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Ping Pong on CAT(O) cube complexes

Aditi Kar and Michah Sageev

Abstract. Let G be a group acting properly and essentially on an irreducible, non-Euclidean
finite dimensional CAT(O) cube complex X without a global fixed point at infinity. We show
that for any finite collection of simultaneously inessential subgroups {Hi,..., } in G, there
exists an element g of infinite order such that Vz, (//,, g) H, *{g). We apply this to show that

any group, acting faithfully and geometrically on a non-Euclidean possibly reducible CAT(O)
cube complex, has property Pnme i.e. given any finite list {g\ ,gk} of elements from G,
there exists g of infinite order such that V;, (gt, g) ^ {g,) * (g). This applies in particular to
the Burger-Mozes simple groups that arise as lattices in products of trees. The arguments utilize
the action of the group on the boundary of strongly separated ultrafilters and moreover, allow
us to summarize equivalent conditions for the reduced C* -algebra of the group to be simple.

Mathematics Subject Classification (2010). 20F65.

Keywords. Geometric group theory.

1. Introduction

Felix Klein's Ping Pong Lemma is a widely used criterion for determining if
a collection of group elements generate a non-abelian free subgroup and more
generally, for constructing subgroups which are non-trivial free products. In this

paper, we employ the ping pong lemma in the setting of groups acting on CAT(O)
cube complexes to construct subgroups which split as non-trivial free products, as

described below in the Main Theorem.

An action of a group G on a CAT(O) cube complex X is said to be essential

if for any given orbit of G, there are orbit points which are arbitrarily deep inside

any half space of A. A collection of groups G\,...,Gk acting on X are said

to be simultaneously inessential if there is a half space 1) and a vertex v X
such that U,G,(i;) C 1). A large class of examples of simultaneously inessential

subgroups arise when G is Gromov hyperbolic and acts properly cocompactly on X
and the G, 's are a finite collection of infinite index quasi-convex subgroups of G (see

Proposition 2.1). Our goal is the following.
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Main Theorem. Let X be a finite dimensional, irreducible, non-Euclidean CAT(O)
cube complex and let G be a group acting essentially and properly on X, without a

global fixed point at infinity. Assume further that G has no finite normal subgroup.
Let A\,..., An be a collection of simultaneously inessential subgroups of G. Then

there exists g e G of infinite order, such that for each i, {g, A,) (g) * A,.

If H is a quasi-convex subgroup in a non-elementary hyperbolic group G, then
Theorem 1 holds and there exists g G such that the subgroup generated by g and H
is the free product (g) * H \ this was proved by Arzhantseva in [1].

The key step in the proof of the Main Theorem that allows us to play ping pong
is Proposition 3.4 which says that for any collection A\,...,An of simultaneously
inessential subgroups, one can find a half space f) in X such that a f) is contained in
the complement of 1), for all nontrivial a U, A,.

In the process of proving the Proposition, we construct a new ultrafilter
boundary 5(A) built out of strongly separated ultrafilters of X. The strongly
separated ultrafilters have nice properties. For example, the median of three strongly
separated ultrafilters is a vertex of X. We use this to show that the fixed set of every
non-trivial element of the group has empty interior on the boundary. We summarize
this into the proposition below, which is proved at the end of Section 3.

Proposition 1.1. Let X be a non-Euclidean irreducible CAT(O) cube complex X.
Suppose a group G is acting essentially on X without a global fixed point at infinity.
Then, the compact G-space 5(A) is minimal and strongly proximal and hence, a
G -boundary. Moreover, if the action of G on X is proper and G has no non-trivial
finite normal subgroups, then the action ofG on 5(A) is topologically free.

When A splits into irreducible direct factors A, x • • • x A„ and each factor A,
is non-Euclidean then 5(A) decomposes as a direct product of the 5(A;) and

Proposition 1.1 naturally extends to the reducible case. A similar ultrafilter boundary
was studied by Fernos in [8].

An application of the Main Theorem: property /Vive- We use the Main Theorem
to study property /Vive for groups acting on CAT(O) cube complexes.

Property /Vive was introduced by Bekka, de la Harpe and Cowling [3] to study
the ideal structure of group C*-algebras. We give a brief introduction to /Vive in
Section 4.

Definition 1.2. A group G has property /Vive if for every finite subset F C G there

exists an element y e G of infinite order such that given g e F, the subgroup {g, y)
is canonically isomorphic to the free product (g) * (y).

Corollary 1.3. Suppose a group G is acting properly and cocompactly on a finite
dimensional non-Euclidean CAT(O) cube complex. If G has no non-trivial finite
normal subgroups then G has property /Vive-
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In the irreducible case, property /"naive is a direct consequence of the Main
Theorem, as given by Corollary 3.2. When the underlying CAT(O) cube complex
is reducible, we prove property Pnaive for lattices in Aut(A), where X is locally
finite, co-compact and has no Euclidean factor (see Theorem 4.1). Examples of
groups satisfying the hypotheses of Theorem 4.1, which were not known up to now
to satisfy /'naive. are the Burger-Mozes simple groups [5], which arise as lattices in

products of trees.

