Cocompactly cubulated 2-dimensional Artin groups

Autor(en): Huang, Jingyin / Jankiewicz, Kasia / Przytycki, Piotr
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 91 (2016)
Heft 3

$$
\text { PDF erstellt am: } \quad 01.05 .2024
$$

Persistenter Link: https://doi.org/10.5169/seals-630568

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Cocompactly cubulated 2-dimensional Artin groups

Jingyin Huang, Kasia Jankiewicz and Piotr Przytycki*

Abstract

We give a necessary and sufficient condition for a 2-dimensional or a three-generator Artin group A to be (virtually) cocompactly cubulated, in terms of the defining graph of A.

Mathematics Subject Classification (2010). 20F65.
Keywords. Artin group, $\mathrm{CAT}(0)$ cube complex.

1. Introduction

We say that a group is (cocompactly) cubulated if it acts properly (and compactly) by combinatorial automorphisms on a CAT(0) cube complex. We say that a group is virtually cocompactly cubulated, if it has a finite index subgroup that is cocompactly cubulated. Such groups either fail to have Kazhdan's property (T) or are finite [32], are bi-automatic [40], satisfy the Tits Alternative [39] and, if cocompactly cubulated, they satisfy rank-rigidity [12]. For more background on CAT(0) cube complexes, see the survey article of Sageev [38].

The Artin group with generators s_{i} and exponents $m_{i j}=m_{j i} \geq 2$, where $i \neq j$, is presented by relations $\underbrace{s_{i} s_{j} s_{i} \cdots}_{m_{i j}}=\underbrace{s_{j} s_{i} s_{j} \cdots}_{m_{i j}}$. Here $\underbrace{s_{i} s_{j} s_{i} \cdots}_{m_{i j}}$ denotes the first half of the word $\left(s_{i} s_{j}\right)^{m_{i j}}$. The defining graph of an Artin group has vertices corresponding to s_{i} and edges labeled $m_{i j}$ between s_{i} and s_{j} whenever $m_{i j}<\infty$.

Artin groups that are right-angled (i.e. the ones with $m_{i j} \in\{2, \infty\}$) are cocompactly cubulated, and they play a prominent role in theory of special cube complexes of Haglund and Wise [23]. However, much less is known about other Artin groups, in particular about braid groups. In [45] Wise suggested an approach to cubulating Artin groups using cubical small cancellation. However, we failed to execute this approach: we were not able to establish the $\mathrm{B}(6)$ condition.

In this article we consider Artin groups that have three generators, or are 2-dimensional, that is, their corresponding Coxeter groups have finite special

[^0]subgroups of maximal rank 2 (or, equivalently, 2-dimensional Davis complex). We characterise when such a group is virtually cocompactly cubulated. This happens only for very rare defining graphs. An interior edge of a graph is an edge that is not a leaf.
Theorem 1.1. Let A be a 2-dimensional Artin group. Then the following are equivalent.
(i) A is cocompactly cubulated,
(ii) A is virtually cocompactly cubulated,
(iii) each connected component of the defining graph of A is either

- a vertex, or an edge, or else
- all its interior edges are labeled by 2 and all its leaves are labelled by even numbers.

Moreover, if A is an arbitrary Artin group, then (iii) implies (i).
Theorem 1.2. Let A be a three-generator Artin group. Then the following are equivalent.
(i) A is cocompactly cubulated,
(ii) A is virtually cocompactly cubulated,
(iii) the defining graph of A is as in Theorem 1.1(iii) or has two edges labelled by 2 .
1.1. Remarks. From Theorem 1.2 it follows that the 4 -strand braid group is not virtually cocompactly cubulated.

Note that, independently, Thomas Haettel [19] has obtained a full classification of cocompactly cubulated Artin groups. His methods do not apply yet to finite index subgroups of Artin groups, but we intend to work together and prove that an Artin group is virtually cocompactly cubulated only if it is cocompactly cubulated.

The equivalence of (i) and (ii) has no counterpart for Coxeter groups, where the group \widetilde{A}_{2} generated by reflections in the sides of an equilateral triangle in \mathbb{R}^{2} is virtually cocompactly cubulated, but not cocompactly cubulated.

There are Artin groups that do not satisfy the equivalent conditions from Theorem 1.1, but are cubulated. Namely, it follows from [9,24] that if the defining graph of A is a tree, then A is the fundamental group of a link complement that is a graph manifold with boundary. Hence by the work of Liu [30] or Przytycki and Wise [36] the Artin group A is cubulated.

Artin groups of large type, that is, with all $m_{i j} \geq 3$ are 2-dimensional. For many of them Brady and McCammond constructed 2-dimensional CAT(0) complexes with proper and cocompact action [6]. However, these complexes are built of triangles, not squares.
1.2. Some historical background. Sageev invented a way of cubulating groups (i.e. showing that they are cubulated) using codimension 1 -subgroups [37], which was later also explained in the language of walls in the Cayley complex of the group [17,33]. Here we give a brief account on some cubulation results, for a more complete one see [25].

Using the technology of walls, Niblo and Reeves cubulated Coxeter groups [32], then Williams [43] and Caprace and Mühlherr [11] analysed when this cubulation is cocompact. It is not known if all Coxeter groups are virtually cocompactly cubulated. Wise cocompactly cubulated small cancellation groups [44], and Ollivier and Wise cocompactly cubulated random groups at density $<\frac{1}{6}$ [34].

Furthermore, using the surfaces of Kahn and Markovic, Bergeron and Wise cocompactly cubulated the fundamental groups of closed hyperbolic 3-manifolds [3,28], and later Wise cocompactly cubulated the fundamental groups of compact hyperbolic 3-manifolds with boundary [45]. Hagen and Wise cocompactly cubulated hyperbolic free-by-cyclic groups [21].

Groups that are not (relatively) hyperbolic are harder to cubulate cocompactly. Przytycki and Wise cubulated the fundamental groups of all compact 3-dimensional manifolds that are not graph manifolds, as well as graph manifolds with boundary [35, 36]. In [30] Liu gave a criterion for a graph manifold fundamental group to be virtually cubulated specially (meaning that the quotient of the action admits a local isometry into the Salvetti complex of a right-angled Artin group), but we do not know if this is equivalent to just being cubulated. Hagen and Przytycki gave a criterion for a graph manifold fundamental group to be cocompactly cubulated [20]. In general, it is difficult to find obstructions for groups to be cubulated. Another result of this type is Wise's characterization of tubular groups that are cocompactly cubulated [46].
1.3. Proof outline for (i) \Rightarrow (iii) in Theorem 1.1. Given a 2-dimensional Artin group acting properly and cocompactly on a CAT(0) cube complex, we show that its two-generator special subgroups are convex cocompact. More precisely, each of them acts cocompactly on a convex subcomplex which naturally decomposes as a product of a vertical factor and a horizontal factor. Geometrically, the intersection of two such subgroups is either vertical or horizontal. However, if Theorem 1.1(iii) is not satisfied, then this intersection is neither vertical nor horizontal by algebraic considerations.

One of the ingredients of the proof is Theorem 3.8, which asserts that a top rank product of hyperbolic groups acting on a CAT(0) cube complex is always convex cocompact.
1.4. Organization. In Section 2 we give some background on CAT(0) spaces and CAT(0) cube complexes. Section 3 is devoted to the proof of Theorem 3.8. In Section 4 we give some background on Artin groups and discuss some algebraic
properties of two-generator Artin groups. Finally, in Section 5 we prove Theorem 1.1 and in Section 6 we prove Theorem 1.2.

Acknowledgements. The authors would like to thank Daniel T. Wise for helpful discussions and the referee for useful remarks.

2. Preliminaries

A group is a CAT(0) group if it acts properly and cocompactly on a $\mathrm{CAT}(0)$ space. We assume the reader is familiar with the basics of $\mathrm{CAT}(0)$ spaces and groups. For background, see [7]. In this section we collect some less classical results.
2.1. Asymptotic rank. The following definition was introduced in [29].

Definition 2.1. Let X be a $\operatorname{CAT}(\kappa)$ space. For $x \in X$ we denote by $\Sigma_{x} X$ the $\operatorname{CAT}(1)$ space that is the completion of the space of directions at x [7, Definition II.3.18]. The geometric dimension of X, denoted $\operatorname{GeomDim}(X)$ is defined inductively as follows.

- $\operatorname{GeomDim}(X)=0$ if X is discrete,
- $\operatorname{GeomDim}(X) \leq n$ if $\operatorname{GeomDim}\left(\Sigma_{x} X\right) \leq n-1$ for any $x \in X$.

Definition 2.2. Let X be a CAT(0) space. Then its asymptotic rank, denoted by $\operatorname{asrk}(X)$, is the supremum of the geometric dimension of the asymptotic cones of X.
Theorem 2.3. Let X and Y be CAT(0) spaces. Then
(1) $\operatorname{asrk}(X \times Y) \geq \operatorname{asrk}(X)+\operatorname{asrk}(Y)$,
(2) if $\operatorname{asrk}(X) \leq 1$, then X is hyperbolic.

The first assertion follows from Theorem A of [29] and the second assertion follows from Corollary 1.3 of [42].
Definition 2.4. If G is a CAT(0) group acting properly and cocompactly on a CAT(0) space X, then the asymptotic rank of G is the asymptotic rank of X. By [29, Theorem C] this is the maximal n for which there is a quasi-isometric embedding $\mathbb{R}^{n} \rightarrow X$. Hence it does not depend on the choice of the CAT (0) space X.
Lemma 2.5. Suppose that G is a $\operatorname{CAT}(0)$ group, and that G acts properly and cocompactly on a contractible n-dimensional cell complex X (not necessarily $\mathrm{CAT}(0)$). Then the asymptotic rank of G is $\leq n$.

