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Moduli of abelian surfaces, symmetric theta structures
and theta characteristics

Michele Bolognesi and Alex Massarenti

Abstract. We study the birational geometry of some moduli spaces of abelian varieties with
extra structure: in particular, with a symmetric theta structure and an odd theta characteristic.
For a (<ii, d2)-po'arized abelian surface, we show how the parities of the dj influence the

relation between canonical level structures and symmetric theta structures. For certain values

of d\ and c?2, a theta characteristic is needed in order to define Theta-null maps. We use these

Theta-null maps and preceding work of other authors on the representations of the Heisenberg

group to study the birational geometry and the Kodaira dimension of these moduli spaces.

Mathematics Subject Classification (2010). 11G10, 11G15, 14K10; 14E05, 14E08, 14M20.

Keywords. Moduli of abelian varieties, rationality problems, rational, unirational and rationally
connected varieties.

1. Introduction

Moduli spaces of polarized abelian varieties are one of the subjects with the longest

history in algebraic geometry. Very often their study has proceeded along with
that of theta functions, in a mingle of analytic and algebraic techniques. Classical
results of Tai, Freitag, Mumford and more recent results of Barth [2], O'Grady [51],
Gritsenko [20,21], Gritsenko and Sankaran [22], Hulek and Sankaran [29] agree on
the fact that moduli spaces of polarized abelian varieties are very often of general

type. Anyway, some exceptions can be found, especially for abelian varieties of
small dimension and polarizations of small degree. In these cases the situation has

shown to be different and the corresponding moduli spaces are related to beautiful
explicit geometrical constructions. For example, the moduli space of principally
polarized abelian varieties of dimension g is of general type if g > 7, and its
Kodaira dimension is still unknown for g — 6. On the other hand the picture is clear

for g < 5. See for instance the work of Katsylo [33] for g 3, van Geemen [ 16] and

Dolgachev-Ortland [13] for g 3 with a level 2 structure, Clemens [9] for g 4,

and Donagi [14], Mori-Mukai [46] and Verra [59] for g 5.
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Moreover, the geometry of polarized abelian varieties is so rich that one can

append many further structures to the moduli functors, obtaining finite covers of
the moduli spaces with beautifully intricate patterns, and curious group theory
coming into play. One first example of such constructions is the so-called level

structure (see Section 2.0.2) which endows the polarized abelian variety with some
discrete structure on certain torsion points related to its polarization. In the case

of abelian surfaces with a polarization of type (1 ,d), moduli spaces of polarized
abelian surfaces with a level structure have been studied by Gritsenko [20,21], Hulek
and Sankaran [29], Gross and Popescu [24—27], in particular with respect to their
birational geometry (rationality, unirationality, uniruledness, and Kodaira dimension)
and the general picture seems quite clear. The Kodaira dimension of moduli spaces
of (1, d)-polarized abelian surfaces has been studied extensively by Sankaran [57],
Erdenberger [15] and by Hulek, Kahn and Weintraub in [28], where polarizations
with level structure are also investigated. In particular, Gritsenko has shown that the

moduli space A2CI, d) of polarized abelian surfaces of type (1, d) is not unirational
if d > 13 and d ^ 14,15,16,18,20,24,30,36. Furthermore, thanks again to
the results in [20] and [29] it is now proven that the moduli space of principally
polarized abelian surfaces with a level structure A2CI, p)]ev is of general type for all

primes p >37.
The aim of this paper is to go a little further in this study of the birational

geometry of finite covers ofmoduli of (1, <7)-polarized abelian surfaces, concentrating
in particular on some spaces that cover finitely the moduli spaces with level structure.
In fact, we add to the moduli functor the datum of a symmetric theta structure (see

Section 2.0.3), that is an isomorphism of Mumford's Theta group and the abstract

Heisenberg group that commutes with the natural involution on the abelian surface.

This aspect seems to have been studied quite deeply in the case of a polarization
of type 2, 3 or 4 (for instance see [6,12,17,50,55,56] and [5] for applications to
non-abelian theta functions). However, up till now, to the best of our knowledge, it
seems to have been ignored for other polarizations. Our study will be mainly aimed
at understanding the birational geometry of moduli spaces and will be performed via
theta-constant functions. In order to have well-defined theta-constants, it often turns
out to be very important to add to our moduli space the choice of a theta characteristic,
seen as the quadratic form induced on the points of 2-torsion by a symmetric line
bundle in the algebraic equivalence class of the polarization. For our goals, the

choice of the theta characteristic will be equivalent to the choice of the symmetric
line bundle. The main results in Section 4 can be summarized as follows.

Theorem 1. Let d\, J2 be positive integers such that d\ |<72> and let Ä2(d\, 6?2)lev be

the moduli space of [d\, d2)-polarized abelian surfaces with a level structure.

— If d\ is odd then there exist two quasi-projective varieties Ä2(d\, d2)fym

and A2{d\,d2)~^/m parametrizing polarized abelian surfaces with level

(d1, J2)-structure, a symmetric theta structure and an odd, respectively even
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theta characteristic. Furthermore, there are natural morphisms

f : A2(d\,d2)iym A2(di,d2)lev, f+ : A2(d\, d2)^ym .42(^1, ^2)lev

forgetting the theta characteristic. Ifd\, d2 are both odd then f~ and f+ have

degree 6 and 10 respectively. If d2 is even then f~ has degree 4, while f +

has degree 12.

- If d\ and d2 are both even then there exists a quasi-projective
variety A2(d\, d2)sym parametrizing polarized abelian surfaces with level

(d\, d2)-structure, and a symmetric theta structure. Furthermore, there is

a natural morphism

f : A2{d\, ^2)sym —> A2{d\,d2)XeV

ofdegree 16 forgetting the theta structure.

In this paper we concentrate on abelian surfaces with an odd theta characteristic
and on the moduli spaces A2{\,d)~. The case of even theta characteristic will
be addressed in our forthcoming paper [7]. The structure of A2(l, d)~ is slightly
different depending on whether d is even and f~ has degree 4, or d is odd and /"
has degree 6.

In Section 5 we study the birational geometry of these moduli spaces using objects
and techniques coming from birational projective geometry such as varieties of sums
of powers, conic bundles, and the Segre criterion for the unirationality of smooth

quartic 3-folds.
Our main results in Theorems 6.8, 6.10, 6.18, 6.15, Propositions 6.12, 6.19, and

Paragraphs 6.1.4, 6.2.2, 6.2.4, can be summarized as follows.

Theorem 2. Let A2(\, d)~m be the moduli space of (1, d)-polarized abelian
surfaces, endowed with a symmetric theta structure and an odd theta characteristic.
Then

- A2{ \, 7)~m is birational to the variety of sums of powers VSPgfF, 6) (see

Definition 6.5), where F k[x0, X\, x2]4 is a general quartic polynomial. In

particular A2( 1,7)~m is rationally connected.

- .4.2(1, 9)~m is rational.

- A2(\, 11 )~m is birational to a sextic pfaffian hypersurface in P4, which is

singular along a smooth curve ofdegree 20 and genus 26.

- A2( 1, 13)~m is birational to a 3-fold of degree 21 in P5, which is scheme-

theoretically defined by three sextic pfajfians.

- ^2(1 - 8)~m is birational to a conic bundle over P2 whose discriminant locus
is a smooth curve ofdegree 8. In particular, A2( 1, 8)~m is unirational but not
rational.
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- ^2(1,10)sym is rational.

- Ä2( 1,12)~m is unirational but not rational.

- A2 (1. 14)~m is birational to a 3-fold of degree 16 in P5, which is singular
along a curve of degree 24 and scheme-theoretical complete intersection of
two quartic pfaffians.

- A2( 1, 16)~m is birational to a 3-fold ofdegree 40, and ofgeneral type in P6.

Plan of the paper. In Section 2 we introduce most of our base notation and make a

quick summary of the results we will need about level structures, the Theta and

Heisenberg group, theta structures, theta characteristics and quadratic forms on

Z/2Z-vector spaces. Section 3 is devoted to the study of linear systems on abelian
surfaces. Since we need an intrinsic way to compute the dimension of the spaces
of sections for the objects of our moduli spaces, we make use of the Atiyah-Bott-
Lefschetz fixed point formula, and deduce these dimensions for different choices of
the line bundle representing the polarization. The goal of Section 4 is the construction
of the arithmetic groups that define our moduli spaces as quotients of the Siegel half-

space H2. Once these subgroup are defined, we display the theta-constant maps that

yield maps to the projective space. These maps, and their images, are studied in
Section 5, by tools of projective and birational geometry, and several results about
the birational geometry and Kodaira dimension of -4.2 (4A, ^2)fm are proven.

Acknowledgements. First of all, we want to heartfully thank the anonymous
referee, who corrected some mistakes, suggested Remark 5.1 and hugely helped
us to bring this paper to a better form. We gratefully acknowledge G. van der Geer,
/. Dolgachev, K. Hulek, C. Ritzenthaler, G. Sankaran, M. Gross, N. Shepherd-Barron,
and especially B. van Geemen and R. Salvati Manni for fruitful conversations and

observations.
The authors are members of the Gruppo Nazionale per le Strutture Algebriche,

Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica
"F. Severi" (GNSAGA-INDAM). This work was done while the second named author

was a Post-Doctorate at IMPA, funded by CAPES-Brazil. The first named author is

member of the GDR GAGC of the CNRS.

2. Notation and preliminaries

The main references for this section are [4] and [28], Let A be an abelian variety of
dimension g over the complex numbers. The variety A is a quotient V/A, where V is

a g-dimensional complex vector space and A a lattice. Let L be an ample line bundle

on A, and let us denote by H the corresponding polarization, i.e. the first Chern
class of L. We denote by PicH {A) the set of line bundles whose polarization is H.
The polarization H induces a positive-definite Hermitian form, whose imaginary
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part E := Im(H) takes integer values on the lattice A. There exists a natural map
from A to its dual, <pL ' A —> A, defined by L as x h-> t*L <8» L, where tx is the

translation in A by x. We denote the kernel of by K(L). It always has the form

K(L) (Z/<7]Z © •• © Z/rfgZ)®2, where d\\d2\ - - \dg. The ordered g-tuple
D — (di,..., dg) is called the type of the polarization. For sake of shortness, we
will write Iß /Dlß for Z/z?iZ © • • • © Z/r/gZ. The form E defines the Weil pairing
on K{L) as eH(x, y) := exp(2niE(x, y)) forx, y e K(L). A decomposition of the

lattice A Ai © A2 is said to be a decomposition for L if Ai and A2 are isotropic
for E. This induces a decomposition of real vector spaces V V\ © V2. Let us now
define A(L) := {u e V | E(v, A) C Z}. Since K(L) A(L)/A, a decomposition
of A also induces a decomposition

K(L) Ki(L)®K2(L), (2.1)

where both subgroups are isotropic with respect to the Weil pairing and are isomorphic
to (Z8/DZ)8.

2.0.1. Theta characteristics. Let (A, H) be a polarized abelian variety and let
1 : A -> A be the canonical involution. A line bundle L is symmetric if i*L s L.
If L is symmetric, a morphism <p : L —> L is called an isomorphism of L over 1 if
it commutes with 1 for every x e A, and the induced map <p(x) : L(x) —»• L(—x) is

C-linear. The isomorphism is normalized if <p(0) is the identity. The following result
is well known, [49, Section 2], [4, Lemma 4.6.3],

Lemma 2.1. Any symmetric line bundle L 6 Pic(4) admits a unique normalized
isomorphism <p : L —> L over 1.

We will denote by A[n\ the set of «-torsion points of the abelian variety A. Our
next goal is to define theta characteristics via the theory of quadratic forms over the

Z/2Z-vector space A[2], Given a polarization H e NS(A), we define a symmetric
bilinear form qH : A[2] x A[2] —» {±1} by qH(v, w) := exp(7tiE(2v, 2w)).
Definition 2.2. A theta characteristic is a quadratic form q : ^4 [2] —^ {±1} associated

to eH, that is:

q{x)q{y)q{x + y) qH(x,y),
for all xje A[2].

We denote the set of theta characteristics by #(A). Every symmetric line bundle L
defines a theta characteristic as follows.

Definition 2.3. Let L e Pic//(4) be a symmetric line bundle, and x e A[2\. We

define eL(x) as the scalar ß such that tp(x) : L(x) —> (1*L)(x) L(i(x)) L(x)
is multiplication by ß.

