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Nekhoroshev's estimates for quasi-periodic
time-dependent perturbations

Abed Bounemoura

Abstract. In this paper, we consider a Diophantine quasi-periodic time-dependent analytic
perturbation of a convex integrable Hamiltonian system, and we prove a result of stability of
the action variables for an exponentially long interval of time. This extends known results for
periodic time-dependent perturbations, and partly solves a long standing conjecture of Chirikov
and Lochak. We also obtain improved stability estimates close to resonances or far away from
resonances, and a more general result without any Diophantine condition.

Mathematics Subject Classification (2010). 37J25, 37J40.

Keywords. Hamiltonian systems, perturbation theory, effective stability.

1. Introduction and results

1.1. Introduction. Let n > 1 be an integer, D C 1" an open bounded convex
domain and Tn : M." / (2nZ)n. Consider a smooth Hamiltonian function 77 defined

on the domain T" x D of the form

77(0,1) h(I) + ef(9,1), £>0, (9,1) (0i,..., 0„, 7i,..., 7„) eT"xD,
(1.1)

and its associated Hamiltonian system

{8i{t) dIiH{8{t),I{t)) diih{I{t)) + edIlf(8(t),I(t)), l<i<n
(7,(0 -de,H(9(t),I(t)) -edejmO.Ht))

For £ 0, the system is stable in the sense that the action variables 7(f) ofall solutions
are constant, and all solutions are quasi-periodic. Now for £ ^ 0 but sufficiently
small, a fundamental result of Nekhoroshev states that if the system is real-analytic
and the integrable part h satisfies a steepness or S-steepness condition (these are

generic conditions), then the action variables 7(f) of all solutions are almost constant
for an interval of time which is exponentially long with respect to the inverse of the
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perturbation. More precisely, the following estimates hold true along all solutions:

||/(0-/(0)|| :=
\

£(/, (0 - //(0))2 < R0sb, \t | < 7o exp (c Q) (1.2)

for some positive constants Ro,TQ,c,a and b. We refer to [25] and [26] for the

precise results and the definitions of steep and S-steep functions. The most important
constants appearing in the estimates (1.2) are undoubtedly the constants a and b,
which are called the stability exponents. The simplest class of steep (respectively S-

steep) integrable Hamiltonians are quasi-convex (respectively convex) Hamiltonians,
and these exponents depend then only on the number of degrees of freedom n.
Nekhoroshev's original proof yielded the following dependence

1

Such values for the exponents were however much worse than the values

a b —
2n

conjectured by Chirikov [12] on a basis of a heuristic argument and numerical
simulations. This issue was later solved by Lochak [20]: more precisely, Lochak-
Neishtadt [23] and independently Pöschel [27] proved that (1.2) holds true with the
values

a b —In
in the quasi-convex case (in the convex case, these exponents are valid for solutions

starting not too close to the minimum of h\ for these latter solutions the action
variables are stable for all time). The proof in [27] also allows to increase the value

of b at the expense of decreasing the value of a: given any 0 < (i < 1, one can obtain
the exponents

fi n l-Iia —, b
2 n 2n 2

that recovers the latter result by setting fj, 1. On the other hand, it is proved in [ 10]

that one can slightly improve the value of a at the expense of greatly decreasing the

value of b: for any 0 < S < (2n)_1, one can choose

a
1

(1 -28), b S,
2(n - 1)

and the classical result is recovered by letting S (2n)~x. Examples of Arnold
diffusion [2,3,30] show that in any eventa < (2(n — 2))-1 so that in the convex case,
the estimate (1.2) is, as far as the dependence on a is concerned, quite sharp.
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In the general steep case, no improvement on the values of the stability exponents
were made until a recent achievement by Guzzo, Chierchia and Benettin (see [17] for
an announcement and [18] for the proof): denoting by aq,..., an~\ the steepness

exponents (these are integers always larger than one), they obtained the values

1 a 1

b
2n{a\ ••a„-2y an-\ 2n(aq •-a„_i)'

For a quasi-convex Hamiltonian, one simply has aq • • • an-\ 1 and thus the

latter result extends the conjectured optimal values.

Now instead of an autonomous perturbation as in (1.1), one may consider a

periodic time-dependent perturbation, that is one looks at the Hamiltonian

H(9,1) h(I) + ef(0,1,t), £>0, (9,1) & VxD, te T. (1.3)

Setting t (p e T and introducing a variable Je! canonically conjugated to <p, it
is equivalent to study the autonomous Hamiltonian

H(6, /, <p, J) h(I) + J+ ef(6, /, (p), £ > 0,

(9, /) e T" x B, (<p,J)e Txl. (1.4)

Indeed, (9(t), I(t),<p(t), J(t)) is a solution of the system associated to (1.4) if,
and only if, (9(t),I(t)) is a solution of the system associated to (1.3). In his
seminal work [25,26], Nekhoroshev introduced a notion of P-steepness such that

exponential stability holds true for a periodic time-dependent perturbation of a

P-steep integrable Hamiltonian. As Nekhoroshev pointed out, the P-steepness of an

integrable Hamiltonian I h-> h(I) turns out to be equivalent to the steepness of the

extended integrable Hamiltonian (/, J) i->- h(l) + J, hence the stability of P-steep
integrable Hamiltonians under a periodic time-dependent perturbation is a direct

consequence of the stability of steep integrable Hamiltonians under an autonomous

perturbation.
Once again, the simplest class of P-steep Hamiltonians are given by convex

Hamiltonians: if / i—> h(I) is convex, then one easily check that (/, J) i-» h(I) + J
is quasi-convex and thus steep. Thus the results of [23] and [27] apply to periodic time-
dependent perturbation of convex integrable Hamiltonians, and the estimates (1.2)
hold true for the Hamiltonian (1.3) with the exponents

a b
2 (n + 1)

Now a periodic time-dependent perturbation is nothing but a special case of a

quasi-periodic time-dependent perturbation, and we may more generally consider
a Hamiltonian of the form

H(9,1) h(I) + sf(9,1, ta), £>0,
(0,/) e T" x D, ta t(a\,... ,am) e Tm (1.5)
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where a e Rm is a vector which is assumed to be non-resonant, that is k a ^ 0

for any non-zero k e Zm and where • denotes the Euclidean scalar product. We

will assume actually that a satisfies a Diophantine condition: there exist y > 0

and r > m — 1 such that

I* «I > y\k\~T, k (kl,...,km)eZm\ {0},

|fc| := l^l-I \-\km\. (DiOy,T)

As before, setting cp ta e Tm and introducing a vector J (Ji,..., Jm) £

canonically conjugated to (p, the Hamiltonian (1.5) is equivalent to

H(6,1, (p, J) h(I) + a J + ef(9,1, cp), e > 0,

(6,1) e VxD, (<p,J)e PxRm. (1.6)

The Hamiltonian (1.6), in the special case m 1, reduces to Hamiltonian (1.4):
indeed, ael and by a scaling one may assume that a 1, and moreover (Dioy;T) is

obviously satisfied for y |or | 1 and r m — 1 =0. However, in the case m > 2,
the extended integrable Hamiltonian does not satisfy any steepness condition, so it is

not clear whether the estimates (1.2) hold true.
We can now state the most general form of a conjecture of Chirikov (see [12,13]

and [14]), stated in a more precise manner by Lochak [22],

Conjecture 1.1. The estimates (1.2) hold true for the Hamiltonian (1.6), provided it
is real-analytic and h convex, with the exponents

2(n + 1 + r)

Note that this conjecture is made plausible by the fact that in the periodic case,
that is m 1 and r 0, it is a theorem. Yet for m > 2 and hence r > 1, it is

an open question whether the estimates (1.2) hold true for the Hamiltonian (1.6), for
some values of a and b whatsoever.

It is the purpose of this article to solve this problem: we will prove that the

estimates (1.2) hold true for the Hamiltonian (1.6), provided it is real-analytic and h

convex, with the exponents

1 (n + l)r + 1 1 n

2 (n + 1)(1 + t) 2 (n + 1)(1 + r) 2 2 (n + 1)(1 + r)

We refer to Theorem 1.2 below for a more precise statement. Concerning the values of
the exponents we obtain, let us just make two comments (a more detailed discussion
is contained in Section 1.4). First, for the periodic case (m 1, r 0), we also

recover the known values of the exponents, so our result can also be considered as a

"correct" generalization of the periodic case. Then, in the non-periodic case (m > 2,

r > 1), our exponent a is substantially worse than the one of Conjecture 1.1, but
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at the same time our exponent b is always much better: b is always strictly bigger
than 1 /4, and when m gets large, it is close to 1/2. Moreover, in the non-periodic
case, b is essentially independent of n which is an interesting feature. In any case, it is

therefore still an open question whether the values of the exponents of Conjecture 1.1

can be reached or not (once, again, we refer to Section 1.4).

In fact, we do obtain more general results. First, the perturbation will be

allowed to depend also on the J variables, that is we can replace f(9,1, (p) in (1.6)
by f(9,1,<p, J), provided / is bounded and real-analytic in J, when J varies in Mm.

Moreover, we will also be able to control the evolution of the J variables; in the

periodic case r 0 we will obtain a stability result with the same exponents a and b,
while in the quasi-periodic case t > 1, we will obtain the same exponent a but a

worse confinement given by the exponent

i* 7
1 2n

b b — na
2 2(n + 1)(1 + r)

which is still strictly positive, and asymptotically close to 1 /2 when m gets large.
This will be the precise content of Theorem 1.2. To understand the interest of this

seemingly mild extension, one can compare such a result with the preservation of
invariant tori (that is, the KAM theory) for Hamiltonians as in (1.1), (1.4) or (1.6).
In the autonomous case of (1.1), if the integrable Hamiltonian is convex then it
is in particular Kolmogorov non-degenerate and the classical KAM theory applies
(see [28] for a survey). In the periodic case (1.4), the integrable Hamiltonian is

no longer Kolmogorov non-degenerate but as it is quasi-convex, it is Arnold (or
iso-energetically) non-degenerate: it follows that tori are preserved at a fixed energy
for (1.4) yielding invariant tori for (1.3). In this case the perturbation may also

depend on 7 e K without affecting the result. Now in the more general quasi-
periodic case (1.6), the integrable part is both Kolmogorov and Arnold degenerate.
However, using the non-degeneracy with respect to the I variables and the fact
that the perturbation is independent of J, it is not hard to prove, using classical

KAM techniques, that many tori with prescribed Diophantine frequencies of the

form (oj, a) e R"+m are preserved (up to our knowledge, this was first observed by
Galavotti in [15] in a restricted situation and later by Lochak in [21,22] in a general
situation). It is crucial here to have a perturbation which is independent of /: if not,
the method simply breaks down and it is rather easy to construct counter-examples
(as in [29]) to the preservation of (full dimensional) invariant tori. Therefore unlike
the situation in KAM theory, our result is exactly the same when / is allowed to

depend on the J variables.

Then, exactly as in [27], one can obtain a more general result by increasing the
value of b (and therefore of b*) while decreasing the value of a. This will be the

content of Theorem 1'.

Moreover, as in the autonomous or periodic case, we do obtain enhanced stability
close to resonances. In our situation, the multiplicity of any resonance is at most d,
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where 0 < d < n (with the convention that any frequency is resonant of multiplicity
at least 0), and solutions who start sufficiently close to such a resonance are stable

with the exponents

' U/,l\ (n + 1)T + 1

a(d) — —, b(d)

(n + l)r + l

2((n + l)r + n + 1 — d)' 2({n + l)r + n + 1 — d)
and

b*(d)
2((n + l)r + n + 1 - d)

In the case of a resonance of maximal multiplicity d n these exponents read

Ö77—TT;—l~T\' b= i-
2 ((« + l)r + 1) 2

This will be proved in Theorem 5.1. One recovers the improved stability exponents of
the periodic case by setting t 0, and our main result by setting d 0. Using this

improved stability at resonances, one can proceed as in [10] to slightly improve the
value of the exponent a by greatly decreasing the value of the exponent b (and loosing
control on the J variables for m > 2). This will be the content of Theorem 5.2.

