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Moduli of abelian surfaces, symmetric theta structures
and theta characteristics

Michele Bolognesi and Alex Massarenti

Abstract. We study the birational geometry of some moduli spaces of abelian varieties with
extra structure: in particular, with a symmetric theta structure and an odd theta characteristic.
For a (dy.d>)-polarized abelian surface, we show how the parities of the d; influence the
relation between canonical level structures and symmetric theta structures. For certain values
of di and d», a theta characteristic is needed in order to define Theta-null maps. We use these
Theta-null maps and preceding work of other authors on the representations of the Heisenberg
group to study the birational geometry and the Kodaira dimension of these moduli spaces.

Mathematics Subject Classification (2010). 11G10, 11G15, 14K10; 14E0S, 14E08, 14M20.

Keywords. Moduli of abelian varieties, rationality problems, rational, unirational and rationally
connected varieties.

1. Introduction

Moduli spaces of polarized abelian varieties are one of the subjects with the longest
history in algebraic geometry. Very often their study has proceeded along with
that of theta functions, in a mingle of analytic and algebraic techniques. Classical
results of Tai, Freitag, Mumford and more recent results of Barth [2], O’Grady [51],
Gritsenko [20,21], Gritsenko and Sankaran [22], Hulek and Sankaran [29] agree on
the fact that moduli spaces of polarized abelian varieties are very often of general
type. Anyway, some exceptions can be found, especially for abelian varieties of
small dimension and polarizations of small degree. In these cases the situation has
shown to be different and the corresponding moduli spaces are related to beautiful
explicit geometrical constructions. For example, the moduli space of principally
polarized abelian varieties of dimension g is of general type if g > 7, and its
Kodaira dimension is still unknown for g = 6. On the other hand the picture is clear
for g < 5. See for instance the work of Katsylo [33] for g = 3, van Geemen [16] and
Dolgachev—Ortland [13] for g = 3 with a level 2 structure, Clemens [9] for g = 4,
and Donagi [14], Mori-Mukai [46] and Verra [59] for g = 5.
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Moreover, the geometry of polarized abelian varieties is so rich that one can
append many further structures to the moduli functors, obtaining finite covers of
the moduli spaces with beautifully intricate patterns, and curious group theory
coming into play. One first example of such constructions is the so-called level
structure (see Section 2.0.2) which endows the polarized abelian variety with some
discrete structure on certain torsion points related to its polarization. In the case
of abelian surfaces with a polarization of type (1, d), moduli spaces of polarized
abelian surfaces with a level structure have been studied by Gritsenko [20,21], Hulek
and Sankaran [29], Gross and Popescu [24-27], in particular with respect to their
birational geometry (rationality, unirationality, uniruledness, and Kodaira dimension)
and the general picture seems quite clear. The Kodaira dimension of moduli spaces
of (1, d)-polarized abelian surfaces has been studied extensively by Sankaran [57],
Erdenberger [15] and by Hulek, Kahn and Weintraub in [28], where polarizations
with level structure are also investigated. In particular, Gritsenko has shown that the
moduli space A (1, d) of polarized abelian surfaces of type (1, d) is not unirational
it d > 13 and d # 14,15,16, 18,20, 24,30,36. Furthermore, thanks again to
the results in [20] and [29] it is now proven that the moduli space of principally
polarized abelian surfaces with a level structure A>(1, p)'®" is of general type for all
primes p > 37.

The aim of this paper is to go a little further in this study of the birational
geometry of finite covers of moduli of (1, d)-polarized abelian surfaces, concentrating
in particular on some spaces that cover finitely the moduli spaces with level structure.
In fact, we add to the moduli functor the datum of a symmetric theta structure (see
Section 2.0.3), that is an isomorphism of Mumford’s Theta group and the abstract
Heisenberg group that commutes with the natural involution on the abelian surface.
This aspect seems to have been studied quite deeply in the case of a polarization
of type 2, 3 or 4 (for instance see [6, 12,17, 50,55, 56] and [5] for applications to
non-abelian theta functions). However, up till now, to the best of our knowledge, it
seems to have been ignored for other polarizations. Our study will be mainly aimed
at understanding the birational geometry of moduli spaces and will be performed via
theta-constant functions. In order to have well-defined theta-constants, it often turns
out to be very important to add to our moduli space the choice of a theta characteristic,
seen as the quadratic form induced on the points of 2-torsion by a symmetric line
bundle in the algebraic equivalence class of the polarization. For our goals, the
choice of the theta characteristic will be equivalent to the choice of the symmetric
line bundle. The main results in Section 4 can be summarized as follows.

Theorem 1. Let d,, d be positive integers such that dy|d», and let A>(d;, d>)'® be

the moduli space of (d, d,)-polarized abelian surfaces with a level structure.

— If dy is odd then there exist two quasi-projective varieties Ag(dl,dz);_ym
and Aj(dy, dz)s";m parametrizing polarized abelian surfaces with level
(dy, dp)-structure, a symmetric theta structure and an odd, respectively even



Vol. 91 (2016) Abelian surfaces and theta characteristics 565

theta characteristic. Furthermore, there are natural morphisms

[ Aadr da) = As(dr do), fT 0 As(dr, do) S, — Aa(dy, dy)
forgetting the theta characteristic. If dy, dy are both odd then f~ and f have

degree 6 and 10 respectively. If d, is even then f~ has degree 4, while
has degree 12.

— If di and d, are both even then there exists a quasi-projective va-
riety As(dy,d2)sym parametrizing polarized abelian surfaces with level
(dy, dp)-structure, and a symmetric theta structure. Furthermore, there is
a natural morphism

[ Aa(dy, da)sym — Ax(dy, da)'

of degree 16 forgetting the theta structure.

In this paper we concentrate on abelian surfaces with an odd theta characteristic
and on the moduli spaces A,(1,d)~. The case of even theta characteristic will
be addressed in our forthcoming paper [7]. The structure of A, (1,d)™ is slightly
different depending on whether d is even and f~ has degree 4, or d is odd and f~
has degree 6.

In Section 5 we study the birational geometry of these moduli spaces using objects
and techniques coming from birational projective geometry such as varieties of sums
of powers, conic bundles, and the Segre criterion for the unirationality of smooth
quartic 3-folds.

Our main results in Theorems 6.8, 6.10, 6.18, 6.15, Propositions 6.12, 6.19, and
Paragraphs 6.1.4, 6.2.2, 6.2.4, can be summarized as follows.

Theorem 2. Let Ax(1,d),, be the moduli space of (1,d)-polarized abelian

surfaces, endowed with a symmetric theta structure and an odd theta characteristic.
Then

- Ax(1, T)gym is birational to the variety of sums of powers VSP¢(F,6) (see

Definition 6.5), where F € k[xo, x1, X2]4 is a general quartic polynomial. In
particular A;(1, 7)5"ym is rationally connected.
- Ax(1, 9)sym 18 rational.

- A (1, 1) is birational to a sextic pfaffian hypersurface in P4, which is
singular along a smooth curve of degree 20 and genus 26.

- Ax(1, 13)m is birational to a 3-fold of degree 21 in P>, which is scheme-
theoretically defined by three sextic pfaffians.

- Ax(1, 8)5—ym is birational to a conic bundle over P? whose discriminant locus
is a smooth curve of degree 8. In particular, A>(1,8)_ _ is unirational but not
rational.

sym
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- A»(1,10)
- Ax(1, 12);m is unirational but not rational.

— Aa(1, 14),, is birational to a 3-fold of degree 16 in P>, which is singular
along a curve of degree 24 and scheme-theoretical complete intersection of
two quartic pfaffians.

- Ay(1,16)

is rational.

sym

sym I8 birational to a 3-fold of degree 40, and of general type in IPS.

Plan of the paper. In Section 2 we introduce most of our base notation and make a
quick summary of the results we will need about level structures, the Theta and
Heisenberg group, theta structures, theta characteristics and quadratic forms on
7./ 2Z.-vector spaces. Section 3 is devoted to the study of linear systems on abelian
surfaces. Since we need an intrinsic way to compute the dimension of the spaces
of sections for the objects of our moduli spaces, we make use of the Atiyah—Bott—
Lefschetz fixed point formula, and deduce these dimensions for different choices of
the line bundle representing the polarization. The goal of Section 4 is the construction
of the arithmetic groups that define our moduli spaces as quotients of the Siegel half-
space H,. Once these subgroup are defined, we display the theta-constant maps that
yield maps to the projective space. These maps, and their images, are studied in
Section 5, by tools of projective and birational geometry, and several results about
the birational geometry and Kodaira dimension of A (d1, d2)g,, are proven.
Acknowledgements. First of all, we want to heartfully thank the anonymous
referee, who corrected some mistakes, suggested Remark 5.1 and hugely helped
us to bring this paper to a better form. We gratefully acknowledge G. van der Geer,
I. Dolgachev, K. Hulek, C. Ritzenthaler, G. Sankaran, M. Gross, N. Shepherd-Barron,
and especially B. van Geemen and R. Salvati Manni for fruitful conversations and
observations.

The authors are members of the Gruppo Nazionale per le Strutture Algebriche,
Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica
“F. Severi” (GNSAGA-INDAM). This work was done while the second named author
was a Post-Doctorate at IMPA, funded by CAPES-Brazil. The first named author is
member of the GDR GAGC of the CNRS.

2. Notation and preliminaries

The main references for this section are [4] and [28]. Let A be an abelian variety of
dimension g over the complex numbers. The variety A4 is a quotient V/A, where V is
a g-dimensional complex vector space and A a lattice. Let L be an ample line bundle
on A, and let us denote by H the corresponding polarization, i.e. the first Chern
class of L. We denote by Pic (A) the set of line bundles whose polarization is H.
The polarization H induces a positive-definite Hermitian form, whose imaginary
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part E := Im(H) takes integer values on the lattice A. There exists a natural map
from A to its dual, ¢y, : A — /f defined by L as x — t;L ® L, where t, is the
translation in A by x. We denote the kernel of ¢p;, by K(L). It always has the form
K(L) = (Z/d\Z & --- & Z/dgZ)®?, where dy|d3|---|dg. The ordered g-tuple
D = (dy,...,dg) is called the type of the polarization. For sake of shortness, we
will write Z& / DZ® for Z./d\Z & - - - @ 7Z/d g Z. The form E defines the Weil pairing
on K(L)asef (x,y) :=exp(niE(x,y))forx,y € K(L). A decomposition of the
lattice A = A; @ A5 is said to be a decomposition for L if Ay and A, are isotropic
for E. This induces a decomposition of real vector spaces V = V; @ V,. Let us now
define A(L) :={v e V| E(v,A) C Z}. Since K(L) = A(L)/A, a decomposition
of A also induces a decomposition

K(L) = K1(L) ® K»(L), (2.1)

where both subgroups are isotropic with respect to the Weil pairing and are isomorphic
to (Z8 | DZ)%.

2.0.1. Theta characteristics. Let (A, H) be a polarized abelian variety and let
1 : A — A be the canonical involution. A line bundle L is symmetric if 1*L =~ L.
If L is symmetric, a morphism ¢ : L — L is called an isomorphism of L over 1 if
it commutes with ¢ for every x € A, and the induced map ¢(x) : L(x) — L(—x) is
C-linear. The isomorphism is normalized if ¢(0) is the identity. The following result
is well known, [49, Section 2], [4, Lemma 4.6.3].

Lemma 2.1. Any symmetric line bundle L € Pic(A) admits a unique normalized
isomorphism ¢ : L — L over 1.

We will denote by A[n] the set of n-torsion points of the abelian variety A. Our
next goal is to define theta characteristics via the theory of quadratic forms over the
7,/ 2Z-vector space A[2]. Given a polarization H € NS(A), we define a symmetric
bilinear form g : A[2] x A[2] = {£1} by ¢ (v, w) := exp(wi E (2v, 2w)).
Definition 2.2. A theta characteristic is a quadratic formgq : A[2] — {£1} associated
to eH, that is:

q(x)q(»)q(x +y) = g% (x, ),
for all x,y € A[2].

We denote the set of theta characteristics by ©#(A). Every symmetric line bundle L
defines a theta characteristic as follows.

Definition 2.3. Let L € Pic” (A) be a symmetric line bundle, and x € A[2]. We
define e’ (x) as the scalar B such that ¢(x) : L(x) = (t*L)(x) = L{1(x)) = L(x)
is multiplication by S.