Let D be the symmetric divisor on A such that L Oa(D). The quadratic
form eL can be also defined as follows:

eL{x) '= (— i)mult*(0)-multo(£)) (2 2)
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From [4, Lemma 4.6.2] one sees that the set of theta characteristics for an abelian
surface is a torsor under the action of A[2] and hence it has cardinality 16. For a nice
and general introduction to the finite geometries in the theory of theta characteristics,
the reader may check [54].

2.0.2. Level structures and theta structures. If x e K(L), then x induces an

isomorphism t*L ^ L, so we get a representation K(L) -> PGL(H°(A, L)). This
representation does not come from a linear representation of K(L), but it lifts to a

linear representation of the central extension of K(L) defined by the following exact

sequence:
1 c* -> G(L) -* K(L) -* 0.

The commutator of G{L) is exactly the Weil pairing eH. The group Q(L) is called
the theta group of L. As an abstract group, G{L) is isomorphic to the Heisenberg

group H(D) of type D. The group H(D) as a set is equal to C x K(D), where

K(D) IßIDlß © Iß/Dlß. The group structure of T-L(D) is defined as follows.
Let fi,...,f2g be the standard basis of K(D). We define an alternating form
eD : K(D) x K(D) —> C* on this basis as follows:

{exp(—2ni/da)
if ß g + oc,

exp(2jti/da) iia g + ß, (2.3)
1 otherwise.

The group structure ofH(D) is defined via eD. Given(a,xi,x2), (b, yi,y2) £ bi(D)
we have (a, xi, x2), (b, ji, y2) := (abeD(x\, y2), x\ +ji,x2 + y2). Similarly to
the case of the theta group, the Schur commutator is given by the pairing eD. An

isomorphism 6 : G{L) %(D) that restricts to the identity on C* is called a theta

structure. Any theta structure induces a symplectic isomorphism between K(L)
and K(D), with respect to the alternating forms eL and eD. A symplectic

isomorphism K(L) —»• K(D) is traditionally called a level-D structure (of canonical

type).
As we have already observed, the theta group has a natural representation

p : G(L) —> GL(H°(A, L)) which lifts in a unique way the representation K(L) —>

PGL(H°(A, L)). The choice of a theta structure induces an isomorphism between p
and a certain representation of H(D) called Schrödinger representation. Let us

outline its construction. Let Vg(D) := Map(Zg/DZ8, C) be the vector space of
complex functions defined on the set Iß/Dlß. The Schrödinger representation
a : H(D) -»• GL(Vg(D)) is irreducible and defined as follows:

a(a, a,b)(v) := aeD(—, b)v(—I- a).

The center C* clearly acts by scalar multiplication, hence a induces a projective
representation of K(D). If A is a surface and D {dy.dz), a basis of L2(Z)) is
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given by the the functions 8X, for x G Z2/DZ2, defined by ^(y) := 8xy, where 8xy

is the Kronecker delta

4,,:=!' "X >'-
(2.4)

10 otherwise.

Given an ample line bundle L and a decomposition for L, there is a unique basis

{$x | x G K\(L)} (see the decomposition in equation (2.1) of canonical theta

functions of the space H°(A, L) [4, Section 3.2]. Hence, a canonical basis of theta

functions, indexed by K\(L) s Z2/DZ2, for H°(A,L) yields an identification
of H°(A, L) and K2(£)) such that the two representations T-L(D) -> GL(Vg(D))
and G(L) —> GL(H°(A, L)) coincide. The projective image of A in P(Fg(Z)))
will be equivariant under the Schrödinger representation, and also all the spaces
H°(A,lA(n)) will be representations of the Heisenberg group. It will be useful for
the rest of the paper to define the finite Heisenberg group.

Definition 2.4. We will denote by fLdx,d2 the subgroup of 1~L{D) generated by

or (1,1,0,0,0), ct2 (1,0, 1,0,0), r'i (1,0,0, 1,0) and r2 (1,0.0,0, 1).

Let x (/, j) G Z2/DZ2, the elements a, and r, act on F2(D) via

Cl (<$(!,./)) fyl-1,7)' <*2(8(1,j)) — <5(1,7-1)-

rl(^(l,7)) £l <5(l,7)' *2(8(1,j)) f2J(5(i,7)'

where ^ := exp(27Ti/d^).

In particular, if d\ 1, o\ and i\ act both as the identity, so for shortness we
will denote by a and r the generators ct2 and r2, and not consider the first index on
the variables.

2.0.3. Symmetric theta structures. Whenever we talk about symmetric theta structures,

we will implicitly assume that L is a symmetric line bundle. First of all, recall
that K(L) acts on A via translations. In turn, the involution i acts on K(L) as — 1.

Hence we can define the extended group K(L)e := K(L) x i and the extended
theta group G(L)e as a central extension of K(L)e by C*. More precisely we set

G(L)e := G{L) x il, where il is the obvious extension of il to G{L) acting as

the identity on C*. In a similar way, we introduce the extended Heisenberg group
fL(D)e := H(D)e x iß, where i£)(z,xi,x2) (z,—x i,—x2). By extended theta

structure we mean an isomorphism of %(D)e with G(L)e inducing the identity
on C*. Any extended theta structure induces a theta structure, but on the other hand

a theta structure 6 can be extended if and only if it is a symmetric theta structure, that
is if 9 o iL iD o 6.

In particular, the Schrödinger representation p extends to a representation pe

of ~H(D)e. When A is a surface the action of iD is pe(iD)(8(,,j)) 8(-,-j). The
involution id acts on the space F2(D) spanned by delta functions and decomposes
it into an invariant and an anti-invariant eigenspace. We will denote by P" and IP"1
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the corresponding projective spaces. The dimensions n and m will be computed in
the next section. If D (1 ,d), then P" is given by the equations x, jc_;, for
i Z/d7L, and P by the equations xt —X-,, for i in the same range.

Definition 2.5. Let AutCH(D)) be the group of automorphisms of the Heisenberg

group TL(D). We will denote

Autc*(H{D)) := {(p e Aut(H{D)) \ <p{t,0,0) (/,0,0), Vt e C*}.

The set of all theta structures for a line bundle L of type D is a principal
homogeneous space under the action of Autc* ('H(D)). Let Sp(D) denote the group
of all automorphisms of K(D) that preserve the alternating form eD. The set

of all level D structures is a principal homogeneous space for the group Sp(D).
From [4, Lemma 6.6.3] one sees that any element of Autc*(H(D)) induces a

symplectic automorphism of K{D). Moreover, for all z e K(D) we define an

element yz(a, Xi,X2) := (aeD(z,xt 4- X2), x\, X2) e Autc*CH(D)). This yields
an injective homomorphism y : K(D) -> Autc*(7f(D)). From [4, Lemma 6.6.6]
we obtain the following

Lemma 2.6. There exists an exact sequence

Remark 2.7. If (p e Autc*{Ti{D)), then a o (p is also an irreducible level one

representation, that is a central element z C* acts by multiplication with itself.
Hence by the Schur lemma there exists a unique linear map Gv : V2(D) —> V2(D),
such that Gv(o(h)) a((p(h)) for all h e Ti(D). In this way we obtain a

representation

Lemma 2.8. Let CtD C Autc*(H(D)) be the centralizer subgroup ofiD, Vg{D)+
and Vg(D)~ the eigenspaces of Vg(D) with respect to the standard involution
on (Z/DZ)?. Then the restriction of the representation G to C, o splits into two

representations G+ : CtD —» GL(Vg(D)+), and G~ : C,d —> GL(Vg(D)~).
Theorem 2.9 ([4, Theorem 6.9.5]). Let A be an abelian variety ofdimension g and H
be a polarization of type D (d\,..., dg) with d\,...,ds odd and ds+\,... ,dg
even. There are 22s symmetric line bundles in PicH (A), each admitting exactly
22(g-s) .#(Sp(D)) symmetric theta structures. The remaining symmetric line bundles
in P\cH A do not admit any symmetric theta structure.

Remark 2.10. More precisely, if L e Pic^(A), the symmetric theta structures

inducing a given D-level structure correspond to elements of K(L) fi A[2\
(Z/2Z)2^g~'s). On the other hand, the symmetric line bundles admitting symmetric
theta structures are represented by elements of A[2]/(K(L) n A[2]) (Z/2Z)2i.

1 - K(D) ^ Autc* (7i(D)) -»• Sp(D) -»• 1. (2.5)

G : Autc*(U(D)) - GL(Vg(D))
(p Gv.

(2.6)
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From Theorem 2.9 and Remark 2.10 we obtain a straightforward version of
Lemma 2.6 for symmetric theta structures.

Lemma 2.11. There exists an exact sequence

1 -> K(D) n A[2] -> ClD -> Sp(D) -> 1. (2.7)

3. Theta characteristics and linear systems on abelian surfaces

Let (A, H) be a (d\, <72)-polarized abelian surface and L e Picff(A) a symmetric
line bundle. The normalized isomorphism induces an involution i# : H°(A, L)
H°(A,L) defined by t#(s) i*(tp(s)). In the rest of the paper we will need

an intrinsic computation of the dimensions of the eigenspaces H°(A,L)+ and

H°(A, L)~. In the same spirit of [6, Section 2.1] we will compute this via the

Atiyah-Bott-Lefschetz fixed point formula [19, p. 421]). Suppose that L admits a

symmetric theta structure (see Theorem 2.9). Denote by A [2]+ (respectively A [2]-)
the set of 2-torsion points where eL takes the value +1 (respectively —1).

Proposition 3.1. Let H be a polarization of type {d\,d,2), with d\ | z/2 as usual, and
L Pic^(A) a symmetric line bundle admitting a symmetric theta structure. Then

for the theta characteristic eL, we have:

- if both d 1 and ^2 are odd then #(A [2] +) 10 and #(A[2]~) 6 (in which

case we say that eL is an even theta characteristic), or #(A[2]+) 6 and

#(A[2]~) 10 (in which case we say that eL is an odd theta characteristic),

- if d\ is odd and J2 is even then #(A[2] + 12 and #(A[2]~) 4 (eL is an

even theta characteristic), or #(A[2]+) 4 and#(A[2]~) 12 (eL is an odd
theta characteristic),

- if both d\ and r/2 are even, then #(A[2] + 16 and #(4[2]_) 0, for all
theta characteristics.

Proposition 3.1 follows immediately from [4, Proposition 4.7.5]. We will simply
say that a symmetric line bundle is odd (respectively even) if it induces an odd

(respectively even) theta characteristic eL.

Proposition 3.2. Let A be an abelian surface and L a symmetric line bundle inducing
a polarization of type (d\. dj) on A, and admitting a symmetric theta structure.

(1) Ifd\, d2 are odd, and ifL is even then

k\A ,L)+ ^!A±I,
ifL is odd then

h'(A.L)- ^A. k"(A.L)* ^2f2.
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(2) Ifd\ is odd and d2 even, and if L is even then

h°(A, L)+ ^ + 1, h°(A, L)~ ^ - 1;

ifL is odd then

^1^2
- i 0/ J M+ _

dtd2
h°(A,L)- ^ + 1, A°(A,L)+ -^-l.

(3) Ifd\ and d2 are even, whatever the parity of L, we have

h\A,Lr Idl + 2, H\A,L)- —-l.
Moreover, whatever the parity ofL, in the first two cases, the base locus of the invariant

linear system is A[2]~ (hence A n P(H°(A, L)+)* A[2]+), and the base locus

ofthe anti-invariant linear system is A[2]+ (hence A fl P(H°(A, L)~)* A\2\~). By
definition 0 e A [2]+. When both the coefficients are even, H°(A, L)+ is base point
free, the base locus of H°(A, L)~ is A[2\ and hence A fl P(H°(A, L)+)* A[2],

Proof. We will use the Atiyah-Bott-Lefschetz fixed point formula. The fixed points
of 1 are precisely the 2-torsion points, hence the formula gives

,-0
Now we remark that (di) —Id, hence det(Id —(di)a) 4 for all a A[2]. Now,

if L is even

{4
in case (1),

8 in case (2), (3.1)

16 in case (3).

If L is odd then these quantities equal -4,-8 and 16, respectively. Then, we
observe that hp(A, L) 0 for p > 0 by Kodaira vanishing. By the definition of the

eigenspaces, this in turn means that

2

J](-i)J Tr('#: H1 (A>L)) h°(A> L)+ - h°(A' L)~
7=0

This implies that, if L is an even line bundle representing H, we have

h°(A,L)+ +h°(A, L)~ dxd2,

1 in case (1),

h°(A, L)+ — h°(A, L)~ — < 2 in case (2),

4 in case (3).