The complement of the neighborhoods of all resonances is the non-resonant
domain (this domain contains, in particular, invariant tori, if any). Solutions starting
in the non-resonant domain are stable with the exponents

a 1b' b'* -.2(n + 1)(t + 1) 2

Moreover, the complement of this non-resonant domain is actually very small: its

measure is of order
b i- (n + 1)T + *

b
2 (n + 1)(1 + t)

and therefore goes to zero with e. This will be stated as Theorem 6.1. This actually
improves on the corresponding statement for r 0, where the measure estimate
of the complement is just of order one. This non-resonant domain comes from the

proof of our main theorem, and ends up quite large as we need to exclude very small

neighborhoods of resonances. A more natural definition of a non-resonant domain

yield the following result: given any 0 < y' < y and any r' such that r' > n + m — 1

and r' > r, where y and r are the constants appearing in (Dioy r), there is a set whose

complement has a measure of order y', such that on this set, the estimates (1.2) hold
true with the exponents

a'
1

b' b'*
2(r'+l) 2

This will be the content of Theorem 6.2. Hence on a smaller non-resonant subset,

but which is still relatively large, we have a stronger stability result, with a' arbitrarily
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close to the value conjectured and b' much better. As a matter of fact, when r > m — 1

(for m > 2, the set of vectors a for which x m — 1 has zero measure), one can
choose x' n + x and then a' coincides with the value conjectured.

Finally, as usual with results in Hamiltonian perturbation theory concerning long
but finite time scale, the Diophantine condition (Dio,,iT) on the vector a Mm turns
out to be unnecessary. For an arbitrary vector a e Rm which is assumed to be

non-resonant, that is

k • a 7^ 0, k II",
we will obtain in Theorem 7.3 a more general stability result which reduces to the

main result in the case where a is Diophantine.

1.2. Main result. Let us now state more precisely our main result. We consider a

Hamiltonian of the form

H(9, <p, /, J) h(I) + a J + f(9, <p, /, J),
(9, /) e T x D, (<p, J) Tm x Rm (H)

where h is the integrable part and / the perturbation. The Hamiltonian h, defined

on D := D x by

h(I,J) := h(I) + a J, (I,J)eD
will be called the extended integrable part. The functions h and / are assumed to
be real-analytic as follows. Given two parameters r0 > 0 and ,s'o > 0, we define the

complex domains

VroD := {/ eC | ||/-D|| < r0},

VroD := {(/,/)e Cn+m | ||(/,y)-D|| <r0}

where

||7 - D\\ := inf ||/ - /'||, ||(/, /) - D|| := inf ||_(/, J) - (/', 7')||,
I'eD (I',J')sD

and

VSnTn+m := Ue,<p) Cn+m/(2jrZ)n+m \ max |lm(0,)| < s0,' i<i<«

max |Im(<p,)| < 50[-
1 <(<m

Let us also define the associated real domains

UroD := VroDnM",

UroD := VroD n R"+m UroDx Rm.
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The function h is assumed to be real-analytic on VroD so that h is real-analytic
on Vr0 D, and its Hessian V2/z is assumed to be uniformly bounded on the complex
domain Vr0 D, namely there exists M > 0 such that

sup ||V2/r(/)|| sup \\V2h(I, J)\\ < M (M)
IeVroD (l,j)eVroD

where the matrix norm is the one induced by the Euclidean norm. The gradient of h

is also assumed to be uniformly bounded on the real domain UroD, that is there exists
£2 > 0 such that

sup ||(V/z(7),«)|| sup ||VÄ(/)|| < £2. (£2)
IeUr0D IeUr0D

Moreover, the integrable Hamiltonian is assumed to be (strictly, uniformly) convex:
there exists k > 0 such that for any v el",

V2h(I)v v > k\\v\\2. (k)

Observe that £2 > ||a|| and k < M.
Finally, the function / is real-analytic on VroD x Ei0T"+m, and moreover, given

a small parameter e > 0, it is assumed that

\f\ro,s0<£ (£)

where the Fourier norm |/|r(Mo of / is defined as follows: letting

f{6,<p,I,J)= £/W(/,7)ei(WH^
(fc,/)Z"+m

be the Fourier expansion of / with respect to (6, cp), we define

l/lr0,*o:= SUP
_ E |(*,/)| |*| + |/|.

(I,J)eVr0D ^,l)eZ"+m

We can now state our main theorem.

Theorem 1.2. Let 77 be as in (H), with h satisfying (M), (£2) and (k), and f
satisfying (s). Assume also that a satisfies (Dioy>T), and let us define

_
1

b_ (n + l)r + 1

_
(n + l)r + 1 — n

2(n + l)(t + 1) 2(n + l)(r + 1) 2{n + l)(r + 1)

and

_ Kr0y 3^o
* \0M(n + l)r' * £2

Kr^y2 / K \2(n + l)
£° ~ 210(n + 1)2t VlOM/ ' £*_e°V^/
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IfKTo < min{80,24||a||}anrfe < minjeo, £*},foranysolution (I(t), J(t),9(t),<p(t))
of the system associated to H with initial condition (/o, Jo, $o> cpo) e D x T"+m, we
have

11/(0 - /oll < R(e) := R* (j-^j \t\ < T(e) := T* exp (^)ö)
Moreover, in the case where m — 1 and hence t — 0, we have

\J(t) - 70| < (^/|a| + i)R* |?| < T*exp(^ (y)
whereas in the case m > 2 and hence r > I, we have

b*

l-/(0 — Moo '= p\Ji(t) - 7,(0)1 < R* (—) |1| < T*exp(^ (—)
l<i<m V£o / V 6 v e / /

Let us just make one comment concerning the assumption (e), which requires
the perturbation f{6,<p, /, J) to be uniformly bounded in J, with J belonging to
the ro-neighborhood of Mm in Cm. When H comes from a time-dependent quasi-
periodic perturbation of a convex integrable Hamiltonian, the perturbation is in fact

independent of J so the above requirement is void. As a matter of fact, since we

are able to control the evolution of the J variables, one can obtain a stability result

assuming only that the perturbation f(6, tp, /, J) is uniformly bounded in J, with J
belonging to the ro-neighborhood of some fixed bounded domain U C Rm in Cm.

In the periodic case m — 1 this is easily done and one obtains exactly the same result
with this weakened assumption. The problem in the quasi-periodic case m > 2 is that
the control on the J variables we obtain (which is given by the exponent b*) is worse
than the control on the I variables (given by the exponent b) and as a result, under
this weakened assumption one would obtain a worse stability result. The discrepancy
between the exponents b and b* will be discussed in more details in Section 1.4.

Next, exactly as in [27], replacing the radius of analyticity ro by the smaller

radius role/eo)^2^ for 0 < ji < 1, we immediately obtain the following more
general statement.

Theorem V. Let H be as in (H), with h satisfying (M), (£2) and (k), and f
satisfying (e). Assume also that a satisfies (Dioyir), and let us define

a_
1 (n + l)r + 1

^ _ (n + l)r + 1 - n

2 (n + l)(r + 1) 2 (n + l)(t + 1) 2{n + l)(r + 1)

and

_ Kr0y 35o
*

10M(« + l)r' * fi'
_ tcr^y2 / K \2(«+i) {ro\*£° ~ 210(n + 1)2t \ 10M / ' £*-£0^J '
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IfKr0 < min{80,24||a|| }ands < min{eo, £*}, forany solution (/(?), J (t), 6 (t),(p(t))
of the system associated to H with initial condition (Iq, Jo, do, <Po) D x T"+m, we
have

for any 0 < ji < 1. Moreover, in the case where m 1 and hence r 0, we have

Observe that Theorem 1.2 reduces to the case /i 1 of Theorem 1'.

1.3. Strategy of the proof. There are two known methods to prove Nekhoroshev

type estimates for small perturbations of integrable Hamiltonian systems. The
first one is the Nekhoroshev-Pöschel's method, introduced in the seminal work
of Nekhoroshev [25,26] and later improved by Pöschel [27] in the convex case (see

also [18] for a further extension of the work of Nekhoroshev and Pöschel leading to
an improved and conjecturally optimal value of the stability exponents in the steep

case). The second method is the Lochak method, introduced by Lochak [20,23] in the

convex case (see also [ 11 ] for an extension to the steep case, though with worse values

for the stability exponents). In the convex case, the latter method is undoubtedly the

simplest and most elegant way to prove stability estimates.
The Lochak method crucially relies on the existence of periodic orbits for the

integrable system, that is on the existence of periodic frequencies. Now in the case of
a quasi-periodic perturbation, the space of frequencies is of the form (en, a) e R"+m,
where w e K" is free but a Mm fixed and non-resonant (in particular, a is

not periodic; if it were, one would be in fact looking at a time-dependent periodic
perturbation). The issue is that this space does not contain periodic frequencies. As
a matter of fact, it is not really necessary to have exact periodic frequencies, but

only frequencies which can be approximated by periodic ones. Now any frequency
of the form (co,a) can be approximated by a periodic frequency, say (a)', a'). But
then necessarily a' f a, and since our Hamiltonian is not convex in the J variables

we were not able to prove stability close to such periodic frequencies. Therefore the
method of Lochak does not seem to extend in a easy way to the case of a quasi-periodic
perturbation.

Our strategy is therefore to try to extend the Nekhoroshev-Pöschel method, and we
will succeed in doing so. This method consists of covering the space of frequencies

whereas in the case m >2 and hence r > 1, we have
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by resonant blocks, which are neighborhood of resonances (defined by a certain
lattice of integer vectors) that are otherwise non-resonant (for integer vectors not
in the lattice). Using convexity, one can then show that the solutions stay in the

same resonant block for a long time (in the general steep case, they may leave their
resonant block and the proof of the stability gets much harder). In the autonomous
case where the frequency space is just w £ 8", resonances define linear subspaces
which are orthogonal to arbitrary submodules of Z". In the quasi-periodic case, our
frequency space is still «-dimensional but resonances are associated to submodules

of Z"+m. But not all submodules of Z"+m are associated to resonances: those that

are not will be called non admissible. Now resonances associated to admissible
submodules do not necessarily define linear subspaces but rather affine subspaces

in the space of w e M". Therefore we are facing much more resonances than in
the autonomous case, and the geometry of these resonances gets more involved.
In particular, different admissible submodules might lead to different but parallel
affine subspaces, and it is at this point that the assumption that a is Diophantine
(or in fact simply non-resonant) comes into play: it ensures that we can control the

distance between these parallel affine subspaces. In particular, in the extreme case

where these parallel affine subspaces are just points (that is, their associated vector

space is trivial), they can get very close to each other, and this is precisely from this

phenomenon that our values of the stability exponents come from. This improved
geometry of resonances will lead to the fact that any frequency (&>, a) is close to some

resonant frequency of the form (oj\ a). Using this, and the fact that our integrable
Hamiltonian is convex in the I variables while linear in the J variables, we will
be able to prove stability for the I variables. Once we know that the evolution of
the I variables is bounded, using the fact that resonances are associated to admissible

submodules, we will obtain stability for the J variables, with the same interval of
time yet with a worse confinement.

