedom then exponents close to (1.17)
do hold uniformly in phase space.

Clearly this discussion does not give evidence that the exponents of the conjecture
cannot be reached; it just shows that it could be hard to improve on the value of the
exponent a by simply following the mechanism of Nekhoroshev. One could try to
use another mechanism taking into account that the system is not fully non-linear
(the mechanism of Nekhorohsev is, by nature, essentially non-linear); we believe
that adding the assumption that the perturbation does not depend on J should play
an important role here, but so far we haven’t been able to exploit such a feature in

2As a matter of fact, this comparison was our motivation to obtain stability for the J variables.
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an effective way. This discussion also shows that it is not unreasonable to believe
that the exponent b = 1/2 could prevail uniformly in phase space, both for the fully
non-linear and the mixed case.

1.5. Plan of the paper. The plan of the paper is as follows. Section 2 deals in details
with the geometry of resonances that was alluded above. This section contains the
main technical part of the work. Section 3 deals with the analysis (construction
of a normal form) and the local stability results. The analysis, and therefore the
stability in the non-resonant case, is completely standard and we can simply refer
to [27]. The stability in the resonant case uses convexity: our integrable Hamiltonian
is just “partially” convex so we need to justify that the arguments go through, and
how one can afterwards control the J variables also. The proof of our main result
Theorem 1.2 will be given in Section 4, using the results of Section 2 and Section 3.
The next sections contain further results that were mentioned in the Introduction:
namely, we prove better stability results for solutions close to resonances in Section 5
or far way from resonances in Section 6, while in Section 7 we give a more general
result assuming « to be only non-resonant. The last Section 8 consists of concluding
remarks.

2. Geometry of resonances

The purpose of this section is to study the resonant and non-resonant properties of
the frequency space

{(w,a) € R"T™} ~ {» € R"}

where o € R™ is a fixed vector, which will be assumed to be Diophantine, and w
is a vector varying freely in R”. More precisely, our aim is to cover this space
by neighborhoods of resonances (associated to certain submodules A of Z"1™) on
which non-resonant estimates can be established (for integer vectors k ¢ A).

2.1. Admissible resonant zones and resonant blocks. We fix a real parameter
K > 1, and in this section, & € R™ will be assumed to be simply non-resonant.

A submodule A of Z" ™ is said to be a K -submodule if it is generated by elements
(k,1) € Z" x Z™ = Z"*T™ guch that |(k,l)| < K, and it is said to be maximal if it
is not properly contained in any other submodule of the same dimension. Given an
integer 1 < d < n + m, the set of all maximal K-submodules A of Z"™ of rank d
will be denoted by Mg 4. For A € Mg 4, we define the space of A-resonances by

Ra={weR" | (k,])-(w,a) =0, Y(k,I) € A}. @.1)

Quite obviously, since @ € R™ is non-resonant, R o will be non-empty only for certain
maximal K-submodules A. Let us consider the subset M 1% 4 of M 4 consisting of
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admissible submodules: they are submodules whose intersection with {0} x Z™ C
Z" x ZM = 7'M s trivial. Equivalently, given any basis (k!,/1), ..., (k4,19)
for A, the vectors k!, ... k% in Z" are linearly independent. It is plain to check that
if A is not admissible, then R is just the empty set. Note also that if A is admissible,
its rank is at most n.

Now consider A € MI%,d where 1| < d < n. If I1 : R*™ » R” is the

canonical projection, A := TT(A) is a submodule of Z”, of rank d, which generates
a real subspace (A) of R” of dimension d. It is clear that A is a K-submodule,
but it is not necessarily maximal. The space of A-resonances defined in (2.1) is
non-empty, it is an affine subspace of R" whose associated vector subspace is the
vector subspace (A ) orthogonal to (A).

It is not the space of resonances but rather their neighborhoods that will play a
role in the construction below. To define them, given A € M}é’ 4 and its associated

submodule A, we first define |A| as the co-volume of A viewed as a lattice in (A).
It is the volume of the fundamental domain spanned by the vectors of any choice
of basis for A: letting A be an n x d matrix whose columns form a basis for /~\,
then |A| = v/detA? A, and this latter quantity is easily seen to be independent of the
choice of a basis. It is worth recalling, as it will be used, that if S;(A) denotes all
square matrices of size d that can be extracted from A, then we have the equality
(Cauchy-Binet formula)

Al = VdetAlA= | > (detB).

BESJ(A)
Then, we introduce n positive real parameters A;,A>,..., A, and, for 1 < d < n,
we define the associated resonant zone
n Ad

Zpy ={w e R" | |o — RA| <8a}, 8a:= T (2.2)

where
o — Rall := inf [lo —o’|.
W ERA

We then define the resonant zone of multiplicity d,for 1 <d <n + 1, by
Zg i= UAGM?M Zn, 1<d<n
Zny1 =18.
The resonant block associated to A € M I‘i, P d < n, are defined by
Br i =ZA\Zg+

and eventually the resonant block of multiplicity d, for 1 <d < n, is

By = U Ba.

AeMy ,
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Setting Bygy = R" \ Z;, we arrive at the following decomposition
R"” = BpUZ =BpaUB UZy=---=BpyUBU---B,_1UB, (2.3)

sincé By = Z, as Zpii = 0.

2.2. Non-resonant domains in frequency space. Consider a domain B C R”, a
submodule
AeMg =) Mg, {0}

1<d<n

and a real parameter B > 0. Then the domain B is said to be (f, K)-non resonant
modulo A if for any (k,/) € Z"*t™ such that |(k,])] < K and (k,l) ¢ A and
any w € B, we have

(k. D) - (. )| = B.

Our purpose here is to show that the resonant blocks By, for A € M%, are (B, K)-
non resonant modulo A, for a suitable S provided that « is Diophantine and the
parameters Aq,A;,...,A, satisfies certain compatibility conditions. This is the
content of the lemma below.

Lemma 2.1. Let K > |, E > 0Oand F > E + 1. Assume that « € R™
satisfies (Dioy, ) and

FKAg <dgp1 <y(d+ 1)K @) 1 <d <n-—1, 0.4
Ay < F_ly(n + 1)—rK—(n+1)1:—1‘ ’
Then for any A € M, the block By is (B, K)-non resonant modulo A with
= EKép, A 0},
Ba A # {0} (2.5)
Bioy = A1

Proof. Let A € My of rank d, with 0 < d < n, and (k,I) ¢ A such that
|(k,1)| < K. Let A4 be the submodule of Z"*t™ generated by A and (k, ). Since A
is maximal and does not contain (k, /), the rank of A ; isequal to d + 1.

Let us start with the special case d = 0, that is A = {0}, and fix v € Byg.
Either A is admissible, or not. In the second situation, kK = 0 € Z" while
| #0e€Z™as (k,l) ¢ A = {0}, and we have, using the fact that « satisfies (Dio,, ;)
and (2.4),

(k. ) (w, )| = |l -] = yK™F = A;. (2.6)

In the first situation where k # 0 € Z", let w4 € Rp_ such that

lo — @yl = llo = Ra, || > da,.



672 A. Bounemoura CMH

Now as (k,!) - (w+, ) = 0 we have
(., D) - (w, @) = (k, 1) - (w,0) — (k,]) - (04, 0) =k - (0 — w4).