The study of property Pnaive was initiated by Bekka, Cowling and de la Harpe as a

means to establish C*-simplicity of group C*-algebras. Here, we use property Pnans

from the above Corollary and several previously known results to provide necessary
and sufficient conditions for the reduced C ""-algebra of a CAT(O) cube complex group
to be simple. This last property is commonly referred to as C*-simplicity.

Corollary 1.4. The following are equivalent for a group G acting properly and

co-compactly on a finite dimensional CAT(O) cube complex X.

(1) G has property Pnane.

(2) G is C*-simple.

(3) Every non-trivial conjugacy class of G is infinite.

(4) The amenable radical of G is trivial.

(5) The G-action is faithful and X is non-Euclidean.

Recent research has yielded more sophisticated techniques for establishing
C*-simplicity. Kalantar and Kennedy [11] have brought in dynamical techniques
showing that a group G is C*-simple if and only if there exists a G-boundary on
which the G -action is topologically free. Using Proposition 1.1, we get an application
of their Theorem to groups acting properly (not necessarily, co-compactly) on CAT(O)
cube complexes (refer to Proposition 1.1) without a global fixed point at infinity.

Kalantar and Kennedy's methods were developed further by Breuillard, Kalantar,
Kennedy and Ozawa [4]. Recall [4, Theorem 3.1] which says that if a discrete

group G has countably many amenable subgroups, then G is C""-simple if and only
if the amenable radical is trivial. In [15], Sageev and Wise showed that groups
acting on finite dimensional CAT(O) cube complexes satisfy the Tits Alternative so

long as one knows the action is proper and there is a bound on the size of the finite
subgroups. Their proof works equally well if the existence of a bound on the size

of finite subgroups is replaced by the weaker condition that, every locally finite
subgroup is finite. Therefore, if G is acting properly on a finite dimensional CAT(O)
cube complex and every locally finite subgroup of G is finite, then the Tits Alternative
for G implies that every amenable subgroup is finitely generated virtually abelian.

Consequently, if G is countable, then G can have only countably many amenable

subgroups. We get the following interesting application of [4, Theorem 3.1].
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Proposition 1.5. Let G be a countable discrete group such that every locally finite
subgroup is finite. Suppose G acts properly on a finite dimensional CAT(O) cube

complex. Then, G is C*-simple ifand only if its amenable radical is trivial.

This generalizes Le Boudec's Proposition 3.2 from [10], which deals with the case

when X is a product of trees. When the locally finite subgroups are not necessarily
finite, groups acting properly on finite dimensional CAT(O) cube complexes can have

uncountably many amenable subgroups. For instance, one can make a direct sum of
infinitely many copies of a finite cyclic group act properly on a tree.

Acknowledgements. We would like to thank Moose, Luna and Shurjo, without
whom this paper would have been possible. We would like to thank Emmanuel

Breuillard, Pierre de la Harpe and the anonymous referee for their comments and

suggestions for improving the paper.

2. Preliminaries

In this section, we collect some relevant notions and results on CAT(O) cube

complexes, as well as introducing a few new notions. We refer the reader to [6,12]
and [14] for details on the relevant background material. In particular, we will assume

familiarity with hyperplanes and halfspaces. We will always assume that A is a finite
dimensional CAT(O) cube complex. We will use f) (and other gothic letters) to refer to
a halfspace, f)* to refer to the complementary halfspace and i) to refer to a hyperplane.

2.1. Essentiality. A CAT(O) cube complex is called essential if every halfspace f)

contains arbitrarily large metric balls. This is the same as saying that every halfspace
contains arbitrarily deep points: points arbitrarily far away from its bounding
hyperplane.

If Aut(A) acts on X without a global fixed point either in X or at infinity (the
visual boundary), then X contains an Aut(A) invariant essential core. Thus, it is
reasonable to discuss only essential CAT(O) cube complexes, and we shall assume
this from now on.

An action of a group G on X is said to be an essential action if for any given orbit,
there are orbit points arbitrarily deep inside every halfspace. When X is essential and

the action is inessential there exists a halfspace and a vertex v such that G(v) c f).

A collection of subgroups G\,... ,Gn < Aut(A) are said to be simultaneously
inessential if there exists halfspace 1) and a vertex v in X such that U; G, (u) c f).

A large class of examples of simultaneously inessential subgroups arises in the

context of hyperbolic groups.

Proposition 2.1. Let G be a hyperbolic group which acts properly, cocompactly and

essentially on a CAT(O) cube complex X. Let G\,... ,Gn be a finite collection
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of infinite index quasiconvex subgroups. Then G\,... ,Gn are simultaneously
inessential.

We delay the proof of Proposition 2.1 until Section 3.

