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Lagrangian product tori in symplectic manifolds

Yuri Chekanov* and Felix Schlenk**

Dedicated to Edi Zehnder on the occasion of his 75th birthday

Abstract. In [7], product Lagrangian tori in standard symplectic space R?” were classified up
to symplectomorphism. We extend this classification to symplectically aspherical symplectic
manifolds that embed in a tame symplectic manifold. We show by examples that the asphericity
assumption cannot be omitted.

Mathematics Subject Classification (2010). 53D35; 37B40, 53D40.

Keywords. Lagrangian tori.

1. Introduction and main results

The properties of the Lagrangian submanifolds of a symplectic manifold (M, w)
shed light on both the topological and dynamical characteristics of (M,w). The
study of Lagrangian submanifolds is therefore a central topic of symplectic topology,
with many facets: construction of examples, classification, persistence of Lagrangian
intersections, etc. Many results can be found in [3, 14,27,28].

The classification problem decomposes into several subproblems: One problem
is to understand which smooth manifolds P embed as Lagrangian submanifold
of a given symplectic manifold (M, ). If such an embedding P C M exists,
one then tries to classify these embeddings, up to various equivalence relations:
isotopy, Lagrangian isotopy, symplectic isotopy, Hamiltonian isotopy, or up to
symplectomorphism.

Of particular interest from a dynamical view point are Lagrangian tori, that arise as
invariant sets of integrable systems and their perturbations. The simplest Lagrangian
tori are product tori in R?”, that (suitably scaled) embed into any symplectic manifold
via Darboux charts, but there are also many “exotic” Lagrangian tori, that are not
symplectomorphic to any product torus, see for instance [1,4,5,7,10,13,15,16,31,
37,38]. In this paper we look at product tori, and study their classification up to
symplectomorphism and Hamiltonian isotopy.

*Yu. C. partially supported by RFBR grant NSh-5138.2014.1.
**F. S. partially supported by SNF grant 200020-144432/1.
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Let T (a) denote the boundary of the disc of areaa > 0in R? centred at the origin.
Leta = (ai,...,a,) be a vector with positive components. We call the n-torus

T(a) = T(a;) x --- x T(ap) C R*"

a product torus. Product tori are Lagrangian with respect to the standard symplectic
form w, = ZLI dx; A dy;, that is, the restriction of w, to each product torus
vanishes.

Let (M, w) be a symplectic manifold. We assume throughout the paper that M
is connected. Denote by B2"(h) the closed ball of radius /b/m in R?" centred
at the origin. The torus 7 (a) lies on the boundary of the ball B?"(|a|), where
la| = >7_,ai. By a symplectic chart we understand a symplectic embedding
@: B?"(b) — (M,w). Given a symplectic chart ¢: B?"(b) — (M, ) and a torus
T(a) C B?"(b), we write T,(a) = ¢ (T (a)). A Lagrangian torus in (M, w) is called
a product torus if it is of the form T}, (a) for some symplectic chart ¢.

We study the classification problem for product Lagrangian tori with respect to
the action of the group Symp(M, w) of symplectomorphisms of M (diffeomorphisms
preserving the symplectic form w) as well as the group Ham(M, w) of Hamiltonian
symplectomorphisms. Hamiltonian symplectomorphisms are defined as follows.
Let { H; } be a family of smooth functions on M smoothly depending on the parameter
t € [0,1]. This family defines a family of Hamiltonian vector fields {X;} by
w(X:,-) = dH;(-). Assume that the time ¢ flow ¥; of {X,} is a well-defined
diffeomorphism for each ¢t € [0, 1]. Then each ¥; is a symplectomorphism. The
family {\W,} is then called a Hamiltonian isotopy; symplectomorphisms W; arising in
this way form the subgroup Ham(M, w) C Symp(M, w).

Given Lagrangian submanifolds L, L’ in a symplectic manifold (M, w), we write
L ~ L’ (resp. L ~ L) if there is a symplectomorphism (resp. a Hamiltonian
symplectomorphism) of (M, @) that maps L to L’. In the particular case where
(M, ®) = (R*", w,), we say that L is Hamiltonian isotopic to L’ in the ball B2"(b)
if there is a Hamiltonian isotopy {®;}, s € [0, 1], of R?" such that &y = id,
®(L) = L', and ®;(L) C B>"(b) for all s € [0, 1].

Given a vector a = (ay, ..., a,) with positive components, denote
n
a = min (a;), m(a)=*#{i|a;=a}, la|=3} a; |a|=la|l+a.
1<i<n i=1

Let I'(a) denote the subgroup of R formed by all integer combinations of the
numbers a; — a,...,d, —a. We write a 2~ a’ when the following holds: ¢ = a’,
m(a) = m(a’),and I'(a) = I'(a’). It was proved in [7] that for product tori in R?” the
conditions T'(a) ~ T(a’), T(a) ~ T(a’), a >~ a’ are equivalent one to another. The
following theorem gives an upper bound on the size of the support of a Hamiltonian
isotopy between product tori when such an isotopy exists.
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Theorem 1.1. (i) If a and a’ are related by a permutation of the components, then
the tori T (a) and T (a’) are Hamiltonian isotopic in the ball B*"(|a|).

(ii) If a ~ a’, then the tori T (a) and T (a") are Hamiltonian isotopic in the ball
B2 (max(all. |a'|))

Assertion (i) of the theorem is, of course, rather obvious. It seems likely that
Theorem 1.1 gives a sharp bound for the ball size. However, we can prove the
sharpness only under the additional assumption that |a| # |a'|:

Theorem 1.2. If b < max(||a|, ||a@’||) and |a| # |a’|, then the tori T (a) and T (a’)
are not Hamiltonian isotopic in the ball B*"(b).

It will sometimes be necessary to assume that the geometry of the symplectic
manifold (M, w) is not too wild. Following [3,17,35], we say that (M, w) is tame
if M admits an almost complex structure J and a complete Riemannian metric g
satisfying the following conditions:

(T1) J is uniformly tame, i.e., there are positive constants C; and C; such that
o (X, JX)=C X[y and |0 (X, V)| <C[X| Y],
for all tangent vectors X and Y on M.

(T2) The sectional curvature of (M, g) is bounded from above and the injectivity
radius of (M, g) is bounded away from zero.

Some examples of tame symplectic manifolds are as follows: (1) closed symplectic
manifolds; (2) cotangent bundles over arbitrary manifolds; (3) twisted cotangent
bundles over closed manifolds; (4) symplectic manifolds such that the complement
of a compact subset is symplectomorphic to the convex end of the symplectization of
a closed contact manifold. The class of tame symplectic manifolds is closed under
taking products and coverings. To save words we make the

Definition. A symplectic manifold (with or without boundary) is subtame if it
symplectically embeds into a tame symplectic manifold.

Symplectic manifolds that are not subtame can be considered exotic. An example
is the symplectic R® constructed in [30]. It is the symplectization of an exotic contact

structure on R> and contains a Lagrangian sphere, and therefore cannot be subtame,
see [9, §4].

Recall that (M, ) is called symplectically aspherical if [®]|z,(m) = 0 and
C1lzymy = 0. Here, ¢ = c1(w) is the first Chern class of TM with respect to
an (arbitrary) almost complex structure J taming « as in (T1), and the restriction
to (M) is understood as the restriction to the image of the natural map (M) —
Hy(M:;Z) C Hy(M;R).

Given a symplectic chart ¢: B2"(b) — (M, ), we write b, = b. The following
theorem shows that the invariants of product tori in R?" extend to certain other
symplectic manifolds.
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Theorem 1.3. Assume that T,(a) ~ Ty (a’), where Ty(a), Ty (a') C (M, w).
(i) If (M, w) is symplectically aspherical, then T (a) = T'(a’).

(ii) If (M,w) is subtame, |la|| < b,, and |a'| < by, then a = a' and
m(a) = m(a’).

A symplectic manifold (M, w) is called a Liouville manifold if it admits a vector
field X such that Ly® = w (where Ly is the Lie derivative with respect to X). If X
can be chosen in such a way that its time ¢ flow map is well-defined for each # > 0,
we call (M, w) forward complete. Examples of tame forward complete Liouville
manifolds are cotangent bundles and, more generally, Stein manifolds, see [12].
Product tori in such manifolds can be completely classified:

Theorem 1.4. Let Ty(a), Ty (a’) be Lagrangian product tori in a subtame forward
complete Liouville manifold (M, ®). Then the conditions a ~ a’, T,(a) ~ T, (a’),
Ty(a) ~ T, (a’) are equivalent one to another.

The assumption ||a| < by, ||@’|| < b, in Theorem 1.3 (ii) cannot be omitted, as
the following simple example shows. Let S? be the round 2-sphere, endowed with
the Euclidean area form of total area 2. Let py, ps € S? be the north pole and the
south pole. Choose ¢ € |0, % [, and let @, ¢": B2(2 — &) — S? be Darboux charts
such that ¢(0) = pn, ¢’(0) = ps, and such that concentric circles are mapped
to circles of latitude. Then Ty(3) = T (3), buta = § # 3 = a’. Note that
|la’| =3>2—¢=by.

The assumption in Theorem 1.3 (i) that (M, w) is symplectically aspherical cannot
be omitted either, as the next theorem shows. Recall that the cohomology class [@]
of the symplectic form gives rise to the homomorphism o: 7,(M) — R, and the
first Chern class ¢, gives rise to the homomorphism c¢y: mo(M) — Z. Givena > 0,
define the homomorphism

0. ma(M) >R, S+0(S)—ci(5)a.
With a > 0 and a symplectic manifold (M, w) we associate the group
G, =G,(M,w) := 0,(m(M)) CR.

Note that (M, w) is symplectically aspherical if and only if G, is trivial for
all a > 0. We call the symplectic manifold (M, w) special if the rank of the
group O’(th (M )) C Ris 1 and ¢; is not proportional to o. We associate with each
So € (M) and each a > 0 the subgroup G,(Sg) = G4(So, M, w) of G, which is
the image under o, of the subgroup generated by Sj.