But the vector w— .. belongs to the line orthogonal to (A 1 )+ = (k)L in (A)+ = R”
which is nothing but the line generated by k, so we obtain

|(k, 1)+ (@, )| = [k-(@—w4)| = klllo -]l > [kl8a, = IkIIAL]T" 21 = 4
2.7)
where we used the fact |A 4| < ||k||. From (2.6) and (2.7) the statement in the case
d = 0 follows.
Now assume 1 < d < n. It is enough to prove that given any w € Rp \ Zg+
(where we recall that Z, 4+, = 0), we have

|(k.l) - (w,a)| > FK§p. (2.8)

Indeed, for any @ € By = ZA \ Z4+1, by definition there exists @ € Rp \ Zj41
such that ||w — @|| < 6 and thus

|(k, D) - (@0, a)| = [(k,]) - (0, )| = |k - (© — )|
> |(k, D) - (w, )| — [|k][[[(® — o)
> |(k, D) - (w,0)| — K[[(&® — o)
> FK8p — K8p = (F —1)K8a > EK84.

So it suffices to prove (2.8). As before, there are two possibilities for A 4 : either it is
admissible, or not. In the second situation (which is obviously the only possibility for
d = n), let us choose a basis (k!,1'),..., (k?,1%) for A such that |(k/,17)] < K
for 1 < j < d. The assumption that A 1 is not admissible means that & is a linear
combination of k!, ..., k%. For1 < j <d , let us define k7 e 74 by selecting
the first d components of k’, and we define k the same way. As k!,..., k9 are
linearly independent (because A is admissible), the determinant A(k!, ..., k%) of
the square matrix of size d whose columns are given by k', ..., k% can be assumed
to be non-zero without loss of generality. By Cramer’s rule, it then follows that k& can
be written as

A A Ay
k = v k! K2+ ... R = 2Lty 222 4 T4d
V1 + vy + + vg A + A % + A

where A = A(k!,....k%), Ay = A(k.k2,... k%), Ay = A(k',k?,... k) and
for2<j<d-1A;= A(kl,...,kj_l,k,kj+1,...,kd). Let us denote

Iy =1 —vl' —...—py 1% € R™.

The vector [, is non-zero: if it were, (k,/) would be a linear combination of
(kU 1Y), ..., (k?,19), that is (k,1) € (A) N Z"™ but since A is maximal it is
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equal to (A) N Z"*™ and so this would contradict (k,/) ¢ A. Now using the fact
that (k/,17) e Afor1 < j <d and w € R we can write

d
k,1)-(w,a) = (k1) (0,a) - Z vi(k? 1) - (w, ) = (L, ).
j=1
The vector Aly = Al — Aylt —---— Ayl% € Z™, and by Hadamard’s formula, we

have ) )
|A] < kM- &) < K®

and similarly |A;| < K dfor1 < J <d, so as a consequence
AL < AN+ AL + -+ Aglli?] < (d + DK

Since « satisfies (Dioy,¢), it follows that

Alltk. 1) - @, 0)] = |Al|(e. )] = [(Als,@)] 2 y(d + 1) K@D
and as a consequence of Cauchy—Binet formula, |A| < |A| and hence

k. 1) - (@) = |A[y(d + DTEKTEFDT
Using this last inequality together with (2.4) one arrives at
|(k.1) - (@.@)] = [A]"' Ag41 = |A|7 FKAq = FK6A. 2.9)
It remains to treat the case where A  is admissible. Let wy € R such that
lo — w4l = o~ Ra | > 64,
Then since (k,!) - (w4, ) = 0 we have
(k,0]) (w,a) =k (w—wy).

The vector @ — wy belongs to the line orthogonal to (A ) within (A)*, that

~

is it belongs to L := (A )+ N (A)L = (Ay) N (A)L. Let us decompose
k = Pk + (Id — P)k where Pk € L and (Id — P)k € L. If follows that

|k, ) (@,0)| = |k-(@=wT)| = |Pk-(@—w4)| = | Pkll|lo—w4| > | Pk]Sa,-

But L is also the line orthogonal to (A ) within (A ), and therefore |A | < || Pk|||A|
so0, using (2.4) again,

(k. D) (@, )| > |AL|A|7 84, = AT Ag41 = |A|7 FKAg = FK8A. (2.10)

From (2.9) and (2.10) it follows that (2.8) holds true for 1 < d < n, and this concludes
the proof. [
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2.3. Covering by non-resonant domains in action space. In Section 2.1 we
obtained a covering of the frequency space {(w,a) € R"t™} ~ {w € R"} by
resonant blocks associated to admissible submodules, and in Lemma 2.1 we proved
that these resonant blocks satisfy some non-resonant properties.

Recall that we are given an integrable Hamiltonian /# which is real-analytic on
the domain V,, D, and satisfies (M) and (k). A subset of D is said to be (8, K)-non
resonant modulo A for £ if its image by the frequency map V4 is (8, K)-non resonant
modulo A. It is said to be §-close to A-resonances for £ if the Euclidean distance
between its image by V4 and the space R, is smaller than .

Pulling back the covering (2.3) back to action space using the gradient map Vh
and using Lemma 2.1, the following proposition will be easily obtained by carefully
choosing the parameters A4, for 1 <d < n.

Proposition 2.2. For K > 1 and A € Mg of rank d, with 0 < d < n, let us define

_ roy
~|A|Frd+1(n 4 1)K Drtn—d+17

Py & F:=10M/«k

where we set, by convention, |A| = 1 if A = {0}. Assume that kro < 80. Then
there exists a covering of D by subsets D 5, where A € M%, such that each Dy is
(Ba, K)-non resonant modulo A and, for A # {0}, 65-close to A-resonances with

9MKI‘A KTA
Br=—71—, o=

g = AT 8
Exactly as in [27], the introduction of the parameters M and « in the
above statement is unnecessary (the above proposition does not depend on the
assumptions (M) and (k)); these parameters are just here for later convenience.

Proof. Recall that (2.3) gives the decomposition

R" = By U B; U---U B,_; U By,

R” = UBA.

AeME

that can also be written as

We now define those resonant blocks by choosing the parameters

A L Kroy
d = 8Fn—d+l(n 4+ l)rK(n+1)r+n—d+I’

F=10M/k, 1<d <n.

With these choices, the inequalities (2.4) are satisfied (since K > 1, F =10M /x> 10
and xkro < 80), hence Lemma 2.1 can be applied with £ := IM/k < F —1 =
10M/k — 1 (since M/k > 1). By definition, for each non-trivial A of rank d, the
block By is dp-close to A-resonances with

Ad Kroy KA
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Moreover, using (2.5) from Lemma 2.1, By is (84, K)-non resonant modulo A with

IMK
Ba = EK8p = 9MI(_1KK;A = — L

b

while, for A = {0}, Bygy is (B0}, K)-non resonant with

B Kroy

ﬁ{O} > A= SF"(H + l)rK(n+l)r+n
- 9MKI‘0)/ o 9MK!‘{0}
— 8F" 1 (n 4 1)t K+ Dr+n+1 o ]

as F > 9M /k. If we define
Dp:={l €D |Vh(I)e Bpr}, A€ Mg,

this defines a covering (up to removing such sets which are empty) of D with all the
required properties, and this concludes the proof. [

3. Normal form and stability estimates

3.1. Normal form. Let us come back to our original Hamiltonian (H), and recall
that the extended integrable Hamiltonian is given by

h(I,J)=h(I)+a-J, (I,J)e D= D xR™

Let us fix A € Mg. Quite obviously, if a subset Dy C D is (8, K)-non resonant
modulo A for &, then Dy := Dy xR™ C D is (8, K)-non resonant modulo A for .
Now a Hamiltonian of the form

h(1,J)+g(0,¢.1,J)

is said to be in A-resonant normal form if

g0,9.1,J) = Z g (1, J)e&D-0.0),
(k,1)eA

Such Hamiltonians have additional first integrals: indeed, given any vector (w, @)
which belongs to the real subspace orthogonal to A, and any solution

(0(). (1), I(r), J (1))
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of the system associated to & + g, we have

(@,@) - (1), J (1)) = =(@,@) - 3,0 (R (1), J (1)) + g(6(1), 9(2), 1(2), T (t)))
= —(w, ) - 9(,4)(8(O(1), (1), 1(1), J (1))
= —(@,a)- Y i27(k,1)gr(I(1), J (1))e D EO-9()
(k,l)eA
= =i Y (@,0)- (k. Dges (1), J (0)) *DCO9E)
(k,)eA
= 0.

