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Explicit Brill-Noether-Petri general curves

Enrico Arbarello, Andrea Bruno, Gavril Farkas and Giulia Saccä

Abstract. Let p\,..., pg be the points in A2(Q) C P2(Q) with coordinates

(-2,3), (-1,-4), (2,5), (4,9), (52,375), (5234, 37866), (8, -23), (43,282), (-
A 4 O '

respectively. We prove that, for any genus g, a plane curve of degree 3g having a g-tuple point
at pi,..., P8, and a (g — l)-tuple point at pg, and no other singularities, exists and that the

general plane curve of that degree and with those singularities is a Brill-Noether-Petri general

curve of genus g.

Mathematics Subject Classification (2010). 14H10, 14H51.
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1. Introduction

The Petri Theorem asserts that for a general curve C of genus g > 1, the multiplication
map

Ho,l H°(C, L) ® H°(C, coc ® L~l) H°(C, coc)

is injective for every line bundle L on C. While the result, which immediately
implies the Brill-Noether Theorem, holds for almost every curve [C] 6 Mg, so far

no explicitly computable examples of smooth curves of arbitrary genus satisfying
this theorem have been known. Indeed, there are two types of known proofs
of the Petri Theorem. These are: the proofs by degeneration due to Griffiths-
Harris [12], Gieseker [11], and Eisenbud-Harris [8], or the recent proof using tropical
geometry [5], which by their nature, shed little light on the explicit smooth curves
which are Petri general; and the elegant proof by Lazarsfeld [15], asserting that every
hyperplane section of a polarised K3 surface (A', H) of degree 2g — 2, such that
the hyperplane class [H] is indecomposable is a Brill-Noether general curve, while
a general curve in the linear system |//| is Petri general. However, there are no
known concrete examples of polarised K3 surfaces of arbitrary degree satisfying the

requirement above. It is a non-trivial instance of a theorem of Andre [1,16], that
there exists polarised K3 surfaces of degree 2g — 2 over a number field, having Picard
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number one. While the above mentioned results are all in characteristic zero, it has

been observed by Welters [22] that a minor modification of the proof in [8], proves
the Petri Theorem in positive characteristic as well.

This work originated from the paper [2], where a number of explicit families of
curves lying on the projective plane or on a ruled elliptic surface were constructed. For
these curves the question of whether they satisfy the Brill-Noether-Petri condition
arises naturally. Among these families one, already studied by du Val [7], is

particularly interesting. Curves in this family naturally sit on the blow-up of the

projective plane in nine points.
The aim of this paper is to show that, by using the methods from [15] and [19],

coupled with Nagata's classical results [17] on the effective cone of the blown-

up projective plane, these curves provide explicit examples of Brill-Noether-Petri
general curves of any genus. They also provide computable examples of Brill—

Noether general curves of any genus.
In [21], Treibich sketches a construction of Brill-Noether (but not necessarily

Petri) curves of any given genus.
We set the notation we are going to use throughout this note. We denote by S' the

blow-up of P2 at nine points p\,...,p9 which are 3g-general (see the Definition 2.2

below), and we let E\,..., E9 be the exceptional curves of this blow-up. We have

that

-KS' ~ 31 - Ei E9,

where I is the proper transform of a line in P2. As the points pt are general, there

exists a unique curve

J'e\-KS'\ (1.1)

which corresponds to a smooth plane cubic passing through the s. We next
consider the linear system on S'

Lg |3gT-g£i gE% — (g — \)E9\.

This is a g-dimensional system whose general element is a smooth genus g curve.
Since for each curve C' e Lg, we have that C' J' 1, the point {p\ := C" fl J' is

independent of C' and is thus a base point of the linear system Lg. Precisely, p e J'
is determined by the equation öj* (gpi +... +gp% + {g-\)p9 + p) Oj>(2gi\j>).

