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Lagrangian product tori in symplectic manifolds
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Abstract. In [7], product Lagrangian tori in standard symplectic space R2" were classified up
to symplectomorphism. We extend this classification to symplectically aspherical symplectic
manifolds that embed in a tame symplectic manifold. We show by examples that the asphericity
assumption cannot be omitted.
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1. Introduction and main results

The properties of the Lagrangian submanifolds of a symplectic manifold (M,co)
shed light on both the topological and dynamical characteristics of (M,co). The

study of Lagrangian submanifolds is therefore a central topic of symplectic topology,
with many facets: construction of examples, classification, persistence of Lagrangian
intersections, etc. Many results can be found in [3,14,27,28].

The classification problem decomposes into several subproblems: One problem
is to understand which smooth manifolds P embed as Lagrangian submanifold
of a given symplectic manifold (M,co). If such an embedding P C M exists,

one then tries to classify these embeddings, up to various equivalence relations:

isotopy, Lagrangian isotopy, symplectic isotopy, Hamiltonian isotopy, or up to

symplectomorphism.
Ofparticular interest from a dynamical view point are Lagrangian tori, that arise as

invariant sets of integrable systems and their perturbations. The simplest Lagrangian
tori are product tori in R2", that (suitably scaled) embed into any symplectic manifold
via Darboux charts, but there are also many "exotic" Lagrangian tori, that are not

symplectomorphic to any product torus, see for instance [1,4,5,7,10,13,15,16,31,
37,38]. In this paper we look at product tori, and study their classification up to
symplectomorphism and Hamiltonian isotopy.

*Yu. C. partially supported by RFBR grant NSh-5138.2014.1.
**F. S. partially supported by SNF grant 200020-144432/1.
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Let T(a) denote the boundary of the disc of area a > 0 in R2 centred at the origin.
Let a (ai,..., an) be a vector with positive components. We call the n-torus

T(a) T(ai)x---xT(an) Ci2"

a product torus. Product tori are Lagrangian with respect to the standard symplectic
form con dxi A d}'i, that is, the restriction of ojn to each product torus
vanishes.

Let (A/, to) be a symplectic manifold. We assume throughout the paper that M
is connected. Denote by B2n{b) the closed ball of radius ^Jb/n in R2n centred

at the origin. The torus T(a) lies on the boundary of the ball B2n(\a\), where

\a\ YTi=\ai- By a symplectic chart we understand a symplectic embedding
<p: B2n(b) —»• (M,a>). Given a symplectic chart <p\ B2n(b) -»• (M,co) and a torus

T(a) C B2n(b), we write Tv(a) cp(T(a)). A Lagrangian torus in (M, on) is called
a product torus if it is of the form Tv (a) for some symplectic chart <p.

We study the classification problem for product Lagrangian tori with respect to
the action of the group Symp(A/. co) of symplectomorphisms of M (diffeomorphisms
preserving the symplectic form to) as well as the group Ham(M, to) of Hamiltonian
symplectomorphisms. Hamiltonian symplectomorphisms are defined as follows.
Let {Ht} be a family of smooth functions on M smoothly depending on the parameter
t e [0,1], This family defines a family of Hamiltonian vector fields {X,} by

co{Xt,-) dHt{-). Assume that the time t flow TV of {Xt} is a well-defined

diffeomorphism for each t e [0,1]. Then each 4^ is a symplectomorphism. The

family {} is then called a Hamiltonian isotopy, symplectomorphisms 4^ arising in
this way form the subgroup Ham(M, to) C Symp(M, co).

Given Lagrangian submanifolds L, L' in a symplectic manifold (M, co), we write
L ~ L' (resp. L % L') if there is a symplectomorphism (resp. a Hamiltonian
symplectomorphism) of (M, co) that maps L to L'. In the particular case where

(M, co) (R2", con), we say that L is Hamiltonian isotopic to L' in the ball B2n(b)
if there is a Hamiltonian isotopy {4>j}, s e [0,1], of R2" such that 4>o id,
4>i(L) L', and <D,(L) C B2n(b) for all 5 e [0, 1],

Given a vector a (ai,... ,a„) with positive components, denote

n

a min (at), m(a) #{i | a, a}, |a| llall lal + <*•
l<i<n j_j

Let T(a) denote the subgroup of R formed by all integer combinations of the

numbers a\ — a,..., an —a. We write a ~ a! when the following holds: a a',
m(a) m(a'), and T(a) r(a')- It was proved in [7] that for product tori in R2" the

conditions T(a) ~ T(a'), T(a) as T(a'), a ~ a' are equivalent one to another. The

following theorem gives an upper bound on the size of the support of a Hamiltonian
isotopy between product tori when such an isotopy exists.
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Theorem 1.1. (i) If a and a' are related by a permutation of the components, then

the tori T(a) and T(a') are Hamiltonian isotopic in the ball B2n(\a\).

(ii) If a — a', then the tori T{a) and T(a') are Hamiltonian isotopic in the ball
ß2"(max(||a||, ||a'||)).

Assertion (i) of the theorem is, of course, rather obvious. It seems likely that
Theorem 1.1 gives a sharp bound for the ball size. However, we can prove the

sharpness only under the additional assumption that |a| f \a'\:

Theorem 1.2. If b < max(||a||, ||a'||) and \a\ ^ \a'\, then the tori T(a) and T(a')
are not Hamiltonian isotopic in the ball B2n(b).

It will sometimes be necessary to assume that the geometry of the symplectic
manifold (M,co) is not too wild. Following [3,17,35], we say that (M,co) is tame

if M admits an almost complex structure J and a complete Riemannian metric g
satisfying the following conditions:

(Tl) J is uniformly tame, i.e., there are positive constants Ci and C2 such that

co(X,JX)>C1\\X\\2g and (X, Y)\ < C2 ||V||g \\Y\\g

for all tangent vectors X and Y on M.

(T2) The sectional curvature of (M, g) is bounded from above and the injectivity
radius of (M, g) is bounded away from zero.

Some examples of tame symplectic manifolds are as follows: (1) closed symplectic
manifolds; (2) cotangent bundles over arbitrary manifolds; (3) twisted cotangent
bundles over closed manifolds; (4) symplectic manifolds such that the complement
of a compact subset is symplectomorphic to the convex end of the symplectization of
a closed contact manifold. The class of tame symplectic manifolds is closed under

taking products and coverings. To save words we make the

Definition. A symplectic manifold (with or without boundary) is subtame if it
symplectically embeds into a tame symplectic manifold.

Symplectic manifolds that are not subtame can be considered exotic. An example
is the symplectic M6 constructed in [30]. It is the symplectization of an exotic contact
structure on M5 and contains a Lagrangian sphere, and therefore cannot be subtame,

see [9, §4],

Recall that (M,co) is called symplectically aspherical if MU2(M) 0 and

ciU2(M) 0. Here, c 1 c\(o)) is the first Chern class of TM with respect to
an (arbitrary) almost complex structure J taming co as in (Tl), and the restriction
to n2(M) is understood as the restriction to the image of the natural map tt2(M) —»

H2{M\Z) c H2(M;W).
Given a symplectic chart <p: B2n(b) -> (M, co), we write bv b. The following

theorem shows that the invariants of product tori in R2" extend to certain other

symplectic manifolds.
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Theorem 1.3. Assume that Tv(a) ~ Tv>(a'), where Tv(a), Tv'{a') c (A4, co).

(i) If(M,co) is symplectically aspherical, then T(a) T(a').

(ii) If (M,(o) is subtame, ||a|| < bv, and ||a'|| < bv', then a a' and

m(a) - m(a').

A symplectic manifold (A4, at) is called a Liouville manifold if it admits a vector
field X such that Cxoo oo (where Cx is the Lie derivative with respect to X). If X
can be chosen in such a way that its time t flow map is well-defined for each t > 0,

we call (A4, co) forward complete. Examples of tame forward complete Liouville
manifolds are cotangent bundles and, more generally, Stein manifolds, see [12].
Product tori in such manifolds can be completely classified:

Theorem 1.4. Let T^la), Tv'{a') be Lagrangian product tori in a subtame forward
complete Liouville manifold (M,co). Then the conditions a ~ a', T<p{a) ~ T<p'(a'),

Tv (a) ss Tv' (a') are equivalent one to another.

The assumption ||a|| < bv, ||a'|| < in Theorem 1.3 (ii) cannot be omitted, as

the following simple example shows. Let S2 be the round 2-sphere, endowed with
the Euclidean area form of total area 2. Let pn Ps G S2 be the north pole and the
south pole. Choose e G ] 0, j [, and let cp, ip'\ B2(2 — s) —> S2 be Darboux charts
such that <p(0) Pn. (p'{0) ps, and such that concentric circles are mapped
to circles of latitude. Then 7^(|) Tv>{tf), but a | 7^ | a'. Note that

||a'|| 3 > 2 — e bv>.