In the special case where A = {0}, it is straightforward to see that g is in fact
independent of the angles (€, ¢), so that the resonant normal form is integrable.

We can now state the normal form lemma, which states that on a sufficiently small
neighborhood of a non-resonant domain modulo A, up to a real-analytic symplectic
transformation which is close to the identity, the original Hamiltonian can be written
as a A-resonant normal form /i + g up to an exponentially small remainder.

Lemma 3.1. Let H be as in (H), with h satisfying (M) and f satisfying (¢), and let
K > 1. Consider a domain D« = D« x R™ C D which is (B, K)-non resonant
modulo A for h, and given some parameter r > 0, assume that

Br 8P

o , < ro, 3.1
=29k "=omk =" -

and Kso > 6. Then there exists a real-analytic symplectic embedding
@ : ViDu x V5, T"™ — V, Dy x Vo (T"™, F:=7r/2, 5o :=50/6,

such that
H0¢=h+g+f*

where h + g is in A-resonant normal form with the estimates

g + fulrso <26 | fulrg, < e X50/6 (3.2)
and -
18Ke
sup [[T17,y (1, J.0,9) — (1, J)] < (3.3)
(1,J,0,9)€V; Dy x V5, T M p

where 11y j denotes the projection onto the action space coordinates.

This statement is a direct consequence of the Normal Form Lemma of [27] (with
the choice of the constants p = 9/8 and g = 9), to which we refer for a proof. More
detailed estimates on g and on W are available, but they will not be needed.
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3.2. Non-resonant stability estimates. In the special case where the domain D,
is (B, K)-non resonant modulo A for , with A = {0}, the normal form obtained in
the previous section is, as we already said, integrable up to an exponentially small
remainder. It is very easy to prove that in this case the action variables (/(z), J(t))
remain stable for an exponentially long interval of time, and this does not require any
convexity assumptions on s. Here’s a precise statement.

Proposition 3.2. Let H be as in (H), with h satisfying (M) and f satisfying (¢),
and let K = 1. Consider a domain D, = D, x R™ C D which is (B, K)-non
resonant modulo A = {0} for h, and given some parameter r > 0, assume that (3.1)
is satisfied. Then for every solution with initial action (Ig, Jo) € D, we have

Sor
I(1(t), J()) — (To, Jo)|| < r, t] < _SP?Kso/q

This is the content of Proposition 1 (Nonresonant stability estimate) of [27], to
which we refer once again for a proof.

3.3. Resonant stability estimates. Next we study the case where the domain Dy is
(B, K)-non resonant modulo A for i, with A non-trivial. The domain Dy = D, xR™
will be said to be §-close to A-resonances if D is §-close to A-resonances, as defined
previously.

Assuming convexity of h, one knows how to bound the variation of the action
(I(¢), J(t)) using conservation of the energy and convexity arguments, as was first
proved in [1] and later in [20]. However, in our situation h is not convex, but it is
convex with respect to the I variables and linear in the J variables, and we will prove
below that this is sufficient to bound the variation of the action variables /(¢). This
argument will just use the fact that our resonant normal form has an additional first
integral; as a matter fact, since resonances are associated to admissible submodules
of rank at most n, our resonant normal form has at least m linearly independent first
integrals. Using this observation, and the stability of the variables /(¢), we will obtain
in turn the stability of the variables J(7) though with a worse radius of confinement.

Proposition 3.3. Let H be as in (H), with h satisfying (M), () and (k) and f
satisfying (¢), and let K > 1. Consider a domain Dy = D, x R™ C D which
is (B, K)-non resonant modulo A for h, with A € Mg ; non-trivial, but §-close to
A-resonances. Given some parameter r > 0, assume that

Kr? Kr 8 -1
8527, 5=?, IS sre r<ro <24|alx?. (3.4)

Then for every solution with initial action (I, Jo) € Dy we have

2

KSOT™  Kso/6

IO-DLll<r, |t <—et
1O =Toll <. ] = 2=
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and

KSor
(1) — Joloo < K%r, t| < ﬁe’“m

Proof. First we assume that Kso > 6. Since k < M, one easily check that (3.4)
implies (3.1), and therefore Lemma 3.1 can be applied: there exists a real-analytic
symplectic embedding
D V?,EOI_)* = Vr,soﬁ*
such that ~
Hod=h+g+ f«

where i + g is in A-resonant normal form with the estimates (3.2) and (3.3). Now,
from (3.3) and (3.4) we get

18Ks 2% Kr b
< < = .
~— Mr — 20M SM

M7,y ®—1d|| <

Therefore the inverse image of Dy x T"1™ by ® is contained in U, D, x Ttm,
where p := §/(4M). Recall that 7 = r/2 and So = 50/6. We claim that for any
initial action (Io, Jo) € U, D., the solution (I(2), J (¢).0(z), @(t)) of the system
associated to the Hamlltoman H o ® satisfies

o 20
~ ~ N KSor” gs/6
I(t)—ILy|| <7 —p, < ——¢t
1@ = Toll <7 =p. il < 5o—e
and
e =2
~ ~ r
F) = Jole <2K4(F —p), t] < <307 Ks/6
T (1) = Joloo < 2K¥(F = p). 1] < T5-e

Assuming this claim, for any initial action (1o, Jo) € D, the solution (I(2), J (1), 6(t), ¢(1))
of the system associated to the Hamiltonian H satisfies

11(t) = Lol < I(t) = L(¢) + |l (t) — Tol| + 1 {0 — Dol
<p/2+(F—-p)+p/2=<F=<r

and similarly, since K > 1,

1J(2) — Joloo < p/2 +2K9(F — p) + p/2 < 2K9F = K9r

for times )
| | < KSor eKs0/6
2882
which is exactly the statement we want to prove. It is therefore sufficient to prove the
above claim.
To simplify notations, let us drop the tildes and simply write (1o, Jo) € UPD*
and (1(z), J(1),0(t), ¢(t)) the associated solution. Let B be the ball of radius 7 — p
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around /o, then B x R™ is contained in U; D. Let T, be the positive time (possibly
infinite) of first exit of (/(¢), J(¢)) from B x R™: it is then also the time of first exit
of I(t) from B. Let also

& 27
12Q¢ ’

*

T 1= minfT,. T.}.
Furthermore, let us write

Ah = h(I(T), J(T)) — h(1y. Jo) € R,
AL, J) = (I(T), J(T)) — (Io, Jo) = (I(T) — Io, J(T) — Jo) € R*"*™,
Al = I(T)— I, € R",
I(s):=Iy+sAI eR", 0<s<l.

By definition of h, we have VA(1,J) = (Vh(I),a) € R*t™ and

V2h(I) 0

vzﬁ(l,.r):( o o

) € Mpim(®). V?h(I) € My(R).