(3.2)
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which implies the claim. On the other hand, ifL is an odd line bundle representing H,
then

h°(A, L)+ + h°(A, L)~ dxd2,

-1 in case (1),

h°(A, L)+ — h°(A, L)~~ < —2 in case (2),

4 in case (3).

(3.3)

hence in the first two cases the dimensions of the eigenspaces are interchanged, and

in the third case they stay the same.

Let us now come to the base locus. The same argument works for the three cases.

The union of the base loci of H°(A, L)+ and H°(A, L)~ is A[2], and by definition
of normalized isomorphism the origin is contained in d [2]+. Given an invariant
section s e H°(A,L)+ and a 2-torsion point z e A[2]~, by definition of eL, we
have s(z) (i#(s))(z) —s(z), and thus s vanishes at z. The same argument
shows that all anti-invariant sections vanish at points of A [2]+. The claims about the

intersections of A with the eigenspaces are a straightforward consequence of those

about the base loci.

4. The arithmetic groups for moduli of abelian surfaces with symmetric theta
structure

This section is devoted to the construction of the arithmetic groups that are needed

in order to construct moduli spaces of polarized abelian surfaces, endowed with a

symmetric theta structure plus a symmetric line bundle representing the polarization,
as quotients of the Siegel half-space H2. Theta characteristics are reasonably
manageable group theoretically, since Sp4(Z/2Z) (the reduction modulo 2 of
the modular group Sp4(Z)) naturally acts on quadratic forms on a 4-dimensional

Z/2Z-vector space. For simplicity we state these results only for abelian surfaces

but the same proofs give analogous statements for abelian varieties of any dimension
and polarization type. First, we want to study the action of arithmetic subgroups on
subsets or quotients of A[2], In order to do this, we need to introduce half-integer
characteristics.

A half-integer characteristic m is an element of (^Z4/Z4). The set A[2]
of 2-torsion points is in bijection (non-canonically) with the set of half-integer
characteristics [30, Section 2], Moreover, the natural action of Sp4(Z) on H2 induces

a transformation formula for theta functions with half-integer characteristics [30,
Section 2], The zero loci of theta functions with half-integer characteristics are

symmetric theta divisors. These divisors define in turn quadratic forms on A[2]
via the identification (2.2), thus yielding a (non-canonical) bijection between half-
integer characteristics and d{A). The action on theta functions induces an action on
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half-integer characteristics, which is given by taking the formula

modulo 2, for M e Sp4(Z) and a.b (^Z2/Z2).

4.0.1. The odd case. The goal of this subsection is to show how, when d\ and d2

are odd, a level D structure induces uniquely a symmetric theta structure. In the odd

case, the claim of Lemma 2.6 is even simpler.

Lemma 4.1. The exact sequence (2.5) splits.

Proof. The proof of this Lemma follows closely the arguments of Sect. 2.2 of [6]. We

just remark that the centralizer subgroup C,d C Autr*CH(D)) of iD is the section
from Sp(D) that make the sequence split.

Moreover, by Remark 2.10, we have 16 such bundles that we identify with theta
characteristics by taking their associated quadratic forms on 2-torsion points. The
exact sequence (2.7) reduces to an isomorphism Cto Sp(£>), so the symmetric
theta structure is completely determined once the line bundle is chosen, and the

action of Sp(D) on the line bundles corresponds to the action (4.1) on the half-
integer characteristics.

4.0.2. The congruence subgroups in the odd case. We will denote by Mg (Z) the

space of g x g matrices with entries in Z and by Tg the symplectic group Sp2g(Z).
We will now introduce arithmetic subgroups of r2 that are extensions of subgroups
of Sp4(Z/2Z). Similar groups have been described in [28, Chapter 1], As it is

customary, we will denote by T2(d) the level d subgroup, that is the kernel of the

reduction modulo d morphism rj : Sp4(Z) -> Sp4(Z/<7Z). The following result
is probably well known to experts of the field, but we haven't been able to find a

reference.

Lemma 4.2. Let d be an odd integer. Then we have the following exact sequence

1 T2(2d) 4 r2(d) Sp4(Z/2Z) -+ 1

Proof. Clearly F2(2d) is a subgroup of V2(d) andi {T2(2d)) Ker(r2). Therefore,
it is enough to prove that r2 is surjective. To do this we use the following formula [30,

p. 222]:

|r2 : T2(/i)| h10 f] ]~[(l-p-2*).
p\h,p^l l<fc<2
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We have

|r2: r2(rf)| dw n (1 - p~2){l - p-%
p\d,p^\

|r2 : r2(2rf)| (2d)10 n (1 - p~2)( 1 - p~4)

p\2d,p+\

2x0dx0(\ - 2_2)(1 - 2-4) Y\ (1 - P~2)( 1 - P'4)-
p\d,p+\

Therefore
|T2 T2(2d)\

210(1 — 2_2)(1 — 2~4) 720.
|r2: r2(rf)|

Finally, since |Sp4(Z/2Z)| 720 we conclude that r2 is surjective.

Let D e Mg (Z) be a diagonal gxg matrix. We define the subgroup TqC M2g (Z)
as:

rc := {« S M2s(Z) I fi (_°D R> (_°D j. (4.2)

and the subgroup ro(ü) C To as:

Td(D) := j ^ e rD I A- / B C D- /= 0 mod (£>)J, (4.3)

where M 0 mod (D) if and only if M e D Mg(Z). See [4, Sect. 8.3.1] for
details on this group.

Lemma 4.3. Let D diag(c/],d2), where d\,d2 are odd integers. Then the

reduction modulo 2 morphismr2 : Td —»• GL^CLjTIT) is surjective onto Sp4(Z/2Z).
The restriction morphism r2 : Td(D) —> Sp4(Z/2Z) is also surjective, and we have

the following exact sequence

1 -+ rD(2D) -+ Td(D) Sp4(Z/2Z) -> 1. (4.4)

Proof. Since d\, d2 are odd we have

(_D o) (-/ o) mod (2)'

Furthermore, if R e To the equality

*{-„ o)

yields

^(R> (-/ o)^s»' (-°; 0'



576 M. Bolognesi and A. Massarenti CMH

hence r2 is well defined. Let d d\d2. By Lemma 4.2 the reduction modulo
two » Sp4(Z/2Z) is surjective. Now, let us take a symplectic matrix
M e Sp4(Z/2Z), and let N e V2(d) c Sp4(Z) be a symplectic matrix such that
N M mod (2). Since N G ^(<7) we may write

N

*dx\ \ + 1 dxl2 dy ii dy i2 \
dx21 dx22 + 1 dy2i dy22

dz\\ dz 12 dw\\ + 1 dW\2

V dz21 dz22 dw2i dw22 + 1 /
Let us consider the group

rD(Q) := j Re M4(Q) R
0

-D
D
0

R'
0

-D

the rational analogue of To. Then we have an isomorphism fo Td(Q)
defined by

sp4(0),

(o /')*(« °d)-

Therefore the matrix

^d\d2x\\ -(- 1

d\d2x2\
dfd2zn

\ dxd2z2i

R fol(N)
did2x\2

d\d2x22 + 1

d\d2z\2
d\d2z22

d2y\\
d2yi\

d\d2Vü\ i ~l~ 1

djW2i

d\y\2
diy22
dfwi2

d\d2w22 + 1/

is in To To(Z) because N is a matrix with integer entries. It is easy to see that
R N M mod (2), and the reduction modulo two r2 : Vd —> Sp4(Z/2Z) is

surjective.
Now, by Lemma4.2 the reduction modulo two V2{d2) —* Sp4(Z/2Z) is surjective

since d2 is an odd integer. We proceed as before. Let M G Sp4(Z/2Z) be a

symplectic matrix, and let N' g T2{d2) C Sp4(Z) be a symplectic matrix such that
N' M mod (2). Since N' g T2{d2) we may write

^d2x ii + 1

d2x2\
d2zn
d2z2l

N

\

d2X 12

d2X22 + 1

d2Z\2
2Z22d2-

d2y ii d2y i2
d2y2i d2y22

d2w\\ + 1 d2w\2

\

d2w2\ d2w22 + 1
y

Therefore

R=fDl(N')
^d2djX ii + 1

dfd^x2i
d?d%zu
dfd%z2i

d2d^xi2
ifd2x22 + 1

dfd^zi2
d2djZ22

d\d%yn
d\d%y2i

d2d2w\ \ + 1

did%w2i

d2d2y\2
dfd2y22
d2d2w\2

dfd%w22 + 1J
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is in Tö To (Z). In particular, simply by checking the definition, one sees that R is

actually in rß(D). Hence we conclude that r2 : r^fD) —»• Sp4(Z/2Z) is surjective.
Now, let us consider the group

rD(2D):=j^ ®jerD|A-/=B C D-/=0 mod (2D) J

Clearly, Td(2D) is a subgroup of Td(D). A matrix M (£ e To(D) lies in
Ker(r2) if and only if A D I mod (2), and B C 0 mod (2). Therefore,
since M e Td(D), we see that M e Ker(r2) if and only if A D I mod (2D),
and B C 0 mod (2D), that is M Td(2D). We conclude that Ker(r2)
Td(2D). Hence we get the exact sequence in the statement.

4.0.3. The moduli spaces d2)^ym and A2(di, d2)1[ym. Let us consider
the Siegel upper half-space H2. As before, let D diag(<7],d2) with d\,d2
odd. By [4, Section 8.2] and the Baily-Borel theorem [1], since To is an
arithmetic congruence subgroup, the quasi-projective variety Ad Hg/To is
the moduli space of abelian varieties with a polarization of of type D: see also [28,
Proposition 1.21]. Furthermore, by [4, Section 8.3] and [1], the quasi-projective
variety Ad{D) Mg/ To (D) is the moduli space of polarized abelian varieties of
type D with level D structure. Since by Lemma 4.1a level structure is equivalent
to a symmetric theta structure, we are now going to investigate the action of these

arithmetic subgroups on the set ft {A) of the 16 theta characteristics (equivalently
the set of symmetric line bundles). Each of them admits a unique symmetric theta

structure.
The set of symmetric theta divisors is in bijection with the set of half-integer

characteristics (see [30, Section 2] or [4, Sections 4.6 and 4.7]) and the action of T2

on H2 induces an action on characteristics given by the formula (4.1).

Lemma 4.4 ([30, Section 2]). The action ofT2 on half-integer characteristics defined
by formula (4.1) has two orbits distinguished by the invariant

e(m) (~l)4abt g {±1}.

We say that m (a,b) e 2g4/Z4 is an even (respectively odd) half-integer
characteristic if e(m) 1 (respectively e(m) —1). Since A[2] is a Z/2Z-vector
space of dimension 4, T2 Sp4 (Z) operates on the set of theta characteristics through
reduction modulo 2, hence via Sp4(Z/2Z). Now, recall from Lemma 4.3 the exact

sequence (4.4). Let Of(Z/2Z) C Sp4(Z/2Z) be the stabilizer of an odd quadratic
form. We have an isomorphism Sp4(Z/2Z) S6, where Sf, is the symmetric group,
under which Sp4(Z/2Z) acts on the set of odd quadratic forms by permutations. As
a consequence, for the stabilizer subgroup of an odd theta characteristic we also have

04"(Z/2Z) S S5 C S6.
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Definition 4.5. We denote by V2{d\, d2)~ the group

T2{dx,d2r := r^iO^iZ/2Z)) C rD(D)

that fits in the exact sequence

1 -* Td(2D) -> r2(dud2)- O4 (Z/2Z) -* 1

Explicitly, we can write

T2{dud2)- jz e rd(D) \ Z mod (2) E, S e 04 (Z/2Z)J.

Therefore, we have To (2D) C r2(<i|, d2)~ c Td(D). Furthermore,

|Td(D) : Td(2D)| 6! and IT^,rf2)" : rz>(2D)| 5!

imply that

|rß(D) : T2(d\,d2)~\ 6.