The assumption in Theorem 1.3 (i) that (M, co) is symplectically aspherical cannot
be omitted either, as the next theorem shows. Recall that the cohomology class [o>]

of the symplectic form gives rise to the homomorphism a: Tti{M) —> R, and the

first Chern class c 1 gives rise to the homomorphism c\: 712(A4) —> Z. Given a > 0,

define the homomorphism

oa: 7t2(M) —> R, S h» g(S) — ci(S)a.

With a > 0 and a symplectic manifold (A4, co) we associate the group

Ga Ga(M,co) := oa(n2(M)) C R.

Note that (M,co) is symplectically aspherical if and only if Ga is trivial for
all a > 0. We call the symplectic manifold (A4, co) special if the rank of the

group a(jt2(A4)) C R is 1 and c 1 is not proportional to a. We associate with each

So e jc2{A4) and each a > 0 the subgroup Ga(So) Ga(So, A4, co) of Ga which is

the image under oa of the subgroup generated by So.

Theorem 1.5. Let (A4, co) be a symplectic manifold; if(M, co) is special, we also fix
an element So n2(M). Let cp\ B2n (b) —> (A4, co) be a symplectic chart. For every
real number c > 0 there exists A > 0 such thatfor all a G ]0, A] thefollowing holds.
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Ifd\,... ,dic and e\,..., for all j {1,..., k} satisfy the conditions dj > c,

e} > c, then

and the tori Tv(a,..., a, a + d\,..., a + d]f), Tv(a,... ,a,a + e\,... ,a + ek) are
contained in Bip(b), then

Tv(a,... ,a,a + d\,... ,a + dk) s» Tv(a,... ,a,a + e1}... ,a 4- e]f).

Example. Given v > 0, we denote by S2(v) the 2-sphere of area v. There exists

a symplectic embedding BA{b) -> 5,2(ui) x S2(V2) whenever b < min(ui, V2).

The homomorphism ci on ^(^(ui) x S2(v2)) Z © Z is given by (mi,ni2) h»

2(mi + m2). For So (1, —1) we have

(Note that S2(t;i) x S2(v2) is special if and only if v\/v2 e Q and v\ 7^ v2.)
Theorem 1.5 implies, in particular, that in S2(3) x S2(4) the tori T(a,a + 1) and

T(a, a + 2) are Hamiltonian isotopic for all sufficiently small a, whereas (a, a + 1) f.
(a, a + 2).

The paper is organized as follows. In Section 2, we describe the invariants that

are used in the proof of Theorems 1.2 and 1.3, and derive Theorem 1.3. In Section 3

we prove a version of Theorem 1.3 for generalized Clifford tori in CP", and use it to

prove Theorem 1.2. In Section 4 we construct Hamiltonian isotopies that provide a

proof of Theorem 1.1. In Sections 5 and 6, we prove finer versions of Theorems 1.4

and 1.5, respectively. Appendix A contains a refinement of Lelong's inequality for
the area of holomorphic curves passing through the centre of a ball, that we use in
Section 2. Appendix B describes an algebraic result used in Section 4.

Acknowledgements. The first draft of this paper was written in Spring 2005, when
the first author visited Max Planck Institute Leipzig and the second author was a

PostDoc at Leipzig University. The paper was finalized during our stay at FIM of
ETH Zürich in 2008 and 2010 and during the first author's stay at Universite de

Neuchätel in 2009 and 2011. We wish to thank these institutions and in particular
Dietmar Salamon and Matthias Schwarz for their warm hospitality. We also thank
the referee for many useful remarks.

2. Symplectic invariants

Ga(So) if (M, on) is special,

Ga otherwise,

Ga{So, 52(u,) x S2(v2)) (m - v2)Z.

2.1. Displacement energy and /-holomorphic discs. The first Ekeland-Hofer

capacity was a key tool used in [7] for the classification of product tori in K2".
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This capacity is defined only for subsets of the standard symplectic space R2". We
shall work with the displacement energy capacity instead, which is defined for all
symplectic manifolds. In the process of computing the displacement energy for
Lagrangian tori, we bring /-holomorphic discs into play, and it is here that we need

the assumption that (M, co) be tame.

Consider the sefH(M) of smooth functions H: [0,1] x M —> R with compact
support. Denote by A>h the time 1 map of the Hamiltonian flow generated by H.
Following Hofer [18], we define a norm on PL by

II//II / [ max H(t, x) — min Hit, x) 1 dt,
Jo \xzM xeM

and the displacement energy of a compact subset A C M by

e(A,M)= inf f||//|| | <Z>H(A) D A 0},
Hen 1 '

assuming inf(0) 00.
Assume that (M, co) is tame. Denote by D the closed unit disc in the complex

plane C, and by J J(M, co) the set of almost complex structures J on M for
which there exists a complete Riemannian metric g such that J and g satisfy (Tl)
and (T2). Let L be a closed Lagrangian submanifold of (M,co). Given J e J,
we define a(L, M \ J) to be the minimal symplectic area fD u*oj of a non-constant

J-holomorphic map u: (D, 3D) —> (M, L) if such maps exist, and set a(L, M; J) —

00 otherwise. Since (M, co) is tame, Gromov's compactness theorem implies that
the minimal area is indeed attained and thus positive [28], Define

a (L, M) sup a(L, M\ J),
J&J

allowing er(L, M) to be infinite as well. It was proved in [8] that

a(L,M) <e(L,M). (2.1)

Recall that a mini<,-<n(a,-), ||a|| a + YJi=iai-

Proposition 2.1. If (M,co) is tame and ||a|| < bv, then e {Tv(a), M) a.

Proof. First we prove that e (Tv{a),M) < a. We can assume that a\ —a. We

write D(a) for the polydisc B2(a\) x x B2(a„). Let U be a neighbourhood
of B2n(b) such that cp\U M is well defined. Choose e > 0 such that

ß2"(||a+«e||) C U. The torus T (a) can be displaced from itself by the time 1 flow

map of a Flamiltonian function H fL(D (2a\ + e, «2 + s,..., an + e)) such that
|| //1| < a + e, see e.g. [19, p. 171]. The polydisc D (2a\ + e, a2 + £,... ,an + s)
is contained in the ball /?2"(||a|| + ne) and hence in U. Transferring H to (M, co)

by means of the chart cp, we obtain a Hamiltonian function H9 e H{M) such that
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< a + s and the time 1 flow generated by H9 disjoins the torus Tv(a) from
itself. Since e can be chosen arbitrarily small, it follows that e (Tv{a), M) < a.

Denote by Jo the standard complex structure on C".

Lemma 2.2. Let Lbe a closed Lagrangian submanifold in B2n (b C C", and let <p

be a symplectic chart such that bv > b— Then

a(cp(L),M) > mm(a(L,Cn; J0), bp-b-).

Proof. It suffices to find an almost complex structure J e J such that the symplectic
area of each non-constant ./-holomorphic map u: (D, 3D) -> (M, <p(L)) is at least

min(a(L, C"; Jo), bv — b-). We construct such a J as follows. Transferring the

complex structure Jo by means of the chart <p, we obtain a complex structure J^ on Bv.
We claim that Jq extends to an almost complex structure J e J on M. Indeed,

pick an arbitrary J\ e J. For each x e M, the space of complex structures J(X)

on the tangent space TXM satisfying to(f, J(x)^) > 0 for all £ e TXM \ {0} is

contractible [27]. Thus there is an almost complex structure J on M that coincides
with Jq on Bp, and with J\ outside a relatively compact neighbourhood of Bp.
Then J £ J.

Letu: (D, 3D) —> (M,cp(L)) be a non-constant J -holomorphic map. If the image
of u is contained in Bp, then uv <p-1 o u: (D, 3D) —r (C", L) is a non-constant

holomorphic map. Hence fD u*co fD u*co„ > o{L, Cn; J0).

If the image of u is not contained in Bp, then the set Vv (p~l (u(D)) is a real

analytic subvariety in B(bv) intersecting the sphere 3Bib-). Applying Theorem A.l
from Appendix A (with b- Jtr2, bv 7tr^_), we infer that the Riemannian area

of Vp is at least bv — b-. Since the Riemannian area of a holomorphic curve in C"
equals its symplectic area, and the symplectic area of u is not less than the symplectic
area of Vv, it follows that the symplectic area of u is at least bp — b-.

We claim that a(T(a), C"; Jo) > a. Let u: (D, 3D) —> (C", T(a)) be a non-
constant holomorphic map. Write u (ui,..., un), where each u3: (D, 3D) —>

(C,T{ajf) is a holomorphic map. The symplectic area of u is positive,
and it equals the sum of the symplectic areas of the maps u3. Since the

symplectic area of Uj is a non-negative integer multiple of a3, the symplectic
area of u is at least a. The torus T(a) is contained in the ball B2n{\a\). By
Lemma 2.2, a (Tp(a),M) > ||a|| — |a| a. In view of (2.1), we conclude that
e (Tp(a), M) > a. This completes the proof of Proposition 2.1.