Let a : S —> S' be the blow-up of S' at p, We denote again by E\,..., E9
the inverse images of the exceptional curves on S' and by £jo the exceptional curve
of ct. We let J be the strict transform of J' and C the strict transform of C', so that

we can write

—Ks ~ J ~ 3f — Ei —••• — £io,

C-dgl-gEi gEs-(g-l)E9-E10, (1.2)

C J 0.
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The linear system \C | is base-point-free and maps S to a surface S C Pg having
canonical sections and a single elliptic singularity resulting from the contraction of J.
As we mentioned above, this linear system was first studied by du Val in [7],

Definition 1.1. A curve in the linear system \C | as in (1.2) is called a du Val curve.

In [2] it is proved that Brill-Noether-Petri general curves whose Wahl map

is not surjective, are hyperplane sections of a K3 surface, or limits of such, and

it is shown that one such limit could be the surface S we just described. This is

one of the reasons why it is interesting to determine whether du Val curves are

Brill-Noether-Petri general. In this note we answer this question in the affirmative.

Theorem 1.2. A general du Val curve C C S satisfies the Brill-Noether-Petri
Theorem.

This, on the one hand, gives a strong indication that the result in [2] is the
best possible. On the other hand, and more importantly, Theorem 1.2 provides a

very concrete example of a Brill-Noether-Petri curve for every value of the genus.
Since the locus of 3g-general sets of 9 points is Zariski open in the symmetric
product (P2)(9), we can choose to have rational coefficients. Then
Theorem 1.2 implies the following result, which answers a question raised by Harris-
Morrison in [14, p. 343], in connection with the Lang-Mordell Conjecture:

Corollary 1.3. For every g, there exist smooth Brill-Noether-Petri general curves C

ofgenus g defined over Q.

In Section 5 we make Theorem 1.2 and Corollary 1.3 explicit by proving that the

following set of 9 points in A2(Q) c P2(Q), lying on the elliptic curve y2 x3 + 17,

is 3g-general, for every g, in particular they can be used to construct Petri general
curves of any genus:

We give two proofs ofTheorem 1.2. The first one, in Section 3, uses [17] and holds
for every 3g-general set of points p\,..., p9 in P2. The second proof, presented in
Section 4, works only for a general sets of points p\,..., p9, and relies on the theory
of limit linear series and the proof of the Gieseker-Petri theorem in [8],
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v : /\ H°(C,a)C) -+ H°(C,a>®3)
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2. Preliminaries

As in the introduction, we denote by S' the blow-up of P2 at nine points p\,..., pg
and let E\,..., Eg be the corresponding exceptional curves on S'. We then consider
the anticanonical elliptic curve J' C S' as in (1.1).

Definition 2.1. The points p\,..., pg are said to be k-Cremona general for a positive
integer k, if there exists a single cubic curve passing through them and the surface S'
carries no effective (—2)-curve of degree at most k. The points p\,..., pg are
Cremona general, if they are k-Cremona general for any k > 0.

Nagata [17] has obtained an explicit characterization of the sets of Cremona

special sets, which we now explain. A permutation ctg©g gives rise to an

isomorphism o : Pic(S') -» Pic(S") induced by permuting the curves E1,..., Eg.
We define the following divisors on S':

2lj \= I-Ex-E2-E-i, 2l2 := 21 — E\ E6,
9

2l3 := 31 - 2E1 - E2 Eg and 23 31 - £,.
i 1

It is shown in [17] Proposition 9 and Proposition 10, that a set p\,...,pg
consisting of distinct points is k-Cremona general if and only if the following
conditions are satisfied for all permutations a e ©9:

Ict(«03 + 2101 0, for all n <—— and i 1,2,3. (2.1)

Since the virtual dimension of each linear system |«23 + 21,-1 is negative, clearly a

very general set of points p\,..., pg is Cremona general.
We now recall the following classical definition:

Definition 2.2. The points p\,..., pg are said to be k-Halphen special if there exists

a plane curve of degree 3d < k having points of multiplicity d at p\,..., pg and no
further singularities. We say that the set p\,..., pg is k-general if it is simultaneously
/c-Cremona and &-Halphen general.

