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Cocompactly cubulated 2-dimensional Artin groups

Jingyin Huang, Kasia Jankiewicz and Piotr Przytycki*

Abstract. We give a necessary and sufficient condition for a 2-dimensional or a three-generator
Artin group A to be (virtually) cocompactly cubulated, in terms of the defining graph of A.

Mathematics Subject Classification (2010). 20F65.
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1. Introduction

We say that a group is (cocompactly) cubulated if it acts properly (and compactly)
by combinatorial automorphisms on a CAT(0) cube complex. We say that a group is
virtually cocompactly cubulated, if it has a finite index subgroup that is cocompactly
cubulated. Such groups either fail to have Kazhdan’s property (T) or are finite [32],
are bi-automatic [40], satisfy the Tits Alternative [39] and, if cocompactly cubulated,
they satisfy rank-rigidity [12]. For more background on CAT(0) cube complexes, see
the survey article of Sageev [38].

The Artin group with generators s; and exponents m;; = mj; > 2, where
i # J,is presented by relations s;s;s; -++ = 5;5;5; -++. Here s;s;s; - -+ denotes the
N’ N— R —

first half of the word (s;s,)™/. The defining graph of an Artin group has vertices
corresponding to s; and edges labeled m;; between s; and s; whenever m;; < oo.

Artin groups that are right-angled (i.e. the ones with m;; € {2,00}) are
cocompactly cubulated, and they play a prominent role in theory of special cube
complexes of Haglund and Wise [23]. However, much less is known about other
Artin groups, in particular about braid groups. In [45] Wise suggested an approach
to cubulating Artin groups using cubical small cancellation. However, we failed to
execute this approach: we were not able to establish the B(6) condition.

In this article we consider Artin groups that have three generators, or are
2-dimensional, that is, their corresponding Coxeter groups have finite special

*The third author was partially supported by National Science Centre DEC-2012/06/A/ST1/00259,
UMO-2015/18/M/ST1/00050 and NSERC.
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subgroups of maximal rank 2 (or, equivalently, 2-dimensional Davis complex). We
characterise when such a group is virtually cocompactly cubulated. This happens
only for very rare defining graphs. An interior edge of a graph is an edge that is not
a leaf.

Theorem 1.1. Let A be a 2-dimensional Artin group. Then the following are
equivalent.

(i) A is cocompactly cubulated,
(ii) A is virtually cocompactly cubulated,

(iii) each connected component of the defining graph of A is either

* avertex, or an edge, or else

* all its interior edges are labeled by 2 and all its leaves are labelled by
even numbers.

Moreover, if A is an arbitrary Artin group, then (iii) implies (i).

Theorem 1.2. Let A be a three-generator Artin group. Then the following are
equivalent.

(i) A is cocompactly cubulated,
(ii) A is virtually cocompactly cubulated,

(iii) the defining graph of A is as in Theorem 1.1(iii) or has two edges labelled
by 2.

1.1. Remarks. From Theorem 1.2 it follows that the 4-strand braid group is not
virtually cocompactly cubulated.

Note that, independently, Thomas Haettel [19] has obtained a full classification
of cocompactly cubulated Artin groups. His methods do not apply yet to finite index
subgroups of Artin groups, but we intend to work together and prove that an Artin
group is virtually cocompactly cubulated only if it is cocompactly cubulated.

The equivalence of (i) and (ii) has no counterpart for Coxeter groups, where the
group A, generated by reflections in the sides of an equilateral triangle in R? is
virtually cocompactly cubulated, but not cocompactly cubulated.

There are Artin groups that do not satisfy the equivalent conditions from
Theorem 1.1, but are cubulated. Namely, it follows from [9, 24] that if the defining
graph of A is a tree, then A is the fundamental group of a link complement that is
a graph manifold with boundary. Hence by the work of Liu [30] or Przytycki and
Wise [36] the Artin group A is cubulated.

Artin groups of large type, that is, with all m;; > 3 are 2-dimensional. For many
of them Brady and McCammond constructed 2-dimensional CAT(0) complexes with
proper and cocompact action [6]. However, these complexes are built of triangles,
not squares.
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1.2. Some historical background. Sageev invented a way of cubulating groups
(i.e. showing that they are cubulated) using codimension 1-subgroups [37], which
was later also explained in the language of walls in the Cayley complex of the
group [17,33]. Here we give a brief account on some cubulation results, for a more
complete one see [25].

Using the technology of walls, Niblo and Reeves cubulated Coxeter groups [32],
then Williams [43] and Caprace and Miihlherr [11] analysed when this cubulation is
cocompact. Itis not known if all Coxeter groups are virtually cocompactly cubulated.
Wise cocompactly cubulated small cancellation groups [44], and Ollivier and Wise
cocompactly cubulated random groups at density < % [34].

Furthermore, using the surfaces of Kahn and Markovic, Bergeron and Wise
cocompactly cubulated the fundamental groups of closed hyperbolic 3-manifolds
[3,28], and later Wise cocompactly cubulated the fundamental groups of compact
hyperbolic 3-manifolds with boundary [45]. Hagen and Wise cocompactly cubulated
hyperbolic free-by-cyclic groups [21].

Groups that are not (relatively) hyperbolic are harder to cubulate cocompactly.
Przytycki and Wise cubulated the fundamental groups of all compact 3-dimensional
manifolds that are not graph manifolds, as well as graph manifolds with boundary
[35,36]. In [30] Liu gave a criterion for a graph manifold fundamental group to be
virtually cubulated specially (meaning that the quotient of the action admits a local
isometry into the Salvetti complex of a right-angled Artin group), but we do not know
if this is equivalent to just being cubulated. Hagen and Przytycki gave a criterion for
a graph manifold fundamental group to be cocompactly cubulated [20]. In general, it
is difficult to find obstructions for groups to be cubulated. Another result of this type
is Wise’s characterization of tubular groups that are cocompactly cubulated [46].

1.3. Proof outline for (i) = (iii) in Theorem 1.1. Given a 2-dimensional Artin
group acting properly and cocompactly on a CAT(0) cube complex, we show that
its two-generator special subgroups are convex cocompact. More precisely, each of
them acts cocompactly on a convex subcomplex which naturally decomposes as a
product of a vertical factor and a horizontal factor. Geometrically, the intersection
of two such subgroups is either vertical or horizontal. However, if Theorem 1.1(iii)
is not satisfied, then this intersection is neither vertical nor horizontal by algebraic
considerations.