Proof. Choose any G-equivariant length metric on X. We will prove that there does not exist a quasi-isometric embedding $f: \mathbb{R}^{k} \rightarrow X$ for $k>n$. Otherwise, since X is contractible and admits a cocompact action of G, we can assume that f is a continuous quasi-isometry: such f can be defined by induction on consecutive skeleta of the standard cubical subdivision of \mathbb{R}^{k}.

Let $Y \subseteq X$ be the smallest subcomplex containing $f\left(\mathbb{R}^{k}\right)$. Then $f: \mathbb{R}^{k} \rightarrow Y$ is a quasi-isometry. Let $g: Y \rightarrow \mathbb{R}^{k}$ be a quasi-isometry inverse to f, we can again assume that g is continuous. For any $x \in \mathbb{R}^{k}$ the distance $d(g \circ f(x), x)$ is uniformly bounded and consequently there is a proper geodesic homotopy between $g \circ f$ and the identity map.

Recall that for a topological space X we can consider locally finite chains in X, which are formal sums $\Sigma_{\lambda \in \Lambda} a_{\lambda} \sigma_{\lambda}$ where a_{λ} are integers, σ_{λ} are singular simplices, and any compact set in X intersects the images of only finitely many σ_{λ} with $a_{\lambda} \neq 0$. This gives rise to locally finite homology of X, denoted by $H_{*}^{\text {lf }}(X)$. Moreover, proper maps induce homomorphisms on locally finite homology. See [5, Section 2.2] for more discussion.

Since there is a proper geodesic homotopy between $g \circ f$ and the identity map, $g \circ f$ induces the identity on $H_{*}^{\mathrm{lf}}\left(\mathbb{R}^{k}\right)$, and consequently $f_{*}: H_{k}^{\mathrm{lf}}\left(\mathbb{R}^{k}\right) \rightarrow H_{k}^{\mathrm{lf}}(Y)$ is injective. This leads to a contradiction, since $H_{k}^{\mathrm{lf}}\left(\mathbb{R}^{k}\right)$ contains the fundamental class $\left[\mathbb{R}^{k}\right]$ which is a nontrivial element, while $H_{k}^{\mathrm{lf}}(Y)=0$ since $\operatorname{dim}(Y)<k$.
2.2. Gate and parallel set. All CAT(0) cube complexes in our article are finitedimensional. Throughout this paper the only metric that we consider on a CAT(0) cube complex X is the CAT(0) metric d. The convex hull of a subspace $Y \subseteq X$ is the smallest convex subspace containing Y, and is not necessarily a subcomplex, while the combinatorial convex hull of Y is the smallest convex subcomplex of X containing Y. For a complete convex subspace $Y \subseteq X$ we denote by $\pi_{Y}: X \rightarrow Y$ the closest point projection onto Y.

The following lemma was proved in slightly different contexts by various authors [1,2,4,27]:

Lemma 2.6 ([27, Lemma 2.10]). Let X be a CAT(0) cube complex of dimension n, and let Y_{1}, Y_{2} be convex subcomplexes. Let $\Delta=d\left(Y_{1}, Y_{2}\right), V_{1}=\left\{y \in Y_{1} \mid\right.$ $\left.d\left(y, Y_{2}\right)=\Delta\right\}$ and $V_{2}=\left\{y \in Y_{2} \mid d\left(y, Y_{1}\right)=\Delta\right\}$. Then:
(1) V_{1} and V_{2} are nonempty convex subcomplexes.
(2) $\pi_{Y_{1}}$ maps V_{2} isometrically onto V_{1} and $\pi_{Y_{2}}$ maps V_{1} isometrically onto V_{2}. Moreover, the convex hull of $V_{1} \cup V_{2}$ is isometric to $V_{1} \times[0, \Delta]$.
(3) for every $\epsilon>0$ there exists $\delta=\delta(\Delta, n, \epsilon)>0$ such that if $y_{1} \in Y_{1}, y_{2} \in Y_{2}$ and $d\left(y_{1}, V_{1}\right) \geq \epsilon, d\left(y_{2}, V_{2}\right) \geq \epsilon$, then

$$
d\left(y_{1}, Y_{2}\right) \geq \Delta+\delta d\left(y_{1}, V_{1}\right), \quad d\left(y_{2}, Y_{1}\right) \geq \Delta+\delta d\left(y_{2}, V_{2}\right)
$$

We call $V_{1} \subseteq Y_{1}$ the gate with respect to Y_{2}, and $V_{2} \subseteq Y_{2}$ the gate with respect to Y_{1}. We write $\mathcal{G}\left(Y_{1}, Y_{2}\right)=\left(V_{1}, V_{2}\right)$. We say that Y_{1}, Y_{2} are parallel if $\mathcal{G}\left(Y_{1}, Y_{2}\right)=\left(Y_{1}, Y_{2}\right)$.

Lemma 2.7 ([26, Lemma 2.9]). Let X be a CAT(0) cube complex, and let $\left(V_{1}, V_{2}\right)=$ $\mathcal{G}\left(Y_{1}, Y_{2}\right)$ for some convex subcomplexes $Y_{1}, Y_{2} \subseteq X$. Let e be an edge in V_{1} and let h be the hyperplane dual to e. Then $h \cap V_{2} \neq \emptyset$.
Lemma 2.8 ([12, Lemma 2.5]). A decomposition of a CAT(0) cube complex as a product of $\mathrm{CAT}(0)$ cube complexes corresponds to a partition $\mathcal{H}_{1} \sqcup \mathcal{H}_{2}$ of the collection of hyperplanes of X such that every hyperplane in \mathcal{H}_{1} intersects every hyperplane in \mathcal{H}_{2}.

The following lemma was also proved in [2, Lemma 2.4].
Lemma 2.9. Let X be a $\operatorname{CAT}(0)$ cube complex and let $Y \subseteq X$ be a convex subcomplex. Let $\left\{Y_{\lambda}\right\}_{\lambda \in \Lambda}$ be the collection of all convex subcomplexes that are parallel to Y. Then the combinatorial convex hull P_{Y} of $\bigcup_{\lambda \in \Lambda} Y_{\lambda}$ admits a natural product decomposition $P_{Y}=Y \times Y^{\perp}$.
P_{Y} is called the combinatorial parallel set of Y.
Proof. Let \mathcal{H} be the collection of hyperplanes in X that separate some points in $\bigcup_{\lambda \in \Lambda} Y_{\lambda}$ and let $h \in \mathcal{H}$. We claim that either h intersects all Y_{λ} or it is disjoint from all Y_{λ}. Indeed, we have $\mathcal{G}\left(Y, Y_{\lambda}\right)=\left(Y, Y_{\lambda}\right)$ for all $\lambda \in \Lambda$. It follows from Lemma 2.7 that if h intersects some Y_{λ}, then it intersects Y, and hence it intersects all Y_{λ}.

Let \mathcal{H}_{1} and \mathcal{H}_{2} be the collections of hyperplanes satisfying the first assertion and the second assertion in the claim, respectively. For any $h \in \mathcal{H}_{2}$, there exist $\lambda, \lambda^{\prime} \in \Lambda$ such that h separates Y_{λ} from $Y_{\lambda^{\prime}}$. Thus h intersects every hyperplane in \mathcal{H}_{1}. Note that \mathcal{H} is the collection of hyperplanes that intersect P_{Y} and \mathcal{H}_{1} is the collection of hyperplanes that intersect Y. Thus by Lemma 2.8, P_{Y} admits a product decomposition $P_{Y}=Y \times Y^{\perp}$.

3. Cocompact cores

The main goal of this section is to prove Theorem 3.8 on existence of cocompact cores for top rank products of hyperbolic groups. The first step towards it is to study flats in a CAT(0) cube complex, which we do in Section 3.1. A hurried reader can proceed directly to Section 3.2 and use [47, Theorem 2.6] instead. However, our Theorem 3.4 is of independent interest.
3.1. Combinatorial convex hull of a flat. Throughout this paper a flat is a $\operatorname{CAT}(0)$ flat, i.e. an isometrically embedded copy of \mathbb{R}^{n}, not necessarily combinatorial. A half-flat is an isometrically embedded copy of $\mathbb{R}^{n-1} \times[0, \infty)$.
Lemma 3.1. Let X be a $\operatorname{CAT}(0)$ cube complex and let $F \subseteq X$ be a flat. Let h be a hyperplane in X intersecting F, and let h^{+}and h^{-}be the halfspaces of h. Then
either $F \subseteq h$, or $h \cap F$ is a codimension-1 flat in F. In the latter case, both $h^{+} \cap F$ and $h^{-} \cap F$ are half-flats.

Proof. The carrier N_{h} of h, which is its neighbourhood, has the form $N_{h}=h \times[0,1]$. Thus if $F \nsubseteq h$, then $h \cap F$ is a codimension-1 submanifold of F. Moreover, the intersections $h \cap F, h^{+} \cap F$, and $h^{-} \cap F$ are convex, thus the lemma follows.

Lemma 3.2. Let h be a hyperplane in a CAT(0) cube complex X. Suppose that l is a geodesic ray in X starting in h. If $l \nsubseteq h$, then there exists another hyperplane h^{\prime} in X intersecting l and disjoint from h.

Proof. Let N_{h} be the carrier of h. Let B be the first cube outside N_{h} whose interior is intersected by l. We claim that there is a hyperplane h^{\prime} intersecting B and disjoint from h. Indeed, pick a vertex $v \in N_{h} \cap B$ and let e be an edge of B containing v. If the hyperplane dual to e intersects h, then $e \subset N_{h}$. If this holds for any e, then $B \subset N_{h}$ by the convexity of N_{h}, which yields a contradiction. This justifies the claim.