Since r2(c?i, J2)~ is an arithmetic congruence subgroup, thanks to the Baily-Borel
theorem [1], we have that the quotient

A2(d\,d2)sym := H2/r2(rfi,d2)

is a quasi-projective variety. The variety A2(d\,d2)~m is the moduli space of
polarized abelian surfaces (A, H) with level (d\, d2) structure, a symmetric theta

structure and an odd line bundle in Picff (A). The morphism

/ : A2{d\, <i2)sym -> Ad{D)

that forgets the choice of the odd line bundle is of degree | Td(D) : T2(d\, d2)~\ 6.

Let (Z/2Z) c Sp4(Z/2Z) be the stabilizer of an even quadratic form. The

proofs in the even case are very similar to the odd case.

Definition 4.6. We denote by Y2(d\, d2)+ the group

r2(dud2)+ := r^l(0+(Z/2Z)) C rö(D)

that fits in the exact sequence

1 -* r0(2D) -> T2{dud2)+ % 0+(Z/2Z) -> 1

The stabilizer 0^ (Z/2Z) c Sp4(Z/2Z) of an even quadratic form has order

|0^~(Z/2Z)| 72 and |T/)(D) : T2{d\, d2)+\ 10. Using again the Baily-Borel
theorem [1], we get that the quotient

A2(d\,d2)^ := H2/V2(d\, d2)+
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is a quasi-projective variety. By construction, it is the moduli space of polarized
abelian surfaces (A, H) with level (d\, d2) structure and an even theta characteristic.
The morphism

/+ : A2(dud2)?ym ^Ad(D)
forgetting the even theta characteristic has degree |Fd (/D) : r2(di, d2)+\ 10.

Remark 4.7. A particular case of r2(d\, d2)+ in the case of (3, 3)-level structure is

the group T2(3, 6) studied by G. van der Geer in [17]. In that case the moduli space
A2(3,3)+m turned out to be a degree 10 cover of the Burkhardt quartic hypersurface

in P4. The moduli space A2(3,3)~m was proven to be rational in [6].

Remark 4.8. The results in this section hold in greater generality for any g. In
particular, arguing as in the proof of Lemma 4.3, if ZD diag(<7|,..., dg), where
the dj's are odd integers, we have the same exact sequence (4.4) with 2g instead of 4.

The other definitions are completely analogous.

4.0.4. The even case. In this section we will quickly investigate, since in the end our
focus is on (1, d) polarizations, the case where d\ and d2 are both even. Contrary
to the odd case, if ZD diag(t?i,..., dg) and di is even for some i, the reduction
modulo two of a matrix in Tß is not necessarily an element of Sp2g(Z/2Z). The

following elementary example shows one instance of this phenomenon.

Example 4.9. For instance, if g 2 and d\ 1, d2 2 the matrix

(I 1 1 1\

A4 - 2 1 2 1

2 0 11
\0 2 2 \)

is in T/j. However, if we denote by N its reduction modulo two we have

f0 0 1 0\ /0 0 0 1\
0 0 0 1

• N{ 0 0 1 1

1 0 0 0 0 1 0 0

vo 1 0 (V V 1 0 0J

Hence N £ Sp2(Z)/2Z).

Hence the action on theta-characteristics is not well defined, and we will shortly
find a modular reason for this. In fact we will see that in this case we do not need to

keep track of the symmetric line bundles representing the polarization.
Following Theorem 2.9, we observe that the situation in the even case is somehow

opposite to the odd one. In fact, there exists only one symmetric line bundle

representing the polarization that admits a symmetric theta structure. On the other

hand, if we fix a level structure, there are 16 symmetric theta structures that induce
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that level structure, corresponding to the elements of A[2] D K(L) A[2] (see

Remark 2.10). The prototypical example of such a moduli space is „42(2,4), the

moduli space of abelian surfaces with a (2,2)-polarization with level structure, plus
a symmetric theta structure. It is well known, see for instance [13], that the Satake

compactification of *42(2,4) is isomorphic to P3. More generally, when d\ f dj are

even, one can naturally generalize the definition of T2(2,4) and define an arithmetic
subgroup, which we denote by r2(D, 2D), as follows:

T2(D,2D) := j ^ Td(D) I diag(B) diag(C) 0 mod (2D)J

(4.5)
Note that this consists of V2{d\,d2) fl r2(l,2). The fact that the quotient
of H2 via this group parametrizes (d\, <72)-polarized abelian surfaces with a

symmetric theta structure is equivalent to the fact that in this case, as explained
in Theorem 2.9, symmetric theta structures correspond to points of A[2], that are

in (non- canonical) bijection with half-integer characteristics. In fact, thanks to the

action on characteristics of equation (4.1), we see that T2(D,2D) is the stabilizer
inside V2(d\, d2) of the zero characteristic. On the other hand, in this case the

action of the corresponding level group T2(di,d2) on the set of characteristics is

transitive, as it operates through the quotient T2{d\,d2)/T2{D,2D) (Z/2Z)4.
Since T2(D,2D) is an arithmetic congruence subgroup, thanks to the Baily-Borel
theorem [1], we have that the quotient

A2(d\, d2)sym := H2/T2(D, 2D)

is a quasi-projective variety. By construction it is the moduli space of polarized
abelian surfaces with level (d\,d2) structure and a symmetric theta structure. The

following Lemma is straightforward.

Lemma 4.10. The 16 different symmetric theta-structures that induce a given level

structure in the even case are a principal homogeneous space under the action

of(Z/2Z)4, embedded in the centralizer subgroup Cto C Autc* (77(D)) via thefirst
arrow of the exact sequence (2.6).

In fact the exact sequence (2.7) reduces to the sequence

1 A[2] -* C,d -* Sp(D) -)• 1

when both the coefficients d[ are even, and we have seen that the 2-torsion points
correspond to the symmetric theta structures compatible with a given level structure.

Remark 4.11. It is straightforward to check that there exists a forgetful map

A2{d\,d2)^ym —> A2{d\,d2),

forgetting the theta structure, which has degree 16 #(Z/2Z)4.
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4.0.5. The intermediate case. Let us now come to the intermediate type. By
this we mean polarizations where d\ is odd and d2 is even. Following as usual

Theorem 2.9, we have four symmetric line bundles inside the equivalence class

of the polarization that admits a symmetric theta structure. Each of them admits

four symmetric theta-structures that induce a given level structure. In fact (see

Remark 2.10) the 4 symmetric line bundles correspond to elements of the quotient

A[2]/(K(L) n A[2]) ss Z/2Z x Z/2Z. (4.6)

Lemma 4.12. Among the symmetric line bundles of the set (4.6), there are 3 inducing
an even quadratic form and 1 an even form.

Proof In order to show this it is enough to consider and abelian surface A £]x£2,
with E\ an odd d\-polarized elliptic curve and E2 a second elliptic curve with an

even d2-polarization. This is a specialization of the general case, and clearly the

quotient mods out the 2-torsion points of the second elliptic curve and the claim
follows.

On the other hand (see Remark 2.10) the 4 symmetric theta-structures inducing a

given level structure correspond to the points of (K(L) fl A[2\). It is easy to see that
this subgroup is isomorphic once again to Z/2Z xZ/2Z. Our goal is then to construct
moduli spaces for the datum of a symmetric line bundle representing the polarization
plus the choice of a compatible symmetric theta structure. Of course, because of
Lemma 4.12, we will need to consider two different moduli spaces according to the

parity of the theta characteristic.
Note that the rank two subgroup K(L) n A[2\ c A[2\ induces a decomposition

of A[2] as (K(L) fl A[2]) x (A[2\/(K(L) n A[2\)). Of course both groups are

isomorphic to (Z/2Z)2, and in the construction of the arithmetic group we will
want to distinguish the action of the group on each one. The action of the group
will basically imitate the odd case on A\2\/{K{L) fl A[2]) and the even case

on K(L) fl A[2\. The reason is once again the exact sequence of Lemma 2.11. Here

one copy of (Z/2Z)2 C C,n comes from A[2] fl K(L) and operates transitively on
the 4 symmetric theta structures. The second copy of (Z/2Z)2 lifts up from Sp(D)
and it operates on the four symmetric line bundles (admitting a symmetric theta

structure) preserving the parity. More concretely, we want to construct two subgroups
(distinguished by the parity of the theta characteristics) of To (D) with the following
features:

(a) since the four theta characteristics ofLemma 4.12 are in bijection with elements

of (Z/2Z)2, the action of each subgroup on A, reduced modulo 2, must descend

to the action of 0|t(Z/2Z) (depending on the parity of the theta characteristic
that we want) on A[2]/{K{E) fl A[2]). This implies that the corresponding
moduli spaces parametrize one (even or odd) symmetric line bundle among
the four.
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(b) On the other hand, by imitating the action of the arithmetic group of the

even case, we need both our subgroups to operate as Fi (d2,2d2) when acting
on K(L) fl A [2], This in turn implies that the quotient by our arithmetic
subgroups will also keep track of the four symmetric theta structures.

There exists only one odd symmetric line bundle representing a polarization of
intermediate type that admits a symmetric theta structure. On the group theoretical
side this is equivalent to the fact that the subgroup 0^~(Z/2Z) is isomorphic
to Sp2(Z/2Z). Things are a little more complicated in the even case, since in that case

we really want the induced action on A [2] / (K(L) flA [2]) to factor through (Z/2Z)
which is a proper subgroup of index 3 of Sp2(Z/2Z), as it is explained in the following
remark.

Remark 4.13. Let us outline briefly the relations between 0|t(Z/2Z) and

Sp2(Z/2Z). From [34, Proposition 2.9.1] we see that 0^~(Z/2Z) Dß is the

dihedral group of order six, and 0^(Z/2Z) is cyclic of order two. In particular
|Sp2(Z/2Z) : OT(Z/2Z)| 1 and |Sp2(Z/2Z) : 0+(Z/2Z)| 3.

Following (a) and (b) above, we define two arithmetic groups, for odd d\ and

even d2.

r2(fi?i,fi?2)Jm := {N | N\A[2]/(K(L)riA[2]) £ 0+(2,Z/2Z),

N\K(L)r\A[2] £ r! (flf2, 2z/2)},

r2(dl,d2)-m := {N e Td(D) I A^|/i:(L)nA[2] £ ^\(d2,ld2)}.

Moreover, since d\\d2, in this case d2 must be an even multiple of d\. By the Baily-
Borel theorem [1], and since T2(d\, d2)^m are arithmetic congruence subgroups, we

get two quasi-projective varieties

A2(d\, d2)+m := M2/r2(dl,d2)+m,

A2(di,d2)sym :=M2/r2(di,d2)sym,

parametrizing abelian surfaces with a polarization of type (d\, d2), a symmetric theta

structure and an even (respectively odd) theta characteristic.

Remark 4.14. By Proposition 3.1, it is straightforward to see that A2(d\, d2)+ym

(respectively A2(d\, d2)~ym) is a 12 to 1 (respectively 4 to 1) cover of the moduli

space of polarized abelian surfaces with a level structure A2{d\, <i2)lev-

5. Moduli of (1, rf)-polarized surfaces, with symmetric theta structure and a
theta characteristic: the theta-null map

In the rest of the paper we are going to study the birational geometry of some moduli

spaces of abelian surfaces with a level (1, J)-structure, a symmetric theta structure
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and an odd theta characteristic, which will encode the choice of a symmetric line
bundle representing the polarization. The study of abelian surfaces with an even
theta characteristic will be the object of further work [7], Our main tool will be theta

functions, more precisely theta constants mapping to the projective space. Before

we start a case-by-case analysis, let us make a useful observation that holds for any
polarization type (d\,d2). The following remark is due to an anonymous referee.

Remark 5.1. Two abelian surfaces with the same level structure have different images
inside Prfl dl~l (in fact they can be identified only when they are endowed with a theta

structure), but their intersections with the projective eigenspaces P(H°(A, L)^)*
are two (possibly empty) finite sets determined uniquely by the level structure
because they are exactly the base points of the linear systems P(H°(A, L)T)*. See

Proposition 3.2 for more details.