One of the ingredients of the proof is Theorem 3.8, which asserts that a top rank
product of hyperbolic groups acting on a CAT(0) cube complex is always convex
cocompact.

1.4. Organization. In Section 2 we give some background on CAT(0) spaces and
CAT(0) cube complexes. Section 3 is devoted to the proof of Theorem 3.8. In
Section 4 we give some background on Artin groups and discuss some algebraic
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properties of two-generator Artin groups. Finally, in Section 5 we prove Theorem 1.1
and in Section 6 we prove Theorem 1.2.

Acknowledgements. The authors would like to thank Daniel T. Wise for helpful
discussions and the referee for useful remarks.

2. Preliminaries

A group is a CAT(0) group if it acts properly and cocompactly on a CAT(0) space.
We assume the reader is familiar with the basics of CAT(0) spaces and groups. For
background, see [7]. In this section we collect some less classical results.

2.1. Asymptotic rank. The following definition was introduced in [29].

Definition 2.1. Let X be a CAT(x) space. For x € X we denote by X, X the CAT(1)
space that is the completion of the space of directions at x [7, Definition I1.3.18]. The
geometric dimension of X, denoted GeomDim(X) is defined inductively as follows.

* GeomDim(X) = 0if X is discrete,
* GeomDim(X) < n if GeomDim(X,X) <n — 1 forany x € X.

Definition 2.2. Let X be a CAT(0) space. Then its asymptotic rank, denoted by
asrk(X), is the supremum of the geometric dimension of the asymptotic cones of X.

Theorem 2.3. Let X and Y be CAT(0) spaces. Then
(1) asrk(X x Y) > asrk(X) + asrk(Y),
(2) ifastk(X) < 1, then X is hyperbolic.

The first assertion follows from Theorem A of [29] and the second assertion
follows from Corollary 1.3 of [42].

Definition 2.4. If G is a CAT(0) group acting properly and cocompactly on a CAT(0)
space X, then the asymptotic rank of G is the asymptotic rank of X. By [29,
Theorem C] this is the maximal n for which there is a quasi-isometric embedding
R"” — X. Hence it does not depend on the choice of the CAT(0) space X .

Lemma 2.5. Suppose that G is a CAT(0) group, and that G acts properly and
cocompactly on a contractible n-dimensional cell complex X (not necessarily
CAT(0)). Then the asymptotic rank of G is < n.

Proof. Choose any G-equivariant length metric on X. We will prove that there
does not exist a quasi-isometric embedding  : R — X for k > n. Otherwise,
since X is contractible and admits a cocompact action of G, we can assume that f
is a continuous quasi-isometry: such f can be defined by induction on consecutive
skeleta of the standard cubical subdivision of R¥.
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Let Y C X be the smallest subcomplex containing f(R¥). Then f : R¥ — Y is
a quasi-isometry. Let g : ¥ — R¥ be a quasi-isometry inverse to f, we can again
assume that g is continuous. For any x € R¥ the distance d(g o f(x), x) is uniformly
bounded and consequently there is a proper geodesic homotopy between g o f and
the identity map.

Recall that for a topological space X we can consider locally finite chains in X,
which are formal sums X, a0, where a, are integers, o, are singular simplices,
and any compact set in X intersects the images of only finitely many o witha; # 0.
This gives rise to locally finite homology of X , denoted by HX(X). Moreover, proper
maps induce homomorphisms on locally finite homology. See [5, Section 2.2] for
more discussion.

Since there is a proper geodesic homotopy between g o f and the identity map,
g o f induces the identity on H)(R¥), and consequently fi: H}'(R¥) — H)'(Y)
is injective. This leads to a contradiction, since H }cf(Rk ) contains the fundamental
class [R¥] which is a nontrivial element, while H ,':(Y ) = 0sincedim(Y) < k. [

2.2. Gate and parallel set. All CAT(0) cube complexes in our article are finite-
dimensional. Throughout this paper the only metric that we consider on a CAT(0)
cube complex X is the CAT(0) metric d. The convex hull of a subspace ¥ C X
is the smallest convex subspace containing Y, and is not necessarily a subcomplex,
while the combinatorial convex hull of Y is the smallest convex subcomplex of X
containing Y. For a complete convex subspace ¥ € X we denote by ny: X — Y
the closest point projection onto Y.

The following lemma was proved in slightly different contexts by various authors
[1,2,4,27]:

Lemma 2.6 ([27, Lemma 2.10]). Let X be a CAT(0) cube complex of dimension n,
and let Yy, Y, be convex subcomplexes. Let A = d(Y1,Y3), Vi = {y € Y1 |
d(y, Yz) = A} and V2 = {y € Y2 | d(y, Yl) = A} Then:

(1) Vi and V, are nonempty convex subcomplexes.

(2) my, maps V, isometrically onto Vi and my, maps Vi isometrically onto V5.
Moreover, the convex hull of Vi U V3 is isometric to Vi x [0, Al.

(3) for every € > 0 there exists 6 = §(A,n,€) > 0 such that if yy € Y1, y2 € Y»
and d(y1,V1) = €, d(y2, V2) = €, then

d(y1,Y2) > A+46d(y1. V1), d(y2,Y1) = A+8d(y2, V).

We call V; C Y, the gate with respect to Y,, and Vo, C Y, the gate with
respect to Y1. We write G(Yy,Y2) = (Vq,V2). We say that Y1, Y, are parallel if
G(Y1.Y2) = (Y1, Y2).
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Lemma 2.7 ([26, Lemma 2.9]). Let X be a CAT(0) cube complex, and let (V1,V>) =
G(Y1,Y3) for some convex subcomplexes Y1,Y, C X. Let e be an edge in V1 and let
h be the hyperplane dual to e. Then h NV, # 0.

Lemma 2.8 ([12, Lemma 2.5]). A decomposition of a CAT(0) cube complex as
a product of CAT(0) cube complexes corresponds to a partition Hy U H, of the
collection of hyperplanes of X such that every hyperplane in H, intersects every
hyperplane in H,.

The following lemma was also proved in [2, Lemma 2.4].

Lemma 2.9. Let X be a CAT(0) cube complex and let Y < X be a convex
subcomplex. Let {Y)}rca be the collection of all convex subcomplexes that are
parallel to Y. Then the combinatorial convex hull Py of \ ), ¢ Ya admits a natural
product decomposition Py =Y x Y.

Py is called the combinatorial parallel set of Y .