By the claim, there a hyperplane h^{\prime} intersecting B and disjoint from h. It remains to prove that l intersects h^{\prime}. Otherwise, since l intersects the interior of the carrier $N_{h^{\prime}}$, we have that l is contained in $N_{h^{\prime}}$. Since l starts at h, we have that h intersects $N_{h^{\prime}}$ and hence it also intersects h^{\prime}, which is a contradiction.

We will also use a consequence of a result of Haglund [22, Theorem 2.28].
Theorem 3.3. Let X be a hyperbolic CAT(0) cube complex. Then any quasiisometrically embedded subspace of X is at finite Hausdorff distance from its combinatorial convex hull.

In the following theorem we generalise our results from [20, Section 3]. Here $d_{\text {Haus }}$ denotes the Hausdorff distance.

Theorem 3.4. Let X be a $\mathrm{CAT}(0)$ cube complex of asymptotic rankn and let $F \subseteq X$ be an n-flat. Let Y be the combinatorial convex hull of F. Then $d_{\text {Haus }}(F, Y)<\infty$.

Proof. If F is contained in the carrier $N_{h}=h \times[0,1]$ of a hyperplane h, then we can replace X by h and F by its projection to h. The combinatorial convex hull Y of F equals $Y^{\prime} \times[0,1], Y^{\prime} \times\{0\}$, or $Y^{\prime} \times\{1\}$, where Y^{\prime} is the combinatorial convex hull of the projection of F to h. Henceforth we can and will assume that F is not contained in the carrier of any hyperplane.

Let \mathcal{H} be the collection of hyperplanes intersecting F. We define a pencil of hyperplanes to be an infinite collection of mutually disjoint hyperplanes $\left\{h_{i}\right\}_{i=-\infty}^{\infty}$ such that for each $i,\left\{h_{j}\right\}_{j=-\infty}^{i-1}$ and $\left\{h_{j}\right\}_{j=i+1}^{\infty}$ are in different halfspaces of h_{i}. It follows from Lemma 3.1 that every pencil of hyperplanes in \mathcal{H} intersects F in a collection of parallel family of codimension-1 flats. A collection of pencils of hyperplanes in \mathcal{H} is independent if their corresponding normal vectors are linearly independent in $F=\mathbb{R}^{n}$.

Let $\left\{P_{i}\right\}_{i=1}^{m}$ be a maximal collection of pairwise independent pencils in \mathcal{H}. We claim that $m=n$ and that $\left\{P_{i}\right\}$ is independent. Suppose first $m>n$. Note that if two pencils $P, P^{\prime} \subseteq \mathcal{H}$ are independent, then every hyperplane in P intersects every hyperplane in P^{\prime}. This gives rise to a quasi-isometric embedding of \mathbb{R}^{m} into X, contradicting the bound on the asymptotic rank of X. If $m<n$ or if $m=n$ but $\left\{P_{i}\right\}$ is dependent, then there is a geodesic line l in F parallel to $h \cap F$ for all hyperplanes h in all P_{i}. Using Lemma 3.2, we can then produce a new pencil P formed of some hyperplanes intersecting l. Since P is independent from each P_{i}, this contradicts the maximality of m. This justifies the claim that $m=n$ and $\left\{P_{i}\right\}$ is independent.

For $1 \leq i \leq n$, choose $h_{i} \in P_{i}$ and let $F_{i}=h_{i} \cap F$. We will prove that for any hyperplane $h \in \mathcal{H}$, there exists F_{i} such that $h \cap F$ is parallel (possibly equal) to F_{i}. Otherwise, choose a geodesic line l in F transverse to $h \cap F$. By Lemma 3.2, h is contained in a pencil P_{h} of hyperplanes intersecting l. Note that P_{h} is independent from each P_{i}, contradicting the maximality of m.

Let $\mathcal{H}_{i} \subseteq \mathcal{H}$ be the collection of hyperplanes whose intersection with F is parallel to F_{i}. The above discussion implies $\mathcal{H}=\bigsqcup_{i=1}^{n} \mathcal{H}_{i}$. Moreover, for $i \neq j$, every hyperplane in \mathcal{H}_{i} intersects every hyperplane in \mathcal{H}_{j}. Let Y be the combinatorial convex hull of F. Since we assumed that F is not contained in the carrier of any hyperplane, the hyperplanes in Y are exactly the intersections with Y of the hyperplanes in \mathcal{H}. Two hyperplanes of Y intersect if and only if the corresponding hyperplanes in \mathcal{H} intersect. Hence by Lemma 2.8, we have a product decomposition $Y=Y_{1} \times \cdots \times Y_{n}$.

Let $\pi_{i}: Y \rightarrow Y_{i}$ be the coordinate projections. Let $l_{i}=\bigcap_{j \neq i} F_{j}$, which is a geodesic line in F. Note that for $j \neq i$ we have $l_{i} \subseteq F_{j} \subseteq h_{j}$ and hence the projection $\pi_{j}\left(l_{i}\right)$ is a single point. Thus the restriction of π_{i} to l_{i} is an isometric embedding. It follows that $F=\pi_{1}\left(l_{1}\right) \times \cdots \times \pi_{1}\left(l_{n}\right)$. Moreover, since $\pi_{i}\left(l_{i}\right)=\pi_{i}(F)$, each Y_{i} is the combinatorial convex hull of $\pi_{i}\left(l_{i}\right)$, since otherwise we could pass to a smaller convex subcomplex containing F.

Since each of Y_{i} contains a line and their product has asymptotic rank $\leq n$, by Theorem 2.3(1) each Y_{i} has asymptotic rank 1. By Theorem 2.3(2) each Y_{i} is hyperbolic. Thus by Theorem 3.3, we have $d_{\text {Haus }}\left(\pi_{i}\left(l_{i}\right), Y_{i}\right)<\infty$, and consequently $d_{\text {Haus }}(F, Y)<\infty$.

While we will not need it in the remaining part of the paper, from the proof above we can deduce the following interesting result which concerns flats that are not necessarily of top rank.
Corollary 3.5. Let X be a $\operatorname{CAT(0)~cube~complex~and~let~} F \subseteq X$ be a flat. Let $Y \subseteq X$ be the combinatorial convex hull of F. Then Y has a natural decomposition $Y=Y_{1} \times \cdots \times Y_{n} \times K$ such that:
(1) $n \geq \operatorname{dim}(F)$ and K is a cube.
(2) each Y_{i} contains an isometrically embedded copy of \mathbb{R} that is the projection of a geodesic line in F.
(3) no Y_{i} contains a facing triple of hyperplanes, that is, a collection of three disjoint hyperplanes such that none of them separates the other two.

Roughly speaking, (3) means that Y_{i} do not "branch".

3.2. Product of hyperbolic groups.

Definition 3.6. Let X be a CAT(0) cube complex. A group $H \leq \operatorname{Aut}(X)$ is convex cocompact if there is a convex subcomplex $Y \subseteq X$ that is H-cocompact, meaning that H preserves Y and acts on it cocompactly.

Lemma 3.7. Let X be a CAT(0) cube complex and let $H \leq \operatorname{Aut}(X)$ be convex cocompact. Then there exists a minimal H-invariant convex subcomplex. Moreover, any minimal H-invariant convex subcomplex is H-cocompact and any two minimal H-invariant convex subcomplexes are parallel.

Proof. Let $Y \subseteq X$ be an H-cocompact convex subcomplex. Let \mathcal{P} be the poset of H-invariant convex subcomplexes in Y. For the first assertion, by the KuratowskiZorn Lemma, it suffices to show that every descending chain of elements $\left\{Y_{\lambda}\right\}_{\lambda} \subseteq \mathcal{P}$ has a lower bound, or equivalently that their intersection is nonempty. Let $K \subseteq Y$ be compact such that $H K=Y$. Then each $K \cap Y_{\lambda}$ is nonempty, and by compactness of K so is their intersection.

For the second and third assertion, let $Y_{\min } \subseteq Y$ be a minimal element of \mathcal{P} and let Y^{\prime} be any other minimal H-invariant convex subcomplex. Let $\left(V, V^{\prime}\right)=$ $\mathcal{G}\left(Y_{\min }, Y^{\prime}\right)$. Then both V and V^{\prime} are H-invariant. By Lemma 2.6(1) both V and V^{\prime} are convex subcomplexes, hence from minimality of $Y_{\min }$ and Y^{\prime} we have $V=Y_{\min }$ and $V^{\prime}=Y^{\prime}$. Moreover, by Lemma 2.6(2) we have that Y^{\prime} is H-equivariantly isometric to $Y_{\min }$ and thus it is H-cocompact.

Theorem 3.8. Let X be a locally finite $\mathrm{CAT}(0)$ cube complex of asymptotic rank n. Let $H \leq A u t(X)$ be a subgroup satisfying
(1) $H=H_{1} \times \cdots \times H_{n}$, where each H_{i} is an infinite hyperbolic group, and
(2) for some (hence any) point $x \in X$ the orbit map $h \rightarrow h \cdot x$ from H to X is a quasi-isometric embedding.
Then H is convex cocompact. More precisely, if among H_{i} exactly $\left\{H_{i}\right\}_{i=1}^{m}$ are not virtually \mathbb{Z}, then there is a convex subcomplex $Y \subseteq X$ with a cubical product decomposition $Y=Y_{0} \times \prod_{i=1}^{m} Y_{i}$ such that
(i) Y is H-cocompact, and the action $H \curvearrowright Y$ respects the product decomposition, and
(ii) the induced action of $\prod_{i=m+1}^{n} H_{i}$ on Y_{0} is proper and cocompact, in particular Y_{0} is quasi-isometric to \mathbb{R}^{n-m}, and
(iii) for any pair $i \neq j$ with $1 \leq j \leq m$ and $1 \leq i \leq n$, the induced action $H_{i} \curvearrowright Y_{j}$ is almost trivial, i.e. by isometries at uniformly bounded distance from the identity.
In the proof we need the notion of coarse intersection. Let X be a metric space and let $N_{R}(Y)$ be the R-neighbourhood of a subspace $Y \subseteq X$. A subspace $V \subseteq X$ is the coarse intersection of Y_{1} and Y_{2} if V is at finite Hausdorff distance from $N_{R}\left(Y_{1}\right) \cap N_{R}\left(Y_{2}\right)$ for all sufficiently large R. For example, in Lemma 2.6, in view of its part (3), the gates V_{1}, V_{2} are the coarse intersections of Y_{1} and Y_{2}. However, in general the coarse intersection of two subsets might not exist.
Lemma 3.9 ([31, Lemma 2.2]). Let X be a finitely generated group with word metric. Then the intersection of a pair of subgroups is their coarse intersection.