2.2. Products. We say that X is reducible if it admits a decomposition as a product of
two non-trivial CAT(O) cube complexes. A finite dimensional CAT(O) cube complex
always admits a canonical decomposition as a product of irreducible complexes.

If X is essential then each irreducible factor of X is also essential. Those

irreducible factors that are not quasi-isometric to a real line are called non-Euclidean
factors. More explicitly, an irreducible, essential CAT(O) cube complex is called non-
Euclidean if it is not quasi-isometric to a real line. A (possibly reducible) essential

CAT(O) cube complex is called non-Euclidean if all of its factors are non-Euclidean.
Essential, irreducible, non-Euclidean complexes will be the subject of Section 3.

2.3. Facing triples and strongly separated hyperplanes. The notion of a non-
Euclidean CAT(O) cube complex can be characterized in terms of facing triples of
hyperplanes. By a facing triple of hyperplanes we mean a pairwise disjoint triple of
hyperplanes that bound halfspaces which are also pairwise disjoint. Equivalently, no

hyperplane of the triple separates the other two from one another. We then have the

following lemma.

Lemma 2.2 (Facing Triples). Let X be an essential, non-Euclidean CAT(O) cube

complex such that Aut(A) acts with no global fixed point at infinity. Then for every
halfspace I), there exists a facing triple f), £, m with f,iticl).

An important lemma for us regarding irreducible cube complexes involves

strongly separated pairs. A pair of disjoint hyperplanes 1) and £ are called strongly
separated if there are no hyperplanes that intersect both f) and £. We will also refer
to the corresponding nested pair of halfspaces 1) C £ as being strongly separated. We

then have the following lemma.

Lemma 2.3 (Strongly Separated Pairs). Let X be an essential non-Euclidean CAT(O)
cube complex such that Aut(A) acts without a global fixed point at infinity. Then

for every halfspace I) there exists a halfspace £ C 1) such that f) and £ are strongly
separated.

2.4. Skewering. A halfspace t) is said to be skewered by an automorphism

g e Aut(A) if gl) C f). We say that g skewers the hyperplane 1) if g skewers f)

or f)*. The relevant lemma for us regarding skewering is the following.

Lemma 2.4 (Double Skewering). Let X be essential and G act on X either
cocompactly or without a global fixed point at infinity. Then for every pair of
halfspaces 1) C £, there exists g G such that gt C f).
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As a corollary of the Double Skewering Lemma, we have that every halfspace is

skewered by some element. For given a halfspace f), there exists some [) C t and then

the element ensured by the Double Skewering Lemma skewers f).

In fact, a generalization of this for products can be established. More precisely
(Theorem C of [6]), one can show the following.

Theorem 2.5. Let X X\ x • • x Xn be a product ofinfinite, locally compact CAT(O)
cube complexes such that Aut(A)) acts cocompactly on Xt for each i. Suppose that G

is a lattice in Aut(A'). Suppose that (j, C 6, are nested halfspaces in each factor Xt.
Then there exists g G which simultaneously double skewers these hyperplanes.
That is to say, for each i, gf, C t},.

2.5. The Roller Boundary. As before, let X be essential. We will consider here a

certain part of the Roller boundary which will be useful to us (see [14] for basics on
ultrafilters and the Roller boundary). Let TL denote the collection of halfspaces of X.
Recall that an ultrafilter on Tl is a subset a C TL satisfying

(1) (Choice) For each pair 1), 1)*, exactly one of t) or 1}* is in a.

(2) (Consistency) If t) C t and fjea then tea.
The collection of all ultrafilters U(X) has a natural topology induced by the

Tychonoff topology on 2H. This has as a basis the collection of halfspace
neighborhoods, where a halfspace neighborhood is a subset of U(X) of the form

Uh {a eU(X)|f) e a}

One can show that the collection of ultrafilters is then closed in 2n. The vertices
of X correspond to those ultrafilters satisfying the descending chain condition (DCC).
The Roller Boundary is defined to be the complement in U(X) of the DCC ultrafilters.
It is closed in U{X) as well and is therefore compact.

On the opposite side of the spectrum for ultrafilters, we have what we call strongly
separated ultrafilters.

Definition 2.6. An ultrafilter a is strongly separated if there exists an infinite nested

sequence of halfspaces f)i D 1)2 • • • a such that f); and f);+i are strongly separated.
We call such a sequence of halfspaces a strongly separated sequence of halfspaces.

It is easy to see that there are strongly separated sequences of halfspaces, since

by Lemma 2.3, any halfspace f) contains a halfspace strongly separated from it. In
fact, by employing the Facing Triple Lemma, there exist uncountably many strongly
separated sequences. A key observation is that a strongly separated sequence uniquely
determines an ultrafilter.