2.2. Deformations. Let (M, to) be a symplectic manifold. Denote by C the

space of closed embedded Lagrangian submanifolds in (M, to) endowed with the

C°°-topology. Given a Ham(M, w)-invariant function f on C taking values in a

set X, we associate with each L e C & function germ s[\ Hl(L:M) -» X at the
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point 0 G H1 (L; R) following [7]. This construction provides additional invariants
of Lagrangian submanifolds. We use it to prove Theorem 1.3 (ii).

By Weinstein's Lagrangian Neighbourhood Theorem, there is a symplectomor-
phism g from a neighbourhood of L in M to a fibrewise convex neighbourhood of
the zero section of T*L such that the image of L is the zero section [42], There

is a neighbourhood V of the point L in the space C such that each L' e V
is mapped to the graph of a closed 1-form au on L. Consider the mapping

wl,v- V Hl(L\W) that sends L' G L to the cohomology class of the form a//.
This mapping is locally surjective at L. Denote by wl the germ of u>l,v at L. If two
Lagrangian submanifolds Lq, L\ g V are mapped by u^y to the same cohomology
class £ G Hl(L;W), then they are Hamiltonian isotopic. Indeed, consider the

family of Lagrangian submanifolds {Lt} such that g(Lt) is the graph of the 1-form

at taL\ + (1 — OaLo f°r each !]• Since [at\ £ for all t, the family {Lt}
is a Hamiltonian isotopy between Lo and L\. Therefore, one can define a mapping

germ s[: //'(LjM) -> X at the point 0 e HX{L\R) by s[(£) f(L'), where

wl(L') t,. In order to prove that the definition of s[ does not depend on the choice

of the symplectomorphism g, it suffices to give a description of the mapping germ vol
that does not use g. This description goes as follows: the evaluation of wl(L') on a

1-homology class X e Hi (L; Z) equals /j0 h*a>, where /i:[0,l]xS' —* M is

a smooth map with image in a tubular neighbourhood of L such that h({0} x 51) is

a loop in L representing the class X and h({l} x S1) C L'.
It immediately follows from the definition that s[ is Ham(M, <w)-invariant in the

following sense: for each \j/ G Ham(M, co), we have

Shl) SI°W\lT, (2-2)

and if, moreover, / is Symp(M, <y)-invariant, then (2.2) holds for each V e

Symp(M, co). The displacement energy function e (L) e(L,M) takes values

in [0, ex: [ U {oo} and is Symp(M, <z>)-invariant.

Proposition 2.3. Let L — Tv(a) be a product Lagrangian torus in a tame symplectic
manifold. Assume that ||a|| < b,p. Then

SeL(i;) e(L) + min(/,(t),..., /m(a)(0),

where l\,..., lm(a) are independent linearfunctions on H1 (L; M).

Proof Consider the mapping germ 9: (R", 0) (£, L), s Tv(a + s). The

composition A — o 9: (K",0) —> (//1 (L; R),0) is a linear isomorphism germ.
Choose e > 0 so small that (p: B2n{bv + e) M is defined. For s small enough,

we have ||a + s\\ <b<p + e and hence, by Proposition 2.1,

e (Tv(a + s)) min(ai +s\,...,an + sn). (2.3)
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We can assume, after reordering the coordinates, that

U ll\ • • — Q-rn(a) < "m(a)+l — ''' — Qn-

For s sufficiently small (say, such that the absolute values of all its components do

not exceed \(am(a)+\ — am(a))), in view of (2.3) we have

e (T(f,(a + s)) a + min(si,... ,smW) e(L) + min(^i(s),..., nmW(s)),
(2.4)

where nr,: R" —»• R is the projection onto the i-th coordinate axis, 7r;- (s) Sj. Since

SKO e(7jp(a + A-1 (£))), it follows from (2.4) that

SeL(0 e(L) + mm(h(0,...,lmW(0)

where l\ n\ o A~l,..., lm(a) ^m(a) ° ^_1 are independent linear functions

on Hl(L;R).

Proofof Theorem 1.3 (ii). We can clearly assume that (M,co) is tame. Denote

L — Tv(a), L' T<p>{a'). It follows from Proposition 2.1 and the symplectic
invariance of displacement energy that

a e (L, M) e(L',M) a'.

According to Proposition 2.3, the cohomology classes £ e //1 (L; R) such that

S£(£) a form a vector space germ W ofdimension n —m(a), and the cohomology
classes £' 6 H1(L'\R) such that SeL,{f a form a vector space germ W' of
dimension«—m (a'). IfV if(L) for some if e Symp(M, at), then S£, S£oA^,
where Af (iff)* is a linear isomorphism between Hl(L\R) and Hl(L'\R).
Hence A^,(W) W', and therefore m(a) m(a').

2.3. Symplectic area class and Maslov class. Given a Lagrangian submanifold L
of a symplectic manifold (M, u>), one can consider two relative cohomology classes:

the symplectic area class ol e H2(M, L;W) represented by the 2-form co, and

the Maslov class /r-x e H2(M,L; Z), defined as in [40], Both a and /i are

symplectically invariant in the sense that o"^(x) and ß^(L) f*ßL for
each symplectomorphism if. These classes define homomorphisms from n2(M, L)
to R that we shall also denote by ox and jit- Define the subgroup T(L) C R
to be the image of the subgroup ker{jit) C n2(M, L) under the homomorphism
Ol.'. jt2(M, L) —>• R. Since ol and are symplectically invariant, so is T(L):

Lemma 2.4. Let L,L' be Lagrangian submanifolds of (M,a>). If L ~ L', then

T(L) T(L').



454 Yu. Chekanov and F. Schlenk CMH

Theorem 1.3 (i) is a corollary of Lemma 2.4 and the following assertion:

Lemma 2.5. Let Tv(a) be a product Lagrangian torus in a symplectically aspherical
symplectic manifold Then T(T<p(a)) T(a).

Proof. For i {1,...,«}, let Dt be a disc in R2" with boundary on T(a) such that
the projection of D' to the /-th factor in R2 x ••• x R2 R2" is the disc in M2

bounded by the circle T(at), and the projections to other factors are points. Denote

by D, the element of Jt2 (R2", T (a)) represented by Dx. The classes D\..... Dn

generate the free Abelian group n-i (R2", T(a)). Denote Dt <p*Dt e itjiM, L)
where L := Tv(a). For each i, we have OT(a)(A) cii, pT{a){Dt) 2,

and hence <xl(A) a,, pl(D,) 2. The group 7t2 (M,L) is the direct sum
of 7t2(M) and the subgroup generated by the elements Dl. Since (M.co) is

symplectically aspherical and Pl\h2(m-z) — 2ci(&>) (see [40]), both oj_ and pi
vanish on ^(M). The kernel of pt is the direct sum of 7t2(M) and the subgroup
generated by the differences Dt — Dj, where i. j e {1and j is such that

a a j. Therefore, ox(ker pl) consists of all integer combinations of the numbers

al—a= a(Di — Dj).

3. Proof of Theorem 1.2

3.1. Generalized Clifford tori in CP". We consider a certain class of product
Lagrangian tori in the complex projective space, the so-called generalized Clifford
tori. Identify the symplectic space (R2", oj„) with C", the complex coordinates

being z\ x\ + iy\,..., zn — xn + iyn. Consider the diagonal action of the Lie

group f/(l) on the space C". For each b > 0, the sphere S2n~l(b) dB2n(b)
is invariant under this action. Denote by CP"-1(£) the quotient S2n~l(b)/U{\).
The restriction of the symplectic form ojn to S2n~x(b) is the pullback of a certain

symplectic form £u^_x on CP"-1 (b). This form is a multiple of the Fubini-Study
form.

If a and \a\ b, then the torus T(a) is contained in the sphere S2n~x(b).

Moreover, T(a) is invariant under the action of L/( 1). Therefore, the quotient T (a)
T(a)/U( 1) is a Lagrangian (n — l)-torus in CP"~'(h). It is called a generalized
Clifford torus.

Denote by Zn(b) the complex hypersurface

(S2"-1^) n {z„ 0})/C/(l) CP"-2

in CP" x(b), and by B2" 2(b) the open ball Int(52" 2(b)).
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The tori T (a) are product tori:

Proposition 3.1. There is a symplectomorphism

<Pn-i ' (B2n~2(b), -* (CP"-1(fc) \ Zn(b),cobn_x)

°
that maps each product torus T(ay,... ,an-y) contained in B (b) to the torus

T(au...,an), where an b — ay — • — an-\.

Proof. Denote by W the subset of S2n~l{b) formed by points with zn coordinate

positive real. Consider the projection of C" onto C"-1 defined by forgetting
the last coordinate. Restricting this projection to W be obtain a diffeomorphism
xfr: W -» B2n~2(b). We claim that f is a symplectomorphism from (W, con\w) onto

(B2n~2(b),con-1). This statement is equivalent to the assertion that the restriction
of the 2-form dxn a dyn to W vanishes. The latter follows since yn vanishes on W.

The manifold S2n~l{b) \ {zn 0} is foliated by the orbits of the U( \ )-action.
Each of these orbits intersects W exactly once, and the intersection is transverse.

Therefore, symplectic reduction gives rise to a canonical symplectomorphism ijr'
from (W,con\w) onto (CP"_1(ö) \ Z„(b),(o%_1).