The locus of A:-special points defines a proper Zariski closed subvariety of
the symmetric product (P2)-9\ If pi,...,p9 is a k-Halphen special set, then

dim \dJ'\ 1, thus S' —P1 is an elliptic surface with a fibre of multiplicity
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d< f. If Halph(A) C (P2)^ denotes the locus of A-special Halphen sets, then the

quotient Halph(A)//SL(3) is a variety of dimension 9, see [4, Remark 2.8],

The relevance of both Definitions 2.1 and 2.2 comes to the fore in the following
result, which is essentially due to Nagata [17], see also [6].

Proposition 2.3. The points p\,..., pg are k-general ifand only if, for every effective
divisor D on S' such that

where d < k, one has D mJ', for some m.

Proof. Clearly we may assume that D is irreducible. From the Hodge Index Theorem,
it follows that D2 < 0. If D2 < 0, then by adjunction D is a smooth rational curve
with D2 —2. But S' has no (—2)-curves of degree at most A:, for p\,..., pg are

A-Cremona general. If D2 0, then applying again the Hodge Index Theorem we
obtain that DL K^,, therefore D e |/'|. Thus, for an arbitrary effective divisor D,
with D J' 0, we get that D e \mJ'\, for some positive integer m < |. From
the A-Halphen generality condition, we obtain dim \mJ'\ 0, hence D mJ'.
The reverse implication follows directly from the definition of a A-general nine-tuple
of points.

Recall Definition 1.1.

Lemma 2.4. If the points p\,..., pg are 3-general, a general du Val curve ofgenus g
is smooth and irreducible.

Proof. The linear system \C\ on S satisfies the hypothesis of Theorem 3.1 in [13]
and it is then free of fixed divisors. In particular, since by hypothesis J is fixed, the

general element of |C| does not contain J. From Corollary 3.4 of [13] the linear

system \ C | is also base point free. This property together with Bertini's theorem and

the fact that C2 > 0, implies that the general element of C is irreducible and hence
smooth.

3. A general du Val curve is a Petri general curve

Let |C| and S be as in the introduction. By Lemma 2.4, a general element C of
the linear system |C| is smooth. Let L be a base-point-free line bundle on C with
h°(C, L) r + 1 and consider the homomorphism fiox given by multiplication of
global sections

9

and D J' 0, (2.2)

ß0,L : H°(C, L) ® H°(C, coc (8) L~l) —> H°(C, ojc)
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The curve C is said to be a Brill-Noether-Petri general curve, if the map /io,L
is injective for every line bundle L on C. Consider the Lazarsfeld-Mukai bundle
defined by the sequence

0 — Fl —> H°(C, L) 0 Os — L —> 0.

Note that H°(S, Fl) 0 and H1 (S, Fl) 0. Setting, as usual, El := F^, dually,
we obtain the exact sequence

0^ H°(C,L)V ®Os —»• El^ (üc 0 L~l —(). (3.1)

Here we have used that cos \ c Oc- Clearly ci (El) Os(C), but unlike in the K3
situation, onS we have that H1(S, El) H°(C,F)V is (r + l)-dimensional (rather
than trivial). Following closely Pareschi's proof of Lazarsfeld's Theorem [15,19],
(see also Chapter XXI, Section 7 of [3]), one proves the following lemma.

Lemma 3.1. Ifh°(S, FI 0 Fl) 1, then Ker fio,L 0.

Proof. For the benefit of the reader we outline the proof of this lemma following
very closely the treatment in [3]. By tensoring the exact sequence (3.1) by Fl and

taking cohomology, since H°(S, Fl) 0 and H1(S, Fl) 0, we obtain

H°(S, Fl ® Fl) s H°{C, FL\C ® coc ® L~l).