Let D be the symmetric divisor on A such that L =~ O4(D). The quadratic
form e’ can be also defined as follows:

eL(x) — (_l)mult_\- (D)—mu]t()(D)- (22)
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From [4, Lemma 4.6.2] one sees that the set of theta characteristics for an abelian
surface is a torsor under the action of A[2] and hence it has cardinality 16. For a nice
and general introduction to the finite geometries in the theory of theta characteristics,
the reader may check [54].

2.0.2. Level structures and theta structures. If x € K(L), then x induces an
isomorphism 1} L = L, so we get a representation K(L) — PGL(H"(A, L)). This
representation does not come from a linear representation of K(L), but it lifts to a
linear representation of the central extension of K(L) defined by the following exact
sequence:

1-C*—>G(L)— K(L)—0.

The commutator of G(L) is exactly the Weil pairing /. The group G(L) is called
the theta group of L. As an abstract group, G(L) is isomorphic to the Heisenberg
group H(D) of type D. The group H(D) as a set is equal to C x K(D), where
K(D) =17Z8/DZ8 & Z8 | DZE. The group structure of H(D) is defined as follows.
Let fi,.... f2¢ be the standard basis of K(D). We define an alternating form
e? : K(D) x K(D) — C* on this basis as follows:

exp(—27i/dy) ifB =g+ a,
eP (fu, f5) = {exp(2ri/dy) ifa =g+ B, (2.3)
1 otherwise.

The group structure of H(D) is defined viae? . Given (a, x1, x2), (b, y1, y2) € H(D)
we have (a, x1, x2), (b, y1, y2) := (abeD(xl, ¥2). X1 + y1,X2 + y2). Similarly to
the case of the theta group, the Schur commutator is given by the pairing e?. An
isomorphism 6 : G(L) 5 H(D) that restricts to the identity on C* is called a theta
structure. Any theta structure induces a symplectic isomorphism between K (L)
and K (D), with respect to the alternating forms e’ and e?. A symplectic
isomorphism K (L) 5K (D) is traditionally called a level-D structure (of canonical
type).

As we have already observed, the theta group has a natural representation
p:G(L) — GL(H"(A, L)) which lifts in a unique way the representation K(L) —
PGL(H°(A, L)). The choice of a theta structure induces an isomorphism between p
and a certain representation of H (D) called Schrodinger representation. Let us
outline its construction. Let Vg (D) := Map(Z¥# /DZ#,C) be the vector space of
complex functions defined on the set Z& /DZ#. The Schrodinger representation
o : H(D) — GL(Vg(D)) is irreducible and defined as follows:

o(a,a,b)(v) := ae? (=, b)v(— + a).

The center C* clearly acts by scalar multiplication, hence o induces a projective
representation of K(D). If A is a surface and D = (d;,d>), a basis of V>(D) is
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given by the the functions 8y, for x € Z?/DZ?, defined by §x(y) := 8xy, where 8y,
is the Kronecker delta
1 ifx=y,

xy 1= 0 otherwise. @4
Given an ample line bundle L and a decomposition for L, there is a unique basis
{0, | x € K;i(L)} (see the decomposition in equation (2.1) of canonical theta
functions of the space H°(A, L) [4, Section 3.2]. Hence, a canonical basis of theta
functions, indexed by K;(L) = Z?/DZ?, for H°(A, L) yields an identification
of H°(A, L) and V»(D) such that the two representations H(D) — GL(Vg(D))
and G(L) — GL(H°(A, L)) coincide. The projective image of A in P(Vg(D))
will be equivariant under the Schrodinger representation, and also all the spaces
H°(A,T4(n)) will be representations of the Heisenberg group. It will be useful for
the rest of the paper to define the finite Heisenberg group.

Definition 2.4. We will denote by H,, 4, the subgroup of H(D) generated by
o1 = (1,1,0,0,0), 02 = (1,0,1,0,0), 7y = (1,0,0,1,0) and 7, = (1,0,0,0, 1).
Let x = (i, j) € Z?/DZ?, the elements o; and 7; act on V,(D) via

018, ) = 8i-1.5) 02(8(i,)) = 8(i.j—1)
1) =686 2066 =& 8.5
where & := exp(2mi/dy).

In particular, if d; = 1, o7 and t; act both as the identity, so for shortness we
will denote by o and t the generators 0, and 77, and not consider the first index on
the variables.

2.0.3. Symmetric theta structures. Whenever we talk about symmetric theta struc-
tures, we will implicitly assume that L is a symmetric line bundle. First of all, recall
that K(L) acts on A via translations. In turn, the involution ¢ acts on K (L) as —1.
Hence we can define the extended group K(L)¢ := K(L) x1 and the extended
theta group G(L)¢ as a central extension of K(L)¢ by C*. More precisely we set
G(L)¢ := G(L) x 11, where 1, is the obvious extension of 17, to G(L) acting as
the identity on C*. In a similar way, we introduce the extended Heisenberg group
H(D)¢ := H(D)® x1p, where ip(z, x1,x2) = (z,—x1,—X2). By extended theta
structure we mean an isomorphism of H(D)¢ with G(L)¢ inducing the identity
on C*. Any extended theta structure induces a theta structure, but on the other hand
a theta structure 6 can be extended if and only if it is a symmetric theta structure, that
isif@oiy =1pof.

In particular, the Schrodinger representation p extends to a representation p¢
of H(D)¢. When A is a surface the action of i1p is p®(i1p)(6(;,;)) = 6(—i,—j). The
involution 1p acts on the space V,(D) spanned by delta functions and decomposes
it into an invariant and an anti-invariant eigenspace. We will denote by P} and P™
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the corresponding projective spaces. The dimensions n and m will be computed in
the next section. If D = (1.d), then P} is given by the equations x; = x_;, for
i € Z/dZ,and P™ by the equations x; = —x_;, for i in the same range.

Definition 2.5. Let Aut(H (D)) be the group of automorphisms of the Heisenberg
group H(D). We will denote

Autc+(H(D)) := {¢ € Aut(H(D)) | ¢(1,0,0) = (¢,0,0), ¥Vt € C*}.

The set of all theta structures for a line bundle L of type D is a principal
homogeneous space under the action of Autc+(H(D)). Let Sp(D) denote the group
of all automorphisms of K(D) that preserve the alternating form e?. The set
of all level D structures is a principal homogeneous space for the group Sp(D).
From [4, Lemma 6.6.3] one sees that any element of Autc=(H(D)) induces a
symplectic automorphism of K(D). Moreover, for all z € K(D) we define an
element y, (o, x1, x2) 1= (xeP(z,x1 + x2), x1, x2) € Aute+(H(D)). This yields
an injective homomorphism y : K(D) — Autcx(H(D)). From [4, Lemma 6.6.6]
we obtain the following

Lemma 2.6. There exists an exact sequence
1 — K(D) 5 Autes (H(D)) — Sp(D) — 1. (2.5)

Remark 2.7. If ¢ € Aute«(H(D)), then o o ¢ is also an irreducible level one
representation, that is a central element z € C* acts by multiplication with itself.
Hence by the Schur lemma there exists a unique linear map G, : Va2(D) — Va(D),
such that Gy(a(h)) = o(e(h)) for all h € H(D). In this way we obtain a
representation

G : Aute=(H(D)) = GL(Vy (D))

2.6
@ Gy s

Lemma 2.8. Let C,p C Autcx(H (D)) be the centralizer subgroup of 1P, Ve (D)*
and Vg(D)™ the eigenspaces of V(D) with respect to the standard involution
on (Z)DZ)8. Then the restriction of the representation G to C,p splits into two
representations Gt: C,p — GL(Vg(D)%), and G : C,p - GL(Vg(D)7).
Theorem 2.9 ([4, Theorem 6.9.5]). Let A be an abelian variety of dimension g and H
be a polarization of type D = (dy,...,dg) with d,,...,ds odd and dsy4,. .., dg
even. There are 22 symmetric line bundles in Pict (A), each admitting exactly
22(&=5) . #(Sp(D)) symmetric theta structures. The remaining symmetric line bundles
in Pict (A) do not admit any symmetric theta structure.

Remark 2.10. More precisely, if L € Picf (4), the symmetric theta structures
inducing a given D-level structure correspond to elements of K(L) N A[2] =
(7,/27)*@=)_On the other hand, the symmetric line bundles admitting symmetric
theta structures are represented by elements of A[2]/(K(L) N A[2]) = (Z/27)%".
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From Theorem 2.9 and Remark 2.10 we obtain a straightforward version of
Lemma 2.6 for symmetric theta structures.

Lemma 2.11. There exists an exact sequence

1 - K(D)NA[2] > C,p = Sp(D) = 1. (2.7)

3. Theta characteristics and linear systems on abelian surfaces

Let (4, H) be a (dy, d»)-polarized abelian surface and L € Pic? (4) a symmetric
line bundle. The normalized isomorphism induces an involution :* : H%(A4, L) —
H°(A, L) defined by 1*(s) = 1*(¢(s)). In the rest of the paper we will need
an intrinsic computation of the dimensions of the eigenspaces H°(A4, L)" and
H%(A,L)". In the same spirit of [6, Section 2.1] we will compute this via the
Atiyah—Bott—Lefschetz fixed point formula [19, p. 421]). Suppose that L admits a
symmetric theta structure (see Theorem 2.9). Denote by A[2]™ (respectively A[2]7)
the set of 2-torsion points where el takes the value +1 (respectively —1).

Proposition 3.1. Let H be a polarization of type (dy, d>), with dy|d» as usual, and
L € Pic (A) a symmetric line bundle admitting a symmetric theta structure. Then
for the theta characteristic e™, we have:

— if both dy and d» are odd then #(A[2]") = 10 and #(A[2]7) = 6 (in which
case we say that e is an even theta characteristic), or #(A[2]7) = 6 and
#(A[2]7) = 10 (in which case we say that e* is an odd theta characteristic),

— ifdy is odd and d- is even then #(A[2]T) = 12 and #(A[2]7) = 4 (e is an
even theta characteristic), or #(A[2]%) = 4 and #(A[2]7) = 12 (el is an odd
theta characteristic),

— if both d, and d are even, then #(A[2]") = 16 and #(A[2]7) = 0, for all
theta characteristics.

Proposition 3.1 follows immediately from [4, Proposition 4.7.5]. We will simply

say that a symmetric line bundle is odd (respectively even) if it induces an odd

(respectively even) theta characteristic e’ .

Proposition 3.2. Let A be an abelian surface and L a symmetric line bundle inducing
a polarization of type (dy, d3) on A, and admitting a symmetric theta structure.

(1) If di, d» are odd, and if L is even then

did 1 didy; — 1
hO(A,L)+ — 1 22+ ’ hO(A,L)_ — 1 ; :
if L is odd then
dyd 1 didy; — 1
ho(A, L) = % hO(A, L)t = %
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(2) Ifdy is odd and d, even, and if L is even then

did did
RO, L =22, KLy =22 g,
if L is odd then
R4, L) = didy | 1, h%A4, L)t = d12d2 1,
(3) If dy and d, are even, whatever the parity of L, we have
did dd
A, D)t =-"22 412 KAL) =2"22_2

Moreover, whatever the parity of L, in the first two cases, the base locus of the invari-
ant linear system is A[2]™ (hence A NP(H®(A, L)1)* = A[2]™), and the base locus
of the anti-invariant linear system is A[2]* (hence ANP(H°(A, L)")*=A[2]"). By
definition 0 € A[2]*. When both the coefficients are even, H°(A, L)" is base point
free, the base locus of H°(A, L)™ is A[2] and hence A NP(H®(A, L)T)* = A[2).

Proof. We will use the Atiyah—Bott-Lefschetz fixed point formula. The fixed points
of 1 are precisely the 2-torsion points, hence the formula gives

2

Y YTt HI(A L) =)

Jj=0 acA[2]

Tr(z : Ly = Ly)
det(Id —(d1)q)

Now we remark that (d7) = —1d, hence det(Id —(d1)y) = 4 for all @ € A[2]. Now,
if L is even
4  incase (1),

Y Tr(: Loy —> Le) = {8 incase(2),. (3.1)
a€A[2] 16 in case (3).
If L is odd then these quantities equal —4,—8 and 16, respectively. Then, we

observe that h? (A, L) = 0 for p > 0 by Kodaira vanishing. By the definition of the
eigenspaces, this in turn means that

2
> (=1 Te@*: HY (A, L)) = B%(A, L)Y —1°(4,L)".
j=0

This implies that, if L is an even line bundle representing H, we have
h°(A, L) +h%(A,L)” = dida,

1 incase (1),
(A, L)T —h%(A,L)” = {2 incase (2),

4 in case (3).