The composition tp%_l is the required symplectomorphism. To prove
the assertion concerning Lagrangian tori, it suffices to observe that the image of
T(ai,..., an-1) under the symplectomorphism is the torus T(ai,..., an-\) x
y/an/n, and that the (/(l)-orbits passing through the latter torus form the torus

T(a\,... ,an).

Proposition 3.2. Let a, a' e be such that \a\ \a'\. Consider the Lagrangian

tori T (a), T (a') in CP"_1(|a|). If T (a) ~ T (a'), then a ~ a'.

Proof By Theorem 1.3 (ii) we have a a' and m(a) m(a'). In view of
Lemma 2.4, it remains to show that r(T(a)) T(a). Let D\,..., Dn-\ be

the elements of the group Jt2 (M2"-2, T(ai,... ,an-\f) defined as in the proof

of Lemma 2.5. The symplectomorphism sends these classes to the classes

Dy,..., Dn-i in 7T2(CP"-1(|a|), T(a)). For each /, we have cr-^ (D,-) a,-,

pj;^(Di) 2. The free Abelian group tt2(CP""1 (|a|), T(a)) is generated by

the classes D, Dn-\ and the class [CP1] represented by a complex line in the

complex projective space.
We have ([CP1]) 2n, since the value of the Maslov class on CP1 is

twice the value of C! (T CP"-1). We claim that [CP1]) |fl|. Indeed, let

CP1 C CP"-1 be the quotient of the sphere {z2 zn-y 0} D S2"-1(|a|) by

the diagonal action of U( 1). The symplectomorphism y identifies the complement

of a point in CP1 with the open symplectic disc Z?2"-2(|a |) fl {z2 • • zn-y 0}.



456 Yu. Chekanov and F. Schlenk CMH

This disc has area |a|, and hence the integral of the symplectic form over CP1

equals |a|.
Define Dn [CP1] — Yl"=\ A- The group ;i2(CP"_1(|a|), T(a)) is generated

by the classes Dn, and we have a-^^{Dn) an, 2. The

kernel of is generated by the differences D; — D}, where i, j e {1,..., n}
and j is such that a — a}. Therefore, o"^^(kerconsists of all integer

combinations of the numbers a,- — a a(D, — D}).

3.2. ProofofTheorem 1.2. Arguing by contradiction, we suppose that T (a) % T (a')
in B2n(b). By Theorem 1.3 (ii), with (M,cd) a large ball and <p,<p' the identity
embeddings, we have a a'. We can assume that ||a|| > ||a'||. Since a — a' and,

by hypothesis, |a| ^ |a'|, we have ||a|| — ||a'|| |a| — |a'| > 0. By hypothesis we
have |a| < b < ||a||. Thus \a'\ < \a\ < b < \a \ + a. Choose c' < c such that

b < c' < c < \a\ + a.

Define an+\ := c — \a\ and a'n+l := c — |a'|. Then an+\ < a'n+l and an+i
c — \a\ < a. Therefore,

min{ai,... ,an,an+i} an+1 < min{a,a^,+1} ,a'n,a'n+l}. (3.1)

Recall that T(a) % T(a') in B2n(b). Cutting off the Hamiltonian function

that generates this isotopy, we construct a Hamiltonian isotopy supported
in B2n(c') that moves T(a) to T(a'). The symplectomorphism <pcn from
Proposition 3.1 transfers this isotopy to a Hamiltonian isotopy of CP"(c).
It moves T{a\,... ,an,an+\) to T(a\,... ,a'n,a'n+1). By Proposition 3.2,

min{öi,... ,an,an+i} — min{a',,... ,a'n,a'n+x}, in contradiction to (3.1).

4. Constructions of Hamiltonian isotopies

4.1. Proof of Theorem 1.1 (i). The unitary group U(n) acts on C" preserving the

symplectic form co„. Since a permutation of coordinates z\,..., z„ is a unitary map
and the group U{n) is path-connected, there is a smooth family {3v}, t e [0,1],
of unitary maps such that <t>o id and 4>i(r(a)) T(a'). The flow {<!>,} is

Hamiltonian because C" is simply-connected.

4.2. The proof of Theorem 1.1 (ii) relies on the following lemma, which represents
a special case of Theorem 1.1 (ii).

Lemma 4.1. For any positive numbers a, c, and d, the tori T(a,a + c,a + d) and

T(a,a + c + d,a + d) are Hamiltonian isotopic in the ball B6(4a + c + 2d).
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Proof. Let W {(zi,Z2)eC2 | |zi| < |^21}- Consider the map

4>:W ^C2,

It is injective, and its image is the complement of the complex line {Z2 0}. We

claim that preserves the symplectic form u>2 — dx\ A dy\ + dx2 A dy2. Indeed,
write z\ e2ltl01 yjp\/n, Z2 e2ltl02yjp2/n, with 6\, 62 in 51 M/Z and pi, P2

non-negative real. For nonzero values of Z2, we have 0J2 dp\ A d0\ + dp2 A d6j
and

Clearly, 4* is symplectic outside the complex line {Z2 0}, and hence, by continuity,
on the whole of W. A product torus T(ao,ao + bo) C W is mapped by 4> to the

torus T(ao, bo).
The torus T(a,a + c + d, a + d) is Hamiltonian isotopic, through a unitary

isotopy, to the torus T(a + d, a + c + d, a) in the ball B6(3a + c + 2d). Therefore,
it suffices to prove that the tori T(a, a + c, a + d) and T(a + d, a + c + d, a) are

Hamiltonian isotopic in B6(4a + c + 2d).
Consider the map >F+ tyxid: VFxC -> C3. We have 4*+(7Xa, a+c, a+d))

T(a,c,a + d) and 4>+(T(a + d, a + c + d,a)) T(a + d,c,a). The Hamiltonian
function H — j(xiys — x^yi) gives rise to a unitary Hamiltonian flow {<!>;} that
does not change the complex coordinate Z2- We have 4>i (zi, Z2, Z3) (Z3, Z2, —zi).
In particular, <l>i maps T(a,c,a + d) to T(a + d,c,a). Multiplying H by an

appropriate cutoff function, we construct a Hamiltonian H', compactly supported in
C3 \ {z2 0}, whose flow moves the torus T(a, c,a + d) in exactly the same

way as the flow {4>r}. Consider the Hamiltonian flow {4>(+} on C3 generated by the

Hamiltonian function H' o 4*+. This flow is compactly supported in VF x C, where
o tj>£ o fl/+. in particular,

for all values of t, and <!>+(T(a, a + c,a + d)) T(a + d,a + c + d,a). It
remains to show that each torus ®f(T(a,a + c, a + d)) is contained in
B6(4a + c + 2d).

Let (z\, Z2, Z3) e <&/" (T(a,a + c,a + d)). We are to prove that

^(l^i |2 + 1^212 + 1^312) < 4a T c + 2d.

The point *f+(zi,Z2,Z3) (z\, z'2, Z3) belongs to the torus 3>f (T(a, c, a+d)). Since

T(a,c,a+d) is contained in the sphere dB6(2a + c + d) and 4>f is unitary, it follows
that (z'j, z'2, Z3) 6 dB6(2a + c + d). Hence n(\z[\2 + |z^|2 + IZ312) 2a + c + d.
By the construction of <4>t, we have zr | z^ |2 c. The definition of the map 4*+ implies

fl'Cpi, Oi, P2, Of) — (pi, 0\ + 62, pi Pi, O2).

4>+ (T(a,a + c,a + d)) 4>+1 (4>f (T(a, c,a + d)))
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that |Zj| \z\ \ and IZ2I2 |z[\2 + |z^|2- Therefore,

7r(|zi|2 + |z2|2 + |z312) 2a + c + d + n\z\\2

4a + 2c + 2d — 7r\z'2\2 — zr |z312

4a + c + 2d — 7T|z312 < 4a + c + 2d,

as we wished to show.

Lemma 4.2. Let c (c\,..., Ck) and c' {c[,..., c'k) be vectors in k >2,
such that, for some different indices i,j e {1,..., A:}, we have c' c, + c},
and c;' c/ for I f i. For each n > k and each positive a, the n-dimensional tori
T{p) T(a,..., a,a+c\,... ,a+Ck) andT(p') T(a,... ,a,a+c[,... ,a+c'k)
are Hamiltonian isotopic in the ball 52"(||p'|l)-

Proof We may assume that i 1 and j 2 after applying to the tori T (p)
and T{pr) unitary isotopies that swap the complex coordinates and z„_fc+!-,

zn-ic+2 and z„_yt+7. By Lemma 4.1, there is a Hamiltonian isotopy on C3 that moves
the torus L0 T)a, a + c\, a + c2) to L\ T)a,a + c\ + c2, a + c2) through tori
Lt belonging to B6(4a+ci +2c2). The tori L'0 T(p) and L) T(p') are Hamiltonian

isotopic through the family L't Tia,a) x Lt x T(a + c$,..., a + Ck).

All the tori L't are contained in the ball

B2n(in + 1 )a + |c| + c2) ß2"(||p'||).