See [31, Chapter 2] for more discussion on coarse intersection.
Proof of Theorem 3.8. We first prove that H is convex cocompact, which we do by the induction on m. Consider first the case $m=0$. Recall that all CAT(0) cube complexes in the article were assumed to be finite-dimensional. Thus by [8], H acts on X be semi-simple isometries. By the Flat Torus Theorem [7, Chapter II.7], H acts cocompactly on an n-flat $F \subseteq X$. By Theorem 3.4, the combinatorial convex hull Y of F is at finite Hausdorff distance from F. Since X is locally finite, Y is H-cocompact, as desired.

Suppose now that $m \geq 1$. Let $H^{\prime}=\prod_{i \neq m} H_{i}$. We first prove that the group H^{\prime} is convex cocompact. Choose a subgroup $Z \leq H_{m}$ isomorphic to \mathbb{Z} and choose $h \in H_{m}$ such that the coarse intersection of $h Z$ and Z is bounded. Let $G=H^{\prime} \times Z \subset H$. By induction assumption, there exists a G-cocompact convex subcomplex $U \subset X$. Let $V \subset U$ be the gate with respect to $h \cdot U$. Note that both U and $h \cdot U$ are H^{\prime}-invariant, so V is H^{\prime}-invariant. By Lemma 2.6(3), V is the coarse intersection of U and $h \cdot U$. Hence, by Lemma 3.9 applied to G and $h G h^{-1}$, the action $H^{\prime} \curvearrowright V$ is cocompact.

By Lemma 3.7, there exists a minimal H^{\prime}-cocompact convex subcomplex, for which we keep the notation V. Then for any $h \in H_{m}$, the translate $h \cdot V$ is minimal H^{\prime}-invariant, hence parallel to V by Lemma 3.7. Let $P_{V}=V \times V^{\perp}$ be the combinatorial parallel set of V (see Lemma 2.9). We have that P_{V} is H-invariant. Moreover, since V is H^{\prime}-invariant, there are induced actions $H \curvearrowright V^{\perp}$ and $H_{m} \curvearrowright V^{\perp}$.

Choose a point $v \in V$. Let $\psi: H_{m} \rightarrow V^{\perp}$ be the composition of the orbit map $h \rightarrow h \cdot v$ with the coordinate projection. We claim that ψ is a quasi-isometric embedding. This follows from assumption (2) and the estimates below, where \sim means equality up to a uniform multiplicative and additive constant. Namely, for any $h_{1}, h_{2} \in H_{m}$ we have:

$$
d_{H_{m}}\left(h_{1}, h_{2}\right) \sim d_{H}\left(h_{1} H^{\prime}, h_{2} H^{\prime}\right) \sim d_{X}\left(h_{1} \cdot V, h_{2} \cdot V\right)=d_{V \perp}\left(\psi\left(h_{1}\right), \psi\left(h_{2}\right)\right)
$$

By Theorem 2.3 , since V contains an isometrically embedded copy of \mathbb{R}^{n-1}, the asymptotic rank of V^{\perp} is ≤ 1, and hence V^{\perp} is hyperbolic. Let $V_{m} \subseteq V^{\perp}$
be the combinatorial convex hull of $\psi\left(H_{m}\right)$. Then $d_{\text {Haus }}\left(V_{m}, \psi\left(H_{m}\right)\right)<\infty$ by Theorem 3.3. Moreover, V_{m} is H-invariant under the action $H \curvearrowright V^{\perp}$ since $\psi\left(H_{m}\right)$ is invariant under H. Thus H acts cocompactly on the convex subcomplex $V \times V_{m} \subseteq P_{V}$. Notice that since $H^{\prime} \curvearrowright \psi\left(H_{m}\right)$ is trivial, the action $H^{\prime} \curvearrowright V_{m}$ is almost trivial.

By now we already know that H is convex cocompact. As for properties (i)-(iii), if $m=1$, then it suffices to take $Y_{0}=V$ and $Y_{1}=V_{1}$. If $m \geq 2$, to obtain the required decomposition, we consider $X^{\prime}=V \times V_{m}, H^{\prime \prime}=\prod_{i \neq(m-1)} H_{i}$ and we repeat the previous argument. This gives rise to an H-cocompact convex subcomplex $V^{\prime} \times V_{m-1} \subseteq V \times V_{m}$, where V^{\prime} is a minimal $H^{\prime \prime}$-cocompact convex subcomplex. Since V_{m} is contained in some R-neighbourhood of a V^{\prime}, the intersection $V_{m-1} \cap V_{m}$ is compact. Moreover, V^{\prime} and V_{m-1} admit cubical product decompositions

$$
V^{\prime}=\left(V^{\prime} \cap V\right) \times\left(V^{\prime} \cap V_{m}\right) \quad \text { and } \quad V_{m-1}=\left(V_{m-1} \cap V\right) \times\left(V_{m-1} \cap V_{m}\right)
$$

thus

$$
V^{\prime} \times V_{m-1}=\left(V^{\prime} \cap V\right) \times\left(V^{\prime} \cap V_{m}\right) \times\left(V_{m-1} \cap V\right) \times\left(V_{m-1} \cap V_{m}\right)
$$

The H-action respects the above decomposition. Moreover, the induced action $H^{\prime} \curvearrowright\left(V^{\prime} \cap V_{m}\right)$ is almost trivial and the induced action $H^{\prime \prime} \curvearrowright\left(V_{m-1} \cap V\right)$ is almost trivial. If $m=2$, then we take $Y_{1}=V_{1} \cap V, Y_{2}=V^{\prime} \cap V_{2}$, and $Y_{0}=$ $\left(V \cap V^{\prime}\right) \cup\left(V_{1} \cap V_{2}\right)$. If $m \geq 3$, then we let $X^{\prime \prime}=V^{\prime} \times V_{m-1}, H^{\prime \prime \prime}=\prod_{i \neq(m-2)} H_{i}$ and we repeat the previous process to obtain further product decomposition. We run this process m times, obtaining the required decomposition as the result of the last step. In each step, we possibly get nontrivial compact factors similar to $V_{m-1} \cap V_{m}$. We absorb all these compact factors into the factor Y_{0} (we can also discard them).

4. Artin groups

4.1. Background on Artin groups. Let A be an Artin group with defining graph Γ, and generators S. Let W be the Coxeter group defined by Γ. For any $T \subseteq S$ let W_{T} (respectively A_{T}) be the special subgroup of W (respectively A) generated by T. The special subgroup W_{T} is naturally isomorphic to the Coxeter group defined by the subgraph Γ_{T} induced on T [10]. Similarly, by [41] the special subgroup A_{T} of A is naturally isomorphic to the Artin group defined by Γ_{T}.

Lemma 4.1 ([16, Theorem 1.1]). Special subgroups of Artin groups are convex with respect to the word metric defined by standard generators.

A subset $T \subseteq S$ is spherical if the special subgroup W_{T} is finite. The dimension of the Artin group A is the maximal cardinality of a spherical subset of S.

The following is a consequence of [15] and [14, Corollary 1.4.2].
Theorem 4.2. Let A be an Artin group of dimension n. Suppose that
(A) $n \leq 2$, or
(B) every clique T in Γ is spherical.

Then there is a finite n-dimensional cell complex that is a $K(A, 1)$.
4.2. Two-generator Artin groups. We start with the description of most twogenerator Artin groups as virtually $F_{k} \times \mathbb{Z}$, where F_{k} is the free group with k generators.
Lemma 4.3. Let A be an Artin group with defining graph Γ a single edge labelled by $n>2$. Then
(1) A has a finite index subgroup of form $F_{k} \times \mathbb{Z}$ with $k \geq 2$, and
(2) no power of one of the two standard generators lies in the \mathbb{Z} factor.

Proof. By [6] (or by our proof of Theorem 5.1) A acts freely and cocompactly on a product of a tree and a line, where a central element acts as a translation in the line factor. By [7, Theorem II.6.12] A virtually decomposes as $A^{\prime} \times \mathbb{Z}$. The induced action of A^{\prime} on the tree factor has finite vertex stabilisers so by Bass-Serre theory A^{\prime} is a graph of finite groups, in particular A^{\prime} is virtually free, justifying (1). Part (2) follows from the fact that standard generators act hyperbolically on the tree factor.

Throughout this section by \bar{x} we denote the inverse of x. By x^{z} we denote the conjugate $\bar{z} x z$.

Let $A_{n}=\langle a, b \mid \underbrace{a b a \ldots}_{n}=\underbrace{b a b \ldots}_{n}\rangle$. Denote $\Delta=\underbrace{a b a \ldots}_{n}=\underbrace{b a b \ldots}_{n}$. Let A_{n}^{\prime} be the kernel of the homomorphism sending each generator to the generator of $\mathbb{Z} / 2$ i.e. the subgroup consisting of all words of even length. The group A_{n}^{\prime} is generated by the elements: $r=a b, s=a \bar{b}, t=\bar{a} b$. If ϕ is a word in an alphabet Λ, and $x \in \Lambda$, then we denote by $\operatorname{Exp}_{x}(\phi)$ the sum of all the exponents at x in ϕ.