(3.2)
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which implies the claim. On the other hand, if L is an odd line bundle representing H,
then

h°(A,L)" + h%(A,L)” = dyd>,

—1 incase (1),
WA, L)T —h%A, L) = { -2 incase (2),

4 in case (3).

(3.3)

hence in the first two cases the dimensions of the eigenspaces are interchanged, and
in the third case they stay the same.

Let us now come to the base locus. The same argument works for the three cases.
The union of the base loci of H%(A, L)+ and H%(A, L)~ is A[2], and by definition
of normalized isomorphism the origin is contained in A[2]". Given an invariant
section s € H(A4, L), and a 2-torsion point z € A[2]™, by definition of eZ, we
have s(z) = (1*(s))(z) = —s(z), and thus s vanishes at z. The same argument
shows that all anti-invariant sections vanish at points of A[2]". The claims about the
intersections of A with the eigenspaces are a straightforward consequence of those
about the base loci. Ld

4. The arithmetic groups for moduli of abelian surfaces with symmetric theta
structure

This section is devoted to the construction of the arithmetic groups that are needed
in order to construct moduli spaces of polarized abelian surfaces, endowed with a
symmetric theta structure plus a symmetric line bundle representing the polarization,
as quotients of the Siegel half-space H,. Theta characteristics are reasonably
manageable group theoretically, since Sp,(Z/27Z) (the reduction modulo 2 of
the modular group Sp,(7Z)) naturally acts on quadratic forms on a 4-dimensional
7,/ 2Z-vector space. For simplicity we state these results only for abelian surfaces
but the same proofs give analogous statements for abelian varieties of any dimension
and polarization type. First, we want to study the action of arithmetic subgroups on
subsets or quotients of A[2]. In order to do this, we need to introduce half-integer
characteristics.

A half-integer characteristic m is an element of (3Z*/Z*). The set A[2]
of 2-torsion points is in bijection (non-canonically) with the set of half-integer
characteristics [30, Section 2]. Moreover, the natural action of Sp4(Z) on H, induces
a transformation formula for theta functions with half-integer characteristics [30,
Section 2]. The zero loci of theta functions with half-integer characteristics are
symmetric theta divisors. These divisors define in turn quadratic forms on A[2]
via the identification (2.2), thus yielding a (non-canonical) bijection between half-
integer characteristics and 1 (A). The action on theta functions induces an action on
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half-integer characteristics, which is given by taking the formula

f(a\ _ (D -C\(a diag(CD")
o (b) - (—B A ) (b) + (diag(AB‘)) ’ (1)
modulo 2, for M € Sp,(Z) and a,b € (122/7?).

4.0.1. The odd case. The goal of this subsection is to show how, when d; and d;
are odd, a level D structure induces uniquely a symmetric theta structure. In the odd
case, the claim of Lemma 2.6 is even simpler.

Lemma 4.1. The exact sequence (2.5) splits.

Proof. The proof of this Lemma follows closely the arguments of Sect. 2.2 of [6]. We
just remark that the centralizer subgroup C,p C Autcx (H (D)) of 12 is the section
from Sp(D) that make the sequence split. |

Moreover, by Remark 2.10, we have 16 such bundles that we identify with theta
characteristics by taking their associated quadratic forms on 2-torsion points. The
exact sequence (2.7) reduces to an isomorphism C,p = Sp(D), so the symmetric
theta structure is completely determined once the line bundle is chosen, and the
action of Sp(D) on the line bundles corresponds to the action (4.1) on the half-
integer characteristics.

4.0.2. The congruence subgroups in the odd case. We will denote by M, (Z) the
space of g x g matrices with entries in Z and by I'g the symplectic group Sp,, (Z).
We will now introduce arithmetic subgroups of I'; that are extensions of subgroups
of Spu(Z/27). Similar groups have been described in [28, Chapter 1]. As it is
customary, we will denote by I'>(d) the level d subgroup, that is the kernel of the
reduction modulo d morphism ry : Spy(Z) — Spy4(Z/dZ). The following result
is probably well known to experts of the field, but we haven’t been able to find a
reference.

Lemma 4.2. Let d be an odd integer. Then we have the following exact sequence
1 5 [2d) 5 Ta(d) 3 sp,(2/22) — 1

Proof. Clearly I';(2d) is a subgroup of I'2(d) and i (I'2(2d )) = Ker(r;). Therefore,
itis enough to prove that r; is surjective. To do this we use the following formula [30,

p. 222]:
D2 =h"" [T []-p7%).

plh,p#11<k=<2
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We have
Dy :Ta(d)| =d" [T - p2)(1—p7),
pld,p#1
D2 D2d)| = )" [[(1=p )1 —p™
pl2d,p#1
=2"%"0 -2 -2 [ -p U -p.
pld,p#1

Therefore Ty : Ty2d)

2:12 10 - —

=27(1-2"9)(1-27") = 720.
T2 : T2(d)] (

Finally, since |Sp,(Z/2Z)| = 720 we conclude that r; is surjective. O

Let D € M4 (Z) be a diagonal g x g matrix. We define the subgroup I'p C M>, (Z)

as:
e frem w(% 2)w=( D)) wa

and the subgroup I'p (D) C I'p as:

FD(D):==(‘é g)el‘p | A—I=B=C=D-7=0 mod(D)}, (4.3)

where M = 0 mod (D) if and only if M € D - M (Z). See [4, Sect. 8.3.1] for
details on this group.

Lemma 4.3. Let D = diag(d,,d>), where dy,d, are odd integers. Then the
reduction modulo 2 morphismry : I'p — GL4(Z/27) is surjective onto Spy(Z/27).
The restriction morphism ry : I'p(D) — Spyu(Z/27) is also surjective, and we have
the following exact sequence

1 - Tp(2D) — T'p(D) > Sp,(Z/2Z) — 1. (4.4)
Proof. Since dy, d> are odd we have
0 D
-D 0

0 I
(_ / 0) mod (2).
Furthermore, if R € ['p the equality
O D\, (0 D
*(% 0)*=(% o)

e (5 o) i = (& o)

yields
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hence r, is well defined. Let d = d1d,;. By Lemma 4.2 the reduction modulo
two I2(d) — Sp4(Z/27Z) is surjective. Now, let us take a symplectic matrix
M € Sp,(Z/27Z), and let N € I'z(d) C Sp4(Z) be a symplectic matrix such that
N = M mod (2). Since N € I';(d) we may write

dxii+1  dxiz dyn dy12
N dxa dxzz + 1 dy21 dya>
lel lez dw11 + 1 dwlz

d221 ngg dw21 dLU22 + 1

Let us consider the group

ro@ ={rem@ 1 &( G, 7)r=(", 7)h

the rational analogue of I'p. Then we have an isomorphism fp : I'p(Q) — Sp,(Q),

defined by
I 0 I 0
o=y pi)&(o p):

Therefore the matrix

didax1; + 1 didax12 d2y11 dyy12

R= oWy = d12d2x21 didaxaz; + 1 d2y21 déyzz

D didszyy didrzi  didawyp + 1 diwiz
di1d;zz d1d3z2s diwn didrwa + 1

isin I'p = I'p(Z) because N is a matrix with integer entries. It is easy to see that
R =N = M mod (2), and the reduction modulo two r, : T'p — Sp,(Z/27) is
surjective.

Now, by Lemma 4.2 the reduction modulo two > (d?) — Sp,(Z/27) is surjective
since d? is an odd integer. We proceed as before. Let M € Sp,(Z/27Z) be a
symplectic matrix, and let N "eTL(d?) cC Sp4(Z) be a symplectic matrix such that
N’ = M mod (2). Since N € T'»(d?) we may write

d?xy; + 1 d?x12 d?yi d?y12
N — d?x2 d?xz + 1 d?ys; d?ya
d2211 d2212 d2w11 + 1 d2w12
d?zy d?zy; d?wy; d?wy; + 1
Therefore
didix;+1  didixi, did3yn didry12
R,=f_l(N,)= d12d22X21 df‘d%)sz + 1 d]d22y21 di?'dzyzz
D d3d2z,  didizi,  d2dZwn +1  didywis

d%d;’zz] d12d3222 d1d23w21 d12d22w22 +1
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isin'p = I'p(Z). In particular, simply by checking the definition, one sees that R'is
actually in I'p (D). Hence we conclude thatr, : I'p(D) — Sp4(Z/27) is surjective.
Now, let us consider the group

FD(ZD)::{(é g)EFD|A—[EBECED—IEO mod (2D); .

Clearly, I'p(2D) is a subgroup of T'p(D). A matrix M = (2 B) € Tp(D) lies in
Ker(r;) if and only if A = D = I mod (2), and B = C = 0 mod (2). Therefore,
since M € I'p(D), we see that M € Ker(r,) if and only if A =D = I mod (2D),
and B = C = Omod (2D), that is M € I'p(2D). We conclude that Ker(r;) =
I'p(2D). Hence we get the exact sequence in the statement. O

4.0.3. The moduli spaces A3 (d1,d2),, and Az(d1,d2)} . Let us consider
the Siegel upper half-space H,. As before, let D = diag(dy.d;) with dy.d>
odd. By [4, Section 8.2] and the Baily—Borel theorem [1], since I'p is an
arithmetic congruence subgroup, the quasi-projective variety Ap = Hg/I'p is
the moduli space of abelian varieties with a polarization of of type D: see also [28,
Proposition 1.21]. Furthermore, by [4, Section 8.3] and [1], the quasi-projective
variety Ap(D) = Hg/I'p(D) is the moduli space of polarized abelian varieties of
type D with level D structure. Since by Lemma 4.1 a level structure is equivalent
to a symmetric theta structure, we are now going to investigate the action of these
arithmetic subgroups on the set #(A) of the 16 theta characteristics (equivalently
the set of symmetric line bundles). Each of them admits a unique symmetric theta
structure.

The set of symmetric theta divisors is in bijection with the set of half-integer
characteristics (see [30, Section 2] or [4, Sections 4.6 and 4.7]) and the action of I',
on Hl, induces an action on characteristics given by the formula (4.1).

Lemma 4.4 ([30, Section 2]). The action of I'; on half-integer characteristics defined
by formula (4.1) has two orbits distinguished by the invariant

e(m) = (—1)*®" e {1},

We say that m = (a,b) € 3Z*/Z* is an even (respectively odd) half-integer
characteristic if e(m) = 1 (respectively e(m) = —1). Since A[2] is a Z/27Z-vector
space of dimension 4, I'; = Sp,(Z) operates on the set of theta characteristics through
reduction modulo 2, hence via Sp,(Z/27Z). Now, recall from Lemma 4.3 the exact
sequence (4.4). Let Oy (Z/2Z) C Sp4(Z/2Z) be the stabilizer of an odd quadratic
form. We have an isomorphism Sp,(Z/27Z) = S¢, where S¢ is the symmetric group,
under which Sp,(Z/27Z) acts on the set of odd quadratic forms by permutations. As
a consequence, for the stabilizer subgroup of an odd theta characteristic we also have
0, (Z/2Z) = S5 C Se.
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Definition 4.5. We denote by I';(d, d>)™ the group
[2(d1,d2)” :=r; (04 (Z/2Z)) C Tp(D)

that fits in the exact sequence
1 - Ip(2D) - Ty(d1, da)~ = 0;(Z/2Z) > 1

Explicitly, we can write
I'2(d1,d2)” =3Z €T'p(D) | Zmod 2) =X, X € 0,(Z/2Z);.

Therefore, we have I'p (2D) C I'2(d1,d2)™ C I'p(D). Furthermore,
ITp(D):Tp(2D)| =6! and |I'2(d;,dz)” : Tp(2D)| = 5!

imply that
|FD(D) . Fz(dl,dz)_l = 0.

Since I'>(dy, d>)™ is an arithmetic congruence subgroup, thanks to the Baily—Borel
theorem [1], we have that the quotient

Az(dy, d2)gyy = Ha/T2(d1, d2)~

is a quasi-projective variety. The variety A(d1,d2)s,,, is the moduli space of
polarized abelian surfaces (A, H) with level (d, d») structure, a symmetric theta
structure and an odd line bundle in Pic? (A). The morphism

[~ Aaldr, d2)gyy —> Ap(D)

that forgets the choice of the odd line bundle is of degree |I'p (D) : I'2(dy,d2)™| = 6.
Let Oj (Z/27Z) C Sp,(Z/27Z) be the stabilizer of an even quadratic form. The
proofs in the even case are very similar to the odd case.