1.4. A discussion on the stability exponents. First let us recall that the conjecture
of Chirikov-Lochak predicts that

a b —- - (1.8)
2 (« + 1 + t)

while we proved

1 (« + l)r + 1

a — — r, b
2(n + 1)(1 + r) 2(« + l)(l+r)

For t 0, the exponents are the same but not for r > 1. However there is certainly no
contradiction here; our result yields a better confinement but on a worse time-scale.
Chirikov initial conjecture is ultimately based on the ansatz

|(k,l) (a>, or)| - \k\ + \l\<K, (1.9)
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for an arbitrary fixed vector a e leading to the exponents

a b=1( 1 v O-io)
2{n + m)

We refer to [14, Equation (1.8)], for instance. When m 0 or m 1, that is

when the perturbation is autonomous or time-periodic, vectors u> R" satisfying
the above condition (1.9) do exist: they are called badly approximable, they are the

"best" non-resonant vectors and they form a dense set but of zero Lebesgue measure.
In those two cases m 0 and m 1, the exponents (1.10) turned out to be correct,
but proofs do not use existence (nor density) of those badly approximable vectors: on
the contrary, in the work of Lochak it is the "worst" resonant vectors, namely periodic
vectors, that play the major role. When m > 2, as observed by Lochak in [22], the

ansatz (1.9) and hence the exponents (1.10) are clearly too optimistic: one should

require a to be Diophantine with some exponent r > m — 1, and replace (1.9) by

Kk./Mcu,«)!-^, |*| + |/|<*, (l.ii)

so that the exponents of (1.10) become those of (1.8). Vectors co H"
satisfying (1.11) do exist, they form a dense set which is furthermore of full Lebesgue
measure when x > m — 1 (when r m — 1 they have zero Lebesgue measure). In

our opinion, it is a very interesting open problem to derive first these exponents when

m 0 or m 1 using badly approximable vectors, to see if and how one can try to
use vectors satisfying (1.11) to possibly reach the values (1.8).

The fact that our exponent b is much better than the exponent conjectured, whereas

our exponent a is much worse, lead to the following natural question: is it possible
to improve the exponent a (possibly to the conjectured value) at the expense of
deteriorating the exponent b?1 Of course, we cannot prove this is not possible (as

this would mean that the conjecture is wrong, which of course we do not know) yet
we will try to explain why this cannot be done if one strictly follows the confinement
mechanism of Nekhoroshev (which is what we do here). Indeed, a crucial point in this
mechanism is the so-called non-overlapping of resonances: resonant zones (which
are small neighborhoods around exact resonances) of the same multiplicity should

not be allowed to intersect, because if they do, this could create a path in action space
along which orbits could have large variation. This property was fundamental in the

original work of Nekhoroshev [25], but also in [27] (though in a rather disguised
form) and then finally in [18]. As a matter of fact, in [25] this non-overlapping of
resonances was forced by the definition of the resonant zones which ultimately lead

to non-optimal exponents while in [18], using a different definition of resonant zones,
which generalizes the one introduced in [27], this property was proved to be satisfied

by a very careful analysis, leading to improved and conjecturally optimal exponents.

'We would like to thank an anonymous referee for pointing out this question.
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The point here is that in the quasi-periodic case, there are much more resonances
than in the periodic case, hence if one wants to separate resonant zones of the same

multiplicity, then one needs to consider much thinner neighborhoods of resonances,
and by doing so one obtains at the end a very small radius of confinement. To

explain this in more detail, let us start by comparing the simplest yet non-trivial cases

n m 1 with n 1, m 2. In the first case, we consider the integrable part

h(I, J) X-I2 + J, (/, /) e R2 (1.12)

while in the second case, we consider the integrable part

h(I,Jl,J2) ^I2 + Jl+aJ2, a e R \ Q. (1.13)

For simplicity, let us restrict the discussion to/ e [0,1]. In the case (1.12), resonances
of order at most K > 1 correspond to rational values of I with denominators bounded

by K, that is

\(q,p)-Vh(I,J) 0,

!(?,/>) loo < K,
/
9 l(9,P)\oo < K.

Clearly, the distance between any two such rationals is bounded by

1 1

> — > —
99' 9k

and therefore to separate the resonant zones, one has to define them as

Z(q,p) — w £ r (/>>«) (' r(p,q)
1

w
The analysis then requires to have */e < r^q^p), and as q can be as large as K, the

largest possible choice of K is K ~ e_1^4 and this leads to the exponent of stability
a — 1/4. Moreover, since q can be as small as one, one also has r(q,P) < K~l ~ e1/4

and thus b 1/4. Another way to see this (and this is the point of view taken in [27])
is to observe that at I —p/q, for any k (q', p') Z2 with |Ar |oo < K, then

either k • Vh(—p/q, J) 0 (if k (q\ p') is proportional to (p, q)) or else one has

the "small divisor" estimate

|k Vh(-p/q, 7)| \(q', p') Vh(-p/q, 7)| / 9 P p'9 — 9'P
P

9 9

1

> —

It is then easy to see that this estimate, which holds true at I —p/q, can then be

extended to any I e Z(q p) provided we choose f(q,P) as above.
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Let us now look at the case (1.13). Here, resonances are much more abundant,

namely

I(q,p,l) VA(/, J) 0,

l(<7>/h0loo < K,

I j _ p+la

jq < l(q,pJ)loc < K.

To control the distance between any two such resonant values, assume that (La)
satisfies (DiOy!T), then we have

p + la p' + I'a
> \{q'p-qp') + (q'l-ql')a\

qq

>
l Y

qq'(\(q'p-qp')\ + \(q'l-qlW
and using the fact that q' < K, \{q'p — qp')\ + \(q'l — ql')\ < K2, one obtains for
instance

p + la p' + I'a
q'

> Y

qK2r+l (1.14)

and therefore resonant zones are separated if one define them as

Z (q,p,l) / e / - p + la
< r(p,q,D r(p,q,l) qK2r+l

Then since q can be as large as K and since we need y/e < r(qpj), the largest
i i

possible choice of K is K ~ s 2<2r+2> e 4<r+i> and this gives the stability
exponent a l/(4(r + 1)), and moreover, as q can be as small as one, then

r(q,p,l) ~ AT~(2r+1) ~ sb with b (2r + l)/(4(r + 1)). As before, one can
also see this (and this is the point of view we take in this work, following [27]) as

the maximal width around exact resonances for which the small divisors estimate
at / —(p + la)/q can be extended to Z(9 /7 /). One may argue that (1.14)
can be estimated differently, for instance with a lower bound that depends on the

norm of (q, p, I) and not just q. The first point we want to make is that this is not
compatible with the approach we will take in this paper: in order to use convexity to
control the evolution of the action variables I, we need to consider resonant zones
as neighborhoods of affine subspaces in the I space (in the example here, these

are neighborhoods of points in the I space) and not as neighborhoods of vectors

subspaces in the {I, Ji, J2) space (which, in the example, would be neighborhoods
of vectorial lines in the (I, J\, J2) space); indeed, in the second case exact resonances
in frequency space would then correspond to vectors of the form (/, ß) e R3 with ß
close to (l,a) but not necessarily of this form, and our argument using convexity
to bound the evolution in the I variables wouldn't work. The second point is that,

independently of how one chooses to bound (1.14), in any event this quantity can
be as small as K~2t+2 A'-2(r+1) (it is easy to construct examples of integer
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vectors (q,p,l) and (q',p',l') generating a maximal lattice in Z3 for which this

happens), so it seems hard to choose K larger.

Now in the general case n > 1 and m > 1, the same discussion applies at maximal

resonances (which are of multiplicity n), and leads to the fact that the distance between

resonant zones of the same multiplicity can be as small as y^-("+| XT+') ancj therefore
i

the largest choice of K is K ~ e 2<n+nu-i-i), which gives the value of our exponents a
and then b a((n + l)r + 1).

Let us also try to give another reason why it is not so unnatural to have such

a small radius of confinement. For this we need to recall that the perturbation is

allowed to depend on the J variables, and that we do control the evolution of these

variables also, yet with a worse radius of confinement in the case m > 2: for the /
variables the exponents are given by

1 (n + l)r + 11 n

2 {n + 1)(1 + r) 2 {n + 1)(1 + r) 2 2 (n + 1)(1 + r)

whereas for the J variables, we obtain the same exponents if m — 1, r 0 while in
the case m > 2, r > 1, we obtain

1

_
(n + l)r + 1 — «

_
1 2n

2(n + 1)(1 + r) 2(n + 1)(1 + r) 2 2(n + l)(l+r)
We do have 0 < b* < b, but b* still gets close to 1/2 when m becomes large. Let us

first briefly explain why we do not obtain the same exponents. Using the geometry of
resonances and convexity with respect to /, one first obtain a control on the evolution
of the I variables. As we already explained, in the geometry of resonances, given
an admissible submodule A c Zn+m since we want to work in the I space, the

width of its resonant zone is controlled by the covolume |A| of the projection A
of A onto Z", and not by the covolume | A | of A (in the case n 1 and m 2

we described in (1.13), the width of the resonant zone depends just on q and not
on the norm of (q, p, /)). Clearly one cannot control the J variables in the same

way, that is using the geometry of resonances and convexity, since the integrable
Hamiltonian is linear in the J variables. However, once we know that the I variables

are stable, one can then use the normal form to control the J variables, using the fact
that since A has rank at most n, any resonant normal form has at least m independent
first integrals. But here it is no longer | A | but the covolume of the full lattice | A | that

plays an important role, and since | A | and | A | might be of different size, we cannot
reach b* b. We do believe that one could reach b* b even though we were not
able to do so; since b* still converge to 1/2 when m goes to infinity, we do believe
that this is not so important for our purpose here. Indeed, the point we want to make

is to compare our exponents for the "mixed non-linear linear" integrable Hamiltonian

h(I,J) h(I) + a J
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with the known exponents of the fully non-linear convex integrable Hamiltonian h (/)
(under a periodic time-dependent perturbation, so we consider a quasi-convex
integrable Hamiltonian with n + 1 degrees of freedom) and with the known exponents
of the fully linear integrable Hamiltonian a-J. In the first case, the known exponents
are

1 1

a — r, b — (1.15)
2(n + 1) 2{n + \)

while in the second case, they are

a —T7< b \- O-16)
x + 1 2

When n is fixed, and r gets very large, it seems reasonable to expect that the mixed

system should essentially behave like the linear system; and indeed, in this case

our exponents a and b* ~ b are asymptotically equivalent to those of (1.16) (it is

precisely for this reason that an exponent b* that converges to 1 /2 when m converges
to infinity is sufficient for our purpose2). The exponents a and b in (1.16) are known
to be optimal (see [6] for easy examples), and therefore since our result do contain
the linear case (one can even put formally n 0), it seems reasonable to have such

large exponent b and b*. But then in the same way, when r is fixed, and n gets very
large, it seems reasonable to expect that the mixed system should essentially behave

like the non-linear system; yet our exponents a and b are asymptotically equivalent
to

1

„
1

2(n + l)' 4

so we obtain essentially the same exponent a but a much better exponent b. As a

matter of fact, only the exponent a in (1.15) is known to be optimal; it is still an open
question whether the exponents

1 1

a b - (1.17)
2(77 + 1) 2

can hold uniformly in phase space in the non-linear case; our result shows that for n

large, if one adds linearity in just one degree of freedom then exponents close to (1.17)
do hold uniformly in phase space.

Clearly this discussion does not give evidence that the exponents of the conjecture
cannot be reached; it just shows that it could be hard to improve on the value of the

exponent a by simply following the mechanism of Nekhoroshev. One could try to
use another mechanism taking into account that the system is not fully non-linear
(the mechanism of Nekhorohsev is, by nature, essentially non-linear); we believe
that adding the assumption that the perturbation does not depend on J should play
an important role here, but so far we haven't been able to exploit such a feature in

2As a matter of fact, this comparison was our motivation to obtain stability for the J variables
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an effective way. This discussion also shows that it is not unreasonable to believe
that the exponent b 1/2 could prevail uniformly in phase space, both for the fully
non-linear and the mixed case.

1.5. Plan of the paper. The plan of the paper is as follows. Section 2 deals in details
with the geometry of resonances that was alluded above. This section contains the

main technical part of the work. Section 3 deals with the analysis (construction
of a normal form) and the local stability results. The analysis, and therefore the

stability in the non-resonant case, is completely standard and we can simply refer

to [27], The stability in the resonant case uses convexity: our integrable Hamiltonian
is just "partially" convex so we need to justify that the arguments go through, and

how one can afterwards control the J variables also. The proof of our main result
Theorem 1.2 will be given in Section 4, using the results of Section 2 and Section 3.