Theorem 1.5. Let (M, w) be a symplectic manifold; if (M, w) is special, we also fix

an element So € ma(M). Let ¢: B*"(b) — (M, ®) be a symplectic chart. For every
real number ¢ > 0 there exists A > 0 such that for all a €10, A] the following holds.
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Ifdy,....,dyandey,... e forall j € {1,..., k} satisfy the conditions d; > c,
ej > c, then

Ga(So) if (M, w) is special,

G, otherwise,

dj—ej e

andthe tori Ty(a, ...,a,a+dy,...,a+dy), Ty(a,...,a.a+ey,...,a+e)are
contained in By (b), then

To(a,...,a,a+d1,...,a+dr) ~Ty(a,...,a,a+ey,...,a +e).

Example. Given v > 0, we denote by S?(v) the 2-sphere of area v. There exists
a symplectic embedding B*(b) — S2(v;) x S?(v,) whenever b < min(vy, v2).
The homomorphism ¢; on 2 (S?(vy) X S?(v,)) = Z @ Z is given by (my, m3) —
2(my + m3). For Sp = (1, —1) we have

Ga(So. S*(v1) x $2(v2)) = (v1 — v2) Z.

(Note that S2(v,) x S?(v,) is special if and only if v;/v, € Q and vy # v;.)
Theorem 1.5 implies, in particular, that in S?(3) x S2(4) the tori T'(a,a + 1) and
T (a, a + 2) are Hamiltonian isotopic for all sufficiently small @, whereas (a,a+ 1) %
(a,a + 2).

The paper is organized as follows. In Section 2, we describe the invariants that
are used in the proof of Theorems 1.2 and 1.3, and derive Theorem 1.3. In Section 3
we prove a version of Theorem 1.3 for generalized Clifford tori in CP", and use it to
prove Theorem 1.2. In Section 4 we construct Hamiltonian isotopies that provide a
proof of Theorem 1.1. In Sections 5 and 6, we prove finer versions of Theorems 1.4
and 1.5, respectively. Appendix A contains a refinement of Lelong’s inequality for
the area of holomorphic curves passing through the centre of a ball, that we use in
Section 2. Appendix B describes an algebraic result used in Section 4.

Acknowledgements. The first draft of this paper was written in Spring 2005, when
the first author visited Max Planck Institute Leipzig and the second author was a
PostDoc at Leipzig University. The paper was finalized during our stay at FIM of
ETH Ziirich in 2008 and 2010 and during the first author’s stay at Université de
Neuchitel in 2009 and 2011. We wish to thank these institutions and in particular
Dietmar Salamon and Matthias Schwarz for their warm hospitality. We also thank
the referee for many useful remarks.

2. Symplectic invariants

2.1. Displacement energy and J-holomorphic discs. The first Ekeland—Hofer
capacity was a key tool used in [7] for the classification of product tori in R".
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This capacity is defined only for subsets of the standard symplectic space R?". We
shall work with the displacement energy capacity instead, which is defined for all
symplectic manifolds. In the process of computing the displacement energy for
Lagrangian tori, we bring J-holomorphic discs into play, and it is here that we need
the assumption that (M, @) be tame.

Consider the set H(M) of smooth functions H: [0, 1] x M — R with compact
support. Denote by @y the time 1 map of the Hamiltonian flow generated by H.
Following Hofer [18], we define a norm on ‘H by

1
H| = H(t,x) — min H(t, dt,
I = [ (e 0. = mip e )
and the displacement energy of a compact subset A C M by
e (A, M) = inf {||H|| | ®p(A)NA= @},
HeH

assuming inf(J) = oo.

Assume that (M, w) is tame. Denote by D the closed unit disc in the complex
plane C, and by J = J (M, w) the set of almost complex structures J on M for
which there exists a complete Riemannian metric g such that J and g satisfy (T1)
and (T2). Let L be a closed Lagrangian submanifold of (M, w). Given J € 7,
we define o (L, M; J) to be the minimal symplectic area [}, u*w of a non-constant
J -holomorphic map u: (D, dD) — (M, L) if such maps exist, and seto (L, M; J) =
oo otherwise. Since (M, w) is tame, Gromov’s compactness theorem implies that
the minimal area is indeed attained and thus positive [28]. Define

o(L,M)=supo(L,M;J),
JeJ

allowing o (L, M) to be infinite as well. It was proved in [8] that
oc(LM)<e(L,M). (2.1

Recall that @ = min;<;j<n(a;), la]l = a + Y [_, a;.
Proposition 2.1. If (M, w) is tame and ||a|| < by, then e (Ty(a), M) = a.

Proof. First we prove that e (T(,, (a), M ) < a. We can assume that a; = a. We
write D(a) for the polydisc B?(a;) x --- x B?(a,). Let U be a neighbourhood
of B?"(b) such that ¢:U — M is well defined. Choose ¢ > 0 such that
B*"(|la + ne||) C U. The torus T'(a) can be displaced from itself by the time 1 flow
map of a Hamiltonian function H € ‘H (D (2a; + &,a; + &, ...,a, + ¢)) such that
|H| < a + ¢, see e.g. [19, p.171]. The polydisc D (2a; + ¢,a> + &, ..., an + ¢€)
is contained in the ball B>"(||a|| + ne) and hence in U. Transferring H to (M, »)
by means of the chart ¢, we obtain a Hamiltonian function H% € H(M) such that
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|H?|| < a + ¢ and the time 1 flow generated by H? disjoins the torus T,,(a) from
itself. Since ¢ can be chosen arbitrarily small, it follows that e (Tw (a), M ) <a.
Denote by J, the standard complex structure on C”.

Lemma 2.2. Let L be a closed Lagrangian submanifold in B*" (b_) C C", and let ¢
be a symplectic chart such that b, > b_. Then

o(p(L), M) > min(o (L,C" Jo), by, — b_).

Proof. It suffices to find an almost complex structure J € 7 such that the symplectic
area of each non-constant J-holomorphic map u: (D, 0D) — (M, ¢(L)) is at least
min (a (L,C"% Jo), by — b_). We construct such a J as follows. Transferring the
complex structure Jo by means of the chart ¢, we obtain a complex structure J; on B,.
We claim that J(‘}p extends to an almost complex structure J € [ on M. Indeed,
pick an arbitrary J; € J. For each x € M, the space of complex structures J(y)
on the tangent space Tx M satisfying w (&€, J()€) > O for all £ € TxM \ {0} is
contractible [27]. Thus there is an almost complex structure J on M that coincides
with J; on By, and with J; outside a relatively compact neighbourhood of B,.
Then J € 7.

Letu: (D,dD) — (M, ¢(L))be anon-constant J -holomorphic map. If the image
of u is contained in By, then u, = ¢~ ou:(D,dD) — (C", L) is a non-constant
holomorphic map. Hence [, u*w = [}, uywy > o (L,C" Jy).

If the image of u is not contained in By, then the set V,, = ~L(u(D)) is a real
analytic subvariety in B(b,) intersecting the sphere dB(b_). Applying Theorem A.1
from Appendix A (with b_ = mr2, by = JTI’?'_), we infer that the Riemannian area
of V,, is at least b, — b_. Since the Riemannian area of a holomorphic curve in C"
equals its symplectic area, and the symplectic area of u is not less than the symplectic
area of V, it follows that the symplectic area of u is at least by, — b_. O

We claim that o (T'(a), C" Jo) > a. Let u:(D,0D) — (C",T(a)) be a non-
constant holomorphic map. Write u = (u;,...,u,), where each u;:(D,dD) —
((C, T(a j)) is a holomorphic map. The symplectic area of u is positive,
and it equals the sum of the symplectic areas of the maps u;. Since the
symplectic area of u; is a non-negative integer multiple of a;, the symplectic
area of u is at least @. The torus T(a) is contained in the ball B?>"(|a|). By
Lemma 2.2, 0 (T,(a), M) > |la|| — |a| = a. In view of (2.1), we conclude that
e (Ty(a), M) > a. This completes the proof of Proposition 2.1. O

2.2. Deformations. Let (M,w) be a symplectic manifold. Denote by L the
space of closed embedded Lagrangian submanifolds in (M, w) endowed with the
C*°-topology. Given a Ham(M, w)-invariant function f on L taking values in a
set X, we associate with each L € £ a function germ S { :HY(L;R) — X at the
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point 0 € H!(L;R) following [7]. This construction provides additional invariants
of Lagrangian submanifolds. We use it to prove Theorem 1.3 (ii).

By Weinstein’s Lagrangian Neighbourhood Theorem, there is a symplectomor-
phism g from a neighbourhood of L in M to a fibrewise convex neighbourhood of
the zero section of 7*L such that the image of L is the zero section [42]. There
is a neighbourhood V of the point L in the space £ such that each L' € V
is mapped to the graph of a closed I-form «;- on L. Consider the mapping
wry:V—>H I(L:R) that sends L’ € V to the cohomology class of the form ay .
This mapping is locally surjective at L. Denote by wy, the germ of wy, y at L. If two
Lagrangian submanifolds Lg, L; € V are mapped by wy,y to the same cohomology
class ¢ € HY(L;R), then they are Hamiltonian isotopic. Indeed, consider the
family of Lagrangian submanifolds {L;} such that g(L;) is the graph of the 1-form
o =tar, + (1 —1)ag, foreacht € [0, 1]. Since [or;] = ¢ for all ¢, the family {L,}
is a Hamiltonian isotopy between Lo and L;. Therefore, one can define a mapping
germ SLf: HY(L;R) — X at the point 0 € H!(L;R) by S{(C) = f(L), where
wr (L") = ¢. Inorder to prove that the definition of S { does not depend on the choice
of the symplectomorphism g, it suffices to give a description of the mapping germ wp,
that does not use g. This description goes as follows: the evaluation of wy (L’) on a
1-homology class A € H,(L;Z) equals f[o,l]xsl h*w, where h:[0,1] x ST — M is
a smooth map with image in a tubular neighbourhood of L such that ({0} x S1) is
a loop in L representing the class A and A({1} x S') C L'.

It immediately follows from the definition that S { is Ham(M, w)-invariant in the
following sense: for each ¥ € Ham(M, w), we have

Si‘([,) = SIJ: = (W|L)* , (2.2)

and if, moreover, f is Symp(M,w)-invariant, then (2.2) holds for each ¢ €
Symp(M, w). The displacement energy function e (L) = e (L, M) takes values
in [0, 00 [ U {oo} and is Symp(M, w)-invariant.