Using Taylor’s formula with integral remainder at the point (/. Jo) and the special
form of V2h, we get, letting w := Vh(Iy),

1
Al = (w,a)-A(],J)+f (1 — $)V2h(I(s))AT - Alds.
0

Using the assumption (k), that is the convexity of /, we obtain
|AR| + |(@,a) - AL, T)| = /2| AT ). (3.5)

By conservation of energy H and using the first part of (3.2) together with the first
part of (3.4) and the definition of 7, we have

Kkr2 K2

ARl =2lg + fulrgo < 46 = o5 = —5- (3.6)
Then, by definition, (Io, Jo) € U, Dy, so there exist (1}, J}) € Dy which is p-close
to (/g, Jo), but then by assumption D, is §-close to A-resonances, hence there
exists wyx € R” such that the vector (w«, @) belongs to the real subspace orthogonal
to A and is §-close to (VA (1)), «). Therefore, since & satisfies (M ) and by definition
of p, we obtain

lo = w«ll = IVA(Io) — wxll = [[VA(Io) — VA(Ig)|| + [VA(Ig) — x|

3.7
< Mp+§ = 58/4. (57
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Writing

(w,a) - A(1,J) = (w,a) - AL, J) — (wx, ) - AL, J) + (w«, ) - AL, J)
= (0 —wx,0)- A1, J) + (s, ) - A(I,J)
= (w—ws) Al + (ws,a)- A1, J)

we obtain
(@, ) - A1, J)| < [(w —wx) - AT + [(ws, @) - A(L, J)]. (3.8)

Using (3.7), the second part of (3.4) and the definition of 7, we can bound the first
summand by

(@ —wx) - Al < |lo —oxl|AL]] = (55/4)| AT
582 « s SRR
< — 4+ —||AT||" =
- 2 + 6|1 | 32

K

+ ZllAT [
(3.9)

For the second summand, using the fact that (w«, @) belongs to the real subspace

orthogonal to A, and that 4 + g is in A-resonant normal form, we have

T

[(@x, ) - AL, )] S[ (@« @) - g, fu(1(2), J (1), 0(2), p(2))| dt

0

= YHHQD*,Q)” sup |“ht¢j;(laJ59,¢)“.
(1,J,0,p)€ BxR" xTn+m

Now using a Cauchy estimate and the second part of (3.2) we get

1 e _
190,0 S5 (1, J,0,0)|| = —|fxlrs < —e Esals,
eso éso
Moreover, as T < Ty and ||(w«, @)| < Q2 since A satisfies (£2), we get
=2
(@ar @) - AL, J)| < To Qe Ks0/6 = 2 (3.10)
eso 12e
Putting together (3.5), (3.6), (3.8), (3.9) and (3.10) we eventually arrive at

KF2

AT <
k/3| AT =

2 =2

5kF% kT KF*
SR
32 12e = 4
Now p = 6/(4M) = kr/(32M) = k7 /(16 M) <7F/16ask/M < 1,thusr — p >
157 /16 and in particular 72 < 4(F — p)?/3. This, together with the last inequality,
implies that

/3IATN? < i/3(F — p)®
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and therefore ||Al| < 7 — p. This eventually proves that T = T, that is

& =P
7 7 = . L <7
It)—I| <F—=p, 0=t =<Ty=——
@) =Tl =7 —p, O0=t= TR

The same argument yields the same result for negative times —7Tx < ¢t < 0, and hence

v =3
3 AR KSor” Ks/e
I —-DLl|l<r—p, |t|E—
@) =Ll =7 —p. t| = 55;¢
which was the first part of the claim that needed to be proved.

For the second part of the claim, let us write
Xl = J(T) —Jo = J(T*) — Jo € R™

so that in particular
A1, J) = (AI,AJ) e R"*™,

Observe that since A is admissible of rank 1 < d < n, the real subspace in R" "
orthogonal to A has dimension n + m — d > m, and given any vector v in the
orthogonal of A, proceeding exactly as in (3.10), one has the inequality

kiZ|vll kP2 |v|
AL T < < 311
v- AU N = 7750 = 12]c]le (14

where the second inequality follows from 2 > ||«||. We will apply this to m properly
chosen such vectors v. Let (k1,11), ..., (k%,1%9) € Z"t™ abasis for A, and we write

K=, .. khez', V=@l . 1J)ez" 1<j<d.

Since A is admissible, the d vectors k/ € Z", for 1 < j < d, are linearly
independent, and hence, without loss of generality, we may assume that the d vectors
in Z4

ki =(k},....kH ez, 1<j<d

are linearly independent. Let us further define
L=}, ....1H ez, 1<i<m.

We set D to be the determinant of the square matrix M of size d whose columns are
givenby k;j,1 < j <d,andforany 1l < j <dandany 1 <i <m, welet D; ; be
the determinant of the square matrix M; ; obtained by replacing the vector k ; (that is,
the j column of M) by the vector —/;. If we denote by ey, ..., en,€n41,-..,€ntm
the vectors of the canonical basis of R" ™ we eventually define, for 1 <i < m, the
vector

v i= Dj1e1 + Djses + -+ Dj geq + Depy; € R*™™,
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It is now an easy matter to check that forany 1 < j < d andany 1 <i < m, we
have o

k7,17)-v; =0
that is the vectors v; belongs to the real subspace orthogonal to A. Therefore the
inequality (3.11) gives

~2 .
o - AL < <l oy (3.12)
12||||e
If we write
A(l,J)=(AI,AJ)=(Al4,...,Al,,AJy,...AJy)
then (3.12) can be written again as
K72 ||vi |
|Di1AIy + DisAly +---D; gAl; + DAJ;| < , <i<m
’ ’ ’ 12]|x|le
and as consequence, for 1 <i <m
K72 ||vi |
|DAJ;| < |DinAly + DipAly + -+ + D g Alg| +
12]|x||e
k2 ||vi |
< ||D;||||AT
where D; = (Dj1,...,Diq) € R?. Recalling that |A| denotes the co-volume of

the lattice A, we can use Cauchy—Binet formula and Hadamard’s inequality to bound
ID; || < llvill < |A] < K¢

and therefore
IDAJ;| < K¢ (AT + P2\ Sk (5 KT
; r— ’
i 12fafle) = P e
Then, since 7 = r/2 < ro/2 < 12|k ™!, we have
15

P15
— — r—
2ale —¢—- 16 — °

and thus
IDAJ;| < 2K*(F — p)
which proves, in particular, that
|AJ |oo = sup |AJ;| < 2K*(F — p)
1<i<m

which was the second part of the claim that needed to be proved.

This ends the proof under the assumption Kso > 6. But if Kso < 6, the exact
same argument applies to the original Hamiltonian H , by setting g = Oand fx = f,
and this concludes the proof. O
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4. Proof of the main result

This section is devoted to the proof of our main result, Theorem 1.2, which will be
easily obtained using Proposition 2.2, Proposition 3.2 and Proposition 3.3.

Proof of Theorem 1.2. Recall that we are considering H as in (H), with A
satisfying (M), (2) and (), f satisfying (¢), and « satisfying (Dio, ;). Recall
also that we have defined the positive constants @ and b by

1 n+Dr+1
a = y —
2+ D+ 1) 2+ D@+ 1)
and that we are assuming that
kro < min{80, 24| x| }. 4.1)

For a parameter K > 1 to be chosen below, using (4.1) we can apply Proposition 2.2
to obtain a covering of D = D x R™ by subsets Dy = D x R™, where A € M2,
such that each Dp is (Ba, K)-non resonant modulo A for h and, for A # {0},
5 A-close to A-resonances for h with

OMKrp KFA
B = , A= —, (4.2)
8 8
where
oy

Fx 3 d = rank A. (4.3)

= |/~\|Fn—d+1(n + 1)rK(n+1)r+n—d+l ’
Then, given any A € M¢, we can apply either Proposition 3.2 (for A = {0}) or
Proposition 3.3 (for A # {0}), withr = rp, 8 = Ba and 6 = J provided that (3.1)
and (3.4) are satisfied. The inequalities (3.1) are easily seen to be implied by (3.4)
as we already pointed out, hence we only need to verify (3.4), and in view of our
definitions of 75, Ba and &4, and using also (4.1), the latter reduces to

Kr
210 ?