The next sections contain further results that were mentioned in the Introduction:
namely, we prove better stability results for solutions close to resonances in Section 5

or far way from resonances in Section 6, while in Section 7 we give a more general
result assuming a to be only non-resonant. The last Section 8 consists of concluding
remarks.

2. Geometry of resonances

The purpose of this section is to study the resonant and non-resonant properties of
the frequency space

{(a;,«) e Rn+m} ~ {ft> e R"}

where a e JKm is a fixed vector, which will be assumed to be Diophantine, and co

is a vector varying freely in Mn. More precisely, our aim is to cover this space
by neighborhoods of resonances (associated to certain submodules A of Z"+m) on
which non-resonant estimates can be established (for integer vectors k A).

2.1. Admissible resonant zones and resonant blocks. We fix a real parameter
K > 1, and in this section, a e will be assumed to be simply non-resonant.

A submodule A ofZ"+m is said to be a K-submodule if it is generated by elements

(k, /) e Z" x Zm Z"+m such that |(/c, /)| < K, and it is said to be maximal if it
is not properly contained in any other submodule of the same dimension. Given an

integer 1 < d < n + m, the set of all maximal K-submodules A of Z"+m of rank d
will be denoted by Mgj. For A e M^,d, we define the space of A-resonances by

RA {a)eRn | (k,l) (co,a) — 0, V(/c,/) A}. (2.1)

Quite obviously, since a e Rm is non-resonant, RA will be non-empty only for certain
maximal A-submodules A. Let us consider the subset M£ d of M^,d consisting of
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admissible submodules: they are submodules whose intersection with {0} xZm C
Z" x P Z"+m is trivial. Equivalently, given any basis (k1,11),... ,(kd, ld)
for A, the vectors k1,..., kd in Z" are linearly independent. It is plain to check that

if A is not admissible, then R a is just the empty set. Note also that if A is admissible,
its rank is at most n.

Now consider A e d where 1 < d < n. If n : R"+m i-> R" is the

canonical projection, A := n(A) is a submodule of Z", of rank d, which generates
a real subspace (A) of R" of dimension d. It is clear that A is a A-submodule,
but it is not necessarily maximal. The space of A-resonances defined in (2.1) is

non-empty, it is an affine subspace of R" whose associated vector subspace is the

vector subspace (A)-1 orthogonal to (A).
It is not the space of resonances but rather their neighborhoods that will play a

role in the construction below. To define them, given A e d and its associated

submodule A, we first define |A| as the co-volume of A viewed as a lattice in (A).
It is the volume of the fundamental domain spanned by the vectors of any choice

of basis for A: letting A be an n x d matrix whose columns form a basis for A,
then | Ä | VdetAM, and this latter quantity is easily seen to be independent of the

choice of a basis. It is worth recalling, as it will be used, that if Sd(A) denotes all

square matrices of size d that can be extracted from A, then we have the equality
(Cauchy-Binet formula)

|A| VdetA'A I J2 (detß)2.
V BeSd(A)

Then, we introduce n positive real parameters Ai, A2,..., A„ and, for 1 < d < n,
we define the associated resonant zone

ZA := {cu R" I \\(o - Ra II < <$A}, := (2.2)
|A|

where
Met) — /?a II := inf New — co'\\.

ft/SÄA

We then define the resonant zone of multiplicity d, for 1 < d < n + 1, by

(Zrf := Uad Za> \ < d < n

(Zn+l=0.
The resonant block associated to A e d,

1 < d < n, are defined by

Ba ZA \ Zd+i

and eventually the resonant block of multiplicity d, for 1 < d < n, is

Bd := (J 5a.
A6MK.a
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Setting B{0} =W\Z i, we arrive at the following decomposition

Rn B{0} UZ, B{0] U ß] U Z2 •• B{o} Uß,U- ß„-i U Bn (2.3)

since Bn Z„ as Zn+\ 0.

2.2. Non-resonant domains in frequency space. Consider a domain B C M", a

submodule

A MaK := (J MaKd U {0}
1 <d<n

and a real parameter ß > 0. Then the domain B is said to be (ß, A')-non resonant
modulo A if for any (A,/) e Zn+m such that |(A:, /)| < K and (A,/) f A and

any to e B, we have

\(k,l)-(a>,a)\>ß.
Our purpose here is to show that the resonant blocks BA, for A e M£, are (/3a, K)-
non resonant modulo A, for a suitable ßA provided that a is Diophantine and the

parameters Ai,A2,...,A„ satisfies certain compatibility conditions. This is the

content of the lemma below.

Lemma 2.1. Let K > 1, E > 0 and F > E + 1. Assume that a Rm

satisfies (Dioy r) and

(FKXd < Xd+l < y(d + 1 )-*K-«+V\ \Sd<n-\,
|a„ < F~xy(n + 1 )-rK~(n+l)x-l

Then for any A e Mf, the block B\ is (ß&, K)-non resonant modulo A with

(ßA EK8A, A^{0},
j^{o} A1.

Proof Let A e Mf of rank d, with 0 < d < n, and (k,l) ^ A such that

|(A, / )| < K. Let A+ be the submodule of Zn+m generated by A and (A, /). Since A
is maximal and does not contain (A, /), the rank of A + is equal to d + 1.

Let us start with the special case d 0, that is A {0}, and fix to e 5{0}-
Either A+ is admissible, or not. In the second situation, A 0 6 Z" while
/ 0 e Zm as (A, /) f A {0}, and we have, using the fact that a satisfies (DiOy,r)
and (2.4),

|(A, I) • (öj, or)| |/ - or| > yA'_T > A]. (2.6)

In the first situation where A 0 Z", let a>+ RA+ such that

Ik -<w+ll Ik - Ra+W > sA+.
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Now as (k, I) {(i)+, a) 0 we have

(k, I) • (co, a) (k, l) • (ft), a) — (k, I) (co+, a) k (co — &>+).

But the vector (i)—a>+ belongs to the line orthogonal to (A+)1- (k)1- in (A)-1 R"
which is nothing but the line generated by A:, so we obtain

\(k,l)-(ct),a)\ \k-(oo-(D+)\ ||fc||||<y —<y+|| > \\k\\SA+ ||A:|||Ä_|_|_1 Ai > Ai
(2.7)

where we used the fact |A+| < ||/c||. From (2.6) and (2.7) the statement in the case

d 0 follows.
Now assume 1 < d < n. It is enough to prove that given any co G RA \ Zd+\

(where we recall that Z„+i 0), we have

\(k,l) (co,a)\ > FK8a. (2.8)

Indeed, for any w G 5a ZA \ Zj+l, by definition there exists co G RA \ Z^+1
such that || to — ö) || < SA and thus

|(k,l) (ft),a)| > |(k,l) (ft),a)| - |k (a> -m)|
>|(A,/).(ft),«)|-||A||||(ft>-ft))||
> |(A, /)• (ft), a)| — AT||(en — co)||

> FK8a - K8a (F- 1)K8a > EK8a.

So it suffices to prove (2.8). As before, there are two possibilities for A+: either it is

admissible, or not. In the second situation (which is obviously the only possibility for
d n), let us choose a basis (k1, ll),..., (kd, ld) for A such that \(kJ ,lJ) \ < K
for 1 < j < d. The assumption that A+ is not admissible means that k is a linear
combination of k1,..., kd. For 1 < j < let us define kJ e 7Ld by selecting
the first d components of kJ, and we define k the same way. As k1,..., kd are

linearly independent (because A is admissible), the determinant A (A1,..., kd) of
the square matrix of size d whose columns are given by k1,... ,kd can be assumed

to be non-zero without loss of generality. By Cramer's rule, it then follows that k can
be written as

k vik1 + v2k2 -\ b Vdkd k1 + ^k2 1- ^'-kd
A A A

where A A(k1,..., kd), Ai A(k, k2,..., kd), A^ A(kl ,k2,..., k) and

for 2 < j < d — 1, Aj A(k1,..., kJ~l, k, kJ +1,..., kd). Let us denote

/* / - vxll vdld G Rm.

The vector /* is non-zero: if it were, (k,I) would be a linear combination of
(kl,ll),..., (kd,ld), that is (k, I) G (A) n Zn+m, but since A is maximal it is
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equal to (A) fl Z"+m and so this would contradict (k, I) A. Now using the fact

that (kJ, lJ) e A for 1 < j < d and co RA we can write

d

(k,l) • (co,a) (k,l) • (co,a) — ^ Vj(kJ ,F) (co,a) (I#,a).
j=i

The vector A/» A/ — Ai/1 A^/^ e Zm, and by Hadamard's formula, we
have

|A| < ll^'H ••• H^ll < Kd

and similarly | A; | < Kd for 1 < j < d, so as a consequence

IA/*| < |A11/1 + |AlII/11 + • • • + \Ad\\ld\<(d + 1 )Kd+l.

Since a satisfies (Dioy>r), it follows that

|A11(A:,/) • (co,a)\ |A||(/„,a)| |(A/„a)| > y(d + K^d+l)x

and as a consequence of Cauchy-Binet formula, | A | < | A | and hence

\(k,i)- (ü),a)| > |Ä|"V(rf + \yTK-(d+x)T.

Using this last inequality together with (2.4) one arrives at

\(k,l)-(u,a)\ > |ÄI-1Arf+1 > |Ä\-lFKXd FK8a. (2.9)

It remains to treat the case where A+ is admissible. Let co+ e RA+ such that

||cu - CD+II ||oj — Ra+ || > 8a+

Then since (k, I) (w+,a) 0 we have

(k, I) • (a>, a) k • (a> — oo+).

The vector co — co+ belongs to the line orthogonal to (A + )1- within (A)-1, that
is it belongs to L := (Ä + )J~L D (Ä)-1- (Ä+) D (Ä)-1. Let us decompose
k Pk + (Id — P)k where Pk e L and (Id — P)k e L-1. If follows that

\(k,l)-((o,a)\ \k-(co-co+)\ \Pk-(co-co+)\ ||P/:||||m-cu+|| > ||PZ:||<5a+.

But L is also the line orthogonal to (Ä) within (Ä+), and therefore |A+| < ||AA:|||A|
so, using (2.4) again,

\(k,l)-(co,a)\ > lÄ+IIÄf1^ lAp^+j > lAr1^ FK8a. (2.10)

From (2.9) and (2.10) it follows that (2.8) holds true for 1 < d < n, and this concludes
the proof.
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2.3. Covering by non-resonant domains in action space. In Section 2.1 we
obtained a covering of the frequency space {(cu,oi) e R"+m} ~ {a> e R"} by
resonant blocks associated to admissible submodules, and in Lemma 2.1 we proved
that these resonant blocks satisfy some non-resonant properties.

Recall that we are given an integrable Hamiltonian h which is real-analytic on
the domain VroD, and satisfies (M) and (k). A subset of D is said to be (ß, /f)-non
resonant modulo A for h if its image by the frequency map V/z is (ß, AT)-non resonant
modulo A. It is said to be (5-close to A-resonances for h if the Euclidean distance

between its image by V/z and the space RA is smaller than S.

Pulling back the covering (2.3) back to action space using the gradient map V/z

and using Lemma 2.1, the following proposition will be easily obtained by carefully
choosing the parameters A</, for 1 < d < n.

Proposition 2.2. For K > 1 and A e Mf of rank d, with 0 < d < n, let us define

rA := -= r_fiY_ F mMjK
| A | Fn~d+l(n + \yK(n+i)z+n-d+i

where we set, by convention, |A| 1 if A {0}. Assume that zero < 80. Then

there exists a covering of D by subsets DA, where A G Mf, such that each DA is

(ßA, K)-non resonant modulo A and, for A {0}, 8A-close to A-resonances with

9MKrA xrA
8 ' iA "T-

Exactly as in [27], the introduction of the parameters M and k in the

above statement is unnecessary (the above proposition does not depend on the

assumptions (M) and (zc)); these parameters are just here for later convenience.