Proof. Let H be the collection of hyperplanes in X that separate some points
in | J,cp Y2 and let £ € H. We claim that either / intersects all ¥ or it is disjoint
from all Y. Indeed, we have G(Y,Y;) = (¥,Y,) forall A € A. It follows from
Lemma 2.7 that if A intersects some Y}, then it intersects Y, and hence it intersects
all ;.

Let H, and H, be the collections of hyperplanes satisfying the first assertion
and the second assertion in the claim, respectively. For any & € H,, there exist
A, A" € A such that & separates Y, from Y,,. Thus & intersects every hyperplane
in 7. Note that H is the collection of hyperplanes that intersect Py and H; is the
collection of hyperplanes that intersect Y. Thus by Lemma 2.8, Py admits a product
decomposition Py =Y x Y. L

3. Cocompact cores

The main goal of this section is to prove Theorem 3.8 on existence of cocompact
cores for top rank products of hyperbolic groups. The first step towards it is to study
flats in a CAT(0) cube complex, which we do in Section 3.1. A hurried reader can
proceed directly to Section 3.2 and use [47, Theorem 2.6] instead. However, our
Theorem 3.4 is of independent interest.

3.1. Combinatorial convex hull of a flat. Throughout this paper a flat is a CAT(0)
flat, i.e. an isometrically embedded copy of R”, not necessarily combinatorial. A
half-flat is an isometrically embedded copy of R"~! x [0, 00).

Lemma 3.1. Let X be a CAT(0) cube complex and let F C X be a flat. Let h be
a hyperplane in X intersecting F, and let h™ and h™ be the halfspaces of h. Then
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either F C h, or h N\ F is a codimension-1 flat in F. In the latter case, both h™ N F
and h— N F are half-flats.

Proof. The carrier N, of h, which is its neighbourhood, has the form N = h x [0, 1].
Thus if F & h, then h N F is a codimension-1 submanifold of F. Moreover, the
intersections # N F, ht N F,and A~ N F are convex, thus the lemma follows. [

Lemma 3.2. Let h be a hyperplane in a CAT(0) cube complex X. Suppose that | is
a geodesic ray in X starting in h. If | € h, then there exists another hyperplane h'
in X intersecting | and disjoint from h.

Proof. Let Ny be the carrier of h. Let B be the first cube outside N; whose interior
is intersected by /. We claim that there is a hyperplane A’ intersecting B and disjoint
from A. Indeed, pick a vertex v € Ny N B and let e be an edge of B containing v.
If the hyperplane dual to e intersects A, then e C Np. If this holds for any e, then
B C Np, by the convexity of Nj, which yields a contradiction. This justifies the
claim.

By the claim, there a hyperplane /'’ intersecting B and disjoint from 4. It remains
to prove that / intersects 4’. Otherwise, since / intersects the interior of the carrier Ny,
we have that / is contained in Np,. Since [ starts at i, we have that & intersects Ny
and hence it also intersects /', which is a contradiction. O

We will also use a consequence of a result of Haglund [22, Theorem 2.28].

Theorem 3.3. Let X be a hyperbolic CAT(0) cube complex. Then any quasi-
isometrically embedded subspace of X is at finite Hausdorff distance from its
combinatorial convex hull.

In the following theorem we generalise our results from [20, Section 3]. Here
diaus denotes the Hausdorff distance.

Theorem 3.4. Let X be a CAT(0) cube complex of asymptotic rank n and let F € X
be an n-flat. Let Y be the combinatorial convex hull of F. Then dya.s(F.Y) < oo.

Proof. If F is contained in the carrier N, = h x [0, 1] of a hyperplane %, then we
can replace X by h and F by its projection to 2. The combinatorial convex hull ¥
of F equals Y’ x[0,1],Y’ x {0}, or Y’ x {1}, where Y is the combinatorial convex
hull of the projection of F to h. Henceforth we can and will assume that F is not
contained in the carrier of any hyperplane.

Let H be the collection of hyperplanes intersecting F. We define a pencil of
hyperplanes to be an infinite collection of mutually disjoint hyperplanes {h; }$2

such that for each i, {&; i,-_:l_oo and {h;}52; ., are in different halfspaces :)f hio.
It follows from Lemma 3.1 that every pencil of hyperplanes in H intersects F in
a collection of parallel family of codimension-1 flats. A collection of pencils of
hyperplanes in ‘H is independent if their corresponding normal vectors are linearly

independent in F = R".
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Let { P;}/”, be a maximal collection of pairwise independent pencils in H. We
claim that m = n and that { P;} is independent. Suppose first m > n. Note that if
two pencils P, P’ C H are independent, then every hyperplane in P intersects every
hyperplane in P’. This gives rise to a quasi-isometric embedding of R™ into X,
contradicting the bound on the asymptotic rank of X. If m < n or ift m = n but { P;}
is dependent, then there is a geodesic line / in F parallel to 2N F for all hyperplanes /
in all P;. Using Lemma 3.2, we can then produce a new pencil P formed of some
hyperplanes intersecting /. Since P is independent from each P;, this contradicts the
maximality of m. This justifies the claim that m = n and { P;} is independent.

For 1 <i < n,choose h; € P; and let F; = h; N F. We will prove that for any
hyperplane & € ‘H, there exists F; such that 2 N F is parallel (possibly equal) to F;.
Otherwise, choose a geodesic line [ in F transverse to 2 N F. By Lemma 3.2, & is
contained in a pencil P, of hyperplanes intersecting /. Note that Py is independent
from each P;, contradicting the maximality of m.

Let H; € H be the collection of hyperplanes whose intersection with F is parallel
to F;. The above discussion implies H = | |/_, H;. Moreover, fori # j, every
hyperplane in H; intersects every hyperplane in /{;. Let Y be the combinatorial
convex hull of F. Since we assumed that F is not contained in the carrier of
any hyperplane, the hyperplanes in Y are exactly the intersections with ¥ of the
hyperplanes in 7. Two hyperplanes of Y intersect if and only if the corresponding
hyperplanes in H intersect. Hence by Lemma 2.8, we have a product decomposition
Y = ¥qi x+-s% ¥y

Let m; : ¥ — Y; be the coordinate projections. Let [; = () ok F;, which
is a geodesic line in F. Note that for j # i we have [; € F; C h; and
hence the projection m;(/;) is a single point. Thus the restriction of 7; to [; is
an isometric embedding. It follows that F* = mwy(/y) x --- x 1 (/). Moreover, since
i (l;) = mi(F), each Y; is the combinatorial convex hull of ;(/;), since otherwise
we could pass to a smaller convex subcomplex containing F'.