By direct computation we immediately establish the following:
Lemma 4.4. If n is odd, then the conjugation by Δ is an order two automorphism sending $s \mapsto \bar{s}, t \mapsto \bar{t}, r \mapsto q$, where $q=b a=\bar{s} r \bar{t}$. In particular, Δ^{2} is a central element.

If n is even, then Δ is a central element.
Let z be the element Δ^{2} for n odd and the element Δ for n even.
Lemma 4.5. If n is odd, then we have

$$
b^{n}=\phi(s, t, r) \Delta,
$$

where $\operatorname{Exp}_{r}(\phi)=0$.

Proof. Consider the following word ϕ expressed as a product of terms indexed by decreasing i :

$$
\phi(s, t, r)=\bar{s} \prod_{i=\frac{n-3}{2}}^{0} \bar{t}^{r}
$$

Since r^{i} appear in the expression defining ϕ only as elements that we conjugate by, we have $\operatorname{Exp}_{r}(\phi)=0$.

To verify that $b^{n}=\phi \Delta$, note that

$$
\phi=\bar{s} \prod_{i=\frac{n-3}{2}}^{0} \bar{r}^{i} \bar{t} r^{i}=\bar{s}\left(\bar{r}^{\frac{n-3}{2}} \bar{t} r^{\frac{n-3}{2}}\right)\left(\bar{r}^{\frac{n-3}{2}-1} \bar{t} r^{\frac{n-3}{2}-1}\right) \cdots(\bar{r} \bar{t} r) \bar{t}=\bar{s} \bar{r}^{\frac{n-1}{2}}(r \bar{t})^{\frac{n-1}{2}} .
$$

Since $\bar{s} \bar{r}^{\frac{n-1}{2}}=b \bar{a}(\bar{b} \bar{a})^{\frac{n-1}{2}}=b \bar{\Delta}$ and $r \bar{t} \Delta=\Delta q t=\Delta b^{2}$, we have

$$
\phi(s, t, r) \Delta=\bar{s} \bar{r}^{\frac{n-1}{2}} \Delta b^{n-1}=b \bar{\Delta} \Delta b^{n-1}=b^{n}
$$

Corollary 4.6. If n is odd, we have

$$
b^{2 n} \bar{z} \in\left[A_{n}^{\prime}, A_{n}^{\prime}\right]
$$

Proof. We have

$$
b^{2 n}=\phi(s, t, r) \Delta \phi(s, t, r) \Delta=\phi(s, t, r) \phi(\bar{s}, \bar{t}, q) z
$$

Denote the word $\phi(s, t, r) \phi(\bar{s}, \bar{t}, q)$ by $\psi(s, t, r, q)$. By Lemma 4.5, we have $\operatorname{Exp}_{r}(\psi)=\operatorname{Exp}_{q}(\psi)=0$. We also have $\operatorname{Exp}_{s}(\psi)=\operatorname{Exp}_{t}(\psi)=0$ since the total exponents of s and t in $\phi(s, t, r)$ are equal to the total exponents of \bar{s} and \bar{t} in $\phi(\bar{s}, \bar{t}, q)$, respectively. Thus $\psi \in\left[A_{n}^{\prime}, A_{n}^{\prime}\right]$.
4.3. Surface lemma. The following lemma will allow us to utilise the preceding result when discussing finite index subgroups of A_{n}.
Lemma 4.7. Let G be a finitely generated group and let $z \in G$ be central. Let H be a finite index normal subgroup of G, and let $h \in H \cap z[G, G]$. Then for any homomorphism $\rho: H \rightarrow \mathbb{Z}$ such that $\rho(\langle z\rangle \cap H) \neq\{0\}$, there exist a positive integer m and $g \in G$ with $\rho\left(\left(h^{m}\right)^{g}\right) \neq 0$.

Proof. Let X be a presentation complex for G. Let S be an oriented surface with connected ∂S and basepoint $s \in \partial S$, mapping to X, such that on the level of fundamental groups $\partial S \mapsto h \bar{z}$. Let \widehat{X} be the finite cover of X corresponding to H and let \widehat{S} be a finite cover of S such that $\widehat{S} \rightarrow S \rightarrow X$ lifts to $\widehat{S} \rightarrow \widehat{X}$. Choose a system Σ of nonintersecting arcs that join the basepoint of \widehat{S} to the other preimages of s, one for each of the boundary components of \widehat{S}. Consider the surface S^{\prime} obtained
from \widehat{S} by cutting along the arcs of Σ, and the mapping $S^{\prime} \rightarrow \widehat{X}$ that factors through \widehat{S}. Then, as the boundary of a surface, ∂S^{\prime} is mapped to an element $f \in H=\pi_{1}(\widehat{X})$ contained in $[H, H]$. The arcs of Σ map to paths in \widehat{X} that project to closed paths in X corresponding to some $g_{i} \in G$. Thus we have $f=\prod_{i=1}^{q}\left(h^{m_{i}}\right)^{g_{i}} \bar{z}^{M}$, where $m_{i} \geq 1$ with $M=\sum m_{i}$.

Since H is normal, each $\left(h^{m_{i}}\right)^{g_{i}}$ lies in H. We have

$$
\rho\left(\prod_{i=1}^{q}\left(h^{m_{i}}\right)^{g_{i}}\right)=\rho\left(z^{M}\right) \neq 0 .
$$

That means that there is at least one element $\left(h^{m_{i}}\right)^{g_{i}}$ such that $\rho\left(\left(h^{m_{i}}\right)^{g_{i}}\right) \neq 0$.
Corollary 4.8. Let n be odd and let H be a finite index normal subgroup of A_{n}^{\prime}. Then for any homomorphism $\rho: H \rightarrow \mathbb{Z}$ such that $\rho(\langle z\rangle \cap H) \neq\{0\}$, there exist a positive integer m and $g \in A_{n}^{\prime}$ such that $b^{m} \in H$ and $\rho\left(\left(b^{m}\right)^{g}\right) \neq 0$.
Proof. Let k be large enough so that $b^{2 n k} \in H$. By Corollary 4.6, we can apply Lemma 4.7 with $G=A_{n}^{\prime}, h=b^{2 n k}$, and z^{k} in the role of z.

Corollary 4.9. Let n be even and let H be a finite index normal subgroup of A_{n}. Then for any homomorphism $\rho: H \rightarrow \mathbb{Z}$ such that $\rho(\langle z\rangle \cap H) \neq\{0\}$, there exist a positive integer m and $g \in A_{n}$ such that at least one of $\left(a^{m}\right)^{g}$ and $\left(b^{m}\right)^{g}$ lies in H and is not mapped to 0 under ρ.
Proof. Let $k=\frac{n}{2} k^{\prime}$ be a nonzero integer such that $a^{k}, b^{k} \in H$. Since $z^{k^{\prime}}=(a b)^{k}$, we have

$$
a^{k} b^{k} \in z^{k^{\prime}}\left[A_{n}, A_{n}\right] .
$$

By Lemma 4.7, we have $m>0$ and $g \in A_{n}$ such that $\left.\rho\left(\left(a^{k} b^{k}\right)^{m}\right)^{g}\right) \neq 0$. Let $f=\left(a^{k}\right)^{g}$ and $h=\left(b^{k}\right)^{g}$. We have $(f h)^{m} \in f^{m} h^{m}[H, H]$. Thus $\rho\left(f^{m} h^{m}\right) \neq 0$ and so at least one of $f^{m}=\left(a^{k m}\right)^{g}$ and $h^{m}=\left(b^{k m}\right)^{g}$ is not mapped to 0 under ρ.

5. The main theorem

In this section we prove Theorem 1.1. The implication (i) \Rightarrow (ii) is obvious.
5.1. Implication (iii) \Rightarrow (i).

Theorem 5.1. Let A be an Artin group with each connected component of the defining graph:

- a vertex, or an edge, or else
- all interior edges labeled by 2 and all leaves labelled by even numbers.

Then A is the fundamental group of a nonpositively curved cube complex.

Proof. We assume without loss of generality that Γ is connected, since if Γ has more connected components, then A is the fundamental group of the wedge of the complexes obtained for its connected components.

If Γ is a single vertex, then A is the fundamental group of a circle.
If Γ is a single edge labelled by an odd n, then let K_{n} be the cube complex described in the figure below.

On the left side we see part of the 1 -skeleton of K_{n} consisting of three edges labelled by a, b, t, and the right side indicates how to attach a rectangle (subdivided into n squares) along its boundary path $\underbrace{a b \ldots a}_{n} \bar{t} \underbrace{\bar{b} \bar{a} \ldots \bar{b}}_{n} \bar{t}$. It is easy to check that the link of each of the two vertices in K_{n} is isomorphic to the spherical join of two points with n points, hence K_{n} is nonpositively curved. By collapsing the t-edge we obtain the presentation complex for the standard presentation of A, so $\pi_{1}\left(K_{n}\right)=A$. We learned this construction from Daniel Wise.

If Γ is a single edge labelled by an even n, let $x=a b$. The group A is then presented as $\left\langle a, x \mid a x^{n / 2}=x^{n / 2} a\right\rangle$. Let $K_{n, a}$ be the cube complex described in the figure below.

One can check that the link of the unique vertex in $K_{n, a}$ is isomorphic to the spherical join of two points with n points, hence $K_{n, a}$ is nonpositively curved. It is clear that $\pi_{1}\left(K_{n, a}\right)=A$.

Similarly if we let $y=b a$, then A can be presented as $\left\langle b, y \mid b y^{n / 2}=y^{n / 2} b\right\rangle$. We define $K_{n, b}$ in a similar way. Note that the a-circle in $K_{n, a}$ is a locally convex subcomplex, so is the b-circle in $K_{n, b}$.