Proof Recall that (2.3) gives the decomposition

R" B{0} U Bx U • • U Bn-1 U Bn

that can also be written as

R" U Ba-
A

We now define those resonant blocks by choosing the parameters

*-d tt,
Kr°y

.a ,—ttt' F IOM/k, \ < d < n.
%pn-d + \(n _)_ i)r^(n-l-l)r-l-n-J + l — —

With these choices, the inequalities (2.4) are satisfied (since K>l,F 10M/k > 10

and zero < 80), hence Lemma 2.1 can be applied with E := 9M/k < F — 1

10M/k — 1 (since M/k > 1). By definition, for each non-trivial A of rank d, the

block Ba is <$A-close to A-resonances with

„ _ ^d_ _ Kroy _ fffb_
A ~

|Ä|
~

8E"-rf+1|A|(zz + \yK("+Or+n-d+i 8
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Moreover, using (2.5) from Lemma 2.1, 7?a is (/1a, ^)-non resonant modulo A with

a urs: nu -\^Kr^ 9MKrA
ßA EK8a 9Mk K—

o o

while, for A {0}, 7?{0} is (jß{o). TQ-non resonant with

Kr0y
ß{o} > -^l —

8 F"(n + i)Ttf(n+i)T+«
9MKr§y 9A7A>{0}

~ 8Fn+1(n + i)t^(»+Dr+»+i 8

as F > 9M/k. If we define

Da := {/ e D \ V/z(7) ßA}, A M%,

this defines a covering (up to removing such sets which are empty) of D with all the

required properties, and this concludes the proof.

3. Normal form and stability estimates

3.1. Normal form. Let us come back to our original Hamiltonian (H), and recall
that the extended integrable Hamiltonian is given by

h(I,J) h(I) + a-J, (I, J) D D xHT.

Let us fix A e M£. Quite obviously, if a subset D* C D is (ß, A^)-non resonant

modulo A for h, then D# := D* x Mm c D is (ß, Ä")-non resonant modulo A for h.

Now a Hamiltonian of the form

h(l, J) + g(9, (p, /, J)

is said to be in A-resonant normal form if

g{0,<p,I,J) J2 gk,l(I,J)eiik'lH0'v).
(k,l)eA

Such Hamiltonians have additional first integrals: indeed, given any vector (co,a)
which belongs to the real subspace orthogonal to A, and any solution

(0(0, <M0,/(0,7(0)
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of the system associated to h + g, we have

0co, a) • (7(0, J(0) -(<w,a) • d(6,<p)(h(I(t), J(t)) + g(6(t),cp(t), I{t), J(t)j)
-(co, a) die,<p)(g(0(t), cp(t), I(t), J(t)))

-(co,a) J2 «2ff(Ä:,Z)gJk,/(/(r),y(0)e,'(fc>/He(0>',(,))

(k,l)eA

0U)eA

0.

In the special case where A {0}, it is straightforward to see that g is in fact

independent of the angles (6, cp), so that the resonant normal form is integrable.
We can now state the normal form lemma, which states that on a sufficiently small

neighborhood of a non-resonant domain modulo A, up to a real-analytic symplectic
transformation which is close to the identity, the original Hamiltonian can be written
as a A-resonant normal form h + g up to an exponentially small remainder.

Lemma 3.1. Let H be as in (H), with h satisfying (M) andfsatisfying (e), and let
K > 1. Consider a domain Ö* D# x Mm C D which is (ß, K)-non resonant
modulo A for h, and given some parameter r > 0, assume that

^ ßr ^ *ß
£ < —z t < r < rn, (3.1)~ 279K ~ 9MK

and Ks0 > 6. Then there exists a real-analytic symplectic embedding

d> : V-rD* x VsJn+m -> VrD* x Li0T"+m, f := r/2, s0 := s0/6,

such that

Ho<P h+ g + f*
where h + g is in A-resonant normal form with the estimates

\g + f*\r,s0 < 26, |/*|r,?0 < e-Ks°'ee (3.2)

and
18 Ke

sup \\njj<z>(i,j,e,cp)-(i,j)\\ < —— (3.3)
(I,J,6,<f>)eVrD*xVs0 fn+m P

where 11 [ j denotes the projection onto the action space coordinates.

This statement is a direct consequence of the Normal Form Lemma of [27] (with
the choice of the constants p 9/8 and q 9), to which we refer for a proof. More
detailed estimates on g and on are available, but they will not be needed.



Vol. 91 (2016) Quasi-periodic Nekhoroshev's estimates 677

3.2. Non-resonant stability estimates. In the special case where the domain D*
is (ß, V)-non resonant modulo A for h, with A {0}, the normal form obtained in
the previous section is, as we already said, integrable up to an exponentially small
remainder. It is very easy to prove that in this case the action variables (7(f), J(t))
remain stable for an exponentially long interval of time, and this does not require any
convexity assumptions on h. Here's a precise statement.

Proposition 3.2. Let 77 be as in (H), with h satisfying (M) and f satisfying (e),

and let K > 1. Consider a domain D* ö* x Mm c D which is (ß, K)-non
resonant modulo A {0}forh, and given some parameter r > 0, assume that (3.1)
is satisfied. Then for every solution with initial action (/o, Jo) £ D* we have

||(/(0, 7(0) - (/o, 7o)ll < r, \t\< S-feKs°'6.
5e

This is the content of Proposition 1 (Nonresonant stability estimate) of [27], to
which we refer once again for a proof.

3.3. Resonant stability estimates. Next we study the case where the domain D* is

(ß, A")-non resonant modulo A for h, with A non-trivial. The domain D* 75* xlm
will be said to be <5-close to A-resonances if 7)» is 5-close to A-resonances, as defined

previously.

Assuming convexity of h, one knows how to bound the variation of the action

(7(f), 7(f)) using conservation of the energy and convexity arguments, as was first
proved in [1] and later in [20], However, in our situation h is not convex, but it is

convex with respect to the I variables and linear in the 7 variables, and we will prove
below that this is sufficient to bound the variation of the action variables 7(f). This

argument will just use the fact that our resonant normal form has an additional first
integral; as a matter fact, since resonances are associated to admissible submodules

of rank at most n, our resonant normal form has at least m linearly independent first
integrals. Using this observation, and the stability of the variables 7(f), we will obtain
in turn the stability of the variables 7(f) though with a worse radius of confinement.

Proposition 3.3. Let 77 be as in (H), with h satisfying (M), (f2) and (k) and f
satisfying (s), and let K > 1. Consider a domain D* D* x Rm c D which
is (ß, K)-non resonant modulo A for h, with A e Mf d non-trivial, but 8-close to
A-resonances. Given some parameter r > 0, assume that

Kr2 Kr %ß _.
e-^TÖ' 5 Y' r~9MK' r-r°- 24||or||at (3.4)

Then for every solution with initial action (7o, Jo) D* we have

1,1 - SSei:'0/6
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and

\J(t) ~ Joloo < Kdr, |r| < ^~eKs°'6.
2&8Q.E

Proof. First we assume that Ksq > 6. Since k < M, one easily check that (3.4)
implies (3.1), and therefore Lemma 3.1 can be applied: there exists a real-analytic
symplectic embedding

"J5 : Vr,S(yD* —¥ Vr>SoD*

such that
Ho<I> h + g + f,

where h + g is in A-resonant normal form with the estimates (3.2) and (3.3). Now,
from (3.3) and (3.4) we get

im T-.ii 18/fe 24s Kr 8
LI/ /<E> — Id < < < ——11 ' " ~ ß ~ Mr ~ 26M 8M

Therefore the inverse image of /)* x T"+m by <I> is contained in UPD* xTn+m,
where p := 8/(4M). Recall that r r/2 and .?o .S'o/6. We claim that for any
initial action (Iq,Jo) e UPD», the solution (I(t). J(t), 0(f), <p(t)) of the system
associated to the Hamiltonian H o <f> satisfies

and

\\I(t)-Io\\<r-p, |t\<^eK"6
12l2e

\j(t)~Jo\oo <2Kd(r-p), \t\ <^—eKs/6.
12Qs

Assuming this claim, for any initial action (/o, Jo) £ Ö*, the solution (I{t). J{t), 9(t), (pit))
of the system associated to the Hamiltonian H satisfies

IIlit) - /oil < lit) ~ I~it) + IIlit) - /oil + II/o - /oil

< p/2 + (r - p) + p/2 <r<r
and similarly, since K > 1,

|/(0 " Jo\oo < Pi2 + 2/frf(F - p) + p/2 < 2A-rff Kdr

for times

|t | < wLe"o"
1 1 ~ 288f2e

which is exactly the statement we want to prove. It is therefore sufficient to prove the

above claim.
To simplify notations, let us drop the tildes and simply write (/o, Jo) e UPD*

and (/(f), /(f), 0(f), (pit)) the associated solution. Let B be the ball of radius r — p
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around /o, then B x Rm is contained in UfD*. Let Te be the positive time (possibly
infinite) of first exit of (I(t), 7(0) from B x Rm: it is then also the time of first exit
of 7(0 from B. Let also

T* := 7TFTeKS0'6> T := min{7e, T*}.
12L2e

Furthermore, let us write

Ah := h(I(T), J(T)) - h(I0, 70) e R,

A(7, 7) := (7(7), J(T)) - (70, 70) (I(T) - 70, 7(7) - 70) 6 ®"+m,

A7 := 7(7)-70 eR",
7(5) := 7o + sAI e R", 0 < s < 1.

By definition of h, we have V/z(7, J) (V/?(7), a) R"+m and

V2fi(7, 7) p0(7) ^ e MB+m(R), V2Ä(7) e A7„(R).

Using Taylor's formula with integral remainder at the point (7o, 7o) and the special
form of V2/z, we get, letting co := V/z(7o),

Ah (co, a) A(7, 7) + f (1 - s)V2h(I(s)) AI Aids.
Jo

Using the assumption (k), that is the convexity of h, we obtain

IAäI + \(co,a) A(7, 7)| > k/2\\AI\\2. (3.5)

By conservation of energy 77 and using the first part of (3.2) together with the first

part of (3.4) and the definition of r, we have

Kr2 k~2
|A^| <2|g + /,|r-;i-0 <4e< — —. (3.6)

Then, by definition, (7o, Jo) e UPD*, so there exist (7q, 7q) D* which is p-close
to (7o, Jo), but then by assumption D* is 5-close to A-resonances, hence there

exists cu* R" such that the vector (co*, a) belongs to the real subspace orthogonal
to A and is S-close to (V/z(7q), a). Therefore, since h satisfies (M) and by definition
of p, we obtain

\\(o-a>4 ||V/i(70) -w*|| ||V/i(70)-VA(7o)|| + || V/i(7q) - ||

<Mp + S 55/4.
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Writing

(co, a) A(/, 7) {co, a) A(/, 7) - {co*,a) A(7, 7) + (co*,a) A(7, 7)
{co-co*, 0) • A(7, 7) + (cu*, a) • A(7, 7)
(a> — cu*) • A7 + (co*, a) A(7, /)

we obtain

|(a>, a) • A(7, 7)| < \{co - co*) AI \ + |(cu*, a) A(7, 7)|. (3.8)

Using (3.7), the second part of (3.4) and the definition of r, we can bound the first
summand by

|(a>-<u„,)-A7| < ||&) — o)*||||A71| < (55/4)|| A71|

5S2 k „ A
H~ — Ii

2K 611 " 32 6

5<52 K
M „ .„2 5Kr2 K

H A< — + - ä/ -TT- + dlA/l
(3.9)

For the second summand, using the fact that (tu*, a) belongs to the real subspace

orthogonal to A, and that h + g is in A-resonant normal form, we have

| {CO,

T

*'a)" A(7, 7)| < f \(ü>m,a)-dotVMI(t),m,0(t),<pmü
Jo

< 71(0)*,a)II sup ||3e>¥,/*(7,7,0,^)||.
(7,y,e,¥))6SxR"xT"+m

Now using a Cauchy estimate and the second part of (3.2) we get

\\de,vMI,J,e,<p)\\ < Ar\f*\rj < 4re-Ks°'6.
es0 eso

Moreover, as T < f, and |(cu*, a)|| < £2 since h satisfies (£2), we get

~2

|(<w*,a) • A(7, 7)| < T^-^e~Ks^6 (3.10)
eso Vie

Putting together (3.5), (3.6), (3.8), (3.9) and (3.10) we eventually arrive at

Kr2 5Kr2 Kr2 Kr2
at/3 A7 2 < + + <' " 11 ~ 64 32 12e ~ 4

Now p 8/{4M) Kr/{32M) Kr/(16M) < r/16 as k/M < 1, thus r — p >
15r/16 and in particular r2 < 4(r — p)2/3. This, together with the last inequality,
implies that

k/3\\AI\\2 <K/3(r-p)2
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and therefore || AI1| < r — p. This eventually proves that T T*, that is

\\I(t)-Io\\<r-p, 0<t <T* K^~eKsl6.
12Us

The same argument yields the same result for negative times —T*<t< 0, and hence

||/(0-/o||<r-p, |t|<~^/6I2ils
which was the first part of the claim that needed to be proved.