>

e < ra <ro. (4.4)

Given any A € M, we have

roy <rp < roy
Fn—}-l(n + I)rK(n—H)(r—H) =TA = F(n =3 l)rK(n+1)r+l 2

as F' > 1 and K > 1. Hence (4.4) is satisfied, forany A € M, if

ol

2522,
KTy 4
e < , K>——— 4.5)
210F2(”+1)(n + 1)21:K2(n+1)(1’+l) F(n - 1)1:
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Let us define

kriy? F(n+1)° b
& = " *x — & | ———
21°F2("+1)(n 4 1)21' %
and o a
e f 20
K= (2)'
then (4.5) eventually reduces to
¢ < min{eg, £x}. (4.6)

Under this choice of K and this smallness assumption on &, Proposition 3.2 and
Proposition 3.3 apply and in the resonant case, we obtain

b
roy roy €
1) — Io|| < < —

up to times

2
S0 /€0\%¢ . KSory
|t|5TAexp(6 (8) ) Ty := 28896’

while in the non-resonant case, we obtain

11(2) = Toll = [[(/(2), J(2)) — ({o, Jo)l

= roy 2 roy i b
~ F(n + 1)rK(n+1)t+l ~ F(n+ 1) \ &

S0 /€0\4 Sor{0}
(1 <T (— (—) ) Tioy := .
|t] < Tyoy exp A (0} N

To obtain a uniform time estimate, observe that for any A € Mg we have

up to times

T, > 210 S0 5 3.5‘0

A= T
Letting g
. roy 9%
 Fin+1)*’

*k T*_Qs

we have just proved that
& £ So /€0\9
10 - ol = R (5) 1= Tewn (2 (2)7).
£0 6 \e¢

provided (4.6) is satisfied, with &, that can be written as

1

(&)
Ex = &p R_ .
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Recalling that FF = 10M/k, this was exactly the first part of the statement to be
proved.

For the second part of the statement, we distinguish the case m = 1 and the case
m > 2. In the first case, recall that J(¢) € R and @ € R. We have

b
€
A1) = hio)| = R10) = 1ol < 2R (£
while, using preservation of energy and our thresholds,

b Kro
210

(@) + ad(t) — h(Io) + ado| <& < Ry (f)
0

b b
<r (2} 2 g (2 14
- * Eo 210 - * Eo ’

Putting the last two estimates together we obtain

b
17(t) = Jol < lal Ve (1) — ado| < (@/la| + DR, (i) |

In the second case, observe that on D4, if A = {0}, Proposition 3.2 gives
Sor
17 = Joloo < 1U1(), 1)) = (o, Jo)l| < oy, lt] < €0/

whereas, if A has rank 1 < d < n, Proposition 3.3 gives

|J(t) — Joloo < K4y t] < —_Ksorz eKso0/6
Oloo =2 Th» 11 = 2880
Therefore, along any solution we have
b b—na
€ & S0 [€0\%
[7(#) = Joloo = R«K" (—) = R. (—) . ltl < Twexp (EO (—0) )

&0 o £

which is the statement we wanted to prove since b* = b —na. This proves the second
part of the statement, and finished the proof. O

5. Improved stability close to resonances

For solutions starting close to resonances, we can obtain a better result. Consider
a fixed submodule L of Z"*™ of rank d, which is assumed to be admissible and
maximal, and let K7 > 1 such that L is a K7 -submodule. Recall that L. denotes the
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projection of L onto R”, and | L| denotes the co-volume of L. To such a L the space
of L-resonances is

Ry ={weR"| (k1) (w,a) =0, Y(k,I) € L}
and let
Sp:={,J)eD|Vh(I)e Ry} ={I € D | Vh(I) € R} x R™

the resonant domain in action space. Solutions with initial action close to S satisfy
better stability estimates, as stated in the theorem below.

Theorem 5.1. Let H be as in (H), with h satisfying (M), (2) and («), and f
satisfying (&). Assume also that a satisfies (Dioy, ), and let us define

1 (n+ 1t +1
d) = ; bld) = :
ald) 2+ Dt +n+1-4d) () 2(n+ Dt +n+1-4d)
m+Drt+1—n K \"tl=d  ryy
b*(d) = R.(d) = _—
(d) 2(n+ Drt+n+1-4d) A6) (IOM) (n+1)°
and, given a submodule L as above, let
z 1 kray? Kk \2(m+1-d) . 7 ro 5
fo(L) = IL[221%(n + 1)7F (IOM) + &xlL) = eol )(R*(d))

fun(L) = £o(L) K7D
If krg < min{80, 24| «||} and ¢ < min{e. (L), e+« (L)}, for any solution
(1(2), J(1). 0(1), (1))

of the system associated to H with initial condition (1o, Jo, 00, po) € Up Sy x T,
with p = AM ™Y ke, we have

2@) a(d)
”I(f)—lonfR*(d)( ¢ ) . |t] < Twexp (S_O (SO(L)) )

eo(L) 6 5

with Tx as in Theorem 1.2. Moreover, in the case where m = 1 and hence t = 0, we
have

b(d)
So /&0\42(@)
|J(r)—Jo|s(s2/|a|+1)R*(i) , |z|5nexp(_0(_0) )
€0 6 \¢

whereas in the case m > 2 and hence t > 1, we have

b*(d)

3 5o /€0\4@)

|J(t) — Joloo < R« (—) . |t] = Tyexp (—0 (—0) ) .
o 6

L
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Observe that in the special case where L = {0}, S = D xR™ |L| = K1 =1
and therefore the above statement exactly reduces to Theorem 1.2.

Proof. Consider the subset
Mg(L)y:={Ae Mg |ADL}

and assume, for any A € Mg (L),

<KAo <y K2K 5.1
8_?0--, FA = To, ol (5.1)
where the last inequality is to ensure that Mg (L) is actually non empty.

The resonant blocks By, for A € Mg (L), cover the resonant zone Z;, and hence

their pullbacks cover U, St,, with

8. krp 210 _
= = = > =4M 1 = p.
M~ 8m = sm V*° =

P

Moreover, for any A € Mg (L), we have

roy —rr <A < roy
|L|Fr—d+1(n 4+ 1)t Ko+ Dr+n—d+1 5 =8 = Fy [rgerDeen”

Using the above inequalities and proceeding exactly as in the proof of Theorem 1.2,

we can define
K — (EO(L))a(d)
£

and verify that (5.1) is implied by

e <ex(L), & =<ée.(L)<go(L).

The stability estimates apply uniformly to all blocks B, for A € Mg (L), and one
easily check that the statement follows with the given constants. U

Using Theorem 5.1, we will be able to show, as in [10], how to slightly increase
the value of the exponent a by greatly decreasing the value of the exponent b and
loosing control on the evolution of the J variables in the case m > 2. Let us state
precisely the results.

Theorem 5.2. Let H be as in (H), with h satisfying (M), (2) and (k), and f
satisfying (&). Assume also that o satisfies (Dioy, ), and let us define

B 1 B 1 _ (m+Dr+1
d=snrne+rD ‘O=s@roern ‘W@ rern
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and

krgy? ( K )2’1 C- 2./nQ

1= 512 + 1)2r \1oM I
Kroy 350
R.(1) = . D=,
«() 10M(n + 1) F 7 Q

Given any 0 < § < a, assume that

(&) =% ()7 =(z)"
- < —, — < .
&1 T ro €1 ~ \2R.(1)

If kro < 80, then for any solution (I1(t), J(t),0(t), ¢(t)) of the system associated
to H with initial condition (Iy, Jg, 0, o) € D x T" ™™ we have

)
£ so (&1)a(D(1-26)
17(2) = Io]l = (C + R«(1)) (_) .|t < Twexp (_0 (_1) )
€1 6 \¢

and, in the case where m = 1 and hence 1 = 0,

8 o
|J()—Jo| < (/]| +1)(C+R(1)) (i) . lt] < Toexp (%0 (8_1) (na 25))'

£

Moreover, if krg < 80 and we assume instead that

1
2 5D 1
i<(r_°) o \" i<(’"_0)“
g1~ \2C 2R.(1) g1 — \2C
then, for any solution (1(t), J(¢), 0(t), ¢(1)) of the system associated to H with initial
condition (Iy, Jo, 09, ¢o) € D x T* ™ we have

So [ Fo \2a(1) sgqy\a(l)
1) = Iol < ro, |t] < Twexp (2 (22 (—
10 - ol <r. 1< Teesp (2 (52) " (%)

and, in the case where m = 1 and hence T = 0,

90~ ol = @/la + Do, 1 = Teesp (2 (2) (2)")
6 \2C €

Let us first remark that the assumption kro < 24| ||, which was only used to
control the evolution of the J variables in the case m > 2, is not needed here since
no control on the J variables can be obtained in this case.