Proposition 2.3. Let L = Ty(a) be a product Lagrangian torus in a tame symplectic
manifold. Assume that |a| < b,. Then

Sz(é') = e(L) + mil’l(ll(é—)a ceey lm(a)(é-)),

where Iy, ..., ly(q) are independent linear functions on H'(L;R).

Proof. Consider the mapping germ 6: (R",0) — (L,L), s — T,(a + s). The
composition A = wz o #: (R",0) — (H'(L;R),0) is a linear isomorphism germ.
Choose & > 0 so small that ¢: B>" (b, + €) — M is defined. For s small enough,
we have |la + s|| < b, + ¢ and hence, by Proposition 2.1,

e (Ty(a +s)) = min(a; + s1,...,an + 5p). (2.3)
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We can assume, after reordering the coordinates, that

a=ay = =0 <Am@+1 =" = dn.
For s sufficiently small (say, such that the absolute values of all its components do
not exceed %(am(a)H — Um(a))), in view of (2.3) we have

e(Tp(a+s)) =a+min(s1, ..., Sm@) = e(L) + min(m1(s), ... Tma)(s)).
(2.4)
where 7;: R” — R is the projection onto the i -th coordinate axis, m;(s) = s;. Since
¢(0) = e(Ty(a+ A71(2))), it follows from (2.4) that

S5 (&) =e(L) + min(/1 (), ... Im@(?))

where [; = w1 0 A7, ... lna) = Tm(a) © A”! are independent linear functions
on H!(L;R). O

Proof of Theorem 1.3 (ii). We can clearly assume that (M,®) is tame. Denote
L=T,(a), L' = Ty(a’). It follows from Proposition 2.1 and the symplectic
invariance of displacement energy that

a=e(LM)=e(L'M)=a'.

According to Proposition 2.3, the cohomology classes { € H!(L;R) such that
S7 (§) = a form a vector space germ W of dimension n —m(a), and the cohomology
classes ¢ € H'(L';R) such that S¢,(¢’) = a form a vector space germ W' of
dimensionn—m(a’). If L' = (L) for some ¢ € Symp(M, w),then S}, = SfoAy,
where Ay = (¥|;)* is a linear isomorphism between H!(L;R) and H!(L’;R).
Hence Ay (W) = W', and therefore m(a) = m(a’). ]

2.3. Symplectic area class and Maslov class. Given a Lagrangian submanifold L
of a symplectic manifold (M, w), one can consider two relative cohomology classes:
the symplectic area class o € H?(M, L;R) represented by the 2-form w, and
the Maslov class u; € H?(M,L;Z), defined as in [40]. Both ¢ and u are
symplectically invariant in the sense that oy (1) = Y*or and py) = ¥*ur for
each symplectomorphism 1. These classes define homomorphisms from 7(M, L)
to R that we shall also denote by o7 and py. Define the subgroup I'(L) C R
to be the image of the subgroup ker(ur) C m2(M, L) under the homomorphism
or:m2(M, L) — R. Since o7, and p;, are symplectically invariant, so is I'(L):

Lemma 2.4. Let L, L’ be Lagrangian submanifolds of (M,w). If L ~ L', then
T'(L) =T'(L).
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Theorem 1.3 (i) is a corollary of Lemma 2.4 and the following assertion:

Lemma 2.5. Let Ty, (a) be a product Lagrangian torus in a symplectically aspherical
symplectic manifold (M, w). Then T'(Ty(a)) = T (a).

Proof. Fori € {1,...,n},let D; be a disc in R*>" with boundary on 7 (a) such that
the projection of D* to the i-th factor in R? x --- x R? = R?" is the disc in R?
bounded by the circle 7'(a;), and the projections to other factors are points. Denote
by D; the element of 5 (R*", T(a)) represented by D;. The classes Dy, ..., D,
generate the free Abelian group m; (]RZ", T(a)). Denote D; = g, D; e (M, L)
where L := Ty(a). For each i, we have GT(a)(bi) = ai, ;,LT(a)(ﬁ,-) = 2
and hence o7 (D;) = a;, ur(D;) = 2. The group n; (M, L) is the direct sum
of (M) and the subgroup generated by the elements D;. Since (M,w) is
symplectically aspherical and pp | HMI) = 2¢1(w) (see [40]), both o7 and prp
vanish on w5 (M). The kernel of pz is the direct sum of 75(M) and the subgroup
generated by the differences D; — D j,» where i, j € {1,...,n} and j is such that

a = aj. Therefore, o (ker ;1) consists of all integer combinations of the numbers
a,——g=0(Di—Dj). H

3. Proof of Theorem 1.2

3.1. Generalized Clifford tori in CP”. We consider a certain class of product
Lagrangian tori in the complex projective space, the so-called generalized Clifford
tori. Identify the symplectic space (R?>",w,) with C", the complex coordinates
being zy = x1 4+ iy1,...,2Zn = Xp + iy,. Consider the diagonal action of the Lie
group U(1) on the space C". For each b > 0, the sphere S2"~1(h) = 3dB?"(b)
is invariant under this action. Denote by CP"(b) the quotient S2"~1(b)/U(1).
The restriction of the symplectic form w, to S?"~1(b) is the pullback of a certain
symplectic form w;’;’_l on CP"'(b). This form is a multiple of the Fubini-Study
form.

Ifa € R". and |a| = b, then the torus T'(a) is contained in the sphere S2"~(b).

Moreover, T (a) is invariant under the action of U(1). Therefore, the quotient T (@) =
T(a)/U(1) is a Lagrangian (n — 1)-torus in CP"~!(b). It is called a generalized
Clifford torus.

Denote by Z,(b) the complex hypersurface

(S#*71(b) N {z, =0})/U(1) = CP"2

in CP"~1(b), and by B2"~2(b) the open ball Int(B2"~2(b)).
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The tori T(a) are product tori:

Proposition 3.1. There is a symplectomorphism
021 (B*"72(b), wn—1) = (CP"7L(b)\ Z,(b), ]_))

o
that maps each product torus T(ay, . ..,an—1) contained in B*"~2(b) to the torus
T(ay,...,ap), wherea, =b—ay —-++—ap—.

Proof. Denote by W the subset of $2”~1(h) formed by points with z, coordinate
positive real. Consider the projection of C" onto C"~! defined by forgetting
the last coordinate. Restricting this projection to W be obtain a diffeomorphism
Wi W — B2"=2(b). We claim that ' is a symplectomorphism from (W, w, |y7) onto
(ézn_z(b), wn—1). This statement is equivalent to the assertion that the restriction
of the 2-form dx, A dy, to W vanishes. The latter follows since y, vanishes on W.

The manifold S2"~1(b) \ {z, = 0} is foliated by the orbits of the U(1)-action.
Each of these orbits intersects W exactly once, and the intersection is transverse.
Therefore, symplectic reduction gives rise to a canonical symplectomorphism v’
from (W, wn|y,) onto (CP" 1 (b) \ Z,(b). @2_,).

The composition (pf;_l = 1’ o~ ! is the required symplectomorphism. To prove
the assertion concerning Lagrangian tori, it suffices to observe that the image of

T(ai....,ay—1) under the symplectomorphism ¥ ~! is the torus T'(ay,...,an—1) X
Van/m, and that the U(1)-orbits passing through the latter torus form the torus
T34 4505 58n)- O

Proposition 3.2. Let a,a’ € R”, be such that |a| = |a'|. Consider the Lagrangian
tori T (a), T (a’) in CP"(|a|). If T (a) ~ T (a'), thena ~ a'.

Proof. By Theorem 1.3 (ii) we have @ = a’ and m(a) = m(a’). In view of
Lemma 2.4, it remains to show that I'(T (a)) = I'(a). Let Dy,...,D,—1 be
the elements of the group m» (Rz"_z, T(a,.. .,an_l)) defined as in the proof
of Lemma 2.5. The symplectomorphism (p,L“_'l sends these classes to the classes
Dy, ..., Dy in m2(CP""Y(|a|),T (a)). For each i, we have aff(a)(ﬁ,-) = a4y,
p,?(a)(ﬁ,-) = 2. The free Abelian group m»(CP""!(|a|), ?(a)) is generated by
the classes D1, ..., D,_; and the class [CP'] represented by a complex line in the

complex projective space.
We have ;L/T\(a)([CPl]) = 2n, since the value of the Maslov class on CP! is

twice the value of ¢;(7 CP"™'). We claim that fo(a}([CP‘]) = |a|. Indeed, let
CP! ¢ CP"! be the quotient of the sphere {z, = --- = z,_; = 0} N $?"~(|a|) by
the diagonal action of U(1). The symplectomorphism goLa_|1 identifies the complement

of a point in CP' with the open symplectic disc §2”“2(|a|) N{zg = +++ = 21 = 0}.
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This disc has area |a|, and hence the integral of the symplectic form wl al | over CP!
equals |a|.

Define D, = [CP!] — D The group 2 (CP"~ Y(al), T(a)) is generated
by the classes Dy, ... Dn, and we have 0% (a )(D,,) an, y,T(a)(D ) = 2. The

kernel of 1T @) is generated by the differences D; — D ; jswhere i, j € {1,...,1}
and j is such that @ = a;. Therefore, ofT\(a)(ker ”"f(a)) consists of all integer

combinations of the numbers a; —a = o(D; — D). L

3.2. Proofof Theorem 1.2. Arguing by contradiction, we suppose that 7'(a) ~ T'(a’)
in B?"(b). By Theorem 1.3 (ii), with (M, ®) a large ball and ¢, ¢’ the identity
embeddings, we have @ = a’. We can assume that ||a|| > ||a@’||. Since @ = a’ and,
by hypothesis, |a| # |a’|, we have ||a| — ||@’|| = |a| — |a’| > 0. By hypothesis we
have |a| < b < ||a||. Thus |a’| < |a] < b < |a| + a. Choose ¢’ < ¢ such that

b<c <c<|a|l+a.