For the second part of the claim, let us write

AJ := J(T) - J0 J(T.) -J0eRm

so that in particular

A(/,/) (AI, AJ) e p n+m

Observe that since A is admissible of rank 1 < d < n, the real subspace in R"+m

orthogonal to A has dimension n + m — d > m, and given any vector v in the

orthogonal of A, proceeding exactly as in (3.10), one has the inequality

/err2 II i; 11 /cf2||u||
v-A(I,J < —(3.11)l2Qe 12||a||e

where the second inequality follows from Q > |[or ||. We will apply this to m properly
chosen such vectors v. Let (/c1,/'),..., (kd, ld) e Zn+m a basis for A, and we write

kj (k{,...,ki) eZ", V =(//,.. .,Vm) 1 <j<d.
Since A is admissible, the d vectors kJ e Z", for 1 < j < d, are linearly
independent, and hence, without loss of generality, we may assume that the d vectors
in Zd

kj =(k],...,kd)eZd, 1 <j<d
are linearly independent. Let us further define

lt=(ll,...,lf)e Zd, 1 <i<m.
We set D to be the determinant of the square matrix M of size d whose columns are

given by k,,\ < j < d, and for any 1 < j < d and any 1 < i < m, we let DtJ be

the determinant of the square matrix obtained by replacing the vector k3 (that is,
the jth column of M) by the vector —If we denote by e\,..., en, en+\,..., en+m
the vectors of the canonical basis of M"+m, we eventually define, for 1 < i < m, the

vector

Vi Dlt\e\ + Di 2&2 + • • • + Dt,ded + Den+i £ Rn+m.
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It is now an easy matter to check that for any 1 < j < d and any 1 < i < m, we
have

(kjJJ)-vl 0

that is the vectors u,- belongs to the real subspace orthogonal to A. Therefore the

inequality (3.11) gives

KT2 II V' II

|u,-A(/,/)|<—i-fi 1 < i < m. (3.12)
12||a||e

If we write

A(/,/) (AI, A/) (AIl,...,AIn,AJl,...AJm)
then (3.12) can be written again as

\Di,\AI\ + D,,2A/2 + • • • D, dAid + DAJt | <
~

^ ^, 1 < i < m
12||a||e

and as consequence, for 1 < i < m

II y [|

\DAJl\<\DlAAIl + Dh2AI2 + --- + Dt,dAId\+
11 '11

12||al|e

<IIAIII|A/|| +
'cr"211"'1

12 ||Q? || e

where Dt (Z3,j,..., Dl (i) eRf Recalling that |A| denotes the co-volume of
the lattice A, we can use Cauchy-Binet formula and Hadamard's inequality to bound

IIAII<IM<|A|<^
and therefore

~2 \ / ~2
A I Kr \ i KT*d I A 7 III I ^ ~DA/, | < Ka || A/1| + „

< Ka \ f-p +
12||a||e) ~ V 12||a||e

Then, since r r/2 < tq/2 < 12||or ||/c—1, we have

Kr2 r 15r
< — < < r — p

12||o:||e e 16

and thus

|DA/, | <2Kd(f-p)
which proves, in particular, that

|A/|oo sup |A/,-1 <2Kd(f-p)
1 <i<m

which was the second part of the claim that needed to be proved.
This ends the proof under the assumption Kso > 6. But if Ksq < 6, the exact

same argument applies to the original Hamiltonian H, by setting g — 0 and /* /,
and this concludes the proof.
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4. Proof of the main result

This section is devoted to the proof of our main result, Theorem 1.2, which will be

easily obtained using Proposition 2.2, Proposition 3.2 and Proposition 3.3.

Proofof Theorem 1.2. Recall that we are considering H as in (H), with h

satisfying (M), (£2) and (k), / satisfying (e), and a satisfying (DiOyjT). Recall
also that we have defined the positive constants a and b by

1 (n + 1)t + 1

a — — -, b
2 (n + l)(r + 1) 2 (n + l)(t + 1)

and that we are assuming that

Kr0 < min{80,24||a||}. (4.1)

For a parameter K > 1 to be chosen below, using (4.1) we can apply Proposition 2.2

to obtain a covering of D D x W by subsets Da Da x Rm, where A e Mf,
such that each Da is ißa, A")-non resonant modulo A for h and, for A 7^ {0},
^A-close to A-resonances for h with

fa fa (4-2)
O O

where

rA '= — 3 ——3 : 3—, d rank A. (4.3)
\A\Fn~d + l(n + l)r^(n+ l)T+«-(i + l

Then, given any A MJ-, we can apply either Proposition 3.2 (for A {0}) or

Proposition 3.3 (for A ^ {0}), with r ta, ß Pa and 8 8a provided that (3.1)
and (3.4) are satisfied. The inequalities (3.1) are easily seen to be implied by (3.4)
as we already pointed out, hence we only need to verify (3.4), and in view of our
definitions of rA, Pa and 5a, and using also (4.1), the latter reduces to

2KY
S < rA < r0. (4.4)

Given any A e M£, we have

roY ^ r0y<rK<Fn + 1{n + l)r^(n+ l)(r+l) ~ f(n + 1)^(«+ Dr+1

as F > 1 and K > 1. Hence (4.4) is satisfied, for any A 6 A/£, if

2 2Kr$Y
s < u/ K > ^

b

(4 5)*~\F(n + iy) " ^2l0^2(n + l)(w _|_ l)2r^2(«+ l)(r+l) '
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Let us define

e0 :=
icrfy2 f F(n + l)r\ 5

210/r2(n + l)(„ + !)2t'
and

(-'
then (4.5) eventually reduces to

K {*)'

e < min{e0, £*}• (4.6)

Under this choice of K and this smallness assumption on s, Proposition 3.2 and

Proposition 3.3 apply and in the resonant case, we obtain

iiw -/.ii < w w
F(n + 1)*tf(»+i)r+i - F(n + l)r V£o

up to times

'So f£o\a\ „ "Sor\
- Ta exp (7)) • T* :=

6 V g
' ' 288£2e'

while in the non-resonant case, we obtain

||/(f) - /oil < ||(/(0./(0)-(/o,/o)||
roY ^ r0 Y

<
F(n + l)r^(n+l)r+l - F(n + !)r

up to times
'So f£o\a\ „ s0r{o}

(=)'

6 V e ' ' 5s

To obtain a uniform time estimate, observe that for any A e A/£ we have

210 5o ^
35O

1 A > > •

288 Q ~ £2

Letting

R r°Y T —* F(n + 1Y' * Q'
we have just proved that

||f(0 — foil < R* ' \{\ - T* exp ("^ (~) -

provided (4.6) is satisfied, with £* that can be written as
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Recalling that F 10M/k, this was exactly the first part of the statement to be

proved.
For the second part of the statement, we distinguish the case m 1 and the case

m > 2. In the first case, recall that J(t) e R and a e R. We have

\h(i(t)) - h(i0)\ < n||/(f) - /oll < QR*

while, using preservation of energy and our thresholds,

\h(I(t)) + «7(0 - h(l0) + aJ0\ <s<RJy) p

Putting the last two estimates together we obtain

\J(t) - M < l«l_1 - aJ01 < (ß/|«| + 1 )Rm ^
In the second case, observe that on £>a, if A {0}, Proposition 3.2 gives

\j(t) ~ Jo\oo < H(/(0, -/(0) - do, /o)ll 5 r{0}, 10 5 Sj^eKso/6

whereas, if A has rank 1 < d < n, Proposition 3.3 gives

Therefore, along any solution we have

I AO - AU <R.K"(£)=R. (£) \<\<T, exp Q ffl")
which is the statement we wanted to prove since b* b—na. This proves the second

part of the statement, and finished the proof.

5. Improved stability close to resonances

For solutions starting close to resonances, we can obtain a better result. Consider
a fixed submodule L of Ijn+m of rank d, which is assumed to be admissible and

maximal, and let Kl > 1 such that L is a Kl-submodule. Recall that L denotes the
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projection of L onto M", and |L| denotes the co-volume of L. To such a L the space
of L-resonances is

RL {coeRn \ (k, /) • (co,a) 0, V(fc,Z) e L)

and let

SL := {(/, J) D \ VA(7) Rl} {/ e D | VA(7) 6 RL} x Rm

the resonant domain in action space. Solutions with initial action close to Sl satisfy
better stability estimates, as stated in the theorem below.

Theorem 5.1. Let H be as in (H), with h satisfying (M), (Q) and (k), and f
satisfying (e). Assume also that a satisfies (Dioy;t), and let us define

_ J _
(ft + 1)t + 1

2((« + l)r + H + 1 — d)' 2((« + l)r + ft + 1 — d)'

_
(ft + l)r + 1 - ft

_ (Jf_\n+x~d r0y
2((n + l)r + ft + 1 -d)' V10At) (ft + l)T'

and, given a submodule L as above, let

1 Kriy2 / K \2(n+\-d) / r0 \ b(d)
£o(L) _ jl|2 210(ft + 1)2t (iom) ' £*(L) ~ £° (/?»(</))

e„(L) :=e0(L)Kl^.

If ktq < min{80,24||or ||} and s < min{e*(L), s**(L)}, for any solution

(I(t),J(t),6(t),(p(t))

of the system associated to H with initial condition (/o, Jo, do, <Po) e Up$L x T"+m,
with p 4M-1 we have

!'(<)-'oil 5 K,d)

with 7* as in Theorem 1.2. Moreover, in the case where m 1 and hence t — 0, we
have

IAO-^ol<(ß/M + l)tf.(^) \ |r|<r,exp^|(^)aW)^

whereas in the case m >2 and hence r > 1, we have

\J(t) - 70|oo < R* \t\ < T*exp ^ (^)
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Observe that in the special case where L {0}, Sl D x |L| Kl 1

and therefore the above statement exactly reduces to Theorem 1.2.

Proof. Consider the subset

M£(L) := {A M£ | A 2 L}

and assume, for any A £ M£(L),

k r^
e<2io' rA<r0, K>KL (5.1)

where the last inequality is to ensure that Mf{L) is actually non empty.
The resonant blocks Ba, for A Mf(L), cover the resonant zone Zi and hence

their pullbacks cover Up>Sl, with

SL KrL V2 /—p — — > -Jus 4M VK£ P-F M 8M - 8M H

Moreover, for any A £ Mf(L), we have

roY ^ ^ r0y
rL <rA <

\L\Fn~d + 1(n + l)r^(« + l)t+«-rf+ l L - - F{n + l)r^(«+ l)r+l •

Using the above inequalities and proceeding exactly as in the proof of Theorem 1.2,

we can define

and verify that (5.1) is implied by

e < e*(L), s < £**(A) < £o(A).