4.3. Proof of Theorem 1.1 (ii). After applying appropriate unitary isotopies to the

tori Tia) and Tia'), we may assume that the first m (a) components of both a and a'
equal a. Let k n — mia). Write

Tia) Tia_,... ,a,a + di,... ,a + dk),

Tia') Tia,... ,a,a + e\,... ,a + ek),

where d — id\,..., dk) and e ie\,..., ek) are vectors in If k equals 1,

then the hypothesis T(a) T (a') implies that a a', and there is nothing to prove.
Assume that k >2.

We call a sequence d d°,dx,d2,... ,d^ e of vectors in
an admissible path from d to e if for each 5 e {1,..., Y}, the vector
ds (df.... df) is obtained from the vector ds~l either by swapping two
of the components, or by adding to the i-th component the y'-th component,
or by subtracting from the i-th component the y-th component. Given such

a path, define as (a,... ,a,a + df,...,a + df) for s {0, ...,£} and

consider the sequence of tori T(a) Tia0), Tia1),..., T(a^) — Tia'). For each

s G {\,...,£}, the tori T(as~l) and T(as) are Hamiltonian isotopic inside the

ball Z?2"(max(||a,s-11|. ||aJ||)). Indeed, if ds~l and ds are related by a swap
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of components, then there is a unitary isotopy; otherwise, we apply Lemma 4.2

with either c ds~l, c' ds, or c ds, c' ds~l. It thus suffices to
show that there exists an admissible path d d°, dl, d2,... ,dl e with the

property that Ha1* || < max (||a ||, ||a' ||) for each s. The latter property is equivalent to

\ds\ < max(|rf|, |e|) for each s.

Let (d) and (e) be the free Abelian subgroup in R generated over Z by the numbers

di,...,dk and e\,..., e^, respectively. The condition T(a) T (a') means exactly
{d) {e). Thus Theorem B.l from Appendix B guarantees the existence of an
admissible path d d°,dl, d2,... ,de e such that |</*| < max (|rf|, |e|) for
each s. The proof of Theorem 1.1 is complete.

5. Spaces of symplectic charts and product tori

Given b > 0, denote by Emb (B2n(b), M,co) the space of symplectic charts

<p:B2n(b) —> endowed with the C00-topology. By Darboux's theorem,
this space is nonempty at least for sufficiently small b. The Gromov radius p(M, od)

of (M,u>) is defined as the supremum of all b such that Emb (B2n(b), M, od) is

nonempty (we allow p(M, cd) oo). For computations and estimates of p(M, od)

we refer to [34] and the references therein. It has been conjectured that the space
Emb (B2"(b), M, od) is connected for all closed symplectic manifolds and all b > 0.

This has been proved for certain closed 4-manifolds and also for the symplectic
4-ball B(c), see [26],

Theorem 5.1. Let Tv(a) and T^ia') be two Lagrangian product tori in a

symplectically aspherical subtame symplectic manifold (M, od).

(i) Let b- min )bv, bv>) and b+ max )bv, bv>}. Assume that the space
Emb (B2n(b-), Af, od) is path-connected and that max{||a||, ||a'||} < b+. Then the

conditions a ~ a', Tv(a) ~ Tv'(a'), Tv(a) % Tv'(a') are equivalent one to another.

(ii) Assume that the space Emb (B2n(b), M, od) is path connected for all
values of b and that max{||a||, ||a'||} < p(M,co). Then the conditions a — a',

Tv(a) ~ Tv'{a'), Tv(a) % T,p>(a') are equivalent one to another.

Proof. First we prove statement (i). If Tv(a) % Tv>(a'), then Tv(a) ~ Tv>{a') by
definition. We can assume that b- bv and b+ bvf. Since Emb (B2n (b_), M, od)

is path-connected, there exists a smooth family \(ps), s e [0.1], of symplectic
embeddings B2n(b-) (M, od) such that <po <P and <p\ coincides with q>'

on B2n (b_). Then there is a Hamiltonian isotopy {4L}, .s e [0,1], of (M, od) such that

4L ocp (ps for all 5. In particular, 4L oip <p' on B2n (b_), and hence we can extend

<p: B2n{b-) —> M to <p 4']"1 o (p'\ B2n(b+) M. Assume that 7^(a) ~ T^fa').
Since T^(a) Tv(a), we have T^(a) ~ Tv>(a'). Theorem 1.3 applied to ip and ip'
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yields a ~ a'. Let a ~ a'. It follows from Theorem 1.1 that Tv>(a) % Tv>(a').
Since ^i{Tv(a)) — Tv'(a), we also have Tv(a) % Tvi(a) % Tv'(a').

The statement (ii) will follow from the statement (i) if we show that, for each b, V
satisfying 0 < b < b' < p(M,co), every symplectic embedding B2n(b) (M,co)
extends to a symplectic embedding B2n(b') —> (M, en). Since Emb (B2n(b), M, en)

is path-connected, this follows from the argument above.

Proposition 5.2. For a forward complete Liouville manifold (M, co), the space
Emb (B2n(b),M,a)) is nonempty and path-connectedfor each b > 0.

Proof Let I be a forward complete Liouville field on (M, en). Denote by {/f},
t > 0, its forward flow. Assume that the space Emb (B2n(b), M,a>) is nonempty
and pick cp e (B2n(b), M, en). Since (ft)* co e'eo for all t > 0, the map

B2n(e2'b) -» M, ri-> fitivie-'*))

is a symplectic embedding, and hence the space Emb (B2n(b+), M, en) is nonempty
for all b+ > b.

Let <p,(p'\ B2n(b) —> (M, en). We prove that cp and cp' are homotopic through
symplectic embeddings. After composing <p' with an appropriate Hamiltonian
symplectomorphism of (M, en), we can assume that <p(0) <p'(0). Since each

element of the linear symplectic group Sp(2n; M) can be realized as linearization of
a Hamiltonian symplectomorphism preserving the point (p(0), we can also assume
that d(p(0) df(0). There is a symplectic isotopy {Ft), t e [0,1], of B2n(b) such

that Fo id and i/e o F\ coincides with (p on B2n(b') for some b' e ]0, b[, see e.g.

Appendix A.l of [19] or the proof of Lemma 2.2 in [33]. Therefore, we may assume
that <p f- on B2n(b').

Consider smooth families {"$•;}, {4^}, t > 0, of embeddings B2n(b) —> (M, co)

defined by

O) (fit o cp) (e~'x), %(x) (f2t o f) (e~'x).

Since (/f)*cn e'eo, the embeddings are symplectic. Moreover, <&o cp

and *1*0 For T > 0 so large that e~TB2n(b) C B2n(b'), we have <£7-

Concatenating the path of embeddings $(,i e [0, T], from cp to with the path of
embeddings »Tr-t, t e [0, T], from Or O7- to we obtain a required path of
symplectic charts from <p to f.
Remark. In the case where (M2n ,co) is a cotangent bundle (T*Q, dA), a parametric
version of the above argument gives a description of the homotopy type of the space
Emb (B2n(b),T*Q): the map Emb (Bln{b), T*Q) —> Q defined by projecting
the center of the ball to the base is a Serre fibration with fibre homotopy equivalent
to U(n).
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Proofof Theorem 1.4. If we prove that (M, co) is symplectically aspherical, then the

theorem will follow from Proposition 5.2 and Theorem 5.1. Let I be a forward

complete Liouville field on (M.co). Denote by {ft}, t > 0, its forward flow. Let

g: S2 —»• M be a smooth map. Denote gt ft°g Since co is closed and all maps gt
are homotopic, we have

for each t > 0. Thus fs2 g*co vanishes, and (M, co) is symplectically aspherical.

If the space Emb (B2n(b), M,co) is not connected, the classification of product
tori can be more complicated:

Example 5.3. The camel space with eye of size c > 0 is the open subset

C2n(c) {xi < 0} U {xj > 0} U B2n(c)

of (R2",a>„). Fix b > 0 and define the symplectic embeddings <p±:B2n(b)
C2n (c) by

If b > c, then the maps cp± are not homotopic through symplectic embeddings by
the Symplectic Camel Theorem [12,29,41], and hence Emb (B2n(b),C2n(c),con)
has at least two components. Let a e R2" be such that T(a) c B2n(b). The

symplectomorphism

maps cp-(T{a)) to cp+(T{af), and hence cp-(T(a)) ~ cp+(T(a)). However, if a is

such that a > c, then <p-(T(a)) 96 (p+(T(a)) by the Lagrangian Camel Theorem
of [36], As subsets of (R2" con), camel spaces are symplectically aspherical
and subtame. It follows that the connectedness requirement cannot be omitted in
Theorem 5.1, and while camel spaces are Liouville manifolds, they are not forward
complete Liouville manifolds by Theorem 1.4 (or directly by Proposition 5.2 and

the Symplectic Camel Theorem). The classification of product tori in C2n(c) up
to Hamiltonian isotopy may be difficult. Indeed, there might exist a symplectic
embedding <p: B2n(b) —> C2n(c) whose image is so tangled up in the eye of C2n(c)
that cp(T(a)) is Hamiltonian isotopic to neither of <p±(T(a)).