In the special case m = 1, T = 0, Theorem 5.2 generalizes the main result of [10].
For § > 0 but very small, the exponent a(1)(1 — 24) is very close to a(1), which
is better that @ but at the same time the radius of confinement greatly deteriorates
as it gets close to one. At the limit § = 0 (the second part of the statement), we
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do obtain a confinement of order one with a better time of stability given by the
exponent a(1). At the other extreme § = a, observe that a(1)(1 — 2§) = a and
therefore Theorem 5.2 gives a time of stability which is equivalent to 1.2, but with a
worse radius of confinement given by the exponent a instead of b.

Proof of Theorem 5.2. Consider an arbitrary solution (/(z), J(¢), 8(t), ¢(t)) of the
system associated to H with initial condition (o, Jo, 6o, ¢o) € D x T**™ It will be
sufficient to prove the statement for positive time; the exact same argument will then
prove the statement for negative time. Consider a parameter K > 1 (to be chosen)
below that satisfies

K =2r;1, (5.2)
Then we have the following dichotomy: either
11() = Il < K~
as long as the solution is defined, or there exists " > 0 such that
12ty = Iol = K.

In the first case, the solution (/(z), J(¢), 6(t), ¢(t)) is then defined for all time, and
as a consequence

I I(t) —Iol| < K™Y, teR. (5.3)
In the second case, using (k) we obtain
IVA(I(t")) = Vh(Io)|| = k|| 1(t") — Io|| = kK™
and therefore
IVR(I(t')) — Vh(Io)|oo = k(v/nK)™".
If we denote VA(I) = (Vih(I),...,V,h(I)) € R", let 1 <i < n be such that
Vih(1(t)) = Vih(Io)| = |VR(I(1')) = Vh(Io)|oo = k(+/AK)™"  (5.4)

and also let 1 < j < m be such that

|etoo = |aj| # 0.

Clearly, any closed interval in R of length larger than / > 0 contains an irreducible
rational p/q, with a denominator ¢ > 0 bounded by / ~!; therefore any closed interval
of length /|or;| contains a real number of the form |«;|p/g, with an irreducible
rational p/g with a denominator ¢ bounded by /~!'. Applying this to the interval
[Vih(1p), Vih(I(1))],0 <t < t’, and using (5.4), there exists atime 0 < t* < ¢’ and
an irreducible rational p/g € R such that

V() = loylp/g, g < VRl
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Moreover, using (£2) we have

IVih(1™)| = lejllIpl/g <

and therefore

Vg* + p* < q\/l + ;17222 < g (1 + |oy| 7' Q)

. (ﬁw N ﬁﬂ) g < R
K K K

(5.5)

Atthe time r = t* the frequency vector VA(I(t*), J(t*)) = (VA(I(t*)), @) € R**7
satisfies a resonance relation; indeed, assuming for instance |o;j| = «; then for
k = qe; — pej € Z"™™ one has

k- Vh(I(t*), J(t*)) = qVih(I(t*)) — pa; =a;p— pa; =0

(if |o;| = —aj, one simply replace ge; — pe; by ge; + pe;). Letting L be the
one-dimensional lattice generated by k and recalling the notations of Theorem 5.1,
one has (/(t*), J(t*)) € S, and from (5.5)

2 Q ” Q
VS ck. i|<q<
K K

Kp = < CK. (5.6)

To apply Theorem 5.1 in the case d = 1 with r(/2 instead of ry, let us estimate the
thresholds (replacing r¢ by ro/2): setting

- Krgyz ( K )2"
Lo+ 2 \lom

we have

eo(L) = &1|L|™% > &1(CK)™?

1

ex(L) = go(L) (2 R”’(l))m > 1(CK) ™2 (2 R"’(l))m

1 2a(1)+1

Exn(L) = £0(L)K, “7 > £,(CK)™ ah = g, (CK)a

and consequently Theorem 5.1 can be applied provided

1

e < &1(CK)™? (ZRro(l))m <eu(l), e<ei(CK)@ Seun(l).  (57)

To prove the first part of the statement, we choose

K::é(%—)a, 0<68<a. (5.8)
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Since § < a, the second part of (5.7) is, by definition, satisfied whereas since § > 0
and § < 1/2, the condition (5.2) and the first part of (5.7) are satisfied provided

8 126 -
(£) <2 (2o (e ) 69
&1 o &1 2R*(1)

Under these conditions, we obtain

b(1) a(l)
||1(l‘)—1(f*)||5R*(1)( g ) : t*<t§t*+T*exp(Sg(80(L)) )

go(L) €

with Ty as in Theorem 1.2. But then

£ b(1) B b(1)(1-26)
i) <0 ()

AY)) SO(L) a(1) So /&1\2(1)(1-28)
T*exp(6( p ) > T« exp F6—-(—8—)

and therefore

and

g )b(l)(l——28)

* * " so /€&1)\2(H(1-28)
I 7()—=I(7)]| = R«(1) . 1<t <t*+Texp g(_) '

&1 &

But recalling that t* < t’, we also have

5
1) —I| <K '=C (Ei) ., 0<r<t*
1
and since a(1) < b(1),
5 < a(h) _ b1 28Y5(1)

4=+l ~zam+1 =1~

and as a consequence, we do have

€1

£ S & b(1)(1—26)
11G@) = Toll < 11() = IG™)| + 11G*) = Toll < C (;) £ R(1) (—)
b
< (C + Ru(1)) (;T)

for times

a(1)(1-268) a(1)(1—26)
sz‘fT*exp(S—O(s—l) <t* + Tyeexp S_O(S_l) .
6 \e¢ 6 \¢
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To summarize, from the dichotomy we either have

8
@6 =T <K '<C (i) L 0<t <400
€1

or

8
a(1)(1-28)
1) — Toll < (C + Ra(1)) (i) 0<t<Taexp (S_o () )
€1 6 \¢

therefore in both cases the last estimate is satisfied, thus proving the first part of the
statement.

For the second part of the statement (the case § = 0), one can proceed exactly the
same way but choosing

2
K .= —
Fo
instead.
To conclude, in both cases, the estimate on the evolution of the J variables (for
m = 1, T = 0) can be obtained exactly as in the proof of Theorem 1.2. U

6. Improved stability far away from resonances

We now investigate solutions which start far away from resonances. Results of this
section do not depend on 4 being convex or its gradient being bounded, that is (k)
and (£2) are unnecessary. It will be sufficient to assume the existence of k > 0 such
that for any Lebesgue measurable subset U C R”, we have the measure estimate

Leb(VA~ Y (U) N D) < ik 'Leb(U) (%)

where Leb denotes the Lebesgue measure on R”. Certainly, the convexity
assumption («x) implies (k) with k = «, but the latter is more general: in particular,
it holds true if /& is Kolmogorov non-degenerate, that is if the determinant of the
Hessian VA2 (1) is uniformly bounded away from zero for any I € D.