5.1. The odd case. When d\ and d2 are odd, the general construction of the

map from the moduli spaces A2(d\, d2)fym is the following. We start from the datum

{A, H, L, i/f) of an abelian surface with a (d\, ^-polarization H, a level structure
and L e V\cH(A) symmetric (in fact the datum of H is redundant and we will omit
it in the following). As we have seen, there exists 16 symmetric line bundles, 10 even
and 6 odd, representing the polarization. On the other hand, thanks to Lemma 4.1

we know that there is only one symmetric theta structure 4/ that induces \\f. Let us
denote it by 4>. This means that we can take canonical bases for the eigenspaces of
the space of delta functions V2(D) with respect to the action of the involution id
defined in Section 2. From Section 3 we recall that the eigenspaces of the projective

space F(V2(D)) of delta functions are respectively p66rf2-i)/2 an(j p(rf,</2-3)/2

If L is even (respectively odd), the symmetric theta structure gives an identification

of P(H°(A,L)+)* with p66^2-i)/2 (reSpectiVely, p(fb^2-3)/2^ Similarly, we

identify P(H°{A, L)~)* with p6M2-3)/2 (reSpectiVely, p66^2-i)/2^ ^ ^ |s eyen

(respectively, odd).
Let (A, xj/) A2(d\, d2)lcv be a polarized abelian surface with level structure.

Then, recalling Proposition 3.2, we have that A fl pWirf2-3)/2 _ ^4 [2] + if L is odd,

and it equals A[2]~ if L is even. On the other hand A fl p^'d2-i)/2 A[2]+
if L is even, and A[2]~ if L is odd. As we have pointed out in Remark 5.1, the

sets A[2]+ and A[2]" are uniquely determined by the level structure. Recall that
the origin 0 belongs to A[2]+, and in fact the different choices of L among the

even (respectively, odd) symmetric line bundles make the origin move along the

intersection A 0 p^1 ^2-0/2 (reSpectively, pWi ^2-3)/2^ which in fact is made up
of 10 (respectively, 6) points. Hence finally we can define two maps

ThW,A) : A2{d,,d2)%m Pf^
G4,L,tAW4/+(0^2(O))

(5.1)
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and

Th(rf, ,rf2)
: ^(di, d2)sym -> P_ 2

^ ^
{A,L,1r)»V~(®dud2(0)).

Here 0^, j2 is the map to F(H°(A, L))* given by the global sections of the polarization

(in fact all anti-invariant sections vanish at zero), and 4/+ (respectively, is the

identification of P(//°(A, L)+)* with phh^2-1)/2 (respectively, with f(dlä2~3^2)
induced by the symmetric theta structure corresponding to xj/ when L is even

(respectively, odd).

5.2. The even case. As we have said in Section 4, when d\ and d2 are both even,
the right moduli space to consider is slightly different. In fact, we will consider the

moduli space of abelian surfaces with a polarization H of even type (d\, d2) and a

symmetric theta structure. Therefore, the map is the following:

ThWl></2) : A2{dx,d2rm -* pf^+1
(5J)

O4,vI/)h+4/+(0rfl,</2(O)).

where 0^ j2 (0) is the image of the origin through the map induced by the unique
symmetric line bundle L in the equivalence class of the polarization, is the

symmetric theta structure that induces the identification 4>+ : PL)+)* ->
jp(did2)/2+l

Recalling Proposition 3.2, we have that A D P^ldl^2^+1 A{2\. Moreover
(see Section 4), given a level structure ij/ there exist 16 symmetric theta structures

inducing xfr, and (Remark 5.1) the level structure completely defines the set A fl
P+'rf2/2)+i, jn this case the fuu set A[2\. The different choices of symmetric theta

structure make the origin move along the 16 points of the intersection A flP+1 rf2/2)+i

The subgroup (Z/2Z)4 of the centralizer C,d C Autc*{/H{D)) of the involution iD
has a natural representation G+ on P^lrfz^2)+1 (see Lemma 2.8) and it operates

transitively on the set of symmetric theta structures inducing xj/ via this projective
representation. This action induces the 16 : 1 forgetful map

A2(dud2rm -* AAdud^.

5.3. The intermediate case. Now we come to what we feel to be the most interesting
case. In the intermediate case (see Section 4), we have two theta-null maps:

Th(</i,rf2) • A2{d\,d2)&ym ->• P+ ^ ^
O4,L,VI/)^4/+(0^2(O))
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and

^\di,d2) ' •A2(di,d2)Sym P. 2

(5.5)
(0dl>d2(O)).

Here *1* is a symmetric theta structure, the identification of F(H°(A, L)+)*
with the ±l-eigenspace, L an even or odd (in the odd case there is no choice,
since there is only one) line bundle and 0^ (0) the image of the origin via the

map induced by L. Recall from Remark 5.1 that the intersection sets of A with
the eigenspaces depend only on the level structure. Thanks to Proposition 3.2, we
have that A D p6M2-3)/2 _ A[2]+ if L is odd, and it equals A[2]~ if L is even.

On the other hand A fl p^>^2,/2) A[2]+ if L is even, and A[2]_ if L is odd.
The origin belongs to A[2]+, and in fact the different choices of the 4 symmetric
theta structure and of the line bundle make the origin move along the intersection
of A with the eigenspaces. If L is the unique odd line bundle only the action
of Z/2Z2 C C,d operates transitively on A fl vja t^e representation G~
(see Lemma 2.8) and induces the natural 4 to 1 forgetful map of the symmetric
theta structure A2(di, d2)~m -» A2(d\, d2)lev. On the other hand, if we concentrate

on the even moduli space, then the cardinality of A D f>^ld2/2) eqUa]s 12 (see

Proposition 3.1) and this equals in fact #(Z/2Z)2 times the 3 choices of even line
bundles. The moduli map that forgets the even theta characteristic and the symmetric
theta function is in fact the 12 to 1 map A2(d\, d2)^ym —» A2(d\, d2)lev.

6. Moduli of (1 ,d) polarized surfaces, with symmetric theta structure and a
theta characteristic: birational geometry

In this section we study the birational geometry of some of the moduli spaces of
polarized abelian surfaces introduced in Section 4.

6.1. Polarizations of type (l,n) with n odd. First we need to recall from [26,
Section 6] a few results about the Heisenberg action on the ideal of a (1, 2d + 1)-

polarized abelian surface embedded in P(H°(A, L))* P2d. In fact, the group
H\,2d+\ (see Definition 2.4) acts naturally on H°(¥2d, öP2d (2)) and it decomposes
it into d + 1 mutually isomorphic irreducible representations of %\,2d+\- Gross and

Popescu construct a (d + 1) x (2d + 1) matrix

where the indices are modulo 2d. Each row of (Rd)ij spans an irreducible sub-

representation inside H°(F2d, 0(2)), and this way we obtain the decomposition into
(d + 1) irreducible sub-representations.

(Rd)ij Xj+iXj-i, 0 < i < d, 0 < < 2d, (6.1)
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Definition 6.1. We shall indicate by Z), C Pi 1 the locus in P1 1 where the

restriction of Rj has rank < 2i.

Since xo 0 and xt —X-, on P!_1, we can use coordinates x\,. ..,xj. By
substituting these coordinates inside the matrix (6.1), one sees that the jxb and the

(2d + 1 — j )th column coincide on Pi-1, if j ^ 0. In the same way we see that the

leftmost (d + 1) x (d + 1) block of Rj is anti-symmetric. Let us denote by 7j the

restriction of this block to P!_1. Hence Dt is exactly the locus of P^~1 where Tj is
rank < 2/. The following result can be found in [26, Lemma 6.3].

Lemma 6.2. For a general Fii^d+i-invariant abelian surface A C f2d, d >3, we
have A fl P^-1 c D2 and A fl P^-1 <£. D\.

6.1.1. The case n 7. In order to analyze this case, we need to give a short
introduction to varieties of sums of powers (VSP for short). These varieties parametrize
decompositions of a general homogeneous polynomial F e k[x0,..., x„] as sums
of powers of linear forms. They have been widely studied from both the biregular
[31,47,48,53] and the birational viewpoint [40,41].

Let \¥n ^ PN(-n'd)t with N(n,d) ("^) — 1 be the Veronese embedding
induced by Opn(d), and let LJ (P") be the corresponding Veronese variety.
Let F e k[xo, • • •, xn]d be a general homogeneous polynomial of degree d.

Definition 6.3. Let F e P^" V) (-,e a general point of Lj1. Let h be a positive integer
and Hilb/i(P"*) the Hilbert scheme of sets of h points in (P"*). We define

VSP(F,h)° {{^....L^eHilb^P"*) I F e (Ld,..., Ldh)} c HilbÄ(P"*)},

and VSP(F, h) := VSP(F, h)° by taking the closure of VSP(F, h)° in HilbÄ(P"*).

Suppose that the general polynomial F e f>N(n,d) js contained in a (h — l)-linear
space /z-secant to V£. Then, by [11, Proposition 3.2] the variety VSP(F,h) has

dimension h(n + 1) — N(n, d) — 1. Furthermore, if« 1,2 then for F varying in
an open Zariski subset of pJV(">rf) the variety VSP(F, h) is smooth and irreducible.

In order to apply this object to the study of abelian surfaces, we need to construct
similar varieties parametrizing the decomposition of homogeneous polynomials as

sums of powers of linear forms and admitting natural generically finite rational maps
onto VSP(F, A).

Definition 6.4. Let F e p^("V) a general point. We define

VSPord(F,/0°:= {(Lu...,Lh)e(Wn*)h \ F e (L?,..., Ldh)} c (P"*)A,

and VSPord(Z% h) := VSP0rd(F, h)° by taking the closure of VSPord(F, h)° in (fn*)h.

Note that VSPord(F,h) is a variety of dimension h(n + 1) — N(n,d) — 1.

Furthermore, two general points of VSPord(Z% h) define the same point of VSP(F, h)
if and only if they differ by a permutation in the symmetric group Sh. Therefore, we
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have a generically finite rational map <j) : VSPord(F, h) —» VSP(F, h) of degree h\
Now we consider the rational action of S^-i on VSPord(F, h) defined as follows:

p : Sh-t x VSPord(F, h) -> VSPord(F, h)

(a, (Lu Lh)) ^ (Lx,(g(L2, Lh)))

Definition 6.5. We define the variety VSP/, (F, h) as the quotient

VSPa(F h) — VSPord(F, h)/Sh~i

under the action of Sh-\ via p.

Note that VSP/,(F, h) admits a generically finite rational map

f : VSPh(F,h) —> VSP(F,h)

of degree h. By definition of the action p, the h points on the fiber of ifr over a general

point {Li,..., Lh} £ VSP(F, h) can be identified with the linear forms L\,...,Lh
themselves. Furthermore we have the following commutative diagram of rational

maps

VSPord(F, h)

<t>

VSP(F, h)

VSP/,(F, h)

The variety VSPh(F, h) can be explicitly constructed in the following way. Let us

consider the incidence variety

J := | /e{L1,...,LÄ}VSP(FIÄ)0}cr*xVSP(F,A)0.

Then VSP/,(F, h) is the closure J of J in P"* x VSP(F, h).

Remark 6.6. In [47] Mukai proved that if F k[xo,x\,X2]$ isageneral polynomial
then VSP(F, 6) is a smooth Fano 3-fold V22 of index 1 and genus 12. In this case we
have a generically 6 to 1 rational map

ir : VSP6(F, 6) — VSP(F, 6).

By [39] and [24, Corollary 5.6], under the same assumptions on F, the moduli

space ^2(1 -
7)lev of (1,7)-polarized abelian surfaces with canonical level structure is

birational to VSP(F, 6). Other interesting results on this moduli space are contained
in [42] and [45]. Our aim is now to give an interpretation of the covering VSPf,(F, 6)
in terms of moduli of (1,7)-polarized abelian surfaces with a symmetric theta

structure and an odd theta characteristic.
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Given an irreducible, reduced, non-degenerate variety X C Pw of dimension n,
and a positive integer h < N we denote by Sech(X) the h-secant variety of X.
This is the subvariety of FN obtained as the closure of the union of all (h — 1)-

planes (x\,... ,Xh) spanned by h general points of X. The expected dimension
of Sech(X) is cxpdim(§ec/,(A)) min{hn + h — l,N}. However, its actual

dimension might be smaller. In this case X is said to be h-defective, and the number

Sh(X) nh + h — 1 — dimSec^(X) > 0 is called the /z-secant defect of X. We

recall that a proper variety X over an algebraically closed field is rationally connected

if there is an irreducible rational curve through any two general points x\, x2 e X.
Furthermore, rational connectedness is a birational property and indeed, if X is

rationally connected and X —> Y is a dominant rational map, then Y is rationally
connected as well. By [18, Corollary 1.3], if / : X —> Y is a surjective morphism,
where Y and the general fiber of <p are rationally connected, then X is rationally
connected.

Theorem 6.7, The variety VSPß(F, 6) is rationally connected.