The twist by coc 8> L~l of the restriction Fl\c of the Lazarsfeld-Mukai bundle to C
sits in an exact sequence

0 —> Oc —>• Fl\C ® L_1 —> ML 0 u>c •X' L 1 —* 0. (3.2)

Moreover there is a canonical isomorphism Ker /io,L H°(C, Ml 0 cue 0 T-1).
Proposition 5.29 and diagrams (6.1) and (6.2) in [3] show that if rj : Wrd —> Mg
is the family of |L| grd s over moduli, then the image of drj at a point [C, L], is
contained in

(Im^i)"1 C Hl(C, 7c)
where

/Xi : Ker/x0 —> H°(C, K2C) Hl{C,Tc)y

is the Gaussian map defined by diagram (6.1) in [3], We must show that the

coboundary map 5 of the cohomology sequence (3.2) vanishes. Let U C \C \ be the

open subscheme parametrising smooth du Val curves in the linear system |C | on S,
and let / : C —r U C \C\ be the family of smooth curves parametrised by U. Since S

is regular, the characteristic map induces an isomorphism T[c](U) 77°(C, Nc/s)-
Consider the relative family

p:Wrd(f)^U.
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Since p is surjective and C is a general element of U, the differential

dp : 7[c,l](VW)) — T[C](U) H°(C,Nc/s)

is surjective. Since K$\c — Oc, we have Nc/s 0Jc- Let

p: H°(C,Ncis) -* H\C,Tc)

be the Kodaira-Spencer map of the family /. We then get

Im(p o dp) C Im(p) n Im(/ri)x,
hence

Irn(üfp) C Im(pv o p,^)1- c H°(C, NC/s)-

We set

Mi,s '= Pv °Mi : Ker/to -* Hl(C,u>c ® Nc/s)-
Since dp is surjective, we get

Mi ,s 0.

In Lemma (7.9) of [3], using only the fact that Ks\c is trivial on C, it is proved that

p,i s S up to multiplication by a nonzero scalar. Hence the coboundary map 5 is

zero.

Let us go back to the construction of S and S', and recall the role played by
the points pi,..., pg. From the Riemann-Roch theorem on S', these points are

3g-Halphen general if and only if

Oj'(kJ')) //°(y, Oj{k{3l — E\ £9))) =0,
k \,...,g (3.3)

Theorem 3.2. Ifp\,... p9 is a 3g-general set, then the general element of \ C is a

Brill-Noether-Petri general curve.

Proof We use the Lemma above. By contradiction, suppose there is a non-trivial
endomorphism <p e End(F^, F^). As in Lazarsfeld's proof, we may assume that f
is not of maximal rank. Consider the blow-down o : S —> S'. We have

g(E\o) p a : C s ct(C) — C, a : J ^ o{J) J'.

Notice that
(J')2 0, J' c' — I.

Let U := S \ £jo S' \ {p} =: V. Let F be the sheaf defined on S' by the exact

sequence
0 — F —> H°(C, L) (8> ös' —> F —> 0.
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Since
0 — H°(C, L)v (8) ÖS> Fy L~\p) — 0

is exact, and L is special, Fv is generated by global sections away from a finite set

of points. Consider the restriction

* -F?v Fl\u — FL\u F\v

By Hartogs' Theorem, <p extends uniquely to a homomorphism

</>' : Fv — Fv,

which is non trivial and not of maximal rank. Let

E:=lm0', G := Coker^', G:=G/T(G).
Set

A Cl(£), 5 c,(G), r d(T(G)),
therefore

[C'] A + ß + T.

Let us prove that A, B, and T are effective or trivial. The assertion for T is clear. As
for A and B it suffices to notice that E and G are generated by global sections away
from a finite set of points because they are positive rank torsion free quotients of Fv.

Since (J')2 0, we have that

J'-A> 0, J'B> 0, J'-T> 0.

Since C' J' 1, either /' • A 0 or /' • B — 0. By Proposition 2.3, either

A =kJ' or B hJ',

with k,h > 0. Both cases lead to a contradiction. Suppose A — kJ'. This means
that Oj'(A) is a degree-zero line bundle. Let us show that it is the trivial bundle.
Since E is globally generated away from a finite set of points, the same holds for the

restriction of its determinant to J'. Thus Oj>{A)) Oj'(kJ')) ^ 0,

which contradicts condition (3.3). To summarize, the non-trivial endomorphism <p

cannot exist in the first place and C is a Brill-Noether-Petri general curve.