Define ay+1 := ¢ — |a| and a, | := ¢ — |a’|. Then a4+ < a,; and ap+1 =
¢ — |a| < a. Therefore,

min{ay, ...,an. dp+1} = dp4+1 < min{a,a, ;} = min{aj,...,a,,a, ;}. (3.1

Recall that T(a) ~ T(a’) in B?*(b). Cutting off the Hamiltonian func-
tion that generates this isotopy, we construct a Hamiltonian isotopy supported
in B2?"(¢’) that moves T(a) to T(a’). The symplectomorphism ¢¢ from
Proposition 3.1 transfers this isotopy to a Hamiltonian isotopy of CP"(c).
It moves T(al,.. ,dp,ap+1) to T(al,...,an,anH) By Proposition 3.2,
min{ai, ..., an,ap41} = min{a}, ..., a,.a,  }, in contradiction to (3.1). O

4. Constructions of Hamiltonian isotopies

4.1. Proof of Theorem 1.1 (i). The unitary group U(n) acts on C" preserving the
symplectic form w,. Since a permutation of coordinates zy, ..., z, is a unitary map
and the group U(n) is path-connected, there is a smooth family {®,}, r € [0, 1],
of unitary maps such that &, = id and ®,(T'(a)) = T(a’). The flow {®,} is
Hamiltonian because C” is simply-connected. O

4.2. The proof of Theorem 1.1 (ii) relies on the following lemma, which represents
a special case of Theorem 1.1 (ii).

Lemma 4.1. For any positive numbers a, ¢, and d, the tori T (a,a + c¢,a + d) and
T(a,a + ¢ + d,a + d) are Hamiltonian isotopic in the ball B®(4a + ¢ + 2d).
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Proof. Let W = {(z1,22) € C? | |z1] <|22|}. Consider the map

/ 2w 2
qJ:W—>C2, (21,22)|_> (2122 2 |Z2| |ZI| )

|z2| ’ |z2|

It is injective, and its image is the complement of the complex line {z; = 0}. We
claim that W preserves the symplectic form w, = dx; A dy; + dx, A dy,. Indeed,
write z; = 2701 Jp, /7, 25 = 27102 /p, /7, with 0,1, 6, in S! = R/Z and py, p2
non-negative real. For nonzero values of z,, we have w, = dp; A d6; + dpa A db,
and

W (p1, 01, p2,62) = (01,01 + 62, p2 — p1, 62).

Clearly, W is symplectic outside the complex line {z, = 0}, and hence, by continuity,
on the whole of W. A product torus T (ag,ao + bg) C W is mapped by W to the
torus 7 (ao, bo).

The torus T'(a,a + ¢ + d,a + d) is Hamiltonian isotopic, through a unitary
isotopy, to the torus T'(a + d,a + ¢ + d, a) in the ball B¢(3a + ¢ + 2d). Therefore,
it suffices to prove that the tori T(a,a + c,a +d)and T(a + d,a + ¢ + d,a) are
Hamiltonian isotopic in B®(4a + ¢ + 2d).

Considerthe map W = Wxid: WxC — C3. Wehave Uy (T (a,a+c,a+d)) =
T@,c,a+d)and V¥V (T(a+d.a+c+d,a)) =T(a+d,c,a). The Hamiltonian
function H = 5 (x;y3 — x3y1) gives rise to a unitary Hamiltonian flow {®,} that
does not change the complex coordinate z;. We have ®(z1, 22, z3) = (23,22, —21).
In particular, ®; maps T(a,c,a + d) to T(a + d,c,a). Multiplying H by an
appropriate cutoff function, we construct a Hamiltonian H’, compactly supported in
C3\ {z2 = 0}, whose flow {®}} moves the torus 7'(a, c,a + d) in exactly the same
way as the flow {®,}. Consider the Hamiltonian flow {®;"} on C3 generated by the
Hamiltonian function H’ o W, . This flow is compactly supported in W x C, where
@, = Wil o ®, o W,. In particular,

®(T(a,a+c,a+d) =¥ "(®(T(a,c,a+d)))

for all values of 7, and CDT(T(a,a +c,a+d)=T@+d,a+c+d,a). 1t
remains to show that each torus ®(7(a.a + c.a + d)) is contained in
B%(4a + ¢ +2d).

Let (21,22, 23) € ®(T(a,a + c,a + d)). We are to prove that

7 (|z1)? + |z2)* + |23/ < 4a + ¢ + 2d.

The point W, (z1, z2, z3) = (2], 25, z3) belongs to the torus @, (T (a, c,a+d)). Since
T(a,c,a+d) iscontained in the sphere dB®(2a + ¢ +d) and ®; is unitary, it follows
that (z}, z5, z3) € 0B%(2a + ¢ + d). Hence 7 (|z}|? + |z5|> + |z3]*) = 2a + ¢ +d.
By the construction of ®,, we have |z5|*> = c¢. The definition of the map Wy implies
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that |z}| = |z1| and |z2|> = |z}|? + |z5|?. Therefore,

w(|z1? + |22 + |231%) = 2a + ¢ + d + 7|z4 )
= 4a + 2c¢ +2d — n|z5|* — 7|z3)?
=4da+c+2d —m|zz|* <4da+c +2d,

as we wished to show. l
Lemma 4.2. Let ¢ = (c1,...,¢x) and ¢’ = (c},...,c;) be vectors in RX, k > 2,
such that, for some different indices i,j € {1,...,k}, we have ¢; = ¢; + cj,

and ¢; = c; for | # i. For eachn > k and each positive a, the n-dimensional tori
T(p)=T(a,...,a,a+cy,...,a+cx)andT(p') =T(a,...,a,a+cy,...,a+cy)
are Hamiltonian isotopic in the ball B*" (|| p’|).

Proof. We may assume that i = 1 and j = 2 after applying to the tori T'(p)
and T'(p’) unitary isotopies that swap the complex coordinates z, 1 and z,_g 4,
Zn—k+2 and Z,_+ ;. By Lemma4.1, there is a Hamiltonian isotopy on C> that moves
the torus Lo = T'(a,a+cy,a+cz)to Ly = T(a,a + ¢y + c2,a + c¢3) through tori
L, belonging to B®(4a+c;+2¢3). Thetori L = T(p) and L} = T(p’) are Hamil-
tonian isotopic through the family L, = T'(a,...,a) x Ly x T(a 4+ ¢3,...,a + ck).
All the tori L} are contained in the ball

B¥'((n + Da + le| + c2) = B> (I p'l])- O

4.3. Proof of Theorem 1.1 (ii). After applying appropriate unitary isotopies to the
tori T'(a) and T (a’), we may assume that the first m(a) components of both a and a’
equal a. Letk = n — m(a). Write

T =T(a,...,a,a+dy,...,a+dy),
T@)=T(a,...,a,a+eq,...,a+e),
where d = (dy,...,d;) and e = (eyq,...,ex) are vectors in ]R’j_. If k equals 1,

then the hypothesis I'(a) = I'(a’) implies that @ = a’, and there is nothing to prove.
Assume that k > 2.

We call a sequence d = d°d'.d?....,d" = e of vectors in Rﬁ
an admissible path from d to e if for each s € {l,...,£}, the vector
d® = (dy,...,dJ) is obtained from the vector d*~1 either by swapping two

of the components, or by adding to the i-th component the j-th component,
or by subtracting from the i-th component the j-th component. Given such
a path, define @ = (a,...,a,a +df,....a + dj) for s € {0,...,£} and
consider the sequence of tori T'(a) = T'(a®), T(al),....T(a*) = T(a’). For each
s€{l,...,£}, the tori T(a*~!) and T(a*) are Hamiltonian isotopic inside the
ball B*"(max(|la’*"|,|la*|)). Indeed, if d°~' and d° are related by a swap
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of components, then there is a unitary isotopy; otherwise, we apply Lemma 4.2
with either ¢ = d*7!, ¢/ = d°*, or ¢ = d°, ¢/ = d*'. It thus suffices to
show that there exists an admissible path d = d°,d',d?,....d* = e with the
property that ||@®|| < max (||a||, ||@’||) for each s. The latter property is equivalent to
|d°| < max (|d|, |e|) for each s.

Let (d ) and (e ) be the free Abelian subgroup in R generated over Z by the numbers
dy,....dy and eq, ..., e, respectively. The condition I'(a) = I'(a’) means exactly
(d) = (e). Thus Theorem B.1 from Appendix B guarantees the existence of an
admissible path d = d°,d!,d?,...,d* = e such that |d*| < max (|d|,|e]|) for
each s. The proof of Theorem 1.1 is complete. O

5. Spaces of symplectic charts and product tori

Given b > 0, denote by Emb (B*"(b), M,w) the space of symplectic charts
¢: B*"(b) — (M,w), endowed with the C*®-topology. By Darboux’s theorem,
this space is nonempty at least for sufficiently small b. The Gromov radius p(M, ®)
of (M,w) is defined as the supremum of all o such that Emb (BZ" (b), M, a)) is
nonempty (we allow p(M,w) = oo). For computations and estimates of p(M, w)
we refer to [34] and the references therein. It has been conjectured that the space
Emb (B 2n(bh), M, a)) is connected for all closed symplectic manifolds and all » > 0.
This has been proved for certain closed 4-manifolds and also for the symplectic
4-ball B(c), see [26].

Theorem 5.1. Let Ty(a) and Ty (a’) be two Lagrangian product tori in a
symplectically aspherical subtame symplectic manifold (M, w).

(i) Let b— = min {b¢,b¢/} and by = max {bq,,,bw/}. Assume that the space
Emb (B*"(b_), M, w) is path-connected and that max{|a||, ||a’||} < by. Then the
conditions a >~ a’, Ty(a) ~ Ty (a'), Ty(a) ~ Ty (a’) are equivalent one to another.

(ii) Assume that the space Emb (an(b),M, a)) is path connected for all
values of b and that max{|a||, |a’|} < p(M,w). Then the conditions a ~ a’,
Ty(a) ~ Ty (a'), Ty(a) ~ Ty (a’) are equivalent one to another.

Proof. First we prove statement (i). If T,(a) ~ Ty (a’), then T,,(a) ~ Ty (a’) by
definition. We can assume thatb_ = by, and b1 = by. Since Emb (B*"(b_), M, w)
is path-connected, there exists a smooth family {¢s}, s € [0, 1], of symplectic
embeddings B2"(h_) — (M,w) such that g9 = ¢ and ¢; coincides with ¢’
on B2"(b_). Then there is a Hamiltonian isotopy {Ws}, s € [0, 1], of (M, @) such that
W0 = @ forall s. Inparticular, ¥; op = ¢’ on B?"(b_), and hence we can extend
@: B> (b-) > M tog = V' og: B¥(by) — M. Assume that Ty(a) ~ T (a’).
Since Tz(a) = Ty(a), we have Tz(a) ~ T, (a’). Theorem 1.3 applied to ¢ and ¢



460 Yu. Chekanov and F. Schlenk CMH

yields @ >~ a’. Leta ~ a’. It follows from Theorem 1.1 that Ty (a) ~ Ty (a’).
Since W (Ty(a)) = Ty (a), we also have Ty(a) ~ Ty (a) =~ Ty (a’).