Lemma 2.7. For every strongly separated sequence ofhalfspaces f)i D f]2 • •, there

exists a unique ultrafilter a such that f), e a.
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Proof. We define an ultrafilter as follows.

a {1)11}, C f) for infinitely many i}

By definition e a for each i. We are left to check that a satisfies the two
conditions necessary for an ultrafilter (choice and consistency) and then that it is

unique. Any given hyperplane fj may intersect at most one of the f), 's. It follows that

exactly one of the halfspaces f), ()* contains infinitely many 1); 's, thus precisely one

of f), f)* is in a. The consistency condition is immediate since if infinitely many 6,

satisfy f), C 1} and f) c 6 then 1], C E for infinitely many i.
To see uniqueness, let ß be an ultrafilter such that fjj e ß for all i. Then for

any f) e ß, observe that 1] may intersect at most one f),. Consequently, either f)

contains infinitely many f);'s or f)* contains infinitely many 1), 's. Choose one such f),.
Since 1), f); e ß, by the consistency condition we have that f), C (and not 1), C 1)*).

This means that 1) e a. So a and ß make the same choices for each pair (),()* and

hence a ß.

We define S(X) to be the closure in U of the collection of strongly separated
ultrafilters. It is a compact subspace of the Roller Boundary.

Next we see that strongly separated utrafilters behave nicely with respect to
medians. Recall that given three ultrafilters a, ß,y, the median of a, ß and y is
defined as

med(a, ß, y) (a fl ß) U (ß n y) U (y n a).

Lemma 2.8. Let a, ß,y be distinct strongly separated ultrafilters. Then the

med(a:, ß, y) satisfies DCC and hence is a vertex ofX.

Proof. We need to show that p med(cr, ß, y) satisfies the descending chain
condition (see Figure 1). Suppose that \]\ D 1)2 is an infinite sequence of
halfspaces such that 1), e p. Then after passing to a subsequence, we may assume
that 1), e a n ß for all i. Since a and ß are distinct strongly separated ultrafilters,
there exist 1) e a and 6 e ß such that f) n E 0 and fj and E are strongly separated.
Since 1), e a, we have that 1), n 1) 0 and 1), HE / 0. But if {f);} is an infinite
descending sequence of hyperplanes, we must have that for i sufficiently large, f); C 1)

or i), D t) 0. Similarly, for i sufficiently large, we must have 1), C fi or f), n E 7^ 0.

But this contradicts the fact that 1) and E are strongly separated.

We will also need the following lemma telling us that halfspace neighborhoods
form a basic collection of open neighborhoods for the strongly separated ultrafilters.

Lemma 2.9. Let U C S(X) be an open neighborhood of a e S(X), where a
is a strongly separated ultrafilter. Then there exists a halfspace f) such that a e

([/„ n s(x)) c u.
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Proof. Since the halfspace neighborhoods serve as a collection of sub-basic open
sets for the topology on U{X) and hence of S(A'), it suffices to prove this when U is a

finite intersection of halfspace neighborhoods ofa. That is, we assume that there exist

halfspaces f)i,..., t)„ such that U Ht/f,. fl S(X). Since a is a strongly separated

ultrafilter, there exists a strongly separated sequence ti D £2 • with {, ea. For
each 1),, we then know that there exists a tail of the strongly separated sequence
contained in 1Consequently, there exists a single 6y such that fy C for all i. We

then have that« e t/j fl S(A') C V as required.

2.6. Ping Pong. We will use the following version of the Ping Pong Lemma.

Lemma 2.10 (Ping-Pong Lemma). Let S be a set and let G be a group acting on S.

Let H, K < G be subgroups of G. Suppose that there exist two disjoint subsets

U,V C S such that for all for all 1 7^ h e H, we have hU C V and for all
1 ^ k e K, kV C U. Then < H,K H * K.

3. Irreducible complexes

In all that follows, we will assume that A' is a finite dimensional, irreducible, essential,
non-Euclidean CAT(O) cube complex, and that G is a group acting on X essentially,
properly, and without global a fixed point at infinity. We also assume that G has no
finite normal subgroup.

Figure 1. The median of strongly separated ultrafilters satisfies DCC.
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Theorem 3.1 (Main Theorem). Let A\,... ,A„ be a collection of simultaneously
inessential subgroups of G. Then there exists g e G of infinite order, such that for
each i,

(,g,A,) S (g) *Ai

Corollary 3.2. Suppose that a group G is acting on a finite-dimensional irreducible
non-Euclidean CAT(O) cube complex X. If the action ofG on X is essential, proper
and has no global fixed point at infinity, and, G has no non-trivial finite normal
subgroups then G has property Pnmye.

First of all, we will need the following lemma.

Lemma 3.3. Suppose that a e G is nontrivial. Then Fix(a) C S(X) has empty
interior.