Definition 4.6. We denote by I'»(d;, d>)™ the group
Ta(dr,d2)* :=ry ' (0 (Z/2Z)) C Tp(D)
that fits in the exact sequence
1 > ITp(2D) > Iy(dy, do)T > 0} (2/2Z) - 1

The stabilizer 0:‘ (Z)2Z) C Spu(Z/27Z) of an even quadratic form has order
IOI(Z/ZZ)I = 72 and |Cp(D) : T'2(dy,d>)™| = 10. Using again the Baily-Borel
theorem [1], we get that the quotient

Az(dy,d2)Y . = Hy/Ta(dy, d2)*

sym
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is a quasi-projective variety. By construction, it is the moduli space of polarized
abelian surfaces (A, H) with level (dy, d3) structure and an even theta characteristic.
The morphism

[T Ax(dy, da) i, — Ap(D)

sym
forgetting the even theta characteristic has degree |[I'p(D) : T'2(dy, d2) ™| = 10.

Remark 4.7. A particular case of I'»(dy, d2)™ in the case of (3, 3)-level structure is
the group I'2(3, 6) studied by G. van der Geer in [17]. In that case the moduli space
Az (3, 3);;,n turned out to be a degree 10 cover of the Burkhardt quartic hypersurface

in P*. The moduli space .A5(3, 3) . was proven to be rational in [6].

sym
Remark 4.8. The results in this section hold in greater generality for any g. In
particular, arguing as in the proof of Lemma 4.3, if D = diag(d,,...,dg), where
the d;’s are odd integers, we have the same exact sequence (4.4) with 2g instead of 4.

The other definitions are completely analogous.

4.0.4. The even case. In this section we will quickly investigate, since in the end our
focus is on (1, d) polarizations, the case where d and d, are both even. Contrary
to the odd case, if D = diag(d;....,dg) and d; is even for some i, the reduction
modulo two of a matrix in I'p is not necessarily an element of Sp,,(Z/2Z). The
following elementary example shows one instance of this phenomenon.

Example 4.9. For instance, if ¢ = 2 and d; = 1, d» = 2 the matrix

O NN =
N O = =
N — N —
B e

is in I'p. However, if we denote by N its reduction modulo two we have

. Nt =

o - o O

0 0 0 1
0 0 0 1
0 0 1 0
1 1 1 0

c o o -
o o = O
O O = O

Hence N ¢ Sp,(Z/27Z).

Hence the action on theta-characteristics is not well defined, and we will shortly
find a modular reason for this. In fact we will see that in this case we do not need to
keep track of the symmetric line bundles representing the polarization.

Following Theorem 2.9, we observe that the situation in the even case is somehow
opposite to the odd one. In fact, there exists only one symmetric line bundle
representing the polarization that admits a symmetric theta structure. On the other
hand, if we fix a level structure, there are 16 symmetric theta structures that induce



580 M. Bolognesi and A. Massarenti CMH

that level structure, corresponding to the elements of A[2] N K(L) = A[2] (see
Remark 2.10). The prototypical example of such a moduli space is .45(2, 4), the
moduli space of abelian surfaces with a (2, 2)-polarization with level structure, plus
a symmetric theta structure. It is well known, see for instance [13], that the Satake
compactification of A, (2, 4) is isomorphic to P3. More generally, when d; # d are
even, one can naturally generalize the definition of I';(2, 4) and define an arithmetic
subgroup, which we denote by I'>2(D, 2D), as follows:

I D, 2D = { (‘é ]];) € I'p(D) | diag(B) = diag(C) =0 mod (2D)

(4.5)
Note that this consists of T'z(d;,dz) N T'2(1,2). The fact that the quotient
of H, via this group parametrizes (d;,d>)-polarized abelian surfaces with a
symmetric theta structure is equivalent to the fact that in this case, as explained
in Theorem 2.9, symmetric theta structures correspond to points of A[2], that are
in (non- canonical) bijection with half-integer characteristics. In fact, thanks to the
action on characteristics of equation (4.1), we see that I'2(D,2D) is the stabilizer
inside I'2(d;,d>) of the zero characteristic. On the other hand, in this case the
action of the corresponding level group I'>(d1, d>) on the set of characteristics is
transitive, as it operates through the quotient 'y (dy.d>)/T2(D,2D) = (Z/27Z)*.
Since I'2(D, 2D) is an arithmetic congruence subgroup, thanks to the Baily—Borel
theorem [1], we have that the quotient

Az(dy,dr)sym = Ha/T2(D,2D)

is a quasi-projective variety. By construction it is the moduli space of polarized
abelian surfaces with level (dy, d») structure and a symmetric theta structure. The
following Lemma is straightforward.

Lemma 4.10. The 16 different symmetric theta-structures that induce a given level
structure in the even case are a principal homogeneous space under the action
of (Z/27.)*, embedded in the centralizer subgroup C,p C Autcx(H (D)) via the first
arrow of the exact sequence (2.6).

In fact the exact sequence (2.7) reduces to the sequence
1 - A[2] - C,p — Sp(D) — 1

when both the coefficients d; are even, and we have seen that the 2-torsion points
correspond to the symmetric theta structures compatible with a given level structure.

Remark 4.11. It is straightforward to check that there exists a forgetful map
Az(dl ’ d2)sym = AZ(dl ) d2)v

forgetting the theta structure, which has degree 16 = #(Z/27)*.
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4.0.5. The intermediate case. Let us now come to the intermediate type. By
this we mean polarizations where d; is odd and d, is even. Following as usual
Theorem 2.9, we have four symmetric line bundles inside the equivalence class
of the polarization that admits a symmetric theta structure. Each of them admits
four symmetric theta-structures that induce a given level structure. In fact (see
Remark 2.10) the 4 symmetric line bundles correspond to elements of the quotient

A2]/(K(L) N A[2)) =~ Z/27Z x Z.)27. (4.6)

Lemma 4.12. Among the symmetric line bundles of the set (4.6), there are 3 inducing
an even quadratic form and 1 an even form.

Proof. Inorder to show this it is enough to consider and abelian surface A = E; x E;,
with E; an odd d;-polarized elliptic curve and E, a second elliptic curve with an
even dp-polarization. This is a specialization of the general case, and clearly the
quotient mods out the 2-torsion points of the second elliptic curve and the claim
follows. O

On the other hand (see Remark 2.10) the 4 symmetric theta-structures inducing a
given level structure correspond to the points of (K(L) N A[2]). It is easy to see that
this subgroup is isomorphic once again to Z /27 x 7 /27Z. Our goal is then to construct
moduli spaces for the datum of a symmetric line bundle representing the polarization
plus the choice of a compatible symmetric theta structure. Of course, because of
Lemma 4.12, we will need to consider two different moduli spaces according to the
parity of the theta characteristic.

Note that the rank two subgroup K(L) N A[2] C A[2] induces a decomposition
of A[2] as (K(L) N A[2]) x (A[2]/(K(L) N A[2])). Of course both groups are
isomorphic to (Z/27Z)?, and in the construction of the arithmetic group we will
want to distinguish the action of the group on each one. The action of the group
will basically imitate the odd case on A[2]/(K(L) N A[2]) and the even case
on K(L) N A[2]. The reason is once again the exact sequence of Lemma 2.11. Here
one copy of (Z/27)* C C,p comes from A[2] N K(L) and operates transitively on
the 4 symmetric theta structures. The second copy of (Z/2Z)? lifts up from Sp(D)
and it operates on the four symmetric line bundles (admitting a symmetric theta
structure) preserving the parity. More concretely, we want to construct two subgroups
(distinguished by the parity of the theta characteristics) of I'p (D) with the following
features:

(a) since the four theta characteristics of Lemma4.12 are in bijection with elements
of (Z/27,)?, the action of each subgroup on A, reduced modulo 2, must descend
to the action of OZ:F (Z/27Z) (depending on the parity of the theta characteristic
that we want) on A[2]/(K(L) N A[2]). This implies that the corresponding
moduli spaces parametrize one (even or odd) symmetric line bundle among
the four.
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(b) On the other hand, by imitating the action of the arithmetic group of the
even case, we need both our subgroups to operate as I'y (d>, 2d,) when acting
on K(L) N A[2]. This in turn implies that the quotient by our arithmetic
subgroups will also keep track of the four symmetric theta structures.

There exists only one odd symmetric line bundle representing a polarization of
intermediate type that admits a symmetric theta structure. On the group theoretical
side this is equivalent to the fact that the subgroup O;(Z/2Z) is isomorphic
to Sp,(Z/2Z). Things are a little more complicated in the even case, since in that case
we really want the induced action on A[2]/( K (L)NA[2]) to factor through O (Z/27Z)
which is a proper subgroup of index 3 of Sp,(Z/2Z), as it is explained in the following
remark.

Remark 4.13. Let us outline briefly the relations between O;t (Z/2Z) and
Sp,(Z/27Z). From [34, Proposition 2.9.1] we see that O, (Z/2Z) = Ds is the
dihedral group of order six, and 02+ (Z/27Z) is cyclic of order two. In particular
ISpo(Z/27Z) : O (Z/2Z)| = 1 and |Sp,(Z/27Z) : 02+(Z/2Z)| = 3.

Following (a) and (b) above, we define two arithmetic groups, for odd d; and
even ds:

T2(dy,d2)t == {N € Tp(D) | Napykwnap) € 07 (2,Z/27),

sym
Nikwynapz) € T1(d2.2d)},
Ta(d1,d2)ym == {N € Tp(D) | Nik@)nap) € T'1(d2.2d2)}.

Moreover, since d1|d,, in this case d, must be an even multiple of d;. By the Baily—
Borel theorem [1], and since I'>(d, dz)sj;m are arithmetic congruence subgroups, we
get two quasi-projective varieties

Az (dy, d2)f = Ha/ Ta(d1, d2) s

Aa(dy, d2) gy = Ha/ Ta(di, d2) gy

parametrizing abelian surfaces with a polarization of type (d;, d»), a symmetric theta
structure and an even (respectively odd) theta characteristic.

Remark 4.14. By Proposition 3.1, it is straightforward to see that A,(d1, d2);§m
(respectively Aj(d, d2)s_ym) is a 12 to 1 (respectively 4 to 1) cover of the moduli

space of polarized abelian surfaces with a level structure A5 (d, e,

5. Moduli of (1, d)-polarized surfaces, with symmetric theta structure and a
theta characteristic: the theta-null map

In the rest of the paper we are going to study the birational geometry of some moduli
spaces of abelian surfaces with a level (1, d)-structure, a symmetric theta structure
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and an odd theta characteristic, which will encode the choice of a symmetric line
bundle representing the polarization. The study of abelian surfaces with an even
theta characteristic will be the object of further work [7]. Our main tool will be theta
functions, more precisely theta constants mapping to the projective space. Before
we start a case-by-case analysis, let us make a useful observation that holds for any
polarization type (d;, d2). The following remark is due to an anonymous referee.

Remark 5.1. Two abelian surfaces with the same level structure have different images
inside P4192~1 (in fact they can be identified only when they are endowed with a theta
structure), but their intersections with the projective eigenspaces P(H(A, L)*)*
are two (possibly empty) finite sets determined uniquely by the level structure
because they are exactly the base points of the linear systems P(H%(A, L)T)*. See
Proposition 3.2 for more details.

5.1. The odd case. When d; and d, are odd, the general construction of the
map from the moduli spaces A, (d, dz);i):,m is the following. We start from the datum
(A, H, L, y) of an abelian surface with a (d;, d»)-polarization H, a level structure
and L € Pic? (A) symmetric (in fact the datum of H is redundant and we will omit
it in the following). As we have seen, there exists 16 symmetric line bundles, 10 even
and 6 odd, representing the polarization. On the other hand, thanks to Lemma 4.1
we know that there is only one symmetric theta structure W that induces . Let us
denote it by W. This means that we can take canonical bases for the eigenspaces of
the space of delta functions V(D) with respect to the action of the involution p
defined in Section 2. From Section 3 we recall that the eigenspaces of the projective
space P(V,(D)) of delta functions are respectively IP’S:]‘ 2=1/2 and P1d2-3)/2,

If L is even (respectively odd), the symmetric theta structure gives an identification
of P(H%(A, L)*)* with ]P’Eif’!’dz_l)/2 (respectively, P(@142-3)/2) " Similarly, we
identify P(HO(A, L)™)* with P@142=3/2 (respectively, PY19271/2) if L is even
(respectively, odd).