Remark 3.3. If the set p\,..., pg is 3d-Halphen special, the linear system

9

3dt-dJ2 Et

i=i
cuts out on C a gld. In particular, one can realize curves of arbitrary gonality as

special du Val curves.
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4. Lefschetz pencils of du Val curves

In this section we determine the intersection numbers of a rational curve

j : P1 —» Aig induced by a pencil of du Val curves on S with the generators of
the Picard group of the moduli space A4g. Recall that A denotes the Hodge class and

S0, j e Pic(Alg) are the classes corresponding to the boundary divisors of
the moduli space. We denote by S := So H h J ^e t°tal boundary. For integers

r,d > 1, we denote by AAr d the locus of curves [C] e A4g such that Wd (C) ^ 0.

If p(g,r,d) —1, in particular g + 1 must be composite, AArg d is an effective
divisor. Eisenbud and Harris [9] famously computed the class of the closure of the

Brill-Noether divisors:

— + i Lf J

_[Mrgtd\ cg.d,r(^ + 3)X-^-80-Ydi(g-m)eVic(Mg). (4.1)

i=i
We retain the notation of the introduction and observe that the linear system

Ag-i := |3(g -l)C — (g- \)Ei (g - l)£g - (g - 2)E9\

appears as a hyperplane in the g-dimensional linear system Lg on the surface S. It
consists precisely of the curves D + J 6 Lg, where D e Ag_i. We now choose a

Lefschetz pencil in Lg, which has 2g — 2 C2 base points. Let X := Bl2g-2(A)
be the blow-up of S at those points and we denote by / : X -» P1 the induced

fibration, which gives rise to a moduli map

j :¥l ^Mg.
We compute the numerical features of this du Val pencil in the moduli space:

Theorem 4.1. The intersection numbers of the du Val pencil with the generators of
the Picard group ofA4 g are given as follows:

;*(A) g, r(*o) 6(g+l), j*(Sl) 1, and j*(St) 0 for i 2,...,

As a consequence: j*([A4rg d]) 0.

Proof Using Grothendieck-Riemann-Roch, we have the following formulas valid
for the moduli map j induced by / : X —> P1:

r (A) /(V, Ox) + g - 1, j*(S) c2(X) + 4(g - 1).

Clearly /(A, Ox) L therefore j*(A) g. Furthermore, since X is P2 blown

up at 2g + 8 points, c2(X) 12^(^,0^) — K\ 2g + 11, and accordingly
j*(8) 6g + 7. Of these 6g + 7 singular curves in the pencil, there is precisely
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one of type D + J, where D is the proper transform of a curve in the linear

system Ag_i. Note that D J 1. Therefore j*(&\) 1. A parameter count
also shows that a general du Val pencil contains no curves in the higher boundary
divisors At, where i > 2, therefore j*(So) 6g + 6. Using (4.1), we now compute

j *([A4g ^]) 0, and finish the proof.

We record the following immediate consequence of Theorem 4.1.

Corollary 4.2. For any choice of nine distinct points p\,..., pg e P2, the du Val

pencil j(Fl) either lies entirely in or is disjointfrom any Brill-Noether divisor A4g d.

In particular, notice that when the points p\,... ,pg belong to the Halphen stratum

Halp(3d), then the elliptic pencil \dJ'\ on S' cut out a pencil of degree d on each

curve C', in particular gon(C) < d. Such Halphen surfaces S, appear as limits of
polarised K3 surfaces (X, H), where X carries an elliptic pencil \E\ with EH k.
The enlargement of the Picard group on the side of K3 surfaces correspond on the

du Val side to the points p\,..., pg becoming Halphen special.