Proof Suppose that a is non-trivial and fixes an open subset U C S(X). By
Lemma 2.9, there exists a half space t) such that the halfspace neighborhood

C S(X). Consider three strongly separated ultrafilters in and let v denote

their median. By Lemma 2.8, the ultrafilter v is a vertex in X. Since the action
is essential, there exists g e G such that g skewers fj, so that g C f). By the

Lemmas 2.3 and 2.4, we may further assume that gf) and 1) are strongly separated.
We now consider the elements an g~nagn. Let f)„ Note that by our

choice of g above, the sequence {!)*} is a strongly separated sequence of halfspaces.
Note that an fixes U„ U^n. Since v e 1) C g~nt) it follows that v is the

median of three points contained in (/„, and therefore an v v. By the properness
of the action, there are only finitely many possibilities for an, so that we may pass to
a subsequence of {an} such that an b for all n. We then have

[J Un C Fi\{b) {y e S(X)\by y}.
n

Because the action is proper, the kernel of the action on S(X) is a finite normal
subgroup and because G has no finite normal subgroup, we have Fix(&) f S(X).
But now Fix(&) isclosed. So there exists a halfspace t such that Ut c S(X) — Fix(^).
Consequently, we have that f n f)*, for all n. But this is a contradiction, since {!)*} is

a strongly separated sequence of halfspaces.

The key to proving the main theorem is the following proposition, which will
allow us to play ping-pong.

Proposition 3.4. Let A\,... An be a collection of simultaneously inessential

subgroups of G. Then there exists a halfspace 6 in X, such that at C f* for all
non-trivial a e (J A{.
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Proof. To avoid writing indices, we will first give the proof for the case of a single
subgroup A and then later explain how this is done for finitely many subgroups.

We will construct a combinatorial convex hull for A(v), where v is some vertex
of X. For a halfspace 1), let C(f)) denote the carrier of 1], namely the union of cubes

that intersect f] non-trivially. It is easy to see that that C(f)) is a convex subcomplex
of X (see [9]). Now, given a halfspace \) such that A(v) C f), we define

The inessentiality assumption tells us that there exists such an fi, and since Cf, is

the intersection of convex subcomplexes, it is convex. Also, Cf, is invariant under A.

Remark. It is convex in both the usual CAT(O) sense but also in the l\ sense: every
combinatorial edge-geodesic between vertices in Cf, remains in Cf,.

Choose some halfspace 6i C 1)* such that f) and f i are strongly separated.
We observe that every hyperplane which intersects Cf, does not intersect f i, since

Cf, C 1) and f) and f i are strongly separated.

Now we consider the natural combinatorial projection of 6i onto C/,. Namely,
consider all the hyperplanes intersecting Cf,. As observed, for every such

ch p| cm.

Figure 2. A convex hull for A(v).
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hyperplane m, we have !j c m or Ii Cm*. This thus defines an ultrafilter on
the collection of hyperplanes meeting Cf,, since it is a choice of halfspaces which
satisfies the standard consistency conditions necessary for an ultrafilter. It also

satisfies the DCC condition (see, for example, [14]). Thus, it determines a vertex w
in Cf,. This is the unique vertex of Cf, that can be joined by a path to f i without
crossing any hyperplane that meets Cf,.

Note that for any a e A, at\ does not intersect any hyperplane that intersects C(!]).
This is because if it did, say at\ Pi m ^ 0, then by applying a~l, we find
that If n a~l (m) ^ 0. But by invariance of C(fj) under A, we have that
a-1 (m) nC([))^ 0, contradicting the strong separation of if and fj.

Thus ati projects to a vertex in C(fj), just as 6i does. Now by the naturality of
this construction, we have that for each a e A, the translate at\ projects to aw. But

if ati n Pi ^ 0 it must project to w as well.

Hyperplanes intersecting Ch

do not intersect

/fj projects to a vertex w in C^.
If aki flfei*0
then both
kx and akt
project to w.

U

aw — w

ak2

Figure 3. The projection of 6i onto Cf,.

This tells us that

S {a e A\atx n ti + 0} C Stab(u>).

By the properness of the action, we get that S is finite. For all elements a $ S, we
have at C t*, as required. We are thus left to prove the proposition for the elements

of 5.
Let Uix denote the open subset of S(X) determined by !j. By Lemma 3.3

we can find a point b e which is not fixed by any element of S. Since S is

finite, there exists a neighborhood U C Ut] of b such that U n all 0 for any
a e S. Since every open neighborhood contains a halfspace neighborhood, we have

a halfspace 62 C 61 such that aUt2 n Ut2 0 for all a e S. Thus, for any a e S,
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we have that at2 C E£ f°r any a S. Since this is already true for Ei for all other

elements of A, the hyperplane E2 is the desired hyperplane.
To show the proposition for the case of finitely many subgroups A\,...,An which

are simultaneously inessential, we start with a hyperplane f) such that (J, A, (v) C h-

Taking Ej as above we see that the set of elements S of (J, A, which carry t'i to a

hyperplane meeting Ei is finite. We then construct, as in the previous paragraph a

halfspace E2 C Ei such that at2 C t2 f°r any element of S. This E2 is the desired

hyperplane.

Proofof Theorem 3.1. By Proposition 3.4, there exists a halfspace E such that at c 6*

for all a e (J, A,. We need to find our g e G which plays ping-pong with every A,.
By the Facing Triples Lemma, there exists a pair of disjoint halfspaces m and n

with m U n C E. By the Double Skewering Lemma, there exists g e G such

that gm* C n.