The stability estimates apply uniformly to all blocks Ba, for A £ Mf(L), and one

easily check that the statement follows with the given constants.

Using Theorem 5.1, we will be able to show, as in [10], how to slightly increase
the value of the exponent a by greatly decreasing the value of the exponent b and

loosing control on the evolution of the J variables in the case m > 2. Let us state

precisely the results.

Theorem 5.2. Let H be as in (H), with h satisfying (M), (£2) and (k), and f
satisfying (s). Assume also that a satisfies (Dioy r), and let us define

1 1 (* + l)r + l
a — — —, a(l) — -, b{ 1)

2{n + l)(r + 1)' 2((n + l)r + «)' 2((n + l)r + n)
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and

icr2y2 / k \2" c
2sfnG.

Sl ' 2u(n + 1)2t VlOM/ k
'

r m Kr°y T ^*U \0M(n + 1)T' * fi '

Given any 0 < 8 < a, assume that

l-2<5 / \jfnf—V < —, (±) <(-M\eij r0 \e i) \2R*(l) J

If Kro < 80, then for any solution (I(t), J it), 9(t), <p(t)) of the system associated

to H with initial condition (/o, Jo, 9o, (fin) D x T"+m, we have

s\s f So /£l \<2(1)(1—25)A
||/(0-/oll<(C + /?*(l))^-J k|<nexp^(^) J

and, in the case where m 1 and hence r 0,

e \S f So /£\ \a(1)(i—
\J(t)-J0\ < (fi/|a| + l)(C+/?,(l)) J |/| < ^exp ^ (-^-) J.

Moreover, ifk ro < 80 and we assume instead that

l

_£_ < /_ro_\2/_ro_\5<T' g ^ ro Ysi~\2c) \2/?*(l) J '
E\ ~ \2C /

then, for any solution (I(t), J(t), 9(t), (p(t)) ofthe system associated to H with initial
condition (To, Jo, 9o, <Po) e Z) x T"+m, we /zave

1/(0 - 'oil < ra, \<\<T, exp (£)2"(,> (^)"<1))

a«//, /« the case where m 1 anc/ hence r 0,

/go / t"0 \2aO) / £ i \a(!)\
1^(0 - y0| < (£2/|«| + l)r0, 1*1 <7; exp (^) (^) J.

Let us first remark that the assumption fro < 24||a[|, which was only used to
control the evolution of the J variables in the case m > 2, is not needed here since

no control on the J variables can be obtained in this case.

In the special case m l,r 0, Theorem 5.2 generalizes the main result of [10],
For 8 > 0 but very small, the exponent fl(l)(l — 28) is very close to a (I), which
is better that a but at the same time the radius of confinement greatly deteriorates

as it gets close to one. At the limit 5 0 (the second part of the statement), we
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do obtain a confinement of order one with a better time of stability given by the

exponent a( 1). At the other extreme 8 — a, observe that a(l)(l — 28) a and

therefore Theorem 5.2 gives a time of stability which is equivalent to 1.2, but with a

worse radius of confinement given by the exponent a instead of b.

Proofof Theorem 5.2. Consider an arbitrary solution (I(t), J(t), 6(t),(p(t)) of the

system associated to H with initial condition (7o, Jo, <Po) £ Ö x T"+m. It will be

sufficient to prove the statement for positive time; the exact same argument will then

prove the statement for negative time. Consider a parameter K > 1 (to be chosen)
below that satisfies

K>2r^x. (5.2)

Then we have the following dichotomy: either

||/(f) — /oil < K~l

as long as the solution is defined, or there exists t' > 0 such that

ll'CWoll
In the first case, the solution (I(t), Jit), 0(t), (pit)) is then defined for all time, and

as a consequence
||/(0 - /o|| < K~\ (l (5.3)

In the second case, using (k) we obtain

||Vh(l(t')) - VA(/0)|| > k||/(/') - /oil kK~1

and therefore

|VA(/(f')) - VA(/0)|oo > K(VnK)~l.

If we denote V/z(/) (Vih(I),..., V„A(/)) e M", let 1 < / < n be such that

|Vih(Iit')) - V,-A(/0)| |VA(/(r')) - VA(/0)|oo > k(^K)-1 (5.4)

and also let 1 < y < m be such that

|or |oo \&j \ ^ 0-

Clearly, any closed interval in E of length larger than / > 0 contains an irreducible
rational p/q, with a denominator q > 0 bounded by /~1; therefore any closed interval
of length /|ofy | contains a real number of the form \a}\p/q, with an irreducible
rational p/q with a denominator q bounded by /-1. Applying this to the interval
[V;/z(/0), V,-A(/(f))], 0 < t < t', and using (5.4), there exists a time 0 < t* < t' and

an irreducible rational p/q G M such that

Vih(I(t*)) \aj\p/q, q < ^K^aJ
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Moreover, using (Q) we have

\WMI(t*))\ \aj\\p\/q<Q

and therefore

y/q2 + p2 < q^j 1 + \aj\~2Q2 < q( 1 + |a/ |-1J2)

<;
\fn\ci] |

+
VnfiX

K <
2yfn9.

K~ \ K K J ~ K

(5.5)

At the timer t* the frequency vector Vh(I(t*), J(t*)) (V/z (/(/ *)), a) e M"+m
satisfies a resonance relation; indeed, assuming for instance \a} | a} then for
k qei — pe} e Z"+m one has

k • Vh(I(t*), J(t*)) qVih(I{t*)) — paj ajP — pa} 0

(if |ofy| —aj, one simply replace qe, — pej by qet + pej). Letting L be the

one-dimensional lattice generated by k and recalling the notations of Theorem 5.1,

one has (/(?*), J{t*)) G Sl, and from (5.5)

2^/nQ ~ .JnQ.
Kl<— K :=CK, \L\ < q < — < CK. (5.6)

K K

To apply Theorem 5.1 in the case d 1 with r0/2 instead of ro, let us estimate the

thresholds (replacing r0 by r0/2): setting

si :=
KTqY2 ic \2n

(—-—y
V10M /

1

W)

2l2(n + l)2x V10M

we have

£o(L) £1|L|-2>£1(C/f)-2

Lv 2a(l) + l |

e**(L) e0{L)KLaW > s^CK)'^^ e, (CK)"
and consequently Theorem 5.1 can be applied provided

i/ m \ b(i)

£<ei(C/fr2(^^J <£*(L), s<Si(CK)-Ö <£„(L). (5.7)

To prove the first part of the statement, we choose

1 5

K := — (—) 0 < S < a. (5.8)
C V £ /
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Since S < a, the second part of (5.7) is, by definition, satisfied whereas since 8 > 0

and 8 < 1/2, the condition (5.2) and the first part of (5.7) are satisfied provided

fs\S 2C feV~2S r0 \W)U) £ V UJ £ («inj) (59)

Under these conditions, we obtain

/ p \MD /„ /„
\\w-nn\\<R*(i) (-J—Y Is° (s°(Ln

\so(L)J ' - - *eXP( 6 e j
with 71* as in Theorem 1.2. But then

6(D /^W)(i-2i)/ £ \ £ \r-(i)(mö)
and

and therefore

11/(0-/(^)11 < ^ <t* +T*av(j (-j) J

But recalling that t* < we also have

||/(0) - /o|| <K~l =C 0 < t < t*

and since a(l) < b( 1),

8 < a < < (1 - 28)b{\)
2a(l)+ 1 2a(l)+ 1

and as a consequence, we do have

e \8 s \ öO)(i-25)
11/(0 - /oil < ||/(0 - /(0)|| + ||/(0 - /oll < c J + R*( 1) J

<(C + R*(l))

for times

r\^t^T fs° /£t\a(1)(1"2Ä)\ * (so /eixflCDd-2«)^
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To summarize, from the dichotomy we either have

11/(0 - /oll < K~l < C ^ 0 < t < +00

or

/ s\s {so /ei\"(m-28)\
\\I(t) - I0\\ < (C + R*(l)) {-) 0 < t < T* exp f(^r) j

therefore in both cases the last estimate is satisfied, thus proving the first part of the

statement.

For the second part of the statement (the case S 0), one can proceed exactly the

same way but choosing
2

K := —
ro

instead.
To conclude, in both cases, the estimate on the evolution of the J variables (for

m 1, x 0) can be obtained exactly as in the proof of Theorem 1.2.

6. Improved stability far away from resonances

We now investigate solutions which start far away from resonances. Results of this
section do not depend on h being convex or its gradient being bounded, that is (k)
and (£2) are unnecessary. It will be sufficient to assume the existence of a: > 0 such

that for any Lebesgue measurable subset U c K", we have the measure estimate

Leb(V/z-1 (U) (10)< ii~lheb(U) (k)

where Leb denotes the Lebesgue measure on M". Certainly, the convexity
assumption (k) implies (if) with ic k, but the latter is more general: in particular,
it holds true if h is Kolmogorov non-degenerate, that is if the determinant of the

Hessian Vh2(I) is uniformly bounded away from zero for any I e D.
Now consider A e } an admissible maximal A'-submodule ofZ"+m of rank 1.

Then A contains a unique vector (k, I) Zn \ {0} x Zm such that \ (k, /) < K and

such that its components are relatively primes. The submodule A of Z" is then

generated by k, and | A| ||k||. In the sequel, we shall write A A(k,l).
With these notations, we recall that the completely non-resonant block 5{0} C M",

introduced in Section 2, can be defined by

ß{o} := jcu e R" I ||cu - Ra&j)II - ]j^j| |'
roY
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Therefore, from Proposition 7.1, this set is (ß{o), A")-non resonant with

9MKr{0} r0y
ßm —3—' rW Fn+l(n + l^.K'tn+OO'+i)'

If we further define

D{o} -= {I e D | Vh(I) G ß{o}}> D{0] := D{o} x Mm,

we arrive at the following statement.

Theorem 6.1. Let H be as in (H), with h satisfying (M) and (ic), and f satisfying (e).

Assume also that a satisfies (Dioy r), and let us define

- _ Mr£y
£o

(—V+l
V10M/ (n + l)r '

2,,2 / ,7 \2(n + l)

R — ' " W

210(n + l)2r

ic Y^l> _ - fro V
(tömJ ' e*=£oUJ"

If e < min{eo, £*}, for any solution (I(t), J(t), 9(t), <p(t)) of the system associated

to H with initial condition (Io, Jo, do, <fo) £ D{o) x T"+m, we have

W(t),J(t))-(h.m<R, (i)'. I<I^(7)!«p(J(7) )•

Moreover, the complement of D{o} in R" has a measure oforder eb, with a and b as
in Theorem 1.2.

Observe that the measure estimate on the complement of D{0> is better than the

one obtained in [27] for r 0, as in the latter reference it is only of order one.
Observe also that it is only for this measure estimate that (ic) is needed; the first part
of the statement holds true without this assumption.

Proof Proposition 3.2 can be applied with r rj0}, provided that

ß{o}r{o} _ ^r{o\
8 ~ 279K ~ 210 ' r*°* — r°'

holds true. Choosing

K

we have

rfo} "Ms)
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and the inequalities (6.1) are satisfied if e < min{eo,£*}, where £o, £* and /?* are
the constants given in the statement. It then follows from Proposition 3.2 that

11(7(0, 7(0) - (/o, 70)|| < r{0}, 10 <

that is

11(7(0. 7(0) - do, 70)|| < R.
2

10 < ^ (y)%xp (^J^j
which proves the first part of the statement.

Concerning the second part of the statement, we follow [27], First, in view
of (ic), it suffices to show that the complement of B{0} in R" has a relative Lebesgue
measure of order sb. But by construction, the latter set is Z\, the resonant zone of
multiplicity 1 defined in Section 2, which has a relative measure of order

V — V — ~
1 ««»-Hl)r+D A^ || A'II *"(»+D*+» ^ || A" || *"(»+Ot+i

A(k,l)eM"
11 11

keIP,
11 11

0<|A:|<Ä:

Next we look at a different, and in some sense more natural, non-resonant set.