Proof. Let us consider the Veronese variety K42 c P14 Proj(fc[xo,xi,X2]4),
and let F e P14 be a homogeneous polynomial. If F admits a decomposition
as sum of powers of linear forms then its second partial derivatives have such a

decomposition as well. Therefore, the second partial derivatives of F are six points
in P5 Proj(&[xo,xi,X2]2) lying on a hyperplane. Hence the determinant of the

6x6 catalecticant matrix

M — (JPF_ 32F 32F 32F 32F 32F \
\3*o*o 3xoxi 3*0*2 3*i*i 3*i*2 8*2*2 /

is zero. It is well known that the secant variety §ec5(T42) C P14 is the irreducible
hypersurface of degree 6 defined by det(M) 0, see for instance [37]. Therefore V42

is 5-secant defective and Ss(V^) 14—13 1. Let us define the incidence variety

X {({L1,...,L5},72)|F e(L4,...,L4)} c Hilb4(P2*) x §ec5(L2)
1jr

Hilbs(P2*) Sec5(L42) C P14

The morphism $ is surjective and there exists an open subset U c Hilbs(P2*) such

that for any Z e U the fiber is isomorphic to P4, so dim(0-1 (Z)) 4. The

morphism \[r is dominant and for a general point F e §ec5(L42) we have

dim(^-1(F)) dim(T') — dim(Sec5(L42)) 1.

This means that through a general point of §ec5(L42) there is a 1-dimensional family
of 4-planes that are 5-secant to L42. This reflects the fact that the expected dimension
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of Secs^2) is expdim(Sec5(V42)) 14 while dim(§ec5(F42)) 13, that is the

5-secant defect of F42 is 8s{V^) expdim(Secs(l/42)) — dim(§ec5(l/42)) 1.

Now, Hilbs(P2*) is smooth. The fibers of <p over U are open Zariski subsets

of P4. So X is smooth and irreducible. Therefore, for F varying in an open Zariski
subset of Sec5(f42) the fiber (F) is a smooth and irreducible curve. Now, for a

general F G k[xo, xi, x2]4, let us consider the variety

VSP6(F, 6) := {(/, {Lu..., L6}) | / e {Lu L6} e VSP(F, 6)°} c P2* x VSP(F, 6)

p2* VSP(F, 6)

Let I 6 P2* be a general linear form. Note that the fiber /"' (/) consists of the points

{Li,..., Lß] g VSP(F, 6) such that I G {Li,..., Lß). Therefore, we can identify
/_1(/) with the {L\,..., L5} e Hilbs(P2*) such that F — I4 can be decomposed
as a linear combination of L4,..., L4. Note that, since F P14 is general, we have

that also F — I4 is general in Sec5(L24)> and

f-Hi) f-\F-i4).
In particular is a smooth irreducible curve and, since dim(VSPe(F, 6)) 3,

we conclude that / : VSPslF, 6) —> P2* is dominant. Now, our aim is to study the

fiber of \j/ over a general point G e §ecs(V^). We can write

g J2^L4,
i 1

and let C C P2* be the conic through Li,..., L5. Its image u4(C) C P14

is a rational normal curve of degree eight. Let (L2) Hs P8 be its linear span.
Therefore, we have G G (L4,..., L4) C Hs C P14. Now, G is general in Hs and

we can interpret it as the class of a general polynomial T G K[zq, Zi]s- The 4-planes
passing through G that are 5-secant to £2 are parametrized by VSP(T, 5). Since any
such 4-plane is in particular 5-secant to l^2, we have VSP(T, 5) c i/^_1(G).

Now, by [41, Theorem 3.1] we have VSP(T, 5) s P1. Since x/s~l(G) is an

irreducible curve we conclude that \j/~l (G) is indeed a rational curve.
Finally, since / : VSPe(F, 6) -> P2* is dominant and its general fiber /-1 (/)

i(r~l(F — I4) ^ P1 is rational, by [18, Corollary 1.3] we have that VSPe(F, 6) is

rationally connected.

Theorem 6.8. The moduli space ^(L 7)~m of {\,l)-polarized abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to
the variety VSPö(F, 6) where F k[xo,xi,x2]4 is a general quartic polynomial.
In particular Al2( 1, 7)~m is rationally connected, and hence its Kodaira dimension
is — oo.
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Proof. By [24, Proposition 5.4 and Corollary 5.6] there exists a birational map

a:.42(l,7)lev->VSP(F, 6)

for F the Klein quartic curve. As already observed in [24], the Klein quartic is general
in the sense of Mukai [47], hence the variety VSP(F, 6) is isomorphic to the VSP
obtained for any other general quartic curve. The map a is constructed as follows.
For a general (1,7)-polarized abelian surface A with a level structure, embedded in

FH°(A, L) ^ P6 the set of its odd 2-torsion points is exactly the intersection A HP?..

It turns out that the dual lines {Fj^, • • •, 1^6,a) in Pi are elements of VSP(F, 6), and

this correspondence gives a birational map. By construction, there exists a morphism

f~ : .4.2(1, 7)~m A2( l, 7)lev of degree 6 forgetting the odd theta characteristic.

Moreover, from Section 5, we know that given (A, f) e yf2(l, 7)'ev, the map Th^ ^
sends the 6 elements of f~~x (A, f) to the six odd 2-torsion points in Pi using
the identification induced by the symmetric theta structure. Therefore there is a

commutative diagram

^2(l,7)"m

-42(1,7) > VSP(F, 6)

where a~ a o f~ is a degree six dominant rational map sending a (1,7)-polarized
abelian surface A with an odd theta characteristic to the set {F^,..., F6;/i}
determined by its odd 2-torsion points.

Now, we have a degree six rational map xf : VSPg(F, 6) —> VSP(F, 6) whose
fiber over a general point {F^,..., F6i/i} e VSP(F, 6) consists of the six linear
forms LitA in the decomposition of F given by {Fi^,..., L^,a} which in turn are

identified with the six odd 2-torsion points of the abelian surface A. Now, consider a

general point {A, xjr, L) of -42(!, 7)~m over (A, x(r) e A2(l, 7)lcv. Then there exists

a rational map
/J:.42(l,7)-m->VSP6(F,6)

sending (A, xj/, L) to the linear form in xf~l({L 1^,..., Fö,^}) that corresponds to

Th^ 7)(A, f, L) e PF Therefore, we have a commutative diagram

-42(1,7)~m - -- > VSP6(F, 6)

/- \*
v

N
I

.42(l,7)lev VSP(F, 6)

hence the map ß : ^4.2(1,7)sym —» VSPg(F, 6) is birational. Finally, by Theorem 6.7

we have that .42(1,7)~m is rationally connected.
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6.1.2. The case n 9. Let L be a symmetric line bundle on A representing a

polarization of type (1,9). The linear system |L|* embeds A in P8. This embedding
is invariant under the Schrödinger action of the Heisenberg group, and under the

involution i. More precisely, the space of quadrics on P8 is 45 dimensional and it
decomposes into five isomorphic irreducible representations of 7-^ i, 11 - In particular,
the ideal of quadrics H°(FS ,Xa(2)) is a representation of weight 2 (the center C*
acts via its character t2) of the Heisenberg group. More precisely, A is embedded as

a projectively normal surface of degree 18 which is in fact contained in 9 quadrics.
However, these 9 quadrics do not generate the homogeneous ideal of A. The 5

irreducible representations are highlighted in the 5 x 9 matrix R4

xo x2 xf xf X24 *5 X2
6 xf xl \

X\X$ X0X2 X1X3 X2X4 X3X5 X4X6 X5X7 X6X8 X0X7

X2X1 X3X8 X0X4 X1X5 X2X6 X3X7 X4X8 X0X5 X1X6

X3X6 X4X7 X5X8 X0X6 X1X7 X2X8 X0X3 X1X4 X2X5

^4X5 X5X6 X6X7 X7X8 X0X8 XqX\ XiX2 X2x3 X3X4/
We refrain from giving the details on the representation theoretical aspects of this

object, which are developed thoroughly in [27, Section 3]. We just need to know two
facts.

Proposition 6.9. Each 9-dimensional Heisenberg representation in the space of
quadrics is spanned by the quadrics obtained as v R4 (v is a row vector) for some

v e P^_.

Furthermore, If p e P8 and v e P^_ then v • 7s14 (p) 0 if and only if p is

contained in the scheme cut out by the quadrics in the representation determined

by v.

The anti-invariant eigenspace Pi is defined by the equations

{x0 Xi + x$—i — 0, Vi 1,... 8},

hence we can take x\,..., x4 as coordinates. A direct computation shows that, when

we restrict R4 to Pi, we get the following anti-symmetric matrix

0 xf xf xf
-x2 0 X1X3 X2X4 —X3X4
-X2 -X1X3 0 —X\X4 -X2x3
~xl —X2X4 X1X4 0 —XiX2

i,-X2 X3X4 X2X3 XiX2 0

Theorem 6.10. The moduli space A2(1, 9)sym of (I, 9)-polarized abelian surfaces
with canonical level structure and an odd theta characteristic is rational.
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Proof. Let us consider the theta-null morphism

Th(i>9) A2(l, 9)~m > Pi
f-(01>9(O))

It is clear that det(/?4|P3) is identically zero. By Lemma 6.2 and what we have

observed in Section 5.1, we see that the closure of £>2 is the full Pi space and Th^
is dominant, that is the general point of P3 is an odd 2—torsion point of a (1, 9)-
abelian surface with level structure embedded in P8. Following [27, Section 3] we
consider the Steinerian map (this is the classical name for a map mapping a linear

system of matrices to their kernels)

Steinlj9 : Pi —> P*

p 1 ^ Ker(/?4|p3 (/>)).

Let us recall from [26, Section 6] that for v P+, v • R4 0 if and only if
v Ä4|p3 0. Hence, by Proposition 6.9 we see that the image of p e Pi is

the u e P| that determines the unique //9-sub-representation of //°(P8, ÖP&(2))
of quadrics containing p. The map Steinig is given by the 4x4 pfaffians of the

matrix R4|P3 In coordinates we have Stein(\$){x\,..., x4) (yo,..., y4) where

JO —XjX2X3 + XjX3X4 + X1X3X4,

yx xjxf - x2x\ + X1X4,

J2 -x\x2 + xfx4 + x2x4,

J3 X j X2X3 — X2X3X4 — X1X3X4,

y4 xjx| — x3x4 — x|x4.

Therefore the image of Steinig is contained in the hyperplane

n {yo + 0} s P3

and the rational map Stein 1,9 : Pi —> II is dominant of degree 6. Now, by [27,
Theorem 3.3] the map Steinig induces an isomorphism A2(\. 9)lev II, defined

by mapping an abelian surface A C P8 to the point corresponding to the unique
//9-sub-representation of //°(P8, dP8(2)) of quadrics containing A. Let p e II be

a general point, and (A, ifr) the corresponding abelian surface with level structure.

By Section 5.1, the six points of the fiber Stenfj~9(p) correspond to the images via
the theta-null map Th]~9 : A2{\, 9)~m -» Pi of the six possible choices of an odd
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theta characteristic for (A, i/r). Hence we have a commutative diagram

•42(1,9)-m ———>p3

Steint

.42(1,9) lev n s

where / is the 6 to 1 forgetful map. Therefore Th^ 9)
is generically injective, and

thus a birational map.

6.1.3. The case n 11. Let A be a general abelian surface with a symmetric
line bundle L representing a polarization of type (1,11) and with canonical level

structure if/ (by Lemma 4.1, equivalently, a symmetric theta structure T). The linear
system \L\* embeds A in P10 as a projectively normal surface of degree 22 and

sectional genus 12. This embedding is invariant under the action of the Schrödinger
representation of the Heisenberg group. The ideal of quadrics H°(F10 ,1a(2)) is

also a representation of weight 2 of the Heisenberg group. This in turn implies that

//°(P10decomposes into irreducible components of dimension 11. More
precisely H°(F10, Orio(2)) has dimension 66 and decomposes into 6 irreducible
11-dimensional representation, isomorphic to the Schrödinger representation. As we
did in the d 9 case, let us then consider the 6 x 11 matrix

' *0 A x\ x\ x\ A A X7 X2x8 A X2 \X10

XiXi0 X0X2 X1X3 X2X4 X3X5 X4X6 X5X7 x6xg X7X9 XgXio X0X9

X2X9 X3X10 X0X4 X\X5 X2X6 X3X7 X4Xg X5X9 X6Xl0 X0X7 XiXg
X3X8 X4X9 X5X10 X0X6 X1X7 X2Xg X3X9 X4X10 *0*5 X\X6 X2X7

X4X7 XSXg X6X9 X7X10 x0x8 X1X9 X2Xio X0X3 X1X4 X2X5 X3X6

\X5X6 X6X7 X7X8 XgX9 X9X10 X0X10 X0X] Xix2 X2x3 X3X4 X4X5/

Analogously to Proposition 6.9, we have the following.