Since each of Y; contains a line and their product has asymptotic rank < n,
by Theorem 2.3(1) each Y; has asymptotic rank 1. By Theorem 2.3(2) each ¥; is
hyperbolic. Thus by Theorem 3.3, we have dyays(i(/;), ¥Yi) < 0o, and consequently
dyaus(F,Y) < o0. ]

While we will not need it in the remaining part of the paper, from the proof
above we can deduce the following interesting result which concerns flats that are not
necessarily of top rank.

Corollary 3.5. Let X be a CAT(0) cube complex and let F C X be a flat. Let
Y C X be the combinatorial convex hull of F. Then Y has a natural decomposition
Y =Y, x.-.--xY, x K such that:

(1) n > dim(F) and K is a cube.
(2) each Y; contains an isometrically embedded copy of R that is the projection
of a geodesic line in F.
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(3) no Y; contains a facing triple of hyperplanes, that is, a collection of three
disjoint hyperplanes such that none of them separates the other two.

Roughly speaking, (3) means that ¥; do not “branch”.

3.2. Product of hyperbolic groups.

Definition 3.6. Let X be a CAT(0) cube complex. A group H < Aut(X) is convex
cocompact if there is a convex subcomplex ¥ C X that is H-cocompact, meaning
that H preserves Y and acts on it cocompactly.

Lemma 3.7. Let X be a CAT(0) cube complex and let H < Aut(X) be convex
cocompact. Then there exists a minimal H -invariant convex subcomplex. Moreover,
any minimal H -invariant convex subcomplex is H -cocompact and any two minimal
H -invariant convex subcomplexes are parallel.

Proof. Let Y € X be an H-cocompact convex subcomplex. Let P be the poset of
H -invariant convex subcomplexes in Y. For the first assertion, by the Kuratowski—
Zorn Lemma, it suffices to show that every descending chain of elements {¥; }; € P
has a lower bound, or equivalently that their intersection is nonempty. Let K C Y be
compact such that HK = Y. Then each K N Y; is nonempty, and by compactness
of K so is their intersection.

For the second and third assertion, let Y,,;, € Y be a minimal element of P
and let Y’ be any other minimal H -invariant convex subcomplex. Let (V,V’) =
G (Ymin, Y'). Then both V and V' are H -invariant. By Lemma 2.6(1) both V and V"’
are convex subcomplexes, hence from minimality of Y,;;, and Y’ we have V = Y,
and V' = Y’. Moreover, by Lemma 2.6(2) we have that Y’ is H-equivariantly
isometric to Yy, and thus it is H-cocompact. O]

Theorem 3.8. Let X be a locally finite CAT(0) cube complex of asymptotic rank n.
Let H < Aut(X) be a subgroup satisfying
(1) H = Hy x---x Hy, where each H; is an infinite hyperbolic group, and

(2) for some (hence any) point x € X the orbit map h — h - x from H to X is a
quasi-isometric embedding.

Then H is convex cocompact. More precisely, if among H; exactly {H;}!_, are
not virtually 7, then there is a convex subcomplex Y C X with a cubical product
decomposition Y = Y, x ]_[;';1 Y; such that

(i) Y is H-cocompact, and the action H ~, Y respects the product decomposi-
tion, and

(ii) the induced action of ]_HI: m+1 Hi on Yy is proper and cocompact, in particular
Yo is quasi-isometric to R"™™, and
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(iii) for any pairi # j with 1 < j < mand 1 < i < n, the induced action
H; ~ Y; is almost trivial, i.e. by isometries at uniformly bounded distance
from the identity.

In the proof we need the notion of coarse intersection. Let X be a metric space
and let Ng(Y') be the R-neighbourhood of a subspace ¥ € X. A subspace V C X
is the coarse intersection of Y; and Y, if V is at finite Hausdorff distance from
Ngr(Y1) N Ngr(Y,) for all sufficiently large R. For example, in Lemma 2.6, in view
of its part (3), the gates V7, V5 are the coarse intersections of Y; and Y,. However, in
general the coarse intersection of two subsets might not exist.

Lemma 3.9 ([31, Lemma 2.2]). Let X be a finitely generated group with word metric.
Then the intersection of a pair of subgroups is their coarse intersection.

See [31, Chapter 2] for more discussion on coarse intersection.

Proof of Theorem 3.8. We first prove that H is convex cocompact, which we do by
the induction on m. Consider first the case m = 0. Recall that all CAT(0) cube
complexes in the article were assumed to be finite-dimensional. Thus by [8], H acts
on X be semi-simple isometries. By the Flat Torus Theorem [7, Chapter I1.7], H
acts cocompactly on an n-flat ¥ € X. By Theorem 3.4, the combinatorial convex
hull Y of F is at finite Hausdorff distance from F. Since X is locally finite, Y is
H -cocompact, as desired.

Suppose now thatm > 1. Let H" = [1];_,, Hi. We first prove that the group H' is
convex cocompact. Choose a subgroup Z < H,, isomorphicto Z and choose h € H,,
such that the coarse intersection of #Z and Z isbounded. Let G = H'xZ C H. By
induction assumption, there exists a G-cocompact convex subcomplex U C X. Let
V' C U be the gate with respect to i - U. Note that both U and & - U are H'-invariant,
so V' is H'-invariant. By Lemma 2.6(3), V is the coarse intersection of U and i - U
Hence, by Lemma 3.9 applied to G and #Gh™!, the action H' ~, V is cocompact.

By Lemma 3.7, there exists a minimal H’-cocompact convex subcomplex, for
which we keep the notation V. Then for any # € H,,, the translate & - V is
minimal H’-invariant, hence parallel to V by Lemma 3.7. Let Py = V x V+
be the combinatorial parallel set of V (see Lemma 2.9). We have that Py is
H -invariant. Moreover, since V is H'-invariant, there are induced actions H ~, V=
and Hy, ~ V4.