If Γ contains more than one edge, then let $\Gamma^{\prime} \subseteq \Gamma$ be the nonempty subgraph induced on all the vertices that have at least two neighbours. Thus the edges of Γ^{\prime} are
precisely the interior edges and by the hypothesis they are labelled by 2 . Hence $A_{\Gamma^{\prime}}$ is a right-angled Artin group. The Salvetti complex $S\left(\Gamma^{\prime}\right)$ is the nonpositively curved cube complex obtained from the presentation complex of $A_{\Gamma^{\prime}}$ by adding the missing cubes of higher dimension (see [13]). Let $\left\{\left(s_{i}, t_{i}\right)\right\}_{i=1}^{k}$ be the collection of leaves of Γ with $s_{i} \in \Gamma^{\prime}$. Let n_{i} be the label of the edge $\left(s_{i}, t_{i}\right)$, which is even. Let K be the amalgamation of $\left\{K_{n_{i}, s_{i}}\right\}_{i=1}^{k}$ and $S\left(\Gamma^{\prime}\right)$ along the s_{i}-circles. Then $\pi_{1}(K)=A$ and it follows from [7, Proposition II.11.6] that K is nonpositively curved.

5.2. Implication (ii) \Rightarrow (iii).

Theorem 5.2. Let A be a 2-dimensional Artin group. If A is virtually cocompactly cubulated, then each connected component of the defining graph of A is either

- a vertex, or an edge, or else
- all its interior edges are labeled by 2 and all its leaves are labelled by even numbers.

Proof. Suppose that there exists a finite index subgroup $\hat{A} \leq A$ that acts properly and cocompactly by combinatorial automorphisms on a CAT(0) cube complex X. Without loss of generality, we assume that \hat{A} is normal in A. It suffices to prove:
(1) no edge of Γ has an odd label, unless it is an entire connected component, and
(2) no interior edge of Γ has an even label ≥ 4.

Let us first prove (1). Suppose to the contrary that Γ has an edge (a, b) with odd label and another edge (b, c). Let $A_{a b}$ be the special subgroup generated by a and b. By $A_{a b}^{\prime}$ we denote its index-two subgroup that is the kernel of the homomorphism to $\mathbb{Z} / 2$ sending both a and b to 1 . Let $\hat{A}_{a b}=F_{k} \times \mathbb{Z}$ be a finite index subgroup of $A_{a b}^{\prime} \cap \hat{A}$ guaranteed by Lemma 4.3(1). We can also assume that $\hat{A}_{a b}$ is normal in $A_{a b}^{\prime}$. Similarly, let $A_{b c}$ be the special subgroup generated by b and c, and let $\hat{A}_{b c}=F_{l} \times \mathbb{Z}$ be a finite index subgroup of $A_{b c} \cap \hat{A}$. Note that the edge (b, c) might be labelled by 2 and then $l=1$.

Since \hat{A} is a CAT(0) group, we can speak of its asymptotic rank. By Theorem 4.2(A), there exists a finite 2-dimensional cell complex that is a $K(A, 1)$. Thus by Lemma 2.5, the asymptotic rank of \hat{A} is ≤ 2 and so is the asymptotic rank of X. The subgroup $A_{a b}$ is convex with respect to the standard generators of A by Lemma 4.1 and so $\hat{A}_{a b}$ is quasi-isometrically embedded in \hat{A}. We can thus apply Theorem 3.8 to find a convex subcomplex $Y_{a b}$ that is $\hat{A}_{a b}$-cocompact. Moreover, there is a cubical product decomposition $Y_{a b}=V_{a b} \times H_{a b}$ such that the action of $\hat{A}_{a b}$ respects this decomposition, the vertical factor $V_{a b}$ is quasi-isometric to \mathbb{R}, and the \mathbb{Z} factor Z of $\hat{A}_{a b}$ acts almost trivially on $H_{a b}$.

Consider $\operatorname{Min}(Z)=\mathbb{R} \times V_{0} \subseteq V_{a b}$ for the induced action of Z, where \mathbb{R} is an axis of Z. Since Z is contained in the centre of $\hat{A}_{a b}$, we have an induced action of $\hat{A}_{a b}$ on $\mathbb{R} \times V_{0}$ respecting this decomposition. The factor V_{0} is bounded, so V_{0}
contains a fixed-point of the action of $\hat{A}_{a b}$. Thus $\mathbb{R} \times V_{0}$ contains an $\hat{A}_{a b}$-invariant line l. Let $\rho: \hat{A}_{a b} \rightarrow \operatorname{Isom}(l)$ be the induced map. Note that $\rho\left(\hat{A}_{a b}\right)$ does not flip the ends of l. Moreover, since $V_{a b}$ is a cube complex, the translation lengths on l are discrete. This gives rise to a homomorphism $\rho: \hat{A}_{a b} \rightarrow \mathbb{Z}$ assigning to each element of $\hat{A}_{a b}$ its translation length on l. Note that $\rho(Z) \neq 0$. By Corollary 4.8 applied to $H=\hat{A}_{a b}$, there exists a nonzero integer m and $g \in A_{a b}^{\prime}$ such that $\rho\left(\left(b^{m}\right)^{g}\right) \neq 0$.

By normality of \hat{A}, we have $\left(\hat{A}_{b c}\right)^{g} \leq \hat{A}$. Let $Y_{b c}$ be a convex $\left(\hat{A}_{b c}\right)^{g}$-cocompact subcomplex guaranteed again by Theorem 3.8. By [41] we have $A_{a b} \cap A_{b c}=A_{b}$, and hence the groups $\left\langle b^{m}\right\rangle^{g}$ and $\hat{A}_{a b} \cap\left(\hat{A}_{b c}\right)^{g}$ have a common finite index subgroup B. Let $Y \subset Y_{a b}$ be the gate with respect to $Y_{b c}$. Then Y is the coarse intersection of $Y_{a b}$ and $Y_{b c}$ by Lemma 2.6(3). By Lemma 3.9, Y is B-cocompact.

Since Y is a convex subcomplex, it has a product structure $Y=Y_{V} \times Y_{H}$ where $Y_{V} \subseteq V_{a b}$ and $Y_{H} \subseteq H_{a b}$. We have $\rho(B) \neq 0$, so Y_{V} is unbounded. Since Y is quasi-isometric to \mathbb{R}, the factor Y_{H} is bounded. Since Z acts almost trivially on $H_{a b}$, any of its orbits in $Y_{a b}$ is at a finite Hausdorff distance from Y. Hence Z is commensurable with B. Thus there exists an integer $j \neq 0$ such that $\left(b^{g}\right)^{j} \in Z$, and hence $b^{j} \in Z$, contradicting Lemma 4.3(2).

Let us now prove (2). Suppose that Γ has edges $(a, b),(b, c)$, and $\left(c^{\prime}, a\right)$ (here c and c^{\prime} are possibly the same), where (a, b) has an even label ≥ 4. Let $\hat{A}_{a b}, \hat{A}_{b c}, \hat{A}_{c^{\prime} a}$ be finite index subgroups of $A_{a b} \cap \hat{A}, A_{b c} \cap \hat{A}, A_{c^{\prime} a} \cap \hat{\hat{A}}$, respectively, that are isomorphic to a product of a free group and \mathbb{Z}. Assume moreover that $\hat{A}_{a b}$ is normal in $A_{a b}$. Let $Y_{a b}=V_{a b} \times H_{a b}$ be a convex $\hat{A}_{a b}$-cocompact subcomplex, and let $\rho: \hat{A}_{a b} \rightarrow \mathbb{Z}$ be defined as before. By Corollary 4.9, there exist a nonzero integer m and $g \in A_{a b}$ such that at least one of $\left(a^{m}\right)^{g}$ and $\left(b^{m}\right)^{g}$ lies in $\hat{A}_{a b}$ and is not mapped to 0 under ρ. Without loss of generality we can assume $\rho\left(\left(b^{m}\right)^{g}\right) \neq 0$. The rest of the argument is identical as in the proof of (1).

6. 3-generator Artin groups

This section is devoted to the proof of Theorem 1.2. Let A be the three-generator Artin group with $m_{a b}=3, m_{b c}=2$, and $m_{a c}=3,4$, or 5 , and let W be the Coxeter group with the same defining graph. Consider a longest word in a, b, c which is a minimal length representative of the element it represents in W. This word represents also an element of A, which we call Δ.

Lemma 6.1. (i) The centre Z of A is generated by Δ^{2} for $m_{a c}=3$ and by Δ for $m_{a c}=4$ or 5 .
(ii) The intersections of $A_{a b}$ and $A_{b c}$ with Z are trivial.
(iii) In A we have $A_{a b} \times Z \cap A_{b c} \times Z=A_{b} \times Z$.

Proof. Assertion (i) follows from [18, Theorem 4.21].
For (ii), let $\Delta_{a b}=a b a$. By [18, Proposition 4.17], each element of $A_{a b}$ is represented by $\Delta_{a b}^{-k} \phi(a, b)$, where ϕ is a positive word in a, b, and $k \geq 0$. If we had $\phi(a, b)=\Delta_{a b}^{k} \Delta^{l}$ for some $l>0, k \geq 0$, then by [18, Theorem 4.14] this equality would also hold in the Artin semigroup, contradicting the fact that Δ is expressed as a positive word involving all a, b, c. The same argument works for $A_{b c}$.

For (iii) we need to show $A_{a b} \times Z \cap A_{b c} \times Z \subseteq A_{b} \times Z$. Since b and c commute, it suffices to show that for each $m \neq 0$ we have $c^{m} \notin A_{a b} \times Z$. If $m_{a c}=3$, then this follows from a well known fact that A / Z is the mapping class group of the four punctured disc, where $A_{a b}$ fixes a curve around the first three punctures and c is a half-Dehn twist in a curve around the third and the fourth.