Figure 4. The construction of the ping pong pair.

We now construct two disjoint subsets U and V of X, such that aU C F for all
non-trivial a e At and gnV c U for all n 7^ 0 and for all i. This will then give the

result by the Ping Pong Lemma. For each i, we define

U at and f mU gm*

a^l.Al
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Note that by construction, for each a ^ 1 e Ai, we have at C G, so we have

aV C G. For each n ^ 0, we obtain g"(gm) CinorgV C gm*. Since G Cm*
and G C gm, we have that gnU C V, as required.

We now prove Proposition 2.1.

Proof. We prove the proposition by induction on n. Let v be a vertex of X. In [16,

Proposition 3.3], it is shown that if H is a quasiconvex subgroup of G, there exists

a number C > 0 and a universal number D > 0 (depending only on the dimension
of the complex), such that if w is a vertex with d(w, H(v)) > C, then there exists a

hyperplane 1) separating w and H(v) and d(w, fj) < D.
Since points arbitrarily far away from H(v) are guaranteed to exist when H is of

infinite index, this implies that the the proposition in the case n 1.

We know assume that Gj,..., Gn-\ are simultaneously inessential. Let t) be a

halfspace such that Gj(v) C f)* for i 1,..., n — 1. Note that since v C I)*, the

orbit Gn(v) is not entirely contained in f). We consider a halfspace fei) such that t
is strongly separated from fy Since Gn is of infinite index, there exists a vertex wet
such that d(w, Gn(v)) > C. We also choose w such that d(w, t) > D. Now we

apply the above again and conclude that there exists a hyperplane th separating w
and G„(v) and such that d(w, m) < D. Let m be the halfspace associated to m
such that w e m and Gn(v) C m*. Since d(w, m) < D, we have that m n t ^ 0.

Since t and f) are strongly separated, we thus have that m n t) 0. Moreover, since

Gn(v) n f)* 0, we must have m C t) and not m* C f). It follows that G, (u) C 1)

for all 1 1as required.

We complete the section with a proof of Proposition 1.1, which says that S(V) is

a G-boundary, on which, if conditions are favourable, G acts topologically freely.

ProofofProposition 1.1. Let X be a non-Euclidean irreducible CAT(O) cube

complex X. Suppose G is acting essentially on X without a global fixed point
at infinity. Then, we claim that S(X) is a G-boundary. We first show that the

compact G-space S(V) is minimal: given a e S(X) and U C S(X) open, there

exists g e G such that ga e U. By Lemma 2.9, there exists some halfspace f) such

that (Gf, n S(V)) c U. If f) e a then we can take g 1. Suppose then t) ^ a.
By the Flipping Lemma [6], there exists g e G such that gf)* C t) and for this g,
f) e ga. This implies ga e (Gf, fi S(V)) C G.

We now show that the S(X) is proximal: for any pair a, ß e S(X) of points,
there exists a point y e S(X) such that for every open neighbourhood G of y there
exists g e G such that ga,gß e U. Choose a strongly separated ultrafilter y which
is distinct from both a and ß. Let G be any open set containing y. Note that S(X)
is Hausdorff and so we can find an open set V that contains y but does not contain a
and ß. The open set G fl V contains y and by Lemma 2.9, contains a half-space
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neighbourhood Uf,. Now, b* e a, ß, so we use the Flipping Lemma to find g e G

such that gb* C b- Then, b ga, gß and therefore ga, gß e U.
To ensure that the proximal minimal G space S(X) is strongly proximal, we

need to check that 5(AT) has contractible neighbourhoods. Let a be a strongly
separated ultrafilter and let b be a halfspace contained in a. We claim that the open
neighbourhood V := U^CI S(X) of a is contractible i.e. there exists ß e S(X) such

that every open neighbourhood of ß contains a translate of V. Choose ß to be any
strongly separated ultrafilter distinct from a and let U be an open set containing ß.
As before, choose a halfspace 6 such that 6 e ß, t C b* and UtOS(X) C U. Use

the Flipping Lemma to choose g e G such that gt* C 6. Then, gV C U.
This shows that S(X) is a minimal and strongly proximal compact G-space.

Lemma 3.3 verifies that the action is topologically free whenever the action of G

on X is proper and G has no non-trivial finite normal subgroups.