Choose a point v € V. Let ¥ : Hy, — V= be the composition of the orbit
map i — h - v with the coordinate projection. We claim that v is a quasi-isometric
embedding. This follows from assumption (2) and the estimates below, where ~
means equality up to a uniform multiplicative and additive constant. Namely, for any
hi,h, € H,, we have:

d,,(h1,h2) ~dg(hiH' ho H') ~ dx(hy - V.hy - V) = dy (¥ (h1). ¥ (h2))

By Theorem 2.3, since V contains an isometrically embedded copy of R”"~1,
the asymptotic rank of VL1 is < 1, and hence V+ is hyperbolic. Let V}, C yL
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be the combinatorial convex hull of V¥ (H,,). Then dyaus(Vim, ¥ (Hy)) < oo by
Theorem 3.3. Moreover, V,, is H -invariant under the action H ~, V+ since ¥ (H,,)
is invariant under H. Thus H acts cocompactly on the convex subcomplex
V x V,, € Py. Notice that since H' ~, ¥ (Hy,) is trivial, the action H' ~, V,
is almost trivial.

By now we already know that H is convex cocompact. As for properties (i)—(iii),
if m = 1, then it suffices to take Yo = V and Y7 = V;. If m > 2, to obtain the
required decomposition, we consider X’ =V x Viy, H” = []; £(n—1) Hi and we
repeat the previous argument. This gives rise to an H -cocompact convex subcomplex
V' %X Vip1 €V x Vi, where V' is a minimal H"”-cocompact convex subcomplex.
Since V, is contained in some R-neighbourhood of a V’, the intersection V,;,—1 NV},
is compact. Moreover, V' and V;;,—; admit cubical product decompositions

Vi=WV'nV)yx(V'nVy,) and Vi1 = (Vime1 O V) X (Vine1 0 Vi),
thus

V' X Vgt = (V' V) x (V! O Vi) X (Vipet N V) X (Vi1 O V).

The H-action respects the above decomposition. Moreover, the induced action
H' ~ (V' NV,) is almost trivial and the induced action H” ~, (Vju—1 N V) is
almost trivial. If m = 2, thenwetake Y1 = Vi NV, Y, = V' NV, and Yy =
VnvHyuwiny,). Ifm > 3,thenwelet X" = V' x V1, H” = ]—[,-#(m_z) H;
and we repeat the previous process to obtain further product decomposition. We run
this process m times, obtaining the required decomposition as the result of the last
step. In each step, we possibly get nontrivial compact factors similar to V,,—1 N V},.
We absorb all these compact factors into the factor ¥, (we can also discard them). [J

4. Artin groups

4.1. Background on Artin groups. Let A be an Artin group with defining graph I,
and generators S. Let W be the Coxeter group defined by I'. Forany 7" C S let Wr
(respectively Ar) be the special subgroup of W (respectively A) generated by T'.
The special subgroup Wr is naturally isomorphic to the Coxeter group defined by the
subgraph I'7 induced on 7' [10]. Similarly, by [41] the special subgroup Ar of A is
naturally isomorphic to the Artin group defined by I'r.

Lemma 4.1 ([16, Theorem 1.1]). Special subgroups of Artin groups are convex with
respect to the word metric defined by standard generators.

A subset 7' C § is spherical if the special subgroup Wr is finite. The dimension
of the Artin group A is the maximal cardinality of a spherical subset of §.
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The following is a consequence of [15] and [14, Corollary 1.4.2].
Theorem 4.2. Let A be an Artin group of dimension n. Suppose that
(A) n <2, or
(B) every clique T in I" is spherical.

Then there is a finite n-dimensional cell complex that is a K(A, 1).

4.2. Two-generator Artin groups. We start with the description of most two-
generator Artin groups as virtually Fi x Z, where Fj is the free group with k
generators.

Lemma 4.3. Let A be an Artin group with defining graph I a single edge labelled
byn > 2. Then

(1) A has a finite index subgroup of form Fy x Z with k > 2, and

(2) no power of one of the two standard generators lies in the Z factor.

Proof. By [6] (or by our proof of Theorem 5.1) A acts freely and cocompactly on a
product of a tree and a line, where a central element acts as a translation in the line
factor. By [7, Theorem I1.6.12] A virtually decomposes as A’ x Z. The induced action
of A" on the tree factor has finite vertex stabilisers so by Bass—Serre theory A’ is a
graph of finite groups, in particular A’ is virtually free, justifying (1). Part (2) follows
from the fact that standard generators act hyperbolically on the tree factor. L]

Throughout this section by X we denote the inverse of x. By x? we denote the
conjugate Zxz.
Let A, = (a,b |aba... = bab...). Denote A = aba... =bab....Let A,
N’ N—— N —’ N——

n n n n
be the kernel of the homomorphism sending each generator to the generator of Z/2

i.e. the subgroup consisting of all words of even length. The group A/, is generated
by the elements: r = ab,s = ab.t = ab. If ¢ is a word in an alphabet A, and
x € A, then we denote by Exp, (¢) the sum of all the exponents at x in ¢.

By direct computation we immediately establish the following:

Lemma 4.4. If n is odd, then the conjugation by A is an order two automorphism
sending s > 5,t > t,r > q, where ¢ = ba = 5rt. In particular, A? is a central
element.

If n is even, then A is a central element.

Let z be the element A2 for n odd and the element A for n even.

Lemma 4.5. If n is odd, then we have
b" = ¢(s,t,r)A,

where Exp, (¢) = 0.
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Proof. Consider the following word ¢ expressed as a product of terms indexed by
decreasing i:

=
N |

Since r' appear in the expression defining ¢ only as elements that we conjugate by,
we have Exp, (¢) = 0.
To verify that b" = @A, note that

n—3 - n—3 _11—3_1_ n—

0
- = i . n—3__ _— = S ¢ o B n—1
qb:sl_[rltr’ =§(F 2 tr 2 }{f 2 fr 2 1).-'(rz‘r)l‘=srn2 (r7) 2

Since 572" = ba(ha)"z = bA and riA = Aqt = Ab?, we have
¢(str)A—sr TEADTL = bAALTTY = b, O
Corollary 4.6. If n is odd, we have
b*"z € [A},, A].
Proof. We have

"= (s, 1, 1) AP (s, 1, 7)A = P(s,t,7)p (5,7, q)z.

Denote the word ¢(s,t,7)p(5,1,q) by ¥(s,t,r,q). By Lemma 4.5, we have
Exp,(¥) = Exp,(¥) = 0. We also have Exp;(y) = Exp,(¥) = 0 since the
total exponents of s and ¢ in ¢ (s, 7, r) are equal to the total exponents of § and 7 in
@ (5,1, q), respectively. Thus ¢ € [A), A!]. O

4.3. Surface lemma. The following lemma will allow us to utilise the preceding
result when discussing finite index subgroups of A,.