The statement (ii) will follow from the statement (i) if we show that, for each b, b’
satisfying 0 < b < b’ < p(M, w), every symplectic embedding B"(b) — (M, w)
extends to a symplectic embedding B2"(b") — (M, w). Since Emb (BZ" (b), M, a))
is path-connected, this follows from the argument above.

Proposition 5.2. For a forward complete Liouville manifold (M, ), the space
Emb (B 2n(b), M, a)) is nonempty and path-connected for each b > 0.

Proof. Let X be a forward complete Liouville field on (M, w). Denote by { f;},
t > 0, its forward flow. Assume that the space Emb (B*"(b), M, w) is nonempty
and pick ¢ € (BZ"(b), M, a)) Since (f;)* @ = e'w for all ¢ > 0, the map

B*(e*b) > M, x> fa(p(e™'x))

is a symplectic embedding, and hence the space Emb (B>"(b), M, ) is nonempty
forall by > b.

Let ¢, ¢": B>"(b) — (M,w). We prove that ¢ and ¢’ are homotopic through
symplectic embeddings. After composing ¢’ with an appropriate Hamiltonian
symplectomorphism of (M, ), we can assume that ¢(0) = ¢’(0). Since each
element of the linear symplectic group Sp(2n; R) can be realized as linearization of
a Hamiltonian symplectomorphism preserving the point ¢(0), we can also assume
that d@(0) = dy(0). There is a symplectic isotopy {F;}, ¢ € [0, 1], of B?"(b) such
that Fo = id and ¥ o F coincides with ¢ on B?"(b’) for some b’ € ]0,b][, see e.g.
Appendix A.1 of [19] or the proof of Lemma 2.2 in [33]. Therefore, we may assume
that ¢ = ¥ on B2"(b’).

Consider smooth families {®,}, {¥;}, t > 0, of embeddings B*"(b) — (M, w)
defined by

D (x) = (far 0 @) (e7'x), Wi(x) = (far oY) (7" ).

Since (f;)* @ = e'w, the embeddings ®;, ¥, are symplectic. Moreover, &y = ¢
and Wy = . For T > 0 so large that e=7 B2"(b) C B?"(b’), we have &7 = V.
Concatenating the path of embeddings ®;, ¢ € [0, T'], from ¢ to @7 with the path of
embeddings V7, t € [0, T], from &7 = W7 to ¥, we obtain a required path of
symplectic charts from ¢ to . l

Remark. In the case where (M 2", ) is a cotangent bundle (7* Q, d 1), a parametric
version of the above argument gives a description of the homotopy type of the space
Emb (B*"(b), T*Q): the map Emb (B>"(b), T*Q) — Q defined by projecting
the center of the ball to the base is a Serre fibration with fibre homotopy equivalent
to U(n).
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Proof of Theorem 1.4. If we prove that (M, @) is symplectically aspherical, then the
theorem will follow from Proposition 5.2 and Theorem 5.1. Let X be a forward
complete Liouville field on (M, w). Denote by {f;}, t > 0, its forward flow. Let
g:5? — M be asmooth map. Denote g; = f; og. Since w is closed and all maps g;
are homotopic, we have

[ gfw =f glw =[ g (i w) =6’f g w
s2 S2 S2 S2

foreachs > 0. Thus [¢> g*w vanishes, and (M, w) is symplectically aspherical. [

If the space Emb (an (b), M, a)) is not connected, the classification of product
tori can be more complicated:

Example 5.3. The camel space with eye of size ¢ > 0 is the open subset
C*"(c) = {x; <0}U{x; >0} U §2"(c)

of (R?",w,). Fix b > 0 and define the symplectic embeddings ¢+: B*"(b) —
C?"(c) by

O+ (X1, V1see s Xn. Vn) = (xl == b/Jr,y1,...,xn,yn)-

If b > ¢, then the maps ¢4 are not homotopic through symplectic embeddings by
the Symplectic Camel Theorem [12,29,41], and hence Emb (B2"(b),C*"(c), w)
has at least two components. Let a € ]Rﬁ_" be such that T(a) C B?"(b). The
symplectomorphism

(X1, Y154+ s Xn, Yn) = (—=X1,—Y1, X2, Y25« o, X0, Yn)

maps ¢_(7'(a)) to ¢4 (T (a)), and hence ¢_(T (a)) ~ ¢+(T(a)). However, if a is
such that @ > ¢, then ¢_(T(a)) % ¢4 (T(a)) by the Lagrangian Camel Theorem
of [36]. As subsets of (R*",w,), camel spaces are symplectically aspherical
and subtame. It follows that the connectedness requirement cannot be omitted in
Theorem 5.1, and while camel spaces are Liouville manifolds, they are not forward
complete Liouville manifolds by Theorem 1.4 (or directly by Proposition 5.2 and
the Symplectic Camel Theorem). The classification of product tori in C?"(c) up
to Hamiltonian isotopy may be difficult. Indeed, there might exist a symplectic
embedding ¢: B?"(b) — C?"(c) whose image is so tangled up in the eye of C?"(c)
that ¢ (7 (a)) is Hamiltonian isotopic to neither of ¢4 (7 (a)).

6. Proof of Theorem 1.5

6.1. Consider symplectic polar coordinates (p, @) on R2 := R? \ {0} defined by
(x,y) = (\/p/yr cos2mf, \/p/m sin27r¢9) , p>0 0eS'=R/Z.
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For s € R and m € Z, define the domain

Dm,s = {(plsglap2»92) | p2 +S > mpl} C R4

and the map W, ;: D, s — R4,

W s(p1, 61, p2.62) = (p1, 01 + mbsa, p2 + 5 —mpy, 67).

The map W, s is a smooth symplectic embedding (for the same reasons as the map W
in the proof of Lemma 4.1).

Let (M,w) be a symplectic manifold, and let ¢: B>"(by) — (M,w) be a
symplectic chart. We denote by 0,; the origin in R2/. The key step in the proof of
Theorem 1.5 is the following proposition.

Proposition 6.1. Let k > 1, dy,...,dg, b4+ > 0. Let S € mp(M) be such that
s := a(8) is positive and

di+--+dp+5s <by.
Then there exist a neighbourhood Uy of the isotropic k-torus
Tk, ... dy) == 02y sk—2 x T(dy, ..., dr_1) x 0y x T(dy)

in the open ball B2 (b+o) and a Hamiltonian symplectomorphism yry of (M, @) such
that (Y o ¢)(Ug) C B(Zo” (b+) and the map 1/f;: = ¢~ o Y o @ coincides with
idop—4 X Wy s on Uy, where m = c1(S).

We will need the following lemma.

Lemma 6.2. Given positive numbers di,...,dx—_y, for each ¢ > 0 there is a
Hamiltonian flow {,}, t € [0, 1], on R?* such that E, maps the torus

into (éz(s))k and E; maps T into éz(dl + &) x--- X éz(dk_l + &) x 132(8) for
all t.

Proof. We start with the following

Lemma 6.3. Given a positive number d > 0, for each g9 > 0 there exist 6 =
8(d.£0) > 0 and a Hamiltonian flow {E9°}, t € [0, 1], on R* with the following
properties:

20 maps T(d) x B2(8) into BX(d + o) x B2(eo) forall t € [0,1];
2940 maps T(d) x B2(8) into B*(g0) x B2(eo).
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Proof. Foreacht € [0, 1] and for £ € N, define the map E, ¢: S' — C? = R* by

Eio(0) = (,/(1 —0d/me*™?, \Jidj({m)e* ).

Then Ey ¢ is a diffeomorphism onto 7'(d) x 0. For ¢t < 1, the map E; is an
embedding because its first component is. The integral over S! of the 1-form EY,A,
where A = x;dy; + x2dy; is a primitive of w,, does not depend on 7 because

E;:EA.= E:e(xldy])+ E::E(XQdyz)=(l—I)d+fd =g,
st sl s

It follows that for each g € |0, 1] there is a Hamiltonian flow {@f’g}, t € [0,1],
such that CD?’E(T(a’) X 02) = E4¢(T(d) x 03) for all € [0,1]. The absolute
value of the first component of the map E;y is decreasing with respect to 7; the
second component of E;, tends uniformly to zero as £ — oc. Therefore, after
choosing ¢ large enough, we can assume that the tori £, ((7'(d) x 0,) are contained
in B2(d) x B2(sg) for all ¢ € [0, 1] and that the torus Ey¢(T(d) x 0,) is contained
in 105’2(80) X §2(80). Then, after choosing g sufficiently close to 1, we can achieve
that the torus E, ¢(T(d) x 02) = Q‘f’E(T(d) x 0,) is contained in B2(gg) x B2 (eo)

as well. Let {290 = &7}, By continuity, there exists § = 8(d.£o) > 0 such
that E 90 maps T'(d) x B2(8) into B2(d + &0) x B2(s) forall ¢ € [0, 1], and E‘f’go
maps T(d) x B2(8) into B%(gg) x B?(&). O

If k = 2, then Lemma 6.2 immediately follows from Lemma 6.3. Otherwise,
applying Lemma 6.3 k — 1 times, we construct positive numbers

&1 = min(8(dg—1.€),¢), &2 = min(8(dx—2, 1), €), ..., ex—1 = min(8(dy, ex—2), €)

and Hamiltonian flows {Ef"“’e}, {Ef"'_z"‘p1 | S Ef"ak‘z} with the prescribed
properties. Consider the Hamiltonian flows {®!}, {®2},... {®*~1} on R?* such

that
®! = idpyp_y xEH1E D2 = idy_g xEH*21x id,

.....