Let (A,v) € Ax(dy,d>)'® be a polarized abelian surface with level structure.
Then, recalling Proposition 3.2, we have that A N P142-3)/2 = A[2]7 if L is odd,
and it equals A[2]” if L is even. On the other hand 4 N Pf’drl)/z = A[2]*
if L is even, and A[2]” if L is odd. As we have pointed out in Remark 5.1, the
sets A[2]" and A[2]” are uniquely determined by the level structure. Recall that
the origin 0 belongs to A[2]™, and in fact the different choices of L among the
even (respectively, odd) symmetric line bundles make the origin move along the
intersection A N ]P’Sf‘dz_l)/ % (respectively, P@192-3)/2) "which in fact is made up
of 10 (respectively, 6) points. Hence finally we can define two maps

. dda=1
Th(dl,dz) » Ax(d, dg):;m P, ?

(A, L, y) = VT (Og,,4,(0))

(5.1)
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and

dydr—3

Thail,dz) : .Az(dl, dz);,m — P_ 2
(A, L, W) =¥ qj_(@dl ,d> (0))

(5.2)

Here ©, 4, is the map to P(H O(A4, L))* given by the global sections of the polariza-
tion (in fact all anti-invariant sections vanish at zero), and W (respectively, ¥ ™) is the
identification of P(H°(A, L)™)* with Pf'dz_l)/ % (respectively, with P@142-3)/2)
induced by the symmetric theta structure W corresponding to ¥ when L is even
(respectively, odd).

5.2. The even case. As we have said in Section 4, when d; and d, are both even,
the right moduli space to consider is slightly different. In fact, we will consider the
moduli space of abelian surfaces with a polarization H of even type (d;, d>) and a
symmetric theta structure. Therefore, the map is the following:

. sym %'H
Thea, dy) : A2(d1, d2)¥™ — P,

(A, V) > U (BO4,.4,(0)).

(5.3)

where ®4, 4,(0) is the image of the origin through the map induced by the unique
symmetric line bundle L in the equivalence class of the polarization, W is the

symmetric theta structure that induces the identification ¥+ : P(H°(A, L)T)* —

(d1d2)/2+1
]P’Jrl 2 .

Recalling Proposition 3.2, we have that A N Pfl LI+ - A[2]. Moreover
(see Section 4), given a level structure ¥ there exist 16 symmetric theta structures
inducing v/, and (Remark 5.1) the level structure completely defines the set 4 N

IPf‘dZ/ D+ in this case the full set A[2]. The different choices of symmetric theta

structure make the origin move along the 16 points of the intersection A ﬂIP’g‘_i' d2/2)+1

The subgroup (Z/27)* of the centralizer C,» C Autcx(H(D)) of the involution 1P
has a natural representation G* on Pf‘dz/ 21 (see Lemma 2.8) and it operates
transitively on the set of symmetric theta structures inducing i via this projective

representation. This action induces the 16 : 1 forgetful map

Az (dy, d2)™™ — Ay(dy, dr)"".

5.3. The intermediate case. Now we come to what we feel to be the most interesting
case. In the intermediate case (see Section 4), we have two theta-null maps:

+ + _ p ot
. 2

(4, L, W) = ¥F(04,,4,(0))
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and

ld2_3
Th(d[ d>) - A2(dl d2)sym P_2 (55)

(A, W) = ¥ (0g,,4,(0)).

Here W is a symmetric theta structure, W¥ the identification of P(H°(A, L)™)*
with the +1-eigenspace, L an even or odd (in the odd case there is no choice,
since there is only one) line bundle and g4, 4,(0) the image of the origin via the
map induced by L. Recall from Remark 5.1 that the intersection sets of A with
the eigenspaces depend only on the level structure. Thanks to Proposition 3.2, we
have that A N P@192=3)/2 — A[2]* if L is odd, and it equals A[2]~ if L is even.
On the other hand 4 N P¥1%/? — A[2]* if L is even, and A[2]_ if L is odd.
The origin belongs to A[2]", and in fact the different choices of the 4 symmetric
theta structure and of the line bundle make the origin move along the intersection
of A with the eigenspaces. If L is the unique odd line bundle only the action
of Z/27? C C,p operates transitively on AN P@142-3)/2 yia the representation G~

(see Lemma 2.8) and induces the natural 4 to 1 forgetful map of the symmetric
theta structure A, (d, d2)ormn —* A, (dy, d>)'®. On the other hand, if we concentrate

on the even moduli space, then the cardinality of A N IPS‘_i'd"/ 2) equals 12 (see
Proposition 3.1) and this equals in fact #(Z/27Z)? times the 3 choices of even line
bundles. The moduli map that forgets the even theta characteristic and the symmetric
theta function is in fact the 12 to 1 map A»(dy, d2)F,  — Aax(dy,d2)".

sym

6. Moduli of (1,d) polarized surfaces, with symmetric theta structure and a
theta characteristic: birational geometry

In this section we study the birational geometry of some of the moduli spaces of
polarized abelian surfaces introduced in Section 4.

6.1. Polarizations of type (1,n) with n odd. First we need to recall from [26,
Section 6] a few results about the Heisenberg action on the ideal of a (1,2d + 1)-
polarized abelian surface embedded in P(H°(A, L))* = P?¢. In fact, the group
H1,24+1 (see Definition 2.4) acts naturally on H 0p24, Op24(2)) and it decomposes
it into d + 1 mutually isomorphic irreducible representations of H »,4+1. Gross and
Popescu construct a (d + 1) x (2d + 1) matrix

(Ra)ij = xj4ixj—i, 0=i=<d, 0=<j<2d, (6.1)

where the indices are modulo 2d. Each row of (Ry;);; spans an irreducible sub-
representation inside H°(P2?, O(2)), and this way we obtain the decomposition into
(d + 1) irreducible sub-representations.
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Definition 6.1. We shall indicate by D; C P¢~! the locus in P4~ where the
restriction of Ry has rank < 2i.

Since xo = 0 and x; = —x_; on P~!, we can use coordinates xi, ... X BY
substituting these coordinates inside the matrix (6.1), one sees that the j™ and the
(2d + 1 — j)" column coincide on P41, if j # 0. In the same way we see that the
leftmost (d + 1) x (d + 1) block of R, is anti-symmetric. Let us denote by T, the
restriction of this block to P4~!. Hence D; is exactly the locus of P4~! where T} is
rank < 2i. The following result can be found in [26, Lemma 6.3].

Lemma 6.2. For a general H, »4+1-invariant abelian surface A C P24 g > 3, we
have ANP4~1 C D, and ANPE! ¢ D;.

6.1.1. The case n = 7. In order to analyze this case, we need to give a short intro-
duction to varieties of sums of powers (VSP for short). These varieties parametrize
decompositions of a general homogeneous polynomial F' € k[xop, ..., x,] as sums
of powers of linear forms. They have been widely studied from both the biregular
[31,47,48,53] and the birational viewpoint [40,41].

Let v"} ‘P PN®D) with N(n,d) = ("";d) — 1 be the Veronese embedding
induced by Opn (d), and let V] = v’ (IP") be the corresponding Veronese variety.
Let F € k[xo,...,xn]q be a general homogeneous polynomial of degree d .

Definition 6.3. Let F € P4 be a general point of V. Let h be a positive integer
and Hilby, (P"*) the Hilbert scheme of sets of / points in (P"*). We define

VSP(F,h)° := {{Ly,..., Ly} € Hilb,(P™) | F € (LY, ..., L$)} C Hilb,(P™)},

and VSP(F, h) := VSP(F, h)? by taking the closure of VSP(F, h)? in Hilby (P"*).

Suppose that the general polynomial F € PN4) is contained in a (4 — 1)-linear
space h-secant to V7. Then, by [11, Proposition 3.2] the variety VSP(F, h) has
dimension h(n + 1) — N(n,d) — 1. Furthermore, if n = 1, 2 then for F varying in
an open Zariski subset of PY(4) the variety VSP(F, h) is smooth and irreducible.

In order to apply this object to the study of abelian surfaces, we need to construct
similar varieties parametrizing the decomposition of homogeneous polynomials as
sums of powers of linear forms and admitting natural generically finite rational maps
onto VSP(F, h).

Definition 6.4. Let F € PV be a general point. We define

VSPo(F, h)° := {(L1, ..., Ly e @™ | Fe(LY,..., LAY c @™,

and VSP4(F, h) := VSP4(F, h)° by taking the closure of VSP.4(F, h)? in (IP’"*)h.

Note that VSP.4(F,h) is a variety of dimension A(n + 1) — N(n,d) — 1.
Furthermore, two general points of VSP,.4(F, /) define the same point of VSP(F, h)
if and only if they differ by a permutation in the symmetric group Sj. Therefore, we
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have a generically finite rational map ¢ : VSPqq(F, h) --> VSP(F, h) of degree h!
Now we consider the rational action of S,_; on VSP,(F, h) defined as follows:

p: Sp_1 X VSPow(F, h) --> VSP(F, h)
(@,(L1,...,Ly) — (L1, (0(La, ..., Lp)))

Definition 6.5. We define the variety VSP; (F, &) as the quotient
VSPy(F, h) = VSPow(F, h)/Sp—1

under the action of S5 via p.

Note that VSP,(F, h) admits a generically finite rational map
¥ : VSP,(F,h) --> VSP(F, h)

of degree h. By definition of the action p, the 4 points on the fiber of ¥ over a general
point {Ly,..., Ly} € VSP(F, h) can be identified with the linear forms L,..., Ly
themselves. Furthermore we have the following commutative diagram of rational
maps

VSPoq(F, h)

b1

¢ VSP,(F. h)

—
-

+ It

VSP(F, h)

The variety VSP,(F, h) can be explicitly constructed in the following way. Let us
consider the incidence variety

J ={({L1,....Ly}) | l €{Ly...., Ly} € VSP(F,h)°} € P"* x VSP(F, h)°.

Then VSP;,(F, h) is the closure J of 7 in P"* x VSP(F, h).

Remark 6.6. In [47] Mukai proved that if F' € k[xq, x1, X2]4 is a general polynomial
then VSP(F, 6) is a smooth Fano 3-fold V5, of index 1 and genus 12. In this case we
have a generically 6 to | rational map

¥ : VSPs(F, 6) ——> VSP(F, 6).

By [39] and [24, Corollary 5.6], under the same assumptions on F, the moduli
space A, (1,7)"" of (1, 7)-polarized abelian surfaces with canonical level structure is
birational to VSP(F, 6). Other interesting results on this moduli space are contained
in [42] and [45]. Our aim is now to give an interpretation of the covering VSPg(F, 6)
in terms of moduli of (1,7)-polarized abelian surfaces with a symmetric theta
structure and an odd theta characteristic.
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Given an irreducible, reduced, non-degenerate variety X C PV of dimension n,
and a positive integer 1 < N we denote by Secy(X) the h-secant variety of X.
This is the subvariety of PV obtained as the closure of the union of all (A — 1)-
planes (xi,...,x;) spanned by A general points of X. The expected dimension
of Secy(X) is expdim(Secy (X)) = min{hn + h — 1, N}. However, its actual
dimension might be smaller. In this case X is said to be i#-defective, and the number
Sp(X) = nh +h —1—dimSec,(X) > 0 is called the h-secant defect of X. We
recall that a proper variety X over an algebraically closed field is rationally connected
if there is an irreducible rational curve through any two general points x1,x; € X.
Furthermore, rational connectedness is a birational property and indeed, if X is
rationally connected and X --» Y is a dominant rational map, then Y is rationally
connected as well. By [18, Corollary 1.3], if f : X — Y is a surjective morphism,
where Y and the general fiber of ¢ are rationally connected, then X is rationally
connected.

Theorem 6.7. The variety VSPg(F, 6) is rationally connected.

Proof. Let us consider the Veronese variety V2 C P* = Proj(k[xo,x1, x2]4),
and let F € P!'* be a homogeneous polynomial. If F admits a decomposition
as sum of powers of linear forms then its second partial derivatives have such a
decomposition as well. Therefore, the second partial derivatives of F are six points
in P> = Proj(k[xo, X1, x2]2) lying on a hyperplane. Hence the determinant of the
6 x 6 catalecticant matrix

M = (2F 2F 92F 32F 2F 2F
dxpxg  JdxpX1 0xpx>  0Xx1X] 0x1x2 0x2X>

is zero. It is well known that the secant variety Secs(V,?) C P! is the irreducible
hypersurface of degree 6 defined by det(M) = 0, see for instance [37]. Therefore V2
is 5-secant defective and 85(V,?) = 14 — 13 = 1. Let us define the incidence variety

X ={({L1,....Ls},F) | F €(L},...,L%)} C Hilbs(P**) x Secs(V})
y Y
Hﬂbs(ﬂbz*) SeCs(V42) C pt4
The morphism ¢ is surjective and there exists an open subset U < Hilbs(P?*) such

that for any Z € U the fiber ¢ ~!(Z) is isomorphic to P4, so dim(¢~!(Z)) = 4. The
morphism r is dominant and for a general point F € Secs(V,;?) we have

dim(y 1 (F)) = dim(X) — dim(Secs(V})) = 1.