If $m_{a c}=4$ or 5 , assume for contradiction that $c^{m}=g z$, for some $z \in Z$ and $g \in A_{a b}$. Thus $g c^{m}=g^{2} z=g z g=c^{m} g$. Let $g=\Delta_{a b}^{-k} \phi(a, b)$, where ϕ is a positive word in a, b, and $k \geq 0$ is even. Thus $\phi(a, b) c^{m} \Delta_{a b}^{k}=\Delta_{a b}^{k} c^{m} \phi(a, b)$.

By [18, Theorem 4.14] this equality also holds in the Artin semigroup. The relation $a c a c=c a c a$ or $a c a c a=c a c a c$ involves on each side 2 occurences of c separated by an occurence of a. The word $\phi(a, b) c^{m} \Delta_{a b}^{k}$ does not contain such a subword, and this property is invariant under the replacements $b c=c b, a b a=b a b$. Thus to pass from $\phi(a, b) c^{m} \Delta_{a b}^{k}$ to $\Delta_{a b}^{k} c^{m} \phi(a, b)$ one can only use $b c=c b$, and $a b a=b a b$, which is the relation defining $A_{a b}$. Thus there is l such that in $A_{a b}$ we have $\phi(a, b) b^{l}=\Delta_{a b}^{k}$. Hence $g=b^{-l}$. Thus $c^{m}=b^{-l} z$, contradicting assertion (ii).

We also need the following consequence of rank-rigidity [12].
Lemma 6.2. Let G be a cocompactly cubulated group with centre containing $Z \cong \mathbb{Z}$. Then G has a finite index subgroup $G_{0} \times Z$ with G_{0} cocompactly cubulated.

Proof. Suppose that G acts properly and cocompactly by cubical automorphisms on a $\operatorname{CAT}(0)$ cube complex X. By [12, Corollary $6.4($ iii) $]$, if we replace X with its essential core, and G with a finite-index subgroup, we obtain a cubical product decomposition of X respected by G, such that for each factor there is an element $g \in G$ acting on it as a rank one isometry. Let X_{V} be a factor on which Z acts freely, and combine all other factors into X_{H}, so that $X=X_{H} \times X_{V}$. Let $g \in G$ act on X_{V} as a rank one isometry.

Note that the generator z of Z acts on X_{V} as a rank one isometry. Otherwise an axis of g would not be parallel to an axis of z. Hence g and z would generate \mathbb{Z}^{2} acting properly on X_{V}, contradicting the fact that g has rank one. Consider $\operatorname{Min}(Z)=$ $\mathbb{R} \times Y \subseteq X_{V}$, where \mathbb{R} is an axis of Z. Since Z is contained in the centre of G, we have an induced action of G on $\mathbb{R} \times Y$ respecting this decomposition. Since z has rank one, we have that Y does not contain a geodesic ray, and hence is bounded. Consequently, Y contains a fixed-point of the action of G. Thus X_{V} contains a G-invariant line l.

Let $\rho: G \rightarrow \operatorname{Isom}(l)$ be the induced map. Note that $\rho(G)$ does not flip the ends of l. Moreover, since X_{V} is a cube complex, the translation lengths on l are discrete. Thus the image of ρ can be identified with \mathbb{Z}, which contains $\rho(Z)$ as a finite index subgroup. Let $G_{0}=\operatorname{ker}(\rho)$. Thus $Z \times G_{0}$ is a finite index subgroup of G. Moreover, G_{0} acts properly by cubical automorphisms on $X_{H} \subset X$. Since the action of Z on X_{V} is proper, the action of G_{0} on X_{H} is cocompact.

We complement Lemma 6.2 with the following:
Lemma 6.3. Let $G=G_{0} \times Z$ be finitely generated, with $Z \cong \mathbb{Z}$. Let $H<G$ be a finite product of finitely generated free groups of rank ≥ 2 that is quasi-isometrically embedded.
(i) The map $H \rightarrow G / Z$ is a quasi-isometric embedding.
(ii) Let G be cocompactly cubulated. If we require that $H \cap Z$ is trivial, then assertion (i) holds also if in the product we allow free groups of rank 1.

Proof. If H is a free group of rank ≥ 2, then we choose in H a free generating set $S^{ \pm}$. In Z we consider the generating set $\{ \pm 1\}$ and in G_{0} any symmetric generating set. Let $|\cdot|_{H},|\cdot|_{Z},|\cdot|_{G_{0}}$ denote the corresponding word-lengths. Let $\pi_{G_{0}}, \pi_{Z}$ be the coordinate projections from G to G_{0}, Z, respectively. By assumption, there exists a constant c such that for any $h \in H$, we have $|h|_{H} \leq c\left(\left|\pi_{G_{0}}(h)\right|_{G_{0}}+\left|\pi_{Z}(h)\right|_{Z}\right)$. Viewing h as a reduced word over $S^{ \pm}$, choose $s \in S^{ \pm}$such that the word $w=$ $h s h^{-1} s^{-1}$ is reduced. Then $\left|\pi_{Z}(w)\right|_{Z}=0$, and applying the above inequality with w in place of h we obtain $2|h|_{H}+2 \leq c\left|\pi_{G_{0}}(w)\right|_{G_{0}} \leq 2 c\left(\left|\pi_{G_{0}}(h)\right|_{G_{0}}+\left|\pi_{G_{0}}(s)\right|_{G_{0}}\right)$. Consequently $|h|_{H} \leq c\left|\pi_{G_{0}}(h)\right|_{G_{0}}+a$ for some uniform constant a, and thus the restriction of $\pi_{G_{0}}$ to H is a quasi-isometric embedding, as desired.

Similarly, if H is a product of free groups H_{i} of rank ≥ 2, then we choose generating sets $S_{i}^{ \pm}$in H_{i}. Let $h=\prod h_{i}$ with $h_{i} \in H_{i}$. To get an estimate on $|h|_{H}$, it suffices to use a product of reduced words $w=\prod h_{i} s_{i} h_{i}^{-1} s_{i}^{-1}$, with $s_{i} \in S_{i}^{ \pm}$. This proves assertion (i).

If G is cocompactly cubulated, then by Lemma 6.2, after passing to a finite index subgroup, the quotient G / Z acts properly and cocompactly on a $\operatorname{CAT}(0)$ cube complex X. Let $H=\mathbb{Z}^{n} \times H_{0} \leq G$, where H_{0} is a finite product of finitely generated free groups of rank ≥ 2. We keep the notation H for the isomorphic image of H in G / Z. Then H preserves $\operatorname{Min}\left(\mathbb{Z}^{n}\right)=\mathbb{R}^{n} \times Y \subseteq X$ and respects its product structure. We fix $v \in \mathbb{R}^{n}$ and $y \in Y$. From assertion (i), the orbit map $h_{0} \rightarrow\left(h_{0} \cdot v, h_{0} \cdot y\right)$ from H_{0} to $\mathbb{R}^{n} \times Y$ is a quasi-isometric embedding. Since the commutator of H_{0} acts trivially on the \mathbb{R}^{n} factor, using the same argument as for assertion (i), we obtain c satisfying $\left|h_{0}\right|_{H_{0}} \leq c d_{Y}\left(y, h_{0} \cdot y\right)$. On the other hand, there is c^{\prime} such that for $f \in \mathbb{Z}^{n}$ we have $|f|_{\mathbb{Z}^{n}} \leq c^{\prime} d_{\mathbb{R}^{n}}(v, f \cdot v)$. Let d be the maximum of the displacements $d_{\mathbb{R}^{n}}(v, s \cdot v)$ over the generators s of H_{0}. For $f h_{0} \in H$ consider

then

$$
c^{\prime} d_{\mathbb{R}^{n}}\left(v, f h_{0} \cdot v\right) \geq|f|_{\mathbb{Z}^{n}}-c^{\prime} d\left|h_{0}\right|_{H_{0}} \geq \frac{1}{2}|f|_{\mathbb{Z}^{n}} \geq \frac{1}{2}\left\|f h_{0}\right\| .
$$

Otherwise, if $|f|_{\mathbb{Z}^{n}}<2 c^{\prime} d\left|h_{0}\right|_{H_{0}}$, then

$$
c d_{Y}\left(y, f h_{0} \cdot y\right)=c d_{Y}\left(y, h_{0} \cdot y\right) \geq\left|h_{0}\right|_{H_{0}}>\frac{1}{2 c^{\prime} d}\left\|f h_{0}\right\|
$$

This proves assertion (ii).
Proof of Theorem 1.2. The implication (i) \Rightarrow (ii) is obvious. The implication (iii) \Rightarrow (i) follows from Theorem 5.1 unless the defining graph Γ of A has two edges $(a, c),(b, c)$ with label 2. By Theorem 5.1, $A_{a b}$ is the fundamental group of a nonpositively curved cube complex K. Then $K \times S^{1}$ is a nonpositively curved cube complex with fundamental group A.

The implication (ii) \Rightarrow (iii) follows from Theorem 5.2 if A is 2-dimensional. Suppose now that A is not 2 -dimensional. Then the labels of Γ are $m_{a b}=3$, $m_{b c}=2$, and $m_{a c}=3,4$, or 5. Let Z be the centre of A described in Lemma 6.1(i).

Suppose that there exists a normal finite index subgroup $\hat{A} \leq A$ that is cocompactly cubulated. Let $\hat{Z}=\hat{A} \cap Z$. By Lemma 6.2 , up to replacing \hat{A} with a further finite index subgroup, we have $\hat{A}=\hat{A_{0}} \times \hat{Z}$, where \hat{A}_{0} is cocompactly cubulated. We keep the notation \hat{A}_{0} for its isomorphic image in the quotient A / Z. Note that $\hat{A_{0}} \leq A / Z$ is a normal finite index subgroup.