Choose 0 < y' < y and r' such that r' > n + m — 1 and r' > r. We define

By/y := jcu e R" I I(k,l) (CO,a)\ > y'(\k\ + |/|)-T'}

and

Dy',t' {I D | Wh(I) e ßy'jT'}, k)y',x' •= Dy',z' x Rm.

Those sets are clearly (ß', A')-non resonant, with ß' := y'K~T', and we obtain the

following result.

Theorem 6.2. Let H be as in (H), with h satisfying (M) and (ic), and f satisfying (e).
Assume also that a satisfies (Dioy r and let us define

^ £>=£>(fify)2
r ' 0 ' 768M ' * 0

V R*) 'a':=
1 *':=8roy'

2(r'+ 1)' *' 9M

If e < min{£Q, £'„,}, for any solution (I(t), J(t), 0(t), <p(t)) of the system associated

to H with initial condition (Iq, Jq, do, <Po) Dy',x' x Tn+m, we have

,<>-<wo,i,,|£^(4)U(f(i
"

Moreover, the complement of DyrtT> in Rn has a measure oforder y'.
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As we already said, when m > 2, the set of vectors a e that satisfy (Dioy>r)
with r m — 1 has zero measure, and when r > m — 1, we can choose r' n + r
and thus

2(n + t + 1)

in the statement above.

Proof. Let us define
8 r0ß' 8 r0y'

r := —
9MK 9MKT'+l

Proposition 3.2 can be applied with r r', provided

ß'r' Mr'2
e < — —TT—, r < ro (6.2)- 279K 210

holds true. Choosing

we have

r' RL s,

eo

and the inequalities (6.2) are satisfied if e < min{eg, e'^}, where a', e'0, s'^ and R* are

the constants given in the statement. Then, exactly as before, Proposition 3.2 yields

which gives the first part of the statement.

Concerning the second part of the statement, as before it is enough to prove that
the complement of BY\Z' has a relative measure of order y'. The complement of
By',r' is

jcu e M" | 3(k,l) e Z"+m, \(k,l) (<u,a)| < y'(\k\ + |/|)"r'},

but since a satisfies (Dioy;T), and since y' < y and r' > r, this set is also equal to

jwel" | 3(k, /) Z" \ {0} x Zm, \(k,l)-(eo,a)\ < y'(\k\ + |/|)"r'}.

But now the above set is known to have a relative measure of order y': this is exactly
the content of Lemma 2.12 in [ 19].
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7. A more general stability result

Let us finally give a more general result, where the Diophantine assumption (DioyjT)
is removed. Assuming a e Rm to be simply non-resonant, we can define a function
ip by

V(K) max{|A -ap1 | k e Zm, 0 < |A| < ff}, K > 1. (7.1)

Then we define A Aa by

A(x) sup{A" > 1 | Kty(K) < x}, x > 'T(l) M^,1, |a|oo max \aj\.
1 < j <m

(7.2)
If a satisfies (Dioy,T), then the functions *P and A defined above satisfy

*(*) < y~lKx, A(x) > (yx)^TT. (7.3)

The only place where (Dioy>T) was used was in Lemma 2.1. But using the function T
instead, the exact same proof yields the following more general lemma.

Lemma 7.1. Let K > 1, E > 0 and F > E + 1. Assume that a e Rm is

non-resonant and

jFKXd < Xd+l < \p((d + l)*^1)"1, 1 < d < n - 1,

(A„ < F~lV((n + 1)^"+1)-1.

Then for any A Mf, the block Ba is ißa, K)-non resonant modulo A with

[ßA EK8A, AyMO},
\ß{o) Aj.

Using this Lemma instead of Lemma 2.1, we arrive at the following proposition
which generalizes Proposition 2.2.

Proposition 7.2. For K > 1 and A e Mf of rank d, with 0 < d < n, let us define

rA := — T j—, F := 10M/k
|A|F»-rf+i^((n + \)Kn+x)Kn~d+l

where we set, by convention, |A| 1 if A {0}. Assume that Kro < 80. Then

there exists a covering of D by subsets Da, where A e Mf, such that each Da is

ißA, K)-non resonant modulo A and, for A f {0}, 8a -close to A-resonances with

9MKrA „ <rA
0A —j—.

Then, using Proposition 7.2 instead of Proposition 2.2, together with Proposition

3.2 and Proposition 3.3, and proceeding exactly as in the Proof of Theorem 1.2,

we obtain the following statement.
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Theorem 7.3. Let H be as in (H), with h satisfying (M), (£2) and (k), and f
satisfying (e). Assume also that a is non-resonant, m >2 and that

<
(« + l)2^ol"lLe- 2 I°F2("+1)

so that we can define

Then, if zero 5 min{80,24||a||}, Ke > 1 and Rg < ro, for any solution

(I(t), J(t),9(t),<p(t)) of the system associated to H with initial condition

(/o, Jo, Oq, <po) ^ D x fn+m, we have

III{t) ~ /oil 5 Re, \t\ < T*exp •

Moreover, we have

\J{t)-Jo\oo<KnERE, |f| < r*exp(^p).

When a is Diophantine, that is when a satisfies (Dioy>T), then (7.3) holds true and

the above statement exactly reduces to Theorem 1.2. Observe also that for m 1,

any non zero vector aef satisfies (DioyjT) with y |cc| and r 0, so Theorem 7.3

gives new information only when m > 2.

Now for m > 2, if a does not satisfy any Diophantine condition, A£ and hence KE

cannot grow as a power of «fe
1

and therefore the stability time is not exponentially
large with respect to (some power of) e_1. Yet it is always exponentially large

with respect to some other function of -fie 1, namely KE, and this can give some
non-trivial stability results even if a is Liouville (that is, when a is not Diophantine).

But first let us observe that, unfortunately, in full generality this stability estimate

might not be better than the trivial stability estimate. To simplify the discussion
here, we will assume that 4* is in fact continuous so that A is nothing but the

functional inverse of the increasing continuous map K K^>(K)\ observe that in
fact only the values of ^(A-) at integers K e N are interesting so it is always possible
to modify 4* into a continuous without affecting the Diophantine properties of a.
Dropping constants which are independent of e, it is easy to check that RE ~ K"
so that the stability estimate reads

||/(f)-/oil < K^Te, |f | < exp Ks.
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Such estimate is better than the trivial estimate if

y/s~l K" < exp Ke (7.4)

but the latter inequality is not always satisfied. Indeed, the growth of ff^A"), as K
goes to infinity, can be arbitrarily fast; for instance, when m 2 and assuming
a (1,ofi) withoq e [0,1] irrational, letting (Pj/qj)j>i be the convergents of aq,
the growth of is nothing but the growth of the denominators qj, and this growth can
be arbitrarily fast (given any sufficiently increasing function (p : [1, +oo[—> [1, +oo[,
one can always construct ai such that q,+\ ~ <p(qj)). As a consequence, the growth

of A(x), as x goes to infinity can be arbitrarily slow, and since Ke ~ A(Ve 1)"+T,
the inequality (7.4) is not necessarily satisfied.

As a side remark, it is because of the confinement by convexity and energy
preservation that the time of stability is of the form expA^£ and not of the

form *fe
1

exp Ke\ the latter is indeed the stability time one can reach in the general

steep case where this convexity argument cannot be used (see for instance [18]).

If we could replace exp Ke in (7.4) by Jl;
1

exp Ks, then (7.4) would be always
satisfied for s sufficiently small, and therefore the stability would be non-trivial for

any Liouville vector. But here we do rely on convexity and so our result do not give
anything interesting for very Liouville vectors.

Let us now give somehow more concrete examples. If

4>(/0 ~ AT-1exp(*:sTT)

then the stability result is not interesting: indeed, in this case one has

A(x) ~ (log(x))"+1, Ke ~ log(Ve ')

and so the result is

l|/(0-/oll S Vilog(-J=),

However, if
ty(K) ~ K~l exp (7.5)

for some constant c > 1, then

11/(0 - /oil < V^iog (^) i'i~(7i)
so we have a non-trivial stability estimate for an interval of time which is a power
of Ve 1. In particular, if (7.5) is satisfied for all c > 1, for instance if

4>(/0~ A'_1exp(A'^T), 0 < a < 1
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or even

~ /r'exp^log^r^HTT) ß>\,

then the stability time is better than any fixed power of
1

(and consequently any
fixed power of e_1). For these class of vectors, the stability time, even though not
exponential, is actually very large.

To conclude, let us also point out that there are also analogues of Theorem 5.1

and Theorem 6.1 in the above context that can be stated and proved the same way;
we leave the details to the reader.

8. Concluding remarks

We conclude this paper with some remarks. We first discuss the possibility of
extending our results to less regular Hamiltonians, then to more general classes of
integrable Hamiltonians and finally to more general time-dependence.

Let us first comment on the regularity assumption in the results we proved.
The assumptions that h and / are real-analytic were only used in the normal form
Lemma 3.1, which is taken from [27], So in order to have results for Hamiltonians
which are not real-analytic, for instance Hamiltonians which are only Gevrey regular
or finitely differentiable, one just needs a version of Lemma 3.1 in those settings,
and this appears to be only a problem of technical nature. One can find in [8]
and [9] normal form results for non-analytic Hamiltonians in the spirit of Lemma 3.1,

even though those statements do not recover Lemma 3.1. Let us also recall that in
the autonomous case (or time-periodic case when h is convex), Nekhoroshev type
estimates are known for Gevrey or finitely differentiable Hamiltonians [4,5,24] but
all those proofs are based on the Lochak method.

Next let us discuss the more interesting question of whether our results extend

to steep, or S-steep or P-steep, integrable Hamiltonians, the original classes of
integrable Hamiltonians considered by Nekhoroshev. One should first recall that
in the general steep case, unlike what happens in the convex case, motions near
resonances are not necessarily confined: if they are not, the steepness property
ensures that they evolve towards a less resonant domain and, eventually, end up in a

non-resonant domain on which an integrable normal form (up to a small remainder)
can be constructed, leading to the stability of the action variables. First is not hard to
see that one cannot obtain such a stability result for a quasi-periodic time-dependent
or even a periodic time-dependent perturbation of a steep integrable Hamiltonian.
Indeed, the simplest example of steep integrable Hamiltonian is given by the quasi-
convex Hamiltonian

h{I\, ...,/„) — -(Ii + h In-\) + In
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After a periodic time-dependent perturbation the extended integrable Hamiltonian
then reads

h{I\, J) -(/f + • • + I„-\) + In + J

and obviously the latter cannot be stable: adding the perturbation ecos(9n — <p),

where (9„,<p) are the angles conjugated to (/„, J), it is easy to see that the evolution
of (In (t), J(t)) is unbounded. The correct question to be asked is whether the stability
result holds true for a quasi-periodic time-dependent perturbation of a S-steep or P-
steep integrable Hamiltonian. What we have shown is that one does have stability in
the simplest class of 5-steep and P -steep integrable Hamiltonians, namely convex
Hamiltonians. If h is S-steep, then it is also P-steep and it follows from the work
of Nekhoroshev that one has stability for periodic time-dependent perturbations of
5-steep Hamiltonians, but the question we asked is whether one has stability for
quasi-periodic time-dependent perturbations of 5-steep integrable Hamiltonian. We

can also the same question for the larger class of P-steep integrable Hamiltonians,
and more generally, the question is what could be the class of QP-steep ("quasi-
periodically steep") integrable Hamiltonians for which one has stability after a quasi-
periodic time-dependent perturbation.

To conclude, let us mention that it seems quite unlikely to have a non-trivial
stability result for an arbitrary time-dependent perturbation, unless the time depends

on the small parameter, in which case the conjugated action variable can be considered

as degenerate (see [16] or [7]). But it may be possible to extend our results for a

class of perturbation whose Fourier transform (with respect to time) has suitable
localization properties.
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