Lemma 4.7. Let G be a finitely generated group and let z € G be central. Let H
be a finite index normal subgroup of G, and let h € H N z[G, G]. Then for any
homomorphism p : H — Z such that p({z) N H) # {0}, there exist a positive
integer m and g € G with p((h™)&) # 0.

Proof. Let X be a presentation complex for G. Let S be an oriented surface with
connected dS and basepoint s € dS, mapping to X, such that on the level of
fundamental groups dS + hZ. Let X be the finite cover of X corresponding to H
and let S be a finite cover of S such that § — S — X lifts to S — X. Choose a
system 3 of nonintersecting arcs that join the basepoint of S to the other preimages
of s, one for each of the boundary components of S. Consider the surface S’ obtained
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from S by cutting along the arcs of X, and the mapping S" — X that factors through S.
Then, as the boundary of a surface, dS’ is mapped to an element f € H = m, ()? )
contained in [H, H]. The arcs of ¥ map to paths in X that project to closed paths
in X corresponding to some g; € G. Thus we have f = ]_[?zl(hmf)gi zM  where
m; > 1with M = m;.

Since H is normal, each (A2™)& lies in H. We have

q
p( H(h’"")g") = p(z") #0.

i=1

That means that there is at least one element (A™ )& such that p((h™)%7) #0. O

Corollary 4.8. Let n be odd and let H be a finite index normal subgroup of A),.
Then for any homomorphism p : H — 7 such that p({z) N H) # {0}, there exist a
positive integer m and g € A, such that b™ € H and p((b™)8) # 0.

Proof. Let k be large enough so that b2"* € H. By Corollary 4.6, we can apply
Lemma 4.7 with G = A}, h = b21k and z¥ in the role of z. O

Corollary 4.9. Let n be even and let H be a finite index normal subgroup of Ap.
Then for any homomorphism p : H — Z such that p({z) N H) # {0}, there exist a
positive integer m and g € A, such that at least one of (a™)® and (b™)% lies in H
and is not mapped to 0 under p.

Proof. Letk = %k’ be a nonzero integer such that a*, b* € H. Since K = (ab)*,
we have
a*bk e 2% (A, A,].
By Lemma 4.7, we have m > 0 and g € A, such that p((a¥b¥)™)&) # 0. Let
f = (a*)% and h = (b*)&. We have (fh)™ € f™h™[H, H]. Thus p(f™h™) # 0
and so at least one of f™ = (a*™)& and k™ = (b¥™)# is not mapped to 0 under p.
O

5. The main theorem

In this section we prove Theorem 1.1. The implication (i) = (ii) is obvious.

5.1. Implication (iii) = (i).
Theorem 5.1. Let A be an Artin group with each connected component of the defining
graph:

* a vertex, or an edge, or else

* all interior edges labeled by 2 and all leaves labelled by even numbers.

Then A is the fundamental group of a nonpositively curved cube complex.
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Proof. We assume without loss of generality that I" is connected, since if I" has
more connected components, then A is the fundamental group of the wedge of the
complexes obtained for its connected components.

If ' is a single vertex, then A is the fundamental group of a circle.

If I is a single edge labelled by an odd n, then let K, be the cube complex
described in the figure below.

A 4
k4
W
A 4
Y

R 4
W
A 4
A 4

On the left side we see part of the 1-skeleton of K, consisting of three edges labelled

by a, b, t, and the right side indicates how_to attqch a rectangle (subdivided into n

squares) along its boundary pathab ...at ha...bt. Itis easy to check that the link
N e’ N’

n n
of each of the two vertices in K, is isomorphic to the spherical join of two points

with n points, hence K, is nonpositively curved. By collapsing the 7-edge we obtain
the presentation complex for the standard presentation of A4, so 7;(K,) = A. We
learned this construction from Daniel Wise.

If I' is a single edge labelled by an even n, let x = ab. The group A is then
presented as (a, x | ax"/? = x"/2a). Let K, 4 be the cube complex described in the
figure below.

o‘ T .

.........

A 4
W

W
k 4
W
k4

o -~

One can check that the link of the unique vertex in K, , is isomorphic to the spherical
join of two points with n points, hence K, , is nonpositively curved. It is clear that
T (Kn,a) = A.

Similarly if we let y = ba, then A can be presented as (b, y | by"/? = y"/2p).
We define K, , in a similar way. Note that the a-circle in K, 4 is a locally convex
subcomplex, so is the b-circle in K, p.

If I contains more than one edge, then let I'” € I" be the nonempty subgraph
induced on all the vertices that have at least two neighbours. Thus the edges of I'" are
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precisely the interior edges and by the hypothesis they are labelled by 2. Hence Ar-
is a right-angled Artin group. The Salvetti complex S(I"') is the nonpositively curved
cube complex obtained from the presentation complex of Ar- by adding the missing
cubes of higher dimension (see [13]). Let {(s;, t,-)}:.‘=1 be the collection of leaves
of ' with s5; € I'". Let n; be the label of the edge (s;,t;), which is even. Let K be
the amalgamation of { K, ; }f‘zl and S(I'’) along the s;-circles. Then 71 (K) =

and it follows from [7, Proposition II.11.6] that K is nonpositively curved. O

5.2. Implication (ii) = (iii).

Theorem 5.2. Let A be a 2-dimensional Artin group. If A is virtually cocompactly
cubulated, then each connected component of the defining graph of A is either

* avertex, or an edge, or else

* all its interior edges are labeled by 2 and all its leaves are labelled by even
numbers.

Proof. Suppose that there exists a finite index subgroup A < A that acts properly
and cocompactly by combinatorial automorphisms on a CAT(0) cube complex X.
Without loss of generality, we assume that A is normal in A. It suffices to prove:

(1) noedge of I" has an odd label, unless it is an entire connected component, and
N\

(2) no interior edge of I" has an even label > 4.
Let us first prove (1). Suppose to the contrary that I" has an edge (a, ) with odd
label and another edge (b, ¢). Let A,p be the special subgroup generated by a and b.
By A/, we denote its index-two subgroup that is the kernel of the homomorphism

to Z/2 sendmg both @ and b to 1. Let Aab = Fj x Z be a finite 1ndex subgroup
of A’ NA guaranteed by Lemma 4.3(1). We can also assume that Aab is normal
in A; . Similarly, let Ap. be the special subgroup generated by » and ¢, and

let Ay = F; x 7Z be a finite index subgroup of A, N A. Note that the edge (b, ¢)
might be labelled by 2 and then / = 1.