Remark 4.3. Du Val curves of genus g form a unirational subvariety of dimension

min(g + 10, 3g - 3)

inside the moduli space M.g. In particular, for g 7, one has a divisor S07 of
du Val curves of genus 7. It would be interesting to describe this divisor and compute
the class [2)07] e Pic(A4y).

4.1. Du Val curves are Petri general: a second proof. We now describe an
alternative approach, based on the theory of limit linear series, to prove a slightly
weaker version ofTheorem 1.2. We retain throughout the notation of the Introduction.
We denote by BN (respectively QV) the proper subvariety of A4g consisting of
curves [C] having a line bundle L which violates the Brill-Noether (respectively the

Gieseker-Petri) condition. Clearly BN C QV.

Theorem 4.4. Let S' be the blow-up off2 at nine general points p\,..., pg and set

as before

Lg := |3gl-gEx gE8-(g-l)E9\.
Then a general curve C' Lg satisfies the Petri Theorem. Furthermore, an arbitrary
irreducible nodal curve C e Lg satisfies the Brill-Noether Theorem.

Proof. Assume by contradiction, that for a general choice of p\,..., p$ e P2, there
exists a nodal curve C' e Lg that violates the Brill-Noether condition. We let the

points p\,...,p9 specialize to the base locus of a general pencil of plane cubics.
Then S' becomes a rational elliptic surface n : S' P1 and E Eg can be viewed
as a section of n.
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By a standard calculation, since jz*Os' 0¥\, we compute that

h°(S\ Os'(gJ')) /z°(P\ ÖP> (g)) g + 1.

Similarly, since tt*(Os'(E)) ö¥i, we find that h°(S', Os'igJ' + E)) g + 1.

Therefore, every element of the linear system Lg is of the form J\ + • • + Jg + E,
where 7, e \Os'(J')\ are elliptic curves on S' and 7,- • E 1, for / 1,..., g.

Let (p : A4o,g x A4 j'
1 -> Aig be the map obtained by attaching to each

g-pointed stable rational curve [R, x\,..., xg\ e Ado,g elliptic tails J\,...,Jg
at the points x\,... ,xg respectively. The symmetric group &g acts diagonally

on the product A4o,g x by simultaneously permuting the markings x, and

the tails 7; for i 1 ,...,g. The map tp is Sg-invariant. Observe that the

moduli map m : Lg —> A4g corresponding to the linear system Lg factors via

(M.o,g x A41 i)/&g Since the morphism <p is regular, it follows that the variety of

stable limits of Lg, defined as the image ^(S) of the graph Lg S —% A4g of
the rational map m, is actually contained in Im(<p).

Using [9] Theorem 1.1, no curve lying Im(<p) carries a limit linear series grd with
negative Brill-Noether number (note that all the stable curves in Im(<p) are tree-like
in the sense of [9], so the theory of limit linear series applies to them). It follows that

Im(<p) fl 9597 0.

Our hypothesis implies that we can find a family of du Val curve / : C -> (T, 0)

over a 1-dimensional base, such that for the general fibre [/-1(0] e BAf, whereas

the central fibre /-1 (0) is a (possibly non-reduced) curve from the linear system Lg.
Applying stable reduction to /, we obtain a new family having in the central fibre a

stable curve that lies simultaneously in Im(<p) and in BN, which is a contradiction.

Furthermore, the proof of the Gieseker-Petri Theorem in [8], implies that

for any choice of elliptic tails [J\,x\],... ,[Jg,xg] e j, there exists

,xg\ e Ado,g such that <p^[/?,xi,... ,xg], [7i,xi],..., [7g,xg]^ ^ QV.

This implies that for general p\,..., p$ e IP2, a general curve C' e Lg satisfies

Petri's condition.