By Theorem 4.2(B), the Artin group A is the fundamental group of a 3-dimensional cell complex which is a $K(A, 1)$. Thus, by Lemma 2.5 , the asymptotic rank of \hat{A} is ≤ 3. Hence the asymptotic rank of \hat{A}_{0} is ≤ 2.

By Lemma 6.1(ii), the intersections of $A_{a b}$ and $A_{b c}$ with Z are trivial. Thus $A_{a b}$ and $A_{b c}$ embed into A / Z under the quotient map, and we keep the notation $A_{a b}$ and $A_{b c}$ for their images in A / Z. By Lemma 6.1(iii) in A / Z we have $A_{a b} \cap A_{b c}=A_{b}$.

Let $\hat{A}_{a b}=F_{k} \times \mathbb{Z}$ be a finite index subgroup of $A_{a b}^{\prime} \cap \hat{A}_{0}$ guaranteed by Lemma 4.3(1). We can assume that $\hat{A}_{a b}$ is normal in $A_{a b}^{\prime}$. Let $\hat{A}_{b c}=A_{b c} \cap \hat{A}_{0}=\mathbb{Z}^{2}$. By Lemmas 4.1 and 6.3(ii), $\hat{A}_{a b}, \hat{A}_{b c}<A / Z$ are quasi-isometric embeddings.

From this point we argue to reach a contradiction exactly as in part (1) of the proof of Theorem 5.2.

References

[1] P. Abramenko and K. S Brown, Buildings: theory and applications, Springer Science \& Business Media, 2008. Zbl 1214.20033 MR 2439729
[2] J. Behrstock, M. F. Hagen and A. Sisto, Hierarchically hyperbolic spaces I: curve complexes for cubical groups, 2014. arXiv:1412.2171
[3] N. Bergeron and D. T. Wise, A boundary criterion for cubulation, Amer. J. Math., 134 (2012), no. 3, 843-859 Zbl 1279.20051 MR 2931226
[4] M. Bestvina, B. Kleiner and M. Sageev, The asymptotic geometry of right-angled Artin groups. I, Geom. Topol., 12 (2008), no. 3, 1653-1699. Zbl 1203.20038 MR 2421136
[5] M. Bestvina, B. Kleiner and M. Sageev, Quasiflats in CAT(0) complexes, 2008. arXiv:0804.2619
[6] T. Brady and J. P. McCammond, Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra, 151 (2000), no. 1, 1-9. Zbl 1004.20023 MR 1770639
[7] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999. Zbl 0988.53001 MR 1744486
[8] M. R. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc., 127 (1999), no 7, 2143-2146. Zbl 0928.52007 MR 1646316
[9] A. M. Brunner, Geometric quotients of link groups, Topology and its Applications, 48 (1992), no. 3, 245-262. Zbl 0774.57004 MR 1200426
[10] N. Bourbaki, Éléments de mathématique, Fasc. XXXIV. Groupes et algébres de Lie, Chapitre IV: Groupes de Coxeter et systémes de Tits; Chapitre V: Groupes engendrés par des réflexions; Chapitre VI: Systémes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968. Zbl 0186.33001 MR 0240238
[11] P.-E. Caprace and B. Mühlherr, Reflection triangles in Coxeter groups and biautomaticity, J. Group Theory, 8 (2005), no. 4, 467-489. Zbl 1081.20049 MR 2152693
[12] P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes, Geometric and functional analysis, 21 (2011), no. 4, 851-891. Zbl 1266.20054 MR 2827012
[13] R. Charney, An introduction to right-angled Artin groups, Geometriae Dedicata, 125 (2007), no. 1, 141-158. Zbl 1152.20031 MR 2322545
[14] R. Charney and M. W. Davis, Finite $K(\pi, 1)$ s for Artin groups, in Prospects in topology (Princeton, NJ, 1994), 110-124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ, 1995. Zbl 0930.55006 MR 1368655
[15] R. Charney and M. W. Davis, The $K(\pi, 1)$-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc., 8 (1995), no. 3, 597-627. Zbl 0833.51006 MR 1303028
[16] R. Charney and L. Paris, Convexity of parabolic subgroups in Artin groups, Bull. Lond. Math. Soc., 46 (2014), no. 6, 1248-1255. Zbl 1308.20037 MR 3291260
[17] I. Chatterji and G. Niblo, From wall spaces to CAT(0) cube complexes, Internat. J. Algebra Comput., 15 (2005), no. 5-6, 875-885. Zbl 1107.20027 MR 2197811
[18] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math., 17 (1972), 273-302. Zbl 0238.20034 MR 0422673
[19] T. Haettel, Cocompactly cubulated Artin-Tits groups, 2015. arXiv:1509.08711
[20] M. F. Hagen and P. Przytycki, Cocompactly cubulated graph manifolds, Israel J. Math., 207 (2015), no. 1, 377-394. Zbl 1330.57030 MR 3358051
[21] M. F. Hagen and D. T. Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal., 25 (2015), no. 1, 134-179. Zbl 06422799 MR 3320891
[22] F. Haglund, Finite index subgroups of graph products, Geometriae Dedicata, 135 (2008), no. 1, 167-209. Zbl 1195.20047 MR 2413337
[23] F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal., 17 (2008), no. 5, 1551-1620. Zbl 1155.53025 MR 2377497
[24] S. M. Hermiller and J. Meier, Artin groups, rewriting systems and threemanifolds, Journal of Pure and Applied Algebra, 136 (1999), no. 2, 141-156. Zbl 0936.20033 MR 1674774
[25] G. C. Hruska and D. T. Wise, Finiteness properties of cubulated groups, Compos. Math., 150 (2014), no. 3, 453-506. Zbl 1335.20043 MR 3187627
[26] J. Huang, Quasi-isometry rigidity of right-angled Artin groups, I. The finite out case, 2014. arXiv:1410.8512
[27] J. Huang, Top dimensional quasiflats in CAT(0) cube complexes, 2014. arXiv:1410.8195
[28] J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2), 175 (2012), no. 3, 1127-1190. Zbl 1254.57014 MR 2912704
[29] B. Kleiner, The local structure of length spaces with curvature bounded above, Mathematische Zeitschrift, 231 (1999), no. 3, 409-456. Zbl 0940.53024 MR 1704987
[30] Y. Liu, Virtual cubulation of nonpositively curved graph manifolds, J. Topol., 6 (2013), no. 4, 793-822. Zbl 1286.57002 MR 3145140
[31] L. Mosher, M. Sageev and K. Whyte, Quasi-actions on trees, II. Finite depth Bass-Serre trees, Mem. Amer. Math. Soc., 214 (2011), no. 1008, vi+105pp. Zbl 1234.20034 MR 2867450
[32] G. Niblo and L. Reeves, Groups acting on CAT(0) cube complexes, Geom. Topol., 1 (1997), (electronic). Zbl 0887.20016 MR 1432323
[33] B. Nica, Cubulating spaces with walls, Algebr. Geom. Topol., 4 (2004), 297-309 (electronic). Zbl 1131.20030 MR 2059193
[34] Y. Ollivier and D. T. Wise, Cubulating random groups at density less than $1 / 6$, Trans. Amer. Math. Soc., 363 (2011), no. 9, 4701-4733. Zbl 1277.20048 MR 2806688
[35] P. Przytycki and D. T. Wise, Mixed 3-manifolds are virtually special, 2012. arXiv:1205.6742v2
[36] P. Przytycki and D. T. Wise, Graph manifolds with boundary are virtually special. J. Topol., 7 (2014), no. 2, 419-435. Zbl 1331.57023 MR 3217626
[37] M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3), 71 (1995), no. 3, 585-617. Zbl 0861.20041 MR 1347406
[38] M. Sageev, CAT(0) cube complexes and groups, in Geometric group theory, 7-54, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence, RI, 2014. Zbl 1306.20002 MR 3329724
[39] M. Sageev and D. T. Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc., 37 (2005), no. 5, 706-710. Zbl 1081.20051 MR 2164832
[40] J. Świątkowski, Regular path systems and (bi)automatic groups, Geom. Dedicata, 118 (2006), 23-48. Zbl 1165.20036 MR 2239447
[41] H. van der Lek, The homotopy type of complex hyperplane complements, Katholieke Universiteit te Nijmegen, 1983
[42] S. Wenger, The asymptotic rank of metric spaces, Comment. Math. Helv., 86 (2011), no. 2, 247-275. Zbl 1217.49033 MR 2775129
[43] B. T. Williams, Two topics in geometric group theory, PhD thesis, University of Southampton, 1998.
[44] D. T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal., 14 (2004), no. 1, 150-214. Zbl 1071.20038 MR 2053602
[45] D. T. Wise, The structure of groups with a quasiconvex hierarchy, 2011. Available at: http://www.math.mcgill.ca/wise/papers.html
[46] D. T. Wise, Cubular tubular groups, Trans. Amer. Math. Soc., 366 (2014), no. 10, 5503-5521. Zbl 06346335 MR 3240932
[47] D. T. Wise and D. J. Woodhouse, A cubical flat torus theorem and the bounded packing property, 2015. arXiv:1510.00365

Received November 4, 2015
J. Huang, Department of Mathematics and Statistics, McGill University,
Montreal, Quebec H3A 0B9, Canada
E-mail: jingyin.huang @ mcgill.ca
K. Jankiewicz, Department of Mathematics and Statistics, McGill University,
Montreal, Quebec H3A 0B9, Canada
E-mail: kasia @ math.mcgill.ca
P. Przytycki, Department of Mathematics and Statistics, McGill University,
Montreal, Quebec H3A 0B9, Canada
E-mail: piotr.przytycki@mcgill.ca

[^0]: *The third author was partially supported by National Science Centre DEC-2012/06/A/ST1/00259, UMO-2015/18/M/ST1/00050 and NSERC.