This means that through a general point of Secs(V,?) there is a 1-dimensional family
of 4-planes that are 5-secant to V2. This reflects the fact that the expected dimension
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of Secs(V}?) is expdim(Secs(V2)) = 14 while dim(Secs(V;?)) = 13, that is the
5-secant defect of V2 is §5(V,2) = expdim(Secs(V2)) — dim(Secs(V2)) = 1.

Now, Hilbs(PP?*) is smooth. The fibers of ¢ over U are open Zariski subsets
of P*. So X is smooth and irreducible. Therefore, for F varying in an open Zariski
subset of Secs(V}?) the fiber ¥~ (F) is a smooth and irreducible curve. Now, for a
general F € k[xg, X1, X2]4, let us consider the variety

VSPe(F,6) := {(I,{L1,....Le}) |l € {L1,..., L} € VSP(F,6)°} C P>* x VSP(F, 6)

RN

VSP(F, 6)

Let/ € P?* be a general linear form. Note that the fiber £ ~!(/) consists of the points
{Lq,...,Le¢} € VSP(F,6) suchthat!/ € {Ly,..., Lg}. Therefore, we can identify
f~Y() with the {L,,...,Ls} € Hilbs(P?*) such that F — [* can be decomposed
as a linear combination of L7, ..., L2. Note that, since F € P'* is general, we have
that also F — [* is general in Secs(V,}), and

[ =y N(F =1,

In particular f~!(/) is a smooth irreducible curve and, since dim(VSP¢(F, 6)) = 3,
we conclude that f : VSPg(F, 6) — P2* is dominant. Now, our aim is to study the
fiber of ¥ over a general point G € Secs(V}?). We can write

5
G = ZML?,

i=1

and let C C PP?* be the conic through L;,..., Ls. Its image @ = v(C) C P4
is a rational normal curve of degree eight. Let (2) = H® = IP® be its linear span.
Therefore, we have G € (L1,...,L2) c H® Cc P'*. Now, G is general in H® and
we can interpret it as the class of a general polynomial 7" € K|[zg, z1]g. The 4-planes
passing through G that are 5-secant to €2 are parametrized by VSP(7’, 5). Since any
such 4-plane is in particular 5-secant to V.2, we have VSP(T,5) € v~ 1(G).

Now, by [41, Theorem 3.1] we have VSP(T,5) =~ P!. Since ¥ 1(G) is an
irreducible curve we conclude that 1 ~!(G) is indeed a rational curve.

Finally, since f : VSPg(F, 6) — P?* is dominant and its general fiber f~1(/) =
v~ I(F —[*) = P! is rational, by [18, Corollary 1.3] we have that VSPg(F, 6) is
rationally connected. ]

Theorem 6.8. The moduli space A>(1, 7)5_ym of (1,7)-polarized abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to
the variety VSP¢(F, 6) where F € k[xo,x1,X2]4 is a general quartic polynomial.
In particular A, (1, 7). is rationally connected, and hence its Kodaira dimension
is —o0.

sym
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Proof. By [24, Proposition 5.4 and Corollary 5.6] there exists a birational map
o Ay(1,7)' - VSP(F, 6)

for F' the Klein quartic curve. As already observed in [24], the Klein quartic is general
in the sense of Mukai [47], hence the variety VSP(F, 6) is isomorphic to the VSP
obtained for any other general quartic curve. The map « is constructed as follows.
For a general (1, 7)-polarized abelian surface A with a level structure, embedded in
PHO(A, L) = IP% the set of its odd 2-torsion points is exactly the intersection A NP2
It turns out that the dual lines {L 4, ..., L¢ 4} in P2 are elements of VSP(F, 6), and
this correspondence gives a birational map. By construction, there exists a morphism
[~ Ax(, [ — A3 (1,7)' of degree 6 forgetting the odd theta characteristic.
Moreover, from Section 5, we know that given (A4, ¥) € A, (1,7)'®", the map Th, 7

sends the 6 elements of f~'(4, y) to the six odd 2-torsion points in P2 using
the identification W_ induced by the symmetric theta structure. Therefore there is a
commutative diagram

Az(l, 7w

sym
= <
Ay(1,7) --% - VSP(F, 6)

where = = @ o f~ is a degree six dominant rational map sending a (1, 7)-polarized
abelian surface A with an odd theta characteristic to the set {L; 4,...,L¢ 4}
determined by its odd 2-torsion points.

Now, we have a degree six rational map ¢ : VSPg(F, 6) --> VSP(F, 6) whose
fiber over a general point {L} 4,...,Ls.a} € VSP(F,6) consists of the six linear
forms L; 4 in the decomposition of F given by {L 4...., Le 4} which in turn are
identified with the six odd 2-torsion points of the abelian surface A. Now, consider a
general point (A, ¥, L) of Ay(1,7)z,, over (A, ) € A(1,7)"*. Then there exists
a rational map

sym
B : Ax(1,7),, > VSPs(F, 6)

sending (A, ¥, L) to the linear form in ¢ 1 ({L1 4...., Le 4}) that corresponds to
Thy (A, ¥, L) € P2 . Therefore, we have a commutative diagram

Ao (1, )5 - 2= VSP(F, 6)

f- Vs v

|

|

|

= |
.

As(1,7) --% -, VSP(F, 6)

hence the map B : A, (1, 7)8_ym --» VSPg(F, 6) is birational. Finally, by Theorem 6.7

we have that A, (1, 7);;m is rationally connected. O
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6.1.2. The case n = 9. Let L be a symmetric line bundle on A representing a
polarization of type (1, 9). The linear system |L|* embeds A in P8. This embedding
is invariant under the Schrodinger action of the Heisenberg group, and under the
involution 1. More precisely, the space of quadrics on P® is 45 dimensional and it
decomposes into five isomorphic irreducible representations of # ;;. In particular,
the ideal of quadrics H°(P®,Z4(2)) is a representation of weight 2 (the center C*
acts via its character #2) of the Heisenberg group. More precisely, A is embedded as
a projectively normal surface of degree 18 which is in fact contained in 9 quadrics.
However, these 9 quadrics do not generate the homogeneous ideal of A. The 5
irreducible representations are highlighted in the 5 x 9 matrix R4

2 2 2 2 2 2 2 2 2
X0 X1 X5 X3 X3 X35 X6 X5 Xg

X1Xg XpX2 X1X3 X2X4 X3X5 XgXe Xs5X7 XgXg XpX7
X2X7 X3Xg8 XpX4 X1X5 Xa2Xg X3X7 X4Xg XoX5 X1Xg
X3Xeg X4X7 Xs5Xg XoXe X1X7 X2Xg XoX3 X1X4 X2Xs5
Xg4X5 X5Xg XegX7 X7X8 XpXg8 XpX1 X1X2 X2X3 X3X3

R4

We refrain from giving the details on the representation theoretical aspects of this
object, which are developed thoroughly in [27, Section 3]. We just need to know two
facts.

Proposition 6.9. Each 9-dimensional Heisenberg representation in the space of
quadrics is spanned by the quadrics obtained as v - R4 (v is a row vector) for some
v el

Furthermore, If p € P® and v € P4 then v - R4(p) = 0 if and only if p is
contained in the scheme cut out by the quadrics in the representation determined
by v.

The anti-invariant eigenspace P? is defined by the equations
{xo=x; +x9-; =0, Vi = 1,...8},

hence we can take x, ..., x4 as coordinates. A direct computation shows that, when
we restrict R4 to P2, we get the following anti-symmetric matrix

0 e %5 %5 %7
—x2 0  X1X3 XaX4 —X3Xa
Ryp3 = —x% —X1X3 0 —X1X4 —X2X3
—X3 —X2X4 X1X4 0 —X1X2

—X2  X3X4 XaX3 XXz 0

Theorem 6.10. The moduli space A>(1,9) . of (1,9)-polarized abelian surfaces

sym
with canonical level structure and an odd theta characteristic is rational.
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Proof. Let us consider the theta-null morphism

Thy ) : A2(1,9)5, — P2
(A.L.¢) — ¥ (01,9(0))

It is clear that det(R4p3 ) is identically zero. By Lemma 6.2 and what we have
observed in Section 5.1, we see that the closure of D, is the full P3 space and Th(_w)
is dominant, that is the general point of P is an odd 2—torsion point of a (1, 9)-
abelian surface with level structure embedded in P®. Following [27, Section 3] we
consider the Steinerian map (this is the classical name for a map mapping a linear
system of matrices to their kernels)

. . o3 4
Steiny g : P2 ——> P

p > Ker(Ryp3 (p)).

Let us recall from [26, Section 6] that for v € P*, v- R4 = 0 if and only if
v - Ryps = 0. Hence, by Proposition 6.9 we see that the image of p € P3 s
the v € P4 that determines the unique Ho-sub-representation of H°(P®, Ops(2))
of quadrics containing p. The map Stein, o is given by the 4 x 4 pfaffians of the
matrix Ry p3 . In coordinates we have Stein( 9)(x1,...,Xs) = (Yo, ..., ys4) where

2 2 2
Yo = —X1X2X3 + X5X3X4 + X1X3X],

2 3 3
Y1 = X1X3 — X2X3 + X1Xg,

3 3 3
Y2 = —X7X2 + X3X4 + X2Xg,

2 2 2
Y3 = X7X2X3 — X5X3X4 — X1X3X,,

3 3 2

Therefore the image of Stein; o is contained in the hyperplane
T ={yo+ys =0} =P

and the rational map Stein; g : P2 --» II is dominant of degree 6. Now, by [27,
Theorem 3.3] the map Stein; o induces an isomorphism 4>(1, 9)!*v ~ I1, defined
by mapping an abelian surface A C P® to the point corresponding to the unique
Ho-sub-representation of H°(P®, Ops(2)) of quadrics containing A. Let p € TT be
a general point, and (A, ¥) the corresponding abelian surface with level structure.
By Section 5.1, the six points of the fiber Steinl_})( p) correspond to the images via

the theta-null map Thy g : Ax(1, 9)5,, — P2 of the six possible choices of an odd
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theta characteristic for (A, ¥). Hence we have a commutative diagram

— Th9 3
A2 (1,9 ——— P3

sym

-

[ —
g

Aa(1,9) -~ -5 1y

where f~ is the 6 to 1 forgetful map. Therefore Thy; o) is generically injective, and
thus a birational map. O

6.1.3. The case n = 11. Let A be a general abelian surface with a symmetric
line bundle L representing a polarization of type (1, 11) and with canonical level
structure ¥ (by Lemma 4.1, equivalently, a symmetric theta structure W). The linear
system |L|* embeds A in P! as a projectively normal surface of degree 22 and
sectional genus 12. This embedding is invariant under the action of the Schrodinger
representation of the Heisenberg group. The ideal of quadrics H%(P'?,Z4(2)) is
also a representation of weight 2 of the Heisenberg group. This in turn implies that
H°(P'° 74(2)) decomposes into irreducible components of dimension 11. More
precisely H(P'%, Op10(2)) has dimension 66 and decomposes into 6 irreducible
11-dimensional representation, isomorphic to the Schrodinger representation. As we
did in the d = 9 case, let us then consider the 6 x 11 matrix

i B & b #F & # # # B &
X1X10 XoX2 X1X3  XaXgq4  X3X5 XgXe X5X7 XeXg  X7X9 XgXip XoX9
X2X9  X3X10 XoX4 X1X5 XaXg X3X7  XgXg XNs5X9 XeX1p9 XoX7 X1Xg
X3Xg  XqXg9 X5X10 XoXe¢ X1X7 X2Xg X3X9 Xg4X10 XoX5 XiXg X2X7
X4X7  X5Xg8§ XeXg X7X10 XoXg8 X1X9 X2X10 XoX3 X1X4 X2X5 X3Xg
Xs5Xe XeX7 X7Xg  XgXg XgXjg9 XpX10 XoX1 X1X2 X2X3 @ X3Xg4 X4Xs5

=
"
I

Analogously to Proposition 6.9, we have the following.

Proposition 6.11. Any Hy; irreducible sub-representation of H°(P'°, Op10(2)) is
obtained by taking a linear combination of the rows with a vector of coefficients
V€ IPi_, and taking the span of the resulting 11 quadratic polynomials.