Now consider A € M | anadmissible maximal K-submodule of Z" ™ of rank 1.
Then A contains a unique vector (k,[) € Z" \ {0} x Z™ such that |(k,])| < K and
such that its components are relatively primes. The submodule A of Z" is then
generated by k, and |A| = ||k|. In the sequel, we shall write A = A(k,[).

With these notations, we recall that the completely non-resonant block Bygy C R”,
introduced in Section 2, can be defined by

n ’Xl
By ;= 3w € R" | o — Raqe,nll = Tals

_ roy
~ 8F"(n + 1)rK(tDTtn’

- F = 10M/k.
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Therefore, from Proposition 7.1, this set is (803, K)-non resonant with

IM Ko, oo — roy
—8 ) {0} — Frntl(n + l)tK(;H—l)(r—l-l)'

Bioy =
If we further define
Doy :==1{1 € D | Vh(I) € By}, D{o} := Dyoy x R™,

we arrive at the following statement.

Theorem 6.1. Let H be as in (H), with h satisfying (M) and (i), and f satisfying (¢).
Assume also that a satisfies (Dioy, ), and let us define

é . Iz, n+1 roy
oM (n+ 1)*’

. Ml‘g)/2 i 2(n+1) © s "_0 2
07 21005 + 1)2t \ 10M TR

If ¢ < min{&o, &}, for any solution (1(t), J(t), 0(t), (1)) of the system associated
to H with initial condition (Iy, Jo, 0o, 9o) € Doy x T" ™, we have

0.0 -Gl < R (2) 1= (2) e (2 (2)).
€0 560 \ € 6 \ ¢

Moreover, the complement of Doy in R has a measure of order b, with a and b as
in Theorem 1.2.

Observe that the measure estimate on the complement of Dy is better than the
one obtained in [27] for T = 0, as in the latter reference it is only of order one.
Observe also that it is only for this measure estimate that (k) is needed; the first part
of the statement holds true without this assumption.

Proof. Proposition 3.2 can be applied with r = ryg;, provided that

2
- P _ Mrig

— 279K 210

e oy < ro. (6.1)

holds true. Choosing

we have
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and the inequalities (6.1) are satisfied if ¢ < min{&g, €4}, where &y, &£« and R, are
the constants given in the statement. It then follows from Proposition 3.2 that

I(1(2), J(1)) — (Lo, Jo)|| < rioy, 2] < @em/e,
&

that is

070 - ol < Re(£) =22 (2) e (2 (2)).
€0 5¢e¢ € 6 \ ¢

which proves the first part of the statement.

Concerning the second part of the statement, we follow [27]. First, in view
of (i), it suffices to show that the complement of Bygy in R” has a relative Lebesgue
measure of order £°. But by construction, the latter set is Z;, the resonant zone of
multiplicity 1 defined in Section 2, which has a relative measure of order

Z A 1 Z L 1 o galn+D)T+1) _ b
||k|| K@m+Dt+n ||k|| K®m+Dr+1 - v

A(k,)eME | keZ,
’ 0<|k|<K

O

Next we look at a different, and in some sense more natural, non-resonant set.
Choose 0 < y’ <y and v/ suchthat t’ > n +m — 1 and v’ > 7. We define

By i= o € RY | (6.1 - (@il = /(] + 1))

and

Dy”t’ = {I € D | Vh(]) € By/’r’}, Dy”r’ = D-y’,-r’ X Rm.
Those sets are clearly (', K)-non resonant, with f’ := y’K~7, and we obtain the

following result.

Theorem 6.2. Let H be as in (H), with h satisfying (M) and (k), and f satisfying (¢).
Assume also that o satisfies (Dioy,¢), and let us define

/ 1 R Y UTA, (r" )2

CT2w . T oM 0T esm T o\ R,

If ¢ < min{ey, €.}, for any solution (1(t), J (1),0(1), ¢(1)) of the system associated
to H with initial condition (1o, Jo, 6y, @o) € Dy ¢ X T"*™ we have

1 i )
2 Rl / > /] a
I(2(), (1) — (To, Jo)]| < R, (i) e < R (8_0) xp (S_o (5_0) )
€0 S¢p \ € 6 \ ¢

Moreover, the complement of Dy o in R" has a measure of order y'.
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As we already said, when m > 2, the set of vectors o € R™ that satisfy (Dioy,)
with = m — 1 has zero measure, and when t > m — 1, wecanchoose v/ =n + 7
and thus

, 1

S Y P

in the statement above.

Proof. Let us define
- 8rop’ _ 8roy’
 9OMK  9MKTAD

Proposition 3.2 can be applied with » = r’, provided

ﬁlrl MrIZ .
S50k — g0 T =70 (6.2)

/N a
_ (e
£
3
£
r’=R; —
€0

and the inequalities (6.2) are satisfied if ¢ < min{ey, €/}, where d’, ¢, €/, and R/, are
the constants given in the statement. Then, exactly as before, Proposition 3.2 yields

1 1 /
e\2 soR, (€52 so (€h\*
10000 = ool < B ()70 11 =2 (2) exp (_o () )
8() 580 £ 6 &

which gives the first part of the statement.
Concerning the second part of the statement, as before it is enough to prove that

the complement of B, . has a relative measure of order y’. The complement of
By o is

holds true. Choosing

we have

o e R" |3, D) e 2™, (kD) (@, 0)] <¥'(k| + 11D}
but since « satisfies (Dio, ), and since y' <y and t’ > 1, this set is also equal to
{0 € R" |3(c,1) € 2"\ (0} x 2", |(k, 1)+ @, )| < ¥'(K| + 1)~}

But now the above set is known to have a relative measure of order y': this is exactly
the content of Lemma 2.12 in [19]. 0
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7. A more general stability result

Let us finally give a more general result, where the Diophantine assumption (Dio,, ;)
is removed. Assuming o € R™ to be simply non-resonant, we can define a function
v = Y, by

W(K) =max{|k-a|™' |k eZ", 0<|k| <K}, K=>1. (7.1)
Then we define A = A, by
A(x) =sup{K > 1 | K¥(K) <x}, x>V¥(1) = o), oo = max o]

<j<m
(7.2)

If « satisfies (Dioy, ), then the functions W and A defined above satisfy

W(K) <y 'KT, A(x) > (yx) 7. (7.3)

The only place where (Dio,, ;) was used was in Lemma 2.1. But using the function ¥
instead, the exact same proof yields the following more general lemma.

Lemma 7.1. Let K > 1, E > 0Qand F > E + 1. Assume that « € R™ is
non-resonant and

FKAg <Agp1 <9((d + DK™ 1<d <n—1,

An < F71W((n 4+ DK*TH~ L,

Then for any A € M§, the block By is (Ba, K)-non resonant modulo A with

Bioy = A1.

Using this Lemma instead of Lemma 2.1, we arrive at the following proposition
which generalizes Proposition 2.2.