6. Proof of Theorem 1.5

f g*co= f g*co f g*{ft*co) =e> fJs2 JS2 Js2 452

*
g CO

(xi,yi,... ,xn,yn) 1-+ (-xi,-yi,x2,y2,---,x„,y„)

6.1. Consider symplectic polar coordinates (p, 9) on R2 := R2 \ {0} defined by

(x, y) (^s/p/ir cos 2nd. y/p/n sin 2nO^J p > 0, 9 S1 R/Z.
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For s e M and me Z, define the domain

{(Pi* di, p2, O2) \ P2 + s > mp\ }CK4

and the map iiS: Dmy, —» M4,

^m,s(Pi,Gup2,ß2) (Pi.öi +m02,P2 + s-mp1,02).

The map is a smooth symplectic embedding (for the same reasons as the map
in the proof of Lemma 4.1).

Let (M,to) be a symplectic manifold, and let tp:B2n(b+) —»• (M,co) be a

symplectic chart. We denote by 02j- the origin in IR27'. The key step in the proof of
Theorem 1.5 is the following proposition.

Proposition 6.1. Let k > 1, d\,... ,dk,b+ > 0. Let S e n2{M) be such that
s := a (5) is positive and

d\ + • • • + dk + s < b+.

Then there exist a neighbourhood Uk of the isotropic k-torus

T£(di,...,dk) := 02n-2k-2 x T(d\,..., dk-\) x02x T(dk)

o _

in the open ball B (b+J and a Hamiltonian symplectomorphism \jfk to) such

that (1jrk o <p)(Uk) C B2n(b+) and the map := tp~l o o y coincides with

id2n-4 on Uk, where m Ci(S).

We will need the following lemma.

Lemma 6.2. Given positive numbers d\,..., dk-\, for each s > 0 there is a

Hamiltonian flow {S r}, t e [0,1], on IK2fc such that S1 maps the torus

T T(di,...,dk-i) x O2

into (B2(s))k and at maps T into B2(d\ + e) x x B2(dk-1 + e) x B2(s) for
all t.

Proof We start with the following

Lemma 6.3. Given a positive number d > 0, for each Eq > 0 there exist 8

&(d,£0) > 0 and a Hamiltonian flow {S f ,£°}, t [0, 1], on M4 with the following
properties:

sf'e° maps T(d) x B2(8) into B2{d + £0) x B2(eo) for all t e [0,1];

a^'E° maps T(d) x B2(8) into B2(s0) x B2{eq).
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Proof. For each t G [0, 1] and for I G N, define the map E,j: S1 -> C2 M4 by

E,tt{ß) (KJ(\-t)d/jie27Z,e, Jtd/(tn)e2nU9^.

Then E0^ is a diffeomorphism onto T{d) x 02- For t < 1, the map Et<i is an

embedding because its first component is. The integral over S1 of the 1-form E*^X,
where A x\ dy\ + x2dy2 is a primitive of co2, does not depend on t because

[ E*tX f E*t(xidyi) + f E*t(x2dy2) (1 - t)d +td d.
Jsl ' Jsl ' Jsl

It follows that for each q G ]0, 1 [ there is a Hamiltonian flow t G [0,1],
such that x O2) Eqtj(T(d) x O2) for all t G [0, 1], The absolute
value of the first component of the map Ette is decreasing with respect to t; the

second component of Et£ tends uniformly to zero as I —» 00. Therefore, after

choosing i large enough, we can assume that the tori Et i(T(d) x O2) are contained

in B2(d) x B2(eq) for all t G [0, 1] and that the torus Ei^{T{d) x O2) is contained
O - O _

'
in B (s0) x B (e0)- Then, after choosing q sufficiently close to 1, we can achieve

that the torus Eq^{T{d) x O2) Qq{^(T{d) x O2) is contained in B2(s0) x B2(s0)

as well. Let {sf'e° By continuity, there exists 8 8(d,eo) > 0 such

that sf'e° maps T(d) x B2(8) into B2{d + eo) x Bz(so) for all t G [0,1], and S^'£°

maps T(d) x B2(8) into B2{sq) x B2(s0).

If A 2, then Lemma 6.2 immediately follows from Lemma 6.3. Otherwise,
applying Lemma 6.3 k — 1 times, we construct positive numbers

£1 min(5(t/fc_i, £),£), £2 min(<S(<4_2, £1). e)> •••> Sfc-i min(<5(6?i, Sk-2),«)

and Hamiltonian flows {a^k~2'Sl},..., {sf1'®*-2} with the prescribed
properties. Consider the Hamiltonian flows {<!>/}, {<1>2},..., on M.2k such

that

id2fc-4 xSf^-1'8, 3>2 id2yt_6 xSfA"2'£lx id2,

afl'ek~2x id2£_4

For each j e {1,..., k — 1}, we have

cfi/ {T(du..., dk-j) x B2(£j)) x (ß2(£))7

C T{du..., dk-j-i) x B2(dk.j + £;_,) x (B2(e))j

for all t G [0,1], and

(m ,...,dk-j)x B2(sJ x (i2(£))7

C T(du. 1) X Z?2(£,-i) X (ß2(fi))7,
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where eo e. Concatenating the flows {O,1}, {<t>2},..., {<t>f _1 [ (and reparametriz-
ing the result to make it smoothly depending on t), we obtain the required

flow{E,}.

6.2. Proof of Proposition 6.1 for k 1. Denote T> M2" 4 x Dm>iS,

4/ id2„-4 xvpm iS: D -> K2".

Let e\ d\ + s. Consider the maps /o, f\ \ Sl -> R2",

/o(£) 02n-2 X (d\, £)> /l(t) 02n-2 x (^1. £),

where we use symplectic polar coordinates (p, 9) on the last M2-factor. We have

7^i) fo(Sl), Tl{e 1) ^(S1), and 4> o /0 /,. Let /J p /0,
f? <P°fi.

First we prove that there is e Ham(M, &>) such that Vr 0 /(f f\ Denote

Z [0, 1] x 51. Consider the map F:Z —>W2n,

F(v, £) 02„_2 x (d\ + vs, £).

We have /„ F(0, •). /1 ^(1, *), and

f (<poF)*oo f F*oon= [ f*(pdd)- f f*(pd9) s.
J Z J Z JSi «/ S ]

Taking the connected sum of <p o F with a map S2 —> M representing the class —S,

we obtain a smooth map F: Z —» M such that F coincides with cp o F at the boundary
of Z (that is, F(0, •), /* F(l, •)) and

j F*oo 0.

Then, according to [22, Appendix A], there exists a Hamiltonian flow {\[rt} on (M, to)
such that the map

F: Z —> M, (u,0^(/<f(t))
is homotopic to F relative to the boundary. In particular, this implies

VT 0 fo f\ <P 0 ^ 0 /o,

as required. It follows that (p~x 0^0 <p\t1(<1i) a neighbourhood
O _ - -A.W c B (b+) ofthe circle T?(d1) such that the maps xjfw '.=(p~ 0^10(P\w an^ ^\w

are well defined. We shall prove that there is a Hamiltonian symplectomorphism O

with support in W and a neighbourhood U\ of the circle (d\) in IT such that

<%, Vw°V\ur
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Then the symplectomorphism Ham(M, co) that coincides with
on <p{W) and coincides with t/zy outside (p{W) will satisfy <p_1 o^o <p|[/| ^|[/i
as required.

Trivialize the tangent bundle of R2"-2 x R2 using the symplectic frame

£ • • •, 9Xfl_j, dyn_t, 3Pn, 3e(I).

Denote by
r)w-.M.2n ^ Tw(M.2n-2 xR2), w e R2"-2 x R2

the corresponding trivialization maps. Let Sp(2n) denote the group of linear

symplectomorphisms of R2". Consider the loop

g: S1 -* Sp(2«), g(£) o d (t/r^1 o 4>) oi,M).

Recall that the fundamental group of Sp(2«) is isomorphic to Z; this gives rise to a

function /x called the Maslov index assigning to each continuous map S1 —> Sp(2«)
an integer (see [27, p. 48]).

Lemma 6.4. The Maslov index of g vanishes.

Proof. Define the maps go. gC S1 —» Sp(2«),

go(t) rf}\\K) o^o g,(£) rTf\K) o dfw o nmy
Since fi is additive with respect to the multiplication in Sp(2«) [27, Theorem

2.29], we have fx(g) ß(go) — ß(gi)- By the definition of 4*, we have

go(£) id2n_4 xA% x id2, where acts on C R2 as complex multiplication
by e2n,mS. Hence, according to [27, p.49], /x(go) m.

In order to compute the Maslov index of gi, consider the torus K constructed
from two copies, Si and S2, of the annulus Z [0,1] x S1 by gluing together the

respective boundary components. Define the map u: K —> M that coincides with

pfonSi, and with F on S2. Orient K by the volume form dv a dt, on S2.
Then the homology class of u(K) is S. Consider the symplectic vector bundle
u*TM over K. Trivialize it over Si by means of the frame <p*£, and over S2, at the

point (v, £), by means of the frame (frv o <p)*%. Then it follows from [27, p. 75] that

P(gi) ci(u(K)) m. Hence fi(g) 0.