Proposition 6.11. Any H\\ irreducible sub-representation of //°(P10, Opio(2)) is

obtained by taking a linear combination of the rows with a vector of coefficients
v e P^_, and taking the span of the resulting 11 quadratic polynomials.

Moreover, ifp e P10 and v e P^_, then v Rs(p) 0 ifand only ifp is contained
in the scheme cut out by the H\\-sub-representation ofquadrics determined by v.
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The anti-invariant subspace Pi is defined as usual by

{x0 + *11 -i =0, V/ 1,..., 10}

and the restriction of R5 to Pi is the alternating matrix

Proposition 6.12. The moduli space -4.2 (1, 1 l)^m of (1,11) -polarized abelian
surfaces with canonical level structure and an odd theta characteristic is birational
to the sextic hypersurface I CP4 given by det(l?5|P4 0.

Proof As in the d 9 case, there exists a rational map

Stein!j : X — G(2,6)

mapping a point p e Pi to the pencil of Hi 1 -sub-representations of quadrics
containing p, that is to the kernel of the matrix Rs|p4 evaluated in p. Recall from
Remark 5.1 that, for an abelian surface with a level structure (4, i/r), the intersection
set with each of the two eigenspaces is well defined. By Theorem 3.2, a general such

surface intersects Pi along the 6 odd 2-torsion points. By [26, Lemma 6.4], the six
odd 2-torsion points are mapped to the same point of G(2,6) via Steinn (actually
they are the full fiber). Now, by Section 5.1 we know that these six points are the

images, via the theta-null map

of the six choices (4, L) of an odd theta characteristic on 4. This means that
the hypersurface X {det(/?5|P4) 0}, that coincides with D2, is the image

of Th[) j). By [27, Theorem 2.2], A2(1,11)1^ is birational to the image

Recalling now that / : -42(1,1 l)sym —> -42(1, 1 l)lev is the forgetful map of the

odd theta characteristic, we have now the following commutative diagram

Th^u):-42(l,ll)-m^Pi

Im(Stein(1;11)) C G(2,6).

Th,
412(1,11)- «• x C Pi

/" Steindn)

-42(1, ll)lev - --time G(2,6)

Therefore, Thj, is birational.
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6.1.4. The case n=13. By [26, Theorem 6.5], the map

013 :^2(l,13)lev->G(3,7)

mapping an abelian surface A to the sub-representation of H°(A, Oa(2)) given
by H°(A,1a(2)), is birational onto its image. As usual, we have the following
commutative diagram

Th,.
A(l,13)-m

/- I 6:1

.42(1, 13)lev Im C G(3,7)

and Thj"3 is birational onto its image in Pi. In this case /?6|pi is a 7 x 7

antisymmetric matrix. In this case, D2 C Pi is the variety defined by the vanishing of
the 6 x 6 pfaffians of R6|Ps Clearly, Im(Th^3) ^ D2. Furthermore, a computation
in Macaulay2 [38] shows that D2 is an irreducible 3-fold of degree 21, scheme-

theoretically defined by the following three pfaffians

/l — XJX3X4 + X\x\x\ — X1X4X5 + X\X2Xj,xlx5 — X^XjX^ + X\X2X$

— X2X3x|xß + x\x\x5X(, + X3X5X6 — X1X4X5X6 — XjX3XgX6

— X2X4X5X6 + Xj®X3Xg + X]xfx4Xg + x2x\x4x\,

f2 — X1X2X3 + X2X3X4 + X1X3X4 — xfx2X3X5 — X2X3X4X5 — X2X^X5

+ x|x4Xg + XjX2X3X4X6 + Xj^XsXß + XiX^xfxö — Xixfx5Xg

— X2X3X5Xg + XiX3x|xg — XjX3Xg — X2X4Xg,

Ol A A n ^ OO T 1
/3 — XjX2X3 + XiX2X4 — XjX2X5 + X1X2X4Xg + XIX3X4X5 — X2X4Xg

— Xjx|x4X6 — X2X3X4X6 + X3X4X5X6 — x|xgX6 + XiXgXö

— XiX2X3X5Xg + x|x5Xg + X2X3X4X| + X^XsXg.

Hence Im(Th^3) D2 and A2(\,13)~m is birational to D2.

6.2. Polarizations of type (1, n) with n even. Let A be a (1,2d)-polarized abelian
surface with a level structure. As it was pointed out in Remark 5.1, the two intersection
sets of A with the eigenspaces are well defined. Let ij2</ be the finite Heisenberg

group defined in Definition 2.4, a and x the two generators such that er(x,) x,_i,
r(x;) £-1x, with £ enl!d, on the homogeneous coordinates xo,...,x2^_i
on P(H°(A,L))*.

Both od and xd act on the —1-eigenspace P_, and this defines a Z/2Z x Z/2Z
action on P_. If A C P2d_1 is a Heisenberg invariant abelian surface, by
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Propositions 3.1 and 3.2 we have A[2] A fl P_ and this set is a Z/2Z x Z/2Z
orbit on P_. Let us now define the d x d matrix

j := xt+jy,-j + Xt+j+jyt-j+d, 0 < i,j < d - 1,

where the indices are modulo 2d. We will need to keep in mind the following [26,
Theorem 6.2],

Theorem 6.13. Let A C f2d~l a general Heisenberg invariant, (\,2d)-polarized
abelian surface, and y e A fl P_. Then, the 4x4 pfaffians of the and-symmetric
minors of the matrices

M5(x, y); M5(x,o5(y)); M5(x,x5(y); ifd 5;

Md{x,y);Md{x,od{y)); ifd > 7, d odd;

M6(x,y);M6(o(x),y);M6(x(x),y); ifd 6;

Md(x, y); Md(o(x), y); ifd >8,d even;

generate the homogeneous ideal of A.

6.2.1. The case n 8. Let A be a (1, 8)-polarized abelian surface. We are now in
what so far we have called the intermediate case. The line bundle L corresponding
to the polarization induces an embedding A -» P7 s F(H°(A, L)*) of degree 16.

Let us fix homogeneous coordinates xo,..., x1 on P7, and consider the usual action
of the Heisenberg group Hi,8, where the two generators operate as ct(x,) xt-\,
r(x,) £_1x, with f e71'^4.

The standard involution (x,) (x_,) on Zg induces on A the involution /. The

eigenspaces P7 and P^_ are, respectively, defined in F(H°(A, L)*) by

{xo X4 X\ + X-] X2 + *6 -^3 + X5 0}

and

{xi — Xy — X2 — X(, X3 — X5 0}.

Let us now consider the subgroup Ti' := (a4,r4) s (Z/2Z)2 C

As we have observed, fl' acts on P2 and if A is an abelian surface embedded

in F(H°(A, L)*), then the four 2-torsion points of A n P2 consist of an 'H'-orbit
on P2. Furthermore, as it is remarked in [24, Section 6], if yi, y2, y3 are

homogeneous coordinates on P2 we can embed FfjH in P3 by the map

F2_/U' — P3

[yi yi : J3] 1—> [2yiy3 : -y\ : y\ + y\ : -yj]
(6.3)
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Therefore, the image of Pl/"7f' in P3 is the plane {wi — wg 0}, where Wo, wi,
W2, wg are the homogeneous coordinates of P3. The quotient morphism P2 —>

F2_/H sP2 is finite of degree four. We keep denoting by y i, y2, >'3 and ujq, uq,
u>2 the homogeneous coordinates on P2 and P2 /% respectively.

Let us now recall briefly a few results from [24, Section 6], Let „4.2(1, 8)lev be

as usual the moduli space of (1, 8)-polarized abelian surfaces with canonical level

structure. There exists a dominant map

08 : A2{\, 8)lev -* fl/n' S P2

associating to a (1, 8)-polarized abelian surface with canonical level structure the

set of its odd 2-torsion points. For a general point y e P2, let Vg,y C P7 denote

the subscheme defined by the quadrics of P7 invariant under the action of 77 and

vanishing on the Heisenberg orbit of y. For a general y e P2 Vg,y is a Calabi-Yau
complete intersection of type (2,2,2,2) with exactly 64 nodes. The fibre of 0s over a

general point y e P2/77 corresponds to a pencil of abelian surfaces contained in the

singular Calabi-Yau complete intersection Vgty. Furthermore, by [24, Theorem 6.8]
„42( 1

>
8)lev is birational to a conic bundle over P2/"77 P2 with discriminant locus

contained in the curve

A {2iUj — WqW2 — wowl).

Proposition 6.14. The discriminant of the conic bundle

08 : -42(1, 8)lev — F2_/U' SP2

is the whole curve A.

Proof. Recall that the fibre of ©s over a point y e P2/77' corresponds to a pencil
of abelian surfaces contained in the singular Calabi-Yau complete intersection Vg>y.

By [52, Section 1.2], the equation defining the complete intersection Vg,y in P7 are
the following:

/ yiyAxo + *4) - ylix txi + x^xs) + (y? + yl)x2x6,

CT(/) yiyAxi + ^5) - yi(*2Xo + x4x6) + (y2 + yj)x3x7,

o"2(/) y\yAxl + xi) - ylix3x 1 + *5*7) + (y2 + yf)*4*o,
f^3(/) yiy3(^f + xi) - y2(^2 +x6x0) + (y? + yj)x5x 1.

Consider the point [yi : y2 : >'3] [0 : 0 : 1], which is mapped to the point
[0 : 0 : 1] 6 P2/7f'. We see that for y [0 : 0 : 1] the variety Vg<y is given
by {x2X6 X3X7 xox4 — X1X5 — 0}. Hence Vg!y is the union of 16 linear
subspaces of dimension three in P7. In particular, Vg,y does not contain a pencil of
abelian surfaces and the conic bundle structure of 08 : „42(1,8)lev — P2 fH P2
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degenerates on [0 : 0 : 1] A. Therefore the discriminant locus of this conic bundle
is non-empty, hence it is a curve. By [24, Theorem 6.8] we know that the discriminant
locus is contained in the curve A. Now, it is enough to observe that A is smooth, in
particular irreducible, to conclude that the discriminant locus is exactly A.

In particular, since deg(A) 4, as it is remarked in [24, Theorem 6.8], the moduli

space ^2(1, 8)lev is rational thanks to the classification of conic bundles from [3],

Theorem 6.15. The moduli space *4.2(1, 8)~m of (I, &)-polariz.ed abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to a
conic bundle over P2 whose discriminant locus is a smooth curve of degree eight. In

particular *42(1, 8)~m is unirational but not rational.

Proof. In Section 5.3 we defined the morphism

Th(i;8) : -42(1,8)~m > P2.

We claim that it fits in the following commutative diagram

*42(l,8)-m_-^p2 ^p2

f-
*42(1,8)lev p2 /H> ^ P2

This is due to the fact (see Section 5.3, Proposition 3.1 and Proposition 3.2) that,

given an abelian surface with level structure (A, if/), the 4 choices of symmetric theta

structure that induce i/f, plus the odd theta characteristic (which is unique) are mapped

exactly to the 4 points of intersection of A with P2 Therefore, the finite morphism f~
maps fibers of Thg to fibers of 0g, and Thg : *42(1, 8)~m — P2 s P2 is a conic
bundle. By Proposition 6.14 the discriminant of this conic bundle is the inverse

image of the curve A {2wf — WqW2 — wow^j via the projection P2 —> P2///
By substituting the equations (6.3), we get that the discriminant is the curve

A' {2y\ - 14y\yl - \4y\yl - 2y2y3 - 2yxy\ 0}.

Note that A' is a smooth plane curve of degree eight. Since deg(A > 6, by [3,
Theorem4.9], the variety ^2(1» 8)~m is not rational. On the other hand, deg(A < 8,

and by [44, Corollary 1.2] *42(1, 8)~m is unirational.