4. Property Pnajve and C* -simplicity

Recall that a group G has property Pnaive if for every finite subset F C G there exists

an element y e G of infinite order such that given g e F, the subgroup (g, y) is

isomorphic to the free product (g) * (y).
The simplest example of a group possessing property Pnaive is a non-abelian free

group Fn. Property Pnaive was introduced by Bekka, Cowling and de la Harpe as part
of their programme to study simplicity of group C*-algebras [3]. Non-elementary
hyperbolic groups have property Pnaivei this was proved for torsion-free groups by
de la Harpe, and further generalized to relatively hyperbolic groups in [2]. In [3],
the authors established Pnaive for Zariski dense subgroups of connected simple Lie

groups with R-rank 1 and trivial center. More recently, property Pmuve was studied

by Tal Poznansky in the context of linear groups: he proved that every Zariski-dense
subgroup of a semisimple algebraic group (over any field), satisfies a weak version
of property /JnaiVe [13, Lemma 2.3],

Here, we study conditions under which groups acting on CAT(O) cube complexes
have property Pnaive- When the underlying complex is irreducible, property /Jnaive

follows from the Main Theorem and is recorded as Corollary 3.2 above.

4.1. Products. In the case of products, we prove a result in a more restricted setting,
namely that of lattices in Aut(X), where A is a locally finite, cocompact cube

complex.

Theorem 4.1. Let X be a locally finite, cocompact CAT(O) cube complex with no
Euclidean factors; let G be a lattice in Aut(A) with no non-trivial finite normal
subgroup. Then G satisfies Pnmv£.
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Proof. Let X Xf, be the decomposition of X into irreducible factors. Let

gi,..., gn denote a finite collection of elements of G.
We first observe that for each i, the action of < gi > on each irreducible factor

of X is inessential. This is simply because < gi > is cyclic and each factor is

non-euclidean.

Secondly, we observe that since the action of < gi > is proper, there exists a

factor of X on which the action of < gi > is proper. Otherwise, for each factor Xk
there exists an integer nk such that g"k fixes the ball of radius R in Xk- Taking
N iik, we obtain an N such that < gf > fixes the ball of radius R in each Xk,
which in the case that gi is infinite cyclic, would contradict the properness of the

action of < gi > on X.
For each factor Xk for which < gi > acts properly on AT, Proposition 3.4 insures

that there exists a halfspace f)k, such that a\)k C f*k for all a e< gi >. (If for some k,
there are no such g,- 's, we choose arbitrarily.) Following the proof ofTheorem 3.1,
for each such k, we then choose halfspaces and n^, so that U % C \)k-

Now we apply Theorem 2.5 to conclude that there exists g 6 G such that

gm£ C nk simultaneously for all k. The construction now of U and V for the

application of the Ping Pong Lemma proceeds as in the proof of Theorem 3.1.

More precisely, we need to show that < g,gi >=< g > * < gi >. Given such

an i, Let Xk denote an irreducible component on which < g, > acts properly. Then

set

U a\)k and V U n&

ajtle<gi>

Then we obtain a V c U for any a ^ 1 and we have g" U C V for any n ^ 0, as

required.

4.2. Infinite conjugacy classes. Corollary 3.2 and Theorem 4.1 allow us to
determine necessary and sufficient conditions for a CAT(O) cube complex group
to be C*-simple. C*-simple groups are often icc: a group is icc if the conjugacy
class of every non-identity element is infinite. We will first identify the collection of
CAT(O) cubical groups which are icc.

Proposition 4.2. If a group G acts properly and co-compactly on a CAT(O) cube

complex then G is icc ifand only ifnofinite index subgroup ofG contains a non-trivial
virtually abelian normal subgroup.

ProofofProposition. Suppose that G is not icc. Let H be the collection of all
elements g 6 G such that the conjugacy class of g is finite. It is easy to check that H
is a characteristic subgroup of G. Let L be a subgroup generated by finitely many
elements x\,..., Xk of H. For each i, the centralizer of in L is a subgroup of finite
index in L. Consequently, the centre of L, which is the intersection of the centralizers
of the xf s has finite index in L. This implies that each finitely generated subgroup
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of H is virtually abelian. As every virtually abelian subgroup must stabilize a flat
and the dimension of flats in X is bounded, H is forced to be virtually abelian. This
shows, if G has a non-trivial finite conjugacy class, then G contains a non-trivial
virtually abelian normal subgroup.

Suppose now that a finite index subgroup T of G contains a virtually abelian

normal subgroup K. If K is finite and g is a non-trivial element of K, then the

conjugacy class {xgx~l | x e G} of g is contained in Ure(j/rtKt~l. Evidently,

every conjugacy class of K is finite and so, G cannot be icc. If K is infinite,
then replace A' by a characteristic subgroup K' which is free abelian of finite rank.

The action of T on AT by conjugation fixes K' and so, T normalizes K'. The

homomorphism from T to Aut(A^) s GL(n, Z) has finite image (in fact, it lies
inside 0(n) fl GL{n, Z)) and so, a finite index subgroup of T (and hence, of G) that
centralizes K'. Clearly, the conjugacy class of every element of K' in G is finite
andG cannot be icc.