Moreover, if p € P'° and v € P2, then v- Rs(p) = O ifand only if p is contained
in the scheme cut out by the Hy,-sub-representation of quadrics determined by v.
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The anti-invariant subspace P* is defined as usual by
{xo = X%+ ¥ =D, VI = 1,,10}

and the restriction of Rs to P4 is the alternating matrix

( 0 %t = -y X3 x5 )

—X% 0 X1X3 X2X4 X3X5 —X3X5

Rsjps = —x% —X1X3 0 X1X5 —X2X5 —X3X4
- —X3 —X2X4 —X1Xs5 0 —X1X4 —X2X3
—xﬁ —X3X5 X2X5 X1Xa 0 —X1X2

—x% X4X5 X3X4 X2X13 X1X2 0 )

Proposition 6.12. The moduli space Aj(1, 1Dgm of (1,11)-polarized abelian
surfaces with canonical level structure and an odd theta characteristic is birational
to the sextic hypersurface X C P* given by det(Rsps ) = 0.

Proof. As in the d = 9 case, there exists a rational map
Steiny; : X --> G(2,6)

mapping a point p € P3 to the pencil of H,-sub-representations of quadrics
containing p, that is to the kernel of the matrix Rsps evaluated in p. Recall from
Remark 5.1 that, for an abelian surface with a level structure (A, V), the intersection
set with each of the two eigenspaces is well defined. By Theorem 3.2, a general such
surface intersects P4 along the 6 odd 2-torsion points. By [26, Lemma 6.4], the six
odd 2-torsion points are mapped to the same point of G(2, 6) via Steiny; (actually
they are the full fiber). Now, by Section 5.1 we know that these six points are the
images, via the theta-null map

Thy qq : A2(1, 1), — P2,

sym
of the six choices (A, ¥, L) of an odd theta characteristic on A. This means that
the hypersurface X = {det(Rsps) = 0}, that coincides with D», is the image
of Th; 14). By [27, Theorem 2.2], Ax(1, 11 lev s birational to the image

sym
Im(Stein(lall)) c G(2, 6)

Recalling now that /'~ : Ay(1, LYo = Az (1, 11) is the forgetful map of the
odd theta characteristic, we have now the following commutative diagram

— Thy, 4
A2(1’ ll)sym XcCP:

1
[~ ! Steing,11)

~

Ay(1, 11y - 22 . Im C G(2, 6)

Therefore, Thy; is birational. O]
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6.1.4. The case n=13. By [26, Theorem 6.5], the map
@13 . .Az(l, 13)lev -—> G(3,7)

mapping an abelian surface A to the sub-representation of H%(A, D 4(2)) given
by H°(A,Z4(2)), is birational onto its image. As usual, we have the following
commutative diagram

Th;
Ay (1,13)5, —2 . p5
f- 56:1
O13 >
Az(1,13)lev - == » Im € G(3,7)

and Thy, is birational onto its image in P>. In this case Rgps is a 7 x 7 anti-

symmetric matrix. In this case, D, C P° is the variety defined by the vanishing of
the 6 x 6 pfaffians of Rgps . Clearly, Im(Thy;) € D;. Furthermore, a computation
in Macaulay2 [38] shows that D, is an irreducible 3-fold of degree 21, scheme-
theoretically defined by the following three pfaffians

3.2 4 3

2.3 2 4
f1 = — X]X3X4 + X1X5X5 — X{XaX5 + X1X2X3X5X5 — X5

2

X3X5 + X1X3X5
3 2.2 4 3 2 2

— X2X3X4Xe + X]7X3X5X6 + X3X5X6 — X1X3X5X6 — X]X3X5X6

S 3.2 - . 2. .2
— X3X4X5X6 + X]X3Xg + X1X53X4Xg + X2X3X4Xg,

f2 = — )C1X2xg =+ x§x3x4 + )ﬁx%xi — xfx2x3x5 — X§X§X4XS — X2X2X5
+ )C::;)C4x‘52 =+ xfx2x3x4x6 + xfx4x5x6 -+ xlxixg‘xﬁ — xlx%xsx‘g‘
— X2X2X5XE + X1X3X2X5 — XTX3Xg — X3 X4X3,

fr=— xfxzxg + x1x§x4 = xfxzxs + x12x2x4x§ 2 x1x§x4x§ = xzxﬁxg’

2.2 2 w2 2.2 3.2 4
— X]X3X4X6 — X3X3X3X6 + X3X4X5X6 — X3X5X6 + X1X5X6

2 3 2 3 3
— X1X2X3X5Xg + X3X5Xg + X2X3X4Xg + X1X4X5Xg.

Hence Im(Thy;) = D, and A3(1,13),, is birational to D5.

sym
6.2. Polarizations of type (1, n) with n even. Let A be a (1, 2d)-polarized abelian
surface with a level structure. As it was pointed outin Remark 5.1, the two intersection
sets of A with the eigenspaces are well defined. Let H; >4 be the finite Heisenberg
group defined in Definition 2.4, o and t the two generators such that o (x;) = x;_1,
t(x;) = £ x; with § = e™i/d  on the homogeneous coordinates xg, ..., X271
on P(H(A, L))*.

Both 64 and t¢ act on the —1-eigenspace P_, and this defines a Z/27Z x Z /27
action on P_. If A c P??7! is a Heisenberg invariant abelian surface, by
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Propositions 3.1 and 3.2 we have A[2]” = A N P_ and this set is a Z/27Z x Z/2Z
orbit on P_. Let us now define the d x d matrix

(Mga)i,j i=XitjYi—j + Xitjt+dYi-j+d» 0=1i,j <d—1,

where the indices are modulo 2d. We will need to keep in mind the following [26,
Theorem 6.2].

Theorem 6.13. Let A C P29~ g general Heisenberg invariant, (1,2d)-polarized
abelian surface, and y € A NIP_. Then, the 4 x 4 pfaffians of the anti-symmetric
minors of the matrices

Ms(x,y); Ms(x,0°(y)); Ms(x,7°(y); ifd =5;

) Ma(x. y): Ma(x.0% (5)); ifd > 7, d odd; o
Me(x,y); Mg(o(x), y): Mg(z(x),y); ifd =6, '
Mg(x,y); Mg(o(x), y); ifd > 8, d even;

generate the homogeneous ideal of A.

6.2.1. The case n = 8. Let A be a (1, 8)-polarized abelian surface. We are now in
what so far we have called the intermediate case. The line bundle L corresponding
to the polarization induces an embedding A — P7 =~ P(H°(A, L)*) of degree 16.
Let us fix homogeneous coordinates xg, ..., X7 on P7, and consider the usual action
of the Heisenberg group #; g, where the two generators operate as o(x;) = x;_1,
t(x;) = £ 1x; with £ = e™i/4,

The standard involution (x;) + (x—;) on Zg induces on A the involution z. The
eigenspaces P2 and IP4. are, respectively, defined in P(H%(A4, L)*) by

{Xo =x4 =x1+x7 =x2+ x6 = x3 + x5 = 0}
and

{xl—X7:x2—x6:x3—x5=0}.

Let us now consider the subgroup H := (0% 1% =~ (Z/22)*> C Ha.s).
As we have observed, H acts on P2 and if A is an abelian surface embedded
in P(H°(A, L)*), then the four 2-torsion points of A N P2 consist of an H’-orbit
on P2. Furthermore, as it is remarked in [24, Section 6], if Y1, Y2, y3 are
homogeneous coordinates on P2 we can embed P2 /' in 3 by the map

P2 /H — P?

(6.3)
1 :y2:y3] — Ry1ys : —y2 : y2 + y2:—y2].
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Therefore, the image of P2 /H[ in P? is the plane {w; — w3z = 0}, where wo, wy,
w,, w3 are the homogeneous coordinates of P3. The quotient morphism P2 —
P2/ H' =~ P2 is finite of degree four. We keep denoting by yy, y2, y3 and wy, wy,
w, the homogeneous coordinates on P2 and P2 / H respectively.

Let us now recall briefly a few results from [24, Section 6]. Let A>(1, 8)'® be
as usual the moduli space of (1, 8)-polarized abelian surfaces with canonical level
structure. There exists a dominant map

Og : Ax(1,8) — P2 /H =~ P2

associating to a (1, 8)-polarized abelian surface with canonical level structure the
set of its odd 2-torsion points. For a general point y € P2, let V3, C P’ denote
the subscheme defined by the quadrics of P’ invariant under the action of H' and
vanishing on the Heisenberg orbit of y. For a general y € P2, Vg ,, is a Calabi-Yau
complete intersection of type (2, 2, 2, 2) with exactly 64 nodes. The fibre of ©g over a
general point y € P2/ H corresponds to a pencil of abelian surfaces contained in the
singular Calabi—Yau complete intersection V3 5. Furthermore, by [24, Theorem 6.8]
A>(1,8)' is birational to a conic bundle over P2 /#H = P? with discriminant locus
contained in the curve

A= {Zw? — U)SUJ2 — wgwg}.
Proposition 6.14. The discriminant of the conic bundle
Og : Ax(1,8)® — P2 /H = P2
is the whole curve A.

Proof. Recall that the fibre of ®g over a point y € P2/ H corresponds to a pencil
of abelian surfaces contained in the singular Calabi—Yau complete intersection Vg .
By [52, Section 1.2], the equation defining the complete intersection Vg , in P7 are
the following:

f = yy3(xd + x3) — y3(x1x7 + x3%5) + (v} + ¥3) X2,

o(f) = y1ya(xi + x3) — y3(x2x0 + xax6) + (¥} + ¥3)x3x7,

o(f) = y1y3(x3 + x5) — y3(x3x1 + x5x7) + (¥ + ¥3)x4x0,

o> (f) = y1y3(x3 + x7) — y3(xax2 + X6x0) + (¥] + ¥3)Xsx1.
Consider the point [y; : y2 : y3] = [0 : 0 : 1], which is mapped to the point
[0:0:1] € P2/H . We see that for y = [0 : 0 : 1] the variety Vs,y is given
by {x2x6 = x3x7 = Xox4 = x1x5 = 0}. Hence V3, is the union of 16 linear

subspaces of dimension three in P7. In particular, V3 ,, does not contain a pencil of
abelian surfaces and the conic bundle structure of ®g : A, (1, 8)"® — P2 /H =~ P?
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degenerates on [0 : 0 : 1] € A. Therefore the discriminant locus of this conic bundle
is non-empty, hence it is a curve. By [24, Theorem 6.8] we know that the discriminant
locus is contained in the curve A. Now, it is enough to observe that A is smooth, in
particular irreducible, to conclude that the discriminant locus is exactly A. U

In particular, since deg(A) = 4, asitis remarked in [24, Theorem 6.8], the moduli
space A5 (1, 8)'¢" is rational thanks to the classification of conic bundles from [3].

Theorem 6.15. The moduli space Ax(1,8),, of (1,8)-polarized abelian surfaces
with a symmetric theta structure and an odd theta characteristic is birational to a
conic bundle over P? whose discriminant locus is a smooth curve of degree eight. In
particular A(1, 8)ym 18 unirational but not rational.
Proof. In Section 5.3 we defined the morphism

Thy; g : A2(1, 8), —> P2.

We claim that it fits in the following commutative diagram

Th
Az(1,8) 5 ——— P2 = P2

| |

] ’
Ax(1,8)® — P2 /H' ~ P2

This is due to the fact (see Section 5.3, Proposition 3.1 and Proposition 3.2) that,
given an abelian surface with level structure (A, /), the 4 choices of symmetric theta
structure that induce ¥, plus the odd theta characteristic (which is unique) are mapped
exactly to the 4 points of intersection of A with P2, Therefore, the finite morphism f~
maps fibers of Thg to fibers of @g, and Thyg : A>(1, 8)y,, — P2 = P? is a conic
bundle. By Proposition 6.14 the discriminant of this conic bundle is the inverse
image of the curve A = {2w# — w3w, — wow3} via the projection P2 — P2 /H'.

By substituting the equations (6.3), we get that the discriminant is the curve

A ={2y8 —14y]y; — 14yiy3 —2y{y3s — 2y1y3 = O}.

Note that A’ is a smooth plane curve of degree eight. Since deg(A") > 6, by [3,
Theorem 4.9], the variety A5(1, 8) sym 1S nOt rational. On the other hand, deg(A") < 8,
and by [44, Corollary 1.2] A»(1, 8)sym 18 unirational. l
6.2.2. The case n = 10. An argument analogous to the one used in the proof of
Theorem 6.15 works in the case n = 10 as well. Here the negative eigenspace is of
dimension three. Following [26, Theorem 6.2], we have:
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Theorem 6.16. Let d be an even positive integer. The morphism
Q4 : Ax(1,d) = PE2/7, x Z,

mapping an abelian surface to the orbit of its odd 2-torsion points is birational onto
its image for d > 10.