Foreach j € {l,...,k — 1}, we have
@/ (T(dy.....dr_j) x B*(¢))) x (B*(e))’
CT(d,....dr_j_1) x BX(dr_; +£j_1) x (B*(e))’
forallt € [0, 1], and
®!(T(dy,....dr_j) x B*())) x (B*(e))’
C T(d1,....dr_j_1) x B2(ej_1) x (B*(2)),
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where g9 = ¢. Concatenating the flows {®]}, {®?},.. ., {@f‘_l} (and reparametriz-
ing the result to make it smoothly depending on t), we obtain the required
flow {E,}. O

6.2. Proof of Proposition 6.1 for k = 1. Denote D = R?"~* x D, ,,
U = idyp_g XWp 51D — R,
Let e; = dy + 5. Consider the maps fp, f1:S! — R?",
fo(§) = Opn—2 x (d1,8),  f1(§) = O2p—2 x (€1, ),

where we use symplectic polar coordinates (p, &) on the last R2-factor. We have
T!(d) = fo(S"), T(er) = fi(S"), and Wo fo = fi. Let ff = ¢ o fo,
f 1‘p =g¢o fi. ) "

First we prove that there is ¥/, € Ham(M, ) such that y; o f; = f. Denote
Z =[0,1] x S'. Consider the map F: Z — R?",

F(v,0) = 022 x (dy + vs, {).

We have fo = F(0,-), fi = F(1,-), and

[Z((PO F)'o = fz Flo, = Llfl*(pdﬂ)—j;lfo*(de) = .

Taking the connected sum of ¢ o F with a map S? — M representing the class —S,
we obtain a smooth map F: Z — M such that F coincides with ¢ o F at the boundary
of Z (thatis, f’ = F(0,-), f¥ = F(l,-)) and

[ F*w = 0.
Z

Then, according to [22, Appendix A], there exists a Hamiltonian flow {1/};} on (M, w)
such that the map

F:Z > M, (0.0 y(fLQ0)

is homotopic to F relative to the boundary. In particular, this implies

yioff =ff=poWo f,

as required. It follows that ¢~ ! o V1 o ¢lr1@y = YTy, Pick a neighbourhood

W C B2"(b.) of the circle T} (d;) such that the maps Yy :=¢ ' ot og|y and ¥y,
are well defined. We shall prove that there is a Hamiltonian symplectomorphism &
with support in W and a neighbourhood Uy of the circle 7' (d;) in W such that

CD|U1 :WP_VIO‘IJ|U1. (6.1)
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Then the symplectomorphism ¥; € Ham(M, w) that coincides with lﬁl opodPogp!

on (W) and coincides with v/, outside (W) will satisfy ¢! o ¥, o qa|UI = \IJ|UI
as required. _
Trivialize the tangent bundle of R2"~2 x R? using the symplectic frame

E == (axl ’ a)’l’ T axn—l ’ 8)’11—] ’ apn' 8911)‘

Denote by
Nw: R — Ty (R 72 x R?), w e R 2xR?

the corresponding trivialization maps. Let Sp(2n) denote the group of linear
symplectomorphisms of R?”. Consider the loop

. @l = 31 =
g:S' = Sp(2n), g(Q) =z od(Yw o ‘1’) ° N fot)

Recall that the fundamental group of Sp(2n) is isomorphic to Z; this gives rise to a
function y called the Maslov index assigning to each continuous map S! — Sp(2n)
an integer (see [27, p.48]).

Lemma 6.4. The Maslov index of g vanishes.

Proof. Define the maps g¢, g1: S' — Sp(2n),

g0(0) =My e dVengy 810 =g © d¥w o gy

Since p is additive with respect to the multiplication in Sp(2n) [27, Theo-
rem 2.29], we have u(g) = u(go) — n(g1). By the definition of W, we have
g0() = idan—4a XA X ida, where A; acts on C = R? as complex multiplication
by e27i™¢ Hence, according to [27, p.49], i(go) = m.

In order to compute the Maslov index of gy, consider the torus K constructed
from two copies, X and X, of the annulus Z = [0, 1] x S by gluing together the
respective boundary components. Define the map u: K — M that coincides with
@ o F on X1, and with F on X,. Orient K by the volume form dv A d{ on %,.
Then the homology class of u(K) is S. Consider the symplectic vector bundle
u*TM over K. Trivialize it over £; by means of the frame ¢«£&, and over X5, at the
point (v, {), by means of the frame (1,711, o ¢)«&. Then it follows from [27, p.75] that
p(g1) = c1(u(K)) = m. Hence pu(g) = 0. O

Denote by Sp,(2n) the subgroup of the group Sp(2n) consisting of the maps
sending the vector (0,...,0,1) to itself. The loop g takes values in Sp,;(2n).
By Lemma 6.4, g is contractible in Sp(2xn). We claim that it is also contractible
in Sp,(2n). Indeed, the inclusion i: Sp;(2n) < Sp(2n) is the fiber of the smooth
fibration

m:Sp(2n) — R?"\ {0}, A A(0,...,0,1).
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It follows from the long exact sequence of m that i induces an isomorphism
of fundamental groups when n > 2. Thus there is a smooth family of maps
g':S' — Sp,(2n), t € [0, 1], such that g® = id and g' = g.

There is a linear isomorphism I from the space of quadratic forms on R?" to
the Lie algebra sp(2n) of the Lie group Sp(2n) that assigns to a quadratic form A
the Hamiltonian vector field generated by /4. The quadratic forms that vanish on
the line {(0,...,0,-)} are isomorphically mapped by I to the Lie algebra sp;(2n)
of Sp;(2n). From the family {g’} we construct a smooth family of Hamiltonian
functions { H;} with support in W such that

Ny (d*(Hp)) = 17" (&' (6n))

for all w = (X1, Y1,- .-, Xn—1, Yn—1,Pn>6n) € T{ (d1), t € [0, 1]. Then the time 1
flow @ generated by { H,} fixes each point w € T;!(d;) and has the same differential
as Yyt o W at w.

The symplectomorphism Y := &' o ;! o W fixes 7} (d;) pointwise and
satisfies d Y (w) = idforall w € T;!(d;). We shall prove that there is a Hamiltonian
symplectomorphism ®; with support in W coinciding with Y near T3'(d;). Then
® = &4 o P is as required.

To construct ®;, we use generating functions (cf. [2, Section 48], [19,
Appendix A.1]). Consider the graph I' C R?" x R?" of the map Y. Denote by
T C T the circle consisting of the points (w, w), where w € T!(d;). Denote by
p = (p1s.---.pPn),q9 = (q1,-..,qn) the symplectic coordinates on the first copy
of R?", and by p’ = (p},.... Ph).q = (4}.....q)) those on the second copy. By
construction, I' is tangent to the diagonal A C R?" x R?" along T*. Hence there is
a tubular neighbourhood V' of T in T" such that the map

V=R (p.q.p.q)~ (p.q)

is a diffeomorphism onto a neighbourhood U of T;! (d;) in W. Since Y is symplectic,
V' is Lagrangian with respect to the symplectic form

Q=—dpnrdgq+dp’'ndq =dgnrdp+dp ndq'.

The 1-forms « = —pdqg + p'dq’, o' = qdp + p'dq’ satistfy da = do’ = Q and
a = o/ —d(pq). Thus the restrictions of & and &’ to V' are closed. They are exact
because the restriction of « to the diagonal A, and hence to the circle 7> C V N A,
vanishes. Let #: V — R be a primitive of ’. Define F:t(V) - R, F = hot™ .
Then F is a generating function for V', namely, V' is given by the equations

_OF(p'.q) , _OF(p'.q)
j=—"—"s P =—7p—
ap dq

Note that p’q is a generating function for A.
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Since I is tangent to A along 7%, the functions F(p’, ¢) and p’q have the same
respective first and second partial derivatives at the points of the circle T} (d;) =
©(T*). Thus the function f(p’,q) := F(p’,q) — p’q is C? small near T}! (d;), and
there exists a family of C°° smooth functions fs: R?" — R, defined for sufficiently
small positive &, such that the function fg has support in the -neighbourhood Wj
of T (d1), coincides with f on a smaller neighbourhood of T,'(d;), and tends
to zero in the C? topology as § tends to zero. (To explicitly construct such a
family, we can proceed as follows. Pick a family of smooth compactly supported
functions As:[0,8] — [0, §[ such that Ag is identity near O and its first and second
derivatives are bounded uniformly over §. Given x € Wy, denote by x, the point
of T} (dy) closest to x and draw the ray starting at xo and passing through x. Let
Gs: Wy — Wjs be the map that sends x to the point y such that y lies on this ray and
dist(y, xo) = Ag (dist(x, xo)). Define fs to coincide with f o Gg on Ws.)

Denote by L§ the Lagrangian submanifold in R2" x R2" defined by the generating
function p’q + t f5(p’, q). Picking § sufficiently small, we can assume that each of
the manifolds L§ is sufficiently C ! close to A and hence is a graph of a compactly
supported symplectomorphism ®;. The symplectomorphism &®; is Hamiltonian
because ®¢ = id and H!(R?") = 0. Making § smaller if necessary, we can assume
that each @, has support in W. Since p'q + f5(p’, ¢) coincides with F near T}! (d;),
the symplectomorphisms ®; and Y also coincide near 7i!(d;). Thus @ is as
required, which concludes the proof of Proposition 6.1 for k = 1. O

6.3. Proof of Proposition 6.1 for £k > 1. Applying Proposition 6.1 for k = 1 to the
circle T} (dx), we obtain a neighbourhood U, of T} (dx) and a Hamiltonian symp-
lectomorphism /; such that wﬁUl = lIJ|U1. We shall construct a neighbourhood
Ux C D of the torus T¥ := T¥(d,,...,dy) and Hamiltonian symplectomorph-
isms ®, ©, with support in B2n (b+) such that

OWU) C Uy, \Ijo@luk - @)*O\IJIUk.