The amenable radical of a group G, written Ac is the largest amenable normal

subgroup of G. As amenability is closed under extensions, the amenable radical
exists and is easily shown to be a characteristic subgroup of G. Suppose a group G
has a finite index subgroup that contains a normal virtually abelian subgroup K.
Then, passing to a normal finite index subgroup, we can assume that G has a normal

subgroup H of finite index such that Ah 7^ 1. As Ah is characteristic in H, it is

normal in G and it follows, Ac 7^ 1. Hence, the triviality of Aq implies that G has

no finite index subgroups containing normal virtually abelian subgroups.
In groups acting geometrically on CAT(O) cube complexes the converse is true: the

amenable radical is trivial ifno finite index subgroup of G has normal virtually abelian

subgroups 7^ 1. This is because, CAT(O) cubical groups satisfy the Tits Alternative
[15, Main Theorem] and the amenable radical is virtually abelian. Therefore Ac 7^ 1

implies G has a normal virtually abelian subgroup. To summarise, we have the

following equivalence.

Lemma 4.3. Suppose that a group G is acting properly on a CAT(O) cube complex
and G has a bound on the size of its finite subgroups. Then the amenable radical A a
is trivial iffG has no finite index subgroups with normal non-trivial virtually abelian

subgroups.

The presence of virtually abelian subgroups inside finite index subgroups of G is

directly related to the existence of Euclidean factors in the Cartan decomposition of
the underlying space.

Lemma 4.4. Suppose a group G is acting geometrically andfaithfully on a CAT(O)
cube complex X. If X has a Euclidean factor, then some finite index subgroup of G

contains a non-trivial virtually abelian normal subgroup. In particular, the amenable

radical of G is non-trivial.
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Proof. As G is acting geometrically, X is finite dimensional and moreover by passing
to an essential core, we may assume that the G-action on X is essential. Now, if X
is irreducible, then X is Euclidean, meaning, it is quasi-isometric to the real line. In
this case G itself is virtually infinite cyclic. If X is reducible, then it has a Cartan

decomposition into irreducible factors. We have X s Xp x Xe, where Xe is

the Euclidean part of X. Then, by Corollary 2.8 from [12], there is a finite index

subgroup H of G such that H He x Hp, where He acts properly and co-
compactly on Xe- This implies that He is virtually abelian and so, a finite index

subgroup contains a non-trivial virtually abelian normal subgroup.

C '-simple groups. Let G be a countable discrete group and let 12G be the Hilbert
space of square-summable functions on G. The group G acts on l2G via its left
regular representation as follows.

W)(h) fig-'h), Vg, h e G.

The map g i-> Xg gives an injection of G into the space of bounded linear

operators B(l2G). The closure of the linear span of image {Xg : g e G} in

the operator norm is called the reduced C*-algebra of G and written, C*(G).
A countable group is said to be C * -simple ifC * (G) is a simple algebra, i .e. C * (G)

has no non-trivial two-sided ideals. The reduced C*-algebra carries information
about the representation theory of the group. One can show that simplicity of
the algebra C*(G) is equivalent to the following restriction on the representation
theory of G: every unitary representation of G which is weakly contained in the

left regular representation of G is actually equivalent to it. This means that a group
which is both amenable and C*-simple must be the trivial group. This statement in
turn generalizes to the fact that a C*-simple group cannot have non-trivial normal
amenable subgroups.

Many geometric classes of groups have been shown to be C*-simple. These

include all free products (except the infinite dihedral group), non-soluble subgroups
of PSL2(M), torsion-free non-elementary hyperbolic groups and mapping class

groups of surfaces. More generally, acylindrically hyperbolic groups are C*-
simple [7],

A group acting geometrically on an irreducible CAT(O) cube complex has enough
rank one elements to make it acylindrically hyperbolic, using results from [17], So

groups acting geometrically on irreducible CAT(O) cubical groups are C*-simple.
However a group acting geometrically on a non-trivial product of irreducibles is not
acylindrically hyperpbolic (for example, irreducible lattices in products of trees).
Here, we apply our theorems on property Pnaive to show that even in this setting, a

group G acting properly and co-compactly on a CAT(O) cube complex is C*-simple.
We summarize this as follows.
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Theorem 4.5 (Corollary 1.4). Suppose that a group G is acting properly and co-
compactly on a CAT(O) cube complex X. The following are equivalent.

(1) G is C* simple.

(2) G is icc.

(3) No finite index subgroup of G has a non-trivial virtually abelian normal
subgroup.

(4) the amenable radical of G is trivial.

(5) The G-action is faithful and X is non-Euclidean.

(6) G has property Pnaive-

Proof. The implications (1) =>• (2) and (6) =>• (1) are well known, see [3].
Proposition 4.2 establishes the equivalence of (2) and (3). Lemma 4.3 shows (3)
and (4) are equivalent. That (4) implies (5) follows from Lemma 4.4.

The hypothesis that G acts properly and co-compactly implies that G is finitely
presented and moreover, X is finite-dimensional. The kernel of the action is finite
whenever the action is proper and so if the amenable radical is trivial, the action is

faithful. Now, to deduce (6) from (5), after passing to an essential core if needed, we
apply Corollary 3.2 and Theorem 4.1.
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