Since A is a CAT(0) group, we can speak of its asymptotic rank. By
Theorem 4.2(A), there exists a finite 2-dimensional cell complex that is a K(A4, 1).
Thus by Lemma 2.5, the asymptotic rank of Ais < 2 and so is the asymptotic rank
of X. The subgroup Aab is convex with respect to the standard generators of A by
Lemma 4.1 and so A,y is quasi-isometrically embedded in A. We can thus apply
Theorem 3.8 to find a convex subcomplex Y, that is Aab cocompact. Moreover,
there is a cubical product decomposition Y., = V,;, x H,p such that the action
of ffab respects this decomposition, the vertical factor V,j is quasi-isometric to R,
and the 7Z factor Z of f‘iab acts almost trivially on Hgp.

Consider Min(Z) = R x Vy C V, for the induced action of Z, where R is an
axis of Z. Since Z is contained in the centre of ffab, we have an induced action
of Agp on R x Vp respecting this decomposition. The factor 1} is bounded, so Vj
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contains a fixed-point of the action of Agp. Thus R x V, contains an /fab—invariant
line /. Let p: Agp — Isom(/) be the induced map. Note that p(ffab) does not flip
the ends of /. Moreover, since V,; is a cube complex, the translation lengths on / are
discrete. This gives rise to a homomorphism p : ffab — 7 assigning to each element
of Agp its translation length on /. Note that p(Z) # 0. By Corollary 4.8 applied
to H = /fab, there exists a nonzero integer m and g € A;b such that p((b™)&) # 0.

By normality of A, we have (/i pe)® < A. Let Y. be a convex (AA pe ) -cocompact
subcomplex guaranteed again by Theorem 3.8. By [41] we have A, NAp. = Ap,and
hence the groups (b™)€ and Agp, N (Apc)8 have a common finite index subgroup B.
Let Y C Y, be the gate with respect to Y. Then Y is the coarse intersection of Y,
and Y3, by Lemma 2.6(3). By Lemma 3.9, Y is B-cocompact.

Since Y is a convex subcomplex, it has a product structure ¥ = Yy x Yy where
Yy C Vgp and Yy € H,p. We have p(B) # 0, so Yy is unbounded. Since Y
is quasi-isometric to R, the factor Yy is bounded. Since Z acts almost trivially
on H,p, any of its orbits in Y, is at a finite Hausdorff distance from Y. Hence Z
is commensurable with B. Thus there exists an integer j # 0 such that (b%)/ € Z,
and hence b’ € Z, contradicting Lemma 4.3(2).

Let us now prove (2). Suppose that I" has edges (a, b), (b, ¢), and (¢’, a) (here ¢
and ¢’ are possibly the same), where (a, b) has an even label > 4. Let Aab, /fbc, AAcfa
be finite index subgroups of Az, N A, Ape N A, Acrag N A, respectively, that are
isomorphic to a product of a free group and Z. Assume moreover that Agp is
normal in A,p. Let Y, = V,p X Hyp be a convex Aab-cocompact subcomplex,
and let p : Aap — Z be defined as before. By Corollary 4.9, there exist a nonzero
integer m and g € A, such that at least one of (a”)# and (b™)# lies in Agp and is
not mapped to 0 under p. Without loss of generality we can assume p((b™)%) # 0.
The rest of the argument is identical as in the proof of (1). ]

6. 3-generator Artin groups

This section is devoted to the proof of Theorem 1.2. Let A be the three-generator
Artin group with mgp = 3, mp, = 2, and mye = 3,4, or 5, and let W be the Coxeter
group with the same defining graph. Consider a longest word in a, b, ¢ which is a
minimal length representative of the element it represents in W. This word represents
also an element of 4, which we call A.

Lemma 6.1. (i) The centre Z of A is generated by A? for my. = 3 and by A for
Mge = 4 or 5.

(ii) The intersections of Agp and Ap. with Z are trivial.

(iii) In Awe have Agp X Z N Ape X Z = Ap X Z.
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Proof. Assertion (i) follows from [18, Theorem 4.21].

For (ii), let Agp = aba. By [18, Proposition 4.17], each element of A, is
represented by A;f ¢(a,b), where ¢ is a positive word in a, b, and k > 0. If we had
¢(a.b) = A¥, Al for some [ > 0,k > 0, then by [18, Theorem 4.14] this equality
would also hold in the Artin semigroup, contradicting the fact that A is expressed as
a positive word involving all a, b, c. The same argument works for Ap..

For (iii) we need to show A,p x Z N Ap. X Z C Ap x Z. Since b and ¢ commute,
it suffices to show that for each m # 0 we have ¢ ¢ Agzp X Z. If mye. = 3, then
this follows from a well known fact that A/ Z is the mapping class group of the four
punctured disc, where A, fixes a curve around the first three punctures and ¢ is a
half-Dehn twist in a curve around the third and the fourth.

If mge = 4 or 5, assume for contradiction that ¢ = gz, for some z € Z and
g € Agp. Thus ge™ = g2z = gzg = c™g. Letg = A;}f(p(a,b), where ¢ is a
positive word in a, b, and k > 0 is even. Thus ¢(a, b)c™ Agb — Aﬁbcmqb(a, b).

By [18, Theorem 4.14] this equality also holds in the Artin semigroup. The
relation acac = caca or acaca = cacac involves on each side 2 occurences of ¢
separated by an occurence of a. The word ¢(a, b)c™ A’; » does not contain such a
subword, and this property is invariant under the replacements bc = cb, aba = bab.
Thus to pass from ¢ (a, b)c™ A’Zb to A’;bcmq’)(a, b) one can only use hc¢ = ¢b, and
aba = bab, which is the relation defining A,p. Thus there is [ such that in Az
we have ¢(a,b)b! = A’c‘;b. Hence ¢ = b~!. Thus ¢™ = b~!z, contradicting
assertion (ii). Cl

We also need the following consequence of rank-rigidity [12].

Lemma 6.2. Let G be a cocompactly cubulated group with centre containing Z 2= 7.
Then G has a finite index subgroup Go x Z with Gy cocompactly cubulated.