Denote by Spj(2n) the subgroup of the group Sp(2n) consisting of the maps
sending the vector (0, ...,0, 1) to itself. The loop g takes values in Spj(2«).
By Lemma 6.4, g is contractible in Sp(2n). We claim that it is also contractible
in Spj^/j). Indeed, the inclusion /: Spx (2«) Sp(2«) is the fiber of the smooth
fibration

jr:Sp(2/?) -> R2"\{0}, A h* 4(0,...,0, 1).
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It follows from the long exact sequence of n that i induces an isomorphism
of fundamental groups when n > 2. Thus there is a smooth family of maps
g*: S1 —»• Sp!(2n), t e [0,1], such that g° id and g1 g.

There is a linear isomorphism I from the space of quadratic forms on R2" to
the Lie algebra sp(2n) of the Lie group Sp(2n) that assigns to a quadratic form h

the Hamiltonian vector field generated by h. The quadratic forms that vanish on
the line {(0,..., 0, )} are isomorphically mapped by I to the Lie algebra spi(2n)
of Spj(2n). From the family {g'} we construct a smooth family of Hamiltonian
functions {Ht} with support in W such that

t?-1 (d2(Ht)) rl(gt(6n))

for all w (xi,yi,..., x„_i, yn-i, pn, 9n) e T^(di), t e [0,1], Then the time 1

flow <J>+ generated by {Ht} fixes each point w G T^{d\) and has the same differential
as otyatw.

The symplectomorphism T := 0+1 o i//^1 o 4» fixes (d\) pointwise and

satisfies d Y(u>) id for all w G T*(d\). We shall prove that there is a Hamiltonian
symplectomorphism Tq with support in W coinciding with T near T^(d\ Then

$ q>+ o Oi is as required.
To construct 4>i, we use generating functions (cf. [2, Section 48], [19,

Appendix A. 1 ]). Consider the graph T C R2" x R2" of the map Y. Denote by
Tx C T the circle consisting of the points (w, w), where w e T^(di). Denote by

p (pi,..., pn), q (qi,... ,qn) the symplectic coordinates on the first copy
of M2", and by p' (p\,..., p'n), q (q[,..., q'n) those on the second copy. By
construction, T is tangent to the diagonal A C R2" x R2" along Tx. Hence there is

a tubular neighbourhood V of Tx in T such that the map

r: K —> R2", (p,q, p',q') ^ (p',q)

is a diffeomorphism onto a neighbourhood U of 7*2 (d\) in W. Since T is symplectic,
V is Lagrangian with respect to the symplectic form

£2 —dp A dq + dp' A dq' dq A dp + dp' A dq'.

The 1-forms a — —pdq + p'dq', a' q dp + p'dq' satisfy da da' £2 and

a a' — d(pq). Thus the restrictions of a and a' to V are closed. They are exact
because the restriction of a to the diagonal A, and hence to the circle 7X c V fl A,
vanishes. Let h: V —> R be a primitive of a'. Define F: x(V) —* M, F h o r_1.
Then F is a generating function for V, namely, V is given by the equations

dF{p',q) dF(p',q)
q —Err—' P=—5—

Note that p'q is a generating function for A.
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Since T is tangent to A along Tx, the functions F(p', q) and p'q have the same

respective first and second partial derivatives at the points of the circle T^(d\)
t(Tx). Thus the function f(p',q) := F(p',q) — p'q is C2 small near and

there exists a family of C°° smooth functions fg: R2" R, defined for sufficiently
small positive S, such that the function fg has support in the ^-neighbourhood Wg

of T^{d\), coincides with / on a smaller neighbourhood of T^(d\), and tends

to zero in the C2 topology as 8 tends to zero. (To explicitly construct such a

family, we can proceed as follows. Pick a family of smooth compactly supported
functions Ag: [0,5 [ [0, <5[ such that Xg is identity near 0 and its first and second

derivatives are bounded uniformly over 8. Given x e Wg, denote by xo the point
of T> (di) closest to x and draw the ray starting at xo and passing through x. Let
Gg'.Wg —Wg be the map that sends x to the point y such that y lies on this ray and

dist(y,xo) Xg (dist(x, xo)). Define fg to coincide with / oGj on Wg.)

Denote by L's the Lagrangian submanifold in R2" x R2" defined by the generating
function p'q + tfg(p',q). Picking 8 sufficiently small, we can assume that each of
the manifolds L's is sufficiently C1 close to A and hence is a graph of a compactly
supported symplectomorphism 0(. The symplectomorphism <E>i is Hamiltonian
because <J>0 id and H1 (R2") 0. Making 5 smaller if necessary, we can assume
that each has support in W. Since p'q + fg(p',q) coincides with F near T*(di),
the symplectomorphisms <f>i and T also coincide near 79 (d\). Thus fi>i is as

required, which concludes the proof of Proposition 6.1 for k 1.

6.3. Proof of Proposition 6.1 for At > 1. Applying Proposition 6.1 fork 1 to the

circle T^(dk), we obtain a neighbourhood U\ of T^(dk) and a Hamiltonian
symplectomorphism ijr\ such that f\\u[ T|(/|. We shall construct a neighbourhood

Uk C 'D of the torus Tf := T^{d\,..., dk) and Hamiltonian symplectomorph-
o _

isms 0, 0» with support in B (b+) such that

@(Uk)cUu ^001^=0,0^1^.
Denote by 0*" (resp. ®+) the Hamiltonian symplectomorphism of (M, w) that
coincides with <p o 0 o cp~l (resp. <p o 0, o <p~l) on B2n(b+) and with the identity
elsewhere. The symplectomorphism fk (0*)_1 o ^ o 0* will then have the

required property since

<P~l °fk°<P\Uk B;1 o ff o©!^ 0"1 off/o©!^ vp|^.

It remains to construct 0 and 0*. Let e > 0. Applying Lemma 6.2, we obtain a

Hamiltonian flow {31} on R2" suchthat S i maps the torus T T{d\,..., dk-i)xC>2

into (B2(sj)k and

Et(T) C B2{dx +e) x x B2(dk^ + e) x B2(s) for all f e [0,1], (6.2)
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Consider the Hamiltonian flow

{P, id2„_2/t-2 xS/ x id2}, t e [0, 1],

on R2". Let b' b+ — s. Clearly, the torus Tf is contained in D D B2n(b').
We claim that by choosing e sufficiently small we can achieve that P, maps T* into

D fl BZn(b') for all t e [0,1], and that Pi maps T* into U\. Indeed, if me < dk,
then the set

B2(e) x T(dk) {pi < £, p2 dk}

is contained in Dm,s- It follows from (6.2) that for all t the torus P( is contained

in R2"-4 x B2(s) x T(dk), and hence^in D. If dy + + dk + ks < b', then

it follows from (6.2) that Pt(T^) c B2n{b') for all t. Finally, for e such that

®2n-2k-2 x (B2(e))k x T(dk) is a subset of U\, we have PifTf) C U\.

It follows from the definition of the map that ^(P, (Tf)) is contained in B 2n (b+)
for all t e [0,1]. Therefore, there is an open set IL C Dfl B2n (b1) that contains all the

tori *I*(Pf (7^)) and satisfies T(IF) c B2n{b+). Then there exists a neighbourhood Uk

of the torus Tf such that Pf (Uk) C W for all /, and Pi (Uk) C U\.
Applying to {P,} an appropriate cut-off, we construct a Hamiltonian flow {Pf'},

t e [0,1], with support in W such that Pt' 1^ Pr \v for all t and Pj(Cyt) C U\.

Define the Hamiltonian flow {P*}, t e [0, 1], with support in fl'(IF) C B2n(b+) by
P* vp o Pj o fl/-1. Then 0 Pj and 0* Pj* are as required.

6.4. Proof of Theorem 1.5. It suffices to prove the theorem under the additional

assumption that dj e, for j < k. Indeed, in view of Theorem 1.1 (i), the claim
will then also hold for vectors that differ at only one component; after that the general
case follows by changing one component at a time.

We extend the symplectic chart <p from B2n(b) to a larger ball B2n(b+) with
b+ > b, and keep the letter^ for this extension. For d' (d[,..., d'k), we abbreviate

Tv(a,... ,a,a + d[,,. ,,a + d'k) to TVta(d'). Given r e [0, min(c, b+ — b)[, denote

by VT the subset of formed by vectors (d\,...,dk) such that dH \~dk <b + r
and dj > c — x for all j e {1,..., k}. Pick 5 e ]0, min(c, b+ — b) [. Recall that

oa(S) a(S)-Ci(S)a.
Lemma 6.5. Let S 7r2(M). There exists As > 0 such that for each a G ]0, As]
andfor each pair of vectors

d (di,...,dk-udk), ds (di,...,dk-i,dk + aa(S))

belonging to V«, we have Tv,a{d) % TVta(ds)-

Proof Denote s a(S)., m ci(5). Assume first that s > 0. It follows from
Proposition 6.1 and the definition of the map flVi.s that for each d there
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1 1
exist a neighbourhood U of the isotropic k-torus T*(d) in B (b+) and a map
t/r 6 Ham(M,co) such that for every torus T(a\,... ,an) contained in U we have

T<p{au...,an-i,a„ +s-man-1).