Denote by ©¢ (resp. ®Y) the Hamiltonian symplectomorphism of (M, w) that
coincides with ¢ 0 © o ¢! (resp. ¢ 0 ©, 0 ¢~ 1) on Bé" (b+) and with the identity
elsewhere. The symplectomorphism ¥, = (©%)~! o ¥, o ©®¢ will then have the
required property since

g o Vk O‘PIUk =@, o Wio O®|Uk =0;'oWo ®|Uk = ‘I’|Uk-

It remains to construct ® and ©,. Let & > 0. Applying Lemma 6.2, we obtain a
Hamiltonian flow { Z,} on R?” such that £ mapsthetorus T = T(dy,...,dr_1)x0,

into (éz(a‘))k and

E(T) C BX(dy + &) x -~ x BX(dy—y + &) x B2(g) forallt € [0,1].  (6.2)
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Consider the Hamiltonian flow
(P = idyp k2 xE; x ida}, 1 € [0, 1],

on R?", Let b’ = by — 5. Clearly, the torus Tik is contained in D N B2" ().
We claim that by choosing ¢ sufficiently small we can achieve that P, maps Tik into
D N B2" (b") for all ¢ € [0, 1], and that P; maps Tik into U;. Indeed, if me < dj,
then the set

B2(e) x T(dk) = {p1 < &, pa = di}
is contained in D, 5. It follows from (6.2) that for all 7 the torus P, (Tik) is contained

in R2"=* x B2(¢) x T(dy), and hence in D. If dy + -+ + dix + ke < b, then
it follows from (6. 2) that P,(Tk) C BZ”(b) for all z. Fina]ly, for & such that
Oop—nk—2 X (Bz(s)) x T(dy) is a subset of Uy, we have P, (T¥) c Uj.

It follows from the definition of the map W that W (P, (Tk )) is contained in B2 (by)
forallt € [0, 1]. Therefore, there is an openset W C DN B2 (b’) that contains all the
tori W (P, (TF¥)) and satisfies W(W) C B 2n(h_ ). Then there exists a neighbourhood Uy
of the torus T such that P,(Uy) C W for all ¢, and Py (Ug) C Uy.

Applying to {P;} an appropriate cut-off, we construct a Hamiltonian flow {P;},
t € [0, 1], with support in W such that Pt’lUk = P,lUk for all t and P{(Ug) C Uy.

Define the Hamiltonian flow {P}, ¢ € [0, 1], with support in W(W) C B2n (b+) by
P} = WoP] oW ! Then ® = P| and ®, = P} are as required. O

6.4. Proof of Theorem 1.5. It suffices to prove the theorem under the additional
assumption that d; = e; for j < k. Indeed, in view of Theorem 1.1 (i), the claim
will then also hold for vectors that differ at only one component; after that the general
case follows by changing one component at a time.

We extend the symplectic chart ¢ from B2"(b) to a larger ball B2"(b,) with
by > b, and keep the letter ¢ for this extension. Ford’ = (d, ..., d} ), we abbreviate
Ty(a,...,a,a+dy,....,a+d;)toTya(d"). Givent € [0, min(c, b+—b)[, denote
by V, the subset of RX-formed by vectors (d;., ..., dy) suchthatd +---+d; < b+t
andd; > c—rtforall j € {1,...,k}. Pick§ € ]O,min(c,b+— b)[. Recall that
0a(S) = 0(S) —ci(S)a.

Lemma 6.5. Let S € 72(M). There exists As > 0 such that for each a € 10, Ag]
and for each pair of vectors

d = (dy,....dg-1.dg), ds =(di,..., di—1,di + 04(S))
belonging to Vs, we have T, 4(d) ~ Ty o4(ds).

Proof. Denote s = o(S), m = c1(S). Assume first that s > 0. It follows from
Proposition 6.1 and the definition of the map W, ; that for each d € Vs there
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exist a neighbourhood U of the isotropic k-torus Ti”c (d) in B2 (b+) and a map
Y € Ham(M, w) such that for every torus 7'(ay,...,a,) contained in U we have

V(Tp(a,....an—1,an)) = Tp(ar,....an—1,an + 5 —May_y).

Therefore, by Theorem 1.1 (i), for each d € Vj there are a positive number Ag 4
and a neighbourhood Ws 4 of d in Vs such that for each d’ € Ws 4 and each
ace ]O, As,d] we have Ty 4(d') ~ Ty a(dy).

Since Vj is compact, there are dV ... .dD ¢ Vs such that the sets Ws aii
cover Vs. Let Ag be the smallest of the numbers Ag ;). Then Ty o(d) = Ty 4(ds)
for each d € Vs and each a € 10, Ag]. In particular, Ty, 4(d) ~ T, 4(ds) for each
a €]0,As] when d,ds € Vs. The latter statement is invariant under changing the
sign of §, and therefore we can drop the assumption that s > 0. O

Assume first that (M, w) is not special. Let S1,...,S, be elements of (M)
such that their classes form a basis of the free Abelian group 7, (M)/ (ker o Nkercy )
We can assume that r > 1, otherwise the groups G, are trivial and there is nothing
to prove. Consider the free Abelian group o (m2(M)). If it is trivial, then r = 1.
If its rank is 1, then r = 1 (otherwise (M, @) would be special). If the rank of this
group is greater than 1, then r > 2 and we can choose S, ..., S, such that for all
J €{l,...,r} the numbers s; = o(S;) satisfy the inequality |s;| < §. For each j
choose Ag; > 0 that fits the conclusion of Lemma 6.5 and denote m; = c¢1(S;).
Pick A > 0 such that for all j € {I,...,r} we have

ASAS.]., |Sj—mJ'A|<8.

If (M,w) is special, we set r = 1, S = Sp (or §§ = —Sp), and A = Ag, with
As, > 0 asin Lemma 6.5.
Leta € ]0, A]. Let

d = (dl,...,dk_l,dk), e = (dlv---sdk——laek)

be vectors in V. We assume that the difference dj — ej is an element of G, =
oq(m2(M)) if (M, w) is not special, and an element of G4(So) = 0,({Sp)) if (M, w)
is special. Hence there are n,...,n, € Z such that

e —di = anoa(Sj) = an(sj —m;a).

j=1 j=1

After changing the signs of §; if necessary, we can assume that all coefficients n
are non-negative. We need to prove that Ty 4(d) ~ Ty 4(e).

Let uy,...,uy be a sequence of numbers such that for each j € {1,...,r}
exactly n; of them equal s; — m;a. It gives rise to the sequence go,q1,...,9nN,
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where g9 = di, q; = di + Zf-=l u; foralll € {1,..., N} (and hence gy = e).
Without loss of generality, we can assume that dy < eg. If

q; € [drx —6,ex + 6] foralll e {1,...,N}, (6.3)

then each of the vectors q; = (dy,...,dr—1,q;) belongs to Vs. Since a < Ag; for
all j, it then follows from Lemma 6.5 that

Tgu,a(d) = T(p,a(qO) ~ qu,a(ql) RS oo & (a,a(QN—l) ~ T(p,a(qN) = Tgo,a(e)-

It remains to show that the sequence uy, ..., uy can be chosen to satisfy (6.3). For
r = 1, there is no choice involved in the construction of the sequence, and all g;
belong to [dk,er]. Let r > 1. Then |s; —m a| < § for all j since |s;| < & and
|sj —mjA| < §. We choose the numbers ; in succession, using the following rule:
if g—1 > ey, then u; <0, and if g;_; < dp, then u; > 0. Then (6.3) will hold true.
This completes the proof of Theorem 1.5. U

A. Areas of holomorphic curves in a hyperannulus

For r > 0, denote by B, (resp. §,) the closed (resp. open) ball of radius r in the
complex vector space C" centred at the origin. Denote By = {0}.

Theorem A.l. Letry > r— = 0. Let V be a holomorphic curve (a 1-dimensional
analytic subvariety) in the hyperannulus B, \ Br_ such that the closure of V
intersects dB,_. Then the area of V is at least & (rf_ —ip2y,

If the area equals (r_2+r —r2), then V is the intersection of a complex line in C"
with the hyperannulus.

In the particular case where r— = 0, Theorem A.l is equivalent to the
1-dimensional version of the Lelong theorem that gives a lower bound for the areas
of holomorphic curves in a ball passing through the centre. In this case the result
can be proven in many ways: Using currents [23, 39]; by blow-up [32, Lemma 4.2];
or, viewing V' as a (singular) minimal surface, by using the monotonicity formula for
minimal surfaces [20, Theorem 3.2.4] or the isoperimetric inequality [6, § 7.4]. Each
of these proofs uses in an essential way that 1/ passes through the centre. The general
case r— > 0 follows if one shows that for almost all r € [r_, r4] the derivative F’'(r)
of the area F(r) of V N (B \ B,_) is at least 2 r. This can be done by elementary
arguments, see [10, Appendix A].

B. Existence of low admissible paths

Let kK > 2. Given an ordered pair of different numbers i, j € {1,...,k}, consider
the operator P;; (resp. M;;, resp. I;;) in GL(k; Z) that adds to the i -th component of
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a vector in R¥ its j-th component (resp. subtracts from the i-th component the j-th
component, resp. swaps the i-th component and the j-th component), and does not
change the other components.

Denote by R, the set of positive real numbers. A sequence d = d°, d',

d?,....d* = e of vectors in ]R’ft_ is called an admissible path from d to e if for
each s the vector d**1 is obtained from d* by applying one of P;;, M;;, I;;. Given
vectors v, w € ]R’fP we write v < w if there is a permutation o of {1, ..., k} such that
vi < weq) foralli € {1,...,k}. Wesaythatapathd = d°,d!,...,d* = eislowif
foreachs € {0,1,..../} wehaved® < d ord® <e. Givenu = (uy,...,u;) € R¥,
we write (#) = (uq, ..., uy) for the free Abelian subgroup in R generated over Z by
the numbers uq, ..., ug.

The following theorem may be known to specialists in number theory or geometric
group theory, but we were unable to find it in the literature.

Theorem B.1. Given d = (dy,....dy) and e = (ey,...,ex) in R]—i such that
(d) = (e), there is a low admissible path from d to e.

In this appendix we outline a proof of this theorem. For the complete proof we
refer to [11, Appendix B]. We first notice that if the path d°. d',....d* " d*
is admissible, then the path d¢ d*! ..., d' d° is also admissible, because
Mi;I = P;;. Further, the concatenation of a low path from d to d’ and a low
path from d’ to d” does not have to be low. However, the concatenation is low when
d <dord <d".

One readily sees that

Lemma B.2. Givend,e € IR’_‘E_ such that (d) = (e) and (d) has rank 1, there is a
low admissible path from d to e.

Lemma B.3. Givend e € Ri such that (d) = (e) and (d) has rank 2, there is a
low admissible path from d to e.