Proof. Suppose that G acts properly and cocompactly by cubical automorphisms
on a CAT(0) cube complex X. By [12, Corollary 6.4(iii)], if we replace X with
its essential core, and G with a finite-index subgroup, we obtain a cubical product
decomposition of X respected by G, such that for each factor there is an element
g € G acting on it as arank one isometry. Let Xy be a factor on which Z acts freely,
and combine all other factors into Xz, sothat X = Xy x Xy. Let g € G acton Xy
as a rank one isometry.

Note that the generator z of Z acts on Xy as a rank one isometry. Otherwise an
axis of g would not be parallel to an axis of z. Hence g and z would generate Z?>
acting properly on Xy, contradicting the fact that g has rank one. Consider Min(Z) =
R x Y C Xy, where R is an axis of Z. Since Z is contained in the centre of G,
we have an induced action of G on R x Y respecting this decomposition. Since z
has rank one, we have that Y does not contain a geodesic ray, and hence is bounded.
Consequently, Y contains a fixed-point of the action of G. Thus Xy contains
a G-invariant line /.
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Let p : G — Isom(/) be the induced map. Note that p(G) does not flip the
ends of /. Moreover, since Xy is a cube complex, the translation lengths on / are
discrete. Thus the image of p can be identified with Z, which contains p(Z) as a
finite index subgroup. Let Gy = ker(p). Thus Z x Gy is a finite index subgroup
of G. Moreover, G acts properly by cubical automorphisms on Xz C X. Since the
action of Z on Xy is proper, the action of Gy on X g is cocompact. O

We complement Lemma 6.2 with the following:

Lemma 6.3. Let G = G X Z be finitely generated, with Z = 7. Let H < G be a
finite product of finitely generated free groups of rank > 2 that is quasi-isometrically
embedded.

(i) The map H — G/ Z is a quasi-isometric embedding.

(ii) Let G be cocompactly cubulated. If we require that H N Z is trivial, then
assertion (i) holds also if in the product we allow free groups of rank 1.

Proof. If H is a free group of rank > 2, then we choose in H a free generating set S=*.
In Z we consider the generating set {£1} and in G any symmetric generating set.
Let|:|u.| |z.|* |G, denote the corresponding word-lengths. Let ng,,mz be the
coordinate projections from G to Gy, Z, respectively. By assumption, there exists
a constant ¢ such that for any 7 € H, we have |h|g < ¢(|mg,(h)|G, + |7z (h)|z).
Viewing h as a reduced word over S * choose s € S* such that the word w =
hsh™!s~!isreduced. Then |7z (w)|z = 0, and applying the above inequality with w
in place of h we obtain 2|h| g + 2 < ¢|mg, (W)l < 2¢(|m6o(h)lG, + 1764 (5)]Go)-
Consequently ||y < c¢|ng,(h)|G, + a for some uniform constant @, and thus the
restriction of g, to H is a quasi-isometric embedding, as desired.

Similarly, if H is a product of free groups H; of rank > 2, then we choose
generating sets Sii in H;. Leth = [[ h; with h; € H;. To get an estimate on |h| g, it
suffices to use a product of reduced words w = [] h,-s,-hl._lsi_ L withs; € Sl.i. This
proves assertion (i).

If G is cocompactly cubulated, then by Lemma 6.2, after passing to a finite
index subgroup, the quotient G/Z acts properly and cocompactly on a CAT(0) cube
complex X. Let H = Z" x Hy < G, where Hj is a finite product of finitely
generated free groups of rank > 2. We keep the notation H for the isomorphic
image of H in G/Z. Then H preserves Min(Z") = R"” x Y C X and respects its
product structure. We fix v € R” and y € Y. From assertion (i), the orbit map
ho — (ho - v, hg - y) from Hy to R"” x Y is a quasi-isometric embedding. Since the
commutator of Hy acts trivially on the R” factor, using the same argument as for
assertion (i), we obtain ¢ satisfying |ho| g, < cdy(y.ho-y). Onthe other hand, there
is ¢/ such that for f € Z" we have | f|zn < ¢’dgn (v, f - v). Let d be the maximum
of the displacements drn (v, s - v) over the generators s of Hy. For fhy € H consider
the maximum norm || fho|| = max{| f|z».2c'd|ho|u,}. If | flzn = 2c'd|ho|m,,
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then { [
c'dgn (v, fho-v) = | flzn —c'dlho|Hy = Elflzn = EllfhoH-

Otherwise, if | f|zn < 2¢’d |ho|H,, then

cdy(y, fho-y) =cdy(y,ho-y) > |hola, >
This proves assertion (ii). L]

Proof of Theorem 1.2. The implication (i) = (ii) is obvious. The implication
(iii) = (i) follows from Theorem 5.1 unless the defining graph I' of A has two
edges (a, c), (b, c) with label 2. By Theorem 5.1, A, is the fundamental group of a
nonpositively curved cube complex K. Then K x S is a nonpositively curved cube
complex with fundamental group A.

The implication (ii) = (iii) follows from Theorem 5.2 if A is 2-dimensional.
Suppose now that A is not 2-dimensional. Then the labels of I" are m,; = 3,
mpe = 2,and mgy. = 3,4, or 5. Let Z be the centre of A described in Lemma 6.1(i).

Suppose that there exists a normal finite index subgroup A < A that is
cocompactly cubulated. Let Z =A4AnNZ. By Lemma 6.2, up to replacing A
with a further finite index subgroup, we have A = Ay x Z, where Ay is cocompactly
cubulated. We keep the notation Ay for its isomorphic image in the quotient A/Z.
Note that /fo < A/Z is a normal finite index subgroup.

By Theorem 4.2(B), the Artin group A is the fundamental group of a
3-dimensional cell complex which isa K (4, 1). Thus, by Lemma 2.5, the asymptotic
rank of A is < 3. Hence the asymptotic rank of AO is < 2.

By Lemma 6.1(ii), the intersections of A, and Ap. with Z are trivial.
Thus A,p and Ap. embed into A/Z under the quotient map, and we keep the
notation A,p and Ay, for their images in A/Z. By Lemma 6.1(iii) in A/Z we have
Agp N AQc = Ap. X

Let Agp = Fi X Z be a finite index subgroup of A/, N Ao guaranteed by
Lemma 4.3(1). We can assume that /fab is normal in A;b. Let ffbc = Ak ﬂ/fo =72

By Lemmas 4.1 and 6.3(ii), Aab, /fbc < A/Z are quasi-isometric embeddings.
From this point we argue to reach a contradiction exactly as in part (1) of the
proof of Theorem 5.2. [
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