Therefore, by Theorem 1.1 (i), for each d e Vg there are a positive number Asj
and a neighbourhood Ws,d °f d in Vg such that for each d' G Ws,d and each

a ] 0, As,d] we have Tv^a(d') ss Tv>a(d's).

Since Vg is compact, there are d^\... ,d^ G Vg such that the sets WSdu)
cover V^. Let A s be the smallest of the numbers ASdu). T\\&nTv,a(d) ss Tv^a{ds)
for each d e Vg and each a e ] 0, /4s]. In particular, Tv,a{d) ss T^^ids) for each

a G ] 0, /4 s] when d, ds Vg. The latter statement is invariant under changing the

sign of S, and therefore we can drop the assumption thats > 0.

Assume first that (M,co) is not special. Let S\,...,Sr be elements of ^(M)
such that their classes form a basis of the free Abelian group itjiM)/(ker o n ker ci).
We can assume that r > 1, otherwise the groups Ga are trivial and there is nothing
to prove. Consider the free Abelian group o (^(M)). If it is trivial, then r 1.

If its rank is 1, then r 1 (otherwise (M. to) would be special). If the rank of this

group is greater than 1, then r > 2 and we can choose Si,... ,Sr such that for all

j G {1,..., r} the numbers s} a (S,) satisfy the inequality ,v7 | < 8. For each j
choose Asj > 0 that fits the conclusion of Lemma 6.5 and denote rrij ci(Sj).
Pick A > 0 such that for all j G {!,...,/*} we have

If (M,co) is special, we set r 1, Su S0 (or Si —So), and A As, with
As, > 0 as in Lemma 6.5.

Let a G ]0, A], Let

be vectors in Vg. We assume that the difference d^ — is an element of Ga

oa{it2(M)) if (M, a>) is not special, and an element of Ga(So) cra((So)) if (M, co)

is special. Hence there are n \,..., nr G Z such that

After changing the signs of S7 if necessary, we can assume that all coefficients n}
are non-negative. We need to prove that TVja(d) % Tva(e).

Let u i,..., u n be a sequence of numbers such that for each j G {1,..., r}
exactly tij of them equal s, — m,a. It gives rise to the sequence qo,qi,... ,qN,

A<Asj, \sj—mjA\<8.

d (di,...,dk-i,dk), e (dx,..., dk-X, ek)

r r
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where qo dk, qi dk + Yi\=i u. for all / e {1 (and hence qx ek).
Without loss of generality, we can assume that dk < e^. If

qi e[dk-S,ek +8] for all / e {1,..., N}, (6.3)

then each of the vectors qi (d\,..., dk-\, qi) belongs to V,$. Since a < A st for
all j, it then follows from Lemma 6.5 that

TVia(d) TVM ^ ^(qi) % • • • ss T(p a{qj^—i) ss 7p>a(^r^y) T(p,a{&)-

It remains to show that the sequence u\,... ,u^ can be chosen to satisfy (6.3). For

r 1, there is no choice involved in the construction of the sequence, and all qi
belong to [dk,ek]. Let r > 1. Then \sj — trijCi\ < 8 for all j since |5;| <8 and

|s7 — m7^4| < 8. We choose the numbers U[ in succession, using the following rule:

if qi-1 > ek, then u\ < 0, and if qi-i < dk, then w; > 0. Then (6.3) will hold true.
This completes the proof of Theorem 1.5.

A. Areas of holomorphic curves in a hyperannulus

o

For r > 0, denote by Br (resp. Br) the closed (resp. open) ball of radius r in the

complex vector space C" centred at the origin. Denote Bo — {0}.

Theorem A.l. Let r+ > r_ > 0. Let V be a holomorphic curve (a 1 -dimensional

analytic subvariety) in the hyperannulus Br+ \ Br such that the closure of V
intersects dBr_. Then the area of V is at least n {r+ — rf).

If the area equals re (r^_ — if), then V is the intersection ofa complex line in C"
with the hyperannulus.

In the particular case where r_ 0, Theorem A.l is equivalent to the

1-dimensional version of the Lelong theorem that gives a lower bound for the areas

of holomorphic curves in a ball passing through the centre. In this case the result
can be proven in many ways: Using currents [23,39]; by blow-up [32, Lemma 4.2];
or, viewing V as a (singular) minimal surface, by using the monotonicity formula for
minimal surfaces [20, Theorem 3.2.4] or the isoperimetric inequality [6, § 7.4], Each

of these proofs uses in an essential way that V passes through the centre. The general
case r_ > 0 follows if one shows that for almost all r e [r_, r+] the derivative F'(r)
of the area F(r) of V n (Br \ Br_) is at least 2irr. This can be done by elementary

arguments, see [10, Appendix A],

B. Existence of low admissible paths

Let k > 2. Given an ordered pair of different numbers i, j e {1,..., k}, consider
the operator P.j (resp. M,j, resp. 7(/) in GL(/c; TL) that adds to the i-th component of
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a vector in M.k its / -th component (resp. subtracts from the z-th component the / -th

component, resp. swaps the i -th component and the j -th component), and does not

change the other components.
Denote by E+ the set of positive real numbers. A sequence d d°, d1,

d2,..., de e of vectors in is called an admissible path from d to e if for
each 5 the vector ds+1 is obtained from ds by applying one of Pu, Ml}, ltJ. Given
vectors v, w we write v < w if there is a permutation a of {1,,k} such that

vt < w(j(,) for all/ e {1,..., k}. We say that a path d d°, d1,... ,de e is low if
for each 5 e {0,1,...,/} we have ds < d or ds < e. Given u (ui,..., zz&) e

we write («) {u i,..., u^) for the free Abelian subgroup in R generated over Z by
the numbers u\,...,Uk-

The following theorem may be known to specialists in number theory or geometric

group theory, but we were unable to find it in the literature.

Theorem B.l. Given d (d\,..., d^) and e (e\,...,ek) in R+ such that

(d) (e), there is a low admissible path from d to e.

In this appendix we outline a proof of this theorem. For the complete proof we
refer to [11, Appendix B], We first notice that if the path d°, d1,..., d^~l. dt
is admissible, then the path dl, d^~dl, d° is also admissible, because

M~l P,j. Further, the concatenation of a low path from d to d' and a low
path from d' to d" does not have to be low. However, the concatenation is low when

d' <d or d' < d".
One readily sees that

Lemma B.2. Given d, e e such that (d) (e) and (d) has rank 1, there is a
low admissible path from d to e.

Lemma B.3. Given d, e e such that {d} {e) and {d} has rank 2, there is a
low admissible path from d to e.

Sketch ofproof Since {d} (e), there exists A e GL(2;Z) such that A(d) e.

It is not hard to see that there exists an admissible path from d to e. We call an

admissible path d d°,... ,d^ e special if each of the moves from ds~l to ds
is by one of P\2, M\2, 112 =: I Since P21 IP12I and A/21 /A/12/, every
admissible path from d to e can be transformed into a special one. Hence there exist

special admissible paths from d to e. Let p be a special admissible path of minimal
length. One readily checks that p is low.

The key step in the proof of Theorem B.l is the following special case.

Lemma B.4. Let d,e be vectors in satisfying (d) (e). Assume that there is

i e {1,..., k) such that d, e;-, d, < dj for all j, and d, is primitive (indivisible)
in (d). Then there is a low admissible path from d to e.
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Idea ofproof. Assume for notational convenience that i k. By repeatedly
subtracting the number dk ek from the components of d that exceed dk, we
construct an admissible path d, d1,..., ds-, where d > d1 > • > d^ and d^ is
such that djj. > dj for all j. Using the same procedure, we obtain an admissible path

e, e1,..., em, where e > e1 > • • • > em and em is such that e > e for all j.
One can now construct an admissible path from d^ to em with the property that

the components of all the vectors in this path are <dk- By concatenating the path
d,...,d^, the path from dl to em, and the path em,... ,e, we then obtain a low
admissible path from d to e.

Theorem B.l can now be proved by induction on k. Lemma B.2 and Lemma B.3

prove the statement for k 1 and k 2. We shall prove the statement for k > 3

assuming that it holds for k—\. In view of Lemma B.2, we can assume that rk(rf) > 2.

Using the induction hypothesis, one proves

Lemma B.5. Let u e with k > 3 and rk(w) > 2. There is a low admissible

path from u to a vector u+ such that u+ < u, for all j, and is

indivisible in (a).

By this lemma we can assume that dk and ek are indivisible in (d), dk < d} and

ek < ej for all j. If dk Ck, then Theorem B.l follows from Lemma B.4 (with
i k). Otherwise, the proof can also be completed with the help of Lemma B.4.
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