Sketch of proof. Since (d) = (e), there exists A € GL(2:Z) such that A(d) = e.
It is not hard to see that there exists an admissible path from d to e. We call an
admissible path d = d°,... d*% = e special if each of the moves from d*~! to d*
is by one of Py, M2, 112 =: I. Since P;; = I P31 and M3y = IM 51, every
admissible path from d to e can be transformed into a special one. Hence there exist
special admissible paths from d to e. Let p be a special admissible path of minimal
length. One readily checks that p is low. L]

The key step in the proof of Theorem B.1 is the following special case.

Lemma B.4. Let d. e be vectors in R]-Ci- satisfying (d) = (e). Assume that there is
i e{l,....k}suchthatd; = e;, di <dj forall j, and d; is primitive (indivisible)
in (d). Then there is a low admissible path from d to e.
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Idea of proof. Assume for notational convenience that i = k. By repeatedly
subtracting the number dy = e; from the components of d that exceed dy, we
construct an admissible path d,d', ..., d*% whered > d' > --- > d% and d' is

such that d,f >d f for all j. Using the same procedure, we obtain an admissible path

e,el, ..., e™ wheree >e! > ... > ¢™ and e™ is such that e ze;." for all ;.

One can now construct an admissible path from d ¢ to e™ with the property that
the components of all the vectors in this path are <dj. By concatenating the path

d,... dt the path from d* to e™, and the path e, ..., e, we then obtain a low
admissible path from d to e. ]

Theorem B.1 can now be proved by induction on k. Lemma B.2 and Lemma B.3
prove the statement for k = 1 and k = 2. We shall prove the statement for k > 3
assuming that it holds for k—1. In view of Lemma B.2, we can assume that rk(d ) > 2.
Using the induction hypothesis, one proves

Lemma B.5. Let u € le_ with k > 3 and tk{(u) > 2. There is a low admissible
path from u to a vector u* € R"j_ such that u™ < u, u;: < u;.L for all j, and u;: is
indivisible in (u).

By this lemma we can assume that dj and e, are indivisible in (d ), dy < d; and
er < ejforall j. If dy = eg, then Theorem B.1 follows from Lemma B.4 (with
i = k). Otherwise, the proof can also be completed with the help of Lemma B.4.

O

References

[1] P. Albers and U. Frauenfelder, A non-displaceable Lagrangian torus in 7*S2,
Comm. Pure Appl. Math., 61 (2008), 1046—-1051. Zbl 1142.53067 MR 2417887

[2] V.1 Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-
Verlag, Berlin, 1989. Zbl 0692.70003 MR 0997295

[3] M. Audin, F. Lalonde and L. Polterovich, Symplectic rigidity: Lagrangian
submanifolds, in Holomorphic curves in symplectic geometry, 271-321,
Progr. Math., 117, Birkhduser, Basel, 1994. Zbl 0802.53001 MR 1274934

[4] D. Auroux, Infinitely many monotone LLagrangian tori in R®, Invent. Math., 201
(2015), 909-924. Zbl 06483766 MR 3385637

[5] P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds,
Geom. Topol., 13 (2009), 2881-2989. Zbl 1180.53078 MR 2546618

[6] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren
der Mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988.
Zbl 0633.53002 MR 0936419



Vol. 91 (2016) Lagrangian product tori in symplectic manifolds 473

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Yu. V. Chekanov, Lagrangian tori in a symplectic vector space and global
symplectomorphisms, Math. Z., 223 (1996), 547-559. Zbl 0877.58024
MR 1421954

Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of
holomorphic curves, Duke Math. J., 95 (1998), 213-226. Zbl 0977.53077
MR 1646550

Yu. V. Chekanov, Invariant Finsler metrics on the space of Lagrangian
embeddings, Math. Z., 234 (2000), 605-619. Zbl 0985.37052 MR 1774099

Yu. V. Chekanov and F. Schlenk, Notes on monotone Lagrangian twist tori,
Electron. Res. Announc. Math. Sci., 17 (2010), 104-121. Zbl 1201.53083
MR 2735030

Yu. V. Chekanov and F. Schlenk, Lagrangian product tori in tame symplectic
manifolds, 2015. arXiv:1502.00180

Ya. Eliashberg and M. Gromov, Convex symplectic manifolds, in Several
complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989),
135-162, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence,
RI, 1991. Zbl 0742.53010 MR 1128541

M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compos.
Math., 145 (2009), 773-826. Zbl 1230.53080 MR 2507748

K. Fukaya, Application of Floer homology of Langrangian submanifolds to
symplectic topology, in Morse theoretic methods in nonlinear analysis and in
symplectic topology, 231-276, NATO Sci. Ser. II Math. Phys. Chem., 217,
Springer, Dordrecht, 2006. Zbl 1089.53064 MR 2276953

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric Degeneration and
Nondisplaceable Lagrangian Tori in S? x S2, Internat. Math. Res. Notices
(2012), 2942-2993. Zbl 1250.53077 MR 2946229

A. Gadbled, On exotic monotone Lagrangian tori in CP? and S? x SZ2,
J. Symplectic Geom., 11 (2013), 343-361. Zbl 1279.53049 MR 3100797

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent.
math., 82 (1985), 307-347. Zbl 0592.53025 MR 809718

H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc.
Edinburgh Sect. A, 115 (1990), 25-38. Zbl 0713.58004 MR 1059642

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,
Birkhiuser, Basel, 1994. Zbl 0805.58003 MR 1306732

J. Lafontaine, Some relevant Riemannian geometry, in Holomorphic curves
in symplectic geometry, 77-112, Progr. Math., 117, Birkhauser, Basel, 1994.
Zbl 0802.53001 MR 1274927



474

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Yu. Chekanov and F. Schlenk CMH

F. Lalonde and D. McDuff, The geometry of symplectic energy, Ann. of Math.,
141 (1995), 349-371. Zbl 0829.53025 MR 1324138

Hong Van Lé and K. Ono, Symplectic fixed points, the Calabi invariant
and Novikov homology, Topology, 34 (1995), 155-176. Zbl 0822.58019
MR 1308493

P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math.
France, 85 (1957), 239-262. Zbl 0079.30901 MR 0095967

D. McDuft, Blow ups and symplectic embeddings in dimension 4, Topology, 30
(1991), 409—421. Zbl 0731.53035 MR 1113685

D. McDuff, Remarks on the uniqueness of symplectic blowing up, in Symplectic
geometry, 157-167, London Math. Soc. Lecture Note Ser., 192, Cambridge
Univ. Press, Cambridge, 1993. Zbl 0822.53021 MR 1297134

D. McDuft, From symplectic deformation to isotopy, in Topics in symplectic
4-manifolds (Irvine, CA, 1996), 85-99, First Int. Press Lect. Ser., I, Int. Press,
Cambridge, MA, 1998. Zbl 0928.57018 MR 1635697

D. McDuff and D. Salamon, Introduction to symplectic topology, second edition,
Oxford Mathematical Monographs, The Clarendon Press, Oxford University
Press, New York, 1998. Zbl 1066.53137 MR 1698616

D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology,
second edition, AMS Colloquium Publications, 52, AMS, Providence, RI, 2012.
Zbl 1272.53002 MR 2954391

D. McDuff and L. Traynor, The 4-dimensional symplectic camel and related
results, in Symplectic geometry, 169—182, London Math. Soc. Lecture Note Ser.,
192, Cambridge Univ. Press, Cambridge, 1993. Zbl 0821.53030 MR 1297135

M.-P. Muller, Une structure symplectique sur R® avec une sphére lagrangienne
plongée et un champ de Liouville complet, Comment. Math. Helv., 65 (1990),
623-663. Zbl 0716.53037 MR 1078102

J. Oakley and M. Usher, On certain Lagrangian submanifolds of S? x S?2
and CP", Algebr. Geom. Topol., 16 (2016), 149-209. Zbl 1335.53105
MR 3470699

S. Yu. Orevkov, An algebraic curve in the unit ball in C? that passes through
the origin and all of whose boundary components are arbitrarily short, Proc.
Steklov Inst. Math., 253 (2006), 123—-143. Zbl 06434732 MR 2338694

Yu. Rudyak and F. Schlenk, Minimal atlases of closed symplectic manifolds,
Commun. Contemp. Math., 9 (2007), 811-855. Zbl 1153.53337 MR 2372460

F. Schlenk, Embedding problems in symplectic geometry, de Gruyter
Expositions in Mathematics, 40, Walter de Gruyter Verlag, Berlin, 2005.
Zbl 1073.53117 MR 2147307



Vol. 91 (2016) Lagrangian product tori in symplectic manifolds 475

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J.-C. Sikorav, Some properties of holomorphic curves in almost complex
manifolds, in Holomorphic curves in symplectic geometry, 165-189,
Progr. Math., 117, Birkhéuser, Basel, 1994. MR 1274929

D. Théret, A Lagrangian camel, Comment. Math. Helv., 74 (1999), 591-614.
Zbl 0954.37029 MR 1730659

R. Vianna, On exotic Lagrangian tori in CP?, Geom. Topol., 18 (2014), 2419-
2476. Zbl 1316.53087 MR 3268780

R. Vianna, Infinitely many exotic monotone Lagrangian tori in CP?, 2014
arXiv:1409.2850

C. Viterbo, Capacités symplectiques et applications (d’apres Ekeland-Hofer,
Gromov), Séminaire Bourbaki, Vol. 1988/89, Astérisque, 177-178 (1989),
Exp. No. 714, 345-362. Zbl 0698.53019 MR 1040580

C. Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action
et indice des systemes hamiltoniens, Bull. Soc. Math. France, 115 (1987), 361—
390. Zbl 0639.58018 MR 0926533

C. Viterbo, Symplectic topology as the geometry of generating functions,
Math. Ann., 292 (1992), 685-710. Zbl 0735.58019 MR 1157321

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds,
Advances in Math., 6 (1971), 329-346. Zbl 0213.48203 MR 0286137

Received February 6, 2015; revised February 3, 2016

Yu. Chekanov, Moscow Center for Continuous Mathematical Education,
B. Vlasievsky per. 11, Moscow 121002, Russia

E-mail: chekanov@mccme.ru

F. Schlenk, Institut de Mathématiques, Université de Neuchatel, Rue Emile Argand 11,
2000 Neuchatel, Switzerland

E-mail: schlenk @unine.ch






	Lagrangian product tori in symplectic manifolds