Remark 4.5. The conclusion of Theorems 1.2 and 4.4 cannot be improved, in the

sense that it is not true that every smooth curve C' Lg verifies the Petri condition.
The classes of the closure of the divisorial components ^ of QV corresponding
to line bundles L e Wd(C) such that g — (r + l)(g — d + r) 0, have been

computed in [9, Section 5], when r 1 and in [10, Theorem 1.6] in general. Taking
the pencil j : P1 —> Aig considered in Theorem 4.1, we immediately conclude that

j*(löVg,äl)^ 0.
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5. An explicit system of nine general points

In this final section we show how, using standard techniques from the arithmetic
of elliptic curves, we can exhibit an explicit system of nine points verifying the

genericity assumption of Definition 2.2 for every k. Throughout this section we use

the embedding A2(Q) P2(Q).
We start with the elliptic curve E : y2 x3 + 17, and we denote by

Poo '= [0,1,0] G E its point at infinity and use the identification Oe( 1)

Oe(?>Poo)- If d e E, we denote by —qeE its inverse element using the group law

of E, having as origin. Observe that the following points belong to £(Q):

p! (-2,3), p2 (-1,-4), p3 (2,5), p4 (4,9), p5 (52,375),

as well as,

1 33
p6 (5234,37866), p7 (8,-23), ps (43,282), and p9 (yy)-

It is known that ±pi for / 1,..., 8 are the only points in E(Z) — {0}. Using the

explicit formulas for the addition law on E, observe that

p4 px~ p3, p2 2px - p3, p5 3px - p3, P6 4pi - 3/?3,

p7 2px, Ps 2p3 - px and p9 px + p3.

The following facts are known to experts, we include an elementary proof for the

sake of completeness.

Lemma 5.1.

1) One has E (Q)tors 0.

2) One has an embedding Z • px © Z • p3 E(O)

Proof. For the first part, we use that if p is a prime not dividing the discriminant
of E, one has an embedding £(Q)t0rs ^ E(¥p), see for instance [20, Chapter 7],
The curve E has good reduction at the primes 5 and 7 (in fact, at any prime different
from 2, 3 and 17). Therefore, the torsion subgroup £(Q)tors injects into both E(F5)
and £(F7), which are of orders 6 and 13, respectively. It follows that £(Q)t0rs
is trivial. We remark that the same conclusion can be obtained by applying the

Nagell-Lutz Theorem.
We prove that the points p 1 and p3 are independent in E(Q). Since £(Q)[2] 0,

it will suffice to show that no linear combination np 1 + mp3 of the points

px (—2,3), p3 (2,5) can be zero, where at least one of m,n Z is odd.

'In fact one can prove that E(Q) Z © Z, that is, each rational point of E can be written as a unique
combination of p 1 and p3, see [ 18] or use the program PARI, but we will not use this fact.
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This follows once we show that p\, p$, as well as pg p\ — Pt, (4, 9) are nonzero

in the quotient E(Z)/2E(Z). Recall [20, p. 58], that if p (a,b) E(Q),
then the x-coordinate of the point 2p e E is given by

a4 — 136
x(2p) —v F' 4a3 + 68

Assuming p\ e 2E{Z), we obtain that the equation a4 — 136a 8(a3 + 17) has an

integral solution, which is a contradiction. The proof that p3 rf. 2E(Z) is identical.

If p4 2E{Z), then the equation a4 — 136a 16(a3 + 17) has an integral solution,
again a contradiction.

Theorem 5.2. The points p\,..., pg are k-general for every integer k.

Proof. The condition that the nine points are /c-Halphen special for some k > 0 is

precisely that p\ H Y p9 e E(Q)t0rs, that is, p\ H V pg 13p1 - p3 0,

which contradicts Lemma 5.1.

To show that the points are Cremona general, we unwind the conditions appearing
in (2.1) in terms of the group law on E. In turns out that if p\,..., pg are Cremona

general, then there exists non-negative integers n i,..., «9, not all equal to zero, such

that the linear equivalence n\p\ + • + n9p9 («1 + ••• + n$) poo holds, that is,

n\P\ + + ngpg 0 e E. Since with the exception of p^ p\ — p^, each of
the points p\,..., pg are combinations of the type mp\ + np^, with m + n > 0, we
obtain that such a combination of p\ and p3 is equal to zero, which contradicts the

second part of Lemma 5.1.
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