Thus in particular this is true for
@10 : Az(l, IO)IeV — ]PE/ZZ X Zg

The upshot is that A(1, 10)'" is rational. In fact, the restriction of the matrix Ms
from equation (6.2) is a 5 x 5 anti-symmetric matrix with linear entries on P2 , hence
its determinant is never maximal. Therefore, the sets of odd 2-torsion points 4 NP3
cover the whole P2, when A moves inside A, (1, 10)'®. We have the now familiar
commutative diagram

.
Ay(1,10)7, — 19 p3

sym

a |

®
Ax(1,10) —% P3 /7, x Z,

with 4 to 1 vertical arrows. Hence, Thy, is birational, and A, (1, 10), . is rational.

sym
6.2.3. The case n = 12. In this section we consider the moduli space A5 (1, 12) s
of (1, 12)-polarized abelian surfaces with a symmetric theta structure and an odd
theta characteristic. By [25, Section 2] if A C P! is an H,-invariant abelian
surface of type (1, 12), and y € A, then the matrix Mg(x, y) from equation (6.2) has
rank at most two on A. In particular, the matrix Mg(x, x) has rank at most two for
any x € A NP*. Now, P* is defined by

P* = {x0 = X6 = X5+x7 = X4+xg = X3+X9 = X2+Xx10 = X1+x11 =0} C P

Therefore the upper left 4 x 4 block of Mg(x, x) is

0 —x? — x2 —x3 —x3 —2x2
x? + x2 0 —XyXg — XXy —2KpXa
x% -+ xﬁ X1X3 + XaXs 0 —2X1Xs5
2x‘37' 2x7X4 2X1X5 0

and its pfaffian is

3 3 3 3 3 3
P = 2(x1X3 + X3X5 — X3X4 — X2X3 + X1 X5 + X1X35).



600 M. Bolognesi and A. Massarenti CMH

We denote by X the quartic 3-fold
X; = {x1x3 + x3x5 — X3x4 — X2%3 + x}x5 + x1x5 = 0} C P4,
By Theorem 6.16, there exists a birational map
@12 : Ax(1,12)' —> X2 /7 x 7

mapping A to the (Z, x Z,)-orbit of A N P*. In this case the action of (Z, x Z5)
on P is given by

o8 (x1, X2, X3, X4, X5) = (X5, X4, X3, X2, X1),

78(x1, X2, X3, X4, X5) = (X1, —X2, X3, —X4, X5).

By [25, Theorem 2.2] the quotient X 2 /7y X Zj is birational to the complete
intersection G(1,3) N Q C P>, »where G(1,3) = {yoys — y1V4 + y2y3 = 0}
is the Grassmannian of lines in P3; and Q is the quadric given by

0 = {yoy2 — ¥3 — 2y2ys = O}.

Therefore A5 (1, 12)' is rational. In the following subsection, we will show that the
quartic X z’ is unirational, not rational, and birational to A, (1, 12)5—ym.

A unirational smooth quartic 3-fold. Let X C P be a smooth quartic hypersurface.
By adjunction we have that wy =~ @y (—1), hence X is Fano. The rational chain
connectedness and, in characteristiczero, the rational connectedness of Fano varieties
has been proven in [8] and [36].

Clearly a unirational variety:isrationally connected. However, establishing if
the classes of unirational and rationally connected varieties are actually distinct is a
long-standing open problem in birational geometry.

We are interested in the quartic 3-fold X C P*. We may write its equation as

Xg — {xox; + x§x4 —x?xy, —x1x33, + XSX4 + xﬂxi’ — O}

by shifting the indices of the homogeneous coordinates on P4 .

By [32] for any smooth quartic 3-fold X C P? we have Bir(X) = Aut(X).
In particular, X is not rational. Furthermore, this result was extended to nodal
QQ-factorial quartic 3-folds in [10] and [43]. This gave new counterexamples to the
famous Liiroth problem in dimension three. On the other hand, Segre [58] gave a
criterion for the unirationality of a smooth quartic 3-fold and produced an example
as well. In the rest of this section we will apply Segre’s criterion to the quartic X7
and prove the unirationality of A5 (1, 12) This criterion consists of the following
steps:

sym*

— first, we consider the open subset Xy € X of points x € X such that there are
at most finitely many triple tangent of X through x,
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— we consider the projectivized tangent bundle P(TXy) — Xp, and the
subscheme Yy C P(7TXp) parametrizing triple tangents to Xo. Then we
define a rational map

f‘CYb --> X

mapping a triple tangent to its fourth point of intersection with X .

— we construct a rational 3-fold Zo C Y such that f|z, is finite.

Proposition 6.17. The quartic 3-fold X} is unirational but not rational.

Proof. We will denote X; simply by X. It is easy to check that X is smooth.
Therefore X is not rational [32]. Our strategy, in order to prove the unirationality
of X, consists in applying the unirationality criterion of [58, Section4]. A line L C P*
will be called a triple tangent to X at a point x € X if either x € L C X or the
intersection L N X is of the form 3x + y.

Let us consider the point x = [10:2:1: 1 : 0]. We have that

T, X = {xo — 13x; + 30x, — 14x3 + 1001x4 = O}.

Using [38] it is straightforward to check that the intersection S(x) = X N T, X
is an irreducible and reduced degree four surface, the point x has multiplicity two
on S(x), and the quadratic tangent cone to S(x) at x is irreducible and reduced as
well. Note that the triple tangents to X at x are the generators of the quadratic tangent
cone to S(x) at x. Now, assume that infinitely many triple tangents lie in X. Then
the tangent cone lie in S(x) which is irreducible and reduced. Therefore we get a
contradiction and only finitely many triple tangents can lie in X .

It is well known that the subset Xy € X of points with this property is a dense open
subset of X. Now, let us consider the projectivized tangent bundle P(7X¢) — Xo.
Let Yo C P(TXp) be the subscheme parametrizing triple tangents to Xo, and let
m : Yo — Xo be the projection. Note that if x € X the fiber 7~ (x) is isomorphic
to the base of the quadratic tangent cone to S(x), that is #—!(x) =~ P!. Now, only
finitely many points on the fiber 7 ! (x) correspond to triple tangents contained in X .
Therefore we can define a rational map f : ¥ --> X mapping a triple tangent to its
fourth point of intersection with X. Now, following [58] we would like to construct
a rational 3-fold Zy C Y such that f|z, is finite. Here comes the core part of the
construction.

Let us consider the hyperplane Hy = {x4 = 0}. Note that H4 = T, X where
g =1[1:0:0:0:0]. The intersection H4 N X is the surface

S ={G =x0x§’—x§x_o,—x1x§ =0} C H; =~ P>.

The partial derivatives of G are

G 5 9G

=X

G G
= —3x¥x3 —x3, — =3x0x3, —
BX2 BX3

_ .3 2
= —X] — 3X1X3

29

5;; 8x1
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and the Hessian matrix of G is

0 0 3x2 0

0 —6x1X3 0  —3x%-3x3
3x5 0 6x0X2 0

0 -3x7-3x3 0 —6x1X3

We see that dim(Sing(S)) = 0, so S is irreducible. Furthermore, on the point
[1£020: O] all the first partial derivatives and the Hessian matrix vanish. On the

other hand <= 3 G 5(1,0,0,0) # 0, then [1 : 0 : 0 : 0] is a singular point of multiplicity

exactly three for S. In particular, since deg(S) = 4 projecting from [1 : 0 : 0 : 0] we
see that S is rational. Finally x =[10:2:1:1:0] € S,and § N X # 0.

Now, we define Zy := 7~ (S). The general fiber of 7|z, : Zo — S is a smooth
rational curve. In order to prove that Zj is rational it is enough to show that 7|z,
admits a rational section. Let x € S be a smooth point. Then T, S intersects the
quadratic tangent cone to S(x) in the two generators. In turn the two generators give
two points on the fiber of Zy over x. We denote by D C Z the closure of the locus
of these pairs of points. Note that D is a double section of 7|z, : Zg — S. Now,
the surface of triple tangents of S is given by the following two equations

2G(x)
Z Bx, (x) 0 Z=: ;% XX =

for x varying in S. Therefore, the discriminant of the equation defining the two triple
tangents at a general point x € § is the determinant of the Hessian H(G) up to a
quadratic multiple. We have

det(H(G)) = (9x3(x7 — x3))%.

Therefore, the surface of triple tangents of S splits in two components D = DyU D1,
and each component gives a rational section of 7z, : Zo — S. We conclude that Z
is rational. Now, we consider the restriction

ﬁDO . D() --> S.
Note that Dy is the surface given by

Z Bgix) Za, (x)x; = 0.

for x varying in S, where the «; are determined by the splitting D = Dy U D;. For
instance, if x = [10: 2 : 1 : 1] the triple tangent L corresponding to the point of D
over x is given by

= {2)(1 — SX2 + x3 = 2)(7() = SX2 — ISX3 = 0}
and L intersects S in x with multiplicity three and in the fourth point [65 : 1 : 2 : 8].
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Now, a standard computation shows that for a general point y € S there exist a point
x € S and a triple tangent L, to S at x such that y € L. In other words the rational
map fip, : Do --> S is dominant.

Let us come back to the rational map fiz, : Zo --> X. Let us assume that f|z, is
not dominant. Since Dy C Zg and Dy is dominant on S we have that f|z,(Z) is an
irreducible surface containing S. Therefore, fz,(Zo) = S. Now, let x € § be any
smooth point. Then S(x) # S, and the general generator of the quadratic tangent
cone to S(x) in x does not lie on the hyperplane H4 cutting S on X. In particular,
the fourth point of intersection of such a general generator with X does not lie in §.
This is a contradiction. We conclude that f|z, : Zo --> X is dominant. Hence f|z,
is finite, and since Z is rational the 3-fold X is unirational. O

Theorem 6.18. The moduli space Ax(1,12),, of (1, 12)-polarized abelian surfaces
with canonical level structure, a symmetric theta structure and an odd theta
characteristic is unirational but not rational.

Proof. Let X be the quartic 3-fold defined by
{xlxg‘ - x§x5 —x§x4 — xzx;:’ - xfxs - xlxé3 =0} C P*.

An argument analogous to the one used in the proof of Theorem 6.15 shows that the
diagram

Thiy 12)

A2(1, 12) 5, X;

a |

®
Ao (1,12) =225 X3 /7, x Z,

commutes. Since, by Theorem 6.16, the map ©, is birational, the map Thy, ,,,
is birational as well. Finally, by Proposition 6.17 we have that A, (1, 12) ) 18
unirational but not rational. O

6.2.4. The cases n = 14 and n = 16. By Theorem 6.16 the map
Or4: Ay(1,14) - P> /7, x Z»

mapping an abelian surface A to the orbit of A N P is birational onto its image.
Let X14 be the inverse image of Im(®4) via the projection P> — P> /7, x Zj.
Now, the first 4 x 4 minor of the matrix M7(x, x), from equation (6.2), restricted
to P> gives the following pfaffian

3 3 2 3 2 2
f =X1X3 — X X4 — X1X3X, == X1X5 — X5X3X5 — X2X4X5

3 ; 2 2
— X3X5 + X1X2X6 + X3X4X6 + Xi)(fﬁ + X1X5Xg + xeg.
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On the other hand, the first 4 x 4 minor of the matrix M7 (o (x), x) restricted to P>
yields the pfaffian

2 2 2 2 2 2
g = X1X3X; — X5X3X5 — X2X4X5 + X]X2Xe + X3X4X6 + X1X5Xg.

Clearly, by Theorem 6.13, X14 € X;, = {f = g = 0} C P>. Furthermore, a
standard computation in [38] shows that X 2’ 4 is an irreducible 3-fold of degree 16
which is singular along a curve of degree 24. Finally, we get that the map

Thi, : A2(1. 14), — X3,

is birational. The case n = 16 is quite similar. By [25, Lemma 4.1] the variety

X 20 C P defined by the 4 x 4 pfaffians of Mg(x, x) is an irreducible 3-fold of
degree 40. By Theorem 6.16 the map

O16 : A2(1,16)1 -—> P® /7, x Z,

is birational onto its image. If = : P® — P® /Z, x Z; then X3, = ' (Im(®6)).
As usual, we get that the map

Thig : Ax(1,16), . — X3,

sym

is birational. Furthermore, we have the following.

Proposition 6.19. The moduli space A>(1,16)_,  is of general type.

sym

Proof. By [25, Remark 4.2] the 3-fold X}, is of general type. [
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