6.2.2. The case n 10. An argument analogous to the one used in the proof of
Theorem 6.15 works in the case n 10 as well. Here the negative eigenspace is of
dimension three. Following [26, Theorem 6.2], we have:
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Theorem 6.16. Let d be an even positive integer. The morphism

®d .A2(hdyev^r2-2/z2xz2

mapping an abelian surface to the orbit of its odd 2-torsion points is birational onto
its image ford > 10.

Thus in particular this is true for

01O :.42(l,10)lev->Pl/Z2xZ2

The upshot is that A2(l, 10)lev is rational. In fact, the restriction of the matrix M5
from equation (6.2) is a 5 x 5 anti-symmetric matrix with linear entries on Pi, hence

its determinant is never maximal. Therefore, the sets of odd 2-torsion points A n Pi
cover the whole Pi, when A moves inside A2(1,10)lev. We have the now familiar
commutative diagram

A2(1, io)-m P3

f-
A2{\, 10)lev —Pl/Z2 x Z2

with 4 to 1 vertical arrows. Hence, Th"j~0 is birational, and A2(h 10)~m is rational.

6.2.3. The case n 12. In this section we consider the moduli space *42(1, 12)~m
of (1, 12)-polarized abelian surfaces with a symmetric theta structure and an odd
theta characteristic. By [25, Section 2] if A C P11 is an //^-invariant abelian
surface of type (1, 12), and y A, then the matrix Mg(x, y) from equation (6.2) has

rank at most two on d. In particular, the matrix M6(x, x) has rank at most two for
any x e A D Pi. Now, Pi is defined by

Pi {x0 x6 X5+X7 x4+x8 X3+X9 x2+Xio X1+X11 0} C P11.

Therefore the upper left 4x4 block of M${x, x) is

* 0 —x\ — x2 —x2 — x2 —2x2 ^

X2 + X2 0 —X1X3 — X3X5 —2X2X4

x\ + x2 X1X3 + X3X5 0 —2x1X5

y 2X3 2X2X4 2X1X5 Oy
and its pfaffian is

P 2(xix| + X3X5 — x|x4 — X2X4 + Xj X5 + Xix|).
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We denote by the quartic 3-fold

Xf {Xix| + x|x5 — x|x4 — X2X4 + xfx5 + X1X5 0} C Pi.

By Theorem 6.16, there exists a birational map

@12 : -42(1,12)lev —> xI/Jj2 x Jj2

mapping A to the (Z2 x Z2)-orbit of A n Pi. In this case the action of (Z2 x Z2)
on Pi is given by

CT6(Xi,X2,X3,X4,X5) (x5,X4,X3,X2,Xi),

r6(Xi,X2,X3,X4,X5) (xi, x2, x3, x4, x5).

By [25, Theorem 2.2] the quotient X^/Z2 x Z2 is birational to the complete
intersection G(l,3) H Q C P5, where G(l,3) {yoTs — J1J4 + T2T3 0}
is the Grassmannian of lines in P\ and Q is the quadric given by

Q {yoyi -y\- 2y2y5 0}.

Therefore A2(l, 12)lev is rational: In the following subsection, we will show that the

quartic X% is unirational, not rational, and birational to A2( 1,12)~m.

A unirational smooth quartic 3-fold. Let X c P4 be a smooth quartic hypersurface.
By adjunction we have that u>x Cx(—1), hence X is Fano. The rational chain
connectedness and, in characteristiczero, the rational connectedness of Fano varieties
has been proven in [8] and [36].

Clearly a unirational variety is rationally connected. However, establishing if
the classes of unirational and rationally connected varieties are actually distinct is a

long-standing open problem in birational geometry.
We are interested in the quartic 3-fold X% c Pi- We may write its equation as

X4 {Xoxf + X2X4 — Xj X3 — Xjx| + XqX4 + xox| 0}

by shifting the indices of the homogeneous coordinates on Pi.
By [32] for any smooth quartic 3-fold X C P3 we have Bir(A) Aut(A).

In particular, X is not rational. Furthermore, this result was extended to nodal

Q-factorial quartic 3-folds in [10] and [43], This gave new counterexamples to the
famous Liiroth problem in dimension three. On the other hand, Segre [58] gave a

criterion for the unirationality of a smooth quartic 3-fold and produced an example
as well. In the rest of this section we will apply Segre's criterion to the quartic X%

and prove the unirationality of A2( 1,12)~m. This criterion consists of the following
steps:

- first, we consider the open subset A0 c X of points x e X such that there are

at most finitely many triple tangent of X through x,
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- we consider the projectivized tangent bundle P(TXq) -> X0, and the

subscheme T0 c P(TXq) parametrizing triple tangents to Xq. Then we
define a rational map

/ : Y0 -> X

mapping a triple tangent to its fourth point of intersection with X.

- we construct a rational 3-fold Zo C To such that f\z0 is finite.

Proposition 6.17. The quartic 3-fold X% is unirational but not rational.

Proof. We will denote T| simply by X. It is easy to check that X is smooth.
Therefore X is not rational [32]. Our strategy, in order to prove the unirationality
ofT, consists in applying the unirationality criterion of [58, Section4], AlineL C P4

will be called a triple tangent to X at a point x X if either x e L c X or the

intersection L n X is of the form 3x + v.
Let us consider the point x [10 : 2 : 1 : 1 : 0], We have that

TxX {xo — 13xi + 30x2 — 14x3 + IOOIX4 0}.

Using [38] it is straightforward to check that the intersection S(x) X f)TpX
is an irreducible and reduced degree four surface, the point x has multiplicity two
on S(x), and the quadratic tangent cone to S(x) at x is irreducible and reduced as

well. Note that the triple tangents to X at x are the generators of the quadratic tangent
cone to S (x) at x. Now, assume that infinitely many triple tangents lie in X. Then
the tangent cone lie in S (x) which is irreducible and reduced. Therefore we get a

contradiction and only finitely many triple tangents can lie in X.
It is well known that the subset Xq c X of points with this property is a dense open

subset of X. Now, let us consider the projectivized tangent bundle P(TXq) —> Xq.
Let To C P(TAo) be the subscheme parametrizing triple tangents to Xq, and let
7T : To —> Xq be the projection. Note that if x To the fiber 7r_1 (x) is isomorphic
to the base of the quadratic tangent cone to S(x), that is 7r_1(x) P1. Now, only
finitely many points on the fiber jt~1 (x) correspond to triple tangents contained in X.
Therefore we can define a rational map / : T0 —> X mapping a triple tangent to its
fourth point of intersection with X. Now, following [58] we would like to construct
a rational 3-fold Zq C To such that f\z0 is finite. Here comes the core part of the

construction.
Let us consider the hyperplane H4 {X4 0}. Note that H4 TqX where

q [1 : 0 : 0 : 0 : 0]. The intersection H4 fl X is the surface

S {G xqxI — XjX3 — X1X3 0} C 7/4 P3.

The partial derivatives of G are
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and the Hessian matrix of G is

/ 0 0 3x\ 0 \
0 —6x1X3 0 —3xj — 3X3

3x\ 0 6x0X2 0

y 0 —3x\ — 3x| 0 —6X1X3 y

We see that dim(Sing(S)) 0, so S is irreducible. Furthermore, on the point
[1 : 0 : 0 : 0] all the first partial derivatives and the Hessian matrix vanish. On the

other hand (1,0,0,0) ^ 0, then [1 : 0 : 0 : 0] is a singular point of multiplicity

exactly three for S. In particular, since deg(S) 4 projecting from [1 : 0 : 0 : 0] we

see that S is rational. Finally x [10 : 2 : 1 : 1 : 0] S, and S D X0 ^ 0.

Now, we define Zo := 7r_1 (A). The general fiber of n\z0 : Zo —> S is a smooth
rational curve. In order to prove that Z0 is rational it is enough to show that jt\z0
admits a rational section. Let x e S be a smooth point. Then T* S intersects the

quadratic tangent cone to S (x) in the two generators. In turn the two generators give
two points on the fiber of Z0 over x. We denote by D C Zo the closure of the locus
of these pairs of points. Note that D is a double section of n\z0 : Zo —> S. Now,
the surface of triple tangents of S is given by the following two equations

^ a 92G(x)

£j^ö*' 0- £ ''=
1=0 ,y ' i,j= 0 ' 1

for x varying in S. Therefore, the discriminant of the equation defining the two triple
tangents at a general point x e S is the determinant of the Hessian //(G) up to a

quadratic multiple. We have

det(H(G)) (9x|(xj — X3))2.

Therefore, the surface of triple tangents of S splits in two components D — Do U D\,
and each component gives a rational section of 7T|z0 : Zo —»• S. We conclude that Z0
is rational. Now, we consider the restriction

f\D0 ' Do S.

Note that Do is the surface given by

£itr^=0- £<*<«*> °-

i=0 ' i=0
for x varying in S, where the a, are determined by the splitting D Do U D\. For
instance, if x [10 : 2 : 1 : 1] the triple tangent L corresponding to the point of D0
over x is given by

L {2xi — 5x2 + X3 2xo — 5x2 — 15x3 0}

and L intersects S in x with multiplicity three and in the fourth point [65 : 1 : 2 : 8].
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Now, a standard computation shows that for a general point y e S there exist a point
x e S and a triple tangent Lx to S at x such that y e Lx. In other words the rational

map f\D0 : D0 —> S is dominant.
Let us come back to the rational map f\z0 Zo —> X. Let us assume that f\z0 is

not dominant. Since Do C Zo and Do is dominant on S we have that f\z0{Zo) is an

irreducible surface containing S. Therefore, f\z0(Zo) S. Now, let x e S be any
smooth point. Then S(x) ^ S, and the general generator of the quadratic tangent
cone to S(x) in x does not lie on the hyperplane H4 cutting S on K. In particular,
the fourth point of intersection of such a general generator with X does not lie in S.

This is a contradiction. We conclude that fz0 ' Z0 —* X is dominant. Hence fz0
is finite, and since Zo is rational the 3-fold X is unirational.

Theorem 6.18. The moduli space .4.2(1,12)~mo/(l, \2)-polarized abelian surfaces
with canonical level structure, a symmetric theta structure and an odd theta

characteristic is unirational but not rational.

Proof. Let X% be the quartic 3-fold defined by

{xix| + X3X5 — xfx4 — X2X4 + XjX5 + Xjx| 0} C Pi.

An argument analogous to the one used in the proof of Theorem 6.15 shows that the

diagram
Th/. > 2\

^2(1.12)-m ' ',*3

.42(1, 12)lev -012+ Xl/Z2 x Z2

commutes. Since, by Theorem 6.16, the map ©12 is birational, the map Th^ 12j
is birational as well. Finally, by Proposition 6.17 we have that «42(1,12)~m is

unirational but not rational.

6.2.4. The cases n 14 and n 16. By Theorem 6.16 the map

©14 : -42(1,14)lev — Pi/Z2 x Z2

mapping an abelian surface A to the orbit of A fl Pi is birational onto its image.
Let X\4 be the inverse image of Im(©i4) via the projection P^_ —> P1/Z2 x Z2.
Now, the first 4x4 minor of the matrix M7(x,x), from equation (6.2), restricted
to Pi gives the following pfaffian

/ — x\x4 — X1X3X4 + Xj®X5 — X2X3X5 — X2X4XI

- X3x| + XiX2X6 + x|x4X6 + X4X6 + XiXsXg + X2Xg.
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On the other hand, the first 4x4 minor of the matrix M1(o{x), x) restricted to Pi
yields the pfaffian

g — X1X3X4 - X2X3X5 - X2X4xf + XjX2X6 + xfx4X6 + XiX5Xg.

Clearly, by Theorem 6.13, X14 c X4 4 {/ g 0} C Pi. Furthermore, a

standard computation in [38] shows that X44 is an irreducible 3-fold of degree 16

which is singular along a curve of degree 24. Finally, we get that the map

Th74 : A2(l, 14)-m X44

is birational. The case n 16 is quite similar. By [25, Lemma 4.1] the variety
X40 c Pi defined by the 4 x 4 pfaffians of Mg(x,x) is an irreducible 3-fold of
degree 40. By Theorem 6.16 the map

016 : *42(1.16)lev —> Pl/Z2 x Z2

is birational onto its image. If n : Pi —> Pl/Z2 x Z2 then X40 7r_1(Im(0i6)).
As usual, we get that the map

Thr6 : A2(1,16)~m ^ X40

is birational. Furthermore, we have the following.

Proposition 6.19. The moduli space *42( 1,16)~m is ofgeneral type.

Proof By [25, Remark 4.2] the 3-fold X40 is of general type.
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