Proposition 7.2. For K > 1 and A € My of rank d, with0 < d < n, let us define

{ﬁA = EKSA. A # {0},

~|A|Frd+iy((n + 1) Kntl) gn—d+1

Fix F:=10M/«k

where we set, by convention, |A| = 1 if A = {0}. Assume that kro < 80. Then
there exists a covering of D by subsets D5, where A € My, such that each D is
(Ba, K)-non resonant modulo A and, for A # {0}, §5-close to A-resonances with
OMKrp KT A
= —— 5 - .
B 2 A=

Then, using Proposition 7.2 instead of Proposition 2.2, together with Proposi-
tion 3.2 and Proposition 3.3, and proceeding exactly as in the Proof of Theorem 1.2,
we obtain the following statement.
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Theorem 7.3. Let H be as in (H), with h satisfying (M), (2) and (k), and f
satisfying (&). Assume also that o is non-resonant, m > 2 and that

o (n + 1)2‘rcr(‘)2|oz|go
- 210p2(n+1)

. (n+ Dro [k
AE pp— A( 25Fn+1_ E N
1
A n+1 1
Kg = ( ) ’ RB = n+1y\"
nt 1 FK.U((n + DK

Then, if krg < min{80,24|x||}, K. = 1 and R, < rg, for any solu-
tion (I1(2),J(t),0(t), ¢(t)) of the system associated to H with initial condition
(1o, Jo, 00, 90) € D x T"™™ we have

so that we can define

K
11() = To|| < R, |t] < Twexp ("‘06 ) |

Moreover, we have

0 = Joloo < KIRer 115 Toexp (252,

When « is Diophantine, that is when « satisfies (Dio,, ), then (7.3) holds true and
the above statement exactly reduces to Theorem 1.2. Observe also that for m = 1,
any non zero vector & € R satisfies (Dio,, ;) with y = |«| and t = 0, so Theorem 7.3
gives new information only when m > 2.

Now for m > 2, if @ does not satisfy any Diophantine condition, A, and hence K,
cannot grow as a power of /& and therefore the stability time is not exponentially
large with respect to (some power of) e~!. Yet it is always exponentially large
with respect to some other function of ﬁ_l, namely K., and this can give some
non-trivial stability results even if « is Liouville (that is, when « is not Diophantine).

But first let us observe that, unfortunately, in full generality this stability estimate
might not be better than the trivial stability estimate. To simplify the discussion
here, we will assume that W is in fact continuous so that A is nothing but the
functional inverse of the increasing continuous map K + KW(K); observe that in
fact only the values of W(K) atintegers K € N are interesting so it is always possible
to modify W into a continuous without affecting the Diophantine properties of «.
Dropping constants which are independent of ¢, it is easy to check that R, >~ K[ /¢
so that the stability estimate reads

17(t) = Lol < K7 Ve, |t] < exp K.
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Such estimate is better than the trivial estimate if
|
Ve K! <expK, (7.4)

but the latter inequality is not always satisfied. Indeed, the growth of W(K), as K
goes to infinity, can be arbitrarily fast; for instance, when m = 2 and assuming
o = (1,0q) with @y € [0, 1] irrational, letting (p;/q;) ;=1 be the convergents of «y,
the growth of W is nothing but the growth of the denominators ¢ ;, and this growth can
be arbitrarily fast (given any sufficiently increasing function ¢ : [1, +o00[— [1, +00],
one can always construct oy such thatg; 1 =~ ¢(g;)). As a consequence, the growth
of A(x), as x goes to infinity can be arbitrarily slow, and since K, >~ A(\/E_l)#,
the inequality (7.4) is not necessarily satisfied.

As a side remark, it is because of the confinement by convexity and energy
preservation that the time of stability is of the form exp K. and not of the
form \/E_l exp K; the latter is indeed the stability time one can reach in the general
steep case where this convexity argument cannot be used (see for instance [18]).
If we could replace exp K, in (7.4) by /& ' exp K, then (7.4) would be always
satisfied for ¢ sufficiently small, and therefore the stability would be non-trivial for
any Liouville vector. But here we do rely on convexity and so our result do not give
anything interesting for very Liouville vectors.

Let us now give somehow more concrete examples. If

1
W(K) ~ K~ exp (K_-ﬁ)
then the stability result is not interesting: indeed, in this case one has

A(x) ~ (log(x))"*, K, ~log(v/z ')

and so the result is

1 1
I(t) — 1| < logl —= ), |[t| S —.
110) - ol 5 Vetog (2 ). 15—
However, if
1
W(K) ~ K~ exp (c‘lKn——ﬁ) , (7.5)
for some constant ¢ > 1, then
T 1 Rf
I(t) = Ip|| S elogl —=) , [t| S| —
110~ ol 5 Vetog (z) 15 ()
so we have a non-trivial stability estimate for an interval of time which is a power
of ﬁ_l. In particular, if (7.5) is satisfied for all ¢ > 1, for instance if

\D(K)~K_1exp(K#), O<a<l1
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or even
W(K) ~ K exp (log(K)‘ﬂ K#) L B>,

then the stability time is better than any fixed power of /& (and consequently any
fixed power of £~!). For these class of vectors, the stability time, even though not
exponential, is actually very large.

To conclude, let us also point out that there are also analogues of Theorem 5.1
and Theorem 6.1 in the above context that can be stated and proved the same way;
we leave the details to the reader.

8. Concluding remarks

We conclude this paper with some remarks. We first discuss the possibility of
extending our results to less regular Hamiltonians, then to more general classes of
integrable Hamiltonians and finally to more general time-dependence.

Let us first comment on the regularity assumption in the results we proved.
The assumptions that 7 and f are real-analytic were only used in the normal form
Lemma 3.1, which is taken from [27]. So in order to have results for Hamiltonians
which are not real-analytic, for instance Hamiltonians which are only Gevrey regular
or finitely differentiable, one just needs a version of Lemma 3.1 in those settings,
and this appears to be only a problem of technical nature. One can find in [8]
and [9] normal form results for non-analytic Hamiltonians in the spirit of Lemma 3.1,
even though those statements do not recover Lemma 3.1. Let us also recall that in
the autonomous case (or time-periodic case when 4 is convex), Nekhoroshev type
estimates are known for Gevrey or finitely differentiable Hamiltonians [4, 5, 24] but
all those proofs are based on the Lochak method.

Next let us discuss the more interesting question of whether our results extend
to steep, or S-steep or P-steep, integrable Hamiltonians, the original classes of
integrable Hamiltonians considered by Nekhoroshev. One should first recall that
in the general steep case, unlike what happens in the convex case, motions near
resonances are not necessarily confined: if they are not, the steepness property
ensures that they evolve towards a less resonant domain and, eventually, end up in a
non-resonant domain on which an integrable normal form (up to a small remainder)
can be constructed, leading to the stability of the action variables. First is not hard to
see that one cannot obtain such a stability result for a quasi-periodic time-dependent
or even a periodic time-dependent perturbation of a steep integrable Hamiltonian.
Indeed, the simplest example of steep integrable Hamiltonian is given by the quasi-
convex Hamiltonian

1
h(l,....I,) = 5(112+---+ 17 )+ In.
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After a periodic time-dependent perturbation the extended integrable Hamiltonian
then reads I
h(ly,....1,,J) = E(112 SSRETE o ) I o

and obviously the latter cannot be stable: adding the perturbation & cos(6, — ¢),
where (6,, ¢) are the angles conjugated to (1, J), it is easy to see that the evolution
of (1,(¢), J(¢)) isunbounded. The correct question to be asked is whether the stability
result holds true for a quasi-periodic time-dependent perturbation of a S-steep or P-
steep integrable Hamiltonian. What we have shown is that one does have stability in
the simplest class of S-steep and P-steep integrable Hamiltonians, namely convex
Hamiltonians. If 4 is S-steep, then it is also P-steep and it follows from the work
of Nekhoroshev that one has stability for periodic time-dependent perturbations of
S-steep Hamiltonians, but the question we asked is whether one has stability for
quasi-periodic time-dependent perturbations of S-steep integrable Hamiltonian. We
can also the same question for the larger class of P-steep integrable Hamiltonians,
and more generally, the question is what could be the class of QP -steep (“quasi-
periodically steep™) integrable Hamiltonians for which one has stability after a quasi-
periodic time-dependent perturbation.

To conclude, let us mention that it seems quite unlikely to have a non-trivial
stability result for an arbitrary time-dependent perturbation, unless the time depends
on the small parameter, in which case the conjugated action variable can be considered
as degenerate (see [16] or [7]). But it may be possible to extend our results for a
class of perturbation whose Fourier transform (with respect to time) has suitable
